240pin DDR3L SDRAM Registered DIMM DDR3L SDRAM Registered DIMM Based on 1Gb B-die HMT112R7BFR8A HMT125R7BFR8A HMT125R7BFR4A HMT151R7BFR8A HMT151R7BFR4A *Hynix Semiconductor reserves the right to change products or specifications without notice Rev. 0.1 / Nov. 2009 1 Revision History Revision No. History Draft Date Remark 0.1 Initial Release Nov. 2009 Preliminary Rev. 0.1 / Nov. 2009 2 Description Hynix Registered DDR3L SDRAM DIMMs (Registered Double Data Rate Synchronous DRAM Dual In-Line Memory Modules) are low power, high-speed operation memory modules that use Hynix DDR3L SDRAM devices. These Registered SDRAM DIMMs are intended for use as main memory when installed in systems such as servers and workstations. Features • • • • • • • • • • • • • Power Supply: VDD=1.35V (1.283V to 1.45V) VDDQ = 1.35V (1.283V to 1.45V) Backward Compatible with 1.5V DDR3 Memory Module VDDSPD=3.0V to 3.6V Functionality and operations comply with the DDR3L SDRAM datasheet 8 internal banks Data transfer rates: PC3L-10600, PC3L-8500 Bi-Directional Differential Data Strobe 8 bit pre-fetch Burst Length (BL) switch on-the-fly BL8 or BC4(Burst Chop) Supports ECC error correction and detection On-Die Termination (ODT) Temperature sensor with integrated SPD * This product is in compliance with the RoHS directive. Ordering Information Part Number Density Organization Component Composition # of ranks FDHS HMT112R7BFR8A-G7/H9 1GB 128Mx72 128Mx8(H5TC1G83BFR)*9 1 X HMT125R7BFR8A-G7/H9 2GB 256Mx72 128Mx8(H5TC1G83BFR)*18 2 X HMT125R7BFR4A-G7/H9 2GB 256Mx72 256Mx4(H5TC1G43BFR)*18 2 X HMT151R7BFR4A-G7/H9 4GB 512Mx72 256Mx4(H5TC1G43BFR)*36 2 O HMT151R7BFR8A-G7 4GB 512Mx72 128Mx8(H5TC1G83BFR)*36 4 O * In order to uninstall FDHS, please contact sales administrator Rev. 0.1 / Nov. 2009 3 Key Parameters MT/s Grade tCK (ns) CAS Latency (tCK) tRCD (ns) tRP (ns) tRAS (ns) tRC (ns) CL-tRCD-tRP DDR3-1066 -G7 1.875 7 13.125 13.125 37.5 50.625 7-7-7 DDR3-1333 -H9 1.5 9 13.5 13.5 36 49.5 9-9-9 Speed Grade Frequency [MHz] Grade Remark CL6 CL7 CL8 -G7 800 1066 1066 -H9 800 1066 1066 CL9 CL10 1333 1333 Address Table 1GB(1Rx8) 2GB(2Rx8) 2GB(1Rx4) 4GB(2Rx4) 4GB(4Rx8) Refresh Method 8K/64ms 8K/64ms 8K/64ms 8K/64ms 8K/64ms Row Address A0-A13 A0-A13 A0-A13 A0-A13 A0-A13 Column Address A0-A9 A0-A9 A0-A9, A11 A0-A9,A11 A0-A9 Bank Address BA0-BA2 BA0-BA2 BA0-BA2 BA0-BA2 BA0-BA2 Page Size 1KB 1KB 1KB 1KB 1KB Rev. 0.1 / Nov. 2009 4 Pin Descriptions Pin Name Description Num ber Pin Name Description Num ber CK0 Clock Input, positive line 1 ODT[1:0] On Die Termination Inputs 2 CK0 Clock Input, negative line 1 DQ[63:0] Data Input/Output 64 CK1 Clock Input, positive line 1 CB[7:0] CK1 Clock Input, negative line 1 DQS[8:0] Clock Enables 2 DQS[8:0] RAS Row Address Strobe 1 DM[8:0]/ DQS[17:9], TDQS[17:9] CAS Column Address Strobe 1 DQS[17:9], TDQS[17:9] WE Write Enable 1 EVENT S[3:0] Chip Selects 4 TEST Memory bus test tool (Not Connected and Not Usable on DIMMs) 1 Address Inputs 14 RESET Register and SDRAM control pin 1 A10/AP Address Input/Autoprecharge 1 VDD Power Supply 22 A12/BC Address Input/Burst chop 1 VSS Ground 59 BA[2:0] SDRAM Bank Addresses 3 VREFDQ Reference Voltage for DQ 1 Reference Voltage for CA 1 Termination Voltage 4 SPD Power 1 CKE[1:0] A[9:0],A11, A[15:13] SCL Serial Presence Detect (SPD) Clock Input 1 VREFCA SDA SPD Data Input/Output 1 VTT SA[2:0] SPD Address Inputs 3 VDDSPD Par_In Parity bit for the Address and Control bus 1 Err_Out Parity error found on the Address and Control bus 1 Rev. 0.1 / Nov. 2009 Data check bits Input/Output Data strobes Data strobes, negative line Data Masks / Data strobes, Termination data strobes Data strobes, negative line, Termination data strobes Reserved for optional hardware temperature sensing 8 9 9 9 9 1 5 Input/Output Functional Descriptions Symbol Type Polarity CK0 IN Positive Line Positive line of the differential pair of system clock inputs that drives input to the onDIMM Clock Driver. CK0 IN Negative Line Negative line of the differential pair of system clock inputs that drives the input to the on-DIMM Clock Driver. CK1 IN Positive Line Terminated but not used on RDIMMs. CK1 IN Negative Line Terminated but not used on RDIMMs. IN Active High CKE[1:0] Function CKE HIGH activates, and CKE LOW deactivates internal clock signals, and device input buffers and output drivers of the SDRAMs. Taking CKE LOW provides PRECHARGE POWER-DOWN and SELF REFRESH operation (all banks idle), or ACTIVE POWER DOWN (row ACTIVE in any bank) Enables the command decoders for the associated rank of SDRAM when low and disables decoders when high. When decoders are disabled, new commands are ignored and previous operations continue. Other combinations of these input signals perform unique functions, including disabling all outputs (except CKE and ODT) of the register(s) on the DIMM or accessing internal control words in the register device(s). For modules with two registers, S[3:2] operate similarly to S[1:0] for the second set of register outputs or register control words. S[3:0] IN Active Low ODT[1:0] IN Active High On-Die Termination control signals RAS, CAS, WE IN Active Low When sampled at the positive rising edge of the clock, CAS, RAS, and WE define the operation to be executed by the SDRAM. VREFDQ Supply Reference voltage for DQ0-DQ63 and CB0-CB7. VREFCA Supply Reference voltage for A0-A15, BA0-BA2, RAS, CAS, WE, S0, S1, CKE0, CKE1, Par_In, ODT0 and ODT1. BA[2:0] IN — Selects which SDRAM bank of eight is activated. BA0 - BA2 define to which bank an Active, Read, Write or Precharge command is being applied. Bank address also determines mode register is to be accessed during an MRS cycle. A[15:13, 12/BC,11, 10/AP,[9:0] IN — Provided the row address for Active commands and the column address and Auto Precharge bit for Read/Write commands to select one location out of the memory array in the respective bank. A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected by BA. A12 is also utilized for BL 4/8 identification of “’BL on the fly’’ during CAS command. The address inputs also provide the op-code during Mode Register Set commands. DQ[63:0], CB[7:0] I/O — Data and Check Bit Input/Output pins DM[8:0] IN Active High VDD, VSS Supply Power and ground for the DDR SDRAM input buffers and core logic. VTT Supply Termination Voltage for Address/Command/Control/Clock nets. Rev. 0.1 / Nov. 2009 Masks write data when high, issued concurrently with input data. 6 Symbol Type Polarity Function DQS[17:0] I/O Positive Edge Positive line of the differential data strobe for input and output data. DQS[17:0] I/O Negative Edge Negative line of the differential data strobe for input and output data. TDQS/TDQS is applicable for X8 DRAMs only. When enabled via Mode Register A11=1 in MR1,DRAM will enable the same termination resistance function on TDQS/TDQS that is applied to DQS/DQS. When disabled via mode register A11=0 in MR1, DM/TDQS will provide the data mask function and TDQS is not used. X4/X16 DRAMs must disable the TDQS function via mode register A11=0 in MR1 TDQS[17:9] TDQS[17:9] OUT SA[2:0] IN — These signals are tied at the system planar to either VSS or VDDSPD to configure the serial SPD EEPROM address range. SDA I/O — This bidirectional pin is used to transfer data into or out of the SPD EEPROM. A resistor must be connected from the SDA bus line to VDDSPD on the system planar to act as a pullup. SCL IN — This signal is used to clock data into and out of the SPD EEPROM. A resistor may be connected from the SCL bus time to VDDSPD on the system planar to act as a pullup. EVENT OUT (open drain) VDDSPD Supply Serial EEPROM positive power supply wired to a separate power pin at the connector which supports from 3.0 Volt to 3.6 Volt (nominal 3.3V) operation. RESET IN The RESET pin is connected to the RESET pin on the register and to the RESET pin on the DRAM. Par_In IN Parity bit for the Address and Control bus. (“1 “: Odd, “0 “: Even) Err_Out OUT (open drain) TEST Rev. 0.1 / Nov. 2009 This signal indicates that a thermal event has been detected in the thermal sensing device.The system should guarantee the electrical level requirement is met for the Active Low EVENT pin on TS/SPD part. No pull-up resister is provided on DIMM. Parity error detected on the Address and Control bus. A resistor may be connected from Err_Out bus line to VDD on the system planar to act as a pull up. Used by memory bus analysis tools (unused (NC) on memory DIMMs) 7 Pin Assignments Pin # Front Side (left 1–60) Pin # Back Side (right 121–180) Pin # Front Side (left 61–120) Pin # Back Side (right 181–240) 1 VREFDQ 121 VSS 61 A2 181 A1 2 VSS 122 DQ4 62 VDD 182 VDD 3 DQ0 123 DQ5 63 NC, CK1 183 VDD 4 DQ1 124 VSS 64 NC, CK1 184 CK0 5 VSS 125 DM0,DQS9, TDQS9 65 VDD 185 CK0 6 DQS0 126 NC,DQS9, TDQS9 66 VDD 186 VDD 7 DQS0 127 VSS 67 VREFCA 187 EVENT, NC 8 VSS 128 DQ6 68 Par_In, NC 188 A0 9 DQ2 129 DQ7 69 VDD 189 VDD 10 DQ3 130 VSS 70 A10 / AP 190 BA1 11 VSS 131 DQ12 71 BA0 191 VDD 12 DQ8 132 DQ13 72 VDD 192 RAS 13 DQ9 133 VSS 73 WE 193 S0 14 VSS 134 DM1,DQS10, TDQS10 74 CAS 194 VDD 15 DQS1 135 NC,DQS10, TDQS10 75 VDD 195 ODT0 16 DQS1 136 VSS 76 S1, NC 196 A13 17 VSS 137 DQ14 77 ODT1, NC 197 VDD 18 DQ10 138 DQ15 78 VDD 198 S3, NC 19 DQ11 139 VSS 79 S2, NC 199 VSS 20 VSS 140 DQ20 80 VSS 200 DQ36 21 DQ16 141 DQ21 81 DQ32 201 DQ37 22 DQ17 142 VSS 82 DQ33 202 VSS 83 VSS 203 DM4,DQS13, TDQS13 23 VSS 143 DM2,DQS11, TDQS11 24 DQS2 144 NC,DQS11, TDQS11 84 DQS4 204 NC,DQS13, TDQS13 25 DQS2 145 VSS 85 DQS4 205 VSS 26 VSS 146 DQ22 86 VSS 206 DQ38 27 DQ18 147 DQ23 87 DQ34 207 DQ39 28 DQ19 148 VSS 88 DQ35 208 VSS 29 VSS 149 DQ28 89 VSS 209 DQ44 30 DQ24 150 DQ29 90 DQ40 210 DQ45 31 DQ25 151 VSS 91 DQ41 211 VSS NC = No Connect; RFU = Reserved Future Use Rev. 0.1 / Nov. 2009 8 Pin # Front Side (left 1–60) Pin # Back Side (right 121–180) Pin # Front Side (left 61–120) Pin # Back Side (right 181–240) 32 VSS 152 DM3,DQS12, TDQS12 92 VSS 212 DM5,DQS14, TDQS14 33 DQS3 153 NC,DQS12, TDQS12 93 DQS5 213 NC,DQS14, TDQS14 34 DQS3 154 VSS 94 DQS5 214 VSS 35 VSS 155 DQ30 95 VSS 215 DQ46 36 DQ26 156 DQ31 96 DQ42 216 DQ47 37 DQ27 157 VSS 97 DQ43 217 VSS 38 VSS 158 CB4, NC 98 VSS 218 DQ52 39 CB0, NC 159 CB5, NC 99 DQ48 219 DQ53 40 CB1, NC 160 VSS 100 DQ49 220 VSS 41 VSS 161 NC,DM8,DQS17, TDQS17 101 VSS 221 DM6,DQS15, TDQS15 42 DQS8 162 NC,DQS17, TDQS17 102 DQS6 222 NC,DQS15, TDQS15 43 DQS8 163 VSS 103 DQS6 223 VSS 44 VSS 164 CB6, NC 104 VSS 224 DQ54 45 CB2, NC 165 CB7, NC 105 DQ50 225 DQ55 46 CB3, NC 166 VSS 106 DQ51 226 VSS 47 VSS 167 NC(TEST) 107 VSS 227 DQ60 VTT, NC 168 RESET 108 DQ56 228 DQ61 109 DQ57 229 