GSI GS8662D36E-250

Preliminary
GS8662D08/09/18/36E-333/300/250/200/167
72Mb SigmaQuad-II
Burst of 4 SRAM
165-Bump BGA
Commercial Temp
Industrial Temp
333 MHz–167 MHz
1.8 V VDD
1.8 V and 1.5 V I/O
Features
• Simultaneous Read and Write SigmaQuad™ Interface
• JEDEC-standard pinout and package
• Dual Double Data Rate interface
• Byte Write controls sampled at data-in time
• Burst of 4 Read and Write
• 1.8 V +100/–100 mV core power supply
• 1.5 V or 1.8 V HSTL Interface
• Pipelined read operation
• Fully coherent read and write pipelines
• ZQ pin for programmable output drive strength
• IEEE 1149.1 JTAG-compliant Boundary Scan
• Pin-compatible with present 9Mb, 18Mb, and 36Mb and
future 144Mb devices
• 165-bump, 15 mm x 17 mm, 1 mm bump pitch BGA package
• RoHS-compliant 165-bump BGA package available
Bottom View
165-Bump, 15 mm x 17 mm BGA
1 mm Bump Pitch, 11 x 15 Bump Array
SigmaQuad™ Family Overview
The GS8662D08/09/18/36E are built in compliance with the
SigmaQuad-II SRAM pinout standard for Separate I/O
synchronous SRAMs. They are 75,497,472-bit (72Mb)
SRAMs. The GS8662D08/18/36E SigmaQuad SRAMs are
just one element in a family of low power, low voltage HSTL
I/O SRAMs designed to operate at the speeds needed to
implement economical high performance networking systems.
Clocking and Addressing Schemes
The GS8662D08/09/18/36E SigmaQuad-II SRAMs are
synchronous devices. They employ two input register clock
inputs, K and K. K and K are independent single-ended clock
inputs, not differential inputs to a single differential clock input
buffer. The device also allows the user to manipulate the
output register clock inputs quasi independently with the C and
C clock inputs. C and C are also independent single-ended
clock inputs, not differential inputs. If the C clocks are tied
high, the K clocks are routed internally to fire the output
registers instead.
Because Separate I/O SigmaQuad-II B4 RAMs always transfer
data in four packets, A0 and A1 are internally set to 0 for the
first read or write transfer, and automatically incremented by 1
for the next transfers. Because the LSBs are tied off internally,
the address field of a SigmaQuad-II B4 RAM is always two
address pins less than the advertised index depth (e.g., the 4M
x 18 has a 1024K addressable index).
Parameter Synopsis
Rev: 1.01a 2/2006
- 333
-300
-250
-200
-167
tKHKH
3.0 ns
3.3 ns
4.0 ns
5.0 ns
6.0 ns
tKHQV
0.45 ns
0.45 ns
0.45 ns
0.45 ns
0.50 ns
1/29
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
Preliminary
GS8662D08/09/18/36E-333/300/250/200/167
2M x 36 SigmaQuad-II SRAM—Top View
1
2
3
4
5
6
7
8
9
10
11
A
CQ
MCL/SA
(288Mb)
SA
W
BW2
K
BW1
R
SA
MCL/SA
(144Mb)
CQ
B
Q27
Q18
D18
SA
BW3
K
BW0
SA
D17
Q17
Q8
C
D27
Q28
D19
VSS
SA
NC
SA
VSS
D16
Q7
D8
D
D28
D20
Q19
VSS
VSS
VSS
VSS
VSS
Q16
D15
D7
E
Q29
D29
Q20
VDDQ
VSS
VSS
VSS
VDDQ
Q15
D6
Q6
F
Q30
Q21
D21
VDDQ
VDD
VSS
VDD
VDDQ
D14
Q14
Q5
G
D30
D22
Q22
VDDQ
VDD
VSS
VDD
VDDQ
Q13
D13
D5
H
Doff
VREF
VDDQ
VDDQ
VDD
VSS
VDD
VDDQ
VDDQ
VREF
ZQ
J
D31
Q31
D23
VDDQ
VDD
VSS
VDD
VDDQ
D12
Q4
D4
K
Q32
D32
Q23
VDDQ
VDD
VSS
VDD
VDDQ
Q12
D3
Q3
L
Q33
Q24
D24
VDDQ
VSS
VSS
VSS
VDDQ
D11
Q11
Q2
M
D33
Q34
D25
VSS
VSS
VSS
VSS
VSS
D10
Q1
D2
N
D34
D26
Q25
VSS
SA
SA
SA
VSS
Q10
D9
D1
P
Q35
D35
Q26
SA
SA
C
SA
SA
Q9
D0
Q0
R
TDO
TCK
SA
SA
SA
C
SA
SA
SA
TMS
TDI
11 x 15 Bump BGA—15 x 17 mm2 Body—1 mm Bump Pitch
Notes:
1. BW0 controls writes to D0:D8; BW1 controls writes to D9:D17; BW2 controls writes to D18:D26; BW3 controls writes to D27:D35
2. MCL = Must Connect Low
Rev: 1.01a 2/2006
2/29
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
Preliminary
GS8662D08/09/18/36E-333/300/250/200/167
4M x 18 SigmaQuad-II SRAM—Top View
1
2
3
4
5
6
7
8
9
10
11
A
CQ
MCL/SA
(144Mb)
SA
W
BW1
K
NC
R
SA
SA
CQ
B
NC
Q9
D9
SA
NC
K
BW0
SA
NC
NC
Q8
C
NC
NC
D10
VSS
SA
NC
SA
VSS
NC
Q7
D8
D
NC
D11
Q10
VSS
VSS
VSS
VSS
VSS
NC
NC
D7
E
NC
NC
Q11
VDDQ
VSS
VSS
VSS
VDDQ
NC
D6
Q6
F
NC
Q12
D12
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
Q5
G
NC
D13
Q13
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
D5
H
Doff
VREF
VDDQ
VDDQ
VDD
VSS
VDD
VDDQ
VDDQ
VREF
ZQ
J
NC
NC
D14
VDDQ
VDD
VSS
VDD
VDDQ
NC
Q4
D4
K
NC
NC
Q14
VDDQ
VDD
VSS
VDD
VDDQ
NC
D3
Q3
L
NC
Q15
D15
VDDQ
VSS
VSS
VSS
VDDQ
NC
NC
Q2
M
NC
NC
D16
VSS
VSS
VSS
VSS
VSS
NC
Q1
D2
N
NC
D17
Q16
VSS
SA
SA
SA
VSS
NC
NC
D1
P
NC
NC
Q17
SA
SA
C
SA
SA
NC
D0
Q0
R
TDO
TCK
SA
SA
SA
C
SA
SA
SA
TMS
TDI
11 x 15 Bump BGA—15 x 17 mm2 Body—1 mm Bump Pitch
Notes:
