INFINEON IFX8117MEV

IFX8117
1A Low-Dropout Linear Voltage Regulator
IFX8117MEV
IFX8117MEV33
IFX8117MEV50
Data Sheet
Rev. 1.01, 2010-07-02
Standard Power
1A Low-Dropout Linear Voltage Regulator
1
IFX8117
Overview
Features
•
•
•
•
•
•
•
•
•
5 V, 3.3 V and Adjustable Voltage Versions
SOT-223 Package
Output Current Limitation and Overtemperature Shutdown
Output Current up to 1A
Temperature Range 0 °C to 125 °C
Line Regulation max. 0.2 %
Load Regulation max. 0.4 %
“1117” and “8117” Pin Compatible
Green Product (RoHS compliant)
PG-SOT223-4
Applications
•
•
•
•
•
•
•
•
Post Regulator for Switching DC/DC Converter
High Efficiency Linear Regulators
Battery Charger
Battery Powered Instrumentation
5 V to 3.3 V Linear Regulators
USB Hubs
Routers, ISDN/DSL Modems
Active SCSI Terminators
General Description
The IFX8117 is a family of low dropout voltage regulators with a dropout voltage of 1.2 V at 1 A of load current. It
is available as adjustable version (IFX8117MEV), providing output voltages from 1.25 V to 13.8 V, configured by
two external resistors. Additionally, the IFX8117 is also available in two fixed voltages, 5 V (IFX8117MEV50) and
3.3 V (IFX8117MEV33).
The IFX8117 implements protection features such as output current limitation and overtemperature shutdown. A
highly precise bandgap reference trimmed in production assures output voltage accuracy to within ±1 %.
The IFX8117 family comes in the PG-SOT223-4 package. To improve the transient response and the stability, a
minimum of 10 µF tantalum capacitor is required at the output.
Type
Package
Marking
IFX8117MEV
PG-SOT223-4
8117AD
IFX8117MEV33
PG-SOT223-4
8117V3
IFX8117MEV50
PG-SOT223-4
8117V5
Data Sheet
2
Rev. 1.01, 2010-07-02
IFX8117
Typical Application
2
Typical Application
IFX 8117
VI
10 µF*
VQ
GND
*Required if the regulator is located far from
the power supply filter
Figure 1
Data Sheet
10 µF
Typical_Application.vsd
Typical Application
3
Rev. 1.01, 2010-07-02
IFX8117
Block Diagram
3
Block Diagram
IFX8117
I
Power Stage
CL +
-
Thermal
Shutdown
Q
CL: Current Limitation
GND
Block_Diagram.vsd
Figure 2
Block Diagram (fixed voltage versions IFX8117MEV33 and IFX8117MEV50)
IFX8117
I
Power Stage
CL +
-
Thermal
Shutdown
Q
CL: Current Limitation
ADJ
Block_Diagram_Adj.vsd
Figure 3
Data Sheet
Block Diagram (adjustable voltage version IFX8117MEV)
4
Rev. 1.01, 2010-07-02
IFX8117
Pin Configuration
4
Pin Configuration
4.1
Pin Assignment Fixed Voltage Versions IFX8117MEV33 and IFX8117MEV50
PG-SOT223-4
Q
4
1
2
3
GND
Q
I
AEP02868_1117_01
Figure 4
Pin Assignment IFX8117MEV33 and IFX8117MEV50 (top view)
4.2
Pin Definitions and Functions Fixed Voltage Versions IFX8117MEV33 and
IFX8117MEV50
Pin
Symbol
Function
1
GND
Ground
2
Q
Output
block to GND with a capacitor close to the IC terminals, respecting the values given
for its capacitance CQ and ESR in the table “Functional Range” on Page 8
3
I
Input
for compensating line influences, a capacitor to GND close to the IC terminals is
recommended
4 (Tab) Q
Data Sheet
Output
connect to pin 2;
