GMT G1426

G1426
Global Mixed-mode Technology Inc.
2.2W Stereo Audio Amplifier
Features
General Description
„Depop Circuitry Integrated
„Output Power at 10% THD+N, VDD=5V
The G1426 is a stereo audio power amplifier in 20pin
TSSOP package. It can deliver 2W continuous RMS
power into 4Ω load per channel in Bridge-Tied Load
(BTL) mode at 5V supply voltage under 1% THD. To
simplify the audio system design in the notebook application, The G1426 supports the Bridge-Tied Load
(BTL) mode for driving the speakers. For the low current consumption applications, the SHDN mode is
supported to disable the G1426 when it is idle. The
current consumption can be further reduced to below
2µA.
--2.2W/CH (typical) into a 4Ω
Ω Load
„Output Power at 1% THD+N, VDD=5V
--2W/CH (typical) into a 4Ω
Ω Load
--1.2W/CH (typical) into a 8Ω
Ω Load
„Bridge-Tied Load (BTL)
„Shutdown Control Available
„Thermal protection
„Surface-Mount Power Package
20-Pin TSSOP-P
Applications
„Stereo Power Amplifiers for Notebooks or
Ordering Information
Desktop Computers
„Multimedia Monitors
„Stereo Power Amplifiers for Portable Audio
ORDER
MARKING
NUMBER
Systems
G1426D5X
G1426F2X
G1426
G1426
TEMP.
RANGE
PACKAGE
-40°C to +85°C
TSSOP-20L
-40°C to +85°C TSSOP-20L (FD)
Note: X Specify the packing type
U: Tape & Reel
T: Tube
* TSSOP-20L (FD): Thermal Pad
Pin Configuration
G1426
GND/HS
SHUTDOWN
1
20
GND/HS
2
19
GND/HS
+OUTA
3
18
+OUTB
VDD
4
17
VDD
-OUTA
5
-INA
6
16
15
-OUTB
-INB
BYPASS
GND/HS
7
14
+INA
8
13
+INB
NC
9
12
NC
GND/HS 10
11
NC
Thermal
Pad
Top View
20Pin TSSOP
Bottom View
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.0
Dec 04, 2003
1
G1426
Global Mixed-mode Technology Inc.
Absolute Maximum Ratings
Power Dissipation (1)
TA ≤ 25°C………………………………………….2.7W
TA ≤ 70°C………………………………………….1.7W
TA ≤ 85°C………………….………………………1.4W
Electrostatic Discharge, VESD
Human body mode..…………………….-3000 to 3000(2)
Supply Voltage, VCC…………………..…...…….……...6V
Operating Ambient Temperature Range
TA…….…………………………….……….-40°C to +85°C
Maximum Junction Temperature, TJ…..……….….150°C
Storage Temperature Range, TSTG….….-65°C to+150°C
Soldering Temperature, 10seconds, TS……….……260°C
Note:
(1)
: Recommended PCB Layout
(2)
: Human body model : C = 100pF, R = 1500Ω, 3 positive pulses plus 3 negative pulses
Electrical Characteristics
DC Electrical Characteristics, VDD = 5.0V, TA=+25°C, unless otherwise noted
PARAMETER
Supply Current
DC Differential Output Voltage
IDD in Shutdown
SYMBOL
IDD
VO(DIFF)
ISD
CONDITION
VDD = 5V
VDD = 5V,Gain = 2
VDD = 5V
MIN
TYP
MAX
UNIT
-
8.5
5
0.1
15
50
2
mA
mV
µA
MIN
TYP
MAX
UNIT
-
2
1.25
2.5
1.6
300
100
10
20
65
75
80
2
90
55
-
(AC Operation Characteristics, VDD = 5.0V, TA=+25°C, RL = 4Ω
Ω, unless otherwise noted)
PARAMETER
Output power (each channel) see Note
Total harmonic distortion plus noise
Maximum output power bandwidth
Phase margin
Power supply ripple rejection
Channel-to-channel output separation
Input impedance
Signal-to-noise ratio
Output noise voltage
SYMBOL
P(OUT)
THD+N
BOM
PSRR
CONDITION
THD = 1%, BTL, RL = 4Ω
THD = 1%, BTL, RL = 8Ω
THD = 10%, BTL, RL = 4Ω
THD = 10%, BTL, RL = 8Ω
PO = 1.6W, BTL, RL = 4Ω
PO = 1W, BTL, RL = 8Ω
VI = 1V, RL = 10KΩ, G = 1
G = 10, THD = 1%
RL = 4Ω, Open Load
f = 120Hz
f = 1kHz
ZI
Vn
PO = 500mW, BTL
Output noise voltage
W
m%
kHz
°
dB
dB
MΩ
dB
µV (rms)
Note :Output power is measured at the output terminals of the IC at 1kHz.
