CXD1852Q MPEG1 Decoder For the availability of this product, please contact the sales office. Description The CXD1852Q is a single-chip MPEG1 decoder with a built-in CD-ROM decoder which allows decoding of MPEG1 system, video and audio layers. A built-in CD-ROM decoder enables direct connection with a CD-DSP. Combining this chip with a control microcomputer and 4-Mbit DRAM, etc. allows configuration of a MPEG1 decoding system for video CD players, etc. Features • Supply voltage: 3.3 ± 0.3V • Input and output voltages: LVTTL compatible • 5V can be applied as the input voltage (excluding some pins) • Allows decoding of MPEG1 system, video and audio layers • Built-in CD-ROM decoder allows direct connection with a CD-DSP • CD-ROM decoded output can be transferred to and stored in an external DRAM • RGB and YCbCr video data output allowed • Built-in video sync generator • Audio data output can support various DAC • Supports various special playback modes • Video CD PAL high resolution still picture can be decoded with a single 4-Mbit DRAM • 8-bit parallel and 4-line serial host interfaces • CD-DA through operation allowed 120 pin QFP (Plastic) Structure Silicon gate CMOS IC Applications Video CD players, MPEG1 decoder boards, etc. Block Diagram CD-DSP I/F CD-ROM Decoder MPEG System Decoder MPEG Audio Decoder Audio I/F MPEG Video Decoder DRAM Controler DRAM I/F Video Postprocessor & Sync Generator Video I/F Video Sync Signal Host interface Host I/F To each circuit block Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits. –1– E96656-PS CXD1852Q VSS HSYNC VSYNC FID/FHREF CBLNK/FSC XSGRST CSYNC CLK0O DOUT DATO BCKO LRCO FSXI VDD VSS XTL2O VDD XTL2I C2PO LRCI DATI DOIN BCKI XHCS XHDT HRW XHIRQ HA0 XRST HA1 1. Pin Configuration 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 VSS 1 90 VDD XTL0O 2 89 DCLK XTL0I 3 88 B/Cb7 VDD 4 87 B/Cb6 HA2 5 86 B/Cb5 HA3 6 85 B/Cb4 HD0 7 84 B/Cb3 HD1 8 83 B/Cb2 HD2 9 82 B/Cb1 HD3 10 81 B/Cb0 HD4 11 80 G/Y7 HD5 12 79 G/Y6 HD6 13 78 G/Y5 VDD 14 77 G/Y4 VSS 15 76 G/Y3 HD7 16 75 VSS MA3 17 74 VDD MA4 18 73 G/Y2 MA2 19 72 G/Y1 MA5 20 71 G/Y0 MA1 21 70 R/Cr7 VSS 22 69 R/Cr6 MA6 23 68 R/Cr5 MA0 24 67 R/Cr4 BC 25 66 R/Cr3 TCKI 26 65 R/Cr2 TDI 27 64 R/Cr1 TENA1 28 63 R/Cr0 TDO 29 62 XVOE VST 30 61 VSS –2– VDD OSDR OSDG OSDB OSDEN MD15 MD0 MD14 MD1 MD13 MD2 MD3 MD12 MD11 VSS MD4 VDD MD10 MD5 MD9 MD6 MD8 MD7 XCAS0 XCAS2/MA9 XRAS XMWE MA8 MA7 VSS 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 CXD1852Q 2. Pin Description Pin No. Symbol I/O Description VDD +3.3V power supply VSS Connect to ground. 2 XTL0O O 3 XTL0I I 5, 6, 119, HA0 to HA3 120 Video decoder master clock. Input the clock to XTL0I or connect an oscillator between XTL0I and XTL0O. The recommended frequencies are 27MHz, 28.6363MHz (NTSC 8fsc) and 35.4686MHz (PAL 8fsc). I When the host interface operates in parallel mode, these pins are the register address inputs. In serial mode, HA0 is the serial data input, and HA1 to HA3 should be fixed to low level. 7 to 13, 16 HD0 to HD7 I/O When the host interface operates in parallel mode, these pins are the register data I/Os. In serial mode, HD0 is the serial data output, and HD1 to HD7 should be fixed to low level. 17 to 21, 23, 24, 32, 33 MA0 to MA8 O DRAM address signal outputs. Connect to the DRAM address pins so that the numbers match. 34 XRAS O Row address strobe signal output. Connect to the DRAM RAS signal pin. 35 XMWE O DRAM write enable signal output. Connect to the DRAM WE signal pin. O Used when connecting 8 Mbits of DRAM. Connect to the upper word (256K to 512K-1) DRAM CAS signal pin (for both the upper and lower bytes) when the DRAM configuration is 256 Kwords × 16 bits × 2, and to the MA9 pin (for two DRAMs) when the DRAM configuration is 512 Kwords × 8 bits × 2. 36 XCAS2/ MA9 37 XCAS0 O DRAM column address strobe signal output. Connect to the lower word (0 to 256K-1) DRAM CAS signal pin (for both the upper and lower bytes) when the DRAM configuration is 256Kwords × 16 bits × 2, and to all DRAM CAS signal pins in all other cases. 38 to 43, 46 to 55 MD0 to MD15 I/O DRAM data signal I/Os. Connect to the DRAM data pins so that the numbers match. 56 OSDEN I OSD enable signal. The enabled polarity is changed by the register settings. 