connect to heatsink area
5
Rev. 1.01, 2010-07-02
IFX8117
Pin Configuration
4.3
Pin Assignment Adjustable Voltage Version IFX8117MEV
PG-SOT223-4
Q
4
1
2
3
ADJ
Q
I
AEP02868_1117_02
Figure 5
Pin Assignment IFX8117MEV (top view)
4.4
Pin Definitions and Functions Fixed Voltage Version IFX8117MEV
Pin
Symbol
Function
1
ADJ
Adjust
connect to a voltage divider between Q and GND, see “External Resistor Divider
(Adjustable Version IFX8117MEV only)” on Page 16
2
Q
Output
block to GND with a capacitor close to the IC terminals, respecting the values given
for its capacitance CQ and ESR in the table “Functional Range” on Page 8
3
I
Input
for compensating line influences, a capacitor to GND close to the IC terminals is
recommended
4 (Tab) Q
Data Sheet
Output
connect to pin 2;
connect to heatsink area
6
Rev. 1.01, 2010-07-02
IFX8117
General Product Characteristics
5
General Product Characteristics
5.1
Absolute Maximum Ratings
Absolute Maximum Ratings 1)
0°C ≤ Tj ≤ 125 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Unit
Conditions
Min.
Max.
VI
-0.3
20
V
–
Voltage
VI - VQ
-0.3
20
V
–
5.1.3
Voltage
VQ
-0.3
20
V
IFX8117MEV33
IFX8117MEV50
5.1.4
Voltage
VQ - VADJ -0.3
6
V
IFX8117MEV
Tj
Tstg
-40
150
°C
–
-50
150
°C
–
VESD,HBM
-3
3
kV
Human Body
Model (HBM)2)
VESD,CDM
-1
1
kV
Charge Device
Model (CDM)3)
Input (fixed voltage version only)
5.1.1
Voltage
Input (adjustable voltage version only)
5.1.2
Output
Temperature
5.1.5
Junction Temperature
5.1.6
Storage Temperature
Electrostatic Discharge ESD
5.1.7
ESD
5.1.8
1) Not subject to production test, specified by design.
2) ESD susceptibility, HBM according to EIA/JESD 22-A114B
3) ESD susceptibility, CDM EIA/JESD22-C101 or ESDA STM5.3.1
Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are
not designed for continuous repetitive operation.
Data Sheet
7
Rev. 1.01, 2010-07-02
IFX8117
General Product Characteristics
5.2
Pos.
5.2.1
5.2.2
5.2.3
Functional Range
Parameter
Symbol
VI
Input Voltage
Output Capacitor’s Requirements
for Stability
Junction Temperature
Limit Values
Unit
Conditions
Min.
Max.
VQ + VDR
15
V
IFX8117MEV
4.55
15
V
IFX8117MEV33
6.25
15
V
IFX8117MEV50
–
µF
–
5
Ω
–
125
°C
–
CQ
10
ESR(CQ) 0.5
Tj
0
Note: Within the functional range the IC operates as described in the circuit description. The electrical
characteristics are specified within the conditions given in the related electrical characteristics table.
5.3
Pos.
Thermal Resistance
Parameter
Symbol
Limit Values
Min.
1)
Typ.
Unit
Conditions
Max.
RthSP
–
15
–
K/W
measured to Pin 4
(Tab)
RthJA
–
51
–
K/W
2)
5.3.3
–
146
–
K/W
Footprint only3)
5.3.4
–
75
–
K/W
300mm2 heatsink area
on PCB3)
5.3.5
–
63
–
K/W
600mm2 heatsink area
on PCB3)
5.3.1
Junction to Soldering Point
5.3.2
Junction to Ambient1)
1) not subject to production test, specified by design
2) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product
(Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu).
Where applicable a thermal via array under the heat slug contacted the first inner copper layer.
