iCE40™ HX-Series Ultra Low-Power mobileFPGA™ Family March 30, 2012 (1.31) Data Sheet Figure 1: iCE40 HX-Series Family Architectural Features HX-Series - Tablet targeted series optimized for high performance Low cost package offerings 80% faster than iCE65 I/O Bank 0 Tablet resolution HD video and imaging 8 Logic Cells = Programmable Logic Block I/O Bank 1 JTAG PLB PLB PLB PLB SPI Config I/O Bank 2 Windows® and Linux® support VHDL and Verilog logic synthesis Place and route software Design and IP core libraries Low-cost iCEman40HX development board Programmable Interconnect PLB PLB PLB PLB PLB PLB PLB PLB PLB PLB PLB PLB PLB PLB PLB PLB PLB PLB PLB PLB PLB 4Kbit RAM PLB PLB PLL NVCM Complete iCEcube™ development system 4Kbit RAM programmable interconnect fabric 8K look-up tables (LUT4) and flip-flops Low-power logic and interconnect PLB Flexible programmable logic and PLB methods and sources PLB Up to 533 MHz PLL Output Reprogrammable from a variety of Programmable Interconnect Clock multiplication/division for display, SerDes, and memory interface applications I/O Bank 3 Integrated Phase-Locked Loop (PLL) PLB Programmable Interconnect Proven, high-volume 40 nm, low-power CMOS technology PLB Programmable Logic Block (PLB) 200 µA at f =0 kHz (Typical) Carry logic Four-input Table Nonvolatile Configuration Look-Up(LUT4) Memory (NVCM) Phase-Locked Loop Flip-flop with enable and reset controls Table 1: iCE40HX Ultra Low-Power Programmable Logic Family Summary Part Number Logic Cells (LUT + Flip-Flop) RAM4K Memory Blocks RAM4K RAM bits Phase-Locked Loops (PLLs) Configuration bits (maximum) Core Operating Power 0 KHz1 Maximum Programmable I/O Pins Maximum Differential Input Pairs Package Code Area mm Pitch mm 225-ball BGA CM225 7x7 0.4 132-ball BGA CB132 8x8 0.5 284-ball BGA CB284 12x12 0.5 256-ball BGA CT256 14x14 0.8 100-pin quad flat pack VQ100 14x14 0.5 HX640 HX1K HX4K HX8K 640 8 32K 1 120 Kb 200 µA 67 8 1,280 16 64K 1 245 Kb 267 µA 95 11 3,520 20 80K 2 533 Kb 667 µA 95 12 7,680 32 128K 2 1,057 Kb 1100 µA 206 26 Programmable I/O: Max I/O (LVDS) 178(23) 95(11) 95(12) 95(12) 206(26) 67(8) 72(9) Note 1: At 1.2V VCC © 2007-2012 by Lattice Semiconductor Corporation. All rights reserved. www.latticesemi.com (1.31, 30-MAR-2012) 1 iCE40 HX-Series Ultra-Low Power mobileFPGA™ Family Ordering Information Figure 2 describes the iCE40HX ordering codes for all packaged components. See the separate DiePlus data sheets when ordering die-based products. See the separate iCE40 Pinout Excel files for package and pinout specifications. Figure 2: iCE40HX Ordering Codes (packaged, non-die components) iCE40HX 8K - CM 225 High Performance Series Package Leads Package Style Logic Cells 640, 1K, 4K, 8K CM = chip-scale ball grid (0.4 mm pitch) CB = chip-scale ball grid (0.5 mm pitch) CT = chip-scale ball grid (0.8 mm pitch) VQ = Very Thin Quad flat pack (0.5 mm pitch) TQ = Thin Quad flat pack (0.5 mm pitch) QN = quad flat no-lead (0.5 mm pitch) iCE40HX8K-CM225 225-ball Chip-Scale BGA Package (7x7 mm footprint, 0.4 mm pitch) Lattice Semiconductor Corporation www.latticesemi.com/ (1.31, 30-MAR-2012) 2 iCE40 HX-Series Ultra-Low Power mobileFPGA™ Family Electrical Characteristics All parameter limits are specified under worst-case supply voltage, junction temperature, and