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.0
Dec 04, 2003
2
Global Mixed-mode Technology Inc.
G1426
Pin Description
PIN
NAME
I/O
FUNCTION
1
SHUTDOWN
I
Shutdown mode control signal input, places entire IC in shutdown mode when held
high, IDD is below 2µA.
2,7,10,19,20
GND/HS
3
+OUTA
Ground connection for circuitry, directly connected to thermal pad.
4,17
VDD
5
-OUTA
O
A channel - output
6
-INA
I
A channel input signal
8
+INA
I
A channel positive input of OPAMP, biasing DC operation of OPAMP
O
A channel + output
Supply voltage for circuitry.
9
NC
I
NC
11
NC
I
NC
12
NC
13
+INB
14
BYPASS
15
-INB
NC
I
B channel positive input of OPAMP, biasing DC operation of OPAMP
Connect to voltage divider for internal mid-supply bias.
I
B channel input signal
16
-OUTB
O
B channel - output
18
+OUTB
O
B channel + output
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.0
Dec 04, 2003
3
G1426
Global Mixed-mode Technology Inc.
Typical Characteristics
Table of Graphs
FIGURE
vs Frequency
2,4,6,9,11
vs Output power
1,3,5,7,8,10
Output noise voltage
vs Frequency
13
Supply ripple rejection ratio
vs Frequency
12
Crosstalk
vs Frequency
14
Closed loop response
vs Frequency
17
vs supply voltage
15
vs supply voltage
16
vs Load resistance
18
vs Output power
19,20
THD +N Total harmonic distortion plus noise
Vn
IDD Supply current
PO Output power
PD Power dissipation
TOTAL HARMONIC DISTORTION PLUS NOISE
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT POWER
vs FREQUENCY
10
10
5
5
20kHz
2
2
1
Po=1.8W
1
1kHz
0.5
0.5
%
%
0.2
0.2
0.1
20Hz
0.02
0.01
3m
5m
Ver: 1.0
Dec 04, 2003
10m
20m
50m
100m
200m
500m
1
VDD=5V
RL=3Ω
BTL
Av=-2V/V
0.1
VDD=5V
RL=3Ω
BTL
Av=-2V/V
0.05
0.05
0.02
2
0.01
20
3
50
100
200
500
1k
W
Hz
Figure 1
Figure 2
4
2k
5k
10k
20k
TEL: 886-3-5788833
http://www.gmt.com.tw
G1426
Global Mixed-mode Technology Inc.
TOTAL HARMONIC DISTORTION PLUS NOISE
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT POWER
vs FREQUENCY
10
10
5
5
20kHz
2
2
1
0.5
0.5
1kHz
%
0.2
0.2
0.1
20Hz
5m
10m
20m
50m
100m
200m
500m
1
VDD=5V
RL=4Ω
BTL
Po=2W
Av=-1V/V
0.1
VDD=5V
RL=4Ω
BTL
Av=-2V/V
0.02
0.01
3m
Av=-2V/V
1
%
0.05
Av=-4V/V
0.05
0.02
2
0.01
20
3
50
100
200
500
1k
2k
5k
10k
20k
W
Hz
Figure 3
Figure 4
TOTAL HARMONIC DISTORTION PLUS NOISE
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT POWER
vs FREQUENCY
10
10
VDD=5V
RL=8Ω
BTL
Av=-2V/V
5
20kHz
2
5
2
1
1
0.5
1kHz
%
Av=-2V/V
0.2
0.2
0.1
0.1
20Hz
0.05
0.02
0.01
2m
Av=-1V/V
0.02
5m
10m
20m
50m
100m
200m
500m
1
0.01
20
2
W
50
100
200
500
1k
2k
5k
10k
20k
Hz
Figure 6
Figure 5
Ver: 1.0
Dec 04, 2003
Av=-4V/V
0.5
%
0.05
VDD=5V
RL=8Ω
BTL
Po=1W
5
TEL: 886-3-5788833
http://www.gmt.com.tw
G1426
Global Mixed-mode Technology Inc.