3) Specified RthJA value is according to Jedec JESD 51-3 at natural convection on FR4 1s0p board; The Product
(Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm3 board with 1 copper layer (1 x 70µm Cu).
Data Sheet
8
Rev. 1.01, 2010-07-02
IFX8117
General Product Characteristics
5.4
Electrical Characteristics
Electrical Characteristics Adjustable Version IFX8117MEV
0 °C ≤ Tj ≤ 125 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Pos.
Parameter
Symbol
5.4.1
Reference Voltage
VRef
5.4.2
5.4.3
5.4.4
Line Regulation1)
Load Regulation
1)
Dropout Voltage2)
Vdr = VI - VQ
Limit Values
Unit
Conditions
VQ
IQ = 10 mA
VI - VQ = 2 V
TJ = 25 °C
10 mA < IQ < 1 A
1.4 V < VI - VQ < 10 V
IQ = 10 mA
1.5 V < VI - VQ < 13.75 V
VI - VQ = 3 V
10 mA < IQ < 1 A
Min.
Typ.
Max.
1.238
1.250
1.262
V
1.225
1.250
1.270
V
ΔVQ,line
–
0.035
0.2
% of
ΔVQ,load
–
Vdr
–
1.1
1.15
V
IQ = 100 mA
–
1.15
1.2
V
IQ = 500 mA
–
1.2
1.25
1.0
1.4
1.9
IQ = 1 A
A
VI - VQ = 5 V
TJ = 25 °C
mA
VI = 15 V
% of
TA = 25 °C
VQ per 30 ms pulse
VQ
0.2
0.4
% of
V
5.4.5
Output Current Limitation
IQ,max
5.4.6
Minimum Load Current3)
0.4
5
5.4.7
Thermal Regulation
IQ,min
–
ΔVQ,power –
0.01
0.1
5.4.8
Power Supply Ripple
Rejection4)
PSRR
60
75
–
dB
VI - VQ = 3 V
fripple = 120 Hz
Vripple = 1 Vpp
5.4.9
Adjust Pin Current
IADJ
10
30
50
µA
–
5.4.10
Adjust Pin Current Change
ΔIADJ
–
0.2
5
µA
10 mA < IQ < 1 A
1.4 V < VI - VQ < 10 V
5.4.11
Temperature Stability4)
ΔVQ,temp
–
0.5
–
% of
–
1W
5.4.12
5.4.13
1)
2)
3)
4)
Long Term Stability4)
RMS Output Noise4)
VQ
ΔVQ,1000h –
0.3
VQ,RMS
0.003
–
–
–
VQ
TA = 125 °C
1000h
% of
10 Hz < f < 10 kHz
% of
VQ
Measured at constant junction temperature
Measured when the output voltage VQ has dropped 100mV from the nominal value obtained at VI = VQ + 1.5 V
Minimum output current required to maintain regulation
Not subject to production test, specified by design
Data Sheet
9
Rev. 1.01, 2010-07-02
IFX8117
General Product Characteristics
Electrical Characteristics 3.3 V Version IFX8117MEV33
0 °C ≤ Tj ≤ 125 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Pos.
Parameter
Symbol
5.4.14
Output Voltage
VQ
Limit Values
Unit
Conditions
VQ
IQ = 10 mA
VI = 5 V
TJ = 25 °C
0 mA < IQ < 1 A
4.75 V < VI < 10 V
IQ = 0 mA
4.75 V < VI < 15 V
VI = 4.75 V
0 mA < IQ < 1 A
Min.
Typ.
Max.
