IRF IR2110E6

Previous Datasheet
Index
Next Data Sheet
Data Sheet No. PD-6.065
IR2110E6
HIGH AND LOW SIDE DRIVER
Product Summary
Features
n Floating channel designed for bootstrap operation
Fully operational to +600V
Tolerant to negative transient voltage
dV/dt immune
n Gate drive supply range from 10 to 20V
n Undervoltage lockout for both channels
n Separate logic supply range from 5 to 20V
Logic and power ground ±5V offset
n CMOS Schmitt-triggered inputs with pull-down
n Cycle by cycle edge-triggered shutdown logic
n Matched propagation delay for both channels
n Outputs in phase with inputs
Absolute Maximum Ratings
VOFFSET
600V max.
IO+/-
2A / 2A
VOUT
10 - 20V
ton/off (typ.)
120 & 94 ns
Delay Matching
10 ns
Description
The IR2110E6 is a high voltage, high speed
power MOSFET and IGBT driver with independent
high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction.
Logic inputs are compatible with standard CMOS or
LSTTL outputs. The output drivers feature a high
pulse current buffer stage designed for minimum
driver cross-conduction. Propagation delays are
matched to simplify use in high frequency applications. The floating channel can be used to drive an
N-channel power MOSFET or IGBT in the high side
configuration which operates up to 600 volts.
Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute
voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air
conditions. Additional information is shown in Figures 28 through 35.
Symbol
VB
VS
VHO
VCC
VLO
VDD
VSS
VIN
dVS/dt
PD
RthJA
Tj
TS
TL
Parameter
Min.
High Side Floating Supply Absolute Voltage
High Side Floating Supply Offset Voltage
High Side Output Voltage
Low Side Fixed Supply Voltage
Low Side Output Voltage
Logic Supply Voltage
Logic Supply Offset Voltage
Logic Input Voltage (HIN, LIN & SD)
Allowable Offset Supply Voltage Transient (Fig. 16)
Package Power Dissipation @ TA ≤ = 25°C (Fig. 19)
Thermal Resistance, Junction to Ambient
Junction Temperature
Storage Temperature
Package Mounting Surface Temperature
Weight
To Order
Max.
-0.5
VS + 20
—
600
VS -0.5
VB + 0.5
-0.5
20
-0.5
VCC + 0.5
-0.5
VSS + 20
VCC - 20
VCC + 0.5
VSS - 0.5
VDD + 0.5
—
50
—
1.6
—
75
-55
125
-55
150
300 (for 5 seconds)
0.45 (typical)
Units
V
V/ns
W
°C/W
°C
g
Previous Datasheet
Index
Next Data Sheet
IR2110E6
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the
recommended conditions. The V S and VSS offset ratings are tested with all supplies biased at 15V differential. Typical
ratings at other bias conditions are shown in Figures 36 and 37.
Symbol
VB
VS
VHO
VCC
VLO
VDD
VSS
VIN
Parameter
Min.
High Side Floating Supply Absolute Voltage
High Side Floating Supply Offset Voltage
High Side Output Voltage
Low Side Fixed Supply Voltage
Low Side Output Voltage
Logic Supply Voltage
Logic Supply Offset Voltage
Logic Input Voltage (HIN, LIN & SD)
VS + 10
-4
VS
10
0
VSS + 5
-5
VSS
Max.
Units
VS + 20
600
VB
20
VCC
VSS + 20
5
VDD
V
Dynamic Electrical Characteristics
VBIAS (VCC , VBS, VDD) = 15V, and V SS = COM unless otherwise specified. The dynamic electrical
characteristics are measured using the test circuit shown in Figure 3.
Tj = 25°C
Symbol Parameter
ton
toff
t sd
tr
tf
Mt
Min
Turn-On Propagation Delay
Turn-Off Propagation Delay
Shutdown Propagation Delay
Turn-On Rise Time
Turn-Off Fall Time
Delay Matching, HS & LS Turn-On/Off
—
—
—
—
—
—
Tj = -55 to
125°C
Typ. Max. Min. Max
120
94
110
25
17
—
150
125
140
35
25
10
Typical Connection
—
—
—
—
—
—
260
220
235
50
40
—
Units
ns
Test Conditions
VS = 0V
VS = 600V
VS = 600V
CL = 1000pf
CL = 1000pf
Hton-Lton / Ht off-Ltoff
upto
to 600V
500V
up
HO
VDD
VDD
VB
HIN
HIN
VS
SD
SD
LIN
LIN
V CC
VSS
VSS
COM
VCC
TO
LOAD
LO
To Order
Previous Datasheet
Index
Next