1. BW0 controls writes to D0:D8. BW1 controls writes to D9:D17.
2. MCL = Must Connect Low
Rev: 1.01a 2/2006
3/29
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
Preliminary
GS8662D08/09/18/36E-333/300/250/200/167
8M x 9 SigmaQuad-II SRAM—Top View
1
2
3
4
5
6
7
8
9
10
11
A
CQ
SA
SA
W
NC
K
NC
R
SA
SA
CQ
B
NC
NC
NC
SA
NC
K
BW0
SA
NC
NC
Q4
C
NC
NC
NC
VSS
SA
NC
SA
VSS
NC
NC
D4
D
NC
D5
NC
VSS
VSS
VSS
VSS
VSS
NC
NC
NC
E
NC
NC
Q5
VDDQ
VSS
VSS
VSS
VDDQ
NC
D3
Q3
F
NC
NC
NC
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
NC
G
NC
D6
Q6
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
NC
H
Doff
VREF
VDDQ
VDDQ
VDD
VSS
VDD
VDDQ
VDDQ
VREF
ZQ
J
NC
NC
NC
VDDQ
VDD
VSS
VDD
VDDQ
NC
Q2
D2
K
NC
NC
NC
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
NC
L
NC
Q7
D7
VDDQ
VSS
VSS
VSS
VDDQ
NC
NC
Q1
M
NC
NC
NC
VSS
VSS
VSS
VSS
VSS
NC
NC
D1
N
NC
D8
NC
VSS
SA
SA
SA
VSS
NC
NC
NC
P
NC
NC
Q8
SA
SA
C
SA
SA
NC
D0
Q0
R
TDO
TCK
SA
SA
SA
C
SA
SA
SA
TMS
TDI
11 x 15 Bump BGA—13 x 15 mm2 Body—1 mm Bump Pitch
Notes:
1. BW0 controls writes to D0:D8.
2. MCL = Must Connect Low
Rev: 1.01a 2/2006
4/29
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
Preliminary
GS8662D08/09/18/36E-333/300/250/200/167
8M x 8 SigmaQuad-II SRAM—Top View
1
2
3
4
5
6
7
8
9
10
11
A
CQ
SA
SA
W
NW1
K
NC
R
SA
SA
CQ
B
NC
NC
NC
SA
NC
K
NW0
SA
NC
NC
Q3
C
NC
NC
NC
VSS
SA
NC
SA
VSS
NC
NC
D3
D
NC
D4
NC
VSS
VSS
VSS
VSS
VSS
NC
NC
NC
E
NC
NC
Q4
VDDQ
VSS
VSS
VSS
VDDQ
NC
D2
Q2
F
NC
NC
NC
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
NC
G
NC
D5
Q5
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
NC
H
Doff
VREF
VDDQ
VDDQ
VDD
VSS
VDD
VDDQ
VDDQ
VREF
ZQ
J
NC
NC
NC
VDDQ
VDD
VSS
VDD
VDDQ
NC
Q1
D1
K
NC
NC
NC
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
NC
L
NC
Q6
D6
VDDQ
VSS
VSS
VSS
VDDQ
NC
NC
Q0
M
NC
NC
NC
VSS
VSS
VSS
VSS
VSS
NC
NC
D0
N
NC
D7
NC
VSS
SA
SA
SA
VSS
NC
NC
NC
P
NC
NC
Q7
SA
SA
C
SA
SA
NC
NC
NC
R
TDO
TCK
SA
SA
SA
C
SA
SA
SA
TMS
TDI
11 x 15 Bump BGA—15 x 17 mm2 Body—1 mm Bump Pitch
Notes:
1. NW0 controls writes to D0:D3. NW1 controls writes to D4:D7.
2. MCL = Must Connect Low
Rev: 1.01a 2/2006
5/29
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
Preliminary
GS8662D08/09/18/36E-333/300/250/200/167
Pin Description Table
Symbol
Description
Type
Comments
SA
Synchronous Address Inputs
Input
—
NC
No Connect
—
—
R
Synchronous Read
Input
Active Low
W
Synchronous Write
Input
Active Low
BW0–BW3
Synchronous Byte Writes
Input
Active Low
x9/x18/x36 only
NW0–NW1
Nybble Write Control Pin
Input
Active Low
x8 only
K
Input Clock
Input
Active High
K
Input Clock
Input
Active Low
C
Output Clock
Input
Active High
C
Output Clock
Input
Active Low
TMS
Test Mode Select
Input
—
TDI
Test Data Input
Input
—
TCK
Test Clock Input
Input
—
TDO
Test Data Output
Output
—
VREF
HSTL Input Reference Voltage
Input
—
ZQ
Output Impedance Matching Input
Input
—
Qn
Synchronous Data Outputs
Output
Dn
Synchronous Data Inputs
Input
Doff
Disable DLL when low
Input
Active Low
CQ
Output Echo Clock
Output
—
CQ
Output Echo Clock
Output
—
VDD
Power Supply
Supply
1.8 V Nominal
VDDQ
Isolated Output Buffer Supply
Supply
1.5 or 1.8 V Nominal
VSS
Power Supply: Ground
Supply
—
Note:
NC = Not Connected to die or any other pin
Rev: 1.01a 2/2006
6/29
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
Preliminary
GS8662D08/09/18/36E-333/300/250/200/167
Background
Separate I/O SRAMs, from a system architecture point of view, are attractive in applications where alternating reads and writes are
needed. Therefore, the SigmaQuad-II SRAM interface and truth table are optimized for alternating reads and writes. Separate I/O
SRAMs are unpopular in applications where multiple reads or multiple writes are needed because burst read or write transfers from
Separate I/O SRAMs can cut the RAM’s bandwidth in half.
Alternating Read-Write Operations
SigmaQuad-II SRAMs follow a few simple rules of operation.
- Read or Write commands issued on one port are never allowed to interrupt an operation in progress on the other port.
- Read or Write data transfers in progress may not be interrupted and re-started.
- R and W high always deselects the RAM.
- All address, data, and control inputs are sampled on clock edges.
In order to enforce these rules, each RAM combines present state information with command inputs. See the Truth Table for
details.