3.267
3.300
3.333
V
3.235
3.300
3.365
V
5.4.15
Line Regulation1)
ΔVQ,line
–
1
6
mV
5.4.16
Load Regulation1)
ΔVQ,load
–
0.2
0.4
% of
Vdr
–
1.1
1.15
V
IQ = 100 mA
–
1.15
1.2
V
IQ = 500 mA
–
1.2
1.25
1.0
1.4
1.9
IQ = 1 A
A
VI - VQ = 5 V
TJ = 25 °C
mA
VI = 15 V
% of
TA = 25 °C
VQ per 30 ms pulse
5.4.17
Dropout Voltage2)
Vdr = VI - VQ
V
5.4.18
Output Current Limitation
IQ,max
5.4.19
Quiescent Current
5
10
5.4.20
Thermal Regulation
Iq
–
ΔVQ,power –
0.01
0.1
5.4.21
Power Supply Ripple
Rejection3)
PSRR
60
75
–
dB
VI - VQ = 3 V
fripple = 120 Hz
Vripple = 1 Vpp
5.4.22
Temperature Stability3)
ΔVQ,temp
–
0.5
–
% of
–
1W
5.4.23
5.4.24
Long Term Stability3)
RMS Output Noise3)
VQ
ΔVQ,1000h –
0.3
VQ,RMS
0.003
–
–
–
VQ
TA = 125 °C
1000h
% of
10 Hz < f < 10 kHz
% of
VQ
1) Measured at constant junction temperature
2) Measured when the output voltage VQ has dropped 100mV from the nominal value obtained at VI = VQ + 1.5 V
3) Not subject to production test, specified by design
Data Sheet
10
Rev. 1.01, 2010-07-02
IFX8117
General Product Characteristics
Electrical Characteristics 5 V Version IFX8117MEV50
0 °C ≤ Tj ≤ 125 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Pos.
Parameter
Symbol
5.4.25
Output Voltage
VQ
Limit Values
Unit
Conditions
VQ
IQ = 10 mA
VI = 7 V
TJ = 25 °C
0 mA < IQ < 1 A
6.5 V < VI < 10 V
IQ = 0 mA
6.5 V < VI < 15 V
VI = 6.5 V
0 mA < IQ < 1 A
Min.
Typ.
Max.
4.950
5.000
5.050
V
4.900
5.000
5.100
V
5.4.26
Line Regulation1)
ΔVQ,line
–
1
6
mV
5.4.27
Load Regulation1)
ΔVQ,load
–
0.2
0.4
% of
Vdr
–
1.1
1.15
V
IQ = 100 mA
–
1.15
1.2
V
IQ = 500 mA
–
1.2
1.25
1.0
1.4
1.9
IQ = 1 A
A
VI - VQ = 5 V
TJ = 25 °C
mA
VI = 15 V
% of
TA = 25 °C
VQ per 30 ms pulse
5.4.28
Dropout Voltage2)
Vdr = VI - VQ
V
5.4.29
Output Current Limitation
IQ,max
5.4.30
Quiescent Current
5
10
5.4.31
Thermal Regulation
Iq
–
ΔVQ,power –
0.01
0.1
5.4.32
Power Supply Ripple
Rejection3)
PSRR
60
75
–
dB
VI - VQ = 3 V
fripple = 120 Hz
Vripple = 1 Vpp
5.4.33
Temperature Stability3)
ΔVQ,temp
–
0.5
–
% of
–
1W
5.4.34
5.4.35
Long Term Stability3)
RMS Output Noise3)
VQ
ΔVQ,1000h –
0.3
VQ,RMS
0.003
–
–
–
VQ
TA = 125 °C
1000h
% of
10 Hz < f < 10 kHz
% of
VQ
1) Measured at constant junction temperature
2) Measured when the output voltage VQ has dropped 100mV from the nominal value obtained at VI = VQ + 1.5 V
3) Not subject to production test, specified by design
Data Sheet
11
Rev. 1.01, 2010-07-02
IFX8117
General Product Characteristics
5.5
Typical Performance Characteristics
Dropout Voltage V dr versus
Dropout Voltage V dr versus
Output Current I Q
Junction Temperature T j
1_VDR_IQ.VSD
1200
2_VDR_TJ.VSD
1200
T j = 0 °C
T j = 25 °C