57 to 59 OSDB, OSDG, OSDR I OSD data inputs. When the signal input to the OSDEN pin is enabled, the color registered in the color table which is specified by these three inputs (3 bits) is output as the image data. I Video output enable signal. Image data output and DCLK output are enabled when this pin is low, and disabled when this pin is high (high impedance). Note that the output control register must be set to output enable for output to be enabled. O Image data outputs. The output data format (RGB, YCbCr, etc.) and the correspondence between the pins and output data can be changed by setting the registers. I/O Dot clock (DCLK) signal. The DCLK frequency is normally 13.5MHz. DCLK can be input from this pin, or frequency divided from the clock input and output from this pin. 62 XVOE 63 to 70 R/Cr0 to R/Cr7 71 to 73, 76 to 88 G/Y0 to G/Y7 81 to 88 B/Cb0 to B/Cb7 89 DCLK –3– CXD1852Q Pin No. Symbol I/O Description 92 HSYNC I/O Horizontal sync signal. When using the built-in sync generator, the dot clock (DCLK) is frequency divided and output. When not using the sync generator, this pin is an input. 93 VSYNC I/O Vertical sync signal. When using the built-in sync generator, the dot clock (DCLK) is frequency divided and output. When not using the built-in sync generator, this pin is an input. I/O Field identification signal (FID) and horizontal sync phase reference signal (FHREF). The signal to be used is set in the register. When set to FID, this pin is an output if using the built-in sync generator, and an input if not using the built-in sync generator. High corresponds to odd fields. When set to FHREF, this pin outputs the signal obtained by frequency dividing XTL0. When XTL0 is 8fsc, this signal is equivalent to the HSYNC cycle, and can be used for phase comparison with the HSYNC signal. 94 FID/FHREF 95 CBLNK/ FSC I/O Composite blanking signal (CBLNK) and fsc signal. The signal to be used is set in the register. When set to CBLNK, this pin is an output if using the built-in sync generator, and an input if not using the built-in sync generator. When set to fsc, this pin outputs the signal obtained by frequency dividing XTL0. The frequency division ratio can be selected from 1/8 or 1/16. 96 CSYNC O Composite sync signal obtained by frequency dividing DCLK. This pin cannot be input. 97 XSGRST I Sync generator reset signal input. The built-in sync generator is initialized by setting this pin low. 98 CLK0O O Output for clock obtained by frequency dividing XTL0. The frequency division ratio can be selected from 1, 1/2, 1/4 or 1/8. 99 DOUT O Audio digital output. 100 DATO O Audio serial data output to DAC. 101 LRCO O L/R clock output to DAC. 102 BCKO O Bit clock output to DAC. 103 FSXI I Audio interface clock input. Input 256fs (11.2896MHz), 384fs (16.9344MHz), 512fs (22.5792MHz), or 768fs (33.8688MHz), etc. 106 XTL2O O 107 XTL2I I 109 C2PO I C2 pointer input from CD-DSP. Indicates that the DATI input contains an error. 110 LRCI I LR clock input from CD-DSP. Indicates the L or R channel of DATI. 111 DATI I Serial data input from CD-DSP. 112 BCKI I Bit clock input from CD-DSP. This clock strobes the DATI input. 113 DOIN I Digital data input from CD-DSP. 114 XHCS I Chip select signal input during register access. 115 XHDT I/O Master clock for CD-ROM and audio decoders. Input the clock to XTL2I or connect an oscillator between XTL2I and XTL2O. The recommended frequency is 45MHz. Note that this clock is for the internal circuits, and the input and output are not synchronized. Wait signal output during register access. This pin is valid only when the host interface operates in parallel mode. This pin functions as an open drain, and should therefore be pulled up. It should be pulled up when the host interface operates in serial mode as well. –4– CXD1852Q Pin No. Symbol I/O Description 116 HRW I R/W signal input when the host interface operates in parallel mode. Serial clock input in serial mode. 117 XHIRQ O Interrupt request signal output. This pin functions as an open drain, and should therefore be pulled up. 118 XRST I Hardware reset signal input. All operation is initialized by setting this pin low. 25 BC — Test. Leave open. 26 TCKI — Test. Leave open. 27 TDI — Test. Leave open. 28 TENA1 — Test. Leave open. 29 TDO — Test. Leave open. 30 VST — Test. Connect to ground. –5– CXD1852Q 3. Electrical Characteristics 3-1. Absolute Maximum Ratings Item (Ta = 25°C, VSS = 0V) Symbol Rating Unit –0.5 to +4.6 V Remarks Supply voltage VDD Input pin voltage VI –0.5 to VDD + 0.5 V ∗1 Input pin voltage VI –0.5 to +5.5 V ∗2 Output pin voltage VO –0.5 to VDD + 0.5 V ∗3 Output pin voltage VO –0.5 to +5.5 V ∗4 I/O pin voltage VI/O –0.5 to +5.5 V 1.0 W Allowable power dissipation PD Operating temperature Topr –20 to +75 °C Storage temperature Tstg –55 to +150 °C ∗1 XTL0I and XTL2I pins ∗2 Input pins other than those in ∗1 above. ∗3 XTL0O and XTL2O pins ∗4 Output pins other than those in ∗3 above. 