SigmaQuad-II B4 SRAM DDR Read
The status of the Address Input, W, and R pins are sampled by the rising edges of K. W and R high causes chip disable. A low on
the Read Enable-bar pin, R, begins a read cycle. R is always ignored if the previous command loaded was a read command. Data
can be clocked out after the next rising edge of K with a rising edge of C (or by K if C and C are tied high), after the following
rising edge of K with a rising edge of C (or by K if C and C are tied high), after the next rising edge of K with a rising edge of C,
and after the following rising edge of K with a rising edge of C. Clocking in a high on the Read Enable-bar pin, R, begins a read
port deselect cycle.
SigmaQuad-II B4 Double Data Rate SRAM Read First
Read A
NOP
Read B
Write C
Read D
Write E
NOP
K
K
Address
A
B
C
D
E
R
W
BWx
C
C+1
C+2
C+3
E
E+1
D
C
C+1
C+2
C+3
E
E+1
C
C
Q
A
A+1
A+2
A+3
B
B+1
B+2
B+3
D
D+1
D+2
CQ
CQ
Rev: 1.01a 2/2006
7/29
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
Preliminary
GS8662D08/09/18/36E-333/300/250/200/167
SigmaQuad-II B4 SRAM DDR Write
The status of the Address Input, W, and R pins are sampled by the rising edges of K. W and R high causes chip disable. A low on
the Write Enable-bar pin, W, and a high on the Read Enable-bar pin, R, begins a write cycle. W is always ignored if the previous
command was a write command. Data is clocked in by the next rising edge of K, the rising edge of K after that, the next rising edge
of K, and finally by the next rising edge of K. and by the rising edge of the K that follows.
SigmaQuad-II B4 Double Data Rate SRAM Write First
Write A
NOP
Read B
Write C
Read D
Write E
NOP
K
K
Address
A
B
C
D
E
R
W
BWx
A
A+1
A+2
A+3
C
C+1
C+2
C+3
E
E+1
E+
D
A
A+1
A+2
A+3
C
C+1
C+2
C+3
E
E+1
E+
C
C
B
Q
B+1
B+2
B+3
D
D+1
D+2
CQ
CQ
Rev: 1.01a 2/2006
8/29
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
Preliminary
GS8662D08/09/18/36E-333/300/250/200/167
Power-Up Sequence for SigmaQuad-II SRAMs
SigmaQuad-II SRAMs must be powered-up in a specific sequence in order to avoid undefined operations.
Power-Up Sequence
1. Power-up and maintain Doff at low state.
1a.
1b.
1c.
Apply VDD.
Apply VDDQ.
Apply VREF (may also be applied at the same time as VDDQ).
2. After power is achieved and clocks (K, K, C, C) are stablized, change Doff to high.
3. An additional 1024 clock cycles are required to lock the DLL after it has been enabled.
Note:
If you want to tie Doff high with an unstable clock, you must stop the clock for a minimum of 30 seconds to reset the DLL after the clocks become
stablized.
DLL Constraints
• The DLL synchronizes to either K or C clock. These clocks should have low phase jitter (tKCVar on page 21).
• The DLL cannot operate at a frequency lower than 119 MHz.
• If the incoming clock is not stablized when DLL is enabled, the DLL may lock on the wrong frequency and cause undefined errors or failures during
the initial stage.
Power-Up Sequence (Doff controlled)
Power UP Interval
Unstable Clocking Interval
DLL Locking Interval (1024 Cycles)
Normal Operation
K
K
VDD
VDDQ
VREF
Doff
Power-Up Sequence (Doff tied High)
Power UP Interval
Unstable Clocking Interval
Stop Clock Interval
30ns Min
DLL Locking Interval (1024 Cycles)
Normal Operation
K
K
VDD
VDDQ
VREF
Doff
Note:
If the frequency is changed, DLL reset is required. After reset, a minimum of 1024 cycles is required for DLL lock.
Rev: 1.01a 2/2006
9/29
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
Preliminary
GS8662D08/09/18/36E-333/300/250/200/167
Special Functions
Byte Write and Nybble Write Control
Byte Write Enable pins are sampled at the same time that Data In is sampled. A high on the Byte Write Enable pin associated with
a particular byte (e.g., BW0 controls D0–D8 inputs) will inhibit the storage of that particular byte, leaving whatever data may be
stored at the current address at that byte location undisturbed. Any or all of the Byte Write Enable pins may be driven high or low
during the data in sample times in a write sequence.
Each write enable command and write address loaded into the RAM provides the base address for a 4 beat data transfer. The x18
version of the RAM, for example, may write 72 bits in association with each address loaded. Any 9-bit byte may be masked in any
write sequence.
Nybble Write (4-bit) control is implemented on the 8-bit-wide version of the device. For the x8 version of the device, “Nybble
Write Enable” and “NBx” may be substituted in all the discussion above.
Example x18 RAM Write Sequence using Byte Write Enables
Data In Sample
Time
BW0
BW1
D0–D8
D9–D17
Beat 1
0
1
Data In
Don’t Care
Beat 2
1
0
Don’t Care
Data In
Beat 3
0
0
Data In
Data In
Beat 4
1
0
Don’t Care
Data In
Resulting Write Operation
Byte 1
D0–D8
Byte 2
D9–D17
Byte 1
D0–D8
Byte 2
D9–D17
Byte 1
D0–D8
Byte 2
D9–D17
Byte 1
D0–D8
Byte 2
D9–D17
Written
Unchanged
Unchanged
Written
Written
Written
Unchanged
Written
Beat 1
Beat 2
Beat 3
Beat 4
Output Register Control
SigmaQuad-II SRAMs offer two mechanisms for controlling the output data registers. Typically, control is handled by the Output
Register Clock inputs, C and C. The Output Register Clock inputs can be used to make small phase adjustments in the firing of the
output registers by allowing the user to delay driving data out as much as a few nanoseconds beyond the next rising edges of the K
and K clocks. If the C and C clock inputs are tied high, the RAM reverts to K and K control of the outputs, allowing the RAM to
function as a conventional pipelined read SRAM.
Rev: 1.01a 2/2006
10/29
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
Preliminary
GS8662D08/09/18/36E-333/300/250/200/167
Example Four Bank Depth Expansion Schematic
R3
W3
R2
W2
R1
W1
R0
W0
A0–An
K
D1–Dn
Bank 0
Bank 1
Bank 2
Bank 3
A
A
A
A
W
W
W
W
R
R
R
R
K
D
CQ
Q
C
K
D
CQ
Q
C
K
D
CQ
K
CQ
Q
D
Q
C
C
C
Q1–Qn
CQ0
CQ1
CQ2
CQ3
Note:
For simplicity BWn, NWn, K, and C are not shown.
