IC42S16400 Document Title 1M x 16Bit x 4 Banks (64-MBIT) SDRAM Revision History Revision No History Draft Date 0A 0B 0C Initial Draft Revise DC OPERATING CONDITIONS 1. add -6ns speed grade 2. obsolete 8Mx8 configuration 3. obsolete Low power version 4. obsolete -8ns speed grade Add 60 ball(64M SDRAM) VF-BGA package Add Pb-free package Demcember 20,2001 April 15,2002 Novembver 22,2002 0D 0E Remark September 05,2003 December 02,2003 The attached datasheets are provided by ICSI. Integrated Circuit Solution Inc reserve the right to change the specifications and products. ICSI will answer to your questions about device. If you have any questions, please contact the ICSI offices. Integrated Circuit Solution Inc. DR034-0E 12/02/2003 1 IC42S16400 1M x 16 Bits x 4 Banks (64-MBIT) SYNCHRONOUS DYNAMIC RAM FEATURES DESCRIPTION • Single 3.3V (± 0.3V) power supply • High speed clock cycle time -6: 166MHz, -7: 133MHz<3-3-3> • Fully synchronous operation referenced to clock rising edge • Possible to assert random column access in every cycle • Quad internal banks contorlled by A12 & A13 (Bank Select) • Byte control by LDQM and UDQM for IC42S16400 • Programmable Wrap sequence (Sequential / Interleave) • Programmable burst length (1, 2, 4, 8 and full page) • Programmable CAS latency (2 and 3) • Automatic precharge and controlled precharge • CBR (Auto) refresh and self refresh • LVTTL compatible inputs and outputs • 4,096 refresh cycles / 64ms • Burst termination by Burst stop and Precharge command • Package 400mil 54-pin TSOP-2 and 60ball(64M) VF-BGA • Pb(lead)-free package is available The IC42S16400 are high-speed 67,108,864-bit synchronous dynamic random-access memories, organized as 1,048,576 x 16 x 4 (word x bit x bank), respectively. The synchronous DRAMs achieved high-speed data transfer using the pipeline architecture and clock frequency up to 166MHz for -6. All input and outputs are synchronized with the positive edge of the clock.The synchronous DRAMs are compatible with Low Voltage TTL (LVTTL).These products are packaged in 54-pin TSOP-2 and 60ball(64M) VF-BGA. PIN CONFIGURATIONS 54-Pin TSOP-2 VDD 1 54 VSS DQ0 2 53 DQ15 VDDQ 3 52 VSSQ DQ1 4 51 DQ14 DQ2 5 50 DQ13 VSSQ 6 49 VDDQ DQ3 7 48 DQ12 DQ4 8 47 DQ11 VDDQ 9 46 VSSQ DQ5 10 45 DQ10 DQ6 11 44 DQ9 VSSQ 12 43 VDDQ DQ7 13 42 DQ8 VDD 14 41 VSS LDQM 15 40 NC WE 16 39 UDQM CAS 17 38 CLK RAS 18 37 CKE CS 19 36 NC BA0 20 35 A11 BA1 21 34 A9 A10 22 33 A8 A0 23 32 A7 A1 24 31 A6 A2 25 30 A5 A3 26 29 A4 VDD 27 28 VSS ICSI reserves the right to make changes to its products at any time without notice in order to improve design and supply the best possible product. We assume no responsibility for any errors which may appear in this publication. © Copyright 2000, Integrated Circuit Solution Inc. 2 Integrated Circuit Solution Inc. DR034-0E 12/02/2003 IC42S16400 60-BALL VF-BGA ( 64M SDRAM ) 7 VDD A1 A10 BA0 CS CAS WE NC DQ7 DQ6 DQ5 DQ3 DQ2 DQ1 VDD 6 A3 A2 A0 BA1 NC RAS LDQM VDD NC VSSQ VDDQ DQ4 VSSQ VDDQ DQ0 A4 A5 A7 A9 NC CLK UDQM NC NC VDDQ VSSQ DQ11 VDDQ VSSQ DQ15 VSS A6 A8 A11 CKE NC NC NC DQ8 DQ9 DQ10 DQ12 DQ13 DQ14 VSS R P N M L K J H G F B A 5 4 3 2 1 E D C PIN DESCRIPTIONS A0 - A11 Address Row Address : RA0 - RA11, Column Address : CA0 - CA7 Auto-precharge flag : A10 BA0,BA1 Bank Address Selects bank to be activated during RAS activity Selects bank to be read/written during CAS activity DQ0 - DQ15 Data Input/Output Multiplexed data input / output pin CLK Clock The system clock input.All other inputs are registered to the SDRAM on the rising edge of CLK CKE Clock Enable Controls internal clock signal and when deactivated,the SDRAM will be one of the states among power down,suspend or self refresh CS Chip Select Enables or disables all inputs except CLK, CKE and DQM RAS CAS WE Row Address Strobe Column Address Strobe Write Enable RAS,CAS and WE define the operation Refer function truth table for details LDQM,UDQM Data Input/Output Mask Controls output buffers in read mode and masks input data in write mode VDD/VSS Power Supply/Ground Power supply for internal circuits and input buffers VDDQ/VSSQ Data Output Power/Ground Power supply for output buffers NC No Connection No Connection Integrated Circuit Solution Inc. DR034-0E 12/02/2003 3 IC42S16400 FUNCTIONAL BLOCK DIAGRAM Clock Generator Address Mode Register Row Address Buffer & Refresh Counter Bank D Bank C Bank B Row Decoder CLK CKE Bank A 4 DQM Data Control Circuit Input & Output Buffer Column Address Buffer & Burst Counter Column Decoder & Latch Circuit Latch Circuit CAS WE Control Logic RAS Command Decoder Sense Amplifier CS DQ Integrated Circuit Solution Inc. DR034-0E 12/02/2003 IC42S16400 ABSOLUTE MAXIMUM RATINGS(1) Symbol Parameters VDD VDDQ Supply Voltage (with respect to VSS) –0.5 to +4.6 Supply Voltage for Output (with respect to VSSQ) –0.5 to +4.6 Input Voltage (with respect to VSS) –0.5 to VDD+0.5 Output Voltage (with respect to VSSQ) –1.0 to VDDQ+0.5 Short circuit output current 50 Power Dissipation (TA = 25 °C) 1 VI VO IO PD TOPT TSTG Rating Operating Temperature Storage Temperature Unit 0 to +70 –65 to +150 V V V V mA W °C °C Notes: 1. Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. DC RECOMMENDED OPERATING CONDITIONS (At TA = 0 to +70°C unless otherwise noted) Symbol VDD VDDQ VIH VIL Parameter Min. Typ. Max. Unit Supply Voltage Supply Voltage for DQ High Level Input Voltage (all Inputs) Low Level Input Voltage (all Inputs) 3.0 3.0 2.0 -0.3 3.3 3.3 — — 3.6 3.6 VDD + 0.3 +0.8 V V V V CAPACITANCE CHARACTERISTICS (At TA = 0 ~ 70°C, VDD = VDDQ = 3.3 ± 0.3V, VSS = VSSQ = 0V , unless otherwise noted) Symbol Parameter CIN CCLK CI/O Input Capacitance, address & control pin Input Capacitance, CLK pin Data Input/Output Capacitance Integrated Circuit Solution Inc. DR034-0E 12/02/2003 Min. Max. Unit 2.5 2.5 4.0 3.8 3.5 6.5 pF pF pF 5 IC42S16400 DC ELECTRICAL CHARACTERISTICS (At TA = 0 ~ 70°C, VDD = VDDQ = 3.3 ± 0.3V, VSS = VSSQ = 0V , unless otherwise noted) Symbol Parameter Test Condition ICC1(1) Operating Current ICC2P Precharge Standby Current (In Power-Down Mode) One Bank active, Burst Length=1 tRC = tRC (min.) tCLK = tCLK (min.) CKE < VIL (MAX) ICC2PS ICC2N(2) Precharge Standby Current (In Non Power-Down Mode) ICC2NS ICC3P Active Standby Current (In Power-Down Mode) ICC3PS ICC3N(2) Active Standby Current (In Non Power-Down Mode) ICC3NS Speed Min. Max. Unit -6(42S16400) -7(42S16400) — — 95 85 mA mA -6 -7 CKE < VIL (MAX) CLK < VIL (MAX) -6 -7 CS > VCC -0.2V tCK = 15 ns -6 CKE > VIH (MIN) -7 CS > VCC -0.2V CKE < VIL (MAX) -6 CKE > VIH (MIN) All input signals are stable. -7 CKE < VIL (MAX) tCK = 10 ns -6 -7 CKE < VIL (MAX) CLK < VIL (MAX) -6 -7 CS > VCC -0.2V tCK = 15 ns -6 CKE > VIH (MIN) -7 CS > VCC -0.2V CKE < VIL (MAX) -6 CKE > VIH (MIN) All input signals are stable. -7 All Banks active CAS latency = 3 -6(42S16400) Burst Length=1 -7(42S16400) tCK = tCK (MIN) tRC = tRC (MIN) -6 tCLK = tCLK (MIN) -7 CKE < 0.2V -6 -7 — — — — — — — — — — — — — — — — — — 2 2 1 1 20 20 15 15 7 7 5 5 30 30 25 25 130 100 mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA — — — — 150 130 1 1 mA mA mA mA –5 5 µA –5 5 µA 2.4 — — 0.4 V V CAS latency = 3 tCK = 15 ns ICC4 Operating Current (In Burst Mode) ICC5 Auto-Refresh Current ICC6(3, 4) Self-Refresh Current IIL Input Leakage Current 0V < VIN < VDD (MAX) (Inputs) Pins not under test = 0V Output Leakage Current Output is disabled DQ# in H - Z., 0V < VOUT < VDD (MAX) IOUT = –2 mA IOUT = +2 mA IOL (I/O pins) VOH VOL High Level Output Voltage Low Level Output Voltage Notes: 1. ICC(max) is specified at the output open condition. 