VSS 48 KEY KEY 49 VTT, NC 169 CKE1, NC 110 VSS 230 DM7,DQS16, TDQS16 50 CKE0 170 VDD 111 DQS7 231 NC,DQS16, TDQS16 51 VDD 171 A15 112 DQS7 232 VSS 52 BA2 172 A14 113 VSS 233 DQ62 53 Err_Out, NC 173 VDD 114 DQ58 234 DQ63 54 VDD 174 A12 / BC 115 DQ59 235 VSS 55 A11 175 A9 116 VSS 236 VDDSPD 56 A7 176 VDD 117 SA0 237 SA1 57 VDD 177 A8 118 SCL 238 SDA 58 A5 178 A6 119 SA2 239 VSS 59 A4 179 VDD 120 VTT 240 VTT 60 VDD 180 A3 NC = No Connect; RFU = Reserved Future Use Rev. 0.1 / Nov. 2009 9 Registering Clock Driver Specifications Capacitance Values Symbol Parameter Conditions Min Typ Max Unit 1.5 - 2.5 pF Input capacitance, CK, CK, FBIN, FBIN 2 - 3 pF Input capacitance, CK, CK, FBIN, FBIN (DDR3-1600) 1.5 - 2.5 pF - - 3 pF Input capacitance, Data inputs CI CIR Input capacitance, RESET, MIRROR, QCSEN VI = VDD or GND; VDD = 1.5v Input & Output Timing Requirements Symbol Parameter DDR3-800 1066/1333 Conditions Unit Min Max fclock Input clock frequency Application frequency 300 670 Mhz fTEST Input clock frequency Test frequency 70 300 Mhz tSU Setup time Input valid before CK/CK 100 - ps tH Hold time Input to remain valid after CK/CK 175 - ps tPDM Propagation delay, singlebit switching CK/CK to output 0.65 1.0 ns tDIS Output disable time (1/2Clock prelaunch) Yn/Yn to output float 0.5 tCK + tQSK1(min) - ps tEN Output enable time (1/2Clock prelaunch) Output driving to Yn/Yn 0.5 tCK tQSK1(max) - ps Rev. 0.1 / Nov. 2009 10 On DIMM Thermal Sensor The DDR3 SDRAM DIMM temperature is monitored by integrated thermal sensor. The integrated thermal sensor comply with JEDEC “TSE2002av, Serial Presence Detect with Temperature Sensor”. Connection of Thermal Sensor EVENT SCL SDA SA0 SPD with SA1 Integrated SA2 TS EVENT SCL SA0 SDA SA1 SA2 Temperature-to-Digital Conversion Performance Parameter Temperature Sensor Accuracy (Grade B) Resolution Rev. 0.1 / Nov. 2009 Condition Min Typ Max Unit Active Range, 75°C < TA < 95°C - ± 0.5 ± 1.0 °C Monitor Range, 40°C < TA < 125°C - ± 1.0 ± 2.0 °C -20°C < TA < 125°C - ± 2.0 ± 3.0 °C 0.25 °C 11 RODT0B PCK0B RCKE0B RWEB PCK0B A[O:N]/BA[O:N] ODT CK CKE CK CAS WE ODT CK CKE CK WE CAS D5 ODT CK CKE CK WE CAS D6 A[O:N]/BA[N:O] ZQ ODT CK CKE CK D7 A[N:O]/BA[N:O] ZQ WE RAS CS A[N:O]/BA[N:O] ODT CK CKE CK ZQ A[O:N]/BA[N:O] DQS DQS TDQS TDQS DQ [7:0] ZQ D0 RCASB DQS7 DQS7 DM7/DQS16 DQS16 DQ[63:56] RAS DQS DQS TDQS TDQS DQ [7:0] CS DQS6 DQS6 DM6/DQS15 DQS15 DQ[55:48] D4 CAS ODT A[O:N]/BA[N:O] A[N:O]/BA[N:O] ODT DQS DQS TDQS TDQS DQ [7:0] RAS ODT ODT CK CKE CK CKE CK CKE RS0B RRASB A[N:O]A /BA[N:O]A RODT0A PCK0A RCKE0A CK CKE CK CK D1 WE CAS RAS CK WE ZQ DQS DQS TDQS TDQS DQ [7:0] CS CK CAS WE WE CAS CAS CAS D2 WE RAS CS CS RAS RAS ZQ DQS5 DQS5 DM5/DQS14 DQS14 DQ[47:40] CS DQS DQS TDQS TDQS DQ [7:0] D3 DQS DQS TDQS TDQS DQ [7:0] RAS DQS1 DQS1 DM1/DQS10 DQS10 DQ[15:8] ZQ ZQ DQS4 DQS4 DM4/DQS13 DQS13 DQ[39:32] CS DQS DQS TDQS TDQS DQ [7:0] A[N:O]/BA[N:O] DQS2 DQS2 DM2/DQS11 DQS11 DQ[23:16] D8 A[O:N]/BA[N:O] DQS DQS TDQS TDQS DQ [7:0] RAS DQS3 DQS3 DM3/DQS12 DQS12 DQ[31:24] CS DQS DQS TDQS TDQS DQ [7:0] CS RWEA ZQ DQS8 DQS8 DM8/DQS17 DQS17 CB[7:0] DQS0 DQS0 DM0/DQS9 DQS9 DQ[7:0] PCK0A RS0A RRASA RCASA 1GB, 128Mx72 Module(1Rank of x8) A[N:O]B /BA[N:O]B Functional Block Diagram Vtt VDDSPD SPD VDD D0–D8 VTT VREFCA D0–D8 VREFDQ D0–D8 VSS D0–D8 Note: 1.DQ-to-I/O wiring may be changed within byte. 2.ZQ resistors are 240Ω ± 1%.For all other resistor values refer to the appropriate wiring diagram. Vtt S0 S1 BA[N:0] A[N:0] RAS CAS WE CKE0 ODT0 CK0 CK0 CK0 CK0 PAR_IN 120Ω ± 1% 1: 2 R E G I S T E R / P L L 120Ω ± 1% RESET OERR RST RS0A → CS0: SDRAMs D[3:0], D8 RS0B → CS0: SDRAMs D[7:4] RBA[N:0]A → BA[N:0]: SDRAMs D[3:0], D8 RBA[N:0]A → BA[N:0]: SDRAMs D[7:4] RA[N:0]A → A[N:0]: SDRAMs D[3:0], D8 RA[N:0]A → A[N:0]: SDRAMs D[7:4] RRASA → RAS: SDRAMs D[3:0], D8 RRASA → RAS: SDRAMs D[7:4] RCASA → CAS: SDRAMs D[3:0], D8 RCASA → CAS: SDRAMs D[7:4] RWEA → WE: SDRAMs D[3:0], D8 RWEA → WE: SDRAMs D[7:4] RCKE0A → CKE0: SDRAMs D[3:0], D8 RCKE0B → CKE0: SDRAMs D[7:4] RODT0A → ODT0: SDRAMs D[3:0], D8 RODT0B → ODT0: SDRAMs D[7:4] PCK0A → CK: SDRAMs D[3:0], D8 PCK0B → CK: SDRAMs D[7:4] PCK0A → CK: SDRAMs D[3:0], D8 PCK0B → CK: SDRAMs D[7:4] VDDSPD EVENT SCL SDA VDDSPD SA0 SA0 EVENT SPD with SA1 Integrated SA2 SCL TS VSS SDA SA1 SA2 VSS Plan to use SPD with Integrated TS of Class B and might be changed on customer’s requests. For more details of SPD and Thermal sensor, please contact local Hynix sales representative Err_Out RST: SDRAMs D[8:0] S[3:2], CKE1, ODT1, are NC (Unused register inputs ODT1 and CKE1 have a 330Ω resistor to ground Rev. 0.1 / Nov. 2009 12 RODT1B A[N:O]/BA[N:O] ODT A[N:O]/BA[N:O] A[O:N]/BA[N:O] ODT ODT ODT CK CKE CK CKE A[N:O]/BA[N:O] PCK1B CK WE CK CKE CK CKE CK WE WE D16 CAS ZQ RAS DQS DQS TDQS TDQS DQ [7:0] CK WE D15 CAS CS ZQ RAS DQS DQS TDQS TDQS DQ [7:0] CK RAS CS CAS D14 CAS CS RAS A[N:O]/BA[N:O] ZQ PCK1B RCKE1B RS1B A[N:O]B /BA[N:O]B A[N:O]/BA[N:O] D13 DQS DQS TDQS TDQS DQ [7:0] CS ODT CK CKE ZQ A[N:O]/BA[N:O] ODT CK CKE CK CKE ODT ODT CK CKE CK DQS DQS TDQS TDQS DQ [7:0] A[N:O]/BA[N:O] PCK0B RCKE0B RODT0B PCK0B RCASB RWEB WE CK CK WE WE ZQ D7 A[N:O]/BA[N:O] ODT CK CKE VDDSPD EVENT Vtt SCL SDA Note: 1. DQ-to-I/O wiring may be changed within a byte. 2. Unless otherwise noted, resistor values are 15Ω ± 5%. 3. ZQ resistors are 240Ω ± 1%. For all other resistor values refer to the appropriate wiring diagram. 4. See the wiring diagrams for all resistors associated with the command, address and control bus. Rev. 0.1 / Nov. 2009 WE DQS DQS TDQS TDQS DQ [7:0] CK RS0B RRASB DQS7 DQS7 DM7/DQS16 DQS16 DQ[63:56] D6 CAS CS ZQ RAS DQS DQS TDQS TDQS DQ [7:0] CAS DQS6 DQS6 DM6/DQS15 DQS15 DQ55:48] D5 CAS CS ZQ RAS DQS DQS TDQS TDQS DQ [7:0] RAS DQS5 DQS5 DM5/DQS14 DQS14 DQ[47:40] D4 CAS CS ZQ RAS DQS DQS TDQS TDQS DQ [7:0] CS PCK1A RODT1A ODT A[N:O]/BA[N:O] A[N:O]/BA[N:O] ODT ODT A[N:O]/BA[N:O] ODT CK CKE CK CKE A[O:N]/BA[N:O] CK CKE CK CKE CK CAS WE WE D9 CAS RAS DQS4 DQS4 DM4/DQS13 DQS13 DQ[39:32] Vtt DQS DQS TDQS TDQS DQ [7:0] ZQ CK CAS WE WE D10 CAS CS ZQ RAS DQS DQS TDQS TDQS DQ [7:0] CK RAS CS D11 CK RAS CS D12 DQS DQS TDQS TDQS DQ [7:0] ZQ CK WE CAS D17 DQS DQS TDQS TDQS DQ [7:0] ZQ PCK1A RCKE1A RS1A CS ZQ RAS DQS DQS TDQS TDQS DQ [7:0] CS RODT0A A[N:O]A /BA[N:O]A A[N:O]/BA[N:O] ODT ODT A[N:O]/BA[N:O] A[N:O]/BA[N:O] ODT ODT ODT A[O:N]/BA[N:O] CK CKE CK CKE CK CKE CK CKE A[N:O]/BA[N:O] RWEA PCK0A RCASA PCK0A RCKE0A CK CKE WE CK CK D0 WE CS ZQ CK WE DQS DQS TDQS TDQS DQ [7:0] CK D1 WE CS ZQ DQS0 DQS0 DM0/DQS9 DQS9 DQ[7:0] WE DQS DQS TDQS TDQS DQ [7:0] CAS DQS1 DQS1 DM1/DQS10 DQS10 DQ[15:8] D2 CAS CS ZQ RAS DQS DQS TDQS TDQS DQ [7:0] RAS DQS2 DQS2 DM2/DQS11 DQS11 DQ[23:16] D3 CAS CS ZQ RAS DQS DQS TDQS TDQS DQ [7:0] CAS DQS3 DQS3 DM3/DQS12 DQS12 DQ[31:24] D8 CAS CS ZQ RAS DQS DQS TDQS TDQS DQ [7:0] RAS DQS8 DQS8 DM8/DQS17 DQS17 CB[7:0] CK RS0A RRASA 2GB, 256Mx72 Module(2Rank of x8) - page1 VDDSPD SA0 SA0 EVENT SPD with SA1 Integrated SA2 SCL TS VSS SDA SA1 SA2 VSS Plan to use SPD with Integrated TS of Class B and might be changed on customer’s requests. For more details of SPD and Thermal sensor, please contact local Hynix sales representative VDDSPD Serial PD VDD D0–D17 VTT VREFCA D0–D17 VREFDQ D0–D17 VSS D0–D17 D0–D17 13 2GB, 256Mx72 Module(2Rank of x8) - page2 S0 1:2 S1 S[3:2] NC BA[N:0] R E G I S T E R / P L L A[N:0] RAS CAS WE CKE0 CKE1 ODT0 ODT1 CK0 120Ω ± 5% CK0 CK1 CK1 120Ω ± 5% PAR_IN RS0A → CS0: SDRAMs D[3:0], D8 RS0B → CS0: SDRAMs D[7:4] RS1A → CS1: SDRAMs D[12:9], D17 RS1B → CS1: SDRAMs D[16:13] RBA[N:0]A → BA[N:0]: SDRAMs D[3:0], D[12:8], D17 RBA[N:0]B → BA[N:0]: SDRAMs D[7:4], D[16:13] RA[N:0]A → A[N:0]: SDRAMs D[3:0], D[12:8], D17 RA[N:0]B → A[N:0]: SDRAMs D[7:4], D[16:13] RRASA → RAS: SDRAMs D[3:0], D[12:8], D17 RRASB → RAS: SDRAMs D[7:4], D[16:13] RCASA → CAS: SDRAMs D[3:0], D[12:8], D17 RCASB → CAS: SDRAMs D[7:4], D[16:13] RWEA → WE: SDRAMs D[3:0], D[12:8], D17 RWEB → WE: SDRAMs D[7:4], D[16:13] RCKE0A → CKE0: SDRAMs D[3:0], D8 RCKE0B → CKE0: SDRAMs D[7:4] RCKE1A → CKE1: SDRAMs D[12:9], D17 RCKE1B → CKE1: SDRAMs D[16:13] RODT0A → ODT0: SDRAMs D[3:0], D8 RODT0B → ODT0: SDRAMs D[7:4] RODT1A → ODT1: SDRAMs D[12:9], D17 RODT1A → ODT1: SDRAMs D[16:13] PCK0A → CK: SDRAMs D[3:0], D8 PCK0B → CK: SDRAMs D[7:4] PCK1A → CK: SDRAMs D[12:9], D17 PCK1B → CK: SDRAMs D[16:13] PCK0A → CK: SDRAMs D[3:0], D8 PCK0B → CK: SDRAMs D[7:4] PCK1A → CK: SDRAMs D[12:9], D17 PCK1B → CK: SDRAMs D[16:13] OERR Err_Out RESET RST RST: SDRAMs D[17:0] * S[3:2], CK1 and CK1 are NC Rev. 0.1 / Nov. 2009 14 ODT CK CKE CK VSS A[O:N]/BA[O:N] ODT CK CKE CK WE CAS VSS A[O:N]/BA[O:N] ODT CK CKE CK VSS A[O:N]/BA[O:N] ODT CK CK CKE D15 ODT CK CKE VSS D16 A[O:N]/BA[O:N] ZQ CK RAS CS CAS ZQ CAS RAS CS D14 CAS ODT A[O:N]/BA[O:N] A[O:N]/BA[O:N] ODT CK CKE D7 RAS DQS DQS DM DQ [3:0] ZQ WE DQS16 DQS16 VSS DQ[63:60] ZQ RAS A[O:N]/BA[O:N] ODT CK CKE CK CKE D6 D13 WE DQS DQS DM DQ [3:0] ZQ ZQ WE DQS15 DQS15 VSS DQ[55;52] CS VSS VSS A[O:N]/BA[O:N] DQS DQS DM DQ [3:0] VSS ODT VSS DQS14 DQS14 VSS DQ[47:44] CS RODT0B A[O:N]B /BA[O:N]B RWEB PCK0B RCASB PCK0B RCKE0B CK CKE CK WE CK WE CAS CAS CAS CAS RAS CS DQS DQS DM DQ [3:0] Vtt VSS D9 A[O:N]/BA[O:N] ZQ RAS CS CS A[O:N]/BA[O:N] ODT CK CKE CK WE CAS D10 D5 CK DQS DQS DM DQ [3:0] DQS13 DQS13 VSS DQ[39:36] ZQ WE DQS7 DQS7 VSS DQ[59:56] ZQ RAS A[O:N]/BA[O:N] A[O:N]/BA[O:N] ODT CK CKE CK WE CAS D11 D4 CK DQS DQS DM DQ [3:0] ZQ WE RS0B RRASB DQS6 DQS6 VSS DQ[51:48] ZQ RAS DQS DQS DM DQ [3:0] CS VSS A[O:N]/BA[O:N] VSS DQS5 DQS5 VSS DQ[43:40] VSS ODT DQS DQS DM DQ [3:0] VSS ODT CK CKE CK WE CAS D12 WE CS RAS RAS CS DQS4 DQS4 VSS DQ[35:32] ZQ CAS A[O:N]/BA[O:N] ODT CK CKE CK WE D0 CK CKE DQS DQS DM DQ [3:0] ZQ D17 CK DQS9 DQS9 VSS DQ[7:4] CS A[O:N]/BA[O:N] ODT CK CKE CK WE CAS D1 ZQ WE DQS DQS DM DQ [3:0] CAS DQS10 DQS10 VSS DQ[15:12] ZQ RAS A[O:N]/BA[O:N] ODT CK CKE CK WE CAS D2 RAS DQS DQS DM DQ [3:0] CS DQS11 DQS11 VSS DQ23:20] ZQ RAS A[O:N]/BA[O:N] ODT CK CKE CK WE CAS D3 CS PCK0A RCKE0A RODT0A RWEA PCK0A A[O:N]A /BA[O:N]A VSS CAS DQS DQS DM DQ [3:0] ZQ CAS CS RAS RAS CS CS RAS RAS CS A[O:N]/BA[O:N] DQS DQS DM DQ [3:0] VSS DQS0 DQS0 VSS DQ[3:0] DQS12 DQS12 VSS DQ[31:28] VSS DQS DQS DM DQ [3:0] DQS DQS DM DQ [3:0] VSS DQS1 DQS1 VSS DQ[11;8] DQS17 DQS17 VSS CB[7:4] VSS DQS DQS DM DQ [3:0] ODT DQS2 DQS2 VSS DQ[19:16] D8 CK CKE DQS DQS DM DQ [3:0] ZQ CK DQS3 DQS3 VSS DQ[27:24] RAS DQS DQS DM DQ [3:0] CS DQS8 DQS8 VSS CB[3:0] WE RS0A RRASA RCASA 2GB, 256Mx72 Module(1Rank of x4) - page1 Vtt VDDSPD EVENT SCL SDA SA0 SA0 EVENT SPD with SA1 Integrated SA2 SCL TS VSS SDA VDDSPD SA1 SA2 VSS Plan to use SPD with Integrated TS of Class B and might be changed on customer’s requests. For more details of SPD and Thermal sensor, please contact local Hynix sales representative Note: 1. DQ-to-I/O wiring may be changed within a nibble. 