Rev: 1.01a 2/2006
11/29
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
Rev: 1.01a 2/2006
A
A+1
B+1
B
D(2)
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
12/29
CQ[2]
CQ[2]
Q(2)
C[2]
C[2]
CQ[1]
CQ(1)
Q(1)
C[1]
C[1]
B+1
B
BWx(2)
A+2
A+3
B+3
B+2
B+3
C
C+1
D+1
E
D
B+2
D
Read E
D(1)
C
Write D
D+1
B
Read C
D
A
Write B
BWx(1)
W(2)
W(1)
R(2)
R(1)
Address
K
K
Read A
Σ2x2B4 SigmaQuad-II SRAM Depth Expansion
C+2
D+2
D+2
F
Write F
C+3
D+3
D+3
E
F
F
NOP
E+1
F+1
F+1
E+2
F
F
Preliminary
GS8662D08/09/18/36E-333/300/250/200/167
© 2005, GSI Technology
Preliminary
GS8662D08/09/18/36E-333/300/250/200/167
FLXDrive-II Output Driver Impedance Control
HSTL I/O SigmaQuad-II SRAMs are supplied with programmable impedance output drivers. The ZQ pin must be connected to
VSS via an external resistor, RQ, to allow the SRAM to monitor and adjust its output driver impedance. The value of RQ must be
5X the value of the desired RAM output impedance. The allowable range of RQ to guarantee impedance matching continuously is
between 150Ω and 300Ω. Periodic readjustment of the output driver impedance is necessary as the impedance is affected by drifts
in supply voltage and temperature. The SRAM’s output impedance circuitry compensates for drifts in supply voltage and
temperature. A clock cycle counter periodically triggers an impedance evaluation, resets and counts again. Each impedance
evaluation may move the output driver impedance level one step at a time towards the optimum level. The output driver is
implemented with discrete binary weighted impedance steps. Updates of pull-down drive impedance occur whenever a driver is
producing a “1” or is High-Z. Pull-up drive impedance is updated when a driver is producing a “0” or is High-Z.
Separate I/O SigmaQuad-II B4 SRAM Truth Table
Previous
Operation
A
R
W
Current
Operation
D
D
D
D
Q
Q
Q
Q
K↑
(tn-1)
K
↑
(tn)
K
↑
(tn)
K
↑
(tn)
K↑
(tn)
K↑
(tn+1)
K↑
(tn+1½)
K↑
(tn+2)
K↑
(tn+2½)
K↑
(tn+1)
K↑
(tn+1½)
K↑
(tn+2)
K↑
(tn+2½)
Deselect
X
1
1
Deselect
X
X
—
—
Hi-Z
Hi-Z
—
—
Write
X
1
X
Deselect
D2
D3
—
—
Hi-Z
Hi-Z
—
—
Read
X
X
1
Deselect
X
X
—
—
Q2
Q3
—
—
Deselect
V
1
0
Write
D0
D1
D2
D3
Hi-Z
Hi-Z
—
—
Deselect
V
0
X
Read
X
X
—
—
Q0
Q1
Q2
Q3
Read
V
X
0
Write
D0
D1
D2
D3
Q2
Q3
—
—
Write
V
0
X
Read
D2
D3
—
—
Q0
Q1
Q2
Q3
Notes:
1. “1” = input “high”; “0” = input “low”; “V” = input “valid”; “X” = input “don’t care”
2. “—” indicates that the input requirement or output state is determined by the next operation.
3. Q0, Q1, Q2, and Q3 indicate the first, second, third, and fourth pieces of output data transferred during Read operations.
4. D0, D1, D2, and D3 indicate the first, second, third, and fourth pieces of input data transferred during Write operations.
5. Qs are tristated for one cycle in response to Deselect and Write commands, one cycle after the command is sampled, except when preceded by a Read command.
6. Users should not clock in metastable addresses.
Rev: 1.01a 2/2006
13/29
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
Preliminary
GS8662D08/09/18/36E-333/300/250/200/167
Byte Write Clock Truth Table
BW
BW
BW
BW
Current Operation
D
D
D
D
K↑
(tn+1)
K↑
(tn+1½)
K↑
(tn+2)
K↑
(tn+2½)
K↑
(tn)
K↑
(tn+1)
K↑
(tn+1½)
K↑
(tn+2)
K↑
(tn+2½)
T
T
T
T
Write
Dx stored if BWn = 0 in all four data transfers
D0
D2
D3
D4
T
F
F
F
Write
Dx stored if BWn = 0 in 1st data transfer only
D0
X
X
X
F
T
F
F
Write
Dx stored if BWn = 0 in 2nd data transfer only
X
D1
X
X
F
F
T
F
Write
Dx stored if BWn = 0 in 3rd data transfer only
X
X
D2
X
F
F
F
T
Write
Dx stored if BWn = 0 in 4th data transfer only
X
X
X
D3
F
F
F
F
Write Abort
No Dx stored in any of the four data transfers
X
X
X
X
Notes:
1. “1” = input “high”; “0” = input “low”; “X” = input “don’t care”; “T” = input “true”; “F” = input “false”.
