CY7C1019CV33 128K x 8 Static RAM Features device has an automatic power-down feature that significantly reduces power consumption when deselected. • Pin and function compatible with CY7C1019BV33 • High speed — tAA = 10 ns • CMOS for optimum speed/power Writing to the device is accomplished by taking Chip Enable (CE) and Write Enable (WE) inputs LOW. Data on the eight I/O pins (I/O0 through I/O7) is then written into the location specified on the address pins (A0 through A16). Reading from the device is accomplished by taking Chip Enable (CE) and Output Enable (OE) LOW while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins. • Data retention at 2.0V • Center power/ground pinout • Automatic power-down when deselected • Easy memory expansion with CE and OE options • Available in Pb-free and non Pb-free 48-ball VFBGA, 32-pin TSOP II and 400-mil SOJ package Functional Description The CY7C1019CV33 is a high-performance CMOS static RAM organized as 131,072 words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable (CE), an active LOW Output Enable (OE), and tri-state drivers. This The eight input/output pins (I/O0 through I/O7) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), or during a write operation (CE LOW, and WE LOW). The CY7C1019CV33 is available in Standard 48-ball FBGA, 32-pin TSOP II and 400-mil-wide SOJ packages Logic Block Diagram Pin Configuration SOJ/TSOP II Top View A0 A1 A2 A3 I/O 0 INPUT BUFFER CE I/O0 I/O1 VCC V SS I/O 1 I/O 2 128K x 8 ARRAY SENSE AMPS ROW DECODER A0 A1 A2 A3 A4 A5 A6 A7 A8 I/O 3 I/O2 I/O3 WE A4 A5 A6 A7 I/O 4 I/O 5 CE COLUMN DECODER I/O 6 POWER DOWN I/O WE 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 A16 A15 A14 A13 OE I/O7 I/O6 VSS VCC I/O5 I/O4 A12 A11 A10 A9 A8 A9 A 10 A 11 A 12 A 13 A 14 A 15 A 16 OE 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Cypress Semiconductor Corporation Document #: 38-05130 Rev. *F • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600 Revised August 3, 2006 [+] Feedback CY7C1019CV33 Pin Configuration[1] 48-ball VFBGA (Top View) 2 3 4 5 6 NC OE A2 A6 A7 NC A I/O0 NC A1 A5 CE I/O7 B I/O1 NC A0 A4 NC I/O6 C VSS NC NC A3 NC VCC D VCC NC NC NC NC VSS E I/O2 NC A14 A11 I/O4 I/O5 F I/O3 NC A15 A12 WE A8 G NC A10 A16 A13 A9 NC H 1 Selection Guide -10 -12 -15 Unit Maximum Access Time 10 12 15 ns Maximum Operating Current 80 75 70 mA Maximum Standby Current 5 5 5 mA Note: 1. NC pins are not connected on the die. Document #: 38-05130 Rev. *F Page 2 of 10 [+] Feedback CY7C1019CV33 Maximum Ratings Current into Outputs (LOW)......................................... 20 mA Static Discharge Voltage............................................ >2001V (per MIL-STD-883, Method 3015) (Above which the useful life may be impaired. For user guidelines, not tested.) Latch-up Current...................................................... >200 mA Storage Temperature ................................. –65°C to +150°C Operating Range Ambient Temperature with Power Applied............................................. –55°C to +125°C Supply Voltage on VCC to Relative GND[2] .... –0.5V to +4.6V Range DC Voltage Applied to Outputs in High-Z State[2] ....................................–0.5V to VCC + 0.5V Commercial Industrial DC Input Voltage[2] .................................