processing conditions. Absolute Maximum Ratings Stresses beyond those listed under Table 2 may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions is not implied. Exposure to absolute maximum conditions for extended periods of time adversely affects device reliability. Table 2: Absolute Maximum Ratings Description Minimum Symbol VCC VPP_2V5 VPP_FAST VCCIO_0 VCCIO_1 VCCIO_2 VCCIO_3 SPI_VCC VIN_0 VIN_1 VIN_2 VIN_SPI VIN_3 VCCPLL IOUT TJ TSTG Maximum Units Core supply Voltage VPP_2V5 NVCM programming and operating supply Optional fast NVCM programming supply I/O bank supply voltage (I/O Banks 0, 1, 2 and 3 plus SPI interface) –0.5 1.42 –0.5 4.00 V V V V Voltage applied to PIO pin within a specific I/O bank (I/O Banks 0, 1, 2 and 3 plus SPI interface) –1.0 3.6 V Analog voltage supply to the Phase Locked Loop (PLL) DC output current per pin Junction temperature Storage temperature, no bias –0.5 — –55 –65 1.30 20 125 150 V mA °C °C Recommended Operating Conditions Table 3: Recommended Operating Conditions Symbol VCC VPP_2V51 VPP_FAST2 SPI_VCC VCCIO_0 VCCIO_1 VCCIO_2 VCCIO_3 SPI_VCC VCCPLL3 TA TPROG Notes: Description Core supply voltage VPP_2V5 NVCM programming and operating supply High Performance, low-power Release from Power-on Reset Configure from NVCM NVCM programming Optional fast NVCM programming supply SPI interface supply voltage I/O standards, all banks LVCMOS33 LVCMOS25, LVDS Minimum Nominal Maximum Units 1.14 1.20 1.26 V 1.30 — 3.47 V 2.30 — 3.47 V 2.30 — 3.00 V Leave unconnected in application 1.71 — 3.47 V 2.70 3.30 3.47 V 2.38 2.50 2.63 V LVCMOS18, SubLVDS 1.71 1.80 1.89 V LVCMOS15 1.43 1.50 1.58 V 1.14 –40 10 1.20 — 25 1.26 85 30 V °C °C Analog voltage supply to the Phase Locked Loop (PLL) Ambient temperature NVCM programming temperature 1. VPP_2V5 must be connected to a valid voltage, when the iCE40HX device is active. 2. VPP_FAST, used only for fast production programming, must be left floating or unconnected in application. 3. VCCPLL must be tied to VCC when PLL is not used. Lattice Semiconductor Corporation www.latticesemi.com/ (1.31, 30-MAR-2012) 3 iCE40 HX-Series Ultra-Low Power mobileFPGA™ Family I/O Characteristics Table 4: PIO Pin Electrical Characteristics Symbol Il IOZ CPIO CGBIN RPULLUP VHYST Description Input pin leakage current Three-state I/O pin (Hi-Z) leakage current PIO pin input capacitance GBIN global buffer pin input capacitance Internal PIO pull-up resistance during configuration Input hysteresis Conditions VIN = VCCIOmax to 0 V VO = VCCIOmax to 0 V Minimum VCCIO = 3.3V VCCIO = 2.5V VCCIO = 1.8V VCCIO = 1.5V VCCIO = 1.5V to 3.3V Nominal Maximum ±10 ±10 Units µA µA 6 6 pF pF 60 80 120 160 50 kΩ kΩ kΩ kΩ mV NOTE: All characteristics are characterized and may or may not be tested on each pin on each device. Single-ended I/O Characteristics Table 5: I/O Characteristics I/O Standard LVCMOS33 LVCMOS25 LVCMOS18 LVCMOS15 Nominal I/O Bank Supply Voltage 3.3V 2.5V 1.8V 1.5V Lattice Semiconductor Corporation www.latticesemi.com/ Input Voltage (V) Output Voltage (V) Output Current at Voltage (mA) VIL VIH VOL VOH IOL IOH 0.80 0.70 2.00 1.70 35% VCCIO 35% VCCIO 65% VCCIO 65% VCCIO 0.4 0.4 0.4 0.4 2.40 2.00 1.40 1.20 8 6 4 2 8 6 4 2 (1.31, 30-MAR-2012) 4 iCE40 HX-Series Ultra-Low Power mobileFPGA™ Family