2. Input signals are changed one time during 30ns. 6 Integrated Circuit Solution Inc. DR034-0E 12/02/2003 IC42S16400 AC TEST CONDITIONS (At TA = 0 ~ 70°C, VDD = VDDQ = 3.3 ± 0.3V, VSS = VSSQ = 0V , unless otherwise noted) Parameter Rating Unit AC input Levels (VIH /VIL ) Input timing reference level /Output timing reference level Input rise and fall time 2.0 / 0.8 1.4 1 V V ns 50 pF Output load condition Output Load Conditions VDDQ VDDQ VOUT Z = 50 Device Under Test Integrated Circuit Solution Inc. DR034-0E 12/02/2003 Ω 50PF 7 IC42S16400 AC ELECTRICAL CHARACTERISTICS (At TA = 0 ~ 70°C, VDD = VDDQ = 3.3 ± 0.3V, VSS = VSSQ = 0V , unless otherwise noted) -6 Symbol Parameter tCK3 tCK2 tAC3 tAC2 tCH tCL tCKE tCKH tAS tAH tCMS tCMH tDS tDH tOH3 tOH2 tLZ tHZ tRC tRAS tRCD tRP tRRD tDPL tT tRSC tPDE tSRX tREF CLK Cycle Time CLK to valid output delay(1) CLK high pulse width CLK low pulse width CKE setup time CKE hold time Address setup time Address hold time Command setup time Command hold time Data input setup time Data input hold time Output data hold time(1) CLK to output in low - Z CLK to output in H - Z ROW cycle time ROW active time RAS to CAS delay Row precharge time Row active to active delay Data in to precharge Transition time Mode reg. set cycle Power down exit setup time Self refresh exit time Refresh Time CAS Latency = 3 CAS Latency = 2 CAS Latency = 3 CAS Latency = 2 CAS Latency = 3 CAS Latency = 2 -7 Min. Max. Min. Max. Units 6 7.5 — — 2.5 2.5 1.5 0.8 1.5 0.8 1.5 0.8 1.5 0.8 2.5 2.5 0 2.5 60 42 18 15 12 12 1 10 7.5 7.5 — — — 5 6 — — — — — — — — — — — — — 5 — 100,000 — — — — 10 — — — 64 7.5 10 — — 2.5 2.5 1.5 0.8 1.5 0.8 1.5 0.8 1.5 0.8 2.7 3 0 2.7 67.5 45 20 20 15 15 1 10 7.5 7.5 — — — 5.4 6 — — — — — — — — — — — — — 5.4 — 100,000 — — — — 10 — — — 64 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ms Notes: 1. if clock rising time is longer than 1ns, (tr/2-0.5ns) should be added to the parameter. 8 Integrated Circuit Solution Inc. DR034-0E 12/02/2003 IC42S16400 Basic Features and Function Description Simplified State Diagram Self Refresh LF SE Mode Register Set try en LF SE MRS it ex AUTO Refresh REF IDLE E CK ACT CK E Power Down CKE ROW ACTIVE y Au Write to p rec with har ge re co ve r e rit W CKE WRITE Read (write recovery) CKE e re READ SUSPEND Read with Auto Precharge ) cov ery) CKE CKE READA SUSPEND n) (P r ech arg e READ A PR E tio ina Precharge CKE CKE ith e te w arg Wri Prech uto (writA m ter POWER ON READ ter min atio n WRITE A CKE R Auto ead w Pre ith cha rge rge cha P re E( PR CKE Read Write Write with Auto Precharge WRITE A SUSPEND PRE WRITE SUSPEND ad Re Write (Write recovery) h wit rge ad cha Re Pre to Au W rit e T BS BS T CKE Active Power Down Precharge Automatic sequence Manual input Note: After the AUTO refresh operation, precharge operation is performed automatically and enter the IDLE state Integrated Circuit Solution Inc. DR034-0E 12/02/2003 9 IC42S16400 COMMAND TRUTH TABLE CKE n-1 n Symbol Command DESL NOP MRS ACT READ READA WRIT WRITA PRE PALL BST REF SELF Device deselect No operation Mode register set Bank activate Read Read with auto precharge Write Write with auto precharge Precharge select bank Precharge all banks Burst stop CBR (Auto) refresh Self refresh Notes: H : High level X : High or Low level (Don’t care) H H H H H H H H H H H H H X X X X X X X X X X X H L CS RAS CAS WE BA H L L L L L L L L L L L L X H L L H H H H L L H L L X H L H L L L L H H H L L X H L H H H L L L L L H H X X L V V V V V V X X X X A11 A10 A9-A0 X X L V L H L H L H X X X X X V V V V V V X X X X X L : Low level V : Valid Data input DQM TRUTH TABLE CKE Symbol Command ENB MASK Data Write / Output Enable Data Mask / Output Disable n-1 n DQM H H X X L H CKE TRUTH TABLE 10 Symbol Command Current State — — — REF SELF — Clock suspend mode entry Clock suspend Clock suspend mode exit CBR refresh command Self refresh entry Self refresh exit Activating Any Clock suspend Idle Idle Self refresh — — Power down entry Power down exit Idle Power down CKE n-1 n H L L H H L L H L L L H H L H H L H CS RAS CAS WE Addreess X X X L L L H X X X X X L L H X X X X X X L L H X X X X X X H H H X X X X X X X X X X X X Integrated Circuit Solution Inc. DR034-0E 12/02/2003 IC42S16400 OPERATION COMMAND TABLE(1) Current State Command Operation CS RAS CAS WE Idle NOP or Power-Down(2) NOP or Power-Down(2) Illegal(3) Illegal(3) Row Active NOP Refresh or Self-Refresh(4) Mode Register Set NOP NOP H L L L L L L L H L L L L L L L H L L L L L L L L H L L L L L L L L H L L L L L L L L X H H H L L L L X H H H L L L L X H H H H L L L L X H H H H L L L L X H H H H L L L L X H L L H H L L X H L L H H L L X H H L L H H L L X H H L L H H L L X H H L L H H L L X X H L H L H L X H H L H L H L X H L H L H L H L X H L H L H L H L X H L H L H L H L Row Active Read Write Read With AutoPrecharge DESL NOP or BST READ / READA WRIT/WRITA ACT PRE/PALL REF/SELF MRS DESL NOP or BST READ/READA WRIT/WRITA ACT PRE/PALL REF/SELF MRS DESL NOP BST READ/READA WRIT/WRITA ACT PRE/PALL REF/SELF MRS DESL NOP BST READ/READA WRIT/WRITA ACT PRE/PALL REF/SELF MRS DESL NOP BST READ/READA WRIT/WRITA ACT PRE/PALL REF/SELF MRS Integrated Circuit Solution Inc. DR034-0E 12/02/2003 Begin read : Determine AP(5) Begin write : Determine AP(5) Illegal(3) Precharge(6) Illegal Illegal Continue burst to end -> Row active Continue burst to end -> Row active Burst stop -> Row active Term burst, new read : Determine AP(7) Term burst, start write : Determine AP(7, 8) Illegal(3) Term burst, precharging Illegal Illegal Continue burst to end -> write recovering Continue burst to end -> write recovering Burst stop -> Row active Term burst, start read : Determine AP(7, 8) Term burst, new write : Determine AP(7) Illegal(3) Term burst, precharging(9) Illegal Illegal Continue burst to end -> Precharging Continue burst to end -> Precharging Illegal Illegal(11) Illegal(11) Illegal(3) Illegal(11) Illegal Illegal Address X X BA, CA, A10 BA, CA, A10 BR, RA BA, A10 X Op-Code X X BA, CA, A10 BA, CA, A10 BR, RA BA, A10 X Op-Code X X X BA, CA, A10 BA, CA, A10 BR, RA BA, A10 X Op-Code X X X BA, CA, A10 BA, CA, A10 BR, RA BA, A10 X Op-Code X X X BA, CA, A10 BA, CA, A10 BR, RA BA, A10 X Op-Code 11 IC42S16400 OPERATION COMMAND TABLE(continue) Current State Command Write with auto precharge Precharging Row activating Write recovering 12 DESL NOP BST READ / READA WRIT/WRITA ACT PRE/PALL REF/SELF MRS DESL NOP BST READ/READA WRIT/WRITA ACT PRE/PALL REF/SELF MRS DESL NOP BST READ/READA WRIT/WRITA ACT PRE/PALL REF/SELF MRS DESL NOP BST READ/READA WRIT/WRITA ACT PRE/PALL REF/SELF MRS Operation CS Continue burst to end -> write recovering with auto precharge H Continue burst to end -> write recovering with auto precharge L Illegal