3-2. Recommended Operating Conditions (Ta = –20 to +75°C, VSS = 0V) Symbol Min. Typ. Max. Unit Supply voltage VDD 3.0 3.3 3.6 V High level input voltage VIH 2.2 — VDD V ∗1 High level input voltage VIH 2.2 — 5.0 V ∗2 Low level input voltage VIL 0 — 0.8 V Input rise time Tr 0 — 50 ns Input fall time Tf 0 — 50 ns Operating temperature Topr –20 — 75 °C Item ∗1 XTL0I and XTL2I pins ∗2 I/O pins and input pins other than those in ∗1 above. –6– Remarks CXD1852Q 3-3. DC Characteristics Item (Ta = –20 to +75°C, VSS = 0V, VDD = 3.3 ± 0.3V) Symbol Measurement conditions Min. Typ. Max. Unit Remarks — — 100 mA –40 — 40 µA ∗1 VDD – 0.8 — — V ∗2 Average operating supply current IDD Input leak current II VI = 0 to 5.0V High level output voltage VOH IOH = –2mA High level output voltage VOH IOH = –100µA — VDD – 0.4 — V ∗2 Low level output voltage VOL IOL = 4mA — — 0.4 V ∗2 Low level output voltage VOL IOL = 100µA — 0.04 — V ∗2 Output leak current IOZ VO = 0 to 5.0V, output disabled status –40 — 40 µA ∗2 Feedback resistance RFB VI = 0V or VI = VDD 250k 1M 2.5M Ω ∗3 Logic threshold value LVth — VDD/2 — V ∗4 High level output voltage VOH IOH = –12mA VDD/2 — — V ∗5 Low level output voltage VOL IOL = 12mA — — VDD/2 V ∗5 Min. Typ. Max. — — 60 MHz ∗1 ∗1 ∗1 Input pins other than XTL0I and XTL2I ∗2 I/O pins and output pins other than XTL0O and XTL2O ∗3 Oscillators (between XTL0I and XTL0O, and between XTL2I and XTL2O) ∗4 XTL0I and XTL2I pins ∗5 XTL0O and XTL2O pins 3-4. Clock Signal AC Characteristics tCX0 tWLX0 XTL0I tWHX0 tCX2 tWLX2 XTL2I tWHX2 Item Symbol Unit Remarks XTL0I frequency fX0 XTL0I cycle 33.3 — — ns 10 — — ns XTL0I low level interval tCX0 tWHX0 tWLX0 10 — — ns XTL2I frequency fX2 44.7 45.1584 45.4 MHz ∗2 XTL2I cycle tCX2 tWHX2 tWLX2 — 22.2 — ns ∗2 8 — — ns 8 — — ns XTL0I high level interval XTL2I high level interval XTL2I low level interval ∗1 When using in combination with the XTL0O pin as an oscillator, the maximum oscillation frequency is 50MHz. ∗2 When using in combination with the XTL2O pin as an oscillator, the maximum oscillation frequency is 50MHz. –7– CXD1852Q 3-5. Host Interface AC Characteristics 3-5-1. Serial Mode (write, read) XHCS tSCS tWLSK HRW (SCK) tCSK tHCS tWHSK tSSI tHSI HA0 (SI) tLZSQ tOHSQ tDSQ tHZSQ HD0 (SQ) Item Symbol Serial clock frequency fSK Serial clock cycle tCSK tWHSK tWLSK tSCS tHCS tSSI tHSI tLZSQ tDSQ tOHSQ tHZSQ Serial clock high level interval Serial clock low level interval Chip select setup time Chip select hold time Serial input setup time Serial input hold time Serial output enable time Serial output determination time Serial output hold time Serial output disable time –8– Min. Max. Unit — 2 MHz 500 — ns 100 — ns 100 — ns 0 — ns 500 — ns 30 — ns 30 — ns 0 15 ns — 40 ns 5 — ns 0 15 ns Remarks CXD1852Q 3-5-2. Parallel Mode, Register Write HA0 to 3 tSA tHA tWCSH XHCS tWWL1 XHRW tDWA1 tHW1 XHDT tHZQ2 HD0 to 7 output Item Address setup time Address hold time Chip disable time Write pulse width Write pulse hold time Wait signal delay time HD output disable time (for WR) HD input setup time HD input hold time ∗1 ∗2 ∗3 ∗4 ∗5 tSD1 tHD1 input Symbol tSA tHA tWCSH tWWL1 tHW1 tDWA1 tHZQ2 tSD1 tHD1 Specified for the edge of XHCS or HRW, whichever is later. Specified for the edge of XHCS or HRW, whichever is earlier. Interval during which both XHCS and HRW are low. Applies only to access resulting in wait status. Do not apply data while output is enabled. –9– Min. Max. Unit Remarks 20 — ns ∗1 20 — ns ∗2 20 — ns 60 — ns ∗3 10 — ns ∗2, ∗4 — 15 ns ∗1, ∗4 — 15 ns ∗5 25 — ns ∗2 25 — ns ∗2 CXD1852Q 3-5-3. Parallel Mode, Register Read HA0 to 8 tWCSH XHCS (CS) tSR tHR XHRW (WR) tDWA2 tDWA3 XHDT (WAIT) tDQ2 tDQ1 tHZQ1 tLZQ1 tDQ4 valid output HD0 to 7 Item Chip disable time Read setup time Read hold time Wait signal delay time (for CE) Wait signal delay time (for HA) HD output enable time (for CE) HD output determination time (for CE) HD output determination time (for HA) HD output determination time (for WAIT) HD output disable time (for CE) ∗1 ∗2 ∗3 ∗4 Symbol tWCSH tSR tHR tDWA2 tDWA3 tLZQ1 tDQ1 tDQ2 tDQ4 tHZQ1 Min. Max. Unit Remarks 20 — ns 10 — ns 10 — ns — 15 ns ∗1 — 15 ns ∗1 0 — ns ∗2 — 60 ns ∗3 0 60 ns ∗3 — 30 ns ∗3, ∗4 — 15 ns Applies only to access resulting in wait status. XHDT goes low at the later timing of CE or HA. HD output is enabled when both conditions are met. HD output is determined when all conditions are met. Applies only to access resulting in wait status. – 10 – CXD1852Q 3-6. Interface for CD Signal Processing LSI BCKFEDG = 0 tBCKI tBCKI BCKI DATI tSBC1 tHBC1 LRCI, C2PO tHBC2 tSBC2 BCKFEDG = 1 tBCKI tBCKI BCKI DATI tSBC1 tHBC1 LRCI, C2PO tHBC2 Item Symbol BCKI frequency fBCKI BCKI pulse width tBCKI tSBC1 tHBC1 tSBC2 tHBC2 DATI setting time (for BCKI) DATI hold time (for BCKI) LRCI, C2PO setting time (for BCKI) LRCI, C2PO hold time (for BCKI) – 11 – tSBC2 Max. Unit 5.7 MHz 87 — ns 20 — ns 20 — ns 20 — ns 20 — ns Min. Remarks CXD1852Q 3-7. Image Data Output, Video Sync Signal Output AC Characteristics tCDCK tWLDCK DCLK tWHDCK tHPD R/Cr0 to 7 G/Y0 to 7 B/Cb0 to 7 tDPD tDHSY tDHSY tDVSY tDVSY tDCSY tDCSY tDCBL tDCBL