Differential Inputs Figure 3: Differential Input Specifications VCCIO_3 Differential input voltage 50% DPxxB 1% 100Ω Input common mode voltage VIN_B VID VIN_A DPxxA VICM iC40 Differential Input GND Input common mode voltage: | Differential input voltage: | Table 6: Recommended Operating Conditions for Differential Inputs VCCIO_3 (V) VID (mV) VICM (V) I/O Standard Min Nom Max Min Nom Max LVDS 2.38 2.50 2.63 250 350 450 SubLVDS 1.71 1.80 1.89 100 150 200 Min Nom Max Differential Outputs Figure 4: Differential Output Specifications VCCIO_x RS 1% RS VOUT_B Output common mode voltage Differential output voltage 50% RP VOD VOUT_A VOCM iC40 Differential Output Pair GND Output common mode voltage: | Differential output voltage: | Table 7: Recommended Operating Conditions for Differential Outputs Ω VCCIO_x (V) VOD (mV) VOCM (V) I/O Standard Min Nom Max RS RP Min Nom Max LVDS 2.38 2.50 2.63 150 140 300 350 400 SubLVDS 1.71 1.80 1.89 270 120 100 150 200 Lattice Semiconductor Corporation www.latticesemi.com/ Min Nom Max (1.31, 30-MAR-2012) 5 iCE40 HX-Series Ultra-Low Power mobileFPGA™ Family AC Timing Guidelines The following examples provide some guidelines of device performance. The actual performance depends on the specific application and how it is physically implemented in the iCE65P FPGA using the Lattice iCEcube2 software. The following guidelines assume typical conditions (VCC = 1.0 V or 1.2 V as specified, temperature = 25 ˚C). Apply derating factors using the iCEcube2 timing analyzer to adjust to other operating regimes. Programmable Logic Block (PLB) Timing Table 8 provides timing information for the logic in a Programmable Logic Block (PLB), which includes the paths shown in Figure 5 and Figure 6. Figure 5 PLB Sequential Timing Circuit PAD PIO PAD DFF PIO D Q LUT4 GBIN Logic Logic Cell Cell GBUF Figure 6 PLB Combinational Timing Circuit PAD PIO PAD PIO LUT4 Logic Cell Table 8: Typical Programmable Logic Block (PLB) Timing Nominal VCC Description Sequential Logic Paths FTOGGLE GBIN GBIN Flip-flop toggle frequency. DFF flip-flop output fed back to LUT4 input with input input 4-input XOR, clocked on same clock edge Logic cell flip-flop (DFF) clock-to-output time, measured from the DFF CLK tCKO DFF PIO clock output input to PIO output, including interconnect delay. input Global Buffer Input (GBIN) delay, though Global Buffer (GBUF) clock network tGBCKLC GBIN DFF input clock to clock input on the logic cell DFF flip-flop. input tSULI PIO GBIN Minimum setup time on PIO input, through LUT4, to DFF flip-flop D-input input input before active clock edge on the GBIN input, including interconnect delay. Minimum hold time on PIO input, through LUT4, to DFF flip-flop D-input tHDLI GBIN PIO input input after active clock edge on the GBIN input, including interconnect delay. Combinational Logic Paths tLUT4IN PIO LUT4 Asynchronous delay from PIO input pad to adjacent PLB interconnect. input input tILO LUT4 LUT4 Logic cell LUT4 combinational logic propagation delay, regardless of logic input output complexity from input to output. Asynchronous delay from adjacent PLB interconnect to PIO output tLUT4IN LUT4 PIO output output pad. Lattice Semiconductor Corporation www.latticesemi.com/ 1.2 V Typ. units 256 MHz 3.9 ns 1.5 ns .67 ns 0 ns 1.8 ns 0.34 ns 3.7 ns (1.31, 30-MAR-2012) 6 iCE40 HX-Series Ultra-Low Power mobileFPGA™ Family Programmable Input/Output (PIO) Block Table 9 provides timing information for the logic in a Programmable Logic Block (PLB), which includes the paths shown in Figure 7 and Figure 8. The timing shown is for the LVCMOS25 I/O standard in all I/O banks. The iCEcube2 development software reports timing adjustments for other I/O standards. Figure 7: Programmable I/O (PIO) Pad-to-Pad Timing Circuit PAD PIO PAD PIO Figure 8: Programmable I/O (PIO) Sequential Timing Circuit PAD PIO PIO PAD INFF D Q GBIN OUTFF D Q GBUF Table 9: Typical Programmable Input/Output (PIO) Timing (LVCMOS25) Nominal VCC 1.2 V Description Synchronous Output Paths OUTFF Delay from clock input on OUTFF output flip-flop to PIO output tOCKO PIO clock output pad. input OUTFF Global Buffer Input (GBIN) delay, though Global Buffer (GBUF) tGBCKIO GBIN clock clock network to clock input on the PIO OUTFF output flip-flop. input input Synchronous Input Paths Setup time on PIO input pin to INFF input flip-flop before active tSUPDIN PIO GBIN clock edge on GBIN input, including interconnect delay. input input Hold time on PIO input to INFF input flip-flop after active clock tHDPDIN GBIN PIO edge on the GBIN input, including interconnect delay. input input Pad to Pad InterAsynchronous delay from PIO input pad to adjacent tPADIN PIO connect interconnect. input InterAsynchronous delay from adjacent interconnect to PIO output tPADO PIO connect output pad including interconnect delay. Lattice Semiconductor Corporation www.latticesemi.com/ Typ. units 3.1 ns 1.4 ns 0 ns 1.6 ns 1.8 ns 3.4 ns (1.31, 30-MAR-2012) 7 iCE40 HX-Series Ultra-Low Power mobileFPGA™ Family RAM4K Block Table 10 provides timing information for the logic in a RAM4K block, which includes the paths shown in Figure 9. Figure 9: RAM4K Timing Circuit PAD GBIN PIO WDATA RDATA RAM4K RAM Block (256x16) GBUF WCLK PIO PAD GBUF Table 10: Typical RAM4K Block Timing Nominal VCC Description Write Setup/Hold Time tSUWD PIO GBIN Minimum write data setup time on PIO inputs before active clock input input edge on GBIN input, include interconnect delay. Minimum write data hold time on PIO inputs after active clock edge tHDWD GBIN PIO input input on GBIN input, including interconnect delay. Read Clock-Output-Time Clock-to-output delay from RCLK input pin, through RAM4K RDATA tCKORD RCLK PIO clock output output flip-flop to PIO output pad, including interconnect delay. input tGBCKRM GBIN RCLK Global Buffer Input (GBIN) delay, though Global Buffer (GBUF) input clock clock network to the RCLK clock input. input Write and Read Clock Characteristics WCLK WCLK Write clock High time tRMWCKH RCLK RCLK Write clock Low time tRMWCKL Write clock cycle time tRMWCYC Sustained write clock frequency FWMAX Lattice Semiconductor Corporation www.latticesemi.com/ GBIN RCLK 1.2 V Typ. 0.44 ns 0 ns 4.1 ns 1.4 ns 0.30 0.35 0.71 256 ns ns ns MHz (1.31, 30-MAR-2012) 8 iCE40 HX-Series Ultra-Low Power mobileFPGA™ Family Phase-Locked Loop (PLL) Block Table 11 provides timing information for the Phase-Locked Loop (PLL) block shown in Figure 10. Figure 10: Phase-Locked Loop (PLL) PLL LATCHINPUTVALUE DYNAMICDELAY[3:0] EXTFEEDBACK BYPASS RESET REFERENCECLK LOCK PLLOUT Table 11: Phase-Locked Loop (PLL) Block