1000
I Q = 100 mA
800
V dr [V]
800
V dr [V]
IQ = 1 A
1000
T j = 125 °C
600
600
400
400
200
200
0
I Q = 10 mA
0
0
200
400
600
800
1000
-50
0
I Q [mA]
50
100
150
T j [°C]
Load Regulation
ΔVQ,load versus ΔIQ
Line Regulation
ΔVQ,line versus ΔVI
0,000
DVQ_DVI.vsd
0,070
DVQ_DIQ.vsd
-0,005
T j = 125 °C
T j = 25 °C
0,060
T j = 0 °C
ΔV Q,line [% of V Q]
ΔV Q,load [% of V Q]
-0,010
-0,015
-0,020
-0,025
T j = 0 °C
-0,030
T j = 25 °C
0,050
0,040
0,030
0,020
-0,035
0,010
-0,040
T j = 125 °C
-0,045
0
200
400
600
800
0,000
0
1000
10
15
20
VI [V]
I Q [mA]
Data Sheet
5
12
Rev. 1.01, 2010-07-02
IFX8117
General Product Characteristics
Current Limit
IQ,max versus VI
Temperature Stability
ΔVQ versus Tj
0,010
VQ_Tj.vsd
IQmax_VI.vsd
1600
1400
0,005
VI = 7 V
1200
V I = 15 V
Ι Q,max [ mA ]
ΔV Q[% of V Q]
I Q = 5 mA
0,000
1000
800
600
-0,005
400
200
-0,010
0
0
50
100
150
T j [°C]
-0,015
0
50
100
IFX8117MEV (adjustable) Adjust Pin Current
IADJ versus TJ
IFX8117MEV (adj.) Power Supply Ripple Rejection
PSRR versus fr
IADJ_Tj.vsd
35
10_PSRR_FR_ADJ.VSD
100
30
90
80
70
PSRR [dB]
Ι ADJ [µA]
25
20
15
60
I Q = 1 mA
50
40
I Q = 10 mA
30
10
I Q = 100 mA
20
5
10
0
0,01
0
0
50
100
150
0,1
1
10
100
1000
f [kHz]
T j [°C]
Data Sheet
13
Rev. 1.01, 2010-07-02
IFX8117
General Product Characteristics
IFX8117MEV (adj.) Load Transient Response
IFX8117MEV (adj.) Line Transient Response
adjLoadTransResp.vsd
adjLineTransResp.vsd
ΔV Q
Δ VQ
3
3
0
0
-3
-3
[%]
[%]
VI - VQ = 3 V
CQ = 10 µF Tantalum
-6
-6
IQ = 100 mA
CQ = 10 µF Tantalum
V I - VQ
ΙQ [A]
[V]
0.6
3.5
0.1
2.5
0
20
40
60
0
80
20
40
60
80
t [µs]
IFX8117MEV33 (3.3 V) Load Transient Response
t [µs]
IFX8117MEV33 (3.3 V) Line Transient Response
33LineTransResp.vsd
33LoadTransResp.vsd
ΔVQ
Δ VQ
50
50
0
0
[mV]
[mV]
-50
-50
VI = 5 V
CQ = 10 µF Tantalum
-100
IQ = 100 mA
CQ = 10 µF Tantalum
Ι Q [A]
V I [V]
0.6
5.75
0.1
4.75
0
20
40
60
0
80
40
60
80
t [µs]
t [µs]
Data Sheet
20
14
Rev. 1.01, 2010-07-02
IFX8117
General Product Characteristics
IFX8117MEV50 (5 V) Load Transient Response
IFX8117MEV50 (5 V) Line Transient Response
50LoadTransResp.vsd
50LineTransResp.vsd
V Q [V]
V Q [V]
5.1
5.1
5.0
5.0
4.9
4.9
VI = 7 V
CQ = 10 µF Tantalum
4.8
4.8
IQ = 100 mA
CQ = 10 µF Tantalum
ΙQ [A]
V I [V]
0.6
8.0
0.1
7.0
0
20
40
60
0
80
t [µs]
Data Sheet
20
40
60
80
t [µs]
15
Rev. 1.01, 2010-07-02
IFX8117
Application Hints
6
Application Hints
6.1
External Components
Input Capacitor
An input capacitor is recommended to compensate line influences. As a minimum a 100 nF ceramic input
capacitor should be used to filter high frequency noise. For buffering line transients a capacitance of 10µF is
suggested.