tDFID tDFID HSYNC VSYNC CSYNC CBLNK FID Item Symbol Min. Typ. Max. Unit Remarks DCLK frequency fDCK — 13.5 — MHz ∗1 DCLK cycle tCDCK tWHDCK tWLDCK tDPD tHPD tDHSY tDVSY tDCSY tDCBL tDFID — 74.1 — ns ∗1 — 37 — ns ∗1 — 37 — ns ∗1 — — 15 ns ∗1, ∗2 0 — — ns ∗1, ∗2 — — 30 ns ∗1 — — 30 ns ∗1 — — 30 ns ∗1 — — 30 ns ∗1 — — 30 ns ∗1 DCLK high level interval DCLK low level interval Image data output determination time Image data output hold time HSYNC output delay time VSYNC output delay time CSYNC output delay time CBLNK output delay time FID output delay time ∗1 When both inputting and outputting DCLK. For output, a load of 75pF is connected to DCLK. ∗2 The chart shows the case where the pixel data output is synchronized to the fall of DCLK, but is also the same when synchronized to the rise of DCLK. – 12 – CXD1852Q 3-8. Video Sync Signal Input AC Characteristics DCLK tHHSY tSHSY tHHSY tSHSY tHVSY tSVSY tHVSY tSVSY tHCBL tSCBL tHCBL tSCBL tHFID tSFID tHFID tSFID HSYNC VSYNC CBLNK FID Item HSYNC hold time HSYNC setup time VSYNC hold time VSYNC setup time CBLNK hold time CBLNK setup time FID hold time FID setup time Symbol tHHSY tSHSY tHVSY tSVSY tHCBL tSCBL tHFID tSFID Min. Max. Unit Remarks 5 — ns ∗1 5 — ns ∗1 5 — ns ∗1 5 — ns ∗1 5 — ns ∗1 5 — ns ∗1 5 — ns ∗1 5 — ns ∗1 ∗1 When both inputting and outputting DCLK. For output, a load of 75pF is connected to DCLK. – 13 – CXD1852Q 3-9. fsc System Signal Output, DCLK Output AC Characteristics tCX0 XTL0O tCFSC tDFSC tWHFSC FSC tWLFSC tDFHR FHREF tCDCK tWHDCK tDDCK DCLK tWLDCK Item Symbol Min. Typ. Max. Unit Remarks FSC frequency fFSC — 1/(i × tCX0) — ∗1 FSC cycle — i × tCX0 — ∗1 — i × tCX0/2 — ∗1 — i × tCX0/2 — ∗1 — — 15 ns FHREF output delay time tCFSC tWHFSC tWLFSC tDFSC tDFHR — — 15 ns DCLK frequency fDCK — 1/(j × tCX0) — ∗2 DCLK cycle tCDCK tWHDCK tWLDCK tDDCK — j × tCX0 — ∗2 — j × tCX0/2 — ∗2 — j × tCX0/2 — ∗2 — — 15 FSC high level interval FSC low level interval FSC output delay time DCLK high level interval DCLK low level interval DCLK output delay time ∗1 The frequency division ratio i can be selected from 8 or 16. ∗2 The frequency division ratio j can be selected from 2 or 4. – 14 – ns CXD1852Q 3-10. Audio Interface tBCKO tBCKO BCKO DATO tDDAT LRCO tDLRC Item Symbol BCKO frequency fBCKO BCKO pulse width tBCKO tDDAT tDLRC DATO delay time (for BCKO) LRCO delay time (for BCKO) – 15 – Max. Unit 3.1 MHz 160 — ns — 40 ns — 40 ns Min. Remarks CXD1852Q 3-11. DRAM Interface AC Characteristics 3-11-1. Write Cycle tRP XRAS tPC tRCD tCAS tCP tRSH XCAS0 to 3 tWCS tWCH XMWE tASR tRAH tASC tCAH tDS tDH MA0 to 9 MD0 to 15 Item RAS precharge time RAS to CAS delay time RAS hold time Fast page mode cycle time CAS pulse width CAS precharge time Write command setup time Write command hold time Row address setup time Row address hold time Column address setup time Column address hold time Write data setup time Write data hold time Symbol tRP tRCD tRSH tPC tCAS tCP tWCS tWCH tASR tRAH tASC tCAH tDS tDH ∗1 tv is the basic clock cycle for the DRAM interface circuit. ∗2 Same as the DRAM interface read cycle. – 16 – Min. Unit Remarks Typ. Max. 2 × tv — ns ∗2 2 × tv — ns ∗2 tv 2 × tv tv tv tv 2 × tv tv tv tv tv tv tv — ns ∗2 — ns ∗2 — ns ∗2 — ns ∗2 — ns — ns — ns ∗2 — ns ∗2 — ns ∗2 — ns ∗2 — ns — ns CXD1852Q 3-11-2. Read Cycle tRP XRAS tPC tRCD tCAS tCP tRSH XCAS0 to 3 tRCS tRCH XMWE tASR tRAH tASC tCAH MA0 to 9 tMDS tMDH MD0 to 15 Item Read command setup time Read command hold time Read data setup time Read data hold time Symbol tRCS tRCH tMDS tMDH Min. Unit Remarks Typ. Max. 4 × tv — ns tv — ns 2 — ns 8 — ns ∗1 tv is the basic clock cycle for the DRAM interface circuit. ∗2 See the DRAM interface write cycle for items which appear in the timing chart but not in the table. – 17 – CXD1852Q 4. Description of Functions 4-1. Host Interface Function • The CXD1852Q operation is controlled by writing and reading registers. Write and read can also be performed to an external DRAM via the registers. See the separately issued Register Manual for the relationship between the registers and operation. • The host interface operates while XHCS is low and does not operate while XHCS is high. • The host interface operating mode can be set to 4-line serial or 8-bit parallel. The operating mode is selected automatically at the end of the initial access after the hardware has been reset. (See the figure below.) Registers are not accessed correctly until this selection has been determined, or in other words until the end of the initial access after the hardware has been reset. Also, the HA3 to HA0 inputs should all be fixed low during the operating mode selection access. XHCS XHCS HRW HRW Access judged as parallel mode XHCS HRW 8 rises Access judged as serial mode • The serial mode signal format is as follows. XHCS HRW (SCK) HA0 (SI) bit0 bit1 bit2 bit3 bit4 bit5 bit6 bit7 bit8 byte0 HD0 (SO) bit0 bit1 bit2 bit3 bit4 bit9 byte1 bit5 bit6 bit7 bit8 bit9 1) In serial mode, input data is fetched in sync with the rise of HRW (SCK). Output data is synchronized with the fall of HRW. 2) The initial byte (byte0) of the input after XHCS changes to low is a command. This command determines the subsequent byte processing. See the following page for a description of commands and processing. 