EBU WAN PLL IDT82V32021 Version 3 July 23, 2009 6024 Silver Creek Valley Road, San Jose, CA 95138 Telephone: (800) 345-7015 • TWX: 910-338-2070 • FAX: (408) 284-2775 Printed in U.S.A. © 2009 Integrated Device Technology, Inc. DISCLAIMER Integrated Device Technology, Inc. reserves the right to make changes to its products or specifications at any time, without notice, in order to improve design or performance and to supply the best possible product. IDT does not assume any responsibility for use of any circuitry described other than the circuitry embodied in an IDT product. The Company makes no representations that circuitry described herein is free from patent infringement or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent, patent rights or other rights, of Integrated Device Technology, Inc. LIFE SUPPORT POLICY Integrated Device Technology's products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to such intended use is executed between the manufacturer and an officer of IDT. 1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body or (b) support or sustain life and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. 2. A critical component is any components of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Table of Contents FEATURES .............................................................................................................................................................................. 8 HIGHLIGHTS.................................................................................................................................................................................................... 8 MAIN FEATURES ............................................................................................................................................................................................ 8 OTHER FEATURES ......................................................................................................................................................................................... 8 APPLICATIONS....................................................................................................................................................................... 8 DESCRIPTION......................................................................................................................................................................... 9 FUNCTIONAL BLOCK DIAGRAM ........................................................................................................................................ 10 1 PIN ASSIGNMENT ........................................................................................................................................................... 11 2 PIN DESCRIPTION .......................................................................................................................................................... 12 3 FUNCTIONAL DESCRIPTION ......................................................................................................................................... 16 3.1 3.2 3.3 RESET ........................................................................................................................................................................................................... 16 MASTER CLOCK .......................................................................................................................................................................................... 16 INPUT CLOCKS & FRAME SYNC SIGNALS ............................................................................................................................................... 17 3.3.1 Input Clocks .................................................................................................................................................................................... 17 3.3.2 Frame SYNC Input Signals ............................................................................................................................................................ 17 3.4 INPUT CLOCK PRE-DIVIDER ...................................................................................................................................................................... 18 3.5 INPUT CLOCK QUALITY MONITORING ..................................................................................................................................................... 19 3.5.1 Activity Monitoring ......................................................................................................................................................................... 19 3.5.2 Frequency Monitoring ................................................................................................................................................................... 20 3.6 DPLL INPUT CLOCK SELECTION .............................................................................................................................................................. 21 3.6.1 External Fast Selection .................................................................................................................................................................. 21 3.6.2 Forced Selection ............................................................................................................................................................................ 22 3.6.3 Automatic Selection ....................................................................................................................................................................... 22 3.7 SELECTED INPUT CLOCK MONITORING .................................................................................................................................................. 23 3.7.1 DPLL Locking Detection ................................................................................................................................................................ 23 3.7.1.1 Fast Loss .......................................................................................................................................................................... 23 3.7.1.2 Coarse Phase Loss .......................................................................................................................................................... 23 3.7.1.3 Fine Phase Loss ............................................................................................................................................................... 23 3.7.1.4 Hard Limit Exceeding ....................................................................................................................................................... 23 3.7.2 Locking Status ............................................................................................................................................................................... 23 3.7.3 Phase Lock Alarm .......................................................................................................................................................................... 23 3.8 SELECTED INPUT CLOCK SWITCH ........................................................................................................................................................... 25 3.8.1 Input Clock Validity ........................................................................................................................................................................ 25 3.8.2 Selected Input Clock Switch ......................................................................................................................................................... 25 3.8.2.1 Revertive Switch ............................................................................................................................................................... 25 3.8.2.2 Non-Revertive Switch ....................................................................................................................................................... 25 3.8.3 Selected / Qualified Input Clocks Indication ................................................................................................................................ 25 3.9 SELECTED INPUT CLOCK STATUS VS. DPLL OPERATING MODE ....................................................................................................... 27 3.10 DPLL OPERATING MODE ........................................................................................................................................................................... 29 3.10.1 Six Operating Modes ..................................................................................................................................................................... 29 3.10.1.1 Free-Run Mode ................................................................................................................................................................ 29 3.10.1.2 Pre-Locked Mode ............................................................................................................................................................. 29 3.10.1.3 Locked Mode .................................................................................................................................................................... 29 3.10.1.3.1 Temp-Holdover Mode .................................................................................................................................... 29 3.10.1.4 Lost-Phase Mode ............................................................................................................................................................. 29 3.10.1.5 Holdover Mode ................................................................................................................................................................. 29 Table of Contents 3 July 23, 2009 IDT82V32021 3.11 3.12 3.13 3.14 3.15 3.16 EBU WAN PLL 3.10.1.5.1 Automatic Instantaneous ............................................................................................................................... 30 3.10.1.5.2 Automatic Slow Averaged ............................................................................................................................. 30 3.10.1.5.3 Automatic Fast Averaged .............................................................................................................................. 30 3.10.1.5.4 Manual ........................................................................................................................................................... 30 3.10.1.5.5 Holdover Frequency Offset Read .................................................................................................................. 30 3.10.1.6 Pre-Locked2 Mode ........................................................................................................................................................... 30 DPLL OUTPUT .............................................................................................................................................................................................. 32 3.11.1 PFD Output Limit ............................................................................................................................................................................ 32 3.11.2 Frequency Offset Limit .................................................................................................................................................................. 32 3.11.3 PBO ................................................................................................................................................................................................. 32 3.11.4 Four Paths of T0 DPLL Output ...................................................................................................................................................... 32 T0 APLL ........................................................................................................................................................................................................ 34 OUTPUT CLOCK & FRAME SYNC SIGNALS ............................................................................................................................................. 34 3.13.1 Output Clock ................................................................................................................................................................................... 34 3.13.2 Frame SYNC Output Signal ........................................................................................................................................................... 36 INTERRUPT SUMMARY ............................................................................................................................................................................... 38 T0 SUMMARY ............................................................................................................................................................................................... 38 LINE CARD APPLICATION .......................................................................................................................................................................... 39 4 I2C PROGRAMMING INTERFACE .................................................................................................................................. 40 4.1 4.2 FUNCTION DESCRIPTION ........................................................................................................................................................................... 40 4.1.1 Data Transfer Format ..................................................................................................................................................................... 41 4.1.1.1 Slave-receiver Mode (Write) ............................................................................................................................................. 41 4.1.1.2 Slave-transmitter Mode (Read) ........................................................................................................................................ 41 4.1.2 Address Assignment ..................................................................................................................................................................... 42 TIMING DEFINITION ..................................................................................................................................................................................... 42 5 JTAG ................................................................................................................................................................................ 44 6 PROGRAMMING INFORMATION .................................................................................................................................... 45 6.1 6.2 REGISTER MAP ............................................................................................................................................................................................ 45 REGISTER DESCRIPTION ........................................................................................................................................................................... 49 6.2.1 Global Control Registers ............................................................................................................................................................... 49 6.2.2 Interrupt Registers ......................................................................................................................................................................... 56 6.2.3 Input Clock Frequency & Priority Configuration Registers ....................................................................................................... 60 6.2.4 Input Clock Quality Monitoring Configuration & Status Registers ........................................................................................... 65 6.2.5 T0 DPLL Input Clock Selection Registers .................................................................................................................................... 73 6.2.6 T0 DPLL State Machine Control Registers .................................................................................................................................. 75 6.2.7 T0 DPLL & T0 APLL Configuration Registers .............................................................................................................................. 77 6.2.8 Output Configuration Registers .................................................................................................................................................... 88 6.2.9 PBO & Phase Offset Control Registers ........................................................................................................................................ 90 6.2.10 Synchronization Configuration Registers ................................................................................................................................... 91 7 THERMAL MANAGEMENT ............................................................................................................................................. 92 7.1 7.2 7.3 7.4 JUNCTION TEMPERATURE ........................................................................................................................................................................ 92 EXAMPLE OF JUNCTION TEMPERATURE CALCULATION ..................................................................................................................... 92 HEATSINK EVALUATION ............................................................................................................................................................................ 92 VFQFPN EPAD THERMAL RELEASE PATH .............................................................................................................................................. 93 8.1 8.2 8.3 ABSOLUTE MAXIMUM RATING .................................................................................................................................................................. 94 RECOMMENDED OPERATION CONDITIONS ............................................................................................................................................ 94 I/O SPECIFICATIONS ................................................................................................................................................................................... 95 8.3.1 CMOS Input / Output Port .............................................................................................................................................................. 95 JITTER & WANDER PERFORMANCE ......................................................................................................................................................... 97 OUTPUT WANDER GENERATION .............................................................................................................................................................. 99 INPUT / OUTPUT CLOCK TIMING ............................................................................................................................................................. 100 8 ELECTRICAL SPECIFICATIONS .................................................................................................................................... 94 8.4 8.5 8.6 Table of Contents 4 July 23, 2009 IDT82V32021 8.7 EBU WAN PLL OUTPUT CLOCK TIMING ........................................................................................................................................................................... 101 PACKAGE DIMENSIONS - 68-PIN NL ............................................................................................................................... 106 ORDERING INFORMATION................................................................................................................................................ 108 DATASHEET DOCUMENT HISTORY................................................................................................................................. 108 5 July 23, 2009 List of Tables Table 1: Table 2: Table 3: Table 4: Table 5: Table 6: Table 7: Table 8: Table 9: Table 10: Table 11: Table 12: Table 13: Table 14: Table 15: Table 16: Table 17: Table 18: Table 19: Table 20: Table 21: Table 22: Table 23: Table 24: Table 25: Table 26: Table 27: Table 28: Table 29: Table 30: Table 31: Table 32: Table 33: Table 34: Table 35: Table 36: Table 37: Table 38: Table 39: Table 40: Table 41: Table 42: Table 43: Table 44: Table 45: Table 46: Table 47: Table 48: Pin Description ............................................................................................................................................................................................. 12 Related Bit / Register in Chapter 3.2 ........................................................................................................................................................... 16 Related Bit / Register in Chapter 3.3 ........................................................................................................................................................... 17 Related Bit / Register in Chapter 3.4 ........................................................................................................................................................... 18 Related Bit / Register in Chapter 3.5 ........................................................................................................................................................... 20 Input Clock Selection ................................................................................................................................................................................... 21 External Fast Selection ................................................................................................................................................................................ 21 ‘n’ Assigned to the Input Clock ..................................................................................................................................................................... 22 Related Bit / Register in Chapter 3.6 ........................................................................................................................................................... 22 Coarse Phase Limit Programming (the selected input clock of 2 kHz, 4 kHz or 8 kHz) .............................................................................. 23 Coarse Phase Limit Programming (the selected input clock of other than 2 kHz, 4 kHz and 8 kHz) .......................................................... 23 Related Bit / Register in Chapter 3.7 ........................................................................................................................................................... 24 Related Bit / Register in Chapter 3.8 ........................................................................................................................................................... 26 T0 DPLL Operating Mode Control ............................................................................................................................................................... 27 Related Bit / Register in Chapter 3.9 ........................................................................................................................................................... 28 Frequency Offset Control in Temp-Holdover Mode ..................................................................................................................................... 29 Frequency Offset Control in Holdover Mode ............................................................................................................................................... 30 Holdover Frequency Offset Read ................................................................................................................................................................ 