–0.5V to VCC + 0.5V Ambient Temperature VCC 0°C to +70°C 3.3V ± 10% –40°C to +85°C 3.3V ± 10% Electrical Characteristics Over the Operating Range –10 Parameter Description Test Conditions VOH Output HIGH Voltage VCC = Min., IOH = –4.0 mA VOL Output LOW Voltage VIH Input HIGH Voltage Min. –12 Max. Min. 2.4 VCC = Min., IOL = 8.0 mA Max. Min. 2.4 0.4 Voltage[2] –15 Max. Unit 2.4 0.4 V 0.4 V V 2.0 VCC + 0.3 2.0 VCC + 0.3 2.0 VCC + 0.3 VIL Input LOW –0.3 0.8 –0.3 0.8 –0.3 0.8 V IIX Input Leakage Current GND < VI < VCC –1 +1 –1 +1 –1 +1 µA IOZ Output Leakage Current GND < VI < VCC, Output Disabled –1 +1 –1 +1 –1 +1 µA ICC VCC Operating Supply Current VCC = Max., IOUT = 0 mA, f = fMAX = 1/tRC 80 75 70 mA ISB1 Automatic CE Power-down Current —TTL Inputs Max. VCC, CE > VIH VIN > VIH or VIN < VIL, f = fMAX 15 15 15 mA ISB2 Automatic CE Power-down Current —CMOS Inputs Max. VCC, CE > VCC – 0.3V, VIN > VCC – 0.3V, or VIN < 0.3V, f = 0 5 5 5 mA Capacitance[3] Parameter Description CIN Input Capacitance COUT Output Capacitance Test Conditions TA = 25°C, f = 1 MHz, VCC = 5.0V Max. Unit 8 pF 8 pF Notes: 2. VIL (min.) = –2.0V for pulse durations of less than 20 ns. 3. Tested initially and after any design or process changes that may affect these parameters. Document #: 38-05130 Rev. *F Page 3 of 10 [+] Feedback CY7C1019CV33 AC Test Loads and Waveforms[4] R 317Ω 90% OUTPUT R2 GND 351Ω 30 pF High-Z characteristics: ALL INPUT PULSES 3.0V 3.3V R 317Ω 90% 3.3V 10% 10% OUTPUT R2 351Ω 5 pF (b) Rise Time: 1 V/ns Fall Time: 1 V/ns (a) (c) Switching Characteristics Over the Operating Range[5] -10 Parameter Description Min. -12 Max. Min. -15 Max. Min. Max. Unit Read Cycle tRC Read Cycle Time 10 tAA Address to Data Valid tOHA Data Hold from Address Change tACE 12 10 3 15 12 3 ns 15 3 ns ns CE LOW to Data Valid 10 12 15 ns tDOE OE LOW to Data Valid 5 6 7 ns tLZOE OE LOW to Low Z tHZOE tLZCE OE HIGH to High CE LOW to Low 0 Z[6, 7] Z[7] tHZCE CE HIGH to High tPU[8] tPD[8] CE LOW to Power-Up Write 5 3 Z[6, 7] 6 3 5 0 ns 7 3 6 7 ns ns 15 12 ns ns 0 0 10 CE HIGH to Power-Down 0 0 ns Cycle[9, 10] tWC Write Cycle Time 10 12 15 ns tSCE CE LOW to Write End 8 9 10 ns tAW Address Set-Up to Write End 8 9 10 ns tHA Address Hold from Write End 0 0 0 ns tSA Address Set-Up to Write Start 0 0 0 ns tPWE WE Pulse Width 7 8 10 ns tSD Data Set-Up to Write End 5 6 8 ns tHD Data Hold from Write End 0 0 0 ns [7] tLZWE WE HIGH to Low Z tHZWE WE LOW to High Z[6, 7] 3 3 5 3 6 ns 7 ns Notes: 4. AC characteristics (except High-Z) for all speeds are tested using the Thevenin load shown in Figure (a). High-Z characteristics are tested for all speeds using the test load shown in Figure (c). 5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V. 6. tHZOE, tHZCE, and tHZWE are specified with a load capacitance of 5 pF as in part (d) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage. 7. At any given temperature and voltage condition, tHZCE is less than tLZCE, tHZOE is less than tLZOE, and tHZWE is less than tLZWE for any given device. 8. This parameter is guaranteed by design and is not tested. 9. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. CE and WE must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write. 10. The minimum write cycle time for Write Cycle no. 3 (WE controlled, OE LOW) is the sum of tHZWE and tSD. Document #: 38-05130 Rev. *F Page 4 of 10 [+] Feedback CY7C1019CV33 Switching Waveforms Read Cycle No. 1[11, 12] tRC ADDRESS tAA tOHA DATA OUT PREVIOUS DATA VALID DATA VALID Read Cycle No. 2 (OE Controlled)[12, 13] ADDRESS tRC CE tACE OE tHZOE tDOE DATA OUT tHZCE tLZOE HIGH IMPEDANCE DATA VALID tLZCE VCC SUPPLY CURRENT HIGH IMPEDANCE tPD tPU ICC 50% 50% ISB Write Cycle No. 1 (CE Controlled)[14, 15] tWC ADDRESS tSCE CE tSA tSCE tAW tHA tPWE WE tSD DATA I/O tHD DATA VALID Notes: 11. Device is continuously selected. OE, CE = VIL. 12. WE is HIGH for read cycle. 