3) Input data is processed in one byte units. Therefore, when the final data consists of a number of bits which is less than one byte, this deficient data is not processed. Be sure to input data with a number of bits which is an integer multiple of 8. Also, the 0x20, 0x60, 0xA0 and 0xE0 commands process data in two byte units, so data which is an even multiple of 8 should be input when using these commands. – 18 – CXD1852Q Command write 2nd input byte 3rd input byte bit7 ··· bit0 read Successive Successive first Auto 4th input byte odd-numbered even-numbered bit inc. input bytes input bytes 00000000 write Register No. LSB Register No. Register No. Register data Register data No +U/L byte select first +U/L byte select +U/L byte select 00010000 read Register No. +U/L byte select don’t care Register No. +U/L byte select don’t care 00100000 write Register No. Register data (Lower byte) Register data (Upper byte) Register data (Lower byte) Register data (Upper byte) LSB No first 00110000 read Register No. don’t care don’t care don’t care don’t care LSB No first 01100000 write Register No. Register data (Lower byte) Register data (Upper byte) Register data (Lower byte) Register data (Upper byte) LSB Yes first 01110000 read Register No. don’t care don’t care don’t care don’t care LSB Yes first Register No. LSB No +U/L byte select first 10000000 write Register No. Register No. MSB Register No. Register data Register data No +U/L byte select first +U/L byte select +U/L byte select 10010000 read Register No. +U/L byte select don’t care Register No. +U/L byte select don’t care 10100000 write Register No. Register data (Upper byte) Register data (Lower byte) Register data (Upper byte) Register data (Lower byte) MSB No first 10110000 read Register No. don’t care don’t care don’t care don’t care MSB No first 11100000 write Register No. Register data (Upper byte) Register data (Lower byte) Register data (Upper byte) Register data (Lower byte) MSB Yes first 11110000 read Register No. don’t care don’t care don’t care don’t care MSB Yes first Register No. MSB No +U/L byte select first Description of Commands 1) The "write read" column indicates whether that command writes data to or reads data from the registers. 2) Bytes marked with "Register No. + U/L byte select" specify the register to be accessed as well as whether to access the upper or lower bytes of the register. The upper 7 bits specify the register No., and the lowermost bit specifies the upper or lower bytes. When the lowermost bit is "0", the lower bytes are selected, when "1", the upper bytes are selected. 3) Bytes marked with "Register No." specify the register to be accessed. The upper 7 bits specify the register No., and the lowermost bit can be either "0" or "1". 4) The "Auto inc." column indicates the presence of the register No. auto increment function. For commands without this function, the most recently input register No. is valid. For example, in case of the command 0x00, the register data input by the odd bytes is written to the register specified by the previous byte's input. For the command 0x20, all subsequent data is written sequentially to the register specified by the 2nd input byte. 5) For commands with the register No. auto increment function, the register specified by the 2nd input byte is accessed first, and then access shifts to the register No. incremented by one each time the data for one register (2 bytes) is read or written. For example, when using the command 0x60, if 0x08 is specified by the 2nd input byte, the 3rd and 4th input bytes are written to register 0x08, and the 5th and 6th input bytes are written to register 0x09. 