30 Related Bit / Register in Chapter 3.10 ......................................................................................................................................................... 31 Related Bit / Register in Chapter 3.11 ......................................................................................................................................................... 33 Related Bit / Register in Chapter 3.12 ......................................................................................................................................................... 34 Output on OUT1 if Derived from T0 DPLL Output ....................................................................................................................................... 34 Output on OUT1 if Derived from T0 APLL ................................................................................................................................................... 35 Frame Sync Input Signal Selection .............................................................................................................................................................. 36 Synchronization Control ............................................................................................................................................................................... 36 Related Bit / Register in Chapter 3.13 ......................................................................................................................................................... 37 Related Bit / Register in Chapter 3.14 ......................................................................................................................................................... 38 Definition of S/Sr and P Conditions ............................................................................................................................................................. 40 Timing Definition for Standard Mode and Fast Mode(1) .............................................................................................................................. 43 JTAG Timing Characteristics ....................................................................................................................................................................... 44 Register List and Map .................................................................................................................................................................................. 45 Power Consumption and Maximum Junction Temperature ......................................................................................................................... 92 Thermal Data ............................................................................................................................................................................................... 92 Absolute Maximum Rating ........................................................................................................................................................................... 94 Recommended Operation Conditions .......................................................................................................................................................... 94 CMOS Input Port Electrical Characteristics ................................................................................................................................................. 95 CMOS Input Port with Internal Pull-Up Resistor Electrical Characteristics .................................................................................................. 95 CMOS Input Port with Internal Pull-Down Resistor Electrical Characteristics ............................................................................................. 95 CMOS Output Port Electrical Characteristics .............................................................................................................................................. 96 Output Clock Jitter Generation .................................................................................................................................................................... 97 Output Clock Phase Noise ........................................................................................................................................................................... 97 Input Jitter Tolerance (155.52 MHz) ............................................................................................................................................................ 98 Input Jitter Tolerance (1.544 MHz) .............................................................................................................................................................. 98 Input Jitter Tolerance (2.048 MHz) .............................................................................................................................................................. 98 Input Jitter Tolerance (8 kHz) ...................................................................................................................................................................... 98 T0 DPLL Jitter Transfer & Damping Factor ................................................................................................................................................. 98 Input/Output Clock Timing ......................................................................................................................................................................... 100 Output Clock Timing .................................................................................................................................................................................. 101 List of Tables 6 July 23, 2009 List of Figures Figure 1. Functional Block Diagram ............................................................................................................................................................................ 10 Figure 2. Pin Assignment (Top View) .......................................................................................................................................................................... 11 Figure 3. Pre-Divider for An Input Clock ..................................................................................................................................................................... 18 Figure 4. Input Clock Activity Monitoring ..................................................................................................................................................................... 19 Figure 5. External Fast Selection ................................................................................................................................................................................ 21 Figure 6. T0 Selected Input Clock vs. DPLL Automatic Operating Mode ................................................................................................................... 27 Figure 7. On Target Frame Sync Input Signal Timing ................................................................................................................................................. 36 Figure 8. 0.5 UI Early Frame Sync Input Signal Timing .............................................................................................................................................. 36 Figure 9. 0.5 UI Late Frame Sync Input Signal Timing ............................................................................................................................................... 37 Figure 10. 1 UI Late Frame Sync Input Signal Timing ................................................................................................................................................. 37 Figure 11. Line Card Application ................................................................................................................................................................................. 39 Figure 12. Data Transfer on the I2C-bus ..................................................................................................................................................................... 40 Figure 13. Slave-receiver Mode ................................................................................................................................................................................... 41 Figure 14. Slave-transmitter Mode .............................................................................................................................................................................. 41 Figure 15. Address Assignment ................................................................................................................................................................................... 42 Figure 16. Timing Definition of I2C-bus ....................................................................................................................................................................... 42 Figure 17. JTAG Interface Timing Diagram ................................................................................................................................................................. 44 Figure 18. Assembly for Expose Pad thermal Release Path (Side View) ................................................................................................................... 93 Figure 19. Output Wander Generation ........................................................................................................................................................................ 99 Figure 20. Input / Output Clock Timing ...................................................................................................................................................................... 100 Figure 21. 68-Pin NL Package Dimensions (a) (in Millimeters) ................................................................................................................................. 106 Figure 22. 68-Pin NL Package Dimensions (b) (in Millimeters) ................................................................................................................................. 107 List of Figures 7 July 23, 2009 EBU WAN PLL FEATURES • HIGHLIGHTS • The first single PLL chip: - Features 1.2 Hz to 560 Hz bandwidth - Exceeds GR-253-CORE (OC-12) and ITU-T G.813 (STM-16/ Option I) jitter generation requirements - Provides node clocks for Cellular and WLL base-station (GSM and 3G networks) - Provides clocks for DSL access concentrators (DSLAM), especially for Japan TCM-ISDN network timing based ADSL equipments • • • • • • • • MAIN FEATURES • • • • • • • • • • Provides an integrated single-chip solution for Synchronous Equipment Timing Source, including 4E and 4 clocks Employs DPLL and APLL to feature excellent jitter performance and minimize the number of the external components Supports Forced or Automatic operating mode switch controlled by an internal state machine; the primary operating modes are FreeRun, Locked and Holdover Supports programmable DPLL bandwidth (1.2 Hz to 560 Hz in 8 steps) and damping factor (1.2 to 20 in 5 steps) Supports 1.1X10-5 ppm absolute holdover accuracy and 4.4X10-8 ppm instantaneous holdover accuracy Supports PBO to minimize phase transients on T0 DPLL output to be no more than 0.61 ns Supports phase absorption when phase-time changes on T0 selected input clock are greater than a programmable limit over an interval of less than 0.1 seconds Limits the phase and frequency offset of the output Supports manual and automatic selected input clock switch Supports automatic hitless selected input clock switch on clock failure IDT82V32021 Supports three types of input clock sources: recovered clock from STM-N or OC-n, PDH network synchronization timing and external synchronization reference timing Provides two 2 kHz, 4 kHz or 8 kHz frame sync input signals, and an 8 kHz frame sync output signal Provides two input clocks whose frequency cover from 2 kHz to 155.52 MHz Provides one output clock whose frequency covers from 1Hz to 155.52 MHz Provides output clocks for BITS, GPS, 3G, GSM, etc. Supports CMOS input/output Supports master clock calibration Supports Line Card application Meets Telcordia GR-1244-CORE, GR-253-CORE, ITU-T G.812, ITU-T G.813 and ITU-T G.783 criteria OTHER FEATURES • • • • I2C programming interface IEEE 1149.1 JTAG Boundary Scan Single 3.3 V operation with 5 V tolerant CMOS I/Os 68-pin VFQFPN package, Green package options available APPLICATIONS • • • • • • • • • • BITS / SSU SMC / SEC (SONET / SDH) DWDM cross-connect and transmission equipments Central Office Timing Source and Distribution Core and access IP switches / routers Gigabit and Terabit IP switches / routers IP and ATM core switches and access equipments Cellular and WLL base-station node clocks Broadband and multi-service access equipments Any other telecom equipments that need synchronous equipment system timing IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. 8 2009 Integrated Device Technology, Inc. July 23, 2009 DSC-7071/3 IDT82V32021 EBU WAN PLL DESCRIPTION Locked mode. Whatever the operating mode is, the DPLL gives a stable performance without being affected by operating conditions or silicon process variations. The IDT82V32021 is an integrated, single-chip solution for the Synchronous Equipment Timing Source for 4E and 4 clocks in SONET / SDH equipments, DWDM and Wireless base station, such as GSM, 3G, DSL concentrator, Router and Access Network applications. If the DPLL outputs are processed by T0 APLL, the outputs of the device will be in a better jitter/wander performance. The device supports three types of input clock sources: recovered clock from STM-N or OC-n, PDH network synchronization timing and external synchronization reference timing. A high stable input is required for the master clock in different applications. The master clock is used as a reference clock for all the internal circuits in the device. It can be calibrated within ±741 ppm. An input clock is automatically or manually selected for DPLL locking. The DPLL supports three primary operating modes: Free-Run, Locked and Holdover. In Free-Run mode, the DPLL refers to the master clock. In Locked mode, the DPLL locks to the selected input clock. In Holdover mode, the DPLL resorts to the frequency data acquired in All the read/write registers are accessed only through an I2C programming interface. Description The device can be used typically in Line Card application. 9 July 23, 2009 Functional Block Diagram EX_SYNC2 IN2_CMOS EX_SYNC1 IN1_CMOS Input EX_SYNC2 Input Pre-Divider EX_SYNC1 Input Pre-Divider Priority Priority T0 Input Selector Monitors 10 OSCI APLL Divider T0 PFD & LPF T0 DPLL 12E1/24T1/E3/T3 16E1/16T1 GSM/OBSAI/16E1/16T1 Microprocessor Interface PBO Phase Offset 77.76 MHz JTAG T0 APLL MUX T0 APLL Output 6 FRSYN C_8K MUX OUT1 MUX Auto Divider Divider FRSYNC_8K OUT1 IDT82V32021 EBU WAN PLL FUNCTIONAL BLOCK DIAGRAM Figure 1. Functional Block Diagram July 23, 2009 IDT82V32021 PIN ASSIGNMENT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 IDT82V32021 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 RST SCL AD2 AD1 AD0 IC10 NC IC9 TMS DGND5 VDDD5 VDDD5 TRST VDDD5 IC8 IC7 EX_SYNC2 FRSYNC_8K IC17 IC18 IC19 GND_DIFF VDD_DIFF IC3 IC4 IC5 IC6 NC NC EX_SYNC1 IN1_CMOS IN2_CMOS DGND4 VDDD4 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 AGND IC1 AGND1 VDDA1 NC INT_REQ OSCI DGND1 VDDD1 VDDD3 DGND3 DGND2 VDDD2 FF_SRCSW VDDA2 AGND2 IC2 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 SONET/SDH IC16 IC15 IC14 IC13 IC12 NC AGND3 VDDA3 OUT1 IC11 VDDD6 DGND6 SDA TDI TDO TCK 1 EBU WAN PLL Figure 2. Pin Assignment (Top View) Pin Assignment 11 July 23, 2009 IDT82V32021 2 EBU WAN PLL PIN DESCRIPTION Table 1: Pin Description Name Pin No. I/O Description 1 Type Global Control Signal OSCI 7 I CMOS FF_SRCSW 14 I pull-down CMOS OSCI: Crystal Oscillator Master Clock A nominal 12.8000 MHz clock provided by a crystal oscillator is input on this pin. It is the master clock for the device. FF_SRCSW: External Fast Selection Enable During reset, this pin determines the default value of the EXT_SW bit (b4, 0BH) 2. The EXT_SW bit determines whether the External Fast Selection is enabled. High: The default value of the EXT_SW bit (b4, 0BH) is ‘1’ (External Fast selection is enabled); Low: The default value of the EXT_SW bit (b4, 0BH) is ‘0’ (External Fast selection is disabled). After reset, this pin selects an input clock for the T0 DPLL if the External Fast selection is enabled: High: IN1_CMOS is selected. Low: IN2_CMOS is selected. After reset, the input on this pin takes no effect if the External Fast selection is disabled. SONET/SDH 68 I pull-down CMOS SONET/SDH: SONET / SDH Frequency Selection During reset, this pin determines the default value of the IN_SONET_SDH bit (b2, 09H): High: The default value of the IN_SONET_SDH bit is ‘1’ (SONET); Low: The default value of the IN_SONET_SDH bit is ‘0’ (SDH). After reset, the value on this pin takes no effect. RST 51 I pull-up CMOS RST: Reset A low pulse of at least 50 µs on this pin resets the device. After this pin is high, the device will still be held in reset state for 500 ms (typical). Frame Synchronization Input Signal EX_SYNC1 30 EX_SYNC2 35 I pull-down I pull-down CMOS EX_SYNC1: External Sync Input 1 A 2 kHz, 4 kHz or 8 kHz signal is input on this pin. CMOS EX_SYNC2: External Sync Input 2 A 2 kHz, 4 kHz or 8 kHz signal is input on this pin. Input Clock IN1_CMOS 31 I pull-down CMOS IN2_CMOS 32 I pull-down CMOS IN1_CMOS: Input Clock 1 A 2 kHz, 4 kHz, N x 8 kHz 3, 1.544 MHz (SONET) / 2.048 MHz (SDH), 6.48 MHz, 19.44 MHz, 25.92 MHz, 38.88 MHz, 51.84 MHz, 77.76 MHz or 155.52 MHz clock is input on this pin. IN2_CMOS: Input Clock 2 A 2 kHz, 4 kHz, N x 8 kHz 3, 1.544 MHz (SONET) / 2.048 MHz (SDH), 6.48 MHz, 19.44 MHz, 25.92 MHz, 38.88 MHz, 51.84 MHz, 77.76 MHz or 155.52 MHz clock is input on this pin. Output Frame Synchronization Signal FRSYNC_8K 18 O CMOS FRSYNC_8K: 8 kHz Frame Sync Output An 8 kHz signal is output on this pin. Output Clock OUT1 Pin Description 59 O CMOS OUT1: Output Clock 1 A 1 Hz, 400 Hz, 2 kHz, 8 kHz, 64 kHz, N x E1 (includes 65.536 MHz) 4, N x T1 5, N x 13.0 MHz 6, N x 3.84 MHz 7, E3, T3, 6.48 MHz, 19.44 MHz, 25.92 MHz, 38.88 MHz, 51.84 MHz, 77.76 MHz or 155.52 MHz clock is output on this pin. 12 July 23, 2009 IDT82V32021 EBU WAN PLL Table 1: Pin Description (Continued) Name Pin No. I/O Description 1 Type I2C Programming Interface INT_REQ 6 AD0 47 AD1 48 AD2 49 O CMOS I CMOS SCL 50 I CMOS SDA 55 I/O CMOS INT_REQ: Interrupt Request This pin is used as an interrupt request. The output characteristics are determined by the HZ_EN bit (b1, 0CH) and the INT_POL bit (b0, 0CH). AD[2:0]: Address Input 2 to 0 The address is input on these pins. SCL: Serial Clock Line The serial clock is input on this pin. The clock is 100 kbit/s in Standard mode and 400 kbit/s in Fast mode. Should be pulled high via a 10 kΩ resistor. SDA: Serial Data Input/Output This pin is used as the input/output for the serial data. Should be pulled high via a 10 kΩ resistor. JTAG (per IEEE 1149.1) TRST 39 I pull-down CMOS TMS 43 I pull-up CMOS TCK 52 I pull-down CMOS TDI 54 I pull-up CMOS TDO 53 VDDD1 9 VDDD2 13 VDDD3 10 VDDD4 34 VDDD5 38, 40, 41 VDDD6 VDDA1 57 4 VDDA2 15 VDDA3 60 O CMOS TRST: JTAG Test Reset (Active Low) A low signal on this pin resets the JTAG test port. This pin should be connected to ground when JTAG is not used. TMS: JTAG Test Mode Select The signal on this pin controls the JTAG test performance and is sampled on the rising edge of TCK. TCK: JTAG Test Clock The clock for the JTAG test is input on this pin. TDI and TMS are sampled on the rising edge of TCK and TDO is updated on the falling edge of TCK. If TCK is idle at a low level, all stored-state devices contained in the test logic will indefinitely retain their state. TDI: JTAG Test Data Input The test data is input on this pin. It is clocked into the device on the rising edge of TCK. TDO: JTAG Test Data Output The test data is output on this pin. It is clocked out of the device on the falling edge of TCK. TDO pin outputs a high impedance signal except during the process of data scanning. This pin can indicate the interrupt of T0 selected input clock fail, as determined by the LOS_FLAG_ON_TDO bit (b6, 0BH). Refer to Chapter 3.8.1 Input Clock Validity for details. Power & Ground VDDDn: 3.3 V Digital Power Supply Each VDDDn should be paralleled with ground through a 0.1 µF capacitor. Power Pin Description - VDDAn: 3.3 V Analog Power Supply Each VDDAn should be paralleled with ground through a 0.1 µF capacitor. Power - 13 July 23, 2009 IDT82V32021 EBU WAN PLL Table 1: Pin Description (Continued) Name Pin No. I/O Type VDD_DIFF DGND1 23 8 Power - DGND2 12 DGND3 11 Ground - DGND4 33 DGND5 42 DGND6 AGND1 56 3 AGND2 16 Ground - AGND3 GND_DIFF AGND 61 22 1 Ground Ground - Pin Description Description 1 VDD_DIFF: 3.3 V Power Supply DGNDn: Digital Ground AGNDn: Analog Ground GND_DIFF: Ground AGND: Analog Ground 14 July 23, 2009 IDT82V32021 EBU WAN PLL Table 1: Pin Description (Continued) Name Pin No. I/O Description 1 Type Others IC1 2 IC2 17 IC3 24 IC4 25 IC5 26 IC6 27 IC7 36 IC8 37 IC9 44 IC10 46 IC11 58 IC12 63 IC13 64 IC14 65 IC15 66 IC16 67 IC17 19 IC18 20 IC19 NC 21 5, 28, 29, 45, 62 IC: internally connected Internal Use. These pins should be left open for normal operation. - - - - NC: Not Connected Note: 1. All the unused input pins should be connected to ground; the output of all the unused output pins are don’t-care. 2. The contents in the brackets indicate the position of the register bit/bits. 3. N x 8 kHz: 1 < N < 19440. 4. N x E1: N = 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64. 5. N x T1: N = 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96. 6. N x 13.0 MHz: N = 1, 2, 4. 7. N x 3.84 MHz: N = 1, 2, 4, 8, 16, 10, 20, 40. Pin Description 15 July 23, 2009 IDT82V32021 EBU WAN PLL 3 FUNCTIONAL DESCRIPTION 3.2 3.1 RESET A nominal 12.8000 MHz clock, provided by a crystal oscillator, is input on the OSCI pin. This clock is provided for the device as a master clock. The master clock is used as a reference clock for all the internal circuits. A better active edge of the master clock is selected by the OSC_EDGE bit to improve jitter and wander performance. The reset operation resets all registers and state machines to their default value or status. After power on, the device must be reset for normal operation. MASTER CLOCK In fact, an offset from the nominal frequency may input on the OSCI pin. This offset can be compensated by setting the NOMINAL_FREQ_VALUE[23:0] bits. The calibration range is within ±741 ppm. For a complete reset, the RST pin must be asserted low for at least 50 µs. After the RST pin is pulled high, the device will still be in reset state for 500 ms (typical). If the RST pin is held low continuously, the device remains in reset state. The performance of the master clock should meet GR-1244-CORE, GR-253-CORE, ITU-T G.812 and G.813 criteria. Table 2: Related Bit / Register in Chapter 3.2 Bit Register Address (Hex) NOMINAL_FREQ_VALUE[23:0] OSC_EDGE NOMINAL_FREQ[23:16]_CNFG, NOMINAL_FREQ[15:8]_CNFG, NOMINAL_FREQ[7:0]_CNFG OSCI_CNFG 06, 05, 04 0A Functional Description 16 July 23, 2009 IDT82V32021 3.3 EBU WAN PLL INPUT CLOCKS & FRAME SYNC SIGNALS mined by the SONET/SDH pin: high for SONET and low for SDH. After reset, the input signal on the SONET/SDH pin takes no effect. Altogether two clocks and two frame sync signals are input to the device. 