Output Capacitor
The output capacitor is part of the regulation loop of the regulator and therefore important to maintain stability. It
must meet the required conditions for minimum capacitance value and maximum value of equivalent series
resistance (ESR) as given in “Functional Range” on Page 8. An increase of the output capacitance will improve
the transient response and the loop stability. To achieve low voltage drops at load transients, tantalum capacitors
are recommended.
External Resistor Divider (Adjustable Version IFX8117MEV only)
The IFX8117MEV adjustable version develops a 1.25 V reference voltage, VRef, between the output Q and the
adjust terminal ADJ. As shown in Figure 6, this voltage is applied across resistor R1 to generate a constant current
I1. The current IADJ from the adjust terminal could introduce error to the output. But since it is very small (50µA)
compared to the I1 and very constant with line and load changes, the error can be ignored. The constant current
I1 then flows through the output set resistor R2 and sets the output voltage to the desired level.
At the fixed voltage devices IFX8117MEV33 and IFX8117MEV50 the resistor divider is integrated inside the
device.
IFX 8117 MEV
VI
VQ
I1
V Ref
ADJ
10 µF
R1
10 µF
IADJ
R2
V Q = VRef (1 + R2/R1 ) + IADJR2
Adjustable _Version .vsd
Figure 6
Data Sheet
IFX8117MEV Adjustable Version
16
Rev. 1.01, 2010-07-02
IFX8117
Application Hints
6.2
Protection Diodes
1N4001
(optional )
IFX 8117 MEV
VI
VQ
R1
ADJ
R2
Protection_Diode.vsd
Figure 7
IFX8117MEV with Protection Diode
In normal operating conditions, no diodes are needed for protection of the device.
In case the input is shorted to GND and the output capacitor is still charged, a peak current can flow from the output
to the input of the regulator. This peak current depends on the size and the equivalent series resistor (ESR) of the
output capacitor. When the input is instantaneously shorted to GND, and with a large output capacitor with low
ESR, the regulator risks to be damaged. For this environment it is recommended to add an external diode between
the output and the input to protect the regulator as shown in Figure 7.
Data Sheet
17
Rev. 1.01, 2010-07-02
IFX8117
Package Outlines
Package Outlines
1.6±0.1
6.5 ±0.2
A
0.1 MAX.
3 ±0.1
7 ±0.3
3
2
0.5 MIN.
1
2.3
0.7 ±0.1
B
15˚ MAX.
4
3.5 ±0.2
7
4.6
0.28 ±0.04
0...10˚
0.25 M A
0.25 M B
GPS05560
Figure 8
PG-SOT223-4
Green Product (RoHS compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
You can find all of our packages, sorts of packing and others in our
Infineon Internet Page “Products”: http://www.infineon.com/products.
Data Sheet
18
Dimensions in mm
Rev. 1.01, 2010-07-02
IFX8117
Revision History
8
Revision History
Version
Date
Changes
1.01
2010-07-02
data sheet Rev. 1.01
editorial changes
Data Sheet
19
Rev. 1.01, 2010-07-02
Edition 2010-07-02
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2010 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems
and/or automotive, aviation and aerospace applications or systems only with the express written approval of
Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that lifesupport automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device
or system. Life support devices or systems are intended to be implanted in the human body or to support and/or
maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user
or other persons may be endangered.