6) Bytes marked with "register data" are the data to be written to the registers during write commands. – 19 – CXD1852Q 7) When executing read commands, register data output starts from the 3rd output byte (bit 16). All earlier output data is invalid data. Access shifts to a new register each time the output for one register (2 bytes) is finished. For example, in case of the command 0x10, the byte data specified by the 2nd input byte is output to the 3rd output byte, the other byte data in the same register is output to the 4th byte, and the byte data specified by the 4th input byte is output to the 5th output byte. 8) The "first bit" column indicates whether LSB first or MSB first processing is performed for input or output of the 2nd and subsequent bytes. This specification does not apply to the 1st byte (command). Commands are normally LSB first. If LSB first is specified, processing is performed in the order where the initial bit in each byte is LSB and the final bit is MSB. This order is reversed for MSB first. Note that for registers, bit 15 noted in the Register Manual is MSB and bit 0 is LSB. 4-2. DRAM Interface Function • The applicable DRAMs are speed version 70 devices (RAS access time (Trac) of 70ns or less) with the fast page mode function. • When the total capacity of the external DRAM is 4 Mbits, use a 2CAS type DRAM with a configuration of 256 Kwords × 16 bits. When the total capacity is 8 Mbits, use two 2CAS type DRAMs with a configuration of 256 Kwords × 16 bits or 512 Kwords × 8 bits. • Refresh is performed automatically using RAS-only-refresh. External control is not necessary. • The DRAM is divided into the image frame memory, audio bit stream buffer, video bit stream buffer, user data and on-memory register areas. • The user data area can be used freely by the user, and CD-ROM decoded output can also be transferred to this area. This area can be used to store video CD PSD, etc. • The desired DRAM areas can be accessed from the control microcomputer via the registers. 4-3. CD-ROM Decoder Function • CD signal processor LSI interface The CD-ROM decoder has a CD signal processor LSI (CD-DSP) interface which directly interfaces the serial data output from the CD-DSP. This interface supports a wide variety of input formats to enable connection with general CD-DSP. • CD-ROM data decoding (supports CD-ROM XA format mode2, form1 and form2) CD-ROM data input from the CD-DSP supports CD-ROM XA format (mode2, form1 and form2). • Input CD-ROM data is decoded by the CD-ROM decoder block. Also, the CD-DA signal input from the CDDSP can be output directly from the audio interface. • The CD-ROM decoder has the following decoding and data transfer operating modes. The real-time correction and write-only modes facilitate the loading of video CD PSD to the external DRAM, etc. 1) Auto transfer mode The MPEG pack data within one sector of the video CD is automatically transferred to the system decoder, where the audio stream sector or video stream sector can be decoded. This mode transfers 2324 bytes counted from the initial byte of user data within one sector to the system decoder. 2) Real-time correction mode This mode executes error detection and correction processing for mode2, form1 sectors. The 2048 bytes of user data within the error processed sector are transferred to the user area of the external DRAM. The 4 bytes of header information within the sector can also be loaded in the on-memory register within the DRAM. 3) Write-only mode This mode transfers the 2340 bytes of header, subheader and user data within one sector to the user area of the external DRAM. When a form1 sector is input, error detection and correction processing is performed and then the data is transferred to the buffer memory. When a form2 sector is input, the data is transferred as is. – 20 – CXD1852Q CD-DSP Input Signal Formats 1) 32-bit slot, MSB first, BCKMOD1, 0 = 00, LSBFST = 0 LRCI Lch Rch 0 15 16 31 BCKI MSB DATI LSB MSB D15 D14 D13 D12 D11 D10 D9 C2PO D8 D7 Upper D6 D5 D4 D3 D2 D1 LSB D0 D15 D14 D13 D12 D11 D10 Lower D9 D8 D7 Upper D6 D5 D4 D3 D2 D1 D0 Lower 2) 32-bit slot, LSB first, BCKMOD1, 0 = 00, LSBFST = 1 LRCI Lch Rch 0 15 16 31 BCKI LSB DATI D0 C2PO MSB LSB D1 D2 D3 D4 D5 D6 D7 D8 Upper D9 D10 D11 D12 D13 D14 D15 D0 D1 Lower MSB D2 D3 D4 D5 D6 D7 D8 Upper D9 D10 D11 D12 D13 D14 D15 Lower 3) 48-bit slot, MSB first, BCKMOD1, 0 = 01, LSBFST = 0 Lch LRCI Rch 0 23 24 47 BCKI MSB LSB MSB LSB DATI D15 D14D13D12 D11D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 C2PO Upper Lower D15 D14D13 D12D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Upper – 21 – Lower CXD1852Q 4) 48-bit slot, LSB first, BCKMOD1, 0 = 01, LSBFST = 1 Lch LRCI Rch 0 23 24 47 BCKI LSB MSB LSB MSB DATI D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11D12 D13D14 D15 C2PO Upper Lower D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11 D12D13 D14D15 Upper Lower 5) 64-bit slot, MSB first, BCKMOD1, 0 = 10, LSBFST = 0 LRCI Lch Rch 0 31 32 63 BCKI MSB LSB don't care DATI MSB 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 C2PO LSB don't care Upper Lower 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Upper Lower 6) 64-bit slot, LSB first, BCKMOD1, 0 = 10, LSBFST = 1 Lch LRCI Rch 0 31 32 63 BCKI LSB DATI MSB don't care LSB 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 C2PO Upper MSB don't care Lower 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Upper – 22 – Lower CXD1852Q 4-4. System Decoder Function • The MPEG1 system layer (ISO/IEC 11172-1) is decoded, the audio and video bit streams are separated, and each bit stream is transferred to the respective bit stream buffer. • The MPEG1 bit stream input can be selected from either the built-in CD-ROM decoder or the host interface. • The system decoder has a 128-word (256-byte) FIFO for the bit stream input. • Audio and video sync playback are controlled according to the time stamp within the bit stream. 