3.3.1 3.3.2 Two 2 kHz, 4 kHz or 8 kHz frame sync signals are input on the EX_SYNC1 and EX_SYNC2 pins respectively. They are CMOS inputs. The input frequency should match the setting in the SYNC_FREQ[1:0] bits. The frame sync signals are only valid for the OC-n clock (6.48 MHz, 19.44 MHz, 38.88 MHz and 77.76 MHz) input. INPUT CLOCKS The device provides two CMOS input clock ports: IN1_CMOS and IN2_CMOS. According to the input clock source, the following clock sources are supported: • T1: Recovered clock from STM-N or OC-n • T2: PDH network synchronization timing • T3: External synchronization reference timing Only one of the two frame sync input signals is used for frame sync output signal synchronization. Refer to Chapter 3.13.2 Frame SYNC Output Signal for details. Table 3: Related Bit / Register in Chapter 3.3 The clock sources can be from T1, T2 or T3. For SDH and SONET networks, the default frequency is different. SONET / SDH frequency selection is controlled by the IN_SONET_SDH bit. During reset, the default value of the IN_SONET_SDH bit is deter- Functional Description FRAME SYNC INPUT SIGNALS 17 Bit Register Address (Hex) IN_SONET_SDH SYNC_FREQ[1:0] INPUT_MODE_CNFG 09 July 23, 2009 IDT82V32021 3.4 EBU WAN PLL INPUT CLOCK PRE-DIVIDER Once the division factor is set for the input clock selected by the PRE_DIV_CH_VALUE[3:0] bits, it is valid until a different division factor is set for the same input clock. The division factor is calculated as follows: Each input clock is assigned an internal Pre-Divider. The Pre-Divider is used to divide the clock frequency down to the DPLL required frequency, which is no more than 38.88 MHz. For each input clock, the DPLL required frequency is set by the corresponding IN_FREQ[3:0] bits. Division Factor = (the frequency of the clock input to the DivN Divider ÷ the frequency of the DPLL required clock set by the IN_FREQ[3:0] bits) - 1 If the input clock is of 2 kHz, 4 kHz or 8 kHz, the Pre-Divider is bypassed automatically and the corresponding IN_FREQ[3:0] bits should be set to match the input frequency; the input clock can be inverted, as determined by the IN_2K_4K_8K_INV bit. The DivN Divider can only divide the input clock whose frequency is lower than (<) 155.52 MHz. When the Lock 8k Divider is used, the input clock is divided down to 8 kHz automatically. Each Pre-Divider consists of a DivN Divider and a Lock 8k Divider, as shown in Figure 3. The Pre-Divider configuration and the division factor setting depend on the input clock on one of the clock input pin and the DPLL required clock. Here is an example: Either the DivN Divider or the Lock 8k Divider can be used or both can be bypassed, as determined by the DIRECT_DIV bit and the LOCK_8K bit. The input clock on the IN2_CMOS pin is 155.52 MHz; the DPLL required clock is 6.48 MHz by programming the IN_FREQ[3:0] bits of register IN2_CMOS_CNFG to ‘0010’. Do the following to divide the input clock: Use the DivN Divider to divide the clock down to 6.48 MHz: Set the PRE_DIV_CH_VALUE[3:0] bits to ‘0011’; Set the DIRECT_DIV bit in Register IN2_CMOS_CNFG to ‘1’ and the LOCK_8K bit in Register IN2_CMOS_CNFG to ‘0’; 155.52 ÷ 6.48 = 24; 24 - 1 = 23, so set the PRE_DIVN_VALUE[14:0] bits to ‘10111’. When the DivN Divider is used, the division factor setting should observe the following order: 1. Select an input clock by the PRE_DIV_CH_VALUE[3:0] bits; 2. Write the lower eight bits of the division factor to the PRE_DIVN_VALUE[7:0] bits; 3. Write the higher eight bits of the division factor to the PRE_DIVN_VALUE[14:8] bits. Pre-Divider DIRECT_DIV bit input clock DivN Divider LOCK_8K bit Lock 8k Divider DPLL required clock Figure 3. Pre-Divider for An Input Clock Table 4: Related Bit / Register in Chapter 3.4 Bit IN_FREQ[3:0] DIRECT_DIV LOCK_8K IN_2K_4K_8K_INV PRE_DIV_CH_VALUE[3:0] PRE_DIVN_VALUE[14:0] Functional Description Register Address (Hex) IN1_CMOS_CNFG, IN2_CMOS_CNFG 16, 17 FR_SYNC_CNFG PRE_DIV_CH_CNFG PRE_DIVN[14:8]_CNFG, PRE_DIVN[7:0]_CNFG 74 23 25, 24 18 July 23, 2009 IDT82V32021 3.5 EBU WAN PLL INPUT CLOCK QUALITY MONITORING responding BUCKET_SEL[1:0] bits. Each leaky bucket configuration consists of four elements: upper threshold, lower threshold, bucket size and decay rate. The qualities of the input clocks are always monitored in the following aspects: • Activity • Frequency The bucket size is the capability of the accumulator. If the number of the accumulated events reach the bucket size, the accumulator will stop increasing even if further events are detected. The upper threshold is a point above which a no-activity alarm is raised. The lower threshold is a point below which the no-activity alarm is cleared. The decay rate is a certain period during which the accumulator decreases by 1 if no event is detected. The qualified clocks are available for T0 DPLL selection. The T0 selected input clock has to be monitored further. Refer to Chapter 3.7 Selected Input Clock Monitoring for details. 3.5.1 ACTIVITY MONITORING The leaky bucket configuration is programmed by one of four groups of register bits: the BUCKET_SIZE_n_DATA[7:0] bits, the UPPER_ THRESHOLD_n_DATA[7:0] bits, the LOWER_THRESHOLD_n_ DATA[7:0] bits and the DECAY_RATE_n_DATA[1:0] bits respectively; ‘n’ is 0 ~ 3. Activity is monitored by using an internal leaky bucket accumulator, as shown in Figure 4. Each input clock is assigned an internal leaky bucket accumulator. The input clock is monitored for each period of 128 ms and the internal leaky bucket accumulator increases by 1 when an event is detected; it decreases by 1 if no event is detected within the period set by the decay rate. The event is that an input clock drifts outside (>) ±500 ppm with respect to the master clock within a 128 ms period. The no-activity alarm status of the input clock is indicated by the INn_CMOS_NO_ACTIVITY_ALARM bit (n = 1 or 2). The input clock with a no-activity alarm is disqualified for clock selection for T0 DPLL. There are four configurations (0 - 3) for a leaky bucket accumulator. The leaky bucket configuration for an input clock is selected by the cor- clock signal with events clock signal with no event Input Clock Decay Rate Bucket Size Upper Threshold Leaky Bucket Accumulator Lower Threshold 0 No-activity Alarm Indication Figure 4. Input Clock Activity Monitoring Functional Description 19 July 23, 2009 IDT82V32021 3.5.2 EBU WAN PLL The input clock with a frequency hard alarm is disqualified for clock selection for T0 DPLL. FREQUENCY MONITORING Frequency is monitored by comparing the input clock with a reference clock. The reference clock can be derived from the master clock or the output of T0 DPLL, as determined by the FREQ_MON_CLK bit. In addition, if the input clock is 2 kHz, 4 kHz or 8 kHz, its clock edges with respect to the reference clock are monitored. If any edge drifts outside ±5%, the input clock is disqualified for clock selection for T0 DPLL. The input clock is qualified if any edge drifts inside ±5%. This function is supported only when the IN_NOISE_WINDOW bit is ‘1’. A frequency hard alarm threshold is set for frequency monitoring. If the FREQ_MON_HARD_EN bit is ‘1’, a frequency hard alarm is raised when the frequency of the input clock with respect to the reference clock is above the threshold; the alarm is cleared when the frequency is below the threshold. The frequency of each input clock with respect to the reference clock can be read by doing the following step by step: 1. Select an input clock by setting the IN_FREQ_READ_CH[3:0] bits; 2. Read the value in the IN_FREQ_VALUE[7:0] bits and calculate as follows: The frequency hard alarm threshold can be calculated as follows: Frequency Hard Alarm Threshold (ppm) = (ALL_FREQ_HARD_ THRESHOLD[3:0] + 1) X FREQ_MON_FACTOR[3:0] If the FREQ_MON_HARD_EN bit is ‘1’, the frequency hard alarm status of the input clock is indicated by the INn_CMOS_FREQ_HARD_ALARM bit (n = 1 or 2). When the FREQ_MON_HARD_EN bit is ‘0’, no frequency hard alarm is raised even if the input clock is above the frequency hard alarm threshold. Input Clock Frequency (ppm) = IN_FREQ_VALUE[7:0] X FREQ_MON_FACTOR[3:0] Note that the value set by the FREQ_MON_FACTOR[3:0] bits depends on the application. Table 5: Related Bit / Register in Chapter 3.5 Bit Register Address (Hex) BUCKET_SIZE_n_DATA[7:0] (3 ≥ n ≥ 0) UPPER_THRESHOLD_n_DATA[7:0] (3 ≥ n ≥ 0) LOWER_THRESHOLD_n_DATA[7:0] (3 ≥ n ≥ 0) DECAY_RATE_n_DATA[1:0] (3 ≥ n ≥ 0) BUCKET_SEL[1:0] INn_CMOS_NO_ACTIVITY_ALARM (n = 1 or 2) INn_CMOS_FREQ_HARD_ALARM (n = 1 or 2) FREQ_MON_CLK FREQ_MON_HARD_EN ALL_FREQ_HARD_THRESHOLD[3:0] FREQ_MON_FACTOR[3:0] IN_NOISE_WINDOW IN_FREQ_READ_CH[3:0] IN_FREQ_VALUE[7:0] BUCKET_SIZE_0_CNFG ~ BUCKET_SIZE_3_CNFG UPPER_THRESHOLD_0_CNFG ~ UPPER_THRESHOLD_3_CNFG LOWER_THRESHOLD_0_CNFG ~ LOWER_THRESHOLD_3_CNFG DECAY_RATE_0_CNFG ~ DECAY_RATE_3_CNFG IN1_CMOS_CNFG, IN2_CMOS_CNFG 33, 37, 3B, 3F 31, 35, 39, 3D 32, 36, 3A, 3E 34, 38, 3C, 40 16, 17 IN1_IN2_CMOS_STS 44 MON_SW_PBO_CNFG 0B ALL_FREQ_MON_THRESHOLD_CNFG FREQ_MON_FACTOR_CNFG PHASE_MON_PBO_CNFG IN_FREQ_READ_CH_CNFG IN_FREQ_READ_STS 2F 2E 78 41 42 Functional Description 20 July 23, 2009 IDT82V32021 3.6 EBU WAN PLL DPLL INPUT CLOCK SELECTION quality monitoring (refer to Chapter 3.5 Input Clock Quality Monitoring) do not affect input clock selection. The EXT_SW bit and the T0_INPUT_SEL[3:0] bits determine the input clock selection, as shown in Table 6: The T0 input clock selection is determined by the FF_SRCSW pin after reset (this pin determines the default value of the EXT_SW bit during reset, refer to Chapter 2 Pin Description), the IN1_CMOS_SEL_PRIORITY[3:0] bits and the IN2_CMOS_SEL_PRIORITY[3:0] bits, as shown in Figure 5 and Table 7: Table 6: Input Clock Selection Control Bits EXT_SW T0_INPUT_SEL[3:0] 1 don’t-care other than 0000 0000 0 Input Clock Selection External Fast selection Forced selection Automatic selection IN1_CMOS_SEL_PRIORITY[3:0] bits FF_SRCSW pin External Fast selection is done between IN1_CMOS and IN2_CMOS. IN1_CMOS Forced selection is done by setting the related registers. attempted to be locked in T0 DPLL Automatic selection is done based on the results of input clocks quality monitoring and the related registers configuration. IN2_CMOS The selected input clock is attempted to be locked by T0 DPLL. 3.6.1 EXTERNAL FAST SELECTION IN2_CMOS_SEL_PRIORITY[3:0] bits In External Fast selection, only IN1_CMOS and IN2_CMOS are available for selection. Refer to Figure 5. The results of input clocks Figure 5. External Fast Selection Table 7: External Fast Selection Control Pin & Bits FF_SRCSW (after reset) IN1_CMOS_SEL_PRIORITY[3:0] IN2_CMOS_SEL_PRIORITY[3:0] high low other than 0000 don’t-care don’t-care other than 0000 Functional Description 21 the Selected Input Clock IN1_CMOS IN2_CMOS July 23, 2009 IDT82V32021 3.6.2 EBU WAN PLL The priority is configured by the corresponding INn_CMOS_SEL_PRIORITY[3:0] bits (n = 1 or 2). If more than one qualified input clock is available and has the same priority, the input clock with the smaller ‘n’ is selected. See Table 8 for the ‘n’ assigned to the input clock. FORCED SELECTION In Forced selection, the selected input clock is set by the T0_INPUT_SEL[3:0] bits. The results of input clocks quality monitoring (refer to Chapter 3.5 Input Clock Quality Monitoring) do not affect the input clock selection. 3.6.3 Table 8: ‘n’ Assigned to the Input Clock AUTOMATIC SELECTION In Automatic selection, the input clock selection is determined by its validity and priority. The validity depends on the results of input clock quality monitoring (refer to Chapter 3.5 Input Clock Quality Monitoring). In the qualified input clocks, the one with the higher priority is selected. Input Clock ‘n’ Assigned to the Input Clock IN1_CMOS IN2_CMOS 1 3 Table 9: Related Bit / Register in Chapter 3.6 Bit Register Address (Hex) EXT_SW T0_INPUT_SEL[3:0] INn_CMOS_SEL_PRIORITY[3:0] (n = 1 or 2) MON_SW_PBO_CNFG T0_INPUT_SEL_CNFG IN1_IN2_CMOS_SEL_PRIORITY_CNFG 0B 50 27 Functional Description 22 July 23, 2009 IDT82V32021 3.7 EBU WAN PLL SELECTED INPUT CLOCK MONITORING 3.7.1.3 The T0 DPLL compares the selected input clock with the feedback signal. If the phase-compared result exceeds the fine phase limit programmed by the PH_LOS_FINE_LIMT[2:0] bits, a fine phase loss is triggered. It is cleared once the phase-compared result is within the fine phase limit. The quality of the selected input clock is always monitored (refer to Chapter 3.5 Input Clock Quality Monitoring) and the DPLL locking status is always monitored. 3.7.1 DPLL LOCKING DETECTION The following events is always monitored: • Fast Loss; • Coarse Phase Loss; • Fine Phase Loss; • Hard Limit Exceeding. 3.7.1.1 The occurrence of the fine phase loss will result in T0 DPLL unlocked if the FINE_PH_LOS_LIMT_EN bit is ‘1’. 3.7.1.4 A fast loss is triggered when the selected input clock misses 2 consecutive clock cycles. It is cleared once an active clock edge is detected. The occurrence of the fast loss will result in T0 DPLL unlocked if the FAST_LOS_SW bit is ‘1’. Coarse Phase Loss The T0 DPLL compares the selected input clock with the feedback signal. If the phase-compared result exceeds the coarse phase limit, a coarse phase loss is triggered. It is cleared once the phase-compared result is within the coarse phase limit. The DPLL soft limit is set by the DPLL_FREQ_SOFT_LIMT[6:0] bits and can be calculated as follows: DPLL Soft Limit (ppm) = DPLL_FREQ_SOFT_LIMT[6:0] X 0.724 The DPLL hard limit is set by the DPLL_FREQ_HARD_LIMT[15:0] bits and can be calculated as follows: When the selected input clock is of 2 kHz, 4 kHz or 8 kHz, the coarse phase limit depends on the MULTI_PH_8K_4K_2K_EN bit, the WIDE_EN bit and the PH_LOS_COARSE_LIMT[3:0] bits. Refer to Table 10. When the selected input clock is of other frequencies but 2 kHz, 4 kHz and 8 kHz, the coarse phase limit depends on the WIDE_EN bit and the PH_LOS_COARSE_LIMT[3:0] bits. Refer to Table 11. DPLL Hard Limit (ppm) = DPLL_FREQ_HARD_LIMT[15:0] X 0.0014 3.7.2 0 Coarse Phase Limit don’t-care ±1 UI 0 ±1 UI 1 set by the PH_LOS_COARSE_LIMT[3:0] bits 1 If the FAST_LOS_SW bit, the COARSE_PH_LOS_LIMT_EN bit, the FINE_PH_LOS_LIMT_EN bit or the FREQ_LIMT_PH_LOS bit is ‘0’, the DPLL locking status will not be affected even if the corresponding event is triggered. If all these bits are ‘0’, the DPLL will be in locked state in 2 seconds. Table 11: Coarse Phase Limit Programming (the selected input clock of other than 2 kHz, 4 kHz and 8 kHz) WIDE_EN Coarse Phase Limit 0 1 ±1 UI set by the PH_LOS_COARSE_LIMT[3:0] bits LOCKING STATUS The DPLL locking status depends on the locking monitoring results. The DPLL is in locked state if none of the following events is triggered during 2 seconds; otherwise, the DPLL is unlocked. • Fast Loss (the FAST_LOS_SW bit is ‘1’); • Coarse Phase Loss (the COARSE_PH_LOS_LIMT_EN bit is ‘1’); • Fine Phase Loss (the FINE_PH_LOS_LIMT_EN bit is ‘1’); • DPLL Hard Alarm (the FREQ_LIMT_PH_LOS bit is ‘1’). Table 10: Coarse Phase Limit Programming (the selected input clock of 2 kHz, 4 kHz or 8 kHz) MULTI_PH_8K_4K WIDE_EN _2K_EN Hard Limit Exceeding Two limits are available for this monitoring. They are DPLL soft limit and DPLL hard limit. When the frequency of the DPLL output with respect to the master clock exceeds the DPLL soft / hard limit, a DPLL soft / hard alarm will be raised; the alarm is cleared once the frequency is within the corresponding limit. The occurrence of the DPLL soft alarm does not affect the T0 DPLL locking status. The DPLL soft alarm is indicated by the corresponding T0_DPLL_SOFT_FREQ_ALARM bit. The occurrence of the DPLL hard alarm will result in T0 DPLL unlocked if the FREQ_LIMT_PH_LOS bit is ‘1’. Fast Loss 3.7.1.2 Fine Phase Loss The DPLL locking status is indicated by the T0_DPLL_LOCK bit. 3.7.3 PHASE LOCK ALARM A phase lock alarm will be raised when the selected input clock can not be locked in T0 DPLL within a certain period. This period can be calculated as follows: The occurrence of the coarse phase loss will result in T0 DPLL unlocked if the COARSE_PH_LOS_LIMT_EN bit is ‘1’. Period (sec.) = TIME_OUT_VALUE[5:0] X MULTI_FACTOR[1:0] The phase lock alarm is indicated by the corresponding INn_CMOS_PH_LOCK_ALARM bit (n = 1 or 2). Functional Description 23 July 23, 2009 IDT82V32021 EBU WAN PLL The phase lock alarm can be cleared by the following two ways, as selected by the PH_ALARM_TIMEOUT bit: • Be cleared when a ‘1’ is written to the corresponding INn_CMOS_PH_LOCK_ALARM bit; • Be cleared after the period (= TIME_OUT_VALUE[5:0] X MULTI_FACTOR[1:0] in second) which starts from when the alarm is raised. The selected input clock with a phase lock alarm is disqualified for T0 DPLL locking. Table 12: Related Bit / Register in Chapter 3.7 Bit FAST_LOS_SW PH_LOS_FINE_LIMT[2:0] FINE_PH_LOS_LIMT_EN MULTI_PH_8K_4K_2K_EN WIDE_EN PH_LOS_COARSE_LIMT[3:0] COARSE_PH_LOS_LIMT_EN T0_DPLL_SOFT_FREQ_ALARM T0_DPLL_LOCK DPLL_FREQ_SOFT_LIMT[6:0] FREQ_LIMT_PH_LOS DPLL_FREQ_HARD_LIMT[15:0] TIME_OUT_VALUE[5:0] MULTI_FACTOR[1:0] INn_CMOS_PH_LOCK_ALARM (n = 1 or 2) PH_ALARM_TIMEOUT Functional Description Register Address (Hex) PHASE_LOSS_FINE_LIMIT_CNFG 5B PHASE_LOSS_COARSE_LIMIT_CNFG 5A OPERATING_STS 52 DPLL_FREQ_SOFT_LIMIT_CNFG 65 DPLL_FREQ_HARD_LIMIT[15:8]_CNFG, DPLL_FREQ_HARD_LIMIT[7:0]_CNFG 67, 66 PHASE_ALARM_TIME_OUT_CNFG 08 IN1_IN2_CMOS_STS INPUT_MODE_CNFG 44 09 24 July 23, 2009 IDT82V32021 3.8 EBU WAN PLL SELECTED INPUT CLOCK SWITCH Conditions of the qualified input clocks available for T0 selection are as the following: • Valid, i.e., the INn_CMOS 1 bit is ‘1’; • Priority enabled, i.e., the corresponding INn_CMOS_SEL _PRIORITY[3:0] bits are not ‘0000’. If the input clock is selected by External Fast selection or by Forced selection, it can be switched by setting the related registers (refer to Chapter 3.6.1 External Fast Selection & Chapter 3.6.2 Forced Selection) any time. In this case, whether the input clock is qualified for DPLL locking does not affect the clock switch. The input clock is disqualified if any of the above conditions is not satisfied. When the input clock is selected by Automatic selection, the input clock switch depends on its validity and priority. If the current selected input clock is disqualified, a new qualified input clock may be switched to. 3.8.1 In summary, the selected input clock can be switched by: • External Fast selection; • Forced selection; • Revertive switch; • Non-Revertive switch. INPUT CLOCK VALIDITY For the input clocks, the validity depends on the results of input clock quality monitoring (refer to Chapter 3.5 Input Clock Quality Monitoring). When all of the following conditions are satisfied, the input clock is valid; otherwise, it is invalid. • No no-activity alarm (the INn_CMOS_NO_ACTIVITY_ALARM bit is ‘0’); • No frequency hard alarm (the INn_CMOS_FREQ_HARD_ ALARM bit is ‘0’); • If the IN_NOISE_WINDOW bit is ‘1’, all the edges of the input clock of 2 kHz, 4 kHz or 8 kHz drift inside ±5%; if the IN_NOISE_WINDOW bit is ‘0’, this condition is ignored. • No phase lock alarm, i.e., the INn_CMOS_PH_LOCK_ALARM bit is ‘0’; • If the ULTR_FAST_SW bit is ‘1’, the T0 selected input clock misses less than (<) 2 consecutive clock cycles; if the ULTR_FAST_SW bit is ‘0’, this condition is ignored. 3.8.2.1 In Revertive switch, the selected input clock is switched when another qualified input clock with a higher priority than the current selected input clock is available. The selected input clock is switched if any of the following is satisfied: • The selected input clock is disqualified; • Another qualified input clock with a higher priority than the selected input clock is available. A qualified input clock with the higher priority is selected by revertive switch. If more than one qualified input clock is available and has the same priority, the input clock with the smaller ‘n’ is selected. See Table 8 for the ‘n’ assigned to each input clock. 3.8.2.2 The validities of the input clocks are indicated by the INn_CMOS 1 bit When the T0 selected input clock has failed, i.e., the validity of the T0 selected input clock changes from ‘valid’ to ‘invalid’, the T0_MAIN_REF_FAILED 1 bit will be set. If the T0_MAIN_REF_FAILED 2 bit is ‘1’, an interrupt will be generated. This interrupt can also be indicated by hardware - the TDO pin, as determined by the LOS_FLAG_TO_TDO bit. When the TDO pin is used to indicate this interrupt, it will be set high when this interrupt is generated and will remain high until this interrupt is cleared. 3.8.3 SELECTED / QUALIFIED INPUT CLOCKS INDICATION The selected input clock is CURRENTLY_SELECTED_INPUT[3:0] bits. indicated by the The qualified input clocks with the two highest priorities are indicated by the HIGHEST_PRIORITY_VALIDATED[3:0] bits and the SECOND_HIGHEST_PRIORITY_VALIDATED[3:0] bits respectively. If more than one input clock has the same priority, the input clock with the smaller ‘n’ is indicated by the HIGHEST_PRIORITY_VALIDATED[3:0] bits. See Table 8 for the ‘n’ assigned to the input clock. SELECTED INPUT CLOCK SWITCH Revertive and Non-Revertive switches are supported, as selected by the REVERTIVE_MODE bit. The difference between Revertive and Non-Revertive switches is that whether the selected input clock is switched when another qualified input clock with a higher priority than the current selected input clock is available for selection. In Non-Revertive switch, input clock switch is minimized. Functional Description Non-Revertive Switch In Non-Revertive switch, the T0 selected input clock is not switched when another qualified input clock with a higher priority than the current selected input clock is available. In this case, the selected input clock is switched and a qualified input clock with the higher priority is selected only when the T0 selected input clock is disqualified. If more than one qualified input clock is available and has the same priority, the input clock with the smaller ‘n’ is selected. See Table 8 for the ‘n’ assigned to each input clock. (n = 1 or 2). When the input clock validity changes (from ‘valid’ to ‘invalid’ or from ‘invalid’ to ‘valid’), the INn_CMOS 2 bit will be set. If the INn_CMOS 3 bit is ‘1’, an interrupt will be generated. 3.8.2 Revertive Switch When the device is configured in Automatic selection and Revertive switch is enabled, the input clock indicated by the CURRENTLY_SELECTED_INPUT[3:0] bits is the same as the one indicated by the HIGHEST_PRIORITY_VALIDATED[3:0] bits; otherwise, they are not the same. 25 July 23, 2009 IDT82V32021 EBU WAN PLL Table 13: Related Bit / Register in Chapter 3.8 Bit Register Address (Hex) 1 INPUT_VALID1_STS 4A INn_CMOS (n = 1 or 2) INn_CMOS 2 (n = 1 or 2) INTERRUPTS1_STS, INTERRUPTS2_STS 0D, 0E (n = 1 or 2) INn_CMOS_NO_ACTIVITY_ALARM (n = 1 or 2) INn_CMOS_FREQ_HARD_ALARM (n = 1 or 2) INn_CMOS_PH_LOCK_ALARM (n = 1 or 2) IN_NOISE_WINDOW ULTR_FAST_SW LOS_FLAG_TO_TDO INTERRUPTS1_ENABLE_CNFG, INTERRUPTS2_ENABLE_CNFG 10, 11 IN1_IN2_CMOS_STS 44 PHASE_MON_PBO_CNFG 78 MON_SW_PBO_CNFG 0B T0_MAIN_REF_FAILED 1 INTERRUPTS2_STS 0E INn_CMOS 3 2 T0_MAIN_REF_FAILED REVERTIVE_MODE INn_CMOS_SEL_PRIORITY[3:0] (n = 1 or 2) CURRENTLY_SELECTED_INPUT[3:0] HIGHEST_PRIORITY_VALIDATED[3:0] SECOND_HIGHEST_PRIORITY_VALIDATED[3:0] Functional Description INTERRUPTS2_ENABLE_CNFG 11 INPUT_MODE_CNFG IN1_IN2_CMOS_SEL_PRIORITY_CNFG 09 27 PRIORITY_TABLE1_STS 4E PRIORITY_TABLE2_STS 4F 26 July 23, 2009 IDT82V32021 3.9 EBU WAN PLL SELECTED INPUT CLOCK STATUS VS. DPLL OPERATING MODE Table 14: T0 DPLL Operating Mode Control T0 DPLL supports three primary operating modes: Free-Run, Locked and Holdover, and three secondary, temporary operating modes: PreLocked, Pre-Locked2 and Lost-Phase. The operating mode of T0 DPLL can be switched automatically or by force, as controlled by the T0_OPERATING_MODE[2:0] bits. When the operating mode is switched by force, the operating mode switch is under external control and the status of the selected input clock takes no effect to the operating mode selection. The forced operating mode switch is applicable for special cases, such as testing. by T0 DPLL Operating Mode 000 001 010 100 101 110 111 Automatic Forced - Free-Run Forced - Holdover Forced - Locked Forced - Pre-Locked2 Forced - Pre-Locked Forced - Lost-Phase When the operating mode is switched automatically, the operation of the internal state machine is shown in Figure 6. When the operating mode is switched automatically, the internal state machine for T0 automatically determine the operating mode. The T0 DPLL operating mode is controlled T0_OPERATING_MODE[2:0] bits, as shown in Table 14: T0_OPERATING_MODE[2:0] Whether the operating mode is under external control or is switched automatically, the current operating mode is always indicated by the T0_DPLL_OPERATING_MODE[2:0] bits. When the operating mode switches, the T0_OPERATING_MODE 1 bit will be set. If the T0_OPERATING_MODE 2 bit is ‘1’, an interrupt will be generated. the 1 Free-Run mode 3 2 Pre-Locked mode 4 5 Locked mode 10 9 15 Pre-Locked2 mode 8 6 Holdover mode 7 11 12 Lost-Phase mode 13 14 Figure 6. T0 Selected Input Clock vs. DPLL Automatic Operating Mode Functional Description 27 July 23, 2009 IDT82V32021 EBU WAN PLL Notes to Figure 6: 1. Reset. 2. An input clock is selected. 3. The T0 selected input clock is disqualified AND No qualified input clock is available. 