2. If one or more BWn = 0, then BW = “T”, else BW = “F”.
Rev: 1.01a 2/2006
14/29
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
Preliminary
GS8662D08/09/18/36E-333/300/250/200/167
x36 Byte Write Enable (BWn) Truth Table
BW0
BW1 BW2 BW3
D0–D8
D9–D17
D18–D26
D27–D35
1
1
1
1
Don’t Care
Don’t Care
Don’t Care
Don’t Care
0
1
1
1
Data In
Don’t Care
Don’t Care
Don’t Care
1
0
1
1
Don’t Care
Data In
Don’t Care
Don’t Care
0
0
1
1
Data In
Data In
Don’t Care
Don’t Care
1
1
0
1
Don’t Care
Don’t Care
Data In
Don’t Care
0
1
0
1
Data In
Don’t Care
Data In
Don’t Care
1
0
0
1
Don’t Care
Data In
Data In
Don’t Care
0
0
0
1
Data In
Data In
Data In
Don’t Care
1
1
1
0
Don’t Care
Don’t Care
Don’t Care
Data In
0
1
1
0
Data In
Don’t Care
Don’t Care
Data In
1
0
1
0
Don’t Care
Data In
Don’t Care
Data In
0
0
1
0
Data In
Data In
Don’t Care
Data In
1
1
0
0
Don’t Care
Don’t Care
Data In
Data In
0
1
0
0
Data In
Don’t Care
Data In
Data In
1
0
0
0
Don’t Care
Data In
Data In
Data In
0
0
0
0
Data In
Data In
Data In
Data In
x18 Byte Write Enable (BWn) Truth Table
BW0 BW1
D0–D8
D9–D17
1
1
Don’t Care
Don’t Care
0
1
Data In
Don’t Care
1
0
Don’t Care
Data In
0
0
Data In
Data In
x09 Byte Write Enable (BWn) Truth Table
BW0
D0–D8
1
Don’t Care
0
Data In
1
Don’t Care
0
Data In
Rev: 1.01a 2/2006
15/29
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
Preliminary
GS8662D08/09/18/36E-333/300/250/200/167
Nybble Write Clock Truth Table
NW
NW
NW
NW
Current Operation
D
D
D
D
K↑
(tn+1)
K↑
(tn+1½)
K↑
(tn+2)
K↑
(tn+2½)
K↑
(tn)
K↑
(tn+1)
K↑
(tn+1½)
K↑
(tn+2)
K↑
(tn+2½)
T
T
T
T
Write
Dx stored if NWn = 0 in all four data transfers
D0
D2
D3
D4
T
F
F
F
Write
Dx stored if NWn = 0 in 1st data transfer only
D0
X
X
X
F
T
F
F
Write
Dx stored if NWn = 0 in 2nd data transfer only
X
D1
X
X
F
F
T
F
Write
Dx stored if NWn = 0 in 3rd data transfer only
X
X
D2
X
F
F
F
T
Write
Dx stored if NWn = 0 in 4th data transfer only
X
X
X
D3
F
F
F
F
Write Abort
No Dx stored in any of the four data transfers
X
X
X
X
Notes:
1. “1” = input “high”; “0” = input “low”; “X” = input “don’t care”; “T” = input “true”; “F” = input “false”.
2. If one or more NWn = 0, then NW = “T”, else NW = “F”.
x8 Nybble Write Enable (NWn) Truth Table
NW0 NW1
D0–D3
D4–D7
1
1
Don’t Care
Don’t Care
0
1
Data In
Don’t Care
1
0
Don’t Care
Data In
0
0
Data In
Data In
Rev: 1.01a 2/2006
16/29
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
Preliminary
GS8662D08/09/18/36E-333/300/250/200/167
State Diagram
Power-Up
Read NOP
READ
WRITE
READ
READ
D Count = 2
WRITE
Load New
Write Address
D Count = 0
Load New
Read Address
D Count = 0
Always
WRITE
D Count = 2
READ
D Count = 2
WRITE
D Count = 2
Always
DDR Write
D Count = D Count + 1
DDR Read
D Count = D Count + 1
READ
D Count = 1
Write NOP
Always
Always
Increment
Read Address
WRITE
D Count = 1
Increment
Write Address
Notes:
1. Internal burst counter is fixed as 2-bit linear (i.e., when first address is A0+0, next internal burst address is A0+1.
2. “READ” refers to read active status with R = Low, “READ” refers to read inactive status with R = High. The same is
true for “WRITE” and “WRITE”.
3. Read and write state machine can be active simultaneously.
4. State machine control timing sequence is controlled by K.
Rev: 1.01a 2/2006
17/29
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
Preliminary
GS8662D08/09/18/36E-333/300/250/200/167
Absolute Maximum Ratings
(All voltages reference to VSS)
Symbol
Description
Value
Unit
VDD
Voltage on VDD Pins
–0.5 to 2.9
V
VDDQ
Voltage in VDDQ Pins
–0.5 to VDD
V
VREF
Voltage in VREF Pins
–0.5 to VDDQ
V
VI/O
Voltage on I/O Pins
–0.5 to VDDQ +0.5 (≤ 2.9 V max.)
V
VIN
Voltage on Other Input Pins
–0.5 to VDDQ +0.5 (≤ 2.9 V max.)
V
IIN
Input Current on Any Pin
+/–100
mA dc
IOUT
Output Current on Any I/O Pin
+/–100
mA dc
TJ
Maximum Junction Temperature
125
o
C
TSTG
Storage Temperature
–55 to 125
o
C
Note:
Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended
Operating Conditions. Exposure to conditions exceeding the Recommended Operating Conditions, for an extended period of time, may affect
reliability of this component.
Recommended Operating Conditions
Power Supplies
Parameter
Symbol
Min.
Typ.
Max.
Unit
Supply Voltage
VDD
1.7
1.8
1.9
V
I/O Supply Voltage
VDDQ
1.4
1.5
VDD
V
Reference Voltage
VREF
0.68
—
0.95
V
Notes:
1. The power supplies need to be powered up simultaneously or in the following sequence: VDD, VDDQ, VREF, followed by signal
inputs. The power down sequence must be the reverse. VDDQ must not exceed VDD.
2. Most speed grades and configurations of this device are offered in both Commercial and Industrial Temperature ranges. The
part number of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance
specifications quoted are evaluated for worst case in the temperature range marked on the device.
Operating Temperature
Parameter
Symbol
Min.
Typ.
Max.
Unit
Ambient Temperature
(Commercial Range Versions)
TA
0
25
70
°C
Ambient Temperature
(Industrial Range Versions)
TA
–40
25
85
°C
Rev: 1.01a 2/2006
18/29
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
Preliminary
GS8662D08/09/18/36E-333/300/250/200/167
HSTL I/O DC Input Characteristics
Parameter
Symbol
Min
Max
Units
Notes
DC Input Logic High
VIH (dc)
VREF + 0.1
VDD + 0.3
V
1
DC Input Logic Low
VIL (dc)
–0.3
VREF – 0.1
V
1
Notes:
1. Compatible with both 1.8 V and 1.5 V I/O drivers
2. These are DC test criteria. DC design criteria is VREF ± 50 mV. The AC VIH/VIL levels are defined separately for measuring timing parameters.
3. VIL (Min)DC = –0.3 V, VIL(Min)AC = –1.5 V (pulse width ≤ 3 ns).
4. VIH (Max)DC = VDDQ + 0.3 V, VIH(Max)AC = VDDQ + 0.85 V (pulse width ≤ 3 ns).
HSTL I/O AC Input Characteristics
Parameter
Symbol
Min
Max
Units
Notes
AC Input Logic High
VIH (ac)
VREF + 200
—
mV
3,4
AC Input Logic Low
VIL (ac)
—
VREF – 200
mV
3,4
VREF (ac)
—
5% VREF (DC)
mV
1
VREF Peak to Peak AC Voltage
Notes:
1. The peak to peak AC component superimposed on VREF may not exceed 5% of the DC component of VREF.
2. To guarantee AC characteristics, VIH,VIL, Trise, and Tfall of inputs and clocks must be within 10% of each other.
3. For devices supplied with HSTL I/O input buffers. Compatible with both 1.8 V and 1.5 V I/O drivers.
Undershoot Measurement and Timing
Overshoot Measurement and Timing
VIH
20% tKHKH
VDD + 1.0 V
VSS
50%
50%
VDD
VSS – 1.0 V
20% tKHKH
Rev: 1.01a 2/2006
VIL
19/29
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
Preliminary
GS8662D08/09/18/36E-333/300/250/200/167
Capacitance
(TA = 25oC, f = 1 MHZ, VDD = 1.8 V)
Parameter
Symbol
Test conditions
Typ.