TOTAL HARMONIC DISTORTION PLUS NOISE
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT POWER
vs OUTPUT POWER
10
10
VDD=5V
RL=32Ω
BTL
Av=-2V/V
5
2
20kH
1
5
20kHz
2
1
1kHz
0.5
0.5
%
%
0.2
0.2
1kHz
0.1
0.1
0.05
0.05
20Hz
0.02
0.01
1m
2m
0.02
5m
10m
20m
50m
100m
200m
500m
0.01
1m
1
VDD=3.3V
RL=4Ω
BTL
Av=-2V/V
2m
5m
20Hz
10m
20m
50m
100m
200m
500m
1
W
W
Figure 7
Figure 8
TOTAL HARMONIC DISTORTION PLUS NOISE
TOTAL HARMONIC DISTORTION PLUS NOISE
vs FREQUENCY
vs OUTPUT POWER
10
5
2
1
10
VDD=3.3V
RL=4Ω
BTL
Po=0.75W
5
1
0.5
%
0.2
0.5
Av=-2V/V
0.2
0.1
0.05
0.05
Av=-1V/V
0.02
50
100
200
0.02
500
1k
2k
5k
10k
0.01
1m
20k
Hz
VDD=3.3V
RL=8Ω
BTL
Av=-2V/V
2m
5m
20Hz
10m
20m
50m
100m
200m
500m
1
W
Figure 10
Figure 9
Ver: 1.0
Dec 04, 2003
1kHz
%
0.1
0.01
20
20kHz
2
Av=-4V/V
6
TEL: 886-3-5788833
http://www.gmt.com.tw
G1426
Global Mixed-mode Technology Inc.
TOTAL HARMONIC DISTORTION PLUS NOISE
SUPPLY RIPPLE REJECTION RATIO
vs FREQUENCY
vs FREQUENCY
+0
10
-5
-10
5
2
1
VDD=3.3V
RL=8Ω
BTL
Po=0.45W
-15
-20
-25
-30
Av=-4V/V
-35
VDD=5V
RL=4Ω
CB=4.7µF
Vripple=0.5Vpp
-40
0.5
-45
d
B
%
Av=-2V/V
0.2
-50
-55
-60
-65
0.1
BTL Mode
-70
-75
0.05
-80
-85
0.02
0.01
20
Av=-1V/V
50
100
-90
-95
200
500
1k
2k
5k
10k
-100
20
20k
50
100
200
500
Hz
Figure 11
10k
20k
-30
90u
-35
80u
70u
-40
60u
-45
-50
50u
-55
30u
5k
CHANNEL SEPARATION
100u
V
2k
Figure 12
OUTPUT NOISE VOLTAGE vs FREQUENCY
40u
1k
Hz
VDD=5V RL=4Ω
BTL Mode 20kHz
VDD=5V
Po=1.5W
RL=4Ω
BTL
-60
d
B
Channel A to B
-65
-70
-75
20u
-80
-85
Channel B to A
-90
-95
10u
20
50
100
200
500
1k
2k
5k
10k
-100
20
20k
Hz
100
200
500
1k
2k
5k
10k
20k
Hz
Figure 13
Ver: 1.0
Dec 04, 2003
50
Figure 14
7
TEL: 886-3-5788833
http://www.gmt.com.tw
G1426
Global Mixed-mode Technology Inc.
OUTPUT POWER vs SUPPLY VOLTAGE
SUPPLY CURRENT vs SUPPLY VOLTAGE
3
9
Stereo BTL
8
THD+N=1%
BTL
Each Channel
2.5
Output Power(W)
Supply Current(mA)
8.5
7.5
2
RL=4Ω
RL=3Ω
1.5
7
6.5
6
1
RL=8Ω
0.5
5.5
0
5
3
3.5
4
4.5
5
5.5
2.5
6
3.5
4.5
5.5
6.5
Supply Voltage(V)
Supply Voltage(V)
Figure 15
Figure 16
OPEN LOOP RESPONSE
Figure 17
Ver: 1.0
Dec 04, 2003
8
TEL: 886-3-5788833
http://www.gmt.com.tw
G1426
Global Mixed-mode Technology Inc.