2. Unless otherwise noted, resistor values are 15%. Ω ±5 3. See the wiring diagrams for all resistors associated with the command, address and control bus. Ω For ± 1 all other resistor values refer to the appro4. ZQ resistors are 240%. priate wiring diagram. Rev. 0.1 / Nov. 2009 VDDSPD SPD VDD D0–D17 VTT VREFCA D0–D17 VREFDQ D0–D17 VSS D0–D17 D0–D17 15 2GB, 256Mx72 Module(1Rank of x4) - page2 S0 S1 1:2 BA[N:0] R E A[N:0] G RAS I S T E R / P L L CAS WE CKE0 ODT0 RS0A → CS0: SDRAMs D[3:0], D[12:8], D17 RS0B → CS0: SDRAMs D[7:4], D[16:13] RS1A → CS1: SDRAMs D[12:9], D17 RS1B → CS1: SDRAMs D[16:13] RBA[N:0]A → BA[N:0]: SDRAMs D[3:0], D[12:8], D17 RBA[N:0]B → BA[N:0]: SDRAMs D[7:4], D[16:13] RA[N:0]A → A[N:0]: SDRAMs D[3:0], D[12:8], D17 RA[N:0]B → A[N:0]: SDRAMs D[7:4], D[16:13] RRASA → RAS: SDRAMs D[3:0], D[12:8], D17 RRASB → RAS: SDRAMs D[7:4], D[16:13] RCASA → CAS: SDRAMs D[3:0], D[12:8], D17 RCASB → CAS: SDRAMs D[7:4], D[16:13] RWEA → WE: SDRAMs D[3:0], D[12:8], D17 RWEB → WE: SDRAMs D[7:4], D[16:13] RCKE0A → CKE0: SDRAMs D[3:0], D[12:8], D17 RCKE0B → CKE0: SDRAMs D[7:4], D[16:13] RODT0A → ODT0: SDRAMs D[3:0], D[12:8]. D17 RODT0B → ODT0: SDRAMs D[7:4], D[16:13] CK0 PCK0A → CK: SDRAMs D[3:0], D8 PCK0B → CK: SDRAMs D[7:4] CK0 PCK0A → CK: SDRAMs D[3:0], D8 PCK0B → CK: SDRAMs D[7:4] PAR_IN OERR Err_Out RESET RST RST: SDRAMs D[17:0] * S[3:2], CKE1, ODT1, CK1 and CK1 are NC (Unused register inputs ODT1 and CKE1 have a 330Ω resistor to ground.) Rev. 0.1 / Nov. 2009 16 DQS0 DQS0 VSS DQ[3:0] DQS DQS DM DQ [3:0] Vtt Rev. 0.1 / Nov. 2009 D0 D18 DQS9 DQS9 VSS DQ[7:4] DQS DQS DM DQ [3:0] D9 DQS DQS DM DQ [3:0] ODT A[N:O]/BA[N:O] D27 A[N:O]/BA[N:O] D19 ODT CK CKE DQS DQS DM DQ [3:0] CK CKE D21 D20 A[N:O]/BA[N:O] ODT CK CKE CK WE CAS RAS CS A[N:O]/BA[N:O] ODT CK CKE CK WE CAS RAS CS A[N:O]/BA[N:O] ODT CK CKE CK WE CAS D26 A[N:O]/BA[N:O] ODT CK CKE DQS DQS DM DQ [3:0] CK WE CAS RAS CS DQS DQS DM DQ [3:0] CK WE CAS RAS CS A[N:O]/BA[N:O] ODT CK CKE CK WE CAS DQS DQS DM DQ [3:0] CK WE CAS RAS D1 CS D2 A[N:O]/BA[N:O] ODT CK CKE CK WE CAS D3 A[N:O]/BA[N:O] ODT CK CKE CK WE CAS RAS D8 A[N:O]/BA[N:O] ODT DQS DQS DM DQ [3:0] CK CKE DQS1 DQS1 VSS DQ[11:8] CK DQS DQS DM DQ [3:0] RAS DQS2 DQS2 VSS DQ[19:16] RAS DQS DQS DM DQ [3:0] CS DQS3 DQS3 VSS DQ[27:24] RAS CS A[N:O]/BA[N:O] ODT DQS DQS DM DQ [3:0] CS CS A[N:O]/BA[N:O] ODT CK CKE CK WE CAS RAS CS DQS8 DQS8 VSS CB[3:0] WE CAS RAS D28 CS D29 A[N:O]/BA[N:O] ODT CK CKE D30 A[N:O]/BA[N:O] ODT CK CKE CK WE CAS RAS CS A[N:O]/BA[N:O] ODT CK CKE CK WE CAS D35 A[N:O]/BA[N:O] ODT DQS DQS DM DQ [3:0] CK CKE DQS DQS DM DQ [3:0] CK CKE DQS DQS DM DQ [3:0] CK WE CAS RAS CS DQS DQS DM DQ [3:0] CK WE CAS RAS CS A[N:O]/BA[N:O] ODT CK CKE CK WE CAS DQS DQS DM DQ [3:0] CK WE CAS RAS D10 A[N:O]/BA[N:O] D11 A[N:O]/BA[N:O] ODT CK CKE CK WE CAS D12 A[N:O]/BA[N:O] ODT CK CKE CK WE CAS RAS DQS DQS DM DQ [3:0] D17 CS CS DQS10 DQS10 VSS DQ[15:12] RAS DQS DQS DM DQ [3:0] ODT CS DQS11 DQS11 VSS DQ[23:20] RAS DQS DQS DM DQ [3:0] CK CKE CS DQS12 DQS12 VSS DQ[31:28] RAS DQS DQS DM DQ [3:0] CK CS DQS17 DQS17 VSS CB[7:4] WE CAS RAS CS R0DT1A RCKE1A PCK1A PCK1A RS1A A[O:N]A /BA[O:N]A RODT0A PCK0A RCKE0A PCK0A RWEA RCASA RS0A RRASA R0DT1A RCKE1A PCK1A PCK1A RS1A A[O:N]A /BA[O:N]A RODT0A PCK0A RCKE0A PCK0A RWEA RCASA RS0A RRASA 4GB, 512Mx72 Module(2Rank of x4) - page1 Vtt 17 R0DT1B A[N:O]/BA[N:O] ODT A[N:O]/BA[N:O] A[N:O]/BA[N:O] ODT ODT ODT CK CKE CK CKE CK CKE A[N:O]/BA[N:O] RCKE1B PCK1B PCK1B CK CKE CK WE D24 WE CAS DQS DQS DM DQ [3:0] CK D33 WE CAS RAS CS DQS DQS DM DQ [3:0] CK WE D23 CK CAS RAS CS DQS DQS DM DQ [3:0] RAS A[N:O]B /BA[N:O]B RS1B D31 CAS RAS CS DQS DQS DM DQ [3:0] CS ODT A[N:O]/BA[N:O] A[N:O]/BA[N:O] A[N:O]/BA[N:O] ODT CK CKE CK CKE ODT ODT CK CKE D6 A[N:O]/BA[N:O] PCK0B RCKE0B RWEB RODT0B CK CKE CK CK CAS CAS CAS CAS RAS CS CS RAS RAS CS CK DQS DQS DM DQ [3:0] D15 CK DQS6 DQS6 VSS DQ[51:48] PCK0B RCASB DQS DQS DM DQ [3:0] WE DQS15 DQS15 VSS DQ[55:52] D5 WE DQS DQS DM DQ [3:0] D13 WE DQS5 DQS5 VSS DQ[43:40] RAS DQS DQS DM DQ [3:0] CS DQS13 DQS13 VSS DQ[39:36] WE RS0B RRASB R0DT1B A[N:O]/BA[N:O] ODT ODT A[N:O]/BA[N:O] PCK1B Vtt A[N:O]/BA[N:O] ODT ODT CK CKE CK CKE WE CAS D25 A[N:O]/BA[N:O] CK WE CAS CK CKE CK CKE CK WE CAS DQS DQS DM DQ [3:0] CK WE CAS D34 CK RAS RCKE1B PCK1B RS1B CS RAS RAS CS D22 DQS DQS DM DQ [3:0] CS A[N:O]B /BA[N:O]B A[N:O]/BA[N:O] D32 DQS DQS DM DQ [3:0] RAS ODT CK CKE CK DQS DQS DM DQ [3:0] CS CK CKE ODT ODT CK CKE CK WE WE A[N:O]/BA[N:O] PCK0B RCKE0B RODT0B RWEB PCK0B CK WE CAS CAS D7 CAS RAS CS CS RAS RAS CS D16 A[N:O]/BA[N:O] DQS DQS DM DQ [3:0] D4 A[N:O]/BA[N:O] DQS7 DQS7 VSS DQ[59:56] ODT DQS DQS DM DQ [3:0] CK CKE DQS16 DQS16 VSS DQ[63:60] CK DQS DQS DM DQ [3:0] D14 CAS DQS4 DQS4 VSS DQ[35:32] RAS DQS DQS DM DQ [3:0] CS DQS14 DQS14 VSS DQ[47:44] WE RS0B RRASB RCASB 4GB, 512Mx72 Module(2Rank of x4) - page2 Vtt VDDSPD SPD VDD D0–D35 VTT VREFCA D0–D35 VREFDQ D0–D35 VSS D0–D35 D0–D35 VDDSPD EVENT SCL SDA VDDSPD SA0 SA0 EVENT SPD with SA1 Integrated SA2 SCL TS VSS SDA SA1 SA2 VSS Plan to use SPD with Integrated TS of Class B and might be changed on customer’s requests. For more details of SPD and Thermal sensor, please contact local Hynix sales representative Note: 1. DQ-to-I/O wiring may be changed within a nibble. 2. See wiring diagrams for all resistors values. 3. ZQ pins of each SDRAM are connected to individual RZQ resistors (240+/-1%) ohms. Rev. 0.1 / Nov. 2009 18 4GB, 512Mx72 Module(2Rank of x4) - page3 S0 1:2 S1 R E G I S T E R / P L L BA[N:0] A[N:0] RAS CAS WE CKE0 CKE1 ODT0 ODT1 CK0 CK0 CK1 CK1 120Ω ± 5% PAR_IN RS0A → CS0: SDRAMs D[3:0], D[12:8], D17 RS0B → CS0: SDRAMs D[7:4], D[16:13] RS1A → CS1: SDRAMs D[21:18], D[30:26], D35 RS1B → CS1: SDRAMs D[25:22], D[34:31] RBA[N:0]A → BA[N:0]: SDRAMs D[3:0], D[12:8], D[21:17], D[30:26], D35 RBA[N:0]B → BA[N:0]: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31] RA[N:0]A → A[N:0]: SDRAMs D[3:0], D[12:8], D[21:17], D[30:26], D35 RA[N:0]B → A[N:0]: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31] RRASA → RAS: SDRAMs D[3:0], D[12:8], D[21:17], D[30:26], D35 RRASB → RAS: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31] RCASA → CAS: SDRAMs D[3:0], D[12:8], D[21:17], D[30:26], D35 RCASB → CAS: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31] RWEA → WE: SDRAMs D[3:0], D[12:8], D[21:17], D[30:26], D35 RWEB → WE: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31] RCKE0A → CKE0: SDRAMs D[3:0], D[12:8], D17 RCKE0B → CKE0: SDRAMs D[7:4], D[16:13] RCKE1A → CKE1: SDRAMs D[21:18], D[30:26], D35 RCKE1B → CKE1: SDRAMs D[25:22], D[34:31] RODT0A → ODT0: SDRAMs D[3:0], D[12:8], D17 RODT0B → ODT0: SDRAMs D[7:4], D[16:13] RODT1A → ODT1: SDRAMs D[21:18], D[30:26], D35 RODT1A → ODT1: SDRAMs D[25:22], D[34:31] PCK0A → CK: SDRAMs D[3:0], D[12:8], D17 PCK0B → CK: SDRAMs D[7:4], D[16:13] PCK1A → CK: SDRAMs D[21:18], D[30:26], D35 PCK1B → CK: SDRAMs D[25:22], D[34:31] PCK0A → CK: SDRAMs D[3:0], D[12:8], D17 PCK0B → CK: SDRAMs D[7:4], D[16:13] PCK1A → CK: SDRAMs D[21:18], D[30:26], D35 PCK1B → CK: SDRAMs D[25:22], D[34:31] Err_Out RESET RST RST: SDRAMs D[35:0] * S[3:2], CK1 and CK1 are NC Rev. 0.1 / Nov. 2009 19 CS CS CS CS DQS DQS TDQS TDQS DQ [7:0] ZQ DQS8 DQS8 DM8/TDQS17 TDQS17 CB[7:0] DQS DQS TDQS TDQS DQ [7:0] ZQ Rev. 0.1 / Nov. 2009 U6 CKE U15 U24 A[N:O] DQS DQS TDQS TDQS DQ [7:0] ZQ ODT BA[N:O] BA[N:O] CKE A[N:O] U32 ODT CKE CKE CK CK BA[N:O] A[N:O] ODT DQS DQS TDQS TDQS DQ [7:0] ZQ CK CK WE CAS CS CKE CK CK WE CAS RAS BA[N:O] A[N:O] ODT DQS DQS TDQS TDQS DQ [7:0] ZQ CK CK WE CAS CS RAS BA[N:O] A[N:O] ODT CKE CK CK WE CAS PCK0 CK WCKE01 BA[N:O] A[N:O] ODT CKE CK CK WE CAS RAS CS BA[N:O] A[N:O] VDD WCKE1 PCK2 PCK2 CS3 WCKE0 WODT1 CKE ODT PCK2 PCK2 CK CS2 VDD CK WE CAS RAS CS BA[N:O] A[N:O] ODT CKE PCK0 PCK0 CK CS1 CK WE CAS RAS CS WA[N:0] WBA[N:0] A[N:O] DQS DQS TDQS TDQS DQ [7:0] ZQ A[N:O] DQS DQS TDQS TDQS DQ [7:0] ZQ WE CAS U23 CS U22 RAS A[N:O] BA[N:O] U21 RAS A[N:O] BA[N:O] ODT CKE CK CK WE CAS CS RAS U20 CS BA[N:O] CKE ODT DQS DQS TDQS TDQS DQ [7:0] ZQ CKE DQS DQS TDQS TDQS DQ [7:0] ZQ CK CK WE CAS DQS DQS TDQS TDQS DQ [7:0] ZQ CK CK CS RAS BA[N:O] A[N:O] ODT CKE CK CK WE CAS WWE PCK0 CK WCAS WE WRAS CS0 CAS CS RAS BA[N:O] DQS DQS TDQS TDQS DQ [7:0] ZQ ODT DQS DQS TDQS TDQS DQ [7:0] ZQ WE CAS U14 CS U13 RAS BA[N:O] U12 RAS BA[N:O] A[N:O] ODT CKE CK CK WE CAS CS RAS U11 CS BA[N:O] CKE A[N:O] ODT DQS DQS TDQS TDQS DQ [7:0] ZQ A[N:O] DQS DQS TDQS TDQS DQ [7:0] ZQ CK CK WE CAS DQS DQS TDQS TDQS DQ [7:0] ZQ CK CK CS RAS BA[N:O] A[N:O] ODT CKE CK CK WE CAS DQS DQS TDQS TDQS DQ [7:0] ZQ ODT DQS DQS TDQS TDQS DQ [7:0] ZQ WE CAS U5 CS U4 RAS BA[N:O] A[N:O] ODT CKE CK CK WE CAS U3 RAS BA[N:O] A[N:O] ODT CKE CK CK WE CAS U2 CS BA[N:O] A[N:O] ODT CKE CK CK WE CAS WCKE0 DQS3 DQS3 DM3/TDQS12 TDQS12 DQ[31:24] WODT0 DQS DQS TDQS TDQS DQ [7:0] ZQ CKE DQS2 DQS2 DM2/TDQS11 TDQS11 DQ[32:16] ODT DQS DQS TDQS TDQS DQ [7:0] ZQ RAS DQS1 DQS1 DM1/TDQS10 TDQS10 DQ[15:8] RAS DQS DQS TDQS TDQS DQ [7:0] ZQ RAS DQS0 DQS0 DM0/TDQS9 TDQS9 DQ[7:0] RAS 4GB, 512Mx72 Module(4Rank of x8) - page1 U29 U30 U31 U33 Vtt 20 BA[N:O] VDD ODT A[N:O] WCKE1 PCK2 CK CK WE CKE PCK2 BA[N:O] ODT A[N:O] CKE CK CK ODT A[N:O] BA[N:O] ODT BA[N:O] CKE CK A[N:O] DQS DQS TDQS TDQS DQ [7:0] ZQ CKE CK U36 WE CAS DQS DQS TDQS TDQS DQ [7:0] ZQ CK CAS WE WE CAS U35 CK CAS CS3 CS RAS RAS CS CS RAS BA[N:O] A[N:O] A[N:O] BA[N:O] CKE ODT U34 DQS DQS TDQS TDQS DQ [7:0] ZQ CS A[N:O] BA[N:O] ODT CKE CKE ODT CK U28 DQS DQS TDQS TDQS DQ [7:0] ZQ RAS A[N:O] BA[N:O] WCKE0 WODT1 CKE ODT PCK2 PCK2 CK WE CK CK U27 WE CAS DQS DQS TDQS TDQS DQ [7:0] ZQ DQS DQS TDQS TDQS DQ [7:0] ZQ CK WE CAS CK CK WE CAS U26 CK CAS CS RAS RAS CS CS RAS BA[N:O] BA[N:O] U25 DQS DQS TDQS TDQS DQ [7:0] ZQ CS BA[N:O] ODT A[N:O] CKE CKE A[N:O] ODT ODT A[N:O] CKE U19 DQS DQS TDQS TDQS DQ [7:0] ZQ RAS BA[N:O] CS2 VDD WCKE01 CKE ODT CK CK CK CK U18 WE CAS CK WE CAS CK CK WE CAS U17 DQS DQS TDQS TDQS DQ [7:0] ZQ DQS DQS TDQS TDQS DQ [7:0] ZQ A[N:O] PCK0 PCK0 CK WE CAS CS1 CS RAS RAS CS CS RAS BA[N:O] A[N:O] A[N:O] BA[N:O] U16 DQS DQS TDQS TDQS DQ [7:0] ZQ CS A[N:O] BA[N:O] CK ODT CKE CKE ODT CK CK CKE U10 DQS DQS TDQS TDQS DQ [7:0] ZQ RAS WA[N:0] WBA[N:0] A[N:O] BA[N:O] PCK0 WCKE0 WODT0 CK CKE ODT WWE PCK0 CK CK U9 ODT CAS RAS CS CS CAS RAS CK DQS DQS TDQS TDQS DQ [7:0] ZQ U8 CK WCAS DQS3 DQS3 DM3/TDQS12 TDQS12 DQ[31:24] WE WRAS DQS DQS TDQS TDQS DQ [7:0] ZQ WE DQS6 DQS6 DM6/TDQS15 TDQS15 DQ[55:48] U7 WE DQS DQS TDQS TDQS DQ [7:0] ZQ CS DQS5 DQS5 DM5/TDQS14 TDQS14 DQ[47:40] CAS DQS DQS TDQS TDQS DQ [7:0] ZQ RAS DQS4 DQS4 DM4/TDQS13 TDQS13 DQ[39:32] WE CS0 CAS CS RAS 4GB, 512Mx72 Module(4Rank of x8) - page2 U37 Vtt VDDSPD EVENT SCL SDA VDDSPD SA0 SA0 EVENT SPD with SA1 Integrated SA2 SCL TS SDA VSS SA1 SA2 Plan to use SPD with Integrated TS of Class B and might be changed on customer’s requests. For more details of SPD and Thermal sensor, please contact local Hynix sales representative VSS VDDSPD Notes: 1. DQ-to-I/O wiring may be changed within a byte. 2. See wiring diagrams for resistor values. 