4. The T0 selected input clock is switched to another one. 5. The T0 selected input clock is locked (the T0_DPLL_LOCK bit is ‘1’). 6. The T0 selected input clock is disqualified AND No qualified input clock is available. 7. The T0 selected input clock is unlocked (the T0_DPLL_LOCK bit is ‘0’). 8. The T0 selected input clock is locked again (the T0_DPLL_LOCK bit is ‘1’). 9. The T0 selected input clock is switched to another one. 10. The T0 selected input clock is locked (the T0_DPLL_LOCK bit is ‘1’). 11. The T0 selected input clock is disqualified AND No qualified input clock is available. 12. The T0 selected input clock is switched to another one. 13. The T0 selected input clock is disqualified AND No qualified input clock is available. 14. An input clock is selected. 15. The T0 selected input clock is switched to another one. The causes of Item 4, 9, 12, 15 - ‘the T0 selected input clock is switched to another one’ - are: (The T0 selected input clock is disqualified AND Another input clock is switched to) OR (In Revertive switch, a qualified input clock with a higher priority is switched to) OR (The T0 selected input clock is switched to another one by External Fast selection or Forced selection). Refer to Chapter 3.8.2 Selected Input Clock Switch for details about T0 input clock qualification. Table 15: Related Bit / Register in Chapter 3.9 Bit Register Address (Hex) T0_OPERATING_MODE[2:0] T0_DPLL_OPERATING_MODE[2:0] T0_DPLL_LOCK T0_OPERATING_MODE_CNFG 53 OPERATING_STS 52 T0_OPERATING_MODE 1 INTERRUPTS2_STS 0E INTERRUPTS2_ENABLE_CNFG 11 T0_OPERATING_MODE Functional Description 2 28 July 23, 2009 IDT82V32021 3.10 EBU WAN PLL DPLL OPERATING MODE 3.10.1.1 In Free-Run mode, the T0 DPLL output refers to the master clock and is not affected by any input clock. The accuracy of the T0 DPLL output is equal to that of the master clock. The T0 DPLL gives a stable performance in different applications without being affected by operating conditions or silicon process variations. It integrates a PFD (Phase & Frequency Detector), a LPF (Low Pass Filter) and a DCO (Digital Controlled Oscillator), which forms a closed loop. If no input clock is selected, the loop is not closed, and the PFD and LPF do not function. 3.10.1.2 Pre-Locked Mode In Pre-Locked mode, the T0 DPLL output attempts to track the selected input clock. The PFD detects the phase error, including the fast loss, coarse phase loss and fine phase loss (refer to Chapter 3.7.1.1 Fast Loss to Chapter 3.7.1.3 Fine Phase Loss). The averaged phase error of the T0 DPLL feedback with respect to the selected input clock is indicated by the CURRENT_PH_DATA[15:0] bits. It can be calculated as follows: The Pre-Locked mode is a secondary, temporary mode. 3.10.1.3 Locked Mode In Locked mode, the T0 selected input clock is locked. The phase and frequency offset of the T0 DPLL output track those of the T0 selected input clock. Averaged Phase Error (ns) = CURRENT_PH_DATA[15:0] X 0.61 The LPF filters jitters. Its 3 dB bandwidth and damping factor are programmable. A range of bandwidths and damping factors can be set to meet different application requirements. Generally, the lower the damping factor is, the longer the locking time is and the more the gain is. In this mode, if the T0 selected input clock is in fast loss status and the FAST_LOS_SW bit is ‘1’, the T0 DPLL is unlocked (refer to Chapter 3.7.1.1 Fast Loss) and will enter Lost-Phase mode when the operating mode is switched automatically; if the T0 selected input clock is in fast loss status and the FAST_LOS_SW bit is ‘0’, the T0 DPLL locking status is not affected and the T0 DPLL will enter Temp-Holdover mode automatically. The DCO controls the DPLL output. The frequency of the DPLL output is always multiplied on the basis of the master clock. The phase and frequency offset of the DPLL output may be locked to those of the selected input clock. The current frequency offset with respect to the master clock is indicated by the CURRENT_DPLL_FREQ[23:0] bits, and can be calculated as follows: 3.10.1.3.1 Temp-Holdover Mode The T0 DPLL will automatically enter Temp-Holdover mode with a selected input clock switch or no qualified input clock available when the operating mode switch is under external control. Current Frequency Offset (ppm) = CURRENT_DPLL_FREQ[23:0] X 0.000011 3.10.1 Free-Run Mode In Temp-Holdover mode, the T0 DPLL has temporarily lost the selected input clock. The T0 DPLL operation in Temp-Holdover mode and that in Holdover mode are alike (refer to Chapter 3.10.1.5 Holdover Mode) except the frequency offset acquiring methods. See Chapter 3.10.1.5 Holdover Mode for details about the methods. The method is selected by the TEMP_HOLDOVER_MODE[1:0] bits, as shown in Table 16: SIX OPERATING MODES The T0 DPLL loop is closed except in Free-Run mode and Holdover mode. For a closed loop, different bandwidths and damping factors can be used depending on DPLL locking stages: starting, acquisition and locked. In the first two seconds when the T0 DPLL attempts to lock to the selected input clock, the starting bandwidth and damping factor are used. They are set by the T0_DPLL_START_BW[4:0] bits and the T0_DPLL_START_DAMPING[2:0] bits respectively. Table 16: Frequency Offset Control in Temp-Holdover Mode TEMP_HOLDOVER_MODE[1:0] Frequency Offset Acquiring Method 00 01 10 11 the same as that used in Holdover mode Automatic Instantaneous Automatic Fast Averaged Automatic Slow Averaged During the acquisition, the acquisition bandwidth and damping factor are used. They are set by the T0_DPLL_ACQ_BW[4:0] bits and the T0_DPLL_ACQ_DAMPING[2:0] bits respectively. When the T0 selected input clock is locked, the locked bandwidth and damping factor are used. They are set by the T0_DPLL_LOCKED_BW[4:0] bits and the T0_DPLL_LOCKED_DAMPING[2:0] bits respectively. The device automatically controls the T0 DPLL to exit from TempHoldover mode. 3.10.1.4 Lost-Phase Mode The corresponding bandwidth and damping factor are used when the T0 DPLL operates in different DPLL locking stages: starting, acquisition and locked, as controlled by the device automatically. In Lost-Phase mode, the T0 DPLL output attempts to track the selected input clock. Only the locked bandwidth and damping factor can be used regardless of the T0 DPLL locking stage, as controlled by the AUTO_BW_SEL bit. 3.10.1.5 Functional Description The Lost-Phase mode is a secondary, temporary mode. Holdover Mode In Holdover mode, the T0 DPLL resorts to the stored frequency data acquired in Locked mode to control its output. The T0 DPLL output is not 29 July 23, 2009 IDT82V32021 EBU WAN PLL phase locked to any input clock. The frequency offset acquiring method is selected by the MAN_HOLDOVER bit, the AUTO_AVG bit and the FAST_AVG bit, as shown in Table 17: Table 17: Frequency Offset Control in Holdover Mode MAN_HOLDOVER AUTO_AVG FAST_AVG Frequency Offset Acquiring Method 0 don’t-care 0 1 Automatic Instantaneous Automatic Slow Averaged Automatic Fast Averaged Manual 0 1 1 don’t-care 3.10.1.5.1 Automatic Instantaneous 3.10.1.5.5 Holdover Frequency Offset Read By this method, the T0 DPLL freezes at the operating frequency when it enters Holdover mode. The accuracy is 4.4X10-8 ppm. The offset value, which is acquired by Automatic Slow Averaged, Automatic Fast Averaged and is set by related register bits, can be read from the T0_HOLDOVER_FREQ[23:0] bits by setting the READ_AVG bit and the FAST_AVG bit, as shown in Table 18. 3.10.1.5.2 Automatic Slow Averaged By this method, an internal IIR (Infinite Impulse Response) filter is employed to get the frequency offset. The IIR filter gives a 3 dB attenuation point corresponding to a period of 110 minutes. The accuracy is 1.1X10-5 ppm. Table 18: Holdover Frequency Offset Read READ_AVG FAST_AVG 0 3.10.1.5.3 Automatic Fast Averaged By this method, an internal IIR (Infinite Impulse Response) filter is employed to get the frequency offset. The IIR filter gives a 3 dB attenuation point corresponding to a period of 8 minutes. The accuracy is 1.1X10-5 ppm. The frequency offset in ppm is calculated as follows: Holdover Frequency Offset (ppm) = T0_HOLDOVER_FREQ[23:0] X 0.000011 the 3.10.1.6 The frequency offset of the T0 DPLL output is indicated by the CURRENT_DPLL_FREQ[23:0] bits. Pre-Locked2 Mode In Pre-Locked2 mode, the T0 DPLL output attempts to track the selected input clock. The device provides a reference for the value to be written to the T0_HOLDOVER_FREQ[23:0] bits. The value to be written can refer to the value read from the CURRENT_DPLL_FREQ[23:0] bits or the T0_HOLDOVER_FREQ[23:0] bits (refer to Chapter 3.10.1.5.5 Holdover Frequency Offset Read); or then be processed by external software filtering. Functional Description don’t-care The value is equal to the one written to. The value is acquired by Automatic Slow Averaged 0 method, not equal to the one written to. The value is acquired by Automatic Fast Averaged 1 method, not equal to the one written to. 1 3.10.1.5.4 Manual By this method, the frequency offset is set by T0_HOLDOVER_FREQ[23:0] bits. The accuracy is 1.1X10-5 ppm. Offset Value Read from T0_HOLDOVER_FREQ[23:0] The Pre-Locked2 mode is a secondary, temporary mode. 30 July 23, 2009 IDT82V32021 EBU WAN PLL Table 19: Related Bit / Register in Chapter 3.10 Bit Register Address (Hex) CURRENT_PH_DATA[15:0] CURRENT_DPLL_PHASE[15:8]_STS, CURRENT_DPLL_PHASE[7:0]_STS CURRENT_DPLL_FREQ[23:16]_STS, CURRENT_DPLL_FREQ[15:8]_STS, CURRENT_DPLL_FREQ[7:0]_STS 69, 68 CURRENT_DPLL_FREQ[23:0] T0_DPLL_START_BW[4:0] T0_DPLL_START_DAMPING[2:0] T0_DPLL_ACQ_BW[4:0] T0_DPLL_ACQ_DAMPING[2:0] T0_DPLL_LOCKED_BW[4:0] T0_DPLL_LOCKED_DAMPING[2:0] AUTO_BW_SEL FAST_LOS_SW TEMP_HOLDOVER_MODE[1:0] MAN_HOLDOVER AUTO_AVG FAST_AVG READ_AVG T0_HOLDOVER_FREQ[23:0] Functional Description 64, 63, 62 T0_DPLL_START_BW_DAMPING_CNFG 56 T0_DPLL_ACQ_BW_DAMPING_CNFG 57 T0_DPLL_LOCKED_BW_DAMPING_CNFG 58 T0_BW_OVERSHOOT_CNFG PHASE_LOSS_FINE_LIMIT_CNFG 59 5B T0_HOLDOVER_MODE_CNFG 5C T0_HOLDOVER_FREQ[23:16]_CNFG, T0_HOLDOVER_FREQ[15:8]_CNFG, T0_HOLDOVER_FREQ[7:0]_CNFG 5F, 5E, 5D 31 July 23, 2009 IDT82V32021 3.11 EBU WAN PLL DPLL OUTPUT DPLL output and the T0 DPLL output tracks back to 0 degree phase offset with respect to the T0 selected input clock. The DPLL output is locked to the selected input clock. According to the phase-compared result of the feedback and the selected input clock, and the DPLL output frequency offset, the PFD output is limited and the DPLL output is frequency offset limited. 3.11.1 The last condition is specially for stratum 2 and 3E clocks. The PBO requirement specified in the Telcordia GR-1244-CORE is: ‘Input phasetime changes of 3.5 µs or greater over an interval of less than 0.1 seconds or less shall be built-out by stratum 2 and 3E clocks to reduce the resulting clock phase-time change to less than 50 ns. Phase-time changes of 1.0 µs or less over an interval of 0.1 seconds shall not be built-out.’ Based on this requirement, phase-time changes of more than 1.0 µs but less than 3.5 µs that occur over an interval of less than 0.1 seconds may or may not be built-out. PFD OUTPUT LIMIT The PFD output is limited to be within ±1 UI or within the coarse phase limit (refer to Chapter 3.7.1.2 Coarse Phase Loss), as determined by the MULTI_PH_APP bit. 3.11.2 FREQUENCY OFFSET LIMIT An integrated Phase Transient Monitor can be enabled by the PH_MON_EN bit to monitor the phase-time changes on the T0 selected input clock. When the phase-time changes are greater than a limit over an interval of less than 0.1 seconds, a PBO event is triggered and the phase transients on the DPLL output are absorbed. The limit is programmed by the PH_TR_MON_LIMT[3:0] bits, and can be calculated as follows: The DPLL output is limited to be within the DPLL hard limit (refer to Chapter 3.7.1.4 Hard Limit Exceeding). The integral path value can be frozen when the DPLL hard limit is reached. This function, enabled by the T0_LIMT bit, will minimize the subsequent overshoot when T0 DPLL is pulling in. 3.11.3 PBO Limit (ns) = (PH_TR_MON_LIMT[3:0] + 7) X 156 When a PBO event is triggered, the phase offset of the selected input clock with respect to the T0 DPLL output is measured. The device then automatically accounts for the measured phase offset and compensates an appropriate phase offset into the DPLL output so that the phase transients on the T0 DPLL output are minimized. The phase offset induced by PBO will never result in a coarse or fine phase loss. 3.11.4 FOUR PATHS OF T0 DPLL OUTPUT The T0 DPLL output is phase aligned with the T0 selected input clock every 125 µs period. T0 DPLL has four output paths as follows: • 77.76 MHz path - outputs a 77.76 MHz clock; • 16E1/16T1 path - outputs a 16E1 or 16T1 clock, as selected by the IN_SONET_SDH bit; • GSM/OBSAI/16E1/16T1 path - outputs a GSM, OBSAI, 16E1 or 16T1 clock, as selected by the T0_GSM_OBSAI_16E1_16T1_ SEL[1:0] bits; • 12E1/24T1/E3/T3 path - outputs a 12E1, 24T1, E3 or T3 clock, as selected by the T0_12E1_24T1_E3_T3_SEL[1:0] bits. A PBO event is triggered if any one of the following conditions occurs: • T0 selected input clock switches (the PBO_EN bit is ‘1’); • T0 DPLL exits from Holdover mode or Free-Run mode (the PBO_EN bit is ‘1’); • Phase-time changes on the T0 selected input clock are greater than a programmable limit over an interval of less than 0.1 seconds (the PH_MON_PBO_EN bit is ‘1’). For the first two conditions, the phase transients on the T0 DPLL output are minimized to be no more than 0.61 ns with PBO. The PBO can also be frozen at the current phase offset by setting the PBO_FREZ bit. When the PBO is frozen, the device will ignore any further PBO events triggered by the above two conditions, and maintain the current phase offset. When the PBO is disabled, there may be a phase shift on the T0 T0 selected input clock is compared with a T0 DPLL output for DPLL locking. The output can only be derived from the 77.76 MHz path or the 16E1/16T1 path. The output path is automatically selected and the output is automatically divided to get the same frequency as the T0 selected input clock. T0 DPLL outputs are provided for T0 APLL or device output process. Functional Description 32 July 23, 2009 IDT82V32021 EBU WAN PLL Table 20: Related Bit / Register in Chapter 3.11 Bit Register Address (Hex) MULTI_PH_APP T0_LIMT PBO_EN PBO_FREZ PH_MON_PBO_EN PH_MON_EN PH_TR_MON_LIMT[3:0] PH_OFFSET_EN IN_SONET_SDH T0_GSM_OBSAI_16E1_16T1_SEL[1:0] T0_12E1_24T1_E3_T3_SEL[1:0] PHASE_LOSS_COARSE_LIMIT_CNFG T0_BW_OVERSHOOT_CNFG 5A 59 MON_SW_PBO_CNFG 0B PHASE_MON_PBO_CNFG 78 PHASE_OFFSET[9:8]_CNFG INPUT_MODE_CNFG 7B 09 T0_DPLL_APLL_PATH_CNFG 55 Functional Description 33 July 23, 2009 IDT82V32021 3.12 EBU WAN PLL T0 APLL 3.13 OUTPUT CLOCK & FRAME SYNC SIGNALS A T0 APLL is provided for a better jitter and wander performance of the device output clock. The device supports 1 output clock and 1 frame sync output signal altogether. The bandwidth of the T0 APLL is set by the T0_APLL_BW[1:0] bits. The lower the bandwidth is, the better the jitter and wander performance of the T0 APLL output are. 3.13.1 OUTPUT CLOCK The device provides 1 output clock. Bit Register Address (Hex) The output on OUT1 is variable, depending on the signals derived from the T0 DPLL and T0 APLL outputs, and the corresponding OUT1_PATH_SEL[3:0] bits. The derived signal can be from the T0 DPLL and T0 APLL outputs, as selected by the corresponding OUT1_PATH_SEL[3:0] bits. If the signal is derived from the T0 DPLL output, please refer to Table 22 for the output frequency. If the signal is derived from the T0 APLL output, please refer to Table 23 for the output frequency. T0_APLL_BW[1:0] T0_APLL_PATH[3:0] T0_APLL_BW_CNFG T0_DPLL_APLL_PATH_CNFG 6A 55 The output on OUT1 can be inverted, as determined by the corresponding OUT1_INV bit. The input of the T0 APLL can be derived from T0 DPLL output, as selected by the T0_APLL_PATH[3:0] bits. Both the APLL and DPLL outputs are provided for selection for the device output. Table 21: Related Bit / Register in Chapter 3.12 The output clock derived from T0 selected input clock is aligned with the T0 selected input clock every 125 µs period. Table 22: Output on OUT1 if Derived from T0 DPLL Output OUT1_DIVIDER[3:0] (Output Divider) 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 output on OUT1 if derived from T0 DPLL output 1 77.76 MHz 12E1 16E1 24T1 16T1 E3 T3 GSM (26 MHz) OBSAI (30.72 MHz) Output is disabled (output low). 12E1 6E1 3E1 2E1 16E1 8E1 4E1 2E1 E1 24T1 12T1 6T1 4T1 3T1 2T1 16T1 8T1 4T1 E3 T3 13 MHz 15.36 MHz 2T1 E1 T1 T1 64 kHz 8 kHz 2 kHz 400 Hz 1Hz Output is disabled (output high). Note: 1. E1 = 2.048 MHz, T1 = 1.544 MHz, E3 = 34.368 MHz, T3 = 44.736 MHz. The blank cell means the configuration is reserved. Functional Description 34 July 23, 2009 IDT82V32021 EBU WAN PLL Table 23: Output on OUT1 if Derived from T0 APLL OUT1_DIVIDER[3:0] (Output Divider) 77.76 MHz X 4 12E1 X 4 0000 0001 0010 0011 0100 0101 0110 0111 1000 16E1 X 4 24T1 X 4 16T1 X 4 E3 T3 GSM (26 MHz X 2) OBSAI (30.72 MHz X 10) Output is disabled (output low). 155.52 MHz 77.76 MHz 51.84 MHz 38.88 MHz 25.92 MHz 19.44 MHz 1001 48E1 24E1 12E1 8E1 6E1 4E1 3E1 64E1 32E1 16E1 8E1 4E1 2E1 1010 1011 output on OUT1 if derived from T0 APLL output 1 1100 1101 1110 1111 64T1 32T1 16T1 E3 T3 8T1 E1 3T1 153.6 MHz 76.8 MHz 38.4 MHz 61.44 MHz 2 2T1 30.72 MHz 2 15.36 MHz 2 2T1 E1 52 MHz 26 MHz 13 MHz 4T1 4T1 2E1 6.48 MHz 96T1 48T1 24T1 16T1 12T1 8T1 6T1 T1 7.68 MHz 2 3.84 MHz 2 T1 Output is disabled (output high). Note: 1. In the APLL, the selected T0 DPLL output may be multiplied. E1 = 2.048 MHz, T1 = 1.544 MHz, E3 = 34.368 MHz, T3 = 44.736 MHz. The blank cell means the configuration is reserved. 2. The 61.44 MHz, 30.72 MHz, 15.36 MHz, 7.68 MHz and 3.84 MHz outputs are only derived from T0 APLL. Functional Description 35 July 23, 2009 IDT82V32021 3.13.2 EBU WAN PLL limit, whether the selected frame sync input signal is enabled to synchronize the frame sync output signal is determined by the SYNC_BYPASS bit, the AUTO_EXT_SYNC_EN bit and the EXT_SYNC_EN bit. Refer to Table 25 for details. FRAME SYNC OUTPUT SIGNAL An 8 kHz frame sync signal is output on the FRSYNC_8K pin if enabled by the 8K_EN bit. It is a CMOS output. The frame sync signal is derived from the T0 APLL output and are aligned with the output clock. It can be synchronized to one of the two frame sync input signals. When the selected frame sync input signal is enabled to synchronize the frame sync output signal, it should be adjusted to align itself with the T0 selected input clock. Nominally, the falling edge of the selected frame sync input signal is aligned with the rising edge of the T0 selected input clock. The selected frame sync input signal may be 0.5 UI early/late or 1 UI late due to the circuit and board wiring delays. Setting the sampling of the selected frame sync input signal by the SYNC_PHn[1:0] bits (n = 1 or 2 corresponding to EX_SYNC1 or EX_SYNC2 respectively) will compensate this early/late. Refer to Figure 7 to Figure 10. One of the two frame sync input signals is selected, as determined by the SYNC_BYPASS bit and the T0 selected input clock, as shown in Table 24: Table 24: Frame Sync Input Signal Selection SYNC_BYPASS T0 Selected Input Clock 0 Selected Frame Sync Input Signal don’t-care IN1_CMOS IN2_CMOS none 1 The EX_SYNC_ALARM_MON bit indicates whether the selected frame sync input signal is in external sync alarm status. The external sync alarm is indicated by the EX_SYNC_ALARM 1 bit. If the EX_SYNC_ALARM 2 bit is ‘1’, the occurrence of the external sync alarm will trigger an interrupt. EX_SYNC1 EX_SYNC1 EX_SYNC2 none The 8 kHz frame sync output signal can be inverted by setting the 8K_INV bit. The frame sync output can be 50:50 duty cycle or pulsed, as determined by the 8K_PUL bit. When they are pulsed, the pulse width is defined by the period of OUT1; and they are pulsed on the position of the falling or rising edge of the standard 50:50 duty cycle, as selected by the 8K_PUL_POSITION bit. If the selected frame sync input signal with respect to the T0 selected input clock is above a limit set by the SYNC_MON_LIMT[2:0] bits, an external sync alarm will be raised and the selected frame sync input signal is disabled to synchronize the frame sync output signal. The external sync alarm is cleared once the selected frame sync input signal with respect to the T0 selected input clock is within the limit. If it is within the Table 25: Synchronization Control SYNC_BYPASS AUTO_EXT_SYNC_EN EXT_SYNC_EN Synchronization 0 don’t-care 0 1 0 1 1 Disabled Enabled Disabled Enabled 1 don’t-care T0 selected input clock T0 selected input clock Selected frame sync input signal Selected frame sync input signal Frame sync output signals Frame sync output signals Output clocks Output clocks Figure 7. On Target Frame Sync Input Signal Timing Functional Description Figure 8. 0.5 UI Early Frame Sync Input Signal Timing 36 July 23, 2009 IDT82V32021 EBU WAN PLL T0 selected input clock T0 selected input clock Selected frame sync input signal Selected frame sync input signal Frame sync output signals Frame sync output signals Output clocks Output clocks Figure 9. 0.5 UI Late Frame Sync Input Signal Timing Figure 10. 1 UI Late Frame Sync Input Signal Timing Table 26: Related Bit / Register in Chapter 3.13 Bit Register Address (Hex) OUT1_FREQ_CNFG 6D INPUT_MODE_CNFG 09 OUT1_INV_CNFG 73 FR_SYNC_CNFG 74 SYNC_MONITOR_CNFG 7C SYNC_PHASE_CNFG OPERATING_STS 7D 52 EX_SYNC_ALARM 1 INTERRUPTS3_STS 0F EX_SYNC_ALARM 2 INTERRUPTS3_ENABLE_CNFG 12 OUT1_PATH_SEL[3:0] OUT1_DIVIDER[3:0] IN_SONET_SDH AUTO_EXT_SYNC_EN EXT_SYNC_EN OUT1_INV 8K_EN 8K_INV 8K_PUL 8K_PUL_POSITION SYNC_BYPASS SYNC_MON_LIMT[2:0] SYNC_PHn[1:0] (n = 1 or 2) EX_SYNC_ALARM_MON Functional Description 37 July 23, 2009 IDT82V32021 3.14 EBU WAN PLL INTERRUPT SUMMARY 3.15 The interrupt sources of the device are as follows: • T0 Input clocks validity change • T0 selected input clock fail • T0 DPLL operating mode switch • External sync alarm The main features supported by the T0 path are as follows: • Phase lock alarm; • Forced or Automatic input clock selection/switch; • 3 primary and 3 secondary, temporary DPLL operating modes, switched automatically or under external control; • Automatic switch between starting, acquisition and locked bandwidths/damping factors; • Programmable DPLL bandwidths from 1.2 Hz to 560 Hz in 8 steps; • Programmable damping factors: 1.2, 2.5, 5, 10 and 20; • Fast loss, coarse phase loss, fine phase loss and hard limit exceeding monitoring; • Output phase and frequency offset limited; • Automatic Instantaneous, Automatic Slow Averaged, Automatic Fast Averaged or Manual holdover frequency offset acquiring; • PBO to minimize output phase transients; • Programmable output phase offset; • Low jitter multiple clock outputs with programmable polarity; • Low jitter 8 kHz frame sync signal output with programmable pulse width and polarity; All of the above interrupt events are indicated by the corresponding interrupt status bit. If the corresponding interrupt enable bit is set, any of the interrupts can be reported by the INT_REQ pin. The output characteristics on the INT_REQ pin are determined by the HZ_EN bit and the INT_POL bit. Interrupt events are cleared by writing a ‘1’ to the corresponding interrupt status bit. The INT_REQ pin will be inactive only when all the pending enabled interrupts are cleared. In addition, the interrupt of T0 selected input clock fail can be reported by the TDO pin, as determined by the LOS_FLAG_TO_TDO bit. Table 27: Related Bit / Register in Chapter 3.14 Bit HZ_EN INT_POL LOS_FLAG_TO_TDO Functional Description Register Address (Hex) INTERRUPT_CNFG 0C MON_SW_PBO_CNFG 0B T0 SUMMARY 38 July 23, 2009 IDT82V32021 3.16 EBU WAN PLL LINE CARD APPLICATION Master Clock Board Clock OC-n Clock Sync IDT82V32021 Slave Clock Board Sync Clock SDH/SONET System Chip e.g. Transciever TSE ...... Optical signal 155 M, 622 M, 2.5 G, or 10 Gbit/s Sync OC-n Line Card Board Backplane Figure 11. Line Card Application Functional Description 39 July 23, 2009 IDT82V32021 EBU WAN PLL I2C PROGRAMMING INTERFACE 4 Every byte put on the SDA line must be 8-bit long. The number of bytes that can be transmitted per transfer is unrestricted in theory. Each byte has to be followed by an acknowledge bit (ACK). So the whole data transfer needs a period of 9 clock cycles. The data is transferred with the most significant bit (MSB) first. The input SCL signal for the IDT82V32021 is from the master device. The I2C bus interface provides access to read and write the registers in the IDT82V32021. 