Illegal(11) Illegal(11) Illegal(3, 11) Illegal(3, 11) Illegal Illegal Nop -> Enter idle after tRP Nop -> Enter idle after tRP Nop -> Enter idle after tRP Illegal(3) Illegal(3) Illegal(3) Nop -> Enter idle after tRP Illegal Illegal Nop - > Enter row active after tRCD Nop - > Enter row active after tRCD Nop - > Enter row active after tRCD Illegal(3) Illegal(3) Illegal(3, 9) Illegal(3) Illegal Illegal Nop -> Enter row active after tDPL Nop -> Enter row active after tDPL Nop -> Enter row active after tDPL Start read, Determine AP(8) New write, Determine AP Illegal(3) Illegal(3) Illegal Illegal L L L L L L L H L L L L L L L L H L L L L L L L L H L L L L L L L L RAS CAS WE X H H H H L L L L X H H H H L L L L X H H H H L L L L X H H H H L L L L X H H L L H H L L X H H L L H H L L X H H L L H H L L X H H L L H H L L X H L H L H L H L X H L H L H L H L X H L H L H L H L X H L H L H L H L Address X X X BA, CA, A10 BA, CA, A10 BR, RA BA, A10 X Op-Code X X X BA, CA, A10 BA, CA, A10 BR, RA BA, A10 X Op-Code X X X BA, CA, A10 BA, CA, A10 BR, RA BA, A10 X Op-Code X X X BA, CA, A10 BA, CA, A10 BR, RA BA, A10 X Op-Code Integrated Circuit Solution Inc. DR034-0E 12/02/2003 IC42S16400 OPERATION COMMAND TABLE(continue) Current State Command Write recovering with auto precharge Auto Refreshing Mode register setting DESL NOP BST READ/READA WRIT/WRITA ACT PRE/PALL REF/SELF MRS DESL NOP/BST READ/WRIT ACT/PRE/PALL REF/SELF/MRS DESL NOP BST READ/WRIT ACT/PRE/PALL/ REF/SELF/MRS Operation Nop -> Enter precharge after tDPL Nop -> Enter precharge after tDPL Nop -> Enter precharge after tDPL Illegal(3 ,8, 11) Illegal(3,11) Illegal(3, 11) Illegal(3, 11) Illegal Illegal Nop Enter idle after tRC Nop Enter idle after tRC Illegal Illegal Illegal Nop -> Enter idle after 2 Clocks Nop -> Enter idle after 2 Clocks Illegal Illegal Illegal CS RAS CAS WE H L L L L L L L L H L L L L H L L L L X H H H H L L L L X H H L L X H H H L X H H L L H H L L X H L H L X H H L X X H L H L H L H L X X X X X X H L X X Address X X X BA, CA, A10 BA, CA, A10 BR, RA BA, A10 X Op-Code X X X X X X X X X X Notes: 1. All entries assume that CKE was active (High level) during the preceding clock cycle. 2. If both banks are idle, and CKE is inactive (Low level), the device will enter Power downmode. All input buffers except CKE will be disabled. 3. Illegal to bank in specified states; Function may be legal in the bank indicated by Bank Address(BA), depending on the state of that bank. 4. If both banks are idle, and CKE is inactive (Low level), the device will enter Self refresh mode. All input buffers except CKE will be disabled. 5. Illegal if tRCD is not satisfied. 6. Illegal if tRAS is not satisfied. 7. Must satisfy burst interrupt condition. 8. Must satisfy bus contention, bus turn around, and/or write recovery requirements. 9. Must mask preceding data which don’t satisfy tDPL . 10. Illegal if tRRD is not satisfied. 11. Illegal for single bank, but legal for other banks in multi-bank devices. Integrated Circuit Solution Inc. DR034-0E 12/02/2003 13 IC42S16400 CKE RELATED COMMAND TRUTH TABLE(1) CKE n-1 n Current State Operation Self-Refresh (S.R.) INVALID, CLK (n - 1)would exit S.R. Self-Refresh Recovery Self-Refresh Recovery(2) Illegal Illegal (2) Maintain S.R. Self-Refresh Recovery Idle After tRC Idle After tRC Illegal Illegal Begin clock suspend next cycle(5) Begin clock suspend next cycle(5) Illegal Illegal Power-Down (P.D.) Both Banks Idle Exit clock suspend next cycle(2) Maintain clock suspend INVALID, CLK (n - 1) would exit P.D. EXIT P.D. -> Idle(2) Maintain power down mode Refer to operations in Operative Command Table Refer to operations in Operative Command Table Refer to operations in Operative Command Table Auto-Refresh Refer to operations in Operative Command Table Refer to operations in Operative Command Table Refer to operations in Operative Command Table Refer to operations in Operative Command Table Self-Refresh(3) Refer to operations in Operative Command Table Power-Down(3) Any state other than listed above Refer to operations in Operative Command Table Begin clock suspend next cycle(4) Exit clock suspend next cycle Maintain clock suspend H L L L L L H H H H H H H H L L H L L H H H H H H H H H H L H H L L X H H H H L H H H H L L L L H L X H L H H H H H L L L L L X H L H L CS RAS CAS WE X H L L L X H L L L H L L L X X X X X H L L L L H L L L L X X X X X X X H H L X X H H L X H H L X X X X X X H L L L X H L L L X X X X X X X H L X X X H L X X H L X X X X X X X X H L L X X H L L X X X X X X X X X X X X X X X X X X X X X X X X X X X H L X X X H L X X X X X Address X X X X X X X X X X X X X X X X — X X — — — X Op - Code — — — X Op - Code X X X X X Notes: 1. H : Hight level, L : low level, X : High or low level (Don’t care). 2. CKE Low to High transition will re-enable CLK and other inputs asynchronously. A minimum setup time must be satisfied before any command other than EXIT. 3. Power down and Self refresh can be entered only from the both banks idle state. 4. Must be legal command as defined in Operative Command Table. 5. Illegal if tSREX is not satisfied. 14 Integrated Circuit Solution Inc. DR034-0E 12/02/2003 IC42S16400 Initiallization CAS Latency Before starting normal operation, the following power on sequence is necessary to prevent SDRAM from damged or malfunctioning. CAS latency is the most critical parameter being set. It tells the device how many clocks must elapse before the data will be available. The value is determined by the frequency of the clock and the speed grade of the device. The value can be programmed as 2 or 3. 1. Apply power and start clock. Attempt to maintain CKE high , DQN high and NOP condition at the inputs. 2. Maintain stable power, table clock , and NOP input conditions for a minimum of 200us. 3. Issue precharge commands for all bank. (PRE or PREA) 4. After all banks become idle state (after tRP), issue 8 or more auto-refresh commands. 5. Issue a mode register set command to initialize the mode regiser. After these sequence, the SDRAM is in idle state and ready for normal operation. Programming the Mode Register The mode register is programmed by the mode register set command using address bits A13 through A0 as data inputs. The register retains data until it is reprogrammed or the device loses power. The mode register has four fields; Burst Length Burst Length is the number of words that will be output or input in read or write cycle. After a read burst is completed, the output bus will become high impedance. The burst length is programmable as 1, 2, 4, 8 or full page. Wrap Type (Burst Sequence) The wrap type specifies the order in which the burst data will be addressed. The order is programmable as either “Sequential” or “Interleave”. The method chosen will depend on the type of CPU in the system. Options : A13 through A7 CAS latency : A6 through A4 Wrap type : A3 Burst length : A2 through A0 Following mode register programming, no command can be asserted befor at least two clock cycles have elapsed. Integrated Circuit Solution Inc. DR034-0E 12/02/2003 15 IC42S16400 MODE REGISTER 6 13 12 11 0 0 0 10 0 9 0 8 0 1 13 12 11 x x x 10 x 9 1 8 0 7 0 6 13 12 0 0 10 0 9 0 8 0 7 0 6 11 0 