3. ZQ pins of each SDRAM are connected to individual RZQ resistors (240+/-1%) ohms. Rev. 0.1 / Nov. 2009 VDD Serial PD U1–U37 VTT VREFCA U1-U37 VREFDQ U1-U37 VSS U1-U37 21 4GB, 512Mx72 Module(4Rank of x8) - page3 S0 S1 S2 S3 BA[N:0] 1:2 R E G I S T E R / P L L A[N:0] RAS CAS WE CKE0 CKE1 ODT0 ODT1 CK0 CK0 CK1 CK1 120Ω ± 5% PAR_IN CS0 → CS0: SDRAMs U[10:2] CS1 → CS1: SDRAMs U[19:11] CS2 → CS2: SDRAMs U[28:20] CS3 → CS3: SDRAMs U[37:29] WBA[N:0] → BA[N:0]: SDRAMs U[6:2], U[15:11], U[24:20], U[33:29] EBA[N:0] → BA[N:0]: SDRAMs U[10:7], U[19:16], U[28:25], U[37:34] WA[N:0] → A[N:0]: SDRAMs U[6:2], U[15:11], U[24:20], U[33:29] EA[N:0] → A[N:0]: SDRAMs U[10:7], U[19:16], U[28:25], U[37:34] WRAS → RAS: SDRAMs U[6:2], U[15:11], U[24:20], U[33:29] ERAS → RAS: SDRAMs U[10:7], U[19:16], U[28:25], U[37:34] WCAS → CAS: SDRAMs U[6:2], U[15:11], U[24:20], U[33:29] ECAS → CAS: SDRAMs U[10:7], U[19:16], U[28:25], U[37:34] WWE → WE: SDRAMs U[6:2], U[15:11], U[24:20], U[33:29] EWE → WE: SDRAMs U[10:7], U[19:16], U[28:25], U[37:34] WCKE0 → CKE0: SDRAMs U[6:2], U[24:20] ECKE0 → CKE0: SDRAMs U[10:7], U[28:25] WCKE1 → CKE1: SDRAMs U[15:11], U[33:29] ECKE1 → CKE1: SDRAMs U[19:16], U[37:34] WODT0 → ODT0: SDRAMs U[6:2] EODT0 → ODT0: SDRAMs U[10:7] WODT0 → ODT1: SDRAMs U[24:20] EODT0 → ODT1: SDRAMs U[28:25] PCK0 → CK: SDRAMs U[6:2], U[15:11] PCK1 → CK: SDRAMs U[10:7], U[28:25] PCK2 → CK: SDRAMs U[24:20], U[33:29] PCK3 → CK: SDRAMs U[19:16], U[37:34] PCK0 → CK: SDRAMs U[6:2], U[15:11] PCK1 → CK: SDRAMs U[10:7], U[28:25] PCK2 → CK: SDRAMs U[24:20], U[33:29] PCK3 → CK: SDRAMs U[19:16], U[37:34] Err_Out RESET RST RST: SDRAMs U[37:2] Rev. 0.1 / Nov. 2009 22 Absolute Maximum Ratings Absolute Maximum DC Ratings Absolute Maximum DC Ratings Symbol VDD VDDQ Parameter Rating Units Notes Voltage on VDD pin relative to Vss - 0.4 V ~ 1.975 V V 1, Voltage on VDDQ pin relative to Vss - 0.4 V ~ 1.975 V V 1, - 0.4 V ~ 1.975 V V 1 C 1, 2 VIN, VOUT Voltage on any pin relative to Vss TSTG -55 to +100 Storage Temperature o Notes: 1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard. 3. VDD and VDDQ must be within 300mV of each other at all times; and VREF must not be greater than 0.6XVDDQ,When VDD and VDDQ are less than 500mV; VREF may be equal to or less than 300mV. DRAM Component Operating Temperature Range Temperature Range Symbol TOPER Parameter Rating Units Notes Normal Operating Temperature Range 0 to 85 oC 1,2 Extended Temperature Range 85 to 95 oC 1,3 Notes: 1. Operating Temperature TOPER is the case surface temperature on the center / top side of the DRAM. For measurement conditions, please refer to the JEDEC document JESD51-2. 2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0 - 85oC under all operating conditions. 3. Some applications require operation of the DRAM in the Extended Temperature Range between 85oC and 95oC case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply: a. Refresh commands must be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9 µs. It is also possible to specify a component with 1X refresh (tREFI to 7.8µs) in the Extended Temperature Range. Please refer to the DIMM SPD for option availability b. Hynix DDR3L SDRAMs support Auto Self-Refresh and Extended Temperature Range and please refer to Hynix component datasheet and/or the DIMM SPD for tREFI requirement in the Extended Temperature Range. Rev. 0.1 / Nov. 2009 23 AC & DC Operating Conditions Recommended DC Operating Conditions Recommended DC Operating Conditions - DDR3L (1.35V) operation Symbol VDD VDDQ Parameter Rating Units Notes 1.45 V 1,2,3,4 1.45 V 1,2,3,4 Min. Typ. Max. Supply Voltage 1.283 1.35 Supply Voltage for Output 1.283 1.35 Notes: 1. Maximum DC value may not be greater than 1.425V. The DC value is the linear average of VDD/VDDQ (t) over a very long period of time (e.g., 1 sec). 2. If maximum limit is exceeded, input levels shall be governed by DDR3L specifications. 3. Under these supply voltages, the device operates to this DDR3L specification. 4. Once initialized for DDR3L operation, DDR3 operation may only be used if the device is in reset while VDD and VDDQ are changed for DDR3 operation (see Figure 0). Recommended DC Operating Conditions - - DDR3 (1.5V) operation Symbol VDD VDDQ Parameter Rating Units Notes 1.575 V 1,2,3 1.575 V 1,2,3 Min. Typ. Max. Supply Voltage 1.425 1.5 Supply Voltage for Output 1.425 1.5 Notes: 1. If minimum limit is exceeded, input levels shall be governed by DDR3L specifications. 2. Under 1.5V operation, this DDR3L device operates to the DDR3 specifications under the same speed timings as defined for this device. 3. Once initialized for DDR3 operation, DDR3L operation may only be used if the device is in reset while VDD and VDDQ are changed for DDR3L operation (see Figure 0). Rev. 0.1 / Nov. 2009 24 Ta Tb Tc Td Te Tf Tg Th Ti Tj Tk CK,CK# VDD, VDDQ (DDR3) tCKSRX Tmin = 10ns VDD, VDDQ (DDR3L) Tmin = 10ns Tmin = 200us T = 500us RESET# Tmin = 10ns CKE VALID tDLLK tIS COMMAND READ BA READ 1) tXPR tMRD tMRD tMRD tMOD MRS MRS MRS MRS MR2 MR3 MR1 MR0 tZQinit ZQCL 1) VALID VALID tIS ODT READ tIS Static LOW in case RTT_Nom is enabled at time Tg, otherwise static HIGH or LOW VALID RTT NOTE 1: From time point “Td” until “Tk” NOP or DES commands must be applied between MRS and ZQCL commands. TIME BREAK DON’T CARE Figure 0 - VDD/VDDQ Voltage Switch Between DDR3L and DDR3 Rev. 0.1 / Nov. 2009 25 AC & DC Input Measurement Levels AC and DC Logic Input Levels for Single-Ended Signals AC and DC Input Levels for Signal-Ended Command and Address Signals Single Ended AC and DC Input Levels for Command and Address DDR3L-800/1066/1333 Symbol VIH.CA(DC90) VIL.CA(DC90) VIH.CA(AC160) VIL.CA(AC160) VIH.CA(AC135) VIL.CA(AC135) VRefCA(DC) Parameter Unit Notes VDD Vref - 0.09 Note2 Vref - 0.160 Note2 Vref - 0.135 V V V V V V 1 1 1, 2 1, 2 1, 2 1, 2 0.51 * VDD V 3, 4 Min Max DC input logic high DC input logic low AC input logic high AC input logic low AC Input logic high AC input logic low Vref + 0.09 VSS Vref + 0.160 Note2 Vref + 0.135 Note2 Reference Voltage for ADD, CMD inputs 0.49 * VDD Notes: 1. For input only pins except RESET, Vref = VrefCA (DC). 2. Refer to “Overshoot and Undershoot Specifications” on page 39. 3. The ac peak noise on VRef may not allow VRef to deviate from VRefCA(DC) by more than +/-1% VDD (for reference: approx. +/- 13.5 mV). 4. For reference: approx. VDD/2 +/- 13.5 mV 5. There levels apply for 1.35 volt (see table above) operation only. If the device is operated at 1.5V (table “Single Ended AC and DC Input Levels for DQ and DM” on page 27), the respective levels in JESD79-3 (VIH/L.CA(DC100), VIH/L.CA(AC175), VIH/L.CA(AC150), etc.) apply. The 1.5V levels (VIH/L.CA(DC100), VIH/L.CA(AC175), VIH/L.CA(AC150), etc.) do not apply when the device is operated in the 1.35 voltage range. Rev. 0.1 / Nov. 2009 26 AC and DC Input Levels for Signal-Ended Signals DDR3 SDRAM will support two Vih/Vil AC levels for DDR3-800 and DDR3-1066 as specified in table below. DDR3 SDRAM will also support corresponding tDS values (Table 41 on page 120 and Table 47on page 145 in “DDR3L Device Operation”) as well as derating tables Table 44 on page 139 in “DDR3L Device Operation” depending on Vih/Vil AC levels. Single Ended AC and DC Input Levels for DQ and DM DDR3L-800/1066 Symbol Unit Notes Min VIH.CA(DC90) VIL.CA(DC90) VIH.CA(AC160) VIL.CA(AC160) VIH.CA(AC135) VIL.CA(AC135) VRefDQ(DC) DDR3L-1333 Parameter DC input logic high Vref + 0.09 DC input logic low VSS AC input logic high Vref + 0.160 AC input logic low Note2 AC Input logic high Vref + 0.135 AC input logic low Note2 Reference Voltage for DQ, 0.49 * VDD DM inputs Max Min Max VDD Vref - 0.09 Note2 Vref - 0.160 Note2 Vref - 0.135 Vref + 0.09 VSS Vref + 0.135 Note2 VDD Vref - 0.09 Note2 Vref - 0.135 V V V V V V 1 1 1, 2,5 1, 2,5 1, 2,5 1, 2,5 0.51 * VDD 0.49 * VDD 0.51 * VDD V 3, 4 Notes: 1. For input only pins except RESET, Vref = VrefCA (DC). 2. Refer to “Overshoot and Undershoot Specifications” on page 39. 3. The ac peak noise on VRef may not allow VRef to deviate from VRefDQ(DC) by more than +/-1% VDD (for reference: approx. +/- 13.5 mV). 4. For reference: approx. VDD/2 +/- 13.5 mV 5. There levels apply for 1.35 volt (table above) operation only. If the device is operated at 1.5V (See table above), the respective levels in JESD79-3 (VIH/L.CA(DC100), VIH/L.CA(AC175), VIH/L.CA(AC150), etc.) apply. The 1.5V levels (VIH/L.CA(DC100), VIH/L.CA(AC175), VIH/L.CA(AC150), etc.) do not apply when the device is operated in the 1.35 voltage range. Rev. 0.1 / Nov. 2009 27 Vref Tolerances The dc-tolerance limits and ac-noise limits for the reference voltages VRefCA and VRefDQ are illustrated in figure below. It shows a valid reference voltage VRef (t) as a function of time. (VRef stands for VRefCA and VRefDQ likewise). VRef (DC) is the linear average of VRef (t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirements in the table “Differential Input Slew Rate Definition” on page 34. Furthermore VRef (t) may temporarily deviate from VRef (DC) by no more than +/- 1% VDD. voltage VDD VRef ac-noise VRef(DC) VRef(t) VRef(DC)max VDD/2 VRef(DC)min VSS time Illustration of VRef(DC) tolerance and VRef ac-noise limits The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC), and VIL(DC) are dependent on VRef. “VRef ” shall be understood as VRef(DC), as defined in figure above. This clarifies that dc-variations of VRef affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to which setup and hold is measured. System timing and voltage budgets need to account for VRef(DC) deviations from the optimum position within the data-eye of the input signals. This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with VRefac-noise. Timing and voltage effects due to ac-noise on VRef up to the specified limit (+/- 1% of VDD) are included in DRAM timings and their associated deratings. Rev. 0.1 / Nov. 2009 28 AC and DC Logic Input Levels for Differential Signals Differential signal definition tDVAC