Max.
Unit
Input Capacitance
CIN
VIN = 0 V
4
5
pF
Output Capacitance
COUT
VOUT = 0 V
6
7
pF
Clock Capacitance
CCLK
VIN = 0 V
5
6
pF
Notes
Note:
This parameter is sample tested.
AC Test Conditions
Parameter
Conditions
Input high level
1.25 V
Input low level
0.25 V
Max. input slew rate
2 V/ns
Input reference level
0.75 V
Output reference level
VDDQ/2
Note:
Test conditions as specified with output loading as shown unless otherwise noted.
AC Test Load Diagram
DQ
RQ = 250 Ω (HSTL I/O)
VREF = 0.75 V
50Ω
VT = VDDQ/2
Input and Output Leakage Characteristics
Parameter
Symbol
Test Conditions
Min.
Max
Input Leakage Current
(except mode pins)
IIL
VIN = 0 to VDD
–2 uA
2 uA
Doff
IINDOFF
VDD ≥ VIN ≥ VIL
0 V ≤ VIN ≤ VIL
–2 uA
–2 uA
2 uA
2 uA
Output Leakage Current
IOL
Output Disable,
VOUT = 0 to VDDQ
–2 uA
2 uA
Rev: 1.01a 2/2006
20/29
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
Preliminary
GS8662D08/09/18/36E-333/300/250/200/167
Programmable Impedance HSTL Output Driver DC Electrical Characteristics
Parameter
Symbol
Min.
Max.
Units
Notes
Output High Voltage
VOH1
VDDQ/2 – 0.12
VDDQ/2 + 0.12
V
1, 3
Output Low Voltage
VOL1
VDDQ/2 – 0.12
VDDQ/2 + 0.12
V
2, 3
Output High Voltage
VOH2
VDDQ – 0.2
VDDQ
V
4, 5
Output Low Voltage
VOL2
Vss
0.2
V
4, 6
Notes:
1. IOH = (VDDQ/2) / (RQ/5) +/– 15% @ VOH = VDDQ/2 (for: 175Ω ≤ RQ ≤ 350Ω).
2. IOL = (VDDQ/2) / (RQ/5) +/– 15% @ VOL = VDDQ/2 (for: 175Ω ≤ RQ ≤ 350Ω).
3. Parameter tested with RQ = 250Ω and VDDQ = 1.5 V or 1.8 V
4. Minimum Impedance mode, ZQ = VSS
5. IOH = –1.0 mA
6. IOL = 1.0 mA
Operating Currents
-333
Parameter
Symbol
Test Conditions
Operating Current (x36): DDR
IDD
Operating Current (x18): DDR
-300
-250
-200
-167
Notes
0
to
70°C
–40
to
85°C
0
to
70°C
–40
to
85°C
0
to
70°C
–40
to
85°C
0
to
70°C
–40
to
85°C
0
to
70°C
–40
to
85°C
VDD = Max, IOUT = 0 mA
Cycle Time ≥ tKHKH Min
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
2, 3
IDD
VDD = Max, IOUT = 0 mA
Cycle Time ≥ tKHKH Min
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
2, 3
Operating Current (x9): DDR
IDD
VDD = Max, IOUT = 0 mA
Cycle Time ≥ tKHKH Min
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
2, 3
Operating Current (x8): DDR
IDD
VDD = Max, IOUT = 0 mA
Cycle Time ≥ tKHKH Min
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
2, 3
Standby Current (NOP): DDR
ISB1
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
2, 4
Device deselected,
IOUT = 0 mA, f = Max,
All Inputs ≤ 0.2 V or ≥ VDD – 0.2 V
Notes:
1.
2.
3.
4.
Power measured with output pins floating.
Minimum cycle, IOUT = 0 mA
Operating current is calculated with 50% read cycles and 50% write cycles.
Standby Current is only after all pending read and write burst operations are completed.
Rev: 1.01a 2/2006
21/29
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
Preliminary
GS8662D08/09/18/36E-333/300/250/200/167
AC Electrical Characteristics
Parameter
Symbol
-333
-300
-250
-200
-167
Min
Max
Min
Max
Min
Max
Min
Max
Min
Max
Units
Notes
Clock
K, K Clock Cycle Time
C, C Clock Cycle Time
tKHKH
tCHCH
3.0
3.5
3.3
4.2
4.0
6.3
5.0
7.88
6.0
8.4
ns
tKC Variable
tKCVar
—
0.2
—
0.2
—
0.2
—
0.2
—
0.2
ns
K, K Clock High Pulse Width
C, C Clock High Pulse Width
tKHKL
tCHCL
1.2
—
1.32
—
1.6
—
2.0
—
2.4
—
ns
K, K Clock Low Pulse Width
C, C Clock Low Pulse Width
tKLKH
tCLCH
1.2
—
1.32
—
1.6
—
2.0
—
2.4
—
ns
K to K High
C to C High
tKHKH
1.35
—
1.49
—
1.8
—
2.2
—
2.7
—
ns
K, K Clock High to C, C Clock High
tKHCH
0
1.30
0
1.45
0
1.8
0
2.3
0
2.8
ns
DLL Lock Time
tKCLock
1024
—
1024
—
1024
—
1024
—
1024
—
cycle
K Static to DLL reset
tKCReset
30
—
30
—
30
—
30
—
30
—
ns
K, K Clock High to Data Output Valid
C, C Clock High to Data Output Valid
tKHQV
tCHQV
—
0.45
—
0.45
—
0.45
—
0.45
—
0.5
ns
3
K, K Clock High to Data Output Hold
C, C Clock High to Data Output Hold
tKHQX
tCHQX
–0.45
—
–0.45
—
–0.45
—
–0.45
—
–0.5
—
ns
3
K, K Clock High to Echo Clock Valid
C, C Clock High to Echo Clock Valid
tKHCQV
tCHCQV
—
0.45
—
0.45
—
0.45
—
0.45
—
0.5
ns
K, K Clock High to Echo Clock Hold
C, C Clock High to Echo Clock Hold
tKHCQX
tCHCQX
–0.45
—
–0.45
—
–0.45
—
–0.45
—
–0.5
—
ns
CQ, CQ High Output Valid
tCQHQV
—
0.25
—
0.27
—
0.30
—
0.35
—
0.40
ns
7
CQ, CQ High Output Hold
tCQHQX
–0.25
—
–0.27
—
–0.30
—
–0.35
—
–0.40
—
ns
7
K Clock High to Data Output High-Z
C Clock High to Data Output High-Z
tKHQZ
tCHQZ
—
0.45
—
0.45
—
0.45
—
0.45
—
0.5
ns
3
K Clock High to Data Output Low-Z
C Clock High to Data Output Low-Z
tKHQX1
tCHQX1
–0.45
—
–0.45
—
–0.45
—
–0.45
—
–0.5
—
ns
3
Address Input Setup Time
tAVKH
0.4
—
0.4
—
0.5
—
0.6
—
0.7
—
ns
Control Input Setup Time
tIVKH
0.4
—
0.4
—
0.5
—
0.6
—
0.7
—
ns
Data Input Setup Time
tDVKH
0.28
—
0.3
—
0.35
—
0.4
—
0.5
—
ns
5
6
Output Times
Setup Times
Rev: 1.01a 2/2006
22/29
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
2
© 2005, GSI Technology
Preliminary
GS8662D08/09/18/36E-333/300/250/200/167
AC Electrical Characteristics (Continued)
Parameter
Symbol
-333
-300
-250
-200
-167
Min
Max
Min
Max
Min
Max
Min
Max
Min
Max
Units
Notes
Hold Times
Address Input Hold Time
tKHAX
0.4
—
0.4
—
0.5
—
0.6
—
0.7
—
ns
Control Input Hold Time
tKHIX
0.4
—
0.4
—
0.5
—
0.6
—
0.7
—
ns
Data Input Hold Time
tKHDX
0.28
—
0.3
—
0.35
—
0.4
—
0.5
—
ns
Notes:
1.