7 5 4 3 2 1 0 JEDEC Standard Test Set 5 4 LTMODE 3 WT 2 5 4 LTMODE 3 WT 2 1 BL 0 1 BL 0 Burst Read and Single Write (for Write Through Cache) Burst Read and Burst Write X = Don’t care Bits2 - 0 WT = 0 WT = 1 1 1 000 Burst length 001 2 2 010 4 4 011 8 8 100 R R 101 R R 110 R R 111 Fullpage R 0 Wrap type 1 Sequential Interleave Bits 6-4 Latency mode 000 CAS Iatency R 001 R 010 2 011 3 100 R 101 R 110 R 111 R Remark R : Reserved 16 Integrated Circuit Solution Inc. DR034-0E 12/02/2003 IC42S16400 Burst Length and Sequence Burst of Two Starting Address (column address A0, binary) 0 1 Sequential Addressing Sequence (decimal) 0, 1 1, 0 Interleave Addressing Sequence (decimal) 0, 1 1, 0 Sequential Addressing Sequence (decimal) 0, 1, 2, 3 1, 2, 3, 0 2, 3, 0, 1 3, 0, 1, 2 Interleave Addressing Sequence (decimal) 0, 1, 2, 3 1, 0, 3, 2 2, 3, 0, 1 3, 2, 1, 0 Sequential Addressing Sequence (decimal) 0, 1, 2, 3, 4, 5, 6, 7 1, 2, 3, 4, 5, 6, 7, 0 2, 3, 4, 5, 6, 7, 0, 1 3, 4, 5, 6, 7, 0, 1 ,2 4, 5, 6, 7, 0, 1, 2, 3 5, 6 ,7, 0, 1, 2, 3, 4 6, 7 ,0 ,1 ,2 ,3 ,4 ,5 7, 0, 1, 2, 3, 4, 5, 6 Interleave Addressing Sequence (decimal) 0, 1, 2, 3, 4, 5, 6, 7 1, 0, 3, 2, 5, 4, 7, 6 2, 3, 0, 1, 6, 7, 4, 5 3, 2, 1, 0, 7, 6, 5, 4 4, 5, 6, 7, 0, 1, 2, 3 5, 4, 7, 6, 1, 0, 3, 2 6, 7, 4, 5, 2, 3, 0, 1 7, 6, 5, 4, 3, 2, 1, 0 Burst of Four Starting Address (column address A1 - A0, binary) 00 01 10 11 Burst of Eight Starting Address (column address A2 - A0, binary) 000 001 010 011 100 101 110 111 Integrated Circuit Solution Inc. DR034-0E 12/02/2003 17 IC42S16400 Address Bits of Bank-Select and Precharge Row A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 (Activate command) Row A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 (Precharge command) A12 A13 0 0 Select Bank A “Activate “ command 0 1 Select Bank B “Activate” command 1 0 Select Bank C “Activate” command 1 1 Select Bank D “Activate” command A10 Result A12 A13 Result 0 0 0 Precharge Bank A 0 0 1 Precharge Bank B 0 1 0 Precharge Bank C 0 1 1 Precharge Bank D 1 X X Precharge All Banks X: Don't care 0 Disable Auto-Precharge (End of Burst) 1 Enable Auto - Precharge (End of Burst) Co1. A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 (CAS strobes) 18 A12 A13 0 0 Enable Read/Write commands for Bank A Result 0 1 Enable Read/Write commands for Bank B 1 0 Enable Read/Write commands for Bank C 1 1 Enable Read/Write commands for Bank D Integrated Circuit Solution Inc. DR034-0E 12/02/2003 IC42S16400 Precharge The precharge command can be asserted anytime after tRAS(min.) is satisfied. Soon after the precharge command is asserted, the precharge operation is performed and the synchronous DRAM enters the idle state after tRP(min.) is satisfied. The parameter tRP is the time required to perform the precharge. The earliest timing in a read cycle that a precharge command can be asserted without losing any data in the burst is as follows. PrechargeE T0 T1 T3 T2 T4 Burst lengh=4 T7 T6 T5 CLK Command Read PRE CAS latency = 2 DQ Command Q0 Q1 Read Q2 Hi - Z Q3 PRE CAS latency = 3 DQ Q0 Q1 Q2 Q3 Hi - Z (tRAS is satisfied) In order to write all data to the memory cell correctly, the asynchronous parameter tDPL must be satisfied. The tDPL(min.) specification defines the earliest time that a precharge command can be asserted. The minimum number of clocks can be calculated by dividing tDPL(min.) with the clock cycle time. In summary, the precharge command can be asserted relative to the reference clock that indicates the last data word is valid. In the following table, minus means clocks before the reference; plus means time after the reference. CAS latency 2 3 Integrated Circuit Solution Inc. DR034-0E 12/02/2003 Read -1 -2 Write + tDPL((min.) + tDPL((min.) 19 IC42S16400 Auto Precharge During a read or write command cycle, A10 controls whether auto precharge is selected. If A10 is high in the read or write command (Read with Auto precharge command or Write with Auto precharge command), auto precharge is selected and begins automatically. In the write cycle, tDAL(min.) must be satisfied before asserting the next activate command to the bank being precharged. When using auto precharge in the read cycle, knowing when the precharge starts is important because the next activate command to the bank being precharged cannot be executed until the precharge cycle ends. Once auto precharge has started, an activate command to the bank can be asserted after tRP has been satisfied. A Read or Write command without auto - precharge can be terminated in the midst of a burst operation. However, a Read or Write command with auto - precharge can not be interrupted by the same bank commands before the entire burst operation is completed. Therefore use of the same bank Read, Write, Precharge or Burst Stop command is prohibited during a read or write cycle with auto - precharge. It should be noted that the device will not respond to the Auto - Precharge command if the device is programmed for full page burst read or write cycles. The timing when the auto precharge cycle begins depends both on both the CAS Iatency programmed into the mode register and whether the cycle is read or write. Read with Auto Precharge During a READA cycle, the auto precharge begins one clock earlier (CL = 2) or two clocks earlier (CL = 3) than the last word output. READ with AUTO PRECHARGE Burst lengh = 4 T0 T1 T4 T3 T2 T6 T5 T7 T8 CLK No New Command to Bank B Command Auto precharge starts READA B CAS latency = 2 DQ QB0 QB1 QB2 Hi - Z QB3 No New Command to Bank B Auto precharge starts Command READA B CAS latency = 3 DQ QB0 QB1 QB2 QB3 Hi - Z Remark READA means READ with AUTO PRECHARGE 20 Integrated Circuit Solution Inc. DR034-0E 12/02/2003 IC42S16400 Write with Auto Precharge During a write cycle, the auto precharge starts at the timing that is equal to the value of tDPL(min.) after the last data word input to the device. WRITE with AUTO PRECHRGE Burst lengh = 4 T0 T1 T3 T2 T4 T5 T6 T7 T8 CLK Command AUTO PRECHARGE starts WRITA B tDPL CAS latency = 2 DQ DB0 DB1 DB2 DB3 Hi - Z_ AUTO PRECHARGE starts Command WRITA B tDPL CAS latency = 3 DQ DB0 DB1 DB2 DB3 Hi - Z Remark WRITA means WRITE with AUTO Precharge In summary, the auto precharge cycle begins relative to a reference clock that indicates the last data word is valid. In the table below, minus means clocks before the reference; plus means clocks after the reference. CAS latency 2 3 Integrated Circuit Solution Inc. DR034-0E 12/02/2003 Read -1 -2 Write + tDPL((min.) + tDPL((min.) 21 IC42S16400 Read / Write Command Interval Read to Read Command Interval During a read cycle when a new read command is asserted, it will be effective after the CAS latency, even if the previous read operation has not completed. READ will be interrupted by another READ. Each read command can be asserted in every clock without any restriction. READ to READ Command Interval Burst lengh=4, CAS latency=2 T0 T1 T3 T2 T4 T6 T5 T7 T8 CLK Read B Read A Command DQ QA0 QB0 QB1 QB2 Hi-Z_ QB3 1 cycle Write to Write Command Interval During a write cycle, when a new Write command is asserted, the previous burst will terminate and the new burst will begin with a new write