4.1 FUNCTION DESCRIPTION The timing of a complete data transfer is shown in Figure 12. The transfer process can be divided into three phases: • START (S) or repeated START (Sr) condition; • Byte data transfer condition; • STOP (P) condition. The definitions of S/Sr and P conditions are shown in Table 28: Table 28: Definition of S/Sr and P Conditions Condition S/Sr P Definition A high to low transition on the SDA pin while the SCL pin is high. A low to high transition on the SDA pin while the SCL pin is high. P SDA acknowledgement signal from the slave device MSB acknowledgement signal from receiver Sr byte complete, interrupt within the Slave device clock line held low while interrupts are serviced SCL S or Sr 1 2 7 8 9 ACK 1 2 3-8 9 ACK Sr or P STOP or repeated START condition START or repeated START condition Figure 12. Data Transfer on the I2C-bus I2C Programming Interface 40 July 23, 2009 IDT82V32021 4.1.1 EBU WAN PLL DATA TRANSFER FORMAT Two kinds of data transfer formats are supported by the IDT82V32021: • Slave-receiver mode (Write); • Slave-transmitter mode (Read); 4.1.1.1 Slave-receiver Mode (Write) The Slave-receiver mode is as shown in Figure 13. The Master device asserts the slave address followed by the Write bit. The Slave device acknowledges and the Master device delivers the address byte. The Slave device again acknowledges before the Master device sends the data byte. The Slave device acknowledges each byte, and the entire transaction is finished with a STOP condition. 1 7 1 1 8 1 8 1 1 S Slave Address Wr A Address Byte A Data Byte A P S Start Condition Master-to-Slave Wr Write (bit value of 0) Slave-to-Master P Stop Condition A Acknowledge (this bit position may be ‘0’ for an ACK or ‘1’ for a NACK) Figure 13. Slave-receiver Mode 4.1.1.2 Slave-transmitter Mode (Read) The Slave-transmitter mode is as shown in Figure 14. First the Master device must write an address byte to the slave device. Then it must follow that address byte with a repeated START condition to denote a read from that device’s address. The Slave device then returns one byte data corresponding the address. Note that there is no STOP condition before the repeated STRAT condition, and that a noacknowledge (NACK) signifies the end of the read transfer. 1 7 1 1 8 1 1 S Slave Address Wr A Address Byte A S 7 Slave Address S Start Condition P Stop Condition Rd Read (bit value of 1) Wr Write (bit value of 0) Master-to-Slave A 1 1 8 1 1 Rd A Data Byte A P Slave-to-Master Acknowledge (this bit position may be ‘0’ for an ACK or ‘1’ for a NACK) Figure 14. Slave-transmitter Mode I2C Programming Interface 41 July 23, 2009 IDT82V32021 4.1.2 EBU WAN PLL Each device is recognized by a unique slave address. The slave addressing procedure for the I2C-bus is such that the first byte after the START condition usually determines which slave device will be selected by the Master device. In this specification, the 4 MSB bits of the address byte are fixed and the 3 LSB bits are decided by address input pins AD[2:0], as shown in Figure 15. ADDRESS ASSIGNMENT A6 A5 A4 A3 A2 A1 A0 R/W 1 0 1 0 AD2 AD1 AD0 1/0 The R/W bit is used as a data transfer direction bit which is determined by the Master device. A ‘0’ on this bit indicates a transmission (Write) to registers and a ‘1’ indicates a request for data (Read) from the registers. Figure 15. Address Assignment The device will acknowledge (ACK) the first byte which is received after the Start Condition even though it is other device’s address. If the slave address of the device matches the address input pins AD[2:0], the device will process the normal read/write operation; otherwise the device will release the data line with the right pin address for other chip operation. 4.2 TIMING DEFINITION The timing of I2C-bus is as shown in Figure 16. SDA tf tLOW tr tf tSU: DAT tHD: STA tSP tBUF tr SCL tHD: STA S tSU: STO tHD: DAT tHIGH tSU: STA Sr P S Figure 16. Timing Definition of I2C-bus I2C Programming Interface 42 July 23, 2009 IDT82V32021 EBU WAN PLL Table 29: Timing Definition for Standard Mode and Fast Mode(1) Standard Mode Symbol Parameter SCL Serial clock frequency Hold time (repeated) START condition. After this period, the first clock pulse is generated tHD; STA Fast Mode Unit Min Max Min Max 0 100 0 400 KHz 4.0 - 0.5 - µs tLOW LOW period of the SCL clock 4.7 - 1.3 - µs tHIGH HIGH period of the SCL clock 4.0 - 0.6 - µs Set-up time for a repeated START condition 4.7 - 0.6 - µs 0.9(3) µs tSU; STA tHD; DAT Data hold time: for CBUS compatible masters for I C-bus devices 5.0 0(2) 3.45(3) 0(2) tSU; DAT Data set-up time 250 - 100(4) 2 - ns tr Rise time of both SDA and SCL signals - 1000 20 + 0.1Cb(5) 300 ns tf Fall time of both SDA and SCL signals - 300 20 + 0.1Cb(5) 300 ns - 0.6 - µs tSU; STO Set-up time for STOP condition 4.0 tBUF Bus free time between a STOP and START condition 4.7 - 1.3 - µs Cb Capacitive load for each bus line - 400 - 400 pF 0.1VDD - 0.1VDD - V 0.2VDD - 0.2VDD - V 0 50 0 50 ns VnL VnH tsp Noise margin at the LOW level for each connected device (Including hysteresis) Noise margin at the HIGH level for each connected device (Including hysteresis) Pulse width of spikes which must be suppressed by the input filter Note: 1. All values referred to VIHmin and VILmax levels (see Table 37) 2. A device must Internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge the undefined region of the falling edge of SCL. 3. The maximum tHD; DAT has only to be met if the device does not strech the LOW period (tLOW) of the SCL signal. 4. A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement tSU; DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line trmax + tSU; DAT = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus specification) before the SCL line is released. 5. Cb = total capacitance of one bus line in pF. If mixed with Hs-mode device, faster fall-times according to Table 39 allowed. n/a = not applicable I2C Programming Interface 43 July 23, 2009 IDT82V32021 5 EBU WAN PLL JTAG This device is compliant with the IEEE 1149.1 Boundary Scan standard except the following: • The output boundary scan cells do not capture data from the core and the device does not support EXTEST instruction; • The TRST pin is set low by default and JTAG is disabled in order to be consistent with other manufacturers. The JTAG interface timing diagram is shown in Figure 17. tTCK TCK tS tH TMS TDI tD TDO Figure 17. JTAG Interface Timing Diagram Table 30: JTAG Timing Characteristics Symbol JTAG Parameter Min tTCK Typ Max TCK period 100 ns tS TMS / TDI to TCK setup time 25 ns tH TCK to TMS / TDI Hold Time 25 ns tD TCK to TDO delay time 50 44 Unit ns July 23, 2009 IDT82V32021 6 EBU WAN PLL PROGRAMMING INFORMATION After reset, all the registers are set to their default values. The registers are read or written via the microprocessor interface. example, the write operation for the Multi-word Registers follows a fixed sequence. The register (04H) is configured first and the register (06H) is configured last. The three registers are configured continuously and should not be interrupted by any operation. The crystal calibration configuration will take effect after all the three registers are configured. During read operation, the register (04H) is read first and the register (06H) is read last. The crystal calibration reading should be continuous and not be interrupted by any operation. Before any write operation, the value in register PROTECTION_CNFG is recommended to be confirmed to make sure whether the write operation is enabled. The device provides 3 register protection modes: • Protected mode: no other registers can be written except register PROTECTION_CNFG itself; • Fully Unprotected mode: all the writable registers can be written; • Single Unprotected mode: one more register can be written besides register PROTECTION_CNFG. After write operation (not including writing a ‘1’ to clear a bit to ‘0’), the device automatically switches to Protected mode. Certain bit locations within the device register map are designated as Reserved. To ensure proper and predictable operation, bits designated as Reserved should not be written by the users. In addition, their value should be masked out from any testing or error detection methods that are implemented. Writing ‘0’ to the registers will take no effect if the registers are cleared by writing ‘1’. 6.1 REGISTER MAP Table 31 is the map of all the registers, sorted in an ascending order of their addresses. The access of the Multi-word Registers is different from that of the Single-word Registers. Take the registers (04H, 05H and 06H) for an Table 31: Register List and Map Address (Hex) Register Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reference Page Global Control Registers 00 01 04 05 06 08 09 0A 0B 7E 0C ID[7:0] - Device ID 1 ID[15:8] - Device ID 2 NOMINAL_FREQ[7:0]_CNFG - Crystal Oscillator Frequency Offset Calibration Configuration 1 NOMINAL_FREQ[15:8]_CNFG - Crystal Oscillator Frequency Offset Calibration Configuration 2 NOMINAL_FREQ[23:16]_CNFG Crystal Oscillator Frequency Offset Calibration Configuration 3 PHASE_ALARM_TIME_OUT_CNFG Phase Lock Alarm Time-Out Configuration MULTI_FACTOR[1:0] ID[7:0] ID[15:8] P 49 P 49 NOMINAL_FREQ_VALUE[7:0] P 50 NOMINAL_FREQ_VALUE[15:8] P 50 NOMINAL_FREQ_VALUE[23:16] P 50 TIME_OUT_VALUE[5:0] AUTO_EX PH_ALAR INPUT_MODE_CNFG - Input Mode EXT_SYN IN_SONET T_SYNC_ M_TIMEO SYNC_FREQ[1:0] Configuration C_EN _SDH EN UT OSCI_CNFG - Master Clock ConfiguOSC_EDG ration E MON_SW_PBO_CNFG - Frequency LOS_FLA FREQ_MO ULTR_FAS PBO_FRE Monitor, Input Clock Selection & PBO G_TO_TD EXT_SW PBO_EN N_CLK T_SW Z Control O PROTECTION_CNFG - Register ProPROTECTION_DATA[7:0] tection Mode Configuration Interrupt Registers INTERRUPT_CNFG - Interrupt Configuration Programming Information 45 P 51 - REVERTIV E_MODE P 52 - - P 53 - FREQ_MO N_HARD_ EN P 54 P 55 HZ_EN INT_POL P 56 July 23, 2009 IDT82V32021 EBU WAN PLL Table 31: Register List and Map (Continued) Address (Hex) Register Name Bit 7 Bit 6 Bit 5 Bit 4 0D INTERRUPTS1_STS - Interrupt Status 1 - - - - 0E 0F 10 11 12 16 17 23 24 25 27 2E 2F 31 32 33 34 35 36 Bit 3 Bit 2 IN2_CMOS IN1_CMOS Bit 1 Bit 0 Reference Page - - P 56 T0_OPER T0_MAIN_ INTERRUPTS2_STS - Interrupt Status ATING_MO REF_FAIL 2 DE ED INTERRUPTS3_STS - Interrupt Status EX_SYNC 3 _ALARM INTERRUPTS1_ENABLE_CNFG IN2_CMOS IN1_CMOS Interrupt Control 1 T0_OPER T0_MAIN_ INTERRUPTS2_ENABLE_CNFG ATING_MO REF_FAIL Interrupt Control 2 DE ED INTERRUPTS3_ENABLE_CNFG - EX_SYNC Interrupt Control 3 _ALARM Input Clock Frequency & Priority Configuration Registers IN1_CMOS_CNFG - CMOS Input DIRECT_D LOCK_8K BUCKET_SEL[1:0] IN_FREQ[3:0] Clock 1 Configuration IV IN2_CMOS_CNFG - CMOS Input DIRECT_D LOCK_8K BUCKET_SEL[1:0] IN_FREQ[3:0] Clock 2 Configuration IV PRE_DIV_CH_CNFG - DivN Divider PRE_DIV_CH_VALUE[3:0] Channel Selection PRE_DIVN[7:0]_CNFG - DivN Divider PRE_DIVN_VALUE[7:0] Division Factor Configuration 1 PRE_DIVN[14:8]_CNFG DivN PRE_DIVN_VALUE[14:8] Divider Division Factor Configuration 2 IN1_IN2_CMOS_SEL_PRIORITY_CN FG - CMOS Input Clock 1 & 2 Priority IN2_CMOS_SEL_PRIORITY[3:0] IN1_CMOS_SEL_PRIORITY[3:0] Configuration Input Clock Quality Monitoring Configuration & Status Registers FREQ_MON_FACTOR_CNFG - FacFREQ_MON_FACTOR[3:0] tor of Frequency Monitor Configuration ALL_FREQ_MON_THRESHOLD_CN FG - Frequency Monitor Threshold for ALL_FREQ_HARD_THRESHOLD[3:0] All Input Clocks Configuration UPPER_THRESHOLD_0_CNFG Upper Threshold for Leaky Bucket UPPER_THRESHOLD_0_DATA[7:0] Configuration 0 LOWER_THRESHOLD_0_CNFG Lower Threshold for Leaky Bucket LOWER_THRESHOLD_0_DATA[7:0] Configuration 0 BUCKET_SIZE_0_CNFG - Bucket BUCKET_SIZE_0_DATA[7:0] Size for Leaky Bucket Configuration 0 DECAY_RATE_0_CNFG - Decay Rate DECAY_RATE_0_DATA for Leaky Bucket Configuration 0 [1:0] UPPER_THRESHOLD_1_CNFG Upper Threshold for Leaky Bucket UPPER_THRESHOLD_1_DATA[7:0] Configuration 1 LOWER_THRESHOLD_1_CNFG Lower Threshold for Leaky Bucket LOWER_THRESHOLD_1_DATA[7:0] Configuration 1 Programming Information 46 P 57 P 57 P 58 P 58 P 59 P 60 P 61 P 62 P 62 P 63 P 64 P 65 P 65 P 66 P 66 P 66 P 67 P 67 P 67 July 23, 2009 IDT82V32021 EBU WAN PLL Table 31: Register List and Map (Continued) Address (Hex) 37 38 39 3A 3B 3C 3D 3E 3F 40 41 42 44 4A 4E 4F 50 52 53 Register Name BUCKET_SIZE_1_CNFG - Bucket Size for Leaky Bucket Configuration 1 DECAY_RATE_1_CNFG - Decay Rate for Leaky Bucket Configuration 1 UPPER_THRESHOLD_2_CNFG Upper Threshold for Leaky Bucket Configuration 2 LOWER_THRESHOLD_2_CNFG Lower Threshold for Leaky Bucket Configuration 2 BUCKET_SIZE_2_CNFG - Bucket Size for Leaky Bucket Configuration 2 DECAY_RATE_2_CNFG - Decay Rate for Leaky Bucket Configuration 2 UPPER_THRESHOLD_3_CNFG Upper Threshold for Leaky Bucket Configuration 3 LOWER_THRESHOLD_3_CNFG Lower Threshold for Leaky Bucket Configuration 3 BUCKET_SIZE_3_CNFG - Bucket Size for Leaky Bucket Configuration 3 DECAY_RATE_3_CNFG - Decay Rate for Leaky Bucket Configuration 3 IN_FREQ_READ_CH_CNFG - Input Clock Frequency Read Channel Selection IN_FREQ_READ_STS - Input Clock Frequency Read Value IN1_IN2_CMOS_STS - CMOS Input Clock 1 & 2 Status INPUT_VALID1_STS - Input Clocks Validity 1 PRIORITY_TABLE1_STS - Priority Status 1 PRIORITY_TABLE2_STS - Priority Status 2 T0_INPUT_SEL_CNFG - T0 Selected Input Clock Configuration Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 BUCKET_SIZE_1_DATA[7:0] - - - - - - P 68 - - DECAY_RATE_1_DATA [1:0] P 68 LOWER_THRESHOLD_2_DATA[7:0] P 69 BUCKET_SIZE_2_DATA[7:0] P 69 - - - - DECAY_RATE_2_DATA [1:0] P 70 LOWER_THRESHOLD_3_DATA[7:0] P 70 BUCKET_SIZE_3_DATA[7:0] P 70 - - - - - - - - DECAY_RATE_3_DATA [1:0] IN_FREQ_READ_CH[3:0] IN2_CMOS IN2_CMOS IN2_CMOS _FREQ_H _NO_ACTI _PH_LOC ARD_ALA VITY_ALA K_ALARM RM RM T0 DPLL Input Clock Selection Registers - - HIGHEST_PRIORITY_VALIDATED[3:0] - P 71 IN1_CMOS IN1_CMOS IN1_CMOS _FREQ_H _NO_ACTI _PH_LOC ARD_ALA VITY_ALA K_ALARM RM RM IN2_CMOS IN1_CMOS - P 72 - P 73 CURRENTLY_SELECTED_INPUT[3:0] P 73 - - - - SECOND_HIGHEST_PRIORITY_VALIDATED[3:0 ] P 74 - - - - T0_INPUT_SEL[3:0] P 74 T0 DPLL State Machine Control Registers EX_SYNC T0_DPLL_ OPERATING_STS - DPLL Operating T0_DPLL_ _ALARM_ SOFT_FRE T0_DPLL_OPERATING_MODE[2:0] Status LOCK MON Q_ALARM T0_OPERATING_MODE_CNFG - T0 T0_OPERATING_MODE[2:0] DPLL Operating Mode Configuration Programming Information P 71 P 71 IN_FREQ_VALUE[7:0] - P 69 UPPER_THRESHOLD_3_DATA[7:0] - - P 68 UPPER_THRESHOLD_2_DATA[7:0] - - Reference Page 47 P 75 P 76 July 23, 2009 IDT82V32021 EBU WAN PLL Table 31: Register List and Map (Continued) Address (Hex) 55 56 57 58 59 5A 5B 5C 5D 5E 5F 62 63 64 65 66 67 68 69 6A Register Name T0_DPLL_APLL_PATH_CNFG - T0 DPLL & APLL Path Configuration T0_DPLL_START_BW_DAMPING_C NFG - T0 DPLL Start Bandwidth & Damping Factor Configuration T0_DPLL_ACQ_BW_DAMPING_CNF G - T0 DPLL Acquisition Bandwidth & Damping Factor Configuration T0_DPLL_LOCKED_BW_DAMPING_ CNFG - T0 DPLL Locked Bandwidth & Damping Factor Configuration T0_BW_OVERSHOOT_CNFG - T0 DPLL Bandwidth Overshoot Configuration PHASE_LOSS_COARSE_LIMIT_CNF G - Phase Loss Coarse Detector Limit Configuration PHASE_LOSS_FINE_LIMIT_CNFG Phase Loss Fine Detector Limit Configuration T0_HOLDOVER_MODE_CNFG - T0 DPLL Holdover Mode Configuration T0_HOLDOVER_FREQ[7:0]_CNFG T0 DPLL Holdover Frequency Configuration 1 T0_HOLDOVER_FREQ[15:8]_CNFG - T0 DPLL Holdover Frequency Configuration 2 T0_HOLDOVER_FREQ[23:16]_CNFG - T0 DPLL Holdover Frequency Configuration 3 CURRENT_DPLL_FREQ[7:0]_STS DPLL Current Frequency Status 1 CURRENT_DPLL_FREQ[15:8]_STS DPLL Current Frequency Status 2 CURRENT_DPLL_FREQ[23:16]_STS - DPLL Current Frequency Status 3 DPLL_FREQ_SOFT_LIMIT_CNFG DPLL Soft Limit Configuration DPLL_FREQ_HARD_LIMIT[7:0]_CNF G - DPLL Hard Limit Configuration 1 DPLL_FREQ_HARD_LIMIT[15:8]_CN FG - DPLL Hard Limit Configuration 2 CURRENT_DPLL_PHASE[7:0]_STS DPLL Current Phase Status 1 CURRENT_DPLL_PHASE[15:8]_STS - DPLL Current Phase Status 2 T0_APLL_BW_CNFG - T0 APLL Bandwidth Configuration Programming Information Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 T0 DPLL & T0 APLL Configuration Registers T0_GSM_OBSAI_16E1 T0_12E1_24T1_E3_T3 T0_APLL_PATH[3:0] _16T1_SEL[1:0] _SEL[1:0] Reference Page P 77 T0_DPLL_START_DAMPING[2:0] T0_DPLL_START_BW[4:0] P 78 T0_DPLL_ACQ_DAMPING[2:0] T0_DPLL_ACQ_BW[4:0] P 79 T0_DPLL_LOCKED_DAMPING[2:0] T0_DPLL_LOCKED_BW[4:0] P 80 AUTO_BW _SEL - - - T0_LIMT - - - COARSE_ MULTI_PH MULTI_PH PH_LOS_L WIDE_EN _8K_4K_2 PH_LOS_COARSE_LIMT[3:0] _APP IMT_EN K_EN FINE_PH_ FAST_LOS LOS_LIMT PH_LOS_FINE_LIMT[2:0] _SW _EN MAN_HOL AUTO_AV READ_AV TEMP_HOLDOVER_M FAST_AVG DOVER G G ODE[1:0] FREQ_LIM T_PH_LOS - P 82 P 83 P 83 T0_HOLDOVER_FREQ[15:8] P 84 T0_HOLDOVER_FREQ[23:16] P 84 CURRENT_DPLL_FREQ[7:0] P 84 CURRENT_DPLL_FREQ[15:8] P 85 CURRENT_DPLL_FREQ[23:16] P 85 P 85 DPLL_FREQ_HARD_LIMT[7:0] P 86 DPLL_FREQ_HARD_LIMT[15:8] P 86 CURRENT_PH_DATA[7:0] P 86 CURRENT_PH_DATA[15:8] P 87 T0_APLL_BW[1:0] 48 P 81 T0_HOLDOVER_FREQ[7:0] DPLL_FREQ_SOFT_LIMT[6:0] - P 80 - - - - P 87 July 23, 2009 IDT82V32021 EBU WAN PLL Table 31: Register List and Map (Continued) Address (Hex) Register Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Reference Page Bit 0 Output Configuration Registers OUT1_FREQ_CNFG - Output Clock 1 OUT1_PATH_SEL[3:0] OUT1_DIVIDER[3:0] Frequency Configuration OUT1_INV_CNFG - Output Clock 1 OUT1_INV Invert Configuration FR_SYNC_CNFG - Frame Sync Out- IN_2K_4K_ 8K_PUL_P 8K_EN 8K_INV 8K_PUL put Configuration 8K_INV OSITION PBO & Phase Offset Control Registers PHASE_MON_PBO_CNFG - Phase IN_NOISE PH_MON_ PH_MON_ Transient Monitor & PBO ConfiguraPH_TR_MON_LIMT[3:0] _WINDOW EN PBO_EN tion Synchronization Configuration Registers SYNC_MONITOR_CNFG - Sync Mon- SYNC_BY SYNC_MON_LIMT[2:0] itor Configuration PASS SYNC_PHASE_CNFG - Sync Phase SYNC_PH2[1:0] SYNC_PH1[1:0] Configuration 6D 73 74 78 7C 7D 6.2 REGISTER DESCRIPTION 6.2.1 GLOBAL CONTROL REGISTERS P 88 P 88 P 89 P 90 P 91 P 91 ID[7:0] - Device ID 1 Address: 00H Type: Read Default Value: 10001000 7 6 5 4 3 2 1 0 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0 Bit Name 7-0 ID[7:0] Description Refer to the description of the ID[15:8] bits (b7~0, 01H). ID[15:8] - Device ID 2 Address: 01H Type: Read Default Value: 00010001 7 6 5 4 3 2 1 0 ID15 ID14 ID13 ID12 ID11 ID10 ID9 ID8 Bit Name 7-0 ID[15:8] Programming Information Description The value in the ID[15:0] bits are pre-set, representing the identification number for the IDT82V32021. 49 July 23, 2009 IDT82V32021 EBU WAN PLL NOMINAL_FREQ[7:0]_CNFG - Crystal Oscillator Frequency Offset Calibration Configuration 1 Address: 04H Type: Read / Write Default Value: 00000000 7 6 5 4 3 2 1 0 NOMINAL_FRE Q_VALUE7 NOMINAL_FRE Q_VALUE6 NOMINAL_FRE Q_VALUE5 NOMINAL_FRE Q_VALUE4 NOMINAL_FRE Q_VALUE3 NOMINAL_FRE Q_VALUE2 NOMINAL_FRE Q_VALUE1 NOMINAL_FRE Q_VALUE0 Bit 7-0 Name Description NOMINAL_FREQ_VALUE[7:0] Refer to the description of the NOMINAL_FREQ_VALUE[23:16] bits (b7~0, 06H). NOMINAL_FREQ[15:8]_CNFG - Crystal Oscillator Frequency Offset Calibration Configuration 2 Address: 05H Type: Read / Write Default Value: 00000000 7 6 5 4 3 2 1 0 NOMINAL_FRE Q_VALUE15 NOMINAL_FRE Q_VALUE14 NOMINAL_FRE Q_VALUE13 NOMINAL_FRE Q_VALUE12 NOMINAL_FRE Q_VALUE11 NOMINAL_FRE Q_VALUE10 NOMINAL_FRE Q_VALUE9 NOMINAL_FRE Q_VALUE8 Bit 7-0 Name Description NOMINAL_FREQ_VALUE[15:8] Refer to the description of the NOMINAL_FREQ_VALUE[23:16] bits (b7~0, 06H). NOMINAL_FREQ[23:16]_CNFG - Crystal Oscillator Frequency Offset Calibration Configuration 3 Address: 06H Type: Read / Write Default Value: 00000000 7 6 5 4 3 2 1 0 NOMINAL_FRE Q_VALUE23 NOMINAL_FRE Q_VALUE22 NOMINAL_FRE Q_VALUE21 NOMINAL_FRE Q_VALUE20 NOMINAL_FRE Q_VALUE19 NOMINAL_FRE Q_VALUE18 NOMINAL_FRE Q_VALUE17 NOMINAL_FRE Q_VALUE16 Bit 7-0 Name Description The NOMINAL_FREQ_VALUE[23:0] bits represent a 2’s complement signed integer. If the value is multiplied by 0.0000884, the calibration value for the master clock in ppm will be gotten. For example, the frequency offset on OSCI is +3 ppm. Though -3 ppm should be compensated, the calibration value is NOMINAL_FREQ_VALUE[23:16] calculated as +3 ppm: 3 ÷ 0.0000884 = 33937 (Dec.) = 8490 (Hex); So ‘008490’ should be written into these bits. The calibration range is within ±741 ppm. Programming Information 50 July 23, 2009 IDT82V32021 EBU WAN PLL PHASE_ALARM_TIME_OUT_CNFG - Phase Lock Alarm Time-Out Configuration Address: 08H Type: Read / Write Default Value: 00110010 7 6 5 4 3 2 1 0 MULTI_FACTO R1 MULTI_FACTO R0 TIME_OUT_VA LUE5 TIME_OUT_VA LUE4 TIME_OUT_VA LUE3 TIME_OUT_VA LUE2 TIME_OUT_VA LUE1 TIME_OUT_VAL UE0 Bit 7-6 5-0 Name Description These bits determine a factor which has a relationship with a period in seconds. A phase lock alarm will be raised if the T0 selected input clock is not locked in T0 DPLL within this period. If the PH_ALARM_TIMEOUT bit (b5, 09H) is ‘1’, the phase lock alarm will be cleared after this period (starting from when the alarm is raised). Refer to the description of the TIME_OUT_VALUE[5:0] bits (b5~0, 08H). MULTI_FACTOR[1:0] 00: 2 (default) 01: 4 10: 8 11: 16 These bits represent an unsigned integer. If the value in these bits is multiplied by the value in the MULTI_FACTOR[1:0] bits (b7~6, 08H), a period in seconds will be gotten. TIME_OUT_VALUE[5:0] A phase lock alarm will be raised if the T0 selected input clock is not locked in T0 DPLL within this period. If the PH_ALARM_TIMEOUT bit (b5, 09H) is ‘1’, the phase lock alarm will be cleared after this period (starting from when the alarm is raised). Programming Information 51 July 23, 2009 IDT82V32021 EBU WAN PLL INPUT_MODE_CNFG - Input Mode Configuration Address: 09H Type: Read / Write Default Value: 10100X10 7 6 5 4 3 2 1 0 AUTO_EXT_SY NC_EN EXT_SYNC_EN PH_ALARM_TI MEOUT SYNC_FREQ1 SYNC_FREQ0 IN_SONET_SD H - REVERTIVE_M ODE Bit Name 7 AUTO_EXT_SYNC_EN 6 EXT_SYNC_EN 5 4-3 2 1 0 Description This bit is valid only when the SYNC_BYPASS bit (b7, 7CH) is ‘0’. Refer to the description of the EXT_SYNC_EN bit (b6, 09H). This bit is valid only when the SYNC_BYPASS bit (b7, 7CH) is ‘0’. This bit, together with the AUTO_EXT_SYNC_EN bit (b7, 09H), determines whether the selected frame sync input signal is enabled to synchronize the frame sync output signals. AUTO_EXT_SYNC_EN EXT_SYNC_EN Synchronization don’t-care 0 1 0 1 1 Disabled (default) Enabled Disabled This bit determines how to clear the phase lock alarm. 0: The phase lock alarm will be cleared when a ‘1’ is written to the corresponding INn_CMOS_PH_LOCK_ALARM bit (n = 1 PH_ALARM_TIMEOUT or 2) (b4/0, 44H). 1: The phase lock alarm will be cleared after a period (= TIME_OUT_VALUE[5:0] (b5~0, 08H) X MULTI_FACTOR[1:0] (b7~6, 08H) in second) which starts from when the alarm is raised. (default) These bits set the frequency of the frame sync signals input on the EX_SYNC1 ~ EX_SYNC2 pins. 00: 8 kHz (default) SYNC_FREQ[1:0] 01: 8 kHz. 10: 4 kHz. 11: 2 kHz. This bit selects the SDH or SONET network type. 0: SDH. The DPLL required clock is 2.048 MHz when the IN_FREQ[3:0] bits (b3~0, 16H, 17H) are ‘0001’ and the T0 DPLL output from the 16E1/16T1 path is 16E1. IN_SONET_SDH 1: SONET. The DPLL required clock is 1.544 MHz when the IN_FREQ[3:0] bits (b3~0, 16H, 17H) are ‘0001’ and the T0 DPLL output from the 16E1/16T1 path is 16T1. The default value of this bit is determined by the SONET/SDH pin during reset. Reserved. This bit selects Revertive or Non-Revertive switch. REVERTIVE_MODE 0: Non-Revertive switch. (default) 1: Revertive switch. Programming Information 52 July 23, 2009 IDT82V32021 EBU WAN PLL OSCI_CNFG - Master Clock Configuration Address: 0AH Type: Read / Write Default Value: XXXXX00X 7 6 5 4 3 2 1 0 - - - - - OSC_EDGE - - Bit Name 7-3 - 2 OSC_EDGE 1-0 - Programming Information Description Reserved. This bit selects a better active edge of the master clock. 0: The rising edge. (default) 1: The falling edge. Reserved 53 July 23, 2009 IDT82V32021 EBU WAN PLL MON_SW_PBO_CNFG - Frequency Monitor, Input Clock Selection & PBO Control Address: 0BH Type: Read / Write Default Value: 100X01X1 7 6 5 4 3 2 1 0 FREQ_MON_C LK LOS_FLAG_TO _TDO ULTR_FAST_SW EXT_SW PBO_FREZ PBO_EN - FREQ_MON_H ARD_EN Bit 7 6 5 4 3 2 1 0 Name Description The bit selects a reference clock for input clock frequency monitoring. 