Differential Input Voltage(i.e.DQS - DQS#, CK - CK#) VIL.DIFF.AC.MIN VIL.DIFF.MIN 0 half cycle VIL.DIFF.MAX VIL.DIFF.AC.MAX tDVAC time Definition of differential ac-swing and “time above ac-level” tDVAC Rev. 0.1 / Nov. 2009 29 Differential swing requirements for clock (CK - CK) and strobe (DQS-DQS) Differential AC and DC Input Levels DDR3L-800, 1066, 1333 Symbol Parameter VIHdiff VILdiff VIHdiff (ac) VILdiff (ac) Differential input high Differential input logic low Differential input high ac Differential input low ac Unit Notes Min Max + 0.180 Note 3 2 x (VIH (ac) - Vref) Note 3 Note 3 - 0.180 Note 3 2 x (VIL (ac) - Vref) V V V V 1 1 2 2 Notes: 1. Used to define a differential signal slew-rate. 2. For CK - CK use VIH/VIL (ac) of AADD/CMD and VREFCA; for DQS - DQS, DQSL, DQSL, DQSU, DQSU use VIH/VIL (ac) of DQs and VREFDQ; if a reduced ac-high or ac-low levels is used for a signal group, then the reduced level applies also here. 3. These values are not defined; however, the single-ended signals Ck, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective limits (VIH (dc) max, VIL (dc) min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to “Overshoot and Undershoot Specifications” on page 39. Allowed time before ringback (tDVAC) for CK - CK and DQS - DQS Slew Rate [V/ns] tDVAC [ps] @ |VIH/Ldiff (ac)| = 350mV min max tDVAC [ps] @ |VIH/Ldiff (ac)| = 300mV min max > 4.0 75 - 175 - 4.0 57 - 170 - 3.0 50 - 167 - 2.0 38 - 163 1.8 34 - 162 - 1.6 29 - 161 - 1.4 22 - 159 - 1.2 13 - 155 - 1.0 0 - 150 - < 1.0 0 - 150 - Rev. 0.1 / Nov. 2009 30 Single-ended requirements for differential signals Each individual component of a differential signal (CK, DQS, DQSL, DQSU, CK, DQS, DQSL, of DQSU) has also to comply with certain requirements for single-ended signals. CK and CK have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels (VIH (ac) / VIL (ac)) for ADD/CMD signals) in every half-cycle. DQS, DQSL, DQSU, DQS, DQSL have to reach VSEHmin / VSELmax (approximately the ac-levels (VIH (ac) / VIL (ac)) for DQ signals) in every half-cycle preceding and following a valid transition. Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g., if VIH.CA(AC150)/VIL.CA(AC150) is used for ADD/CMD signals, then these ac-levels apply also for the singleended signals CK and CK. VDD or VDDQ VSEHmin VSEH VDD/2 or VDDQ/2 CK or DQS VSELmax VSS or VSSQ VSEL time Single-ended requirements for differential signals. Note that, while ADD/CMD and DQ signal requirements are with respect to Vref, the single-ended components of differential signals have a requirement with respect to VDD / 2; this is nominally the same. the transition of single-ended signals through the ac-levels is used to measure setup time. For single-ended components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common mode characteristics of these signals. Rev. 0.1 / Nov. 2009 31 Single-ended levels for CK, DQS, DQSL, DQSU, CK, DQS, DQSL or DQSU DDR3L-800, 1066, 1333 Symbol VSEH VSEL Parameter Single-ended high level for strobes Single-ended high level for Ck, CK Single-ended low level for strobes Single-ended low level for CK, CK Unit Notes Min Max (VDD / 2) + 0.175 (VDD /2) + 0.175 Note 3 Note 3 Note 3 Note 3 (VDD / 2) = 0.175 (VDD / 2) = 0.175 V V V V 1,2 1,2 1,2 1,2 Notes: 1. For CK, CK use VIH/VIL (ac) of ADD/CMD; for strobes (DQS, DQS, DQSL, DQSL, DQSU, DQSU) use VIH/VIL (ac) of DQs. 2. VIH (ac)/VIL (ac) for DQs is based on VREFDQ; VIH (ac)/VIL (ac) for ADD/CMD is based on VREFCA; if a reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here. 3. These values are not defined; however, the single-ended signals Ck, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective limits (VIH (dc) max, VIL (dc) min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to “Overshoot and Undershoot Specifications” on page 39. Rev. 0.1 / Nov. 2009 32 Differential Input Cross Point Voltage To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input signals (CK, CK and DQS, DQS) must meet the requirements in table below. The differential input cross point voltage VIX is measured from the actual cross point of true and complement signals to the midlevel between of VDD and VSS VDD CK, DQS VIX VDD/2 VIX VIX CK, DQS VSS Vix Definition Cross point voltage for differential input signals (CK, DQS) DDR3L-800, 1066, 1333 Symbol Parameter Unit Notes Min Max VIX Differential Input Cross Point Voltage relative to VDD/2 for CK, CK -150 -175 150 175 mV mV VIX Differential Input Cross Point Voltage relative to VDD/2 for DQS, DQS -150 150 mV 1 Notes: 1. Extended range for VIX is only allowed for clock and if single-ended clock input signals CK and CK are monotonic with a single-ended swing VSEL / VSEH of at least VDD/2 +/-250 mV, and when the differential slew rate of CK - CK is larger than 3 V/ns. 2. Refer to the table “Single-ended levels for CK, DQS, DQSL, DQSU, CK, DQS, DQSL or DQSU” on page 32 for VSEL and VSEH standard values Rev. 0.1 / Nov. 2009 33 Slew Rate Definitions for Single-Ended Input Signals See 7.5 “Address / Command Setup, Hold and Derating” on page 138 in “DDR3L Device Operation” for single-ended slew rate definitions for address and command signals. See 7.6 “Data Setup, Hold and Slew Rate Derating” on page 145 in “DDR3L Device Operation” for singleended slew rate definition for data signals. Slew Rate Definitions for Differential Input Signals Input slew rate for differential signals (CK, CK and DQS, DQS) are defined and measured as shown in table and figure below. Differential Input Slew Rate Definition Measured Description Min Differential input slew rate for rising edge (CK-CK and DQS-DQS) Differential input slew rate for falling edge (CK-CK and DQS-DQS) Defined by Max VILdiffmax VIHdiffmin [VIHdiffmin-VILdiffmax] / DeltaTRdiff VIHdiffmin VILdiffmax [VIHdiffmin-VILdiffmax] / DeltaTFdiff Notes: Differential Input Voltage (i.e. DQS-DQS; CK-CK) The differential signal (i.e. CK-CK and DQS-DQS) must be linear between these thresholds. Delta TRdiff vIHdiffmin 0 vILdiffmax Delta TFdiff Differential Input Slew Rate Definition for DQS, DQS# and CK, CK# Differential Input Slew Rate Definition for DQS, DQS and CK, CK Rev. 0.1 / Nov. 2009 34 AC & DC Output Measurement Levels Single Ended AC and DC Output Levels Table below shows the output levels used for measurements of single ended signals. Single-ended AC and DC Output Levels Symbol Parameter VOH(DC) DC output high measurement level (for IV curve linearity) VOM(DC) DC output mid measurement level (for IV curve linearity) VOL(DC) VOH(AC) DDR3L-800, 1066, 1333 0.8 x VDDQ Unit Notes V V DC output low measurement level (for IV curve linearity) 0.5 x VDDQ 0.2 x VDDQ AC output high measurement level (for output SR) VTT + 0.1 x VDDQ V 1 AC output low measurement level (for output SR) VTT - 0.1 x VDDQ V 1 VOL(AC) V Notes: 1. The swing of ± 0.1 x VDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40Ω and an effective test load of 25Ω to VTT = VDDQ / 2. Differential AC and DC Output Levels Table below shows the output levels used for measurements of single ended signals. Differential AC and DC Output Levels DDR3L-800, 1066, Symbol Parameter VOHdiff (AC) AC differential output high measurement level (for output SR) 1333 + 0.2 x VDDQ VOLdiff (AC) AC differential output low measurement level (for output SR) - 0.2 x VDDQ Unit Notes V 1 V 1 Notes: 1. The swing of ± 0.2 x VDDQ is based on approximately 50% of the static differential output high or low swing with a driver impedance of 40Ω and an effective test load of 25Ω to VTT = VDDQ/2 at each of the differential outputs. Rev. 0.1 / Nov. 2009 35 Single Ended Output Slew Rate When the Reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC) for single ended signals are shown in table and figure below. Single-ended Output slew Rate Definition Measured Description From VOL(AC) VOH(AC) Single-ended output slew rate for rising edge Single-ended output slew rate for falling edge Defined by To VOH(AC) VOL(AC) [VOH(AC)-VOL(AC)] / DeltaTRse [VOH(AC)-VOL(AC)] / DeltaTFse Notes: 1. Output slew rate is verified by design and characterisation, and may not be subject to production test. Single Ended Output Voltage(l.e.DQ) Delta TRse vOH(AC) V∏ vOl(AC) Delta TFse Single Ended Output Slew Rate Definition Single Ended Output slew Rate Definition Output Slew Rate (single-ended) DDR3L-800 DDR3L-1066 DDR3L-1333 Parameter Symbol Min Max Min Max Min Max Single-ended Output Slew Rate SRQse 1.75 51) 1.75 51) 1.75 51) Units V/ns Description: SR; Slew Rate Q: Query Output (like in DQ, which stands for Data-in, Query-Output) se: Single-ended Signals For Ron = RZQ/7 setting Note 1): In two cases, a maximum slew rate of 6 V/ns applies for a single DQ signal within a byte lane. Case_1 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low or low to high) while all remaining DQ signals in the same byte lane are static(i.e they stay at either high or low). Case_2 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low or low to high) while all remaining DQ signals in the same byte lane are switching into the opposite direction (i.e from low to high or high to low respectively). For the remaining DQ signal switching into the opposite direction, the regular maximum limit of 5 V/ns applies. Rev. 0.1 / Nov. 2009 36 Differential Output Slew Rate With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff (AC) and VOHdiff (AC) for differential signals as shown in table and figure below. Differential Output Slew Rate Definition Measured Description Defined by From To Differential output slew rate for rising edge VOLdiff (AC) VOHdiff (AC) [VOHdiff (AC)-VOLdiff (AC)] / DeltaTRdiff Differential output slew rate for falling edge VOHdiff (AC) VOLdiff (AC) [VOHdiff (AC)-VOLdiff (AC)] / DeltaTFdiff Notes: 1. Output slew rate is verified by design and characterization, and may not be subject to production test. Differential Output Voltage(i.e. DQS-DQS) Delta TRdiff vOHdiff(AC) O vOLdiff(AC) Delta TFdiff Differential Output Slew Rate Definition Differential Output slew Rate Definition Differential Output Slew Rate DDR3L-800 DDR3L-1066 DDR3L-1333 Parameter Symbol Min Max Min Max Min Max Differential Output Slew Rate SRQdiff 3.5 12 3.5 12 3.5 12 Units V/ns Description: SR; Slew Rate Q: Query Output (like in DQ, which stands for Data-in, Query-Output) se: Single-ended Signals For Ron = RZQ/7 setting Rev. 0.1 / Nov. 2009 37 Reference Load for AC Timing and Output Slew Rate Figure below represents the effective reference load of 25 ohms used in defining the relevant AC timing parameters of the device as well as output slew rate