command. WRITE will be interrupted by another WRITE. Each write command can be asserted in every clock without any restriction. WRITE to WRITE Command Interval Burst lengh=4, CAS latency=2 T0 T1 T3 T2 T4 T5 T6 T7 T8 CLK Command Write A Write B DQ QA0 QB0 QB1 QB2 QB3 Hi-Z_ 1 cycle 22 Integrated Circuit Solution Inc. DR034-0E 12/02/2003 IC42S16400 Write to Read Command Interval The write command to read command interval is also a minimum of 1 cycle. Only the write data before the read command will be written. The data bus must be Hi-Z at least one cycle prior to the first DOUT. WRITE to READ Command Interval Burst lengh=4 T0 T1 T2 T3 T4 T6 T5 T7 T8 CLK 1 cycle Command WRITE A Read B CAS latency=2 DQ Command Hi-Z DA0 Write A QB0 QB1 QB2 QB3 QB1 QB2 Read B CAS latency=3 DQ DA0 Hi-Z QB0 QB3 Read to Write Command Interval During a read cycle, READ can be interrupted by WRITE. DQM must be in High at least 3 clocks prior to the write command. There is a restriction to avoid a data conflict. The data bus must be Hi-Z using DQM before Write. Integrated Circuit Solution Inc. DR034-0E 12/02/2003 23 IC42S16400 READ to WRITE Command Interval T0 T1 T3 T2 T4 T6 T5 T7 CAS latency=2 T8 CLK Read Command Write DQM DQ Hi-Z D0 D1 D2 D3 1 cycle T0 T1 T3 T2 T4 T6 T5 T7 Burst length=8, CAS latency=2 T8 T9 CLK Command Write Read DQM Q2 Q1 Q0 DQ D0 D2 D1 Hi-Z is necessary example: Burst length=4, CAS latency=3 T0 T1 T2 T3 T4 T6 T5 T8 T7 CLK Command Read Write DQM DQ Q2 Hi-Z is D0 D1 D2 necessary 24 Integrated Circuit Solution Inc. DR034-0E 12/02/2003 IC42S16400 BURST Termination There are two methods to terminate a burst operation other than using a read or a write command. One is the burst stop command and the other is the precharge command. BURST Stop Command During a read burst, when the burst stop command is issued, the burst read data are terminated and the data bus goes to high-impedance after the CAS latency from the burst stop command. During a write burst, when the burst stop command is issued, the burst write data are termained and data bus goes to HiZ at the same clock with the burst stop command. Burst Termination T0 T1 T3 T2 T4 Burst lengh=X, CAS Intency=2,3 T7 T6 T5 CLK BST Read Command CAS latency=2 DQ Q0 CAS latency=3 Hi-Z Q1 Q2 Q0 Q1 Hi-Z Q2 DQ Remark BST: Burst stop command T0 T1 T3 T2 T4 T5 Burst lengh=X, CAS latency=2,3 T7 T6 CLK Command BST Write CAS latency=2,3 Q0 Q0 Q1 Q2 Hi-Z_ DQ Remark BST: Burst command Integrated Circuit Solution Inc. DR034-0E 12/02/2003 25 IC42S16400 PRECHARGE TERMINATION PRECHARGE TERMINATION in READ Cycle During READ cycle, the burst read operation is terminated by a precharge command. When the precharge command is issued, the burst read operation is terminated and precharge starts. The same bank can be activated again after tRP from the precharge command. When CAS latency is 2, the read data will remain valid until one clock after the precharge command. When CAS latency is 3, the read data will remain valid until two clocks after the precharge command. Precharge Termination in READ Cycle T0 T1 T3 T2 T4 T6 T5 T7 Burst lengh= X T8 CLK Command Read PRE ACT tRP CAS latency=2 DQ command Q0 Q1 Read Q2 ACT PRE tRP CAS latency=3 DQ 26 Hi-Z Q3 Q0 Q1 Q2 Q3 Hi-Z Integrated Circuit Solution Inc. DR034-0E 12/02/2003 IC42S16400 Precharge Termination in WRITE Cycle During WRITE cycle, the burst write operation is terminated by a precharge command. When the precharge command is issued, the burst write operation is terminated and precharge starts. The same bank can be activated again after tRP from the precharge command. The DQM must be high to mask invalid data in. During WRITE cycle, the write data written prior to the precharge command will be correctly stored. However, invalid data may be written at the same clock as the precharge command. To prevent this from happening, DQM must be high at the same clock as the precharge command. This will mask the invalid data. PRECHARGE TERMINATION in WRITE Cycle T0 T1 T3 T2 T4 T6 T5 T7 Burst lengh = X T8 CLK Command Write PRE ACT CAS latency = 2 DQM DQ D0 D1 D2 D3 Hi - Z D4 tRP command Write PRE ACT CAS latency = 3 DQM DQ D0 D1 D2 D3 D4 Hi - Z tRP Integrated Circuit Solution Inc. DR034-0E 12/02/2003 27 IC42S16400 Mode Register Set T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 CLK CKE t RSC CS RAS CAS WE BS0,1 A10 Address Key ADD DQM t RP DQ Hi-Z Precharge Command All Banks 28 Mode Register Set Command Command Integrated Circuit Solution Inc. DR034-0E 12/02/2003 IC42S16400 AC Parameters for Write Timing (1 of 2) Burst Length=4, CAS Latency=3 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK t CH CKE t CL t CK2 t CMS t CKS Begin Auto Precharge Begin Auto Precharge Bank A Bank B t CKH t CMH CS RAS CAS WE *BS0 A10 tAH tAS ADD DQM tRCD DQ tDAL t RRD tRC tDS t DH t DPL t RP QAa0 QAa1 QAa2 QAa3 QBa0 QBa1 QBa2 QBa3 QAb0 QAb1 QAb2 QAb3 Activate Write with Activate Write with Activate Command Auto Precharge Command Auto Precharge Command Bank A Command Bank A Command Bank B Bank B Bank A Write without Auto Precharge Command Bank A Precharge Command Bank A Activate Command Bank A Activate Command Bank B BS1=”L”, Bank C,D = Idle Integrated Circuit Solution Inc. DR034-0E 12/02/2003 29 IC42S16400 AC Parameters for Write Timing (2 of 2) Burst Length=4, CAS Latency=3 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 CLK t CL t CH CKE t CK3 t CMS t CKS Begin Auto Precharge Begin Auto Precharge Bank A Bank B t CKH t CMH CS RAS CAS WE *BS0 A10 tAS tAH ADD DQM tRCD DQ t DAL t RRD tDS RC t DH QAa0 QAa1 QAa2 QAa3 QBa0 QBa1 QBa2 QBa3 Activate Command Bank A Write with Activate Write with Auto Precharge Command Auto Precharge Command Bank B Command Bank A Bank B Activate Command Bank A t DPL t RP QAb0 QAb1 QAb2 QAb3 Write without Auto Precharge Command Bank A Precharge Command Bank A Activate Command Bank A BS1=”L”, Bank C,D = Idle 30 Integrated Circuit Solution Inc. DR034-0E 12/02/2003 IC42S16400 AC Parameters for Read Timing (1 of 2) Burst Length=2, CAS Latency=2 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 CLK tCH tCL tCK2 Begin Auto Precharge Bank B tCMS t CMH CKE tCKS t CKH CS RAS CAS WE *BS0 A10 tAS tAH ADD tRRD tRAS tRC DQM t AC2 tLZ t RCD DQ Hi-Z tAC2 tOH QAa0 Activate Command Bank A Read Command Bank A Activate Command Bank B tHZ tOH QAa1 Read with Auto Precharge Command Bank B tRP tHZ QBa0 Precharge Command Bank A QBa1 Activate Command Bank A BS1=”L”, Bank C,D = Idle Integrated Circuit Solution Inc. DR034-0E 12/02/2003 31 IC42S16400 AC Parameters for Read Timing (2 of 2) Burst Length=2, CAS Latency=3 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 CLK t CH tCL CKE tCKS t CK3 Begin Auto Precharge Bank B t CMS t CMH t CKH CS RAS CAS WE *BS0 A10 t AH t AS ADD t RRD t RAS t RP t RC DQM tAC3 tLZ t RCD DQ tAC3 tOH tHZ tOH Hi-Z QAa0 Activate Command Bank A Read Command Bank A Activate Command Bank B QAa1 Read with Auto Precharge Command Bank B t QBa0 Precharge Command Bank A HZ QBa1 Activate Command Bank A BS1=”L”, Bank C,D = Idle 32 Integrated Circuit Solution Inc. DR034-0E 12/02/2003 IC42S16400 Power on Sequence and Auto Refresh (CBR) T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK High level is required CKE t RSC Minimum of 8 Refresh Cycles are required CS RAS CAS WE BS0, 1 A10 Address Key ADD DQM High Level is Necessary t DQ t RC RP Hi-Z Precharge Inputs Command All Banks must be stable for 200us 1st Auto Refresh Command Integrated Circuit Solution Inc. DR034-0E 12/02/2003 2nd Auto Refresh Command Mode Register Set Command Command 33 IC42S16400 Clock Suspension During Burst Read (Using CKE) (1 of 2) Burst Length=4, CAS Latency=2 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK t CK2 CKE CS RAS CAS WE *BS0 A10 RAa ADD RAa CAa DQM t DQ HZ Hi-Z QAa0 Activate Command Bank A Read Command Bank A QAa1 Clock Suspended 1 Cycle QAa2 Clock Suspended 2 Cycles QAa3 Clock Suspended 3 Cycles BS1=”L”, Bank C,D = Idle 34 Integrated Circuit Solution Inc. DR034-0E 12/02/2003 IC42S16400 Clock Suspension During Burst Read (Using CKE) (2 of 2) Burst Length=4, CAS Latency=3 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK t CK3 CKE CS RAS CAS WE *BS0 A10 RAa ADD RAa CAa DQM t HZ DQ Hi-Z QAa0 Activate Command Bank A Read Command Bank A QAa1 Clock Suspended 1 Cycle QAa2 Clock Suspended 2 Cycles QAa3 Clock Suspended 3 Cycles BS1=”L”, Bank C,D = Idle Integrated Circuit Solution Inc. DR034-0E 12/02/2003 35 IC42S16400 Clock Suspension During Burst Write (Using CKE) (1 of 2) Burst Length=4, CAS Latency=2 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK t CK2 CKE CS RAS CAS WE *BS0 A10 RAa ADD RAa CAa DQM DQ Hi-Z DAa0 Activate Command Bank A DAa1 Clock Suspended 1 Cycle Write Command Bank A DAa2 Clock Suspended 2 Cycles DAa3 Clock Suspended 3 Cycles BS1=”L”, Bank C,D = Idle 36 Integrated Circuit Solution Inc. DR034-0E 12/02/2003 IC42S16400 Clock Suspension During Burst Write (Using CKE) (2 of 2) Burst Length=4, CAS Latency=3 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK t CK3 CKE CS RAS CAS WE *BS0 A10 RAa ADD RAa CAa DQM DQ Hi-Z DAa0 Activate Command Bank A DAa1 Clock Suspended 1 Cycle Write Command Bank A DAa2 Clock Suspended 2 Cycles DAa3 Clock Suspended 3 Cycles BS1=”L”, Bank C,D = Idle Integrated Circuit Solution Inc. DR034-0E 12/02/2003 37 IC42S16400 Power Down Mode and Clock Mask Burst Length=4, CAS Latency=2 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK t CK2 t t t CKS CKH CKS CKE VALID CS RAS CAS WE *BS0 A10 RAa ADD RAa CAa DQM DQ Hi-Z QAa0 QAa1 Activate Command Bank A ACTIVE STANDBY Power Down Mode Entry QAa2 Precharge Standby Precharge Command Read Command Bank A Power Down Mode Exit QAa3 Clock Mask Start Clock Mask End Power Down Mode Entry Power Down Mode Exit Command BS1=”L”, Bank C,D = Idle 38 Integrated Circuit Solution Inc. DR034-0E 12/02/2003 IC42S16400 Auto Refresh (CBR) Burst Length=4, CAS Latency=2 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK t CK2 CKE CS RAS CAS WE *BS0, 1 A10 RAa ADD RAa CAa DQM t DQ RP t RC t RC Hi-Z Q0 Precharge CBR Refresh Command Command All Banks CBR Refresh Command Q1 Q2 Q3 Activate Read Command Command BS1=”L”, Bank C,D = Idle Integrated Circuit Solution Inc. DR034-0E 12/02/2003 39 IC42S16400 Self Refresh (Entry and Exit) CLK can be Stopped** T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK t SRX t SRX t CKS t CKS CKE CS RAS CAS WE *BS0 A10 ADD t RC DQM DQ t RC Hi-Z All Banks must be idle Self refresh Entry Self Refresh Exit Self Refresh Entry Self Refresh Exit Activate Command BS1=”L”, Bank C,D = Idle Clock can be stopped at CKE=Low. If clock is stopped, it must be restarted/stable for 4 clock cycles before CKE=High 40 Integrated Circuit Solution Inc. DR034-0E 12/02/2003 IC42S16400 Random Column Read (Page With Same Bank) (1 of 2) Burst Length=4, CAS Latency=2 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK t CK2 CKE CS RAS CAS WE *BS0 A10 RAa ADD RAa RAa RAd CAa CAb CAc RAd CAd DQM DQ Hi-Z QAa0 QAa1 QAa2 QAa3 QAb0 QAb1 QAc0 QAc1 QAc2 QAc3 Precharge Command Bank A Read Command Bank A Read Read Command Command Bank A Bank A QAd0 QAd1 QAd2 QAd3 Precharge Activate Read Command Command Command Bank A Bank A Bank A BS1=”L”, Bank C,D = Idle Integrated Circuit Solution Inc. DR034-0E 12/02/2003 41 IC42S16400 Random Column Read (Page With Same Bank) (2 of 2) Burst Length=4, CAS Latency=3 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK t CK3 CKE CS RAS CAS WE *BS0 A10 RAa ADD RAa RAd CAa CAb CAc RAd CAd DQM DQ Hi-Z QAa0 QAa1 QAa2 QAa3 QAb0 QAb1 QAc0 QAc1 QAc2 QAc3 Activate Command Bank A Read Command Bank A Read Read Command Command Bank A Bank A Precharge Command Bank A Activate Command Bank A Read Command Bank A BS1=”L”, Bank C,D = Idle 42 Integrated Circuit Solution Inc. DR034-0E 12/02/2003 IC42S16400 Random Column Write (Page With Same Bank) (1 of 2) Burst Length=4, CAS Latency=2 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK t CK2 CKE CS RAS CAS WE *BS0 A10 Ra ADD Ra Rd Cb Ca Cc Rd Cd DQM DQ Hi-Z Da0 Activate Command Bank B Da1 Write Command Bank B Da2 Da3 Db0 Db1 Dc0 Dc1 Write Write Command Command Bank B Bank B Dc2 Dc3 Dd0 Dd1 Dd2 Dd3 Precharge Activate Write Command Command Command Bank B Bank B Bank B BS1=”L”, Bank C,D = Idle Integrated Circuit Solution Inc. DR034-0E 12/02/2003 43 IC42S16400 Random Column Write (Page With Same Bank) (1 of 2) Burst Length=4, CAS Latency=3 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK t CK CKE CS RAS CAS WE *BS0 A10 Ra ADD Ra Rd Cb Ca Cc Rd Cd DQM DQ Hi-Z Da0 Activate Command Bank B Da1 Write Command Bank B Da2 Da3 Db0 Db1 Write Command Bank B Dc0 Dc1 Write Command Bank B Dc2 Dc3 Dd0 Precharge Command Bank B Activate Command Bank B Dd1 Write Command Bank B BS1=”L”, Bank C,D = Idle 44 Integrated Circuit Solution Inc. DR034-0E 12/02/2003 IC42S16400 Random Row Read (Interleaving Banks) (1 of 2) Burst Length=8, CAS Latency=2 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK t CK2 CKE High CS RAS CAS WE *BS0 A10 ADD t DQM DQ RCD Hi-Z Activate Command Bank B t AC2 t RP QBa0 QBa1 QBa2 QBa3 QBa4 QBa5 QBa6 QBa7 QAa0 QAa1 QAa2 QAa3 QAa4 QAa5 QAa6 QAa7 Read Command Bank B Activate Command Bank A Precharge Active Command Command Bank B Bank B QBb0 QBb1 Read Command Bank B Read Command Bank A BS1=”L”, Bank C,D = Idle Integrated Circuit Solution Inc. DR034-0E 12/02/2003 45 IC42S16400 Random Row Read (Interleaving Banks) (2 of 2) Burs tLength=8, CAS Latency=3 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK t CK3 CKE High CS RAS CAS WE *BS0 A10 ADD t DQM DQ t RCD t AC3 RP Hi-Z QBa0 QBa1 QBa2 QBa3 QBa4 QBa5 QBa6 QBa7 QAa0 QAa1 QAa2 QAa3 QAa4 QAa5 QAa6 QAa7 QBb0 Activate Command Bank B Read Command Bank B Activate Command Bank A Read Command Bank A Precharge Command Bank B Activate Command Bank B Read Precharge Command Command Bank B Bank A BS1=”L”, Bank C,D = Idle 46 Integrated Circuit Solution Inc. DR034-0E 12/02/2003 IC42S16400 Random Row Write (Interleaving Banks) (1 of 2) Burst Length=8, CAS Latency=2 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK t CK2 CKE High CS RAS CAS WE *BS0 A10 ADD t RCD DQM DQ Hi-Z Activate Command Bank A t DPL t RP QAa0 QAa1 QAa2 QAa3 QAa4 QAa5 QAa6 QAa7 QBa0 QBa1 QBa2 QBa3 QBa4 QBa5 QBa6 QBa7 QAb0 QAb1 QAb2 QAb3 QAb4 Write Command Bank A Activate Command Bank B Precharge Active Command Command Bank A Bank A Write Command Bank B Write Command Bank A