2.
3.
4.
5.
6.
7.
All Address inputs must meet the specified setup and hold times for all latching clock edges.
Control singles are R, W, BW0, BW1, and (NW0, NW1 for x8) and (BW2, BW3 for x36).
If C, C are tied high, K, K become the references for C, C timing parameters
To avoid bus contention, at a given voltage and temperature tCHQX1 is bigger than tCHQZ. The specs as shown do not imply bus contention because tCHQX1 is a MIN parameter that is worst case at totally different test conditions (0°C, 1.9 V) than tCHQZ, which is a MAX parameter (worst case at 70°C, 1.7 V). It is not possible for two SRAMs on the
same board to be at such different voltages and temperatures.
Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.
VDD slew rate must be less than 0.1 V DC per 50 ns for DLL lock retention. DLL lock time begins once VDD and input clock are stable.
Echo clock is very tightly controlled to data valid/data hold. By design, there is a ±0.1 ns variation from echo clock to data. The datasheet parameters reflect tester guard bands
and test setup variations.
Rev: 1.01a 2/2006
23/29
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
Rev: 1.01a 2/2006
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
24/29
CQ
CQ
Q
KHCQV
KHCQV
A
KHQX1
B
KHCQX
B
KLKH
D
KHCQX
IVKH
KHIX
AVKH
KHKL
B
A
KHKH
Write B
BWx
W
R
Address
K
K
Read A
KHIX
CQHQX
A+1
KHQV
DVKH
IVKH
IVKH
NOP
B+1
B+1
C
CQHQV
A+2
B+2
KHDX
A+3
KHQX
Write C
B+2
KHIX
KHKHbar
K and K Controlled Read-Write-Read Timing Diagram
B+3
B+3
KHQZ
C
C
D
Read D
C+1
C+1
C+2
C+2
E
Write E
C+3
C+3
D
E
E
D+1
NOP
E+1
E+1
D+2
Preliminary
GS8662D08/09/18/36E-333/300/250/200/167
© 2005, GSI Technology
Rev: 1.01a 2/2006
CHCQX
B
CHQV
KHKHbar
C
A+3
KHIX
IVKH
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
25/29
CQ
CQ
Q
C
C
CHCQX
CHCQX
CQHQX
CQHQV
A+2
A
A+1
CHQX
CHQX1
B
C
KLKH
Write C
D
KHIX
IVKH
KHAX
KHKL
Read B
C
CHCQV
A
AVKH
KHKH
NOP
BWx
W
R
Address
K
K
Read A
C and C Controlled Read-Write-Read Timing Diagram
C+1
B+1
C+1
KHDX
IVKH
NOP
B+2
C+2
C+2
D
B+3
DVKH
KHIX
Write D
C+3
C+3
CHQZ
D
D
NOP
D+1
D+1
D
D
Preliminary
GS8662D08/09/18/36E-333/300/250/200/167
© 2005, GSI Technology
Preliminary
GS8662D08/09/18/36E-333/300/250/200/167
Package Dimensions—165-Bump FPBGA (Package E)
A1 CORNER
TOP VIEW
BOTTOM VIEW
Ø0.10 M C
Ø0.25 M C A B
Ø0.40~0.60 (165x)
1 2 3 4 5 6 7 8 9 10 11
A1 CORNER
11 10 9 8 7 6 5 4 3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
1.0
14.0
17±0.05
1.0
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
A
1.0
1.0
10.0
0.20 C
B
Rev: 1.01a 2/2006
SEATING PLANE
0.20(4x)