13. Address valid prior to or coincident with CE transition LOW. 14. Data I/O is high impedance if OE = VIH. 15. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state. Document #: 38-05130 Rev. *F Page 5 of 10 [+] Feedback CY7C1019CV33 Switching Waveforms (continued) Write Cycle No. 2 (WE Controlled, OE HIGH During Write)[14, 15] tWC ADDRESS tSCE CE tAW tHA tSA tPWE WE OE tSD DATA I/O tHD DATAIN VALID NOTE 16 tHZOE Write Cycle No. 3 (WE Controlled, OE LOW)[15] tWC ADDRESS tSCE CE tAW tSA tHA tPWE WE tSD NOTE 16 DATA I/O tHD DATA VALID tLZWE tHZWE Truth Table I/O0–I/O7 Mode Power CE OE WE H X X High Z Power-Down Standby (ISB) L L H Data Out Read Active (ICC) L X L Data In Write Active (ICC) L H H High Z Selected, Outputs Disabled Active (ICC) Note: 16. During this period the I/Os are in the output state and input signals should not be applied. Document #: 38-05130 Rev. *F Page 6 of 10 [+] Feedback CY7C1019CV33 Ordering Information Speed (ns) 10 Ordering Code Package Diagram CY7C1019CV33-10VC 51-85033 CY7C1019CV33-10ZXC 51-85095 CY7C1019CV33-10ZXI 12 Commercial 32-pin TSOP II (Pb-Free) 32-pin TSOP II (Pb-Free) CY7C1019CV33-12VC 51-85033 32-pin 400-Mil Molded SOJ 51-85095 32-pin TSOP II 51-85033 32-pin 400-Mil Molded SOJ CY7C1019CV33-12ZXC 15 32-pin 400-Mil Molded SOJ CY7C1019CV33-12ZC CY7C1019CV33-12VI Operating Range Package Type Industrial Commercial 32-pin TSOP II (Pb-Free) CY7C1019CV33-12BVXI 51-85150 48-ball VFBGA (Pb-Free) CY7C1019CV33-15VC 51-85033 32-pin 400-Mil Molded SOJ CY7C1019CV33-15VXC 51-85033 32-pin 400-Mil Molded SOJ (Pb-Free) CY7C1019CV33-15ZXC 51-85095 32-pin TSOP II (Pb-Free) CY7C1019CV33-15ZXI 51-85095 32-pin TSOP II (Pb-Free) Industrial Commercial Industrial Package Diagrams 32-pin (400-Mil) Molded SOJ (51-85033) 51-85033-*B Document #: 38-05130 Rev. *F Page 7 of 10 [+] Feedback CY7C1019CV33 Package Diagrams (continued) 32-pin TSOP II (51-85095) 51-85095-** Document #: 38-05130 Rev. *F Page 8 of 10 [+] Feedback CY7C1019CV33 Package Diagrams (continued) 48-ball VFBGA (6 x 8 x 1 mm) (51-85150) BOTTOM VIEW TOP VIEW A1 CORNER Ø0.05 M C Ø0.25 M C A B A1 CORNER Ø0.30±0.05(48X) 2 3 4 5 6 6 5 4 3 2 1 C C E F G D E 2.625 D 0.75 A B 5.25 A B 8.00±0.10 8.00±0.10 1 F G H H A 1.875 A B 0.75 6.00±0.10 3.75 6.00±0.10 0.10 C 0.21±0.05 0.25 C 0.55 MAX. B 0.15(4X) 51-85150-*D 1.00 MAX 0.26 MAX. SEATING PLANE C All product and company names mentioned in this document are the trademarks of their respective holders. Document #: 38-05130 Rev. *F Page 9 of 10 © Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. [+] Feedback CY7C1019CV33 Document History Page Document Title: CY7C1019CV33 128K x 8 Static RAM Document Number: 38-05130 REV. ECN NO. Issue Date Orig. of Change ** 109245 12/16/01 HGK New Data Sheet *A 113431 04/10/02 NSL AC Test Loads split based on speed Description of Change *B 115047 08/01/02 HGK Added TSOP II Package and I Temp. Improved ICC limits *C 119796 10/11/02 DFP Updated standby current from 5 nA to 5 mA *D 123030 12/17/02 DFP Updated Truth Table to reflect single Chip Enable option *E 419983 See ECN NXR Added 48-ball VFBGA Package Added lead-free parts in Ordering Information Table Replaced Package Name column with Package Diagram in the Ordering Information Table *F 493543 See ECN NXR Removed 8 ns speed bin from Product offering Added note #1 on page #2 Changed the description of IIX from Input Load Current to Input Leakage Current in DC Electrical Characteristics table Removed IOS parameter from DC Electrical Characteristics table Updated Ordering Information Document #: 38-05130 Rev. *F Page 10 of 10 [+] Feedback