Timing Nominal VCC 1.2 V Symbol From Frequency Range FREF FOUT Duty Cycle PLLIJ TwHI TwLOW PLLOJ Fine Delay tFDTAP PLLTAPS PLLFDAM Jitter PLLIPJ PLLOPJ Lock/Reset Time tLOCK twRST To Description Min. Typical Max. Units Input clock frequency range Output clock frequency range (cannot exceed maximum frequency supported by global buffers) 10 16 — — 133 533 MHz MHz Input duty cycle Input clock high time Input clock low time Output duty cycle 35 2.5 2.5 45 — — — — 65 — — 55 % ns ns % Fine delay adjustment, per tap Fine delay adjustment settings Maximum delay adjustment 0 165 — 2.5 15 ps taps ns Input clock period jitter PLLOUT output period jitter — — — 1% or ≤ 100 +/- 300 +/- 1.1% output period or ≥ 110 ps ps PLL lock time after receive stable, monotonic REFERENCECLK input Minimum reset pulse width — — 50 μs 20 — — ns Notes: 1. Output jitter performance is affected by input jitter. A clean reference clock < 100ps jitter must be used to ensure best jitter performance. 2. The output jitter specification refers to the intrinsic jitter of the PLL. Lattice Semiconductor Corporation www.latticesemi.com/ (1.31, 30-MAR-2012) 9 iCE40 HX-Series Ultra-Low Power mobileFPGA™ Family Internal Configuration Oscillator Frequency Table 12 shows the operating frequency for the iCE40’s internal configuration oscillator. Table 12: Internal Oscillator Frequency at VCC = 1.2V Symbol fOSCD fOSCL fOSCH Frequency (MHz) Min. Max. 7 10 Oscillator Mode Default Low Frequency High Frequency Off 21 30 Description Default oscillator frequency. Slow enough to safely operate with any SPI serial PROM. Supported by most SPI serial Flash PROMs 35 50 Supported by some high-speed SPI serial Flash PROMs 0 0 Oscillator turned off by default after configuration to save power. Configuration Timing Table 13 shows the maximum time to configure an iCE40HX device, by oscillator mode. The calculations use the slowest frequency for a given oscillator mode from Table 12 and the maximum configuration bitstream size from Table 1, which includes full RAM4K block initialization. The configuration bitstream selects the desired oscillator mode based on the performance of the configuration data source. Table 13: Typical SPI Master or NVCM Configuration Timing by Oscillator Mode Symbol tCONFIGL Description Time from when minimum Power-on Reset (POR) threshold is reached until user application starts. Device iCE40HX640 iCE40HX1K iCE40HX4K iCE40HX8K Default 53 53 230 230 Low Freq. 25 25 110 110 High Freq. 11 11 50 50 Units ms ms ms ms All Grades Min. Max. 200 — Units Table 14 provides timing for the CRESET_B and CDONE pins. Table 14: General Configuration Timing Symbol tCRESET_B tDONE_IO From To Description CREST_B CREST_B CDONE High PIO pins active Minimum CRESET_B Low pulse width required to restart configuration, from falling edge to rising edge Number of configuration clock cycles after CDONE goes High before the PIO pins are activated. SPI Peripheral Mode (Clock = SPI_SCK, cycles measured rising-edge to rising-edge) — 49 ns Clock cycles Depends on SPI_SCK frequency Table 15 provides various timing specifications for the SPI peripheral mode interface. Table 15: SPI Peripheral Mode Timing Symbol tCR_SCK From To CRESET_B SPI_SCK Description Minimum time from a rising edge on CRESET_B until the