0.36~0.46
1.50 MAX.
C
15±0.05
26/29
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
Preliminary
GS8662D08/09/18/36E-333/300/250/200/167
Ordering Information—GSI SigmaQuad-II SRAM
Org
Part Number1
Type
Package
Speed
(MHz)
TA3
8M x 8
GS8662D08E-333
SigmaQuad-II SRAM
165-bump BGA
333
C
8M x 8
GS8662D08E-300
SigmaQuad-II SRAM
165-bump BGA
300
C
8M x 8
GS8662D08E-250
SigmaQuad-II SRAM
165-bump BGA
250
C
8M x 8
GS8662D08E-200
SigmaQuad-II SRAM
165-bump BGA
200
C
8M x 8
GS8662D08E-167
SigmaQuad-II SRAM
165-bump BGA
167
C
8M x 8
GS8662D08E-333I
SigmaQuad-II SRAM
165-bump BGA
333
I
8M x 8
GS8662D08E-300I
SigmaQuad-II SRAM
165-bump BGA
300
I
8M x 8
GS8662D08E-250I
SigmaQuad-II SRAM
165-bump BGA
250
I
8M x 8
GS8662D08E-200I
SigmaQuad-II SRAM
165-bump BGA
200
I
8M x 8
GS8662D08E-167I
SigmaQuad-II SRAM
165-bump BGA
167
I
8M x 9
GS8662D09E-333
SigmaQuad-II SRAM
165-bump BGA
333
C
8M x 9
GS8662D09E-300
SigmaQuad-II SRAM
165-bump BGA
300
C
8M x 9
GS8662D09E-250
SigmaQuad-II SRAM
165-bump BGA
250
C
8M x 9
GS8662D09E-200
SigmaQuad-II SRAM
165-bump BGA
200
C
8M x 9
GS8662D09E-167
SigmaQuad-II SRAM
165-bump BGA
167
C
8M x 9
GS8662D09E-333I
SigmaQuad-II SRAM
165-bump BGA
333
I
8M x 9
GS8662D09E-300I
SigmaQuad-II SRAM
165-bump BGA
300
I
8M x 9
GS8662D09E-250I
SigmaQuad-II SRAM
165-bump BGA
250
I
8M x 9
GS8662D09E-200I
SigmaQuad-II SRAM
165-bump BGA
200
I
8M x 9
GS8662D09E-167I
SigmaQuad-II SRAM
165-bump BGA
167
I
4M x 18
GS8662D18E-333
SigmaQuad-II SRAM
165-bump BGA
333
C
4M x 18
GS8662D18E-300
SigmaQuad-II SRAM
165-bump BGA
300
C
4M x 18
GS8662D18E-250
SigmaQuad-II SRAM
165-bump BGA
250
C
4M x 18
GS8662D18E-200
SigmaQuad-II SRAM
165-bump BGA
200
C
4M x 18
GS8662D18E-167
SigmaQuad-II SRAM
165-bump BGA
167
C
4M x 18
GS8662D18E-333I
SigmaQuad-II SRAM
165-bump BGA
333
I
4M x 18
GS8662D18E-300I
SigmaQuad-II SRAM
165-bump BGA
300
I
4M x 18
GS8662D18E-250I
SigmaQuad-II SRAM
165-bump BGA
250
I
4M x 18
GS8662D18E-200I
SigmaQuad-II SRAM
165-bump BGA
200
I
4M x 18
GS8662D18E-167I
SigmaQuad-II SRAM
165-bump BGA
167
I
Notes:
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS866x36E-300T.
2. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range.
Rev: 1.01a 2/2006
27/29
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
Preliminary
GS8662D08/09/18/36E-333/300/250/200/167
Ordering Information—GSI SigmaQuad-II SRAM
Org
Part Number1
Type
Package
Speed
(MHz)
TA3
2M x 36
GS8662D36E-333
SigmaQuad-II SRAM
165-bump BGA
333
C
2M x 36
GS8662D36E-300
SigmaQuad-II SRAM
165-bump BGA
300
C
2M x 36
GS8662D36E-250
SigmaQuad-II SRAM
165-bump BGA
250
C
2M x 36
GS8662D36E-200
SigmaQuad-II SRAM
165-bump BGA
200
C
2M x 36
GS8662D36E-167
SigmaQuad-II SRAM
165-bump BGA
167
C
2M x 36
GS8662D36E-333I
SigmaQuad-II SRAM
165-bump BGA
333
I
2M x 36
GS8662D36E-300I
SigmaQuad-II SRAM
165-bump BGA
300
I
2M x 36
GS8662D36E-250I
SigmaQuad-II SRAM
165-bump BGA
250
I
2M x 36
GS8662D36E-200I
SigmaQuad-II SRAM
165-bump BGA
200
I
2M x 36
GS8662D36E-167I
SigmaQuad-II SRAM
165-bump BGA
167
I
8M x 8
GS8662D08E-333
SigmaQuad-II SRAM
165-bump BGA
333
C
8M x 8
GS8662D08GE-300
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
300
C
8M x 8
GS8662D08GE-250
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
250
C
8M x 8
GS8662D08GE-200
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
200
C
8M x 8
GS8662D08GE-167
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
167
C
8M x 8
GS8662D08GE-333I
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
333
I
8M x 8
GS8662D08GE-300I
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
300
I
8M x 8
GS8662D08GE-250I
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
250
I
8M x 8
GS8662D08GE-200I
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
200
I
8M x 8
GS8662D08GE-167I
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
167
I
8M x 9
GS8662D09GE-333
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
333
C
8M x 9
GS8662D09GE-300
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
300
C
8M x 9
GS8662D09GE-250
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
250
C
8M x 9
GS8662D09GE-200
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
200
C
8M x 9
GS8662D09GE-167
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
167
C
8M x 9
GS8662D09GE-333I
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
333
I
8M x 9
GS8662D09GE-300I
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
300
I
8M x 9
GS8662D09GE-250I
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
250
I
8M x 9
GS8662D09GE-200I
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
200
I
8M x 9
GS8662D09GE-167I
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
167
I
Notes:
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS866x36E-300T.
2. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range.
Rev: 1.01a 2/2006
28/29
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology
Preliminary
GS8662D08/09/18/36E-333/300/250/200/167
Ordering Information—GSI SigmaQuad-II SRAM
Org
Part Number1
Type
Package
Speed
(MHz)
TA3
4M x 18
GS8662D18GE-333
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
333
C
4M x 18
GS8662D18GE-300
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
300
C
4M x 18
GS8662D18GE-250
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
250
C
4M x 18
GS8662D18GE-200
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
200
C
4M x 18
GS8662D18GE-167
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
167
C
4M x 18
GS8662D18GE-333I
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
333
I
4M x 18
GS8662D18GE-300I
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
300
I
4M x 18
GS8662D18GE-250I
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
250
I
4M x 18
GS8662D18GE-200I
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
200
I
4M x 18
GS8662D18GE-167I
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
167
I
2M x 36
GS8662D36GE-333
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
333
C
2M x 36
GS8662D36GE-300
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
300
C
2M x 36
GS8662D36GE-250
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
250
C
2M x 36
GS8662D36GE-200
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
200
C
2M x 36
GS8662D36GE-167
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
167
C
2M x 36
GS8662D36GE-333I
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
333
I
2M x 36
GS8662D36GE-300I
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
300
I
2M x 36
GS8662D36GE-250I
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
250
I
2M x 36
GS8662D36GE-200I
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
200
I
2M x 36
GS8662D36GE-167I
SigmaQuad-II SRAM
RoHS-compliant 165-bump BGA
167
I
Notes:
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS866x36E-300T.
2. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range.
Rev: 1.01a 2/2006
29/29
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2005, GSI Technology