OUTPUT POWER vs LOAD RESISTANCE
POWER DISSIPATION vs OUTPUT POWER
1.8
2.5
1.5
VDD=5V
1
1.2
1
RL=4Ω
0.8
0.6
0.4
0.5
VDD=5V
BTL
Each Channel
RL=8Ω
0.2
VDD=3.3V
0
0
0
5
10
15
20
25
30
35
0
Figure 18
1
1.5
2
2.5
Figure 19
POWER DISSIPATION vs OUTPUT POWER
0.8
0.7
0.5
Po-Output Power(W)
Load Resistance(Ω)
Power Dissipation(W)
RL=3Ω
1.4
Power Dissipation
Output Power(W)
1.6
THD+N=1%
BTL
Each Channel
2
Recommended PCB Layout
Unit:mm
RL=3Ω
0.6
0.5
RL=4Ω
0.4
0.3
0.2
VDD=3.3V
BTL
Each Channel
RL=8Ω
0.1
0
0
0.2
0.4
0.6
0.8
1
1.2
Po-Output Power(W)
Figure 20
Ver: 1.0
Dec 04, 2003
9
TEL: 886-3-5788833
http://www.gmt.com.tw
G1426
Global Mixed-mode Technology Inc.
Block Diagram
VDD
CS +
1µF
TANT
RF
20kΩ
Audio
Input
C1
R1
6
-IN A
20kΩ
8
+IN A
4,17
-
- OUT A 5
Amp A1
+
1µF
20kΩ
20kΩ
50kΩ
+OUT A
14
RL
8Ω
20kΩ
3
Amp A2
Bypass
+
VDD/2
+
CB
0.33µF
50kΩ
Audio
Input
R1
C1
1µF
20kΩ
15
-IN B
13
+IN B
- OUT B 16
Amp A1
+
RF
20kΩ
20kΩ
20kΩ
RL
8Ω
20kΩ
9,11,12
NC
+OUT B
-
18
Amp A2
+
1
Shutdown
GND
2,7,10,19,20
Application Circuits
4,17
6
-IN A
8
+IN A
VDD
- OUT A 5
AmpA1
+
20kΩ
20kΩ
20kΩ
50kΩ
14
Bypass
+OUT A
3
AmpA2
+
VDD/2
50kΩ
15
-IN B
13
+IN B
- OUT B 16
AmpA1
+
20kΩ
20kΩ
20kΩ
9,11,12
NC
Amp A2
+OUT B
18
+
1
Shutdown
GND
2,7,10,19,20
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.0
Dec 04, 2003
10
G1426
Global Mixed-mode Technology Inc.
Application Information
Bridged-Tied Load Mode Operation
G1426 has two linear amplifiers to drive both ends of
the speaker load in Bridged-Tied Load (BTL) mode
operation. Figure 1 shows the BTL configuration. The
differential driving to the speaker load means that
when one side is slewing up, the other side is slewing
down, and vice versa. This configuration in effect will
double the voltage swing on the load as compared to a
ground reference load. In BTL mode, the peak-to-peak
voltage VO(PP) on the load will be two times than a
ground reference configuration. The voltage on the
load is doubled, this will also yield 4 times output
power on the load at the same power supply rail and
loading. Another benefit of using differential driving
configuration is that BTL operation cancels the dc offsets, which eliminates the dc coupling capacitor that is
needed to cancelled dc offsets in the ground reference
configuration. Low-frequency performance is then limited only by the input network and speaker responses.
Cost and PCB space can be minimized by eliminating
the dc coupling capacitors.
Optimizing DEPOP Operation
Circuitry has been implemented in G1426 to minimize the amount of popping heard at power-up and
when coming out of shutdown mode. Popping occurs whenever a voltage step is applied to the
speaker and making the differential voltage generated at the two ends of the speaker. To avoid the
popping heard, the bypass capacitor should be
chosen promptly, 1/(CBx100kΩ) ≦ 1/(CI*(RI+RF)).
Where 100kΩ is the output impedance of the
mid-rail generator, CB is the mid-rail bypass capacitor, CI is the input coupling capacitor, RI is the input
impedance, RF is the gain setting impedance which
is on the feedback path. CB is the most important
capacitor. Besides it is used to reduce the popping,
CB can also determine the rate at which the amplifier
starts up during startup or recovery from shutdown
mode.
De-popping circuitry of G1426 is shown on Figure 2.
The PNP transistor limits the voltage drop across
the 225kΩ by slewing the internal node slowly when
power is applied. At start-up, the voltage at
BYPASS capacitor is 0. The PNP is ON to pull the
mid-point of the bias circuit down. So the capacitor
sees a lower effective voltage, and thus the charging is slower. This appears as a linear ramp (while
the PNP transistor is conducting), followed by the
expected exponential ramp of an R-C circuit.
VDD
Vo(PP)
VDD
RL
2xVo(PP)
-Vo(PP)
VDD
Figure 1
Vo(PP)+VDD/2
RL
SHUTDOWN Mode Operations
G1426 implements the shutdown mode operations
to reduce supply current, IDD, to the absolute minimum level during nonuse periods for battery-power
conservation. When the shutdown pin (pin 1) is
pulled high, all linear amplifiers will be deactivated
to mute the amplifier outputs. And G1426 enters an
extra low current consumption state, IDD is smaller
than 2µA. Shutdown pin should never be left unconnected, this floating condition will cause the amplifier operations unpredictable.
VDD/2
Vo(PP)
VDD/2
Figure 2
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.0
Dec 04, 2003
11
G1426
Global Mixed-mode Technology Inc.
Package Information
C
D
L
E1 E
θ
A2
A
A1
e
y
b
TSSOP-20L Package
NOTE:
1. Package body sizes exclude mold flash protrusions or gate burrs
2. Tolerance ±0.1mm unless otherwise specified
3. Coplanarity : 0.1mm
4. Controlling dimension is millimeter. Converted inch dimensions are not necessarily exact.
5. Follow JEDEC MO-153
SYMBOL
A
A1
A2
b
C
D
E
E1
e
L
y
θ
MIN.
DIMENSION IN MM
NOM.
MAX.
MIN.
----0.05
0.80
0.19
0.09
6.40
----4.30
----0.45
----0°
--------1.00
--------6.50
6.40
4.40
0.65
0.60
---------
1.20
0.15
1.05
0.30
0.20
6.60
----4.50
----0.75
0.10
8°
----0.002
0.031
0.007
0.004
0.252
----0.169
----0.018
----0°
DIMENSION IN INCH
NOM.
--------0.039
--------0.256
0.252
0.173
0.026
0.024
---------
MAX.
0.048
0.006
0.041
0.012
0.008
0.260
----0.177
----0.030
0.004
8°
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.0
Dec 04, 2003
12
G1426
Global Mixed-mode Technology Inc.
C
D
L
D1
E2
E1 E
Note 5
θ
A2
A
A1
e
y
b
TSSOP-20L (FD) Package
NOTE:
1. Package body sizes exclude mold flash protrusions or gate burrs
2. Tolerance ±0.1mm unless otherwise specified
3. Coplanarity : 0.1mm
4. Controlling dimension is millimeter. Converted inch dimensions are not necessarily exact.
5. Die pad exposure size is according to lead frame design.
6. Follow JEDEC MO-153
SYMBOL
A
A1
A2
b
C
D
E
E1
e
L
y
θ
D1
E2
MIN.
DIMENSION IN MM
NOM.
MAX.
MIN.
0.80
0.00
0.80
0.19
0.09
6.40
----4.30
----0.45
----0°
3.90
2.30
--------1.00
--------6.50
6.40
4.40
0.65
0.60
-----------------
1.15
0.10
1.05
0.30
0.20
6.60
----4.50
----0.75
0.10
8°
4.28
2.78
0.031
0.000
0.031
0.007
0.004
0.252
----0.169
----0.018
----0°
0.153
0.091
DIMENSION IN INCH
NOM.
--------0.039
--------0.256
0.252
0.173
0.026
0.024
-----------------
MAX.
0.045
0.004
0.041
0.012
0.008
0.260
----0.177
----0.030
0.004
8°
0.168
0.109
Taping Specification
Feed Direction
Typical TSSOP Package Orientation
GMT Inc. does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and GMT Inc. reserves the right at any time without notice to change said circuitry and specifications.
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.0
Dec 04, 2003
13