first SPI write operation, first SPI_SCK. During this time, the iCE40HX FPGA is clearing its internal configuration memory SPI_SI SPI_SCK Setup time on SPI_SI before the rising SPI_SCK clock tSUSPISI edge SPI_SCK SPI_SI Hold time on SPI_SI after the rising SPI_SCK clock edge tHDSPISI SPI_SCK SPI_SCK SPI_SCK clock High time tSPISCKH SPI_SCK SPI_SCK SPI_SCK clock Low time tSPISCKL tSPISCKCYC SPI_SCK SPI_SCK SPI_SCK clock period* SPI_SCK SPI_SCK Sustained SPI_SCK clock frequency* FSPI_SCK * = Applies after sending the synchronization pattern. Lattice Semiconductor Corporation www.latticesemi.com/ All Grades Min. Max. 300 — Units µs 12 — ns 12 20 20 40 1 — — — 1,000 25 ns ns ns ns MHz (1.31, 30-MAR-2012) 10 iCE40 HX-Series Ultra-Low Power mobileFPGA™ Family Power Consumption Characteristics Core Power Table 16 shows the power consumed on the internal VCC supply rail when the device is filled with 16-bit binary counters, measured with a 32.768 kHz and at 32.0 MHz Table 16: VCC Power Consumption for Device Filled with 16-Bit Binary Counters Symbol Description VCC ICC0K ICC32K ICC32M f =0 f ≤ .768 kHz f = 32.0 MHz 1.2V 1.2V 1.2V iCE40HX640 iCE40HX1K iCE40HX4K iCE40HX8K Typical Typical Typical Typical Units 200 222 4 267 297 4 667 741 12 1100 1222 13 µA µA mA I/O Power Table 17 provides the static current by I/O bank. The typical current for I/O Banks 0, 1, 2 and the SPI bank is not measurable within the accuracy of the test environment. The PIOs in I/O Bank 3 use different circuitry and dissipate a small amount of static current. Table 17: I/O Bank Static Current (f = 0 MHz) Symbol ICCO_0 ICCO_1 ICCO_2 ICCO_3 ICCO_SPI Description I/O Bank 0 I/O Bank 1 I/O Bank 2 I/O Bank 3 SPI Bank Static current consumption per I/O bank. f = 0 MHz. No PIO pull-up resistors enabled. All inputs grounded. All outputs driving Low. Typical « « « « « Maximum 1 1 1 1 1 Units uA uA uA uA uA NOTE: The typical static current for I/O Banks 0, 1, 2, and the SPI bank is less than the accuracy of the device tester. Power Estimator To estimate the power consumption for a specific application, please download and use the iCE40HX Power Estimator Spreadsheet our use the power estimator built into the iCEcube2 software. Lattice Semiconductor Corporation www.latticesemi.com/ (1.31, 30-MAR-2012) 11 iCE40 HX-Series Ultra-Low Power mobileFPGA™ Family Revision History Version Date 1.31 1.3 30-MAR-2012 22-MAR-2012 1.21 1.2 1.1 5-MAR-2012 13-FEB-2012 15-DEC-2011 1.01 1.0 31-OCT-2011 11-JUL-2011 Description Updated Table 1 Production Release Updated Notes on Table 3: Recommended Operating Conditions Updated values in Table 4, Table 5 Table 12, Table 13 and Table 17 Updated Figure 3 and Figure 4 to specify iCE40 Updated company name Moved package specifications to iCE40 Pinout Excel files. Updated Table 1 maximum IOs. Added 640, 1K and 4K to Table 13 configuration times. Updated Table 1 maximum IOs. Initial Release © 2012 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. Lattice Semiconductor Corporation 5555 N.E. Moore Court Hillsboro, Oregon 97124-6421 United States of America cumentation services by Prevailing Technology, Inc. ( www.prevailing-technology.com) Lattice Semiconductor Corporation www.latticesemi.com/ Tel: +1 503 268 8000 Fax: +1 503 268 8347 (1.31, 30-MAR-2012) 12