4-5. Video Decoder Function • The MPEG1 video layer (ISO/IEC 11172-2) is decoded. This function supports the range where constrained_parameter_flag = "1" and video CD high resolution still picture. • Video CD high resolution still picture (NTSC, PAL) can be decoded with a single external 4-Mbit DRAM. • Special decoding functions are as follows. Slow playback, fast forward and other modes can be realized by combining these functions. I-Play: Only I-Pictures are decoded. Still (Pause): Decoding is paused. 1 Frame Play: Only one frame (picture) is decoded. IP-Play: Only I and P-Pictures are decoded. IPB-Play: Alternate frames of continuous B-Pictures and all I and P-Pictures are decoded. • This function supports digest play. • The various information in the bit stream is loaded to the on-memory register area within the external DRAM. 4-6. Video Post Processor and Sync Generator Functions • The image data output format can be selected from 24-bit RGB, 24-bit YCbCr and 16-bit YCbCr. See the following page. • Fade in and fade out are allowed. • Image enlargement and reduction are allowed. • The CXD1852Q contains an OSD color table and selector, and OSD display is achieved by inputting the OSD character signal. • The video sync signal can be generated using the built-in sync generator. Image data can also be output in sync with an externally input video sync signal. – 23 – CXD1852Q DCLK HSYNC R0 to 7 R (n) R (n + 1) R (0) R (1) R (2) R (3) G0 to 7 G (n) G (n + 1) G (0) G (1) G (2) G (3) B0 to 7 B (n) B (n + 1) B (0) B (1) B (2) B (3) 24-bit RGB output format DCLK HSYNC Y0 to 7 Y (n) Y (n + 1) Y (0) Y (1) Y (2) Y (3) Cb0 to 7 Cb (n) Cb (n + 1) Cb (0) Cb (1) Cb (2) Cb (3) Cr0 to 7 Cr (n) Cr (n + 1) Cr (0) Cr (1) Cr (2) Cr (3) 24-bit YCbCr output format DCLK HSYNC Y0 to 7 Y (n) Y (n + 1) Y (0) Y (1) Y (2) Y (3) C0 to 7 Cb (n) Cr (n) Cb (0) Cr (0) Cb (2) Cr (2) 16-bit YCbCr output format Note) • The subscript (i) indicates the data for pixel i. • The above timing charts show the timing when the pixel data output is synchronized with the fall of DCLK. The pixel data output can also be synchronized with the rise of DCLK. – 24 – CXD1852Q 4-7. Audio Decoder Function • • • • MPEG audio stream decoding is performed for MPEG1 standard (ISO/IEC 11172-3) layer 1 and layer 2. Monaural, dual, stereo and joint stereo decoding modes are supported. All MPEG1 standard sampling frequencies (32kHz, 44.1kHz, 48kHz) are supported. All MPEG1 standard bit rates are supported. Layer 1: 32Kbps (monaural/stereo) to 448Kbps (monaural/stereo) Layer 2: 32Kbps (monaural) to 384Kbps (stereo) • The audio decoder's audio interface output port is equipped with a PCM audio output which outputs decoded audio data in bit serial format and a digital audio interface output (digital out). The audio interface is set by setting the internal registers. 1) LRCK and BCK generation The LR clock and bit clock can be generated by frequency dividing the clock input from external pins XTLI or FSXI. The generated clocks are output from the BCKO and LRCO pins, respectively. LRCO and BCKO can be output in the desired polarity. Also, the number of slots per sample supports the three types of 32, 48 and 64 bit clocks/LRCK. 2) PCM audio output format The PCM audio output format can be set to any of the following combinations to allow connection with a wide range of 1-bit D/A converters. 16-bit word length, MSB first or LSB first, frontward truncation or rearward truncation 18-bit word length, MSB first or LSB first, frontward truncation or rearward truncation 20-bit word length, MSB first or LSB first, frontward truncation or rearward truncation 24-bit word length, MSB first or LSB first, frontward truncation or rearward truncation 3) Digital out format The digital out output format supports the type2, form1 format for consumer use. The output word length can be selected from 16, 18, 20 or 24 bits. 4) Decoded channel assignment Channels 1 and 0 of the audio sample obtained by decoding the MPEG audio stream can be assigned to the L and R channel outputs in any combination. 5) Audio mute The audio output contains a zero-cross mute circuit. Zero-cross detection is performed for 44 sample sections (approximately 0.1ms when fs = 44.1kHz), and if zero-cross is not detected, the output is forcibly muted. 