Precharge Command Bank B BS1=”L”, Bank C,D = Idle Integrated Circuit Solution Inc. DR034-0E 12/02/2003 47 IC42S16400 Random Row Write (Interleaving Banks) (2 of 2) Burst Length=8, CAS Latency=3 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK t CK CKE High CS RAS CAS WE *BS0 A10 ADD RBa t DPL DQM DQ Hi-Z Activate Command Bank A t DPL t RP QAa0 QAa1 QAa2 QAa3 QAa4 QAa5 QAa6 QAa7 QBa0 QBa1 QBa2 QBa3 QBa4 QBa5 QBa6 QBb7 QAb0 QAb1 QAb2 QAb3 Write Command Bank A Activate Command Bank B Write Command Bank B Precharge Command Bank A Activate Command Bank A Precharge Write Command Command Bank B Bank A BS1=”L”, Bank C,D = Idle 48 Integrated Circuit Solution Inc. DR034-0E 12/02/2003 IC42S16400 Read and Write Cycle (1 of 2) Burst Length=4, CAS Latency=2 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK t CK2 CKE CS RAS CAS WE *BS0 A10 RAa ADD RAa CAb CAa CAc DQM DQ Hi-Z QAa0 QAa1 QAa2 QAa3 Activate Command Bank A Write Command Bank A DAb0 DAb1 DAb3 The Write Data Write Command is Masked with a Bank A Zero Clock latency QAc0 QAc1 Read Command Bank A QAc3 The Read Data is Masked with Two Clocks Latency BS1=”L”, Bank C,D = Idle Integrated Circuit Solution Inc. DR034-0E 12/02/2003 49 IC42S16400 Read and Write Cycle (2 of 2) Burst Length=4, CAS Latency=3 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK t CK3 CKE CS RAS CAS WE *BS0 A10 RAa ADD RAa CAa CAb CAc DQM DQ Hi-Z QAa0 QAa1 QAa2 QAa3 Activate Command Bank A Read Command Bank A DAb0 DAb1 QAc0 QAc1 DAb3 Write The Write Data Read Command is Masked with a Command Bank A Bank A Zero Clock Latency QAc3 The Read Data is Masked with Two Clock Latency BS1=”L”, Bank C,D = Idle 50 Integrated Circuit Solution Inc. DR034-0E 12/02/2003 IC42S16400 Interleaved Column Read Cycle (1 of 2) Burst Length=4, CAS Latency=2 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK t CK2 CKE CS RAS CAS WE *BS0 A10 Ra ADD Ra Cb t DQM DQ Ra RCD Ra Ca Cb Cc Cb Cd t AC2 Hi-Z QAa0 QAa1 QAa2 QAa3 QBa0 QBa1 QBb0 QBb1 QBc0 QBc1 QAb0 QAb1 QBd0 QBd1 QBd2 QBd3 Activate Command Bank A Read Read Read Activate Read Read Read Command Command Command Command Command Command Command Bank A Bank A Bank B Bank B Bank B Bank B Bank B Precharge Command Bank B Precharge Command Bank A BS1=”L”, Bank C,D = Idle Integrated Circuit Solution Inc. DR034-0E 12/02/2003 51 IC42S16400 Interleaved Column Read Cycle (2 of 2) Burst Length=4, CAS Latency=3 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK t CK3 CKE CS RAS CAS WE *BS0 A10 Ra ADD Ra Ra Ca Ca Ra Cb Cc Cb DQM t RCD t RRD DQ t AC3 Hi-Z QAa0 QAa1 QAa2 QAa3 QBa0 QBa1 QBb0 QBb1 QBc0 QBc1 QAb0 QAb1 QAb2 QAb3 Activate Command Bank A Read Command Bank A Read Read Read Read Precharge Precharge Command Command Command Command Command Command Bank A Bank B Bank B Bank B Bank B Bank A Activate Command Bank B BS1=”L”, Bank C,D = Idle 52 Integrated Circuit Solution Inc. DR034-0E 12/02/2003 IC42S16400 Interleaved Column Write Cycle (1 of 2) Burst Length=4, CAS Latency=2 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK t CK2 CKE CS RAS CAS WE *BS0 A10 Ra ADD Ra Ra Ca Ca Cb Cc Cb t RCD DQM t DQ Ra Cb t RP t DPL RRD Hi-Z DAa0 DAa1 DAa2 DAa3 DBa0 DBa1 DBb0 DBb1 DBc0 DBc1 DAb0 DAb1 DBd0 DBd1 DBd2 DBd3 Activate Write Write Write Write Write Activate Command Command Command Command Command Command Command Bank B Bank B Bank A Bank A Bank B Bank B Bank A Precharge Command Bank A Write Command Bank B Precharge Command Bank B BS1=”L”, Bank C,D = Idle Integrated Circuit Solution Inc. DR034-0E 12/02/2003 53 IC42S16400 Interleaved Column Write Cycle (2 of 2) Burst Length=4, CAS Latency=3 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK t CK3 CKE CS RAS CAS WE *BS0 A10 Ra ADD Ra Ra Ca t RCD DQM t DQ Ra Ca Cb Cc Cb Cd t DPL t DPL t RP RRD Hi-Z QAa0 QAa1 QAa2 QAa3 QBa0 QBa1 QBb0 QBb1 QBc0 QBc1 QAb0 QAb1 QBd0 QBd1 QBd2 QBd3 Activate Command Bank A Write Command Bank A Activate Command Bank B Write Write Write Write Write Command Command Command Command Command Bank A Bank B Bank B Bank B Bank B Precharge Command Bank B Precharge Command Bank A BS1=”L”, Bank C,D = Idle 54 Integrated Circuit Solution Inc. DR034-0E 12/02/2003 IC42S16400 Auto Precharge after Read Burst (1 of 2) Burst Length=4, CAS Latency=2 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK t CKE CK2 High Start Auto Precharge Bank B Start Auto Precharge Bank A Start Auto Precharge Bank B CS RAS CAS WE *BS0 A10 Ra ADD Ra Ra Ca Ra Rb Ca Cb Rb Rc Cb Rc Cc DQM DQ Hi-Z QAa0 QAa1 QAa2 QAa3 QBa0 QBa1 QBa2 QBa3 QAb0 QAb1 QAb2 QAb3 QBb0 QBb1 QBb2 QBb3 QAc0 QAc1 QAc2 Activate Read Activate Read with Command Command Command Auto Precharge Bank A Bank A Bank B Command Bank B Read with Auto Precharge Command Bank A Activate Command Read with Bank A Auto Precharge Command Read with Activate Bank B Auto Precharge Command Command Bank B Bank A BS1=”L”, Bank C,D = Idle Integrated Circuit Solution Inc. DR034-0E 12/02/2003 55 IC42S16400 Auto Precharge after Read Burst (2 of 2) Burst Length=4, CAS Latency=3 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK t CKE CK3 High Start Auto Precharge Bank B Start Auto Precharge Bank A Start Auto Precharge Bank B CS RAS CAS WE *BS0 A10 Ra ADD Ra Ra Ca Ra Rb Ca Cb Rb RBb Cb DQM DQ Hi-Z QAa0 QAa1 QAa2 QAa3 QBa0 QBa1 QBa2 QBa3 QAb0 QAb1 QAb2 QAb3 Activate Command Bank A Activate Command Bank B Read with Auto Precharge Command Bank B Read with Auto Precharge Command Bank A Activate Command Bank B QBb0 QBb1 QBb2 Write with Auto precharge Command Bank B Read Command Bank A BS1=”L”, Bank C,D = Idle 56 Integrated Circuit Solution Inc. DR034-0E 12/02/2003 IC42S16400 Auto Precharge after Write Burst (1 of 2) Burst Length=4, CAS Latency=2 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK t CKE CK2 High Start Auto Precharge Bank B Start Auto Precharge Bank B Start Auto Precharge Bank A CS RAS CAS WE *BS0 A10 Ra ADD Ra Ra Ca Ra Rb Ca Cb Rb Rc Cb Rc Cc DQM DQ Hi-Z QAa0 QAa1 QAa2 QAa3 QBa0 QBa1 QBa2 QBa3 QAb0 QAb1 QAb2 QAb3 QBb0 QBb1 QBb2 QBb3 QAc0 QAc1 QAc2 QAc3 Activate Write Write with Activate Command Command Command Auto Precharge Command Bank A Bank B Bank A Bank B Activate Write with Activate Command Auto Precharge Command Bank A Command Bank B Write with Bank A Auto Precharge Write with Bank A Auto Precharge Command Bank B Start Auto Precharge Bank A BS1=”L”, Bank C,D = Idle Integrated Circuit Solution Inc. DR034-0E 12/02/2003 57 IC42S16400 Auto Precharge after Write Burst (2 of 2) Burst Length=4, CAS Latency=3 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK t CK3 CKE High Start Auto Precharge Bank A Start Auto Precharge Bank B Start Auto Precharge Bank B CS RAS CAS WE *BS0 A10 Ra ADD Ra Ra Ca Ra Rb Ca Cb Rb RBb Cb DQM DQ Hi-Z QAa0 QAa1 QAa2 QAa3 QBa0 QBa1 QBa2 QBa3 QAb0 QAb1 QAb2 QAb3 Activate Command Bank A Activate Command Bank B Read with Auto Precharge Command Bank B Read with Auto Precharge Command Bank A Activate Command Bank B QBb0 QBb1 QBb2 QBb3 Write with Auto precharge Command Bank B Read Command Bank A BS1=”L”, Bank C,D = Idle 58 Integrated Circuit Solution Inc. DR034-0E 12/02/2003 IC42S16400 Full Page Read Cycle (1 of 2) Burst Length=Full Page, CAS Latency=2 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK t CK2 CKE High CS RAS CAS WE *BS0 A10 Ra ADD Ra Rb Ra Ca Ca Ra Rb t RP DQM DQ Hi-Z QAa Activate Command Bank A Read Command Bank A QAa+1 QAa+2 QAa-2 QAa-1 Activate Command Bank B QAa QAa+1 QBa Read Command Bank B The burst counter wraps from the highest order page address back to zero during this time interval QBa+1 QBa+2 QBa+3 QBa+4 QBa+51QBa+6 Full page burst operation does not terminate when the burst length is satisfied; the burst counter increments and continues bursting beginning with the starting address Precharge Command Bank B Activate Command Bank B Burst Stop Command BS1=”L”, Bank C,D = Idle Integrated Circuit Solution Inc. DR034-0E 12/02/2003 59 IC42S16400 Full Page Read Cycle (2 of 2) Burst Length=Full Page, CAS Latency=3 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK t CK3 CKE High CS RAS CAS WE *BS0 A10 Ra ADD Ra Rb Ra Ca Ca Ra Rb DQM DQ Hi-Z QAa Activate Command Bank A Read Command Bank A Activate Command Bank B QAa+1 QAa+2 QAa-2 QAa-1 QAa Read Command Bank B The burst counter wraps from the highest order page address back to zero during this time interval QAa+1 QBa0 QBa+1 QBa+2 QBa+3 QBa+4 QBa+5 Full page burst operation does not teminate when Precharge the burst length is satisfied; Command the burst counter increments Bank B and continues bursting beginning with the starting Burst Stop address Command Activate Command Bank B BS1=”L”, Bank C,D = Idle 60 Integrated Circuit Solution Inc. DR034-0E 12/02/2003 IC42S16400 Full Page Write Cycle (1 of 2) Burst Length=Full Page, CAS Latency=2 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK t CK2 CKE High CS RAS CAS WE *BS0 A10 Ra ADD Ra Rb Ra Ca Rb Ca Ra DQM t DQ BDL Hi-Z QAa Activate Command Bank A QAa+1 QAa+2 QAa+3 QAa-1 Write Command Bank A QAa QAa+1 Activate Command Bank B The burst counter wraps from the highest order page address back to zero during this time interval QBa QBa+1 QBa+2 QBa+3 QBa+4 QBa+5 QBa+6 Write Command Bank B Data is ignored Precharge Command Bank B Full page burst operation does not terminate when the burst length is satisfied; the burst counter increments and continues bursting beginning with the starting address Activate Command Bank B Burst Stop Command BS1=”L”, Bank C,D = Idle Integrated Circuit Solution Inc. DR034-0E 12/02/2003 61 IC42S16400 Full Page Write Cycle (2 of 2) Burst Length=Full Page, CAS Latency=3 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK t CK3 CKE High CS RAS CAS WE *BS0 A10 Ra ADD Ra Rb Ra Ca Rb Ca Ra DQM tBDL DQ Data is ignored. Hi-Z DAa Activate Command Bank A DAa+1 DAa+2 DAa+3 DAa-1 Write Command Bank A DAa DAa+1 Activate Command Bank B The burst counter wraps from the highest order page address back to zero during this time interval DBa DBa+1 DBa+2 DBa+3 DBa+4 DBa+5 Write Command Bank B Full page burst operation does not terminate when the burst length is satisfied; the burst counter increments and continues bursting beginning with the starting address Precharge Command Bank B Activate Command Bank B Burst Stop Command BS1=”L”, Bank C,D = Idle 62 Integrated Circuit Solution Inc. DR034-0E 12/02/2003 IC42S16400 Burst Read and Single Write Operation Burst Length=4, CAS Latency=2 T0 T1 T2 T3 T4 T5 T6 T7 CLK CKE T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 t CK2 High CS RAS CAS WE *BS0 A10 RAa ADD RAa CAa CAb CAc CAd CAe DQM Hi-Z DQ Activate Command Bank A Read Command Bank A Read Single Write Single Write Command Command Command Bank A Bank A Bank A DQs are masked Single Write Command Bank A DQs are masked BS1=”L”, Bank C,D = Idle Integrated Circuit Solution Inc. DR034-0E 12/02/2003 63 IC42S16400 Full Page Random Column Read Burst Length=Full Page, CAS Latency=2 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK t CK2 CKE CS RAS CAS WE BS A10 Ra Ra ADD Ra Ra Rb Ca Ca Cb Cc Cb Cc Rb t RP DQM DQ Hi-Z QAa0 QBa0 Activate Command Bank A Activate Command Bank B Read Command Bank B Read Command Bank A Read Command Bank A QAb0 QAb1 Read Command Bank B QBb0 QBb1 Read Command Bank A QAc0 QAc1 QAc2 Read Command Bank B QBc0 QBc1 QBc2 Precharge Command Bank B (Bank D) (Precharge Termination) Activate Command Bank B BS1=”L”, Bank C,D = Idle 64 Integrated Circuit Solution Inc. DR034-0E 12/02/2003 IC42S16400 Full Page Random Column Write Burst Length=Full Page, CAS Latency=2 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK t CK2 CKE CS RAS CAS WE *BS0 A10 Ra Ra ADD Ra Ra Rb Ca Ca Cb Cc Cb Cc Rb t RP DQM DQ Hi-Z QAa0 Activate Command Bank A Activate Command Bank B QBa0 QAb0 QAb1 Write Command Bank B Write Command Bank A Write Command Bank A QBb0 QBb1 Write Command Bank B QAc0 QAc1 Write Command Bank A QAc2 QBc0 QBc1 Write Command Bank B QBc2 Precharge Command Bank B (Bank D) (Precharge Termination) Write Data is masked Activate Command Bank B BS1=”L”, Bank C,D = Idle Integrated Circuit Solution Inc. DR034-0E 12/02/2003 65 IC42S16400 Precharge Termination of a Burst (1 of 2) Burst Length=8, CAS Latency=2 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK t CK2 CKE High CS RAS CAS WE *BS0 A10 RAa ADD RAa RAc RAb CAa RAb t DPL t CAb RAc t RP CAc t RP RP DQM DQ Hi-Z QAa0 Activate Command Bank A QAa1 Write Command Bank A QAa2 QAb0 Da3 Precharge Command Bank A Precharge Termination of a Write Burst. Write data is masked. Activate Command Bank A Read Command Bank A QAb1 QAb2 Precharge Command Bank A Activate Command Bank A QAc0 Read Command Bank A QAc1 QAc2 Precharge Command Bank A Precharge Termination of a Read Burst. BS1=”L”, Bank C,D = Idle 66 Integrated Circuit Solution Inc. DR034-0E 12/02/2003 IC42S16400 Precharge Termination of a Burst (2 of 2) Burst Length=8, CAS Latency=3 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK t CK3 CKE High CS RAS CAS WE *BS0 A10 RAa ADD RAa CAa RAb t DPL t DQM DQ RAc RAb t CAb t RP RAc t RAS RP RCD Hi-Z DAa0 Activate Command Bank A QAb0 DAa1 Write Command Bank A Precharge Command Bank A Write Data is masked Activate Command Bank A Precharge Termination of a Write Burst. Read Command Bank A QAb1 QAb2 Activate Command Bank A QAb3 Activate Command Bank A Precharge Termination of a Read Burst. BS1=”L”, Bank C,D = Idle Integrated Circuit Solution Inc. DR034-0E 12/02/2003 67 IC42S16400 ORDERING INFORMATION Commercial Range: 0οC to 70οC Speed (ns) 6 Order Part No. IC42S16400-6T IC42S16400-6TG IC42S16400-6BG IC42S16400-7T IC42S16400-7TG IC42S16400-7BG 7 Package 400mil TSOP-2 400mil TSOP-2(Pb-free) 60Ball VF-BGA(Pb-free) 400mil TSOP-2 400mil TSOP-2(Pb-free) 60Ball VF-BGA(Pb-free) ORDERING INFORMATION Industrial Temperature Range: -40οC to 85οC Speed (ns) 6 7 Order Part No. IC42S16400-6TI IC42S16400-6TIG IC42S16400-6BIG IC42S16400-7TI IC42S16400-7TIG IC42S16400-7BIG Package 400mil TSOP-2 400mil TSOP-2(Pb-free) 60Ball VF-BGA(Pb-free) 400mil TSOP-2 400mil TSOP-2(Pb-free) 60Ball VF-BGA(Pb-free) Integrated Circuit Solution Inc. HEADQUARTER: NO.2, TECHNOLOGY RD. V, SCIENCE-BASED INDUSTRIAL PARK, HSIN-CHU, TAIWAN, R.O.C. TEL: 886-3-5780333 Fax: 886-3-5783000 BRANCH OFFICE: 7F, NO. 106, SEC. 1, HSIN-TAI 5TH ROAD, HSICHIH TAIPEI COUNTY, TAIWAN, R.O.C. TEL: 886-2-26962140 FAX: 886-2-26962252 http://www.icsi.com.tw 68 Integrated Circuit Solution Inc. DR034-0E 12/02/2003