measurements. It is not intended as a precise representation of any particular system environment or a depiction of the actual load presented by a production tester. System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics. VDDQ CK, CK DUT DQ DQS DQS 25 Ohm VTT = VDDQ/2 Reference Load for AC Timing and Output Slew Rate Rev. 0.1 / Nov. 2009 38 Overshoot and Undershoot Specifications Address and Control Overshoot and Undershoot Specifications AC Overshoot/Undershoot Specification for Address and Control Pins Parameter Maximum peak amplitude allowed for overshoot area. (See figure below) Maximum peak amplitude allowed for undershoot area. (See figure below) Maximum overshoot area above VDD (See figure below) Maximum undershoot area below VSS (See figure below) DDR3L- DDR3L- DDR3L- 800 1066 1333 0.4 0.4 0.67 0.67 0.4 0.4 0.5 0.5 0.4 0.4 0.4 0.4 Units V V V-ns V-ns (A0-A15, BA0-BA3, CS, RAS, CAS, WE, CKE, ODT) Maximum Amplitude Overshoot Area Volts (V) VDD VSS Undershoot Area Maximum Amplitude Time (ns) Address and Control Overshoot and Undershoot Definition Address and Control Overshoot and Undershoot Definition Rev. 0.1 / Nov. 2009 39 Clock, Data, Strobe and Mask Overshoot and Undershoot Specifications AC Overshoot/Undershoot Specification for Clock, Data, Strobe and Mask Parameter Maximum peak amplitude allowed for overshoot area. (See figure below) Maximum peak amplitude allowed for undershoot area. (See figure below) Maximum overshoot area above VDD (See figure below) Maximum undershoot area below VSS (See figure below) DDR3L- DDR3L- DDR3L- 800 1066 1333 0.4 0.4 0.25 0.25 0.4 0.4 0.19 0.19 0.4 0.4 0.15 0.15 Units V V V-ns V-ns (CK, CK, DQ, DQS, DQS, DM) Maximum Amplitude Overshoot Area Volts (V) VDDQ VSSQ Undershoot Area Maximum Amplitude Time (ns) Clock, Data Strobe and Mask Overshoot and Undershoot Definition Clock, Data, Strobe and Mask Overshoot and Undershoot Definition Rev. 0.1 / Nov. 2009 40 Refresh parameters by device density Refresh parameters by device density Parameter REF command ACT or REF command time Average periodic refresh interval RTT_Nom Setting 512Mb 1Gb 2Gb 4Gb 8Gb Units tRFC 90 110 160 300 350 ns tREFI 0 °C ≤ TCASE ≤ 85 °C 85 °C < TCASE ≤ 95 °C 7.8 7.8 7.8 7.8 7.8 us 3.9 3.9 3.9 3.9 3.9 us Standard Speed Bins DDR3L SDRAM Standard Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin. DDR3L-800 Speed Bins For specific Notes See “Speed Bin Table Notes” on page 44. Speed Bin DDR3-800E CL - nRCD - nRP 6-6-6 Unit Parameter Symbol min max Internal read command to first data tAA 15 20 ns ACT to internal read or write delay time tRCD 15 — ns PRE command period tRP 15 — ns ACT to ACT or REF command period tRC 52.5 — ns ACT to PRE command period tRAS 37.5 9 * tREFI ns CL = 5 CWL = 5 tCK(AVG) CL = 6 CWL = 5 tCK(AVG) Reserved 2.5 3.3 ns 1, 2, 3, 4 ns 1, 2, 3 Supported CL Settings 6 nCK Supported CWL Settings 5 nCK Rev. 0.1 / Nov. 2009 Notes 41 DDR3L-1066 Speed Bins For specific Notes See “Speed Bin Table Notes” on page 44. Speed Bin DDR3-1066F CL - nRCD - nRP Parameter Symbol Unit 7-7-7 min max Internal read command to first data tAA 13.125 20 ns ACT to internal read or write delay time tRCD 13.125 — ns PRE command period tRP 13.125 — ns ACT to ACT or REF command period tRC 50.625 — ns ACT to PRE command period tRAS 37.5 9 * tREFI ns CL = 5 CL = 6 CL = 7 CL = 8 Note CWL = 5 tCK(AVG) Reserved ns 1, 2, 3, 4, 5 CWL = 6 tCK(AVG) Reserved ns 4 CWL = 5 tCK(AVG) ns 1, 2, 3, 5 CWL = 6 tCK(AVG) Reserved ns 1, 2, 3, 4 CWL = 5 tCK(AVG) Reserved ns 4 CWL = 6 tCK(AVG) ns 1, 2, 3, 4 CWL = 5 tCK(AVG) ns 4 CWL = 6 tCK(AVG) ns 1, 2, 3 2.5 3.3 1.875 < 2.5 Reserved 1.875 < 2.5 Supported CL Settings 6, 7, 8 nCK Supported CWL Settings 5, 6 nCK Rev. 0.1 / Nov. 2009 42 DDR3L-1333 Speed Bins For specific Notes See “Speed Bin Table Notes” on page 44. Speed Bin DDR3L-1333H CL - nRCD - nRP Parameter Symbol Unit 9-9-9 min max Internal read command to first data tAA 13.5 (13.125)8 20 ns ACT to internal read or write delay time tRCD 13.5 (13.125)8 — ns PRE command period tRP 13.5 (13.125)8 — ns ACT to ACT or REF command period tRC 49.5 (49.125)8 — ns ACT to PRE command period tRAS 36 9 * tREFI ns CL = 5 CL = 6 CL = 7 CL = 8 CL = 9 Note CWL = 5 tCK(AVG) Reserved ns 1,2, 3,4, 6 CWL = 6, 7 tCK(AVG) Reserved ns 4 CWL = 5 tCK(AVG) ns 1, 2, 3, 6 CWL = 6 tCK(AVG) Reserved ns 1, 2, 3, 4, 6 CWL = 7 tCK(AVG) Reserved ns 4 CWL = 5 tCK(AVG) Reserved ns 4 CWL = 6 tCK(AVG) ns 1, 2, 3, 4, 6 CWL = 7 tCK(AVG) Reserved ns 1, 2, 3, 4 CWL = 5 tCK(AVG) Reserved ns 4 CWL = 6 tCK(AVG) ns 1, 2, 3, 6 CWL = 7 tCK(AVG) Reserved ns 1, 2, 3, 4 CWL = 5, 6 tCK(AVG) Reserved ns 4 CWL = 7 tCK(AVG) ns 1, 2, 3, 4 CWL = 5, 6 tCK(AVG) 2.5 3.3 1.875 < 2.5 Reserved 1.875 < 2.5 1.5 <1.875 ns 4 1, 2, 3 Reserved ns ns Supported CL Settings 6, 8, (7), 9, (10) nCK Supported CWL Settings 5, 6, 7 nCK CL = 10 CWL = 7 Rev. 0.1 / Nov. 2009 tCK(AVG) Reserved 1.5 <1.875 43 Speed Bin Table Notes Absolute Specification (TOPER; VDDQ = VDD = 1.5V +/- 0.075 V); Notes: 1, The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK (AVG), both need to be fulfilled: Requirements from CL setting as well as requirements from CWL setting. 2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequencies may not be guaranteed. An application should use the next smaller JEDEC standard tCK (AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculating CL [nCK] = tAA [ns] / tCK (AVG) [ns], rounding up to the next ‘Supported CL’. 3. tCK(AVG).MAX limits: Calculate tCK (AVG) = tAA.MAX / CLSELECTED and round the resulting tCK (AVG) down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or 1.25 ns). This result is tCK(AVG).MAX corresponding to CLSE LECTED. 4. ‘Reserved’ settings are not allowed. User must program a different value. 5. Any DDR3L-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization. 6. Any DDR3L-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization. 7. Any DDR3L-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization. 8. Hynix DDR3L SDRAM devices support down binning to CL=7 and CL=9, and tAA/tRCD/tRP satisfy minimum value of 13.125ns.SPD settings are also programmed to match. For example, DDR3L 1333H devices supporting down binning to DDR3L-1066F should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3L-1600K devices supporting down binning to DDR3L1333H or DDR3L 1600F should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin (Byte 18), and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin (Byte 21,23) also should be programmed accordingly. For example, 49.125ns (tRASmin + tRPmin = 36 ns + 13.125 ns) for DDR3L1333H and 48.125ns (tRASmin + tRPmin = 35 ns + 13.125 ns) for DDR3L-1600K. Rev. 0.1 / Nov. 2009 44 Environmental Parameters Symbol Parameter Rating TOPR Operating temperature See Note HOPR Operating humidity (relative) 10 to 90 TSTG Storage temperature HSTG Storage humidity (without condensation) PBAR Barometric Pressure (operating & storage) Units Notes 3 % 1 o C 1 5 to 95 % 1 105 to 69 K Pascal 1, 2 -50 to +100 Note: 1. Stress greater than those listed may cause permanent damage to the device. This is a stress rating only, and device functional operation at or above the conditions indicated is not implied. Expousure to absolute maximum rating conditions for extended periods may affect reliablility. 2. Up to 9850 ft. 3. The designer must meet the case temperature specifications for individual module components. Rev. 0.1 / Nov. 2009 45 Pin Capacitance (VDD=1.35V, VDDQ=1.35V) 1GB: HMT112R7BFR8A Pin CK0, CK0 CKE, ODT, CS Address, RAS, CAS, WE DQ, DM, DQS, DQS Symbol Min Max Unit CCK TBD TBD pF CCTRL TBD TBD pF CI TBD TBD pF CIO TBD TBD pF Symbol Min Max Unit CCK TBD TBD pF CCTRL TBD TBD pF CI TBD TBD pF CIO TBD TBD pF Symbol Min Max Unit CCK TBD TBD pF CCTRL TBD TBD pF CI TBD TBD pF CIO TBD TBD pF Symbol Min Max Unit CCK TBD TBD pF CCTRL TBD TBD pF CI TBD TBD pF CIO TBD TBD pF 2GB: HMT125R7BFR8A Pin CK0, CK0 CKE, ODT, CS Address, RAS, CAS, WE DQ, DM, DQS, DQS 2GB: HMT125R7BFR4A Pin CK0, CK0 CKE, ODT, CS Address, RAS, CAS, WE DQ, DM, DQS, DQS 4GB: HMT151R7BFR4A Pin CK0, CK0 CKE, ODT, CS Address, RAS, CAS, WE DQ, DM, DQS, DQS Rev. 0.1 / Nov. 2009 46 4GB: HMT151R7BFR8A Pin CK0, CK0 CKE, ODT, CS Address, RAS, CAS, WE DQ, DM, DQS, DQS Symbol Min Max Unit CCK TBD TBD pF CCTRL TBD TBD pF CI TBD TBD pF CIO TBD TBD pF Note: 1. Pins not under test are tied to GND. 2. These value are guaranteed by design and tested on a sample basis only. Rev. 0.1 / Nov. 2009 47 IDD and IDDQ Specification Parameters and Test Conditions IDD and IDDQ Measurement Conditions In this chapter, IDD and IDDQ measurement conditions such as test load and patterns are defined. Figure 1. shows the setup and test load for IDD and IDDQ measurements. • IDD currents (such as IDD0, IDD1, IDD2N, IDD2NT, IDD2P0, IDD2P1, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W, IDD5B, IDD6, IDD6ET, IDD6TC and IDD7) are measured as time-averaged currents with all VDD balls of the DDR3L SDRAM under test tied together. Any IDDQ current is not included in IDD currents. • IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all VDDQ balls of the DDR3L SDRAM under test tied together. Any IDD current is not included in IDDQ currents. Attention: IDDQ values cannot be directly used to calculate IO power of the DDR3L SDRAM. They can be used to support correlation of simulated IO power to actual IO power as outlined in Figure 2. In DRAM module application, IDDQ cannot be measured separately since VDD and VDDQ are using one merged-power layer in Module PCB. For IDD and IDDQ measurements, the following definitions apply: • ”0” and “LOW” is defined as VIN <= VILAC(max). • ”1” and “HIGH” is defined as VIN >= VIHAC(max). • “MID_LEVEL” is defined as inputs are VREF = VDD/2. • Timing used for IDD and IDDQ Measurement-Loop Patterns are provided in Table 1. • Basic IDD and IDDQ Measurement Conditions are described in Table 2. • Detailed IDD and IDDQ Measurement-Loop Patterns are described in Table 3 through Table 10. • IDD Measurements are done after properly initializing the DDR3L SDRAM. This includes but is not limited to setting RON = RZQ/7 (34 Ohm in MR1); Qoff = 0B (Output Buffer enabled in MR1); RTT_Nom = RZQ/6 (40 Ohm in MR1); RTT_Wr = RZQ/2 (120 Ohm in MR2); TDQS Feature disabled in MR1 • Attention: The IDD and IDDQ Measurement-Loop Patterns need to be executed at least one time before actual IDD or IDDQ measurement is started. • Define D = {CS, RAS, CAS, WE}:= {HIGH, LOW, LOW, LOW} Define D = {CS, RAS, CAS, WE}:= {HIGH, HIGH, HIGH, HIGH} Rev. 0.1 / Nov. 2009 48 IDDQ (optional) IDD VDD VDDQ RESET CK/CK DDR3L SDRAM CKE CS RAS, CAS, WE DQS, DQS DQ, DM, TDQS, TDQS A, BA ODT ZQ VSS RTT = 25 Ohm VDDQ/2 VSSQ Figure 1 - Measurement Setup and Test Load for IDD and IDDQ (optional) Measurements [Note: DIMM level Output test load condition may be different from above Application specific memory channel environment IDDQ Test Load Channel IO Power Simulation IDDQ Simulation IDDQ Simulation Correction Channel IO Power Number Figure 2 - Correlation from simulated Channel IO Power to actual Channel IO Power supported by IDDQ Measurement Rev. 0.1 / Nov. 2009 49 Table 1 -Timings used for IDD and IDDQ Measurement-Loop Patterns Symbol tCK DDR3L-1066 DDR3L-1333 7-7-7 9-9-9 1.875 1.5 Unit ns CL 7 9 nCK nRCD 7 9 nCK nRC 27 33 nCK nRAS 20 24 nCK nRP 7 9 nCK 1KB page size 20 20 nCK 2KB page size 27 30 nCK 1KB page size 4 4 nCK nFAW nRRD 6 5 nCK nRFC -512Mb 2KB page size 48 60 nCK nRFC-1 Gb 59 74 nCK nRFC- 2 Gb 86 107 nCK nRFC- 4 Gb 160 200 nCK nRFC- 8 Gb 187 234 nCK Table 2 -Basic IDD and IDDQ Measurement Conditions Symbol Description Operating One Bank Active-Precharge Current CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 1; BL: 8a); AL: 0; CS: High between ACT and IDD0 PRE; Command, Address, Bank Address Inputs: partially toggling according to Table 3; Data IO: MID-LEVEL; DM: stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 3); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 3. Operating One Bank Active-Precharge Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 1; BL: 8a); AL: 0; CS: High between ACT, IDD1 RD and PRE; Command, Address; Bank Address Inputs, Data IO: partially toggling according to Table 4; DM: stable at 0; Bank Activity: Cycling with on bank active at a time: 0,0,1,1,2,2,... (see Table 4); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 4. Rev. 0.1 / Nov. 2009 50 Symbol Description Precharge Standby Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank IDD2N Address Inputs: partially toggling according to Table 5; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 5. Precharge Standby ODT Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank IDD2NT Address Inputs: partially toggling according to Table 6; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: toggling according to Table 6; Pattern Details: see Table 6. IDDQ2NT Precharge Standby ODT IDDQ Current (optional) Same definition like for IDD2NT, however measuring IDDQ current instead of IDD current Precharge Power-Down Current Slow Exit CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank IDD2P0 Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Precharge Power Down Mode: Slow Exitc) Precharge Power-Down Current Fast Exit IDD2P1 CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Precharge Power Down Mode: Fast Exitc) Precharge Quiet Standby Current IDD2Q CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0 Active Standby Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank IDD3N Address Inputs: partially toggling according to Table; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 5. Rev. 0.1 / Nov. 2009 51 Symbol Description Active Power-Down Current IDD3P CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0 IDDQ4R Operating Burst Read IDDQ Current (optional) Same definition like for IDD4R, however measuring IDDQ current instead of IDD current Operating Burst Read Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: High between RD; Command, Address, IDD4R Bank Address Inputs: partially toggling according to Table 7; Data IO: seamless read data burst with different data between one burst and the next one according to Table 7; DM: stable at 0; Bank Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,...(see Table 7); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 7. Operating Burst Write Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: High between WR; Command, Address, IDD4W Bank Address Inputs: partially toggling according to Table 8; Data IO: seamless read data burst with different data between one burst and the next one according to Table 8; DM: stable at 0; Bank Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,...(see Table 8); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at HIGH; Pattern Details: see Table 8. Burst Refresh Current CKE: High; External clock: On; tCK, CL, nRFC: see Table 1; BL: 8a); AL: 0; CS: High between REF; Command, IDD5B Address, Bank Address Inputs: partially toggling according to Table 9; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: REF command every nREF (see Table 9); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 9. Self-Refresh Current: Normal Temperature Range TCASE: 0 - 85 oC; Auto Self-Refresh (ASR): Disabledd);Self-Refresh Temperature Range (SRT): Normale); CKE: IDD6 Low; External clock: Off; CK and CK: LOW; CL: see Table 1; BL: 8a); AL: 0; CS, Command, Address, Bank Address Inputs, Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: MID_LEVEL Rev. 0.1 / Nov. 2009 52 Symbol Description Self-Refresh Current: Extended Temperature Range TCASE: 0 - 95 oC; Auto Self-Refresh (ASR): Disabledd);Self-Refresh Temperature Range (SRT): Extendede); IDD6ET CKE: Low; External clock: Off; CK and CK: LOW; CL: see Table 1; BL: 8a); AL: 0; CS, Command, Address, Bank Address Inputs, Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: MID_LEVEL Auto Self-Refresh Current TCASE: 0 - 95 oC; Auto Self-Refresh (ASR): Enabledd);Self-Refresh Temperature Range (SRT): Normale); CKE: IDD6TC Low; External clock: Off; CK and CK: LOW; CL: see Table 1; BL: 8a); AL: 0; CS, Command, Address, Bank Address Inputs, Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: Auto Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: MID_LEVEL Operating Bank Interleave Read Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, NRRD, nFAW, CL: see Table 1; BL: 8a)f); AL: CL-1; CS: High between ACT and RDA; Command, Address, Bank Address Inputs: partially toggling according to Table IDD7 10; Data IO: read data burst with different data between one burst and the next one according to Table 10; DM: stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1,...7) with different addressing, wee Table 10; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 10. a) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B b) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B c) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12 = 1B for Fast Exit d) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature e) Self-Refresh Temperature Range (SRT): set MR2 A7 = 0B for normal or 1B for extended temperature range f) Read Burst Type: Nibble Sequential, set MR0 A[3] = 0B Rev. 0.1 / Nov. 2009 53 Command CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] 0 ACT 0 0 1 1 0 0 00 0 0 0 0 - 1,2 D, D 1 0 0 0 0 0 00 0 0 0 0 - D, D 1 1 1 1 0 0 00 0 0 0 0 - 0 0 0 - Cycle Number Datab) Sub-Loop CKE CK, CK Table 3 - IDD0 Measurement-Loop Patterna) 0 3,4 ... nRAS Static High toggling ... repeat pattern 1...4 until nRAS - 1, truncate if necessary PRE 0 0 1 0 0 0 00 0 repeat pattern 1...4 until nRC - 1, truncate if necessary 1*nRC+0 ACT 0 0 1 1 0 0 00 0 0 F 0 - 1*nRC+1, 2 D, D 1 0 0 0 0 0 00 0 0 F 0 - D, D 1 1 1 1 0 0 00 0 0 F 0 - 0 - 1*nRC+3, 4 ... 1*nRC+nRAS repeat pattern 1...4 until 1*nRC + nRAS - 1, truncate if necessary PRE 0 0 1 0 0 0 00 0 0 ... repeat pattern 1...4 until 2*nRC - 1, truncate if necessary 1 2*nRC repeat Sub-Loop 0, use BA[2:0] = 1 instead 2 4*nRC repeat Sub-Loop 0, use BA[2:0] = 2 instead 3 6*nRC repeat Sub-Loop 0, use BA[2:0] = 3 instead 4 8*nRC repeat Sub-Loop 0, use BA[2:0] = 4 instead 5 10*nRC repeat Sub-Loop 0, use BA[2:0] = 5 instead 6 12*nRC repeat Sub-Loop 0, use BA[2:0] = 6 instead 7 14*nRC repeat Sub-Loop 0, use BA[2:0] = 7 instead F a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL. b) DQ signals are MID-LEVEL. Rev. 0.1 / Nov. 2009 54 Command CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] 0 ACT 0 0 1 1 0 0 00 0 0 0 0 - 1,2 D, D 1 0 0 0 0 0 00 0 0 0 0 - D, D 1 1 1 1 0 0 00 0 0 0 0 - 0 0 00000000 0 0 - Cycle Number Datab) Sub-Loop CKE CK, CK Table 4 - IDD1 Measurement-Loop Patterna) 0 3,4 ... nRCD ... nRAS Static High toggling ... repeat pattern 1...4 until nRCD - 1, truncate if necessary RD 0 1 0 1 0 0 00 0 0 repeat pattern 1...4 until nRAS - 1, truncate if necessary PRE 0 0 1 0 0 0 00 0 0 repeat pattern 1...4 until nRC - 1, truncate if necessary 1*nRC+0 ACT 0 0 1 1 0 0 00 0 0 F 0 - 1*nRC+1,2 D, D 1 0 0 0 0 0 00 0 0 F 0 - D, D 1 1 1 1 0 0 00 0 0 F 0 - 1*nRC+3,4 ... 1*nRC+nRCD ... 1*nRC+nRAS repeat pattern nRC + 1,...4 until nRC + nRCE - 1, truncate if necessary RD 0 1 0 1 0 0 00 0 0 F 0 00110011 repeat pattern nRC + 1,...4 until nRC + nRAS - 1, truncate if necessary PRE 0 0 1 0 0 0 00 0 0 F ... repeat pattern nRC + 1,...4 until *2 nRC - 1, truncate if necessary 1 2*nRC repeat Sub-Loop 0, use BA[2:0] = 1 instead 2 4*nRC repeat Sub-Loop 0, use BA[2:0] = 2 instead 3 6*nRC repeat Sub-Loop 0, use BA[2:0] = 3 instead 4 8*nRC repeat Sub-Loop 0, use BA[2:0] = 4 instead 5 10*nRC repeat Sub-Loop 0, use BA[2:0] = 5 instead 6 12*nRC repeat Sub-Loop 0, use BA[2:0] = 6 instead 7 14*nRC repeat Sub-Loop 0, use BA[2:0] = 7 instead 0 - a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MIDLEVEL. b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID_LEVEL. Rev. 0.1 / Nov. 2009 55 Static High CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] 0 D 1 0 0 0 0 0 0 0 0 0 0 - 1 D 1 0 0 0 0 0 0 0 0 0 0 - 2 D 1 1 1 1 0 0 0 0 0 F 0 - 3 D 1 1 1 1 0 0 0 0 0 F 0 - Cycle Number Command 0 toggling Datab) Sub-Loop CKE CK, CK Table 5 - IDD2N and IDD3N Measurement-Loop Patterna) 1 4-7 repeat Sub-Loop 0, use BA[2:0] = 1 instead 2 8-11 repeat Sub-Loop 0, use BA[2:0] = 2 instead 3 12-15 repeat Sub-Loop 0, use BA[2:0] = 3 instead 4 16-19 repeat Sub-Loop 0, use BA[2:0] = 4 instead 5 20-23 repeat Sub-Loop 0, use BA[2:0] = 5 instead 6 24-17 repeat Sub-Loop 0, use BA[2:0] = 6 instead 7 28-31 repeat Sub-Loop 0, use BA[2:0] = 7 instead a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL. b) DQ signals are MID-LEVEL. Static High CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] 0 D 1 0 0 0 0 0 0 0 0 0 0 - 1 D 1 0 0 0 0 0 0 0 0 0 0 - 2 D 1 1 1 1 0 0 0 0 0 F 0 - 3 D 1 1 1 1 0 0 0 0 0 F 0 - Cycle Number Command 0 toggling Datab) Sub-Loop CKE CK, CK Table 6 - IDD2NT and IDDQ2NT Measurement-Loop Patterna) 1 4-7 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 1 2 8-11 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 2 3 12-15 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 3 4 16-19 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 