0: The output of T0 DPLL. 1: The master clock. (default) The bit determines whether the interrupt of T0 selected input clock fail - is reported by the TDO pin. 0: Not reported. TDO pin is used as JTAG test data output which complies with IEEE 1149.1. (default) LOS_FLAG_TO_TDO 1: Reported. TDO pin mimics the state of the T0_MAIN_REF_FAILED bit (b6, 0EH) and does not strictly comply with IEEE 1149.1. This bit determines whether the T0 selected input clock is valid when missing 2 consecutive clock cycles or more. ULTR_FAST_SW 0: Valid. (default) 1: Invalid. This bit determines the T0 input clock selection. 0: Forced selection or Automatic selection, as controlled by the T0_INPUT_SEL[3:0] bits (b3~0, 50H). EXT_SW 1: External Fast selection. The default value of this bit is determined by the FF_SRCSW pin during reset. This bit is valid only when the PBO is enabled by the PBO_EN bit (b2, 0BH). It determines whether PBO is frozen at the current phase offset when a PBO event is triggered. PBO_FREZ 0: Not frozen. (default) 1: Frozen. Further PBO events are ignored and the current phase offset is maintained. This bit determines whether PBO is enabled when the T0 selected input clock switch or the T0 DPLL exiting from Holdover mode or Free-Run mode occurs. PBO_EN 0: Disabled. 1: Enabled. (default) Reserved. This bit determines whether the frequency hard alarm is enabled when the frequency of the input clock with respect to the reference clock is above the frequency hard alarm threshold. The reference clock can be the output of T0 DPLL or the masFREQ_MON_HARD_EN ter clock, as determined by the FREQ_MON_CLK bit (b7, 0BH). 0: Disabled. 1: Enabled. (default) FREQ_MON_CLK Programming Information 54 July 23, 2009 IDT82V32021 EBU WAN PLL PROTECTION_CNFG - Register Protection Mode Configuration Address: 7EH Type: Read / Write Default Value: 10000101 7 6 5 4 3 2 1 0 PROTECTION_ DATA7 PROTECTION_ DATA6 PROTECTION_ DATA5 PROTECTION_ DATA4 PROTECTION_ DATA3 PROTECTION_ DATA2 PROTECTION_ DATA1 PROTECTION_ DATA0 Bit 7-0 Name Description These bits select a register write protection mode. 00000000 - 10000100, 10000111 - 11111111: Protected mode. No other registers can be written except this register. PROTECTION_DATA[7:0] 10000101: Fully Unprotected mode. All the writable registers can be written. (default) 10000110: Single Unprotected mode. One more register can be written besides this register. After write operation (not including writing a ‘1’ to clear the bit to ‘0’), the device automatically switches to Protected mode. Programming Information 55 July 23, 2009 IDT82V32021 6.2.2 EBU WAN PLL INTERRUPT REGISTERS INTERRUPT_CNFG - Interrupt Configuration Address: 0CH Type: Read / Write Default Value: XXXXXX10 7 6 5 4 3 2 1 0 - - - - - - HZ_EN INT_POL Bit Name Description 7-2 - 1 HZ_EN 0 INT_POL Reserved. This bit determines the output characteristics of the INT_REQ pin. 0: The output on the INT_REQ pin is high/low when the interrupt is active; the output is the opposite when the interrupt is inactive. 1: The output on the INT_REQ pin is high/low when the interrupt is active; the output is in high impedance state when the interrupt is inactive. (default) This bit determines the active level on the INT_REQ pin for an active interrupt indication. 0: Active low. (default) 1: Active high. INTERRUPTS1_STS - Interrupt Status 1 Address: 0DH Type: Read / Write Default Value: XXXX11XX 7 6 5 4 3 2 1 0 - - - - IN2_CMOS IN1_CMOS - - Bit Name Description 7-4 - 3-2 INn_CMOS 1-0 - Reserved. This bit indicates the validity changes (from ‘valid’ to ‘invalid’ or from ‘invalid’ to ‘valid’) for the corresponding INn_CMOS; i.e., whether there is a transition (from ‘0’ to ‘1’ or from ‘1’ to ‘0’) on the corresponding INn_CMOS bit (b3/2, 4AH). Here n is 2 or 1. 0: Has not changed. 1: Has changed. (default) This bit is cleared by writing a ‘1’. Reserved. Programming Information 56 July 23, 2009 IDT82V32021 EBU WAN PLL INTERRUPTS2_STS - Interrupt Status 2 Address: 0EH Type: Read / Write Default Value: 00XXXXXX 7 6 5 4 3 2 1 0 T0_OPERATING _MODE T0_MAIN_REF_F AILED - - - - - - Bit Name Description This bit indicates the operating mode switch for T0 DPLL; i.e., whether the value in the T0_DPLL_OPERATING_MODE[2:0] bits (b2~0, 52H) changes. T0_OPERATING_MODE 0: Has not switched. (default) 1: Has switched. This bit is cleared by writing a ‘1’. This bit indicates whether the T0 selected input clock has failed. The T0 selected input clock fails when its validity changes from ‘valid’ to ‘invalid’; i.e., when there is a transition from ‘1’ to ‘0’ on the corresponding INn_CMOS bit (4AH). T0_MAIN_REF_FAILED 0: Has not failed. (default) 1: Has failed. This bit is cleared by writing a ‘1’. Reserved. 7 6 5-0 INTERRUPTS3_STS - Interrupt Status 3 Address: 0FH Type: Read / Write Default Value: 1XXXXXXX 7 6 5 4 3 2 1 0 EX_SYNC_ALARM - - - - - - - Bit 7 6-0 Name Description This bit indicates whether an external sync alarm is raised; i.e., whether there is a transition from ‘0’ to ‘1’ on the EX_SYNC_ALARM_MON bit (b7, 52H). EX_SYNC_ALARM 0: Has not occurred. 1: Has occurred. (default) This bit is cleared by writing a ‘1’. Reserved. Programming Information 57 July 23, 2009 IDT82V32021 EBU WAN PLL INTERRUPTS1_ENABLE_CNFG - Interrupt Control 1 Address: 10H Type: Read / Write Default Value: XXXX00XX 7 6 5 4 3 2 1 0 - - - - IN2_CMOS IN1_CMOS - - Bit Name Description 7-4 - 3-2 INn_CMOS 1-0 - Reserved. This bit controls whether the interrupt is enabled to be reported on the INT_REQ pin when the input clock validity changes (from ‘valid’ to ‘invalid’ or from ‘invalid’ to ‘valid’), i.e., when the corresponding INn_CMOS bit (b3/2, 0DH) is ‘1’. Here n is 2 or 1. 0: Disabled. (default) 1: Enabled. Reserved. INTERRUPTS2_ENABLE_CNFG - Interrupt Control 2 Address: 11H Type: Read / Write Default Value: 00XXXXXX 7 6 5 4 3 2 1 0 T0_OPERATING _MODE T0_MAIN_REF_F AILED - - - - - - Bit 7 6 5-0 Name Description This bit controls whether the interrupt is enabled to be reported on the INT_REQ pin when the T0 DPLL operating mode switches, i.e., when the T0_OPERATING_MODE bit (b7, 0EH) is ‘1’. T0_OPERATING_MODE 0: Disabled. (default) 1: Enabled. This bit controls whether the interrupt is enabled to be reported on the INT_REQ pin when the T0 selected input clock has failed; i.e., when the T0_MAIN_REF_FAILED bit (b6, 0EH) is ‘1’. T0_MAIN_REF_FAILED 0: Disabled. (default) 1: Enabled. Reserved. Programming Information 58 July 23, 2009 IDT82V32021 EBU WAN PLL INTERRUPTS3_ENABLE_CNFG - Interrupt Control 3 Address: 12H Type: Read / Write Default Value: 0XXXXXXX 7 6 5 4 3 2 1 0 EX_SYNC_ALARM - - - - - - - Bit 7 6-0 Name Description This bit controls whether the interrupt is enabled to be reported on the INT_REQ pin when an external sync alarm has occurred, i.e., when the EX_SYNC_ALARM bit (b7, 0FH) is ‘1’. EX_SYNC_ALARM 0: Disabled. (default) 1: Enabled. Reserved. Programming Information 59 July 23, 2009 IDT82V32021 6.2.3 EBU WAN PLL INPUT CLOCK FREQUENCY & PRIORITY CONFIGURATION REGISTERS IN1_CMOS_CNFG - CMOS Input Clock 1 Configuration Address: 16H Type: Read / Write Default Value: 00000000 7 6 5 4 3 2 1 0 DIRECT_DIV LOCK_8K BUCKET_SEL1 BUCKET_SEL0 IN_FREQ3 IN_FREQ2 IN_FREQ1 IN_FREQ0 Bit Name Description 7 DIRECT_DIV Refer to the description of the LOCK_8K bit (b6, 16H). This bit, together with the DIRECT_DIV bit (b7, 16H), determines whether the DivN Divider or the Lock 8k Divider is used for IN1_CMOS: 6 5-4 3-0 LOCK_8K DIRECT_DIV bit LOCK_8K bit Used Divider 0 0 1 1 0 1 0 1 Both bypassed (default) Lock 8k Divider DivN Divider Reserved These bits select one of the four groups of leaky bucket configuration registers for IN1_CMOS: 00: Group 0; the addresses of the configuration registers are 31H ~ 34H. (default) BUCKET_SEL[1:0] 01: Group 1; the addresses of the configuration registers are 35H ~ 38H. 10: Group 2; the addresses of the configuration registers are 39H ~ 3CH. 11: Group 3; the addresses of the configuration registers are 3DH ~ 40H. These bits set the DPLL required frequency for IN1_CMOS: 0000: 8 kHz. (default) 0001: 1.544 MHz (when the IN_SONET_SDH bit (b2, 09H) is ‘1’) / 2.048 MHz (when the IN_SONET_SDH bit (b2, 09H) is ‘0’). 0010: 6.48 MHz. 0011: 19.44 MHz. 0100: 25.92 MHz. IN_FREQ[3:0] 0101: 38.88 MHz. 0110 ~ 1000: Reserved. 1001: 2 kHz. 1010: 4 kHz. 1011 ~ 1111: Reserved. For IN1_CMOS, the required frequency should not be set higher than that of the input clock. Programming Information 60 July 23, 2009 IDT82V32021 EBU WAN PLL IN2_CMOS_CNFG - CMOS Input Clock 2 Configuration Address: 17H Type: Read / Write Default Value: 00000000 7 6 5 4 3 2 1 0 DIRECT_DIV LOCK_8K BUCKET_SEL1 BUCKET_SEL0 IN_FREQ3 IN_FREQ2 IN_FREQ1 IN_FREQ0 Bit Name Description 7 DIRECT_DIV Refer to the description of the LOCK_8K bit (b6, 17H). This bit, together with the DIRECT_DIV bit (b7, 17H), determines whether the DivN Divider or the Lock 8k Divider is used for IN2_CMOS: 6 5-4 3-0 LOCK_8K DIRECT_DIV bit LOCK_8K bit Used Divider 0 0 1 1 0 1 0 1 Both bypassed (default) Lock 8k Divider DivN Divider Reserved These bits select one of the four groups of leaky bucket configuration registers for IN2_CMOS: 00: Group 0; the addresses of the configuration registers are 31H ~ 34H. (default) BUCKET_SEL[1:0] 01: Group 1; the addresses of the configuration registers are 35H ~ 38H. 10: Group 2; the addresses of the configuration registers are 39H ~ 3CH. 11: Group 3; the addresses of the configuration registers are 3DH ~ 40H. These bits set the DPLL required frequency for IN2_CMOS: 0000: 8 kHz. (default) 0001: 1.544 MHz (when the IN_SONET_SDH bit (b2, 09H) is ‘1’) / 2.048 MHz (when the IN_SONET_SDH bit (b2, 09H) is ‘0’). 0010: 6.48 MHz. 0011: 19.44 MHz. 0100: 25.92 MHz. IN_FREQ[3:0] 0101: 38.88 MHz. 0110 ~ 1000: Reserved. 1001: 2 kHz. 1010: 4 kHz. 1011 ~ 1111: Reserved. For the IN2_CMOS, the required frequency should not be set higher than that of the input clock. Programming Information 61 July 23, 2009 IDT82V32021 EBU WAN PLL PRE_DIV_CH_CNFG - DivN Divider Channel Selection Address: 23H Type: Read / Write Default Value: XXXX0000 7 6 5 4 3 2 1 0 - - - - PRE_DIV_CH_VALUE3 PRE_DIV_CH_VALUE2 PRE_DIV_CH_VALUE1 PRE_DIV_CH_VALUE0 Bit Name 7-4 - Description Reserved. This register is an indirect address register for Register 24H and 25H. These bits select an input clock. The value set in the PRE_DIVN_VALUE[14:0] bits (25H, 24H) is available for the selected input clock. 0000: Reserved. (default) PRE_DIV_CH_VALUE[3:0] 0001, 0010: Reserved. 0011: IN1_CMOS. 0100: IN2_CMOS. 0101 ~ 1111: Reserved. 3-0 PRE_DIVN[7:0]_CNFG - DivN Divider Division Factor Configuration 1 Address: 24H Type: Read / Write Default Value: 00000000 7 6 5 4 3 2 1 0 PRE_DIVN_VA LUE7 PRE_DIVN_VA LUE6 PRE_DIVN_VA LUE5 PRE_DIVN_VA LUE4 PRE_DIVN_VA LUE3 PRE_DIVN_VA LUE2 PRE_DIVN_VA LUE1 PRE_DIVN_VA LUE0 Bit 7-0 Name Description PRE_DIVN_VALUE[7:0] Refer to the description of the PRE_DIVN_VALUE[14:8] bits (b6~0, 25H). Programming Information 62 July 23, 2009 IDT82V32021 EBU WAN PLL PRE_DIVN[14:8]_CNFG - DivN Divider Division Factor Configuration 2 Address: 25H Type: Read / Write Default Value: X0000000 7 6 5 4 3 2 1 0 - PRE_DIVN_VAL UE14 PRE_DIVN_VAL UE13 PRE_DIVN_VAL UE12 PRE_DIVN_VAL UE11 PRE_DIVN_VAL UE10 PRE_DIVN_VAL UE9 PRE_DIVN_VAL UE8 Bit Name Description 7 - 6-0 PRE_DIVN_VALUE[14:8] Reserved. If the value in the PRE_DIVN_VALUE[14:0] bits is plus 1, the division factor for an input clock will be gotten. The input clock is selected by the PRE_DIV_CH_VALUE[3:0] bits (b3~0, 23H). A value from ‘0’ to ‘4BEF’ (Hex) can be written into, corresponding to a division factor from 1 to 19440. The others are reserved. So the DivN Divider only supports an input clock whose frequency is lower than (<) 155.52 MHz. The division factor setting should observe the following order: 1. Write the lower eight bits of the division factor to the PRE_DIVN_VALUE[7:0] bits; 2. Write the higher eight bits of the division factor to the PRE_DIVN_VALUE[14:8] bits. Programming Information 63 July 23, 2009 IDT82V32021 EBU WAN PLL IN1_IN2_CMOS_SEL_PRIORITY_CNFG - CMOS Input Clock 1 & 2 Priority Configuration Address: 27H Type: Read / Write Default Value: 00110010 7 6 5 4 3 2 1 0 IN2_CMOS_SE L_PRIORITY3 IN2_CMOS_SE L_PRIORITY2 IN2_CMOS_SE L_PRIORITY1 IN2_CMOS_SE L_PRIORITY0 IN1_CMOS_SE L_PRIORITY3 IN1_CMOS_SE L_PRIORITY2 IN1_CMOS_SE L_PRIORITY1 IN1_CMOS_SE L_PRIORITY0 Bit 7-4 3-0 Name Description These bits set the priority of the corresponding IN2_CMOS. 0000: Disable IN2_CMOS for automatic selection. 0001: Priority 1. 0010: Priority 2. 0011: Priority 3. (default) 0100: Priority 4. 0101: Priority 5. 0110: Priority 6. IN2_CMOS_SEL_PRIORITY[3:0] 0111: Priority 7. 1000: Priority 8. 1001: Priority 9. 1010: Priority 10. 1011: Priority 11. 1100: Priority 12. 1101: Priority 13. 1110: Priority 14. 1111: Priority 15. These bits set the priority of the corresponding IN1_CMOS. 0000: Disable IN1_CMOS for automatic selection. 0001: Priority 1. 0010: Priority 2. (default) 0011: Priority 3. 0100: Priority 4. 0101: Priority 5. 0110: Priority 6. IN1_CMOS_SEL_PRIORITY[3:0] 0111: Priority 7. 1000: Priority 8. 1001: Priority 9. 1010: Priority 10. 1011: Priority 11. 1100: Priority 12. 1101: Priority 13. 1110: Priority 14. 1111: Priority 15. Programming Information 64 July 23, 2009 IDT82V32021 6.2.4 EBU WAN PLL INPUT CLOCK QUALITY MONITORING CONFIGURATION & STATUS REGISTERS FREQ_MON_FACTOR_CNFG - Factor of Frequency Monitor Configuration Address: 2EH Type: Read / Write Default Value: XXXX1011 7 6 5 4 3 2 1 0 - - - - FREQ_MON_F ACTOR3 FREQ_MON_F ACTOR2 FREQ_MON_F ACTOR1 FREQ_MON_F ACTOR0 Bit Name 7-4 - 3-0 Description Reserved. These bits determine a factor. The factor has a relationship with the frequency hard alarm threshold in ppm (refer to the description of the ALL_FREQ_HARD_THRESHOLD[3:0] bits (b3~0, 2FH)) and with the frequency of the input clock with respect to the master clock in ppm (refer to the description of the IN_FREQ_VALUE[7:0] bits (b7~0, 42H)). The factor represents the accuracy of the frequency monitor and should be set according to the requirements of different applications. 0000: 0.0032. 0001: 0.0064. 0010: 0.0127. 0011: 0.0257. FREQ_MON_FACTOR[3:0] 0100: 0.0514. 0101: 0.103. 0110: 0.206. 0111: 0.412. 1000: 0.823. 1001: 1.646. 1010: 3.292. 1011: 3.81. (default) 1100 - 1111: 4.6. ALL_FREQ_MON_THRESHOLD_CNFG - Frequency Monitor Threshold for All Input Clocks Configuration Address: 2FH Type: Read / Write Default Value: XXXX0011 7 6 5 4 3 2 1 0 - - - - ALL_FREQ_HARD_ THRESHOLD3 ALL_FREQ_HARD_ THRESHOLD2 ALL_FREQ_HARD_ THRESHOLD1 ALL_FREQ_HARD_ THRESHOLD0 Bit Name 7-4 - 3-0 Description Reserved. These bits represent an unsigned integer. The frequency hard alarm threshold in ppm can be calculated as follows: ALL_FREQ_HARD_THRESHOLD[3:0] Frequency Hard Alarm Threshold (ppm) = (ALL_FREQ_HARD_THRESHOLD[3:0] + 1) X FREQ_MON_FACTOR[3:0] (b3~0, 2EH) This threshold is symmetrical about zero. Programming Information 65 July 23, 2009 IDT82V32021 EBU WAN PLL UPPER_THRESHOLD_0_CNFG - Upper Threshold for Leaky Bucket Configuration 0 Address: 31H Type: Read / Write Default Value: 00000110 7 6 5 4 3 2 1 0 UPPER_THRE SHOLD_0_DAT A7 UPPER_THRE SHOLD_0_DAT A6 UPPER_THRE SHOLD_0_DAT A5 UPPER_THRE SHOLD_0_DAT A4 UPPER_THRE SHOLD_0_DAT A3 UPPER_THRE SHOLD_0_DAT A2 UPPER_THRE SHOLD_0_DAT A1 UPPER_THRE SHOLD_0_DAT A0 Bit Name Description 7-0 UPPER_THRESHOLD_0_DATA[7:0] These bits set an upper threshold for the internal leaky bucket accumulator. When the number of the accumulated events is above this threshold, a no-activity alarm is raised. LOWER_THRESHOLD_0_CNFG - Lower Threshold for Leaky Bucket Configuration 0 Address: 32H Type: Read / Write Default Value: 00000100 7 6 5 4 3 2 1 0 LOWER_THRE SHOLD_0_DAT A7 LOWER_THRE SHOLD_0_DAT A6 LOWER_THRE SHOLD_0_DAT A5 LOWER_THRE SHOLD_0_DAT A4 LOWER_THRE SHOLD_0_DAT A3 LOWER_THRE SHOLD_0_DAT A2 LOWER_THRE SHOLD_0_DAT A1 LOWER_THRE SHOLD_0_DAT A0 Bit Name Description 7-0 LOWER_THRESHOLD_0_DATA[7:0] These bits set a lower threshold for the internal leaky bucket accumulator. When the number of the accumulated events is below this threshold, the no-activity alarm is cleared. BUCKET_SIZE_0_CNFG - Bucket Size for Leaky Bucket Configuration 0 Address: 33H Type: Read / Write Default Value: 00001000 7 6 5 4 3 2 1 0 BUCKET_SIZE _0_DATA7 BUCKET_SIZE _0_DATA6 BUCKET_SIZE _0_DATA5 BUCKET_SIZE _0_DATA4 BUCKET_SIZE _0_DATA3 BUCKET_SIZE _0_DATA2 BUCKET_SIZE _0_DATA1 BUCKET_SIZE _0_DATA0 Bit Name Description 7-0 BUCKET_SIZE_0_DATA[7:0] These bits set a bucket size for the internal leaky bucket accumulator. If the number of the accumulated events reach the bucket size, the accumulator will stop increasing even if further events are detected. Programming Information 66 July 23, 2009 IDT82V32021 EBU WAN PLL DECAY_RATE_0_CNFG - Decay Rate for Leaky Bucket Configuration 0 Address: 34H Type: Read / Write Default Value: XXXXXX01 7 6 5 4 3 2 1 0 - - - - - - DECAY_RATE_ 0_DATA1 DECAY_RATE_ 0_DATA0 Bit Name 7-2 - Description Reserved. These bits set a decay rate for the internal leaky bucket accumulator: 00: The accumulator decreases by 1 in every 128 ms with no event detected. DECAY_RATE_0_DATA[1:0] 01: The accumulator decreases by 1 in every 256 ms with no event detected. (default) 10: The accumulator decreases by 1 in every 512 ms with no event detected. 11: The accumulator decreases by 1 in every 1024 ms with no event detected. 1-0 UPPER_THRESHOLD_1_CNFG - Upper Threshold for Leaky Bucket Configuration 1 Address: 35H Type: Read / Write Default Value: 00000110 7 6 5 4 3 2 1 0 UPPER_THRE SHOLD_1_DAT A7 UPPER_THRE SHOLD_1_DAT A6 UPPER_THRE SHOLD_1_DAT A5 UPPER_THRE SHOLD_1_DAT A4 UPPER_THRE SHOLD_1_DAT A3 UPPER_THRE SHOLD_1_DAT A2 UPPER_THRE SHOLD_1_DAT A1 UPPER_THRE SHOLD_1_DAT A0 Bit Name Description 7-0 UPPER_THRESHOLD_1_DATA[7:0] These bits set an upper threshold for the internal leaky bucket accumulator. When the number of the accumulated events is above this threshold, a no-activity alarm is raised. LOWER_THRESHOLD_1_CNFG - Lower Threshold for Leaky Bucket Configuration 1 Address: 36H Type: Read / Write Default Value: 00000100 7 6 5 4 3 2 1 0 LOWER_THRE SHOLD_1_DAT A7 LOWER_THRE SHOLD_1_DAT A6 LOWER_THRE SHOLD_1_DAT A5 LOWER_THRE SHOLD_1_DAT A4 LOWER_THRE SHOLD_1_DAT A3 LOWER_THRE SHOLD_1_DAT A2 LOWER_THRE SHOLD_1_DAT A1 LOWER_THRE SHOLD_1_DAT A0 Bit 7-0 Name Description These bits set a lower threshold for the internal leaky bucket accumulator. When the number of the accumulated LOWER_THRESHOLD_1_DATA[7:0] events is below this threshold, the no-activity alarm is cleared. Programming Information 67 July 23, 2009 IDT82V32021 EBU WAN PLL BUCKET_SIZE_1_CNFG - Bucket Size for Leaky Bucket Configuration 1 Address: 37H Type: Read / Write Default Value: 00001000 7 6 5 4 3 2 1 0 BUCKET_SIZE _1_DATA7 BUCKET_SIZE _1_DATA6 BUCKET_SIZE _1_DATA5 BUCKET_SIZE _1_DATA4 BUCKET_SIZE _1_DATA3 BUCKET_SIZE _1_DATA2 BUCKET_SIZE _1_DATA1 BUCKET_SIZE _1_DATA0 Bit Name Description These bits set a bucket size for the internal leaky bucket accumulator. If the number of the accumulated events reach BUCKET_SIZE_1_DATA[7:0] the bucket size, the accumulator will stop increasing even if further events are detected. 7-0 DECAY_RATE_1_CNFG - Decay Rate for Leaky Bucket Configuration 1 Address: 38H Type: Read / Write Default Value: XXXXXX01 7 6 5 4 3 2 1 0 - - - - - - DECAY_RATE_ 1_DATA1 DECAY_RATE_ 1_DATA0 Bit Name 7-2 - Description Reserved. These bits set a decay rate for the internal leaky bucket accumulator: 00: The accumulator decreases by 1 in every 128 ms with no event detected. DECAY_RATE_1_DATA[1:0] 01: The accumulator decreases by 1 in every 256 ms with no event detected. (default) 10: The accumulator decreases by 1 in every 512 ms with no event detected. 11: The accumulator decreases by 1 in every 1024 ms with no event detected. 1-0 UPPER_THRESHOLD_2_CNFG - Upper Threshold for Leaky Bucket Configuration 2 Address: 39H Type: Read / Write Default Value: 00000110 7 6 5 4 3 2 1 0 UPPER_THRE SHOLD_2_DAT A7 UPPER_THRE SHOLD_2_DAT A6 UPPER_THRE SHOLD_2_DAT A5 UPPER_THRE SHOLD_2_DAT A4 UPPER_THRE SHOLD_2_DAT A3 UPPER_THRE SHOLD_2_DAT A2 UPPER_THRE SHOLD_2_DAT A1 UPPER_THRE SHOLD_2_DAT A0 Bit 7-0 Name Description These bits set an upper threshold for the internal leaky bucket accumulator. When the number of the accumuUPPER_THRESHOLD_2_DATA[7:0] lated events is above this threshold, a no-activity alarm is raised. Programming Information 68 July 23, 2009 IDT82V32021 EBU WAN PLL LOWER_THRESHOLD_2_CNFG - Lower Threshold for Leaky Bucket Configuration 2 Address: 3AH Type: Read / Write Default Value: 00000100 7 6 5 4 3 2 1 0 LOWER_THRE SHOLD_2_DAT A7 LOWER_THRE SHOLD_2_DAT A6 LOWER_THRE SHOLD_2_DAT A5 LOWER_THRE SHOLD_2_DAT A4 LOWER_THRE SHOLD_2_DAT A3 LOWER_THRE SHOLD_2_DAT A2 LOWER_THRE SHOLD_2_DAT A1 LOWER_THRE SHOLD_2_DAT A0 Bit Name Description 7-0 LOWER_THRESHOLD_2_DATA[7:0] These bits set a lower threshold for the internal leaky bucket accumulator. When the number of the accumulated events is below this threshold, the no-activity alarm is cleared. BUCKET_SIZE_2_CNFG - Bucket Size for Leaky Bucket Configuration 2 Address: 3BH Type: Read / Write Default Value: 00001000 7 6 5 4 3 2 1 0 BUCKET_SIZE _2_DATA7 BUCKET_SIZE _2_DATA6 BUCKET_SIZE _2_DATA5 BUCKET_SIZE _2_DATA4 BUCKET_SIZE _2_DATA3 BUCKET_SIZE _2_DATA2 BUCKET_SIZE _2_DATA1 BUCKET_SIZE _2_DATA0 Bit Name Description 7-0 BUCKET_SIZE_2_DATA[7:0] These bits set a bucket size for the internal leaky bucket accumulator. If the number of the accumulated events reach the bucket size, the accumulator will stop increasing even if further events are detected. DECAY_RATE_2_CNFG - Decay Rate for Leaky Bucket Configuration 2 Address: 3CH Type: Read / Write Default Value: XXXXXX01 7 6 5 4 3 2 1 0 - - - - - - DECAY_RATE_ 2_DATA1 DECAY_RATE_ 2_DATA0 Bit Name 7-2 - 1-0 Description Reserved. These bits set a decay rate for the internal leaky bucket accumulator: 00: The accumulator decreases by 1 in every 128 ms with no event detected. DECAY_RATE_2_DATA[1:0] 01: The accumulator decreases by 1 in every 256 ms with no event detected. (default) 10: The accumulator decreases by 1 in every 512 ms with no event detected. 11: The accumulator decreases by 1 in every 1024 ms with no event detected. Programming Information 69 July 23, 2009 IDT82V32021 EBU WAN PLL UPPER_THRESHOLD_3_CNFG - Upper Threshold for Leaky Bucket Configuration 3 Address: 3DH Type: Read / Write Default Value: 00000110 7 6 5 4 3 2 1 0 UPPER_THRE SHOLD_3_DAT A7 UPPER_THRE SHOLD_3_DAT A6 UPPER_THRE SHOLD_3_DAT A5 UPPER_THRE SHOLD_3_DAT A4 UPPER_THRE SHOLD_3_DAT A3 UPPER_THRE SHOLD_3_DAT A2 UPPER_THRE SHOLD_3_DAT A1 UPPER_THRE SHOLD_3_DAT A0 Bit Name Description 7-0 UPPER_THRESHOLD_3_DATA[7:0] These bits set an upper threshold for the internal leaky bucket accumulator. When the number of the accumulated events is above this threshold, a no-activity alarm is raised. LOWER_THRESHOLD_3_CNFG - Lower Threshold for Leaky Bucket Configuration 3 Address: 3EH Type: Read / Write Default Value: 00000100 7 6 5 4 3 2 1 0 LOWER_THRE SHOLD_3_DAT A7 LOWER_THRE SHOLD_3_DAT A6 LOWER_THRE SHOLD_3_DAT A5 LOWER_THRE SHOLD_3_DAT A4 LOWER_THRE SHOLD_3_DAT A3 LOWER_THRE SHOLD_3_DAT A2 LOWER_THRE SHOLD_3_DAT A1 LOWER_THRE SHOLD_3_DAT A0 Bit Name Description 7-0 LOWER_THRESHOLD_3_DATA[7:0] These bits set a lower threshold for the internal leaky bucket accumulator. When the number of the accumulated events is below this threshold, the no-activity alarm is cleared. BUCKET_SIZE_3_CNFG - Bucket Size for Leaky Bucket Configuration 3 Address: 3FH Type: Read / Write Default Value: 00001000 7 6 5 4 3 2 1 0 BUCKET_SIZE _3_DATA7 BUCKET_SIZE _3_DATA6 BUCKET_SIZE _3_DATA5 BUCKET_SIZE _3_DATA4 BUCKET_SIZE _3_DATA3 BUCKET_SIZE _3_DATA2 BUCKET_SIZE _3_DATA1 BUCKET_SIZE _3_DATA0 Bit Name Description 7-0 BUCKET_SIZE_3_DATA[7:0] These bits set a bucket size for the internal leaky bucket accumulator. If the number of the accumulated events reach the bucket size, the accumulator will stop increasing even if further events are detected. Programming Information 70 July 23, 2009 IDT82V32021 EBU WAN PLL DECAY_RATE_3_CNFG - Decay Rate for Leaky Bucket Configuration 3 Address: 40H Type: Read / Write Default Value: XXXXXX01 7 6 5 4 3 2 1 0 - - - - - - DECAY_RATE_ 3_DATA1 DECAY_RATE_ 3_DATA0 Bit Name 7-2 - Description Reserved. These bits set a decay rate for the internal leaky bucket accumulator: 00: The accumulator decreases by 1 in every 128 ms with no event detected. DECAY_RATE_3_DATA[1:0] 01: The accumulator decreases by 1 in every 256 ms with no event detected. (default) 10: The accumulator decreases by 1 in every 512 ms with no event detected. 11: The accumulator decreases by 1 in every 1024 ms with no event detected. 