6) Attenuator The audio output contains an attenuator circuit. Attenuation of –12dB can be obtained by setting the internal register. 7) CD-DA output mode When playing back a CD-DA disc, the data input from the CD-DSP can be output directly from the PCM audio output (DATO) and the digital audio interface output port (DOUT). Output ports LRCO and BCKO can also select and output the clock inputs LRCI and BCKI from the CD-DSP. – 25 – CXD1852Q PCM Audio Output Formats 1) 64-bit slot, frontward truncation, LSB first, OSLT1, 0 = 10, OTRUNK = 1, OLSBFST = 1 LRCO Lch Rch 0 31 32 63 BCKO LSB LSB MSB MSB DATO 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 DAL1, 0 = 11 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 DAL1, 0 = 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 DAL1, 0 = 01 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 DAL1, 0 = 00 2) 64-bit slot, rearward truncation, LSB first, OSLT1, 0 = 10, OTRUNK = 0, OLSBFST = 1 Lch LRCO 0 Rch 31 32 63 BCKO LSB MSB LSB MSB DATO 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 DAL1, 0 = 11 DAL1, 0 = 10 DAL1, 0 = 01 DAL1, 0 = 00 LSB/MSB first setting OLSBF = 1: set to LSB first OLSBF = 0: set to MSB first Data word length setting DAL1, 0 = 11: 24 bits DAL1, 0 = 10: 20 bits DAL1, 0 = 01: 18 bits DAL1, 0 = 00: 16 bits – 26 – CXD1852Q 3) 48-bit slot, frontward truncation, LSB first, OSLT1, 0 = 01, OTRUNK = 1, OLSBFST = 1 Lch LRCO Rch 0 23 24 LSB MSB LSB 47 BCKO MSB DATO D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12D13 D14D15 D16D17 D18D19 D20D21 D22D23 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11 D12D13 D14D15 D16D17 D18 D19D20 D21D22 D23 DAL1, 0 = 11 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12D13 D14D15 D16D17 D18D19 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11 D12D13 D14D15 D16D17 D18 D19 DAL1, 0 = 10 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12D13 D14D15 D16D17 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11 D12D13 D14D15 D16D17 DAL1, 0 = 01 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12D13 D14D15 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11 D12D13 D14D15 DAL1, 0 = 00 4) 48-bit slot, rearward truncation, LSB first, OSLT1, 0 = 01, OTRUNK = 0, OLSBFST = 1 LRCO Lch Rch 0 23 24 LSB MSB LSB 47 BCKO MSB DATO D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12D13 D14D15 D16D17 D18D19 D20D21 D22D23 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11 D12D13 D14D15 D16D17 D18 D19D20 D21D22 D23 DAL1, 0 = 11 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11 D12D13 D14D15 D16D17 D18 D19 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11 D12 D13D14 D15D16 D17D18 D19 DAL1, 0 = 10 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11 D12D13 D14 D15D16 D17 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11D12 D13D14 D15D16 D17 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11 D12D13 D14 D15 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11D12 D13D14 D15 DAL1, 0 = 01 DAL1, 0 = 00 LSB/MSB first setting OLSBF = 1: set to LSB first OLSBF = 0: set to MSB first Data word length setting DAL1, 0 = 11: 24 bits DAL1, 0 = 10: 20 bits DAL1, 0 = 01: 18 bits DAL1, 0 = 00: 16 bits – 27 – CXD1852Q 5) 32-bit slot, LSB first, OSLT1, 0 = 00, OLSBFST = 1 LRCO Lch Rch 0 15 16 31 BCKO LSB DATO D0 MSB LSB D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D0 D1 MSB D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 6) 32-bit slot, MSB first, OSLT1, 0 = 00, OLSBFST = 0 LRCO Lch Rch 0 15 16 31 BCKO MSB DATO D15 D14 D13 D12 D11 D10 D9 LSB/MSB first setting OLSBF = 1: set to LSB first OLSBF = 0: set to MSB first LSB MSB D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 D12 D11 D10 D9 D8 Data word length: 16 bits – 28 – LSB D7 D6 D5 D4 D3 D2 D1 D0 CXD1852Q Digital Audio Interface Output Formats 1) 24 bits/word Parity Channel status User data Validity flag 0 3 Sync preamble 4 27 28 29 30 31 LSB MSB V U C P 2) 20 bits/word 0 3 7 4 Sync preamble (0) data 8 27 28 29 30 31 LSB MSB V U C P 3) 18 bits/word 0 3 9 4 Sync preamble (0) data 10 27 28 29 30 31 LSB MSB V U C P 4) 16 bits/word 0 3 Sync preamble 11 4 (0) data 12 27 28 29 30 31 LSB MSB Data word length setting DOL1, 0 = 11: 24 bits DOL1, 0 = 10: 20 bits DOL1, 0 = 01: 18 bits DOL1, 0 = 00: 16 bits – 29 – V U C P CXD1852Q Package Outline Unit: mm 120PIN QFP (PLASTIC) 31.2 ± 0.2 + 0.1 0.15 – 0.05 28.0 ± 0.2 90 0.1 61 91 60 A 120 31 1 0.15 ± 0.1 30 0.35 ± 0.1 0.15 ± 0.1 (29.6) 0° to 10° 0.8 ± 0.2 0.8 DETAIL A 0.16 M 3.45 ± 0.25 PACKAGE STRUCTURE PACKAGE MATERIAL EPOXY RESIN SONY CODE QFP-120P-L01 LEAD TREATMENT SOLDER PLATING EIAJ CODE ∗QFP120-P-2828-A LEAD MATERIAL COPPER / 42 ALLOY PACKAGE WEIGHT 4.9g JEDEC CODE – 30 –