4 5 20-23 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 5 6 24-17 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 6 7 28-31 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 7 a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL. b) DQ signals are MID-LEVEL. Rev. 0.1 / Nov. 2009 56 CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] 0 RD 0 1 0 1 0 0 00 0 0 0 0 00000000 1 D 1 0 0 0 0 0 00 0 0 0 0 - 2,3 D,D 1 1 1 1 0 0 00 0 0 0 0 - 4 RD 0 1 0 1 0 0 00 0 0 F 0 00110011 5 D 1 0 0 0 0 0 00 0 0 F 0 - D,D 1 1 1 1 0 0 00 0 0 F 0 - Cycle Number Command Static High 0 toggling Datab) Sub-Loop CKE CK, CK Table 7 - IDD4R and IDDQ24RMeasurement-Loop Patterna) 6,7 1 8-15 repeat Sub-Loop 0, but BA[2:0] = 1 2 16-23 repeat Sub-Loop 0, but BA[2:0] = 2 3 24-31 repeat Sub-Loop 0, but BA[2:0] = 3 4 32-39 repeat Sub-Loop 0, but BA[2:0] = 4 5 40-47 repeat Sub-Loop 0, but BA[2:0] = 5 6 48-55 repeat Sub-Loop 0, but BA[2:0] = 6 7 56-63 repeat Sub-Loop 0, but BA[2:0] = 7 a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL. b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL. 0, 0, 0, 0, 0, 0, 0, 1 1 1 1 1 1 = = = = = = = A[2:0] ODT 0 0 1 0 0 1 BA[2:0] BA[2:0] BA[2:0] BA[2:0] BA[2:0] BA[2:0] BA[2:0] A[6:3] 0 0 1 0 0 1 but but but but but but but WE CAS RAS CS 0 1 1 0 1 1 0 1 1 0 1 1 Sub-Loop Sub-Loop Sub-Loop Sub-Loop Sub-Loop Sub-Loop Sub-Loop A[9:7] WR D D,D WR D D,D repeat repeat repeat repeat repeat repeat repeat A[10] 1 2 3 4 5 6 7 1 2,3 4 5 6,7 8-15 16-23 24-31 32-39 40-47 48-55 56-63 A[15:11] 0 BA[2:0] 0 Command Cycle Number Sub-Loop CKE Static High toggling CK, CK Table 8 - IDD4W Measurement-Loop Patterna) Datab) 0 0 0 0 0 0 00 00 00 00 00 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F F F 0 0 0 0 0 0 00000000 00110011 - 1 2 3 4 5 6 7 a) DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL. b) Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL. Rev. 0.1 / Nov. 2009 57 Command CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] 0 0 REF 0 0 0 1 0 0 0 0 0 0 0 - 1 1.2 D, D 1 0 0 0 0 0 00 0 0 0 0 - D, D 1 1 1 1 0 0 00 0 0 F 0 - Cycle Number Datab) Sub-Loop CKE CK, CK Table 9 - IDD5B Measurement-Loop Patterna) Static High toggling 3,4 2 5...8 repeat cycles 1...4, but BA[2:0] = 1 9...12 repeat cycles 1...4, but BA[2:0] = 2 13...16 repeat cycles 1...4, but BA[2:0] = 3 17...20 repeat cycles 1...4, but BA[2:0] = 4 21...24 repeat cycles 1...4, but BA[2:0] = 5 25...28 repeat cycles 1...4, but BA[2:0] = 6 29...32 repeat cycles 1...4, but BA[2:0] = 7 33...nRFC-1 repeat Sub-Loop 1, until nRFC - 1. Truncate, if necessary. a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL. b) DQ signals are MID-LEVEL. Rev. 0.1 / Nov. 2009 58 Table 10 - IDD7 Measurement-Loop Patterna) 2 3 4 Static High 5 6 7 8 9 10 4*nRRD nFAW nFAW+nRRD nFAW+2*nRRD nFAW+3*nRRD nFAW+4*nRRD 2*nFAW+0 2*nFAW+1 2&nFAW+2 11 2*nFAW+nRRD 2*nFAW+nRRD+1 2&nFAW+nRRD+2 12 13 2*nFAW+2*nRRD 2*nFAW+3*nRRD 14 2*nFAW+4*nRRD 15 16 17 18 3*nFAW 3*nFAW+nRRD 3*nFAW+2*nRRD 3*nFAW+3*nRRD 19 3*nFAW+4*nRRD 00110011 - 0 - 0 - 0 0 0 00110011 - 0 0 0 00000000 - 0 - 0 - A[10] 0 0 0 ODT 00000000 - WE 0 0 0 CAS ACT 0 0 1 1 0 0 00 0 0 0 RDA 0 1 0 1 0 0 00 1 0 0 D 1 0 0 0 0 0 00 0 0 0 repeat above D Command until nRRD - 1 ACT 0 0 1 1 0 1 00 0 0 F RDA 0 1 0 1 0 1 00 1 0 F D 1 0 0 0 0 1 00 0 0 F repeat above D Command until 2* nRRD - 1 repeat Sub-Loop 0, but BA[2:0] = 2 repeat Sub-Loop 1, but BA[2:0] = 3 D 1 0 0 0 0 3 00 0 0 F Assert and repeat above D Command until nFAW - 1, if necessary repeat Sub-Loop 0, but BA[2:0] = 4 repeat Sub-Loop 1, but BA[2:0] = 5 repeat Sub-Loop 0, but BA[2:0] = 6 repeat Sub-Loop 1, but BA[2:0] = 7 D 1 0 0 0 0 7 00 0 0 F Assert and repeat above D Command until 2* nFAW - 1, if necessary ACT 0 0 1 1 0 0 00 0 0 F RDA 0 1 0 1 0 0 00 1 0 F D 1 0 0 0 0 0 00 0 0 F Repeat above D Command until 2* nFAW + nRRD - 1 ACT 0 0 1 1 0 1 00 0 0 0 RDA 0 1 0 1 0 1 00 1 0 0 D 1 0 0 0 0 1 00 0 0 0 Repeat above D Command until 2* nFAW + 2* nRRD - 1 repeat Sub-Loop 10, but BA[2:0] = 2 repeat Sub-Loop 11, but BA[2:0] = 3 D 1 0 0 0 0 3 00 0 0 0 Assert and repeat above D Command until 3* nFAW - 1, if necessary repeat Sub-Loop 10, but BA[2:0] = 4 repeat Sub-Loop 11, but BA[2:0] = 5 repeat Sub-Loop 10, but BA[2:0] = 6 repeat Sub-Loop 11, but BA[2:0] = 7 D 1 0 0 0 0 7 00 0 0 0 Assert and repeat above D Command until 4* nFAW - 1, if necessary RAS Datab) CS A[9:7] A[15:11] BA[2:0] Command A[2:0] 1 0 1 2 ... nRRD nRRD+1 nRRD+2 ... 2*nRRD 3*nRRD A[6:3] 0 toggling Cycle Number Sub-Loop CKE CK, CK ATTENTION! Sub-Loops 10-19 have inverse A[6:3] Pattern and Data Pattern than Sub-Loops 0-9 a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL. b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL. Rev. 0.1 / Nov. 2009 59 IDD Specifications (Tcase: 0 to 95oC) * Module IDD values in the datasheet are only a calculation based on the component IDD spec. The actual measurements may vary according to DQ loading cap. 1GB, 128M x 72 R-DIMM: HMT112R7BFR8A Symbol IDD0 IDD1 IDD2N IDD2NT IDD2P0 IDD2P1 IDD2Q IDD3N IDD3P IDD4R IDD4W IDD5B IDD6 IDD6ET IDD6TC DDR3L 1066 1124 1304 1034 1079 318 408 1034 1079 408 1529 1529 1934 318 336 336 DDR3L 1333 1169 1349 1079 1124 318 408 1079 1124 453 1619 1619 1979 318 336 336 Unit mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA IDD7 1889 2159 mA DDR3L 1333 1484 1664 1394 1484 408 588 1394 1484 678 1934 1934 2294 408 444 444 2474 Unit mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA note 2GB, 256M x 72 R-DIMM: HMT125R7BFR8A Symbol IDD0 IDD1 IDD2N IDD2NT IDD2P0 IDD2P1 IDD2Q IDD3N IDD3P IDD4R IDD4W IDD5B IDD6 IDD6ET IDD6TC IDD7 Rev. 0.1 / Nov. 2009 DDR3L 1066 1394 1574 1304 1394 408 588 1304 1394 588 1799 1799 2204 408 444 444 2159 note 60 2GB, 256M x 72 R-DIMM: HMT125R7BFR4A Symbol IDD0 IDD1 IDD2N IDD2NT IDD2P0 IDD2P1 DDR3L 1066 1484 1844 1304 1394 408 588 DDR3L 1333 1574 1934 1394 1484 408 588 Unit mA mA mA mA mA mA IDD2Q IDD3N IDD3P IDD4R IDD4W IDD5B IDD6 IDDET IDD6TC IDD7 1304 1394 588 2294 2294 3104 408 444 444 3014 1394 1484 678 2474 2474 3194 408 444 444 3554 mA mA mA mA mA mA mA mA mA mA DDR3L 1333 2204 2564 2024 2204 588 948 2024 2204 1128 3104 3104 3824 588 660 660 4184 Unit mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA note 4GB, 512M x 72 R-DIMM: HMT151R7BFR4A Symbol IDD0 IDD1 IDD2N IDD2NT IDD2P0 IDD2P1 IDD2Q IDD3N IDD3P IDD4R IDD4W IDD5B IDD6 IDDET IDD6TC IDD7 Rev. 0.1 / Nov. 2009 DDR3L 1066 2024 2384 1844 2024 588 948 1844 2024 948 2834 2834 3644 588 660 660 3554 note 61 4GB, 512M x 72 R-DIMM: HMT151R7BFR8A Symbol IDD0 IDD1 IDD2N IDD2NT IDD2P0 IDD2P1 DDR3L 1066 1934 2114 1844 2024 588 948 DDR3L 1333 2114 2294 2024 2204 588 948 Unit mA mA mA mA mA mA IDD2Q IDD3N IDD3P IDD4R IDD4W IDD5B IDD6 IDDET IDD6TC IDD7 1844 2024 948 2339 2339 2744 588 660 660 2699 2024 2204 1128 2564 2564 2924 588 660 660 3104 mA mA mA mA mA mA mA mA mA mA Rev. 0.1 / Nov. 2009 note 62 Module Dimensions 128Mx72 - HMT112R7BFR8A Front 133.35 128.95 Detail A Detail B 1 Detail C 120 1 2X3.00 ± 0.10 47.00 5.175 30.00 Registering Clock Driver 4X3.00 ± 0.10 9.50 17.30 SPD/TS 2.10 ± 0.15 71.00 5.0 Back 121 240 1 Detail of Contacts B Detail of Contacts A 3.43mm max 0.80 ± 0.05 1.20 ± 0.15 2.50 ± 0.20 0.3 ± 0.15 3.80 2.50 ± 0.20 2.50 0.20 3 ± 0.1 Side Detail of Contacts C 0.3~0.1 1.00 1.50 ± 0.10 5.00 1.27 ± 010mm max Note: 1. ± 0.13 tolerance on all dimensions unless otherwise stated. Units: millimeters Rev. 0.1 / Nov. 2009 63 256Mx72 - HMT125R7BFR8A Front 133.35 128.95 Detail A Detail C Detail B 1 120 1 2X3.00 ± 0.10 47.00 5.175 30.00 Registering Clock Driver 4X3.00 ± 0.10 9.50 17.30 SPD/TS 2.10 ± 0.15 71.00 5.0 Back 121 240 1 Side 3.43mm max 0.80 ± 0.05 2.50 ± 0.20 3.80 2.50 2.50 ± 0.20 0.20 3 ± 0.1 Detail of Contacts C Detail of Contacts B 1.20 ± 0.15 0.3 ± 0.15 Detail of Contacts A 0.3+0.1 1.00 1.50 ± 0.10 5.00 1.27 ± 010mm max Note: 1. ± 0.13 tolerance on all dimensions unless otherwise stated. Units: millimeters Rev. 0.1 / Nov. 2009 64 256Mx72 - HMT125R7BFR4A Front 133.35 128.95 Detail A Detail C Detail B 1 120 1 2X3.00 ± 0.10 47.00 5.175 30.00 Registering Clock Driver 4X3.00 ± 0.10 9.50 17.30 SPD/TS 2.10 ± 0.15 71.00 5.0 Back 121 240 1 Side 3.43mm max 0.80 ± 0.05 2.50 ± 0.20 3.80 2.50 2.50 ± 0.20 0.20 3 ± 0.1 Detail of Contacts C Detail of Contacts B 1.20 ± 0.15 0.3 ± 0.15 Detail of Contacts A 0.3~0.1 1.00 1.50 ± 0.10 5.00 1.27 ± 010mm max Note: 1. ± 0.13 tolerance on all dimensions unless otherwise stated. Units: millimeters Rev. 0.1 / Nov. 2009 65 512Mx72 - HMT151R7BFR4A Front 133.35 Detail B 128.95 Detail A 1 2X3.00 ± 0.10 120 1 47.00 Detail C 5.175 9.50 17.30 Registering Clock Driver 4X3.00 ± 0.10 30.00 SPD/TS 2.10 ± 0.15 71.00 5.0 Detail D Back 121 240 1 Side Detail of Contacts D Detail of Contacts C 0.80 ± 0.05 2.50 14.90 0.20 2.50 ± 0.20 13.60 3 ± 0.1 3.80 0.4 2.50 ± 0.20 Detail of Contacts B 1.20 ± 0.15 0.3 ± 0.15 Detail of Contacts A 3.46mm max 0.3~0.1 1.00 1.50 ± 0.10 5.00 1.27 ± 010mm max Note: 1. ± 0.13 tolerance on all dimensions unless otherwise stated. Units: millimeters Rev. 0.1 / Nov. 2009 66 512Mx72 - HMT151R7BFR4A - Heat Spreader Front 133.75 133.35 127 42.7 2.786 8 36.7 22.00 30.00 6.3 2.15 7.74 14.214 Registering Clock Driver 3.69 5.39 10 20.9 6.35 120 1 7.36 33.4 33.4 46.46 80.54 119.64 57.2 Back 15.36 Registering Clock Driver 121 22.00 2.7 240 Side 7.19mm max 1.27 ± 010mm max Note: 1. ± 0.13 tolerance on all dimensions unless otherwise stated. 2.In order to uninstall FDHS, please contact sales administrator. Rev. 0.1 / Nov. 2009 Units: millimeters 67 512Mx72 - HMT151R7BFR8A Front Detail B 14.90 2.10 ± 0.15 13.60 SPD/TS 3 ± 0.1 Min 1.45 9.50 17.30 23.30 30.00 Registering Clock Driver 3 ± 0.1 Detail A 1 2X3.0 ± 0.10 120 1 47.00 5.175 5.0 Detail C 71.00 Detail D 128.95 133.35 Back 121 240 1 Side 3.46mm max Detail of Contacts D Detail of Contacts C 0.80 ± 0.05 2.50 14.90 0.20 2.50 ± 0.20 13.60 3 ± 0.1 3.80 0.4 2.50 ± 0.20 Detail of Contacts B 1.20 ± 0.15 0.3 ± 0.15 Detail of Contacts A 0.3~0.1 1.00 1.50 ± 0.10 5.00 1.27 ± 010mm max Note: 1. ± 0.13 tolerance on all dimensions unless otherwise stated. Units: millimeters Rev. 0.1 / Nov. 2009 68 512Mx72 - HMT151R7BFR8A - Heat Spreader Front 133.75 133.35 127 42.7 2.786 8 36.7 22.00 30.00 6.3 2.15 7.74 14.214 Registering Clock Driver 3.69 5.39 10 20.9 6.35 120 1 7.36 33.4 33.4 46.46 80.54 119.64 57.2 Back 15.36 Registering Clock Driver 121 22.00 2.7 240 Side 7.19mm max Note: 1. ± 0.13 tolerance on all dimensions unless otherwise stated. 2.In order to uninstall FDHS, please contact sales administrator. Rev. 0.1 / Nov. 2009 1.27 ± 010mm max Units: millimeters 69