1-0 IN_FREQ_READ_CH_CNFG - Input Clock Frequency Read Channel Selection Address: 41H Type: Read / Write Default Value: XXXX0000 7 6 5 4 3 2 1 0 - - - - IN_FREQ_READ _CH3 IN_FREQ_READ _CH2 IN_FREQ_READ _CH1 IN_FREQ_READ _CH0 Bit Name 7-4 - 3-0 Description Reserved. These bits select an input clock, the frequency of which with respect to the reference clock can be read. 0000: Reserved. (default) 0001, 0010: Reserved. IN_FREQ_READ_CH[3:0] 0011: IN1_CMOS. 0100: IN2_CMOS. 0101 ~ 1111: Reserved. IN_FREQ_READ_STS - Input Clock Frequency Read Value Address: 42H Type: Read Default Value: 00000000 7 6 5 4 3 2 1 0 IN_FREQ_VAL UE7 IN_FREQ_VAL UE6 IN_FREQ_VAL UE5 IN_FREQ_VAL UE4 IN_FREQ_VAL UE3 IN_FREQ_VAL UE2 IN_FREQ_VAL UE1 IN_FREQ_VAL UE0 Bit 7-0 Name Description These bits represent a 2’s complement signed integer. If the value is multiplied by the value in the FREQ_MON_FACTOR[3:0] bits (b3~0, 2EH), the frequency of an input clock with respect to the reference clock in ppm will IN_FREQ_VALUE[7:0] be gotten. The input clock is selected by the IN_FREQ_READ_CH[3:0] bits (b3~0, 41H). The value in these bits is updated every 16 seconds, starting when an input clock is selected. Programming Information 71 July 23, 2009 IDT82V32021 EBU WAN PLL IN1_IN2_CMOS_STS - CMOS Input Clock 1 & 2 Status Address: 44H Type: Read Default Value: X110X110 7 6 5 4 3 2 1 0 - IN2_CMOS_FRE Q_HARD_ALAR M IN2_CMOS_NO_ ACTIVITY_ALAR M IN2_CMOS_PH_ LOCK_ALARM - IN1_CMOS_FRE Q_HARD_ALAR M IN1_CMOS_NO_ ACTIVITY_ALAR M IN1_CMOS_PH_ LOCK_ALARM Bit Name Description 7 - 6 IN2_CMOS_FREQ_HARD_ALARM 5 IN2_CMOS_NO_ACTIVITY_ALARM 4 IN2_CMOS_PH_LOCK_ALARM 3 - 2 IN1_CMOS_FREQ_HARD_ALARM 1 IN1_CMOS_NO_ACTIVITY_ALARM 0 IN1_CMOS_PH_LOCK_ALARM Reserved. This bit indicates whether IN2_CMOS is in frequency hard alarm status. 0: No frequency hard alarm. 1: In frequency hard alarm status. (default) This bit indicates whether IN2_CMOS is in no-activity alarm status. 0: No no-activity alarm. 1: In no-activity alarm status. (default) This bit indicates whether IN2_CMOS is in phase lock alarm status. 0: No phase lock alarm. (default) 1: In phase lock alarm status. If the PH_ALARM_TIMEOUT bit (b5, 09H) is ‘0’, this bit is cleared by writing ‘1’ to this bit; if the PH_ALARM_TIMEOUT bit (b5, 09H) is ‘1’, this bit is cleared after a period (= TIME_OUT_VALUE[5:0] (b5~0, 08H) X MULTI_FACTOR[1:0] (b7~6, 08H) in second) which starts from when the alarm is raised. Reserved. This bit indicates whether IN1_CMOS is in frequency hard alarm status. 0: No frequency hard alarm. 1: In frequency hard alarm status. (default) This bit indicates whether IN1_CMOS is in no-activity alarm status. 0: No no-activity alarm. 1: In no-activity alarm status. (default) This bit indicates whether IN1_CMOS is in phase lock alarm status. 0: No phase lock alarm. (default) 1: In phase lock alarm status. If the PH_ALARM_TIMEOUT bit (b5, 09H) is ‘0’, this bit is cleared by writing ‘1’ to this bit; if the PH_ALARM_TIMEOUT bit (b5, 09H) is ‘1’, this bit is cleared after a period (= TIME_OUT_VALUE[5:0] (b5~0, 08H) X MULTI_FACTOR[1:0] (b7~6, 08H) in second) which starts from when the alarm is raised. Programming Information 72 July 23, 2009 IDT82V32021 6.2.5 EBU WAN PLL T0 DPLL INPUT CLOCK SELECTION REGISTERS INPUT_VALID1_STS - Input Clocks Validity 1 Address: 4AH Type: Read Default Value: XXXX00XX 7 6 5 4 3 2 1 0 - - - - IN2_CMOS IN1_CMOS - - Bit Name Description 7-4 - 3-2 INn_CMOS 1-0 - Reserved. This bit indicates the validity of the corresponding INn_CMOS. Here n is 2 or 1. 0: Invalid. (default) 1: Valid. Reserved. PRIORITY_TABLE1_STS - Priority Status 1 Address: 4EH Type: Read Default Value: 00000000 7 6 5 4 3 2 1 0 HIGHEST_PRI ORITY_VALIDA TED3 HIGHEST_PRI ORITY_VALIDA TED2 HIGHEST_PRI ORITY_VALIDA TED1 HIGHEST_PRI ORITY_VALIDA TED0 CURRENTLY_S ELECTED_INP UT3 CURRENTLY_S ELECTED_INP UT2 CURRENTLY_S ELECTED_INP UT1 CURRENTLY_S ELECTED_INP UT0 Bit 7-4 3-0 Name Description These bits indicate a qualified input clock with the highest priority. 0000: No input clock is qualified. (default) 0001, 0010: Reserved. HIGHEST_PRIORITY_VALIDATED[3:0] 0011: IN1_CMOS. 0100: IN2_CMOS. 0101 ~ 1111: Reserved. These bits indicate the T0 selected input clock. 0000: No input clock is selected. (default) 0001, 0010: Reserved. CURRENTLY_SELECTED_INPUT[3:0] 0011: IN1_CMOS. 0100: IN2_CMOS. 0101 ~ 1111: Reserved. Programming Information 73 July 23, 2009 IDT82V32021 EBU WAN PLL PRIORITY_TABLE2_STS - Priority Status 2 Address: 4FH Type: Read Default Value: XXXX0000 7 6 5 4 3 2 1 0 - - - - SECOND_HIGH EST_PRIORITY _VALIDATED3 SECOND_HIGH EST_PRIORITY _VALIDATED2 SECOND_HIGH EST_PRIORITY _VALIDATED1 SECOND_HIGH EST_PRIORITY _VALIDATED0 Bit Name 7-4 - Description Reserved. These bits indicate a qualified input clock with the second highest priority. 0000: No input clock is qualified. (default) 0001, 0010: Reserved. SECOND_HIGHEST_PRIORITY_VALIDATED[3:0] 0011: IN1_CMOS. 0100: IN2_CMOS. 0101 ~ 1111: Reserved. 3-0 T0_INPUT_SEL_CNFG - T0 Selected Input Clock Configuration Address: 50H Type: Read / Write Default Value: XXXX0000 7 6 5 4 3 2 1 0 - - - - T0_INPUT_SEL3 T0_INPUT_SEL2 T0_INPUT_SEL1 T0_INPUT_SEL0 Bit Name 7-4 - 3-0 Description Reserved. This bit determines T0 input clock selection. It is valid only when the EXT_SW bit (b4, 0BH) is ‘0’. 0000: Automatic selection. (default) 0001, 0010: Reserved. T0_INPUT_SEL[3:0] 0011: Forced selection - IN1_CMOS is selected. 0100: Forced selection - IN2_CMOS is selected. 0101 ~ 1111: Reserved. Programming Information 74 July 23, 2009 IDT82V32021 6.2.6 EBU WAN PLL T0 DPLL STATE MACHINE CONTROL REGISTERS OPERATING_STS - DPLL Operating Status Address: 52H Type: Read Default Value: 1X0X0001 7 6 5 4 3 2 1 0 EX_SYNC_ALA RM_MON - T0_DPLL_SOFT _FREQ_ALARM - T0_DPLL_LO CK T0_DPLL_OPER ATING_MODE2 T0_DPLL_OPER ATING_MODE1 T0_DPLL_OPER ATING_MODE0 Bit 7 6 5 4 3 2-0 Name Description This bit indicates whether the selected frame sync input signal is in external sync alarm status. 0: No external sync alarm. 1: In external sync alarm status. (default) Reserved. This bit indicates whether the T0 DPLL is in soft alarm status. T0_DPLL_SOFT_FREQ_ALARM 0: No T0 DPLL soft alarm. (default) 1: In T0 DPLL soft alarm status. Reserved. This bit indicates the T0 DPLL locking status. T0_DPLL_LOCK 0: Unlocked. (default) 1: Locked. These bits indicate the current operating mode of T0 DPLL. 000: Reserved. 001: Free-Run. (default) 010: Holdover. T0_DPLL_OPERATING_MODE[2:0] 011: Reserved. 100: Locked. 101: Pre-Locked2. 110: Pre-Locked. 111: Lost-Phase. EX_SYNC_ALARM_MON Programming Information 75 July 23, 2009 IDT82V32021 EBU WAN PLL T0_OPERATING_MODE_CNFG - T0 DPLL Operating Mode Configuration Address: 53H Type: Read / Write Default Value: XXXXX000 7 6 5 4 3 2 1 0 - - - - - T0_OPERATING_MODE2 T0_OPERATING_MODE1 T0_OPERATING_MODE0 Bit Name 7-3 - 2-0 Description Reserved. These bits control the T0 DPLL operating mode. 000: Automatic. (default) 001: Forced - Free-Run. 010: Forced - Holdover. T0_OPERATING_MODE[2:0] 011: Reserved. 100: Forced - Locked. 101: Forced - Pre-Locked2. 110: Forced - Pre-Locked. 111: Forced - Lost-Phase. Programming Information 76 July 23, 2009 IDT82V32021 6.2.7 EBU WAN PLL T0 DPLL & T0 APLL CONFIGURATION REGISTERS T0_DPLL_APLL_PATH_CNFG - T0 DPLL & APLL Path Configuration Address: 55H Type: Read / Write Default Value: 00000X0X 7 6 5 4 3 2 1 0 T0_APLL_PATH 3 T0_APLL_PA TH2 T0_APLL_PA TH1 T0_APLL_PA TH0 T0_GSM_OBSAI_ 16E1_16T1_SEL1 T0_GSM_OBSAI_ 16E1_16T1_SEL0 T0_12E1_24T1_ E3_T3_SEL1 T0_12E1_24T1_ E3_T3_SEL0 Bit 7-4 3-2 1-0 Name Description These bits select an input to the T0 APLL. 0000: The output of T0 DPLL 77.76 MHz path. (default) 0001: The output of T0 DPLL 12E1/24T1/E3/T3 path. T0_APLL_PATH[3:0] 0010: The output of T0 DPLL 16E1/16T1 path. 0011: The output of T0 DPLL GSM/OBSAI/16E1/16T1 path. 0100 ~ 1111: Reserved. These bits select an output clock from the T0 DPLL GSM/OBSAI/16E1/16T1 path. 00: 16E1. 01: 16T1. T0_GSM_OBSAI_16E1_16T1_SEL[1:0] 10: GSM. 11: OBSAI. The default value of the T0_GSM_OBSAI_16E1_16T1_SEL0 bit is determined by the SONET/SDH pin during reset. These bits select an output clock from the T0 DPLL 12E1/24T1/E3/T3 path. 00: 12E1. 01: 24T1. T0_12E1_24T1_E3_T3_SEL[1:0] 10: E3. 11: T3. The default value of the T0_12E1_24T1_E3_T3_SEL0 bit is determined by the SONET/SDH pin during reset. Programming Information 77 July 23, 2009 IDT82V32021 EBU WAN PLL T0_DPLL_START_BW_DAMPING_CNFG - T0 DPLL Start Bandwidth & Damping Factor Configuration Address: 56H Type: Read / Write Default Value: 01101111 7 6 5 4 3 2 1 0 T0_DPLL_STA RT_DAMPING2 T0_DPLL_STA RT_DAMPING1 T0_DPLL_STA RT_DAMPING0 T0_DPLL_STA RT_BW4 T0_DPLL_STA RT_BW3 T0_DPLL_STA RT_BW2 T0_DPLL_STA RT_BW1 T0_DPLL_STA RT_BW0 Bit 7-5 4-0 Name Description These bits set the starting damping factor for T0 DPLL. 000: Reserved. 001: 1.2. 010: 2.5. T0_DPLL_START_DAMPING[2:0] 011: 5. (default) 100: 10. 101: 20. 110, 111: Reserved. These bits set the starting bandwidth for T0 DPLL. 00XXX: Reserved. 01000 ~ 01010 : Reserved. 01011: 1.2 Hz. 01100: 2.5 Hz. 01101: 4 Hz. T0_DPLL_START_BW[4:0] 01110: 8 Hz. 01111: 18 Hz. (default) 10000: 35 Hz. 10001: 70 Hz. 10010: 560 Hz. 10011 ~ 11111: Reserved. Programming Information 78 July 23, 2009 IDT82V32021 EBU WAN PLL T0_DPLL_ACQ_BW_DAMPING_CNFG - T0 DPLL Acquisition Bandwidth & Damping Factor Configuration Address: 57H Type: Read / Write Default Value: 01101111 7 6 5 4 3 2 1 0 T0_DPLL_ACQ _DAMPING2 T0_DPLL_ACQ _DAMPING1 T0_DPLL_ACQ _DAMPING0 T0_DPLL_ACQ _BW4 T0_DPLL_ACQ _BW3 T0_DPLL_ACQ _BW2 T0_DPLL_ACQ _BW1 T0_DPLL_ACQ _BW0 Bit 7-5 4-0 Name Description These bits set the acquisition damping factor for T0 DPLL. 000: Reserved. 001: 1.2. 010: 2.5. T0_DPLL_ACQ_DAMPING[2:0] 011: 5. (default) 100: 10. 101: 20. 110, 111: Reserved. These bits set the acquisition bandwidth for T0 DPLL. 00XXX ~ 01010 : Reserved. 01011: 1.2 Hz. 01100: 2.5 Hz. 01101: 4 Hz. T0_DPLL_ACQ_BW[4:0] 01110: 8 Hz. 01111: 18 Hz. (default) 10000: 35 Hz. 10001: 70 Hz. 10010: 560 Hz. 10011 ~ 11111: Reserved. Programming Information 79 July 23, 2009 IDT82V32021 EBU WAN PLL T0_DPLL_LOCKED_BW_DAMPING_CNFG - T0 DPLL Locked Bandwidth & Damping Factor Configuration Address: 58H Type: Read / Write Default Value: 01101111 7 6 5 4 3 2 1 0 T0_DPLL_LOCK ED_DAMPING2 T0_DPLL_LOCK ED_DAMPING1 T0_DPLL_LOCK ED_DAMPING0 T0_DPLL_LOC KED_BW4 T0_DPLL_LOC KED_BW3 T0_DPLL_LOC KED_BW2 T0_DPLL_LOC KED_BW1 T0_DPLL_LOC KED_BW0 Bit Name 7-5 4-0 Description These bits set the locked damping factor for T0 DPLL. 000: Reserved. 001: 1.2. 010: 2.5. T0_DPLL_LOCKED_DAMPING[2:0] 011: 5. (default) 100: 10. 101: 20. 110, 111: Reserved. These bits set the locked bandwidth for T0 DPLL. 00XXX ~ 01010 : Reserved. 01011: 1.2 Hz. (default) 01100: 2.5 Hz. 01101: 4 Hz. T0_DPLL_LOCKED_BW[4:0] 01110: 8 Hz. 01111: 18 Hz. 10000: 35 Hz. 10001: 70 Hz. 10010: 560 Hz. 10011 ~ 11111: Reserved. T0_BW_OVERSHOOT_CNFG - T0 DPLL Bandwidth Overshoot Configuration Address: 59H Type: Read / Write Default Value: 1XXX1XXX 7 6 5 4 3 2 1 0 AUTO_BW_SEL - - - T0_LIMT - - - Bit 7 6-4 3 2-0 Name Description This bit determines whether starting or acquisition bandwidth / damping factor is used for T0 DPLL. 0: The starting and acquisition bandwidths / damping factors are not used. Only the locked bandwidth / damping factor is used AUTO_BW_SEL regardless of the T0 DPLL locking stage. 1: The starting, acquisition or locked bandwidth / damping factor is used automatically depending on different T0 DPLL locking stages. (default) Reserved. This bit determines whether the integral path value is frozen when the T0 DPLL hard limit is reached. T0_LIMT 0: Not frozen. 1: Frozen. It will minimize the subsequent overshoot when T0 DPLL is pulling in. (default) Reserved. Programming Information 80 July 23, 2009 IDT82V32021 EBU WAN PLL PHASE_LOSS_COARSE_LIMIT_CNFG - Phase Loss Coarse Detector Limit Configuration Address: 5AH Type: Read / Write Default Value: 10000101 7 6 5 4 3 2 1 0 COARSE_PH_L OS_LIMT_EN WIDE_EN MULTI_PH_APP MULTI_PH_8K_ 4K_2K_EN PH_LOS_COA RSE_LIMT3 PH_LOS_COA RSE_LIMT2 PH_LOS_COA RSE_LIMT1 PH_LOS_COA RSE_LIMT0 Bit 7 6 5 Name Description This bit controls whether the occurrence of the coarse phase loss will result in the T0 DPLL unlocked. COARSE_PH_LOS_LIMT_EN 0: Disabled. 1: Enabled. (default) WIDE_EN Refer to the description of the MULTI_PH_8K_4K_2K_EN bit (b4, 5AH). This bit determines whether the PFD output of T0 DPLL is limited to ±1 UI or is limited to the coarse phase limit. 0: Limited to ±1 UI. (default) 1: Limited to the coarse phase limit. When the selected input clock is of 2 kHz, 4 kHz or 8 kHz, the coarse phase limit depends MULTI_PH_APP on the MULTI_PH_8K_4K_2K_EN bit, the WIDE_EN bit and the PH_LOS_COARSE_LIMT[3:0] bits; when the selected input clock is of other frequencies but 2 kHz, 4 kHz and 8 kHz, the coarse phase limit depends on the WIDE_EN bit and the PH_LOS_COARSE_LIMT[3:0] bits. Refer to the description of the MULTI_PH_8K_4K_2K_EN bit (b4, 5AH) for details. This bit, together with the WIDE_EN bit (b6, 5AH) and the PH_LOS_COARSE_LIMT[3:0] bits (b3~0, 5AH), determines the coarse phase limit when the selected input clock is of 2 kHz, 4 kHz or 8 kHz. When the selected input clock is of other frequencies but 2 kHz, 4 kHz and 8 kHz, the coarse phase limit depends on the WIDE_EN bit and the PH_LOS_COARSE_LIMT[3:0] bits. Selected Input Clock MULTI_PH_8K_4K_2K_EN WIDE_EN 4 0 MULTI_PH_8K_4K_2K_EN 2 kHz, 4 kHz or 8 kHz other than 2 kHz, 4 kHz and 8 kHz 1 don’t-care 0 1 0 don’t-care 1 Coarse Phase Limit ±1 UI ±1 UI set by the PH_LOS_COARSE_LIMT[3:0] bits (b3~0, 5AH). ±1 UI set by the PH_LOS_COARSE_LIMT[3:0] bits (b3~0, 5AH). These bit set the coarse phase limit. The limit is used only in some cases. Refer to the description of the MULTI_PH_8K_4K_2K_EN bit (b4, 5AH). 0000: ±1 UI. 0001: ±3 UI. 0010: ±7 UI. 0011: ±15 UI. 3 - 0 PH_LOS_COARSE_LIMT[3:0] 0100: ±31 UI. 0101: ±63 UI. (default) 0110: ±127 UI. 0111: ±255 UI. 1000: ±511 UI. 1001: ±1023 UI. 1010-1111: Reserved. Programming Information 81 July 23, 2009 IDT82V32021 EBU WAN PLL PHASE_LOSS_FINE_LIMIT_CNFG - Phase Loss Fine Detector Limit Configuration Address: 5BH Type: Read / Write Default Value: 10XXX010 7 6 5 4 3 2 1 0 FINE_PH_LOS_ LIMT_EN FAST_LOS_SW - - - PH_LOS_FINE _LIMT2 PH_LOS_FINE _LIMT1 PH_LOS_FINE _LIMT0 Bit 7 6 5-3 2-0 Name Description This bit controls whether the occurrence of the fine phase loss will result in the T0 DPLL unlocked. FINE_PH_LOS_LIMT_EN 0: Disabled. 1: Enabled. (default) This bit controls whether the occurrence of the fast loss will result in the T0 DPLL unlocked. 0: Does not result in the T0 DPLL unlocked. T0 DPLL will enter Temp-Holdover mode automatically. (default) FAST_LOS_SW 1: Results in the T0 DPLL unlocked. T0 DPLL will enter Lost-Phase mode if the T0 DPLL operating mode is switched automatically. Reserved. These bits set a fine phase limit. 000: 0. 001: ± (45 ° ~ 90 °). 010: ± (90 ° ~ 180 °). (default) PH_LOS_FINE_LIMT[2:0] 011: ± (180 ° ~ 360 °). 100: ± (20 ns ~ 25 ns). 101: ± (60 ns ~ 65 ns). 110: ± (120 ns ~ 125 ns). 111: ± (950 ns ~ 955 ns). Programming Information 82 July 23, 2009 IDT82V32021 EBU WAN PLL T0_HOLDOVER_MODE_CNFG - T0 DPLL Holdover Mode Configuration Address: 5CH Type: Read / Write Default Value: 010001XX 7 6 5 4 3 2 1 0 MAN_HOLDOV ER AUTO_AVG FAST_AVG READ_AVG TEMP_HOLDO VER_MODE1 TEMP_HOLDO VER_MODE0 - - Bit Name Description 7 6 MAN_HOLDOVER AUTO_AVG Refer to the description of the FAST_AVG bit (b5, 5CH). Refer to the description of the FAST_AVG bit (b5, 5CH). This bit, together with the AUTO_AVG bit (b6, 5CH) and the MAN_HOLDOVER bit (b7, 5CH), determines a frequency offset acquiring method in T0 DPLL Holdover Mode. MAN_HOLDOVER 5 AUTO_AVG FAST_AVG Frequency Offset Acquiring Method 0 don’t-care 0 1 Automatic Instantaneous Automatic Slow Averaged (default) Automatic Fast Averaged Manual FAST_AVG 0 1 1 don’t-care This bit controls the holdover frequency offset reading, which is read from the T0_HOLDOVER_FREQ[23:0] bits (5FH ~ 5DH). 0: The value read from the T0_HOLDOVER_FREQ[23:0] bits (5FH ~ 5DH) is equal to the one written to them. READ_AVG (default) 1: The value read from the T0_HOLDOVER_FREQ[23:0] bits (5FH ~ 5DH) is not equal to the one written to them. The value is acquired by Automatic Slow Averaged method if the FAST_AVG bit (b5, 5CH) is ‘0’; or is acquired by Automatic Fast Averaged method if the FAST_AVG bit (b5, 5CH) is ‘1’. These bits determine the frequency offset acquiring method in T0 DPLL Temp-Holdover Mode. 00: The method is the same as that used in T0 DPLL Holdover mode. TEMP_HOLDOVER_MODE[1:0] 01: Automatic Instantaneous. (default) 10: Automatic Fast Averaged. 11: Automatic Slow Averaged. Reserved. 4 3-2 1-0 T0_HOLDOVER_FREQ[7:0]_CNFG - T0 DPLL Holdover Frequency Configuration 1 Address: 5DH Type: Read / Write Default Value: 00000000 7 6 5 4 3 2 1 0 T0_HOLDOVER _FREQ7 T0_HOLDOVER _FREQ6 T0_HOLDOVER _FREQ5 T0_HOLDOVE R_FREQ4 T0_HOLDOVE R_FREQ3 T0_HOLDOVE R_FREQ2 T0_HOLDOVE R_FREQ1 T0_HOLDOVE R_FREQ0 Bit 7-0 Name Description T0_HOLDOVER_FREQ[7:0] Refer to the description of the T0_HOLDOVER_FREQ[23:16] bits (b7~0, 5FH). Programming Information 83 July 23, 2009 IDT82V32021 EBU WAN PLL T0_HOLDOVER_FREQ[15:8]_CNFG - T0 DPLL Holdover Frequency Configuration 2 Address: 5EH Type: Read / Write Default Value: 00000000 7 6 5 4 3 2 1 0 T0_HOLDOVER _FREQ15 T0_HOLDOVER _FREQ14 T0_HOLDOVER _FREQ13 T0_HOLDOVE R_FREQ12 T0_HOLDOVE R_FREQ11 T0_HOLDOVE R_FREQ10 T0_HOLDOVE R_FREQ9 T0_HOLDOVE R_FREQ8 Bit Name 7-0 Description T0_HOLDOVER_FREQ[15:8] Refer to the description of the T0_HOLDOVER_FREQ[23:16] bits (b7~0, 5FH). T0_HOLDOVER_FREQ[23:16]_CNFG - T0 DPLL Holdover Frequency Configuration 3 Address: 5FH Type: Read / Write Default Value: 00000000 7 6 5 4 3 2 1 0 T0_HOLDOVER _FREQ23 T0_HOLDOVER _FREQ22 T0_HOLDOVER _FREQ21 T0_HOLDOVE R_FREQ20 T0_HOLDOVE R_FREQ19 T0_HOLDOVE R_FREQ18 T0_HOLDOVE R_FREQ17 T0_HOLDOVE R_FREQ16 Bit Name 7-0 Description The T0_HOLDOVER_FREQ[23:0] bits represent a 2’s complement signed integer. In T0 DPLL Holdover mode, the value written to these bits multiplied by 0.000011 is the frequency offset set manuT0_HOLDOVER_FREQ[23:16] ally; the value read from these bits multiplied by 0.000011 is the frequency offset automatically slow or fast averaged or manually set, as determined by the READ_AVG bit (b4, 5CH) and the FAST_AVG bit (b5, 5CH). CURRENT_DPLL_FREQ[7:0]_STS - DPLL Current Frequency Status 1 Address: 62H Type: Read Default Value: 00000000 7 6 5 4 3 2 1 0 CURRENT_DP LL_FREQ7 CURRENT_DP LL_FREQ6 CURRENT_DP LL_FREQ5 CURRENT_DP LL_FREQ4 CURRENT_DP LL_FREQ3 CURRENT_DP LL_FREQ2 CURRENT_DP LL_FREQ1 CURRENT_DP LL_FREQ0 Bit 7-0 Name Description CURRENT_DPLL_FREQ[7:0] Refer to the description of the CURRENT_DPLL_FREQ[23:16] bits (b7~0, 64H). Programming Information 84 July 23, 2009 IDT82V32021 EBU WAN PLL CURRENT_DPLL_FREQ[15:8]_STS - DPLL Current Frequency Status 2 Address: 63H Type: Read Default Value: 00000000 7 6 5 4 3 2 1 0 CURRENT_DP LL_FREQ15 CURRENT_DP LL_FREQ14 CURRENT_DP LL_FREQ13 CURRENT_DP LL_FREQ12 CURRENT_DP LL_FREQ11 CURRENT_DP LL_FREQ10 CURRENT_DP LL_FREQ9 CURRENT_DP LL_FREQ8 Bit Name 7-0 Description CURRENT_DPLL_FREQ[15:8] Refer to the description of the CURRENT_DPLL_FREQ[23:16] bits (b7~0, 64H). CURRENT_DPLL_FREQ[23:16]_STS - DPLL Current Frequency Status 3 Address: 64H Type: Read Default Value: 00000000 7 6 5 4 3 2 1 0 CURRENT_DP LL_FREQ23 CURRENT_DP LL_FREQ22 CURRENT_DP LL_FREQ21 CURRENT_DP LL_FREQ20 CURRENT_DP LL_FREQ19 CURRENT_DP LL_FREQ18 CURRENT_DP LL_FREQ17 CURRENT_DP LL_FREQ16 Bit Name Description The CURRENT_DPLL_FREQ[23:0] bits represent a 2’s complement signed integer. If the value in these bits is mulCURRENT_DPLL_FREQ[23:16] tiplied by 0.000011, the current frequency offset of the T0 DPLL output in ppm with respect to the master clock will be gotten. 7-0 DPLL_FREQ_SOFT_LIMIT_CNFG - DPLL Soft Limit Configuration Address: 65H Type: Read / Write Default Value: 10001100 7 6 5 4 3 2 1 0 FREQ_LIMT_P H_LOS DPLL_FREQ_S OFT_LIMT6 DPLL_FREQ_S OFT_LIMT5 DPLL_FREQ_S OFT_LIMT4 DPLL_FREQ_S OFT_LIMT3 DPLL_FREQ_S OFT_LIMT2 DPLL_FREQ_S OFT_LIMT1 DPLL_FREQ_S OFT_LIMT0 Bit 7 6-0 Name Description This bit determines whether the T0 DPLL in hard alarm status will result in it unlocked. FREQ_LIMT_PH_LOS 0: Disabled. 1: Enabled. (default) These bits represent an unsigned integer. If the value is multiplied by 0.724, the DPLL soft limit for T0 path in ppm will DPLL_FREQ_SOFT_LIMT[6:0] be gotten. The DPLL soft limit is symmetrical about zero. Programming Information 85 July 23, 2009 IDT82V32021 EBU WAN PLL DPLL_FREQ_HARD_LIMIT[7:0]_CNFG - DPLL Hard Limit Configuration 1 Address: 66H Type: Read / Write Default Value: 10101011 7 6 5 4 3 2 1 0 DPLL_FREQ_H ARD_LIMT7 DPLL_FREQ_H ARD_LIMT6 DPLL_FREQ_H ARD_LIMT5 DPLL_FREQ_H ARD_LIMT4 DPLL_FREQ_H ARD_LIMT3 DPLL_FREQ_H ARD_LIMT2 DPLL_FREQ_H ARD_LIMT1 DPLL_FREQ_H ARD_LIMT0 Bit Name 7-0 Description DPLL_FREQ_HARD_LIMT[7:0] Refer to the description of the DPLL_FREQ_HARD_LIMT[15:8] bits (b7~0, 67H). DPLL_FREQ_HARD_LIMIT[15:8]_CNFG - DPLL Hard Limit Configuration 2 Address: 67H Type: Read / Write Default Value: 00011001 7 6 5 4 3 2 1 0 DPLL_FREQ_H ARD_LIMT15 DPLL_FREQ_H ARD_LIMT14 DPLL_FREQ_H ARD_LIMT13 DPLL_FREQ_H ARD_LIMT12 DPLL_FREQ_H ARD_LIMT11 DPLL_FREQ_H ARD_LIMT10 DPLL_FREQ_H ARD_LIMT9 DPLL_FREQ_H ARD_LIMT8 Bit Name 7-0 Description The DPLL_FREQ_HARD_LIMT[15:0] bits represent an unsigned integer. If the value is multiplied by 0.0014, the DPLL_FREQ_HARD_LIMT[15:8] DPLL hard limit for T0 path in ppm will be gotten. The DPLL hard limit is symmetrical about zero. CURRENT_DPLL_PHASE[7:0]_STS - DPLL Current Phase Status 1 Address: 68H Type: Read Default Value: 00000000 7 6 5 4 3 2 1 0 CURRENT_PH _DATA7 CURRENT_PH _DATA6 CURRENT_PH _DATA5 CURRENT_PH _DATA4 CURRENT_PH _DATA3 CURRENT_PH _DATA2 CURRENT_PH _DATA1 CURRENT_PH _DATA0 Bit 7-0 Name Description CURRENT_PH_DATA[7:0] Refer to the description of the CURRENT_PH_DATA[15:8] bits (b7~0, 69H). Programming Information 86 July 23, 2009 IDT82V32021 EBU WAN PLL CURRENT_DPLL_PHASE[15:8]_STS - DPLL Current Phase Status 2 Address: 69H Type: Read Default Value: 00000000 7 6 5 4 3 2 1 0 CURRENT_PH _DATA15 CURRENT_PH _DATA14 CURRENT_PH _DATA13 CURRENT_PH _DATA12 CURRENT_PH _DATA11 CURRENT_PH _DATA10 CURRENT_PH _DATA9 CURRENT_PH _DATA8 Bit Name Description The CURRENT_PH_DATA[15:0] bits represent a 2’s complement signed integer. If the value is multiplied by 0.61, the CURRENT_PH_DATA[15:8] averaged phase error of the T0 DPLL feedback with respect to the selected input clock in ns will be gotten. 7-0 T0_APLL_BW_CNFG - T0 APLL Bandwidth Configuration Address: 6AH Type: Read / Write Default Value: XX01XX01 7 6 5 4 3 2 1 0 - - T0_APLL_BW1 T0_APLL_BW0 - - - - Bit Name 7-6 - 5-4 3-0 Description Reserved. These bits set the bandwidth for T0 APLL. 00: 100 kHz. T0_APLL_BW[1:0] 01: 500 kHz. (default) 10: 1 MHz. 11: 2 MHz. Reserved. Programming Information 87 July 23, 2009 IDT82V32021 6.2.8 EBU WAN PLL OUTPUT CONFIGURATION REGISTERS OUT1_FREQ_CNFG - Output Clock 1 Frequency Configuration Address: 6DH Type: Read / Write Default Value: 00001000 7 6 5 4 3 2 1 0 OUT1_PATH_S EL3 OUT1_PATH_S EL2 OUT1_PATH_S EL1 OUT1_PATH_S EL0 OUT1_DIVIDER 3 OUT1_DIVIDER 2 OUT1_DIVIDER 1 OUT1_DIVIDER 0 Bit Name Description These bits select an input to OUT1. 0000 ~ 0011: The output of T0 APLL. (default: 0000) 0100: The output of T0 DPLL 77.76 MHz path. OUT1_PATH_SEL[3:0] 0101: The output of T0 DPLL 12E1/24T1/E3/T3 path. 0110: The output of T0 DPLL 16E1/16T1 path. 0111: The output of T0 DPLL GSM/OBSAI/16E1/16T1 path. 1000 ~ 1111: Reserved. These bits select a division factor of the divider for OUT1. The output frequency is determined by the division factor and the signal derived from T0 DPLL or T0 APLL output OUT1_DIVIDER[3:0] (selected by the OUT1_PATH_SEL[3:0] bits (b7~4, 6DH)). If the signal is derived from one of the T0 DPLL outputs, please refer to Table 22 for the division factor selection. If the signal is derived from the T0 APLL output, please refer to Table 23 for the division factor selection. 7-4 3-0 OUT1_INV_CNFG - Output Clock 1 Invert Configuration Address:73H Type: Read / Write Default Value: XXXXX0XX 7 6 5 4 3 2 1 0 - - - - - OUT1_INV - - Bit Name 7-3 - 2 OUT1_INV 1-0 - Programming Information Description Reserved. This bit determines whether the output on OUT1 is inverted. 0: Not inverted. (default) 1: Inverted. Reserved. 88 July 23, 2009 IDT82V32021 EBU WAN PLL FR_SYNC_CNFG - Frame Sync Output Configuration Address:74H Type: Read / Write Default Value: 01X000XX 7 6 5 4 3 2 1 0 IN_2K_4K_8K_I NV 8K_EN - 8K_PUL_POSIT ION 8K_INV 8K_PUL - - Bit Name 7 IN_2K_4K_8K_INV 6 8K_EN 5 - 4 8K_PUL_POSITION 3 8K_INV 2 8K_PUL 1-0 - Programming Information Description This bit determines whether the input clock is inverted before locked by the T0 DPLL when the input clock is 2 kHz, 4 kHz or 8 kHz. 0: Not inverted. (default) 1: Inverted. This bit determines whether an 8 kHz signal is enabled to be output on FRSYNC_8K. 0: Disabled. FRSYNC_8K outputs low. 1: Enabled. (default) Reserved. This bit is valid only when FRSYNC_8K output pulse; i.e., when one of the 8K_PUL bit (b2, 74H) is ‘1’ or when the 8K_PUL bit (b2, 74H) is ‘1’. It determines the pulse position referring to the standard 50:50 duty cycle. 0: Pulsed on the falling edge of the standard 50:50 duty cycle position. (default) 1: Pulsed on the rising edge of the standard 50:50 duty cycle position. This bit determines whether the output on FRSYNC_8K is inverted. 0: Not inverted. (default) 1: Inverted. This bit determines whether the output on FRSYNC_8K is 50:50 duty cycle or pulsed. 0: 50:50 duty cycle. (default) 1: Pulsed. The pulse width is defined by the period of the output on OUT1. Reserved. 89 July 23, 2009 IDT82V32021 6.2.9 EBU WAN PLL PBO & PHASE OFFSET CONTROL REGISTERS PHASE_MON_PBO_CNFG - Phase Transient Monitor & PBO Configuration Address:78H Type: Read / Write Default Value: 0X000110 7 6 5 4 3 2 1 0 IN_NOISE_WIN DOW - PH_MON_EN PH_MON_PBO _EN PH_TR_MON_L IMT3 PH_TR_MON_L IMT2 PH_TR_MON_L IMT1 PH_TR_MON_L IMT0 Bit 7 6 5 4 3-0 Name Description This bit determines whether the input clock whose edge respect to the reference clock is outside ±5% is enabled to be selected for T0 DPLL. IN_NOISE_WINDOW 0: Disabled. (default) 1: Enabled. Reserved. This bit is valid only when the PH_MON_PBO_EN bit (b4, 78H) is ‘1’. It determines whether the Phase Transient Monitor is enabled to monitor the phase-time changes on the T0 selected input clock. PH_MON_EN 0: Disabled. (default) 1: Enabled. This bit determines whether a PBO event is triggered when the phase-time changes on the T0 selected input clock are greater than a programmable limit over an interval of less than 0.1 seconds with the PH_MON_EN bit being ‘1’. The limit PH_MON_PBO_EN is programmed by the PH_TR_MON_LIMT[3:0] bits (b3~0, 78H). 0: Disabled. (default) 1: Enabled. These bits represent an unsigned integer. The Phase Transient Monitor limit in ns can be calculated as follows: PH_TR_MON_LIMT[3:0] Limit (ns) = (PH_TR_MON_LIMT[3:0] + 7) X 156. Programming Information 90 July 23, 2009 IDT82V32021 6.2.10 EBU WAN PLL SYNCHRONIZATION CONFIGURATION REGISTERS SYNC_MONITOR_CNFG - Sync Monitor Configuration Address:7CH Type: Read / Write Default Value: 00101011 7 6 5 4 3 2 1 0 SYNC_BYPASS SYNC_MON_LIMT2 SYNC_MON_LIMT1 SYNC_MON_LIMT0 - - - - Bit Name Description This bit selects one frame sync input signal to synchronize the frame sync output signal. 0: EX_SYNC1 is selected. (default) SYNC_BYPASS 1: When the T0 selected input clock is IN1_CMOS, EX_SYNC1 is selected; when the T0 selected input clock is IN2_CMOS, EX_SYNC2 is selected;when there is no T0 selected input clock, no frame sync input signal is selected. These bits set the limit for the external sync alarm. 000: ±1 UI. 001: ±2 UI. 010: ±3 UI. (default) SYNC_MON_LIMT[2:0] 011: ±4 UI. 100: ±5 UI. 101: ±6 UI. 110: ±7 UI. 111: ±8 UI. These bits must be set to ‘1011’. 7 6-4 3-0 SYNC_PHASE_CNFG - Sync Phase Configuration Address:7DH Type: Read / Write Default Value: XXXX0000 7 6 5 4 3 2 1 0 - - - - SYNC_PH21 SYNC_PH20 SYNC_PH11 SYNC_PH10 Bit Name Description 7-4 - 3-2 SYNC_PH2[1:0] 1-0 SYNC_PH1[1:0] Reserved. These bits set the sampling of EX_SYNC2 when EX_SYNC2 is enabled to synchronize the frame sync output signal. Nominally, the falling edge of EX_SYNC2 is aligned with the rising edge of the T0 selected input clock. 00: On target. (default) 01: 0.5 UI early. 10: 1 UI late. 11: 0.5 UI late. These bits set the sampling of EX_SYNC1 when EX_SYNC1 is enabled to synchronize the frame sync output signal. Nominally, the falling edge of EX_SYNC1 is aligned with the rising edge of the T0 selected input clock. 00: On target. (default) 01: 0.5 UI early. 10: 1 UI late. 11: 0.5 UI late. Programming Information 91 July 23, 2009 IDT82V32021 7 EBU WAN PLL THERMAL MANAGEMENT The junction temperature Tj can be calculated as follows: Tj = TA + P X θJA = 85°C + 1.57W X 20.9°C/W = 117.8°C The device operates over the industry temperature range -40°C ~ +85°C. To ensure the functionality and reliability of the device, the maximum junction temperature Tjmax should not exceed 125°C. In some applications, the device will consume more power and a thermal solution should be provided to ensure the junction temperature Tj does not exceed the Tjmax. 7.1 The junction temperature of 117.8°C is below the maximum junction temperature of 125°C so no extra heat enhancement is required. In some operation environments, the calculated junction temperature might exceed the maximum junction temperature of 125°C and an external thermal solution such as a heatsink is required. 7.3 JUNCTION TEMPERATURE A heatsink is expanding the surface area of the device to which it is attached. θJA is now a combination of device case and heat-sink thermal resistance, as the heat flowing from the die junction to ambient goes through the package and the heatsink. θJA can be calculated as follows: Equation 2: θJA = θJC + θCH+ θHA Junction temperature Tj is the temperature of package typically at the geographical center of the chip where the device's electrical circuits are. It can be calculated as follows: Equation 1: Tj = TA + P X θJA Where: θJA = Junction-to-Ambient Thermal Resistance of the Package Where: θJC = Junction-to-Case Thermal Resistance θCH = Case-to-Heatsink Thermal Resistance θHA = Heatsink-to-Ambient Thermal Resistance Tj = Junction Temperature TA = Ambient Temperature P = Device Power Consumption θCH+ θHA determines which heatsink and heatsink attachment can In order to calculate junction temperature, an appropriate θJA must be used. The θJA is shown in Table 32: be selected to ensure the junction temperature does not exceed the maximum junction temperature. According to Equation 1 and 2, Power consumption is the core power excluding the power dissipated in the loads. Table 33 provides power consumption in special environments. θCH+ θHA can be calculated as follows: Equation 3: θCH+ θHA = (Tj - TA) / P - θJC Assume: Table 32: Power Consumption and Maximum Junction Temperature Package Power Consumption (W) Operating Voltage (V) 1.57 3.6 VFQFPN/NL68 7.2 Tj = 125°C (Tjmax) Maximum TA (°C) Junction Temperature (°C) 85 HEATSINK EVALUATION TA = 85°C P = 1.57W θJC = 12.6°C/W (VFQFPN/NL68) 125 θCH+ θHA can be calculated as follows: θCH+ θHA = (125°C - 85°C ) / 1.57W - 12.6°C/W = 12.9°C/W EXAMPLE OF JUNCTION TEMPERATURE CALCULATION That is, if a heatsink and heatsink attachment whose θCH+ θHA is below or equal to 12.9°C/W is used in such operation environment, the junction temperature will not exceed the maximum junction temperature. Assume: TA = 85°C θJA = 20.9 °C/W (VFQFPN/NL68 Soldered & when airfow rate is 0 m/ s) P = 1.57W Table 33: Thermal Data Package Pin Count Thermal Pad VFQFPN/NL68 68 Yes/Exposed VFQFPN/NL68 68 Yes/Soldered* *note: Simulated with 3 x 3 array of thermal vias. Thermal Management θJC (°C/W) θJB (°C/W) 9.1 9.1 8.3 1.2 92 θJA (°C/W) Air Flow in m/s 0 1 2 3 4 5 39.4 20.9 34.1 16.2 31.7 15.2 30.2 14.6 29.1 14.1 28.2 13.8 July 23, 2009 IDT82V32021 7.4 EBU WAN PLL VFQFPN EPAD THERMAL RELEASE PATH by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts. In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in Figure 18. The solderable area on the PCB, as defined PIN PIN PAD SOLDER EXPOSED HEAT SLUG GROUND PLANE SOLDER LAND PATTERN THERMAL VIA PIN PIN PAD (GROUND PAD) Figure 18. Assembly for Expose Pad thermal Release Path (Side View) While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as ‘heat pipes’. The number of vias (i.e. ‘heat pipes’) are application specific and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via Thermal Management diameter should be 12 to 13mils (0.30 to 0.33mm) with 1 oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a guideline only. For further information, please refer to the Application Note on the Surface Mount Assembly of Amkor's Thermally/Electrically Enhance Lead fame Base Package, Amkor Technology. 93 July 23, 2009 IDT82V32021 EBU WAN PLL 8 ELECTRICAL SPECIFICATIONS 8.1 ABSOLUTE MAXIMUM RATING Table 34: Absolute Maximum Rating Symbol Parameter Min Max Unit VDD Supply Voltage VDD -0.5 4.0 V 5.5 V VIN Input Voltage (non-supply pins) VOUT Output Voltage (non-supply pins) TSTOR Storage Temperature 8.2 -50 5.5 V +150 °C RECOMMENDED OPERATION CONDITIONS Table 35: Recommended Operation Conditions Symbol Parameter Min Typ Max Unit VDD Power Supply (DC voltage) VDD 3.0 3.3 3.6 V TA Ambient Temperature Range -40 +85 °C IDD Supply Current 325 365 mA PTOT Total Power Dissipation 1.08 1.30 W Electrical Specifications 94 Test Condition Exclude the loading current and power July 23, 2009 IDT82V32021 EBU WAN PLL 8.3 I/O SPECIFICATIONS 8.3.1 CMOS INPUT / OUTPUT PORT Table 36: CMOS Input Port Electrical Characteristics Parameter Description Min VIH Input Voltage High 2.0 VIL Input Voltage Low IIN Input Current VIN Input Voltage Typ Max Unit Test Condition V -0.5 0.8 V 10 µA 5.5 V Max Unit Table 37: CMOS Input Port with Internal Pull-Up Resistor Electrical Characteristics Parameter Description Min VIH Input Voltage High 2.0 VIL Input Voltage Low PU Pull-Up Resistor IIN Input Current VIN Input Voltage Typ Test Condition V 0.8 23 41 82 85 40 20 38 82 165 140 80 40 -0.5 5.5 V KΩ TDI, TMS pin RST pin µA TDI, TMS pin RST pin V Table 38: CMOS Input Port with Internal Pull-Down Resistor Electrical Characteristics Parameter Description Min VIH Input Voltage High 2.0 VIL Input Voltage Low PD Pull-Down Resistor IIN Input Current VIN Input Voltage Electrical Specifications Typ Max Unit Test Condition V 0.8 8 16 183 390 180 15 14 23 366 640 340 30 -0.5 5.5 95 V KΩ µA TRST and TCK pin other CMOS input port with internal pull-down resistor SDI, CLKE pin TRST and TCK pin other CMOS input port with internal pull-down resistor SDI, CLKE pin V July 23, 2009 IDT82V32021 EBU WAN PLL Table 39: CMOS Output Port Electrical Characteristics Application Pin Parameter Description Min Typ Max Unit Test Condition 2.4 VDD V IOH = 8 mA 0 0.4 V IOL = 8 mA 4 ns 15 pF 4 ns 15 pF VDD V IOH = 4 mA V IOL= 4 mA VOH Output Voltage High VOL Output Voltage Low tR Rise time (20% to 80%) tF Fall time (20% to 80%) VOH Output Voltage High 2.4 VOL Output Voltage Low 0 0.4 tR Rise Time (20% to 80%) 10 ns 50 pF tF Fall Time (20% to 80%) 10 ns 50 pF Output Clock Other Output Electrical Specifications 3 3 96 July 23, 2009 IDT82V32021 8.4 EBU WAN PLL JITTER & WANDER PERFORMANCE Table 40: Output Clock Jitter Generation Test Definition 1 Peak to Peak Typ RMS Typ N x 2.048MHz without APLL N x 2.048MHz with T0 APLL N x 1.544 MHz without APLL N x 1.544 MHz with T0 APLL 44.736 MHz with T0 APLL 44.736 MHz without APLL 34.368 MHz with T0 APLL 34.368 MHz without APLL <2 ns <1 ns <2 ns <1 ns <1 ns <2 ns <1 ns <2 ns <200 ps <100 ps <200 ps <100 ps <100 ps <200 ps <100 ps <200 ps Note 0.004 UI p-p 0.001 UI RMS OC-3 (Chip T0 DPLL + T0 APLL) 6.48 MHz, 19.44 MHz, 25.92 0.004 UI p-p 0.001 UI RMS MHz, 38.88 MHz, 51.84 MHz, 77.76 MHz, 155.52 MHz output 0.001 UI p-p 0.001 UI RMS 0.018 UI p-p 0.007 UI RMS OC-12 (Chip T0 DPLL + T0 APLL) 6.48 MHz, 19.44 MHz, 25.92 0.028 UI p-p 0.009 UI RMS MHz, 38.88 MHz, 51.84 MHz, 77.76 MHz, 155.52 MHz output + Intel GD16523 + Optical transceiver) 0.002 UI p-p 0.001 UI RMS 0.162 UI p-p 0.03 UI RMS STM-16 (Chip T0 DPLL + T0 APLL) 6.48 MHz, 19.44 MHz, 25.92 MHz, 38.88 MHz, 51.84 MHz, 77.76 MHz, 155.52 MHz output + Intel GD16523 + Optical transceiver) 0.01 UI p-p 0.009 UI RMS Test Filter See Table 41: Output Clock Phase Noise for details See Table 41: Output Clock Phase Noise for details See Table 41: Output Clock Phase Noise for details See Table 41: Output Clock Phase Noise for details GR-253, G.813 Option 2 limit 0.1 UI p-p (1 UI-6430 ps) G.813 Option 1, G.812 limit 0.5 UI p-p (1 UI-6430 ps) G.813 Option 1 limit 0.1 UI p-p (1 UI-6430 ps) GR-253, G.813 Option 2 limit 0.1 UI p-p (1 UI-1608 ps) G.813 Option 1, G.812 limit 0.5 UI p-p (1 UI-1608 ps) G.813 Option 1, G.812 limit 0.1 UI p-p (1 UI-160 8ps) G.813 Option 1, G.812 limit 0.5 UI p-p (1 UI-402 ps) G.813 Option 1, G.812 limit 0.1 UI p-p (1 UI-402 ps) 20 Hz - 100 kHz 20 Hz - 100 kHz 10 Hz - 40 kHz 10 Hz - 40 kHz 100 Hz - 800 kHz 100 Hz - 800 kHz 10 Hz - 400 kHz 10 Hz - 400 kHz 12 kHz - 1.3 MHz 500 Hz - 1.3 MHz 65 kHz - 1.3 MHz 12 kHz - 5 MHz 1 kHz - 5 MHz 250 kHz - 5 MHz 5 kHz - 20 MHz 1 MHz - 20 MHz Note: 1. CMAC E2747 TCXO is used. Table 41: Output Clock Phase Noise Output Clock 1 @100Hz Offset Typ @1kHz Offset Typ 155.52 MHz (T0 DPLL + T0 APLL) 38.88 MHz (T0 DPLL + T0 APLL) 16E1 (T0 APLL) 16T1 (T0 APLL) E3 (T0 APLL) T3 (T0 APLL) -82 -94 -94 -95 -93 -92 -98 -110 -110 -112 -109 -108 @10kHz Offset @100kHz Offset Typ Typ -107 -118 -118 -120 -116 -116 -112 -124 -125 -127 -124 -122 @1MHz Offset @5MHz Offset Typ Typ -119 -131 -131 -132 -131 -126 -140 -143 -142 -143 -138 -141 Unit dBC/Hz dBC/Hz dBC/Hz dBC/Hz dBC/Hz dBC/Hz Note: 1. CMAC E2747 TCXO is used. Electrical Specifications 97 July 23, 2009 IDT82V32021 EBU WAN PLL Table 42: Input Jitter Tolerance (155.52 MHz) Table 44: Input Jitter Tolerance (2.048 MHz) Jitter Frequency Jitter Tolerance Amplitude (UI p-p) Jitter Frequency Jitter Tolerance Amplitude (UI p-p) 12 µHz 178 µHz 1.6 mHz 15.6 mHz 0.125 Hz 19.3 Hz 500 Hz 6.5 kHz 65 kHz 1.3 MHz > 2800 > 2800 > 311 > 311 > 39 > 39 > 1.5 > 1.5 > 0.15 > 0.15 1 Hz 5 Hz 20 Hz 300 Hz 400 Hz 700 Hz 2400 Hz 10 kHz 50 kHz 100 kHz 150 140 130 40 33 18 5.5 1.3 0.4 0.4 Table 43: Input Jitter Tolerance (1.544 MHz) Table 45: Input Jitter Tolerance (8 kHz) Jitter Frequency Jitter Tolerance Amplitude (UI p-p) Jitter Frequency Jitter Tolerance Amplitude (UI p-p) 1 Hz 5 Hz 20 Hz 300 Hz 400 Hz 700 Hz 2400 Hz 10 kHz 40 kHz 150 140 130 38 25 15 5 1.2 0.5 1 Hz 5 Hz 20 Hz 300 Hz 400 Hz 700 Hz 2400 Hz 3600 Hz 0.8 0.7 0.6 0.16 0.14 0.07 0.02 0.01 Table 46: T0 DPLL Jitter Transfer & Damping Factor Electrical Specifications 98 3 dB Bandwidth Programmable Damping Factor 1.2 Hz 2.5 Hz 4 Hz 8 Hz 18 Hz 35 Hz 70 Hz 560 Hz 1.2, 2.5, 5, 10, 20 1.2, 2.5, 5, 10, 20 1.2, 2.5, 5, 10, 20 1.2, 2.5, 5, 10, 20 1.2, 2.5, 5, 10, 20 1.2, 2.5, 5, 10, 20 1.2, 2.5, 5, 10, 20 1.2, 2.5, 5, 10, 20 July 23, 2009 IDT82V32021 8.5 EBU WAN PLL OUTPUT WANDER GENERATION template template tested result tested result Figure 19. Output Wander Generation Electrical Specifications 99 July 23, 2009 IDT82V32021 8.6 EBU WAN PLL INPUT / OUTPUT CLOCK TIMING The inputs and outputs are aligned ideally. But due to the circuit delays, there is delay between the inputs and outputs. 8 kHz Input Clock t1 8 kHz Output Clock 6.48 MHz Input Clock t2 6.48 MHz Output Clock 19.44 MHz Input Clock t3 19.44 MHz Output Clock 25.92 MHz Input Clock t4 25.92 MHz Output Clock 38.88 MHz Input Clock t5 38.88 MHz Output Clock 51.84 MHz Input Clock t6 51.84 MHz Output Clock Figure 20. Input / Output Clock Timing Table 47: Input/Output Clock Timing Symbol Typical Delay 1 (ns) Peak to Peak Delay Variation (ns) t1 4 1.6 t2 1 1.6 t3 1 1.6 t4 2 1.6 t5 1.4 1.6 t6 3 1.6 Note: 1. Typical delay provided as reference only. Electrical Specifications 100 July 23, 2009 IDT82V32021 8.7 EBU WAN PLL OUTPUT CLOCK TIMING FRSYNC_8K N X T1 (1.544 MHz) t1 N X E1 (2.048 MHz) t2 E3 (34.368 MHz) t3 t4 T3 (44.736 MHz) t5 6.48 MHz t6 19.44 MHz t7 25.92 MHz t8 38.88 MHz t9 51.84 MHz t10 77.76 MHz t11 155.52 MHz Table 48: Output Clock Timing Symbol Typical Delay (ns) Peak to Peak Delay Variation (ns) t1 0 2 t2 0 2 t3 0 2 t4 0 2 t5 0 2 t6 0 2 t7 0 2 t8 0 2 2 t9 0 t10 0 2 t11 0 1.5 Electrical Specifications 101 July 23, 2009 Glossary 3G --- Third Generation ADSL --- Asymmetric Digital Subscriber Line AMI --- Alternate Mark Inversion APLL --- Analog Phase Locked Loop ATM --- Asynchronous Transfer Mode BITS --- Building Integrated Timing Supply CMOS --- Complementary Metal-Oxide Semiconductor DCO --- Digital Controlled Oscillator DPLL --- Digital Phase Locked Loop DSL --- Digital Subscriber Line DSLAM --- Digital Subscriber Line Access MUX DWDM --- Dense Wavelength Division Multiplexing EPROM --- Erasable Programmable Read Only Memory GPS --- Global Positioning System GSM --- Global System for Mobile Communications IIR --- Infinite Impulse Response IP --- Internet Protocol ISDN --- Integrated Services Digital Network JTAG --- Joint Test Action Group LOS --- Loss Of Signal LPF --- Low Pass Filter MTIE --- Maximum Time Interval Error MUX --- Multiplexer OBSAI --- Open Base Station Architecture Initiative OC-n --- Optical Carried rate, n = 1, 3, 12, 48, 192, 768; 51 Mbit/s, 155 Mbit/s, 622 Mbit/s, 2.5 Gbit/s, 10 Gbit/s, 40 Gbit/s. PBO --- Phase Build-Out Glossary 102 July 23, 2009 IDT82V32021 EBU WAN PLL PDH --- Plesiochronous Digital Hierarchy PFD --- Phase & Frequency Detector PLL --- Phase Locked Loop RMS --- Root Mean Square PRS --- Primary Reference Source SDH --- Synchronous Digital Hierarchy SEC --- SDH / SONET Equipment Clock SMC --- SONET Minimum Clock SONET --- Synchronous Optical Network SSU --- Synchronization Supply Unit STM --- Synchronous Transfer Mode TCM-ISDN --- Time Compression Multiplexing Integrated Services Digital Network TDEV --- Time Deviation UI --- Unit Interval WLL --- Wireless Local Loop Glossary 103 July 23, 2009 Index A Frequency Hard Alarm .................................................................20, 25 Averaged Phase Error ........................................................................ 29 Frequency Hard Alarm Threshold ...................................................... 20 B H Bandwidths and Damping Factors ..................................................... 29 Acquisition Bandwidth and Damping Factor ............................... 29 Locked Bandwidth and Damping Factor ..................................... 29 Starting Bandwidth and Damping Factor .................................... 29 Hard Limit ........................................................................................... 23 C IIR ...................................................................................................... 30 Calibration .......................................................................................... 16 Input Clock Frequency ....................................................................... 20 Coarse Phase Loss ............................................................................ 23 Input Clock Selection ......................................................................... 21 Automatic selection ..............................................................22, 25 External Fast selection ............................................................... 25 Forced selection ...................................................................22, 25 Holdover Frequency Offset ................................................................ 30 I Crystal Oscillator ................................................................................ 16 Current Frequency Offset ................................................................... 29 Internal Leaky Bucket Accumulator ................................................... 19 Bucket Size ................................................................................ 19 Decay Rate ................................................................................ 19 Lower Threshold ........................................................................ 19 Upper Threshold ........................................................................ 19 D DCO ................................................................................................... 29 Division Factor .................................................................................... 18 DPLL Hard Alarm ............................................................................... 23 L DPLL Hard Limit ................................................................................. 23 Limit ................................................................................................... 32 DPLL Operating Mode Free-Run mode .......................................................................... 29 Holdover mode ........................................................................... 29 Automatic Fast Averaged ................................................... 30 Automatic Instantaneous .................................................... 30 Automatic Slow Averaged .................................................. 30 Manual ................................................................................ 30 Locked mode .............................................................................. 29 Temp-Holdover mode ......................................................... 29 Lost-Phase mode ....................................................................... 29 Pre-Locked mode ....................................................................... 29 Pre-Locked2 mode ..................................................................... 30 LPF .................................................................................................... 29 M Master Clock ...................................................................................... 16 N No-activity Alarm ..........................................................................19, 25 P PFD .................................................................................................... 29 Phase Lock Alarm ........................................................................23, 25 DPLL Soft Alarm ................................................................................. 23 Phase-compared ..........................................................................23, 32 DPLL Soft Limit .................................................................................. 23 Phase-time ......................................................................................... 32 E F Pre-Divider ......................................................................................... 18 DivN Divider ............................................................................... 18 Lock 8k Divider .......................................................................... 18 Fast Loss ............................................................................................ 23 R Fine Phase Loss ................................................................................. 23 Reference Clock ................................................................................ 20 External Sync Alarm ........................................................................... 36 Index 104 July 23, 2009 IDT82V32021 EBU WAN PLL S State Machine .................................................................................... 27 Selected Input Clock Switch ............................................................... 25 Non-Revertive switch .................................................................. 25 Revertive switch ......................................................................... 25 V Index Validity ............................................................................................... 25 105 July 23, 2009 IDT82V32021 EBU WAN PLL PACKAGE DIMENSIONS - 68-PIN NL Figure 21. 68-Pin NL Package Dimensions (a) (in Millimeters) 106 July 23, 2009 A A1 A3 b D E D2 E2 k L e N Nd Ne SY MB 7.60 7.60 0.20 0.45 0.18 MIN. 0.80 0.00 NL68 NOM. 0.90 0.02 0.20 REF. 0.25 10.00 BSC 10.00 BSC 7.70 7.70 0.50 0.50 BSC 68 17 17 7.80 7.80 0.55 0.30 MAX. 1.00 0.05 6 6 6 8 8 5 NOTE IDT82V32021 EBU WAN PLL Figure 22. 68-Pin NL Package Dimensions (b) (in Millimeters) 107 July 23, 2009 IDT82V32021 EBU WAN PLL ORDERING INFORMATION XXXXXXX Device Type XX X Process/ Temperature Range Blank Industrial (-40 °C to +85 °C) NL Thermally Enhanced Plastic Very Fine Pitch Quad Flat No Lead Package (VFQFPN, NL68) NLG Green Thermally Enhanced Plastic Very Fine Pitch Quad Flat No Lead Package (VFQFPN, NLG68) 82V32021 WAN PLL DATASHEET DOCUMENT HISTORY 09/11/2008 Page 103 03/20/2009 Pages 42, 43, 92, 93, 97 07/23/2009 Pages 12, 96 CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 www.idt.com for SALES: 1-800-345-7015 or 408-284-8200 fax: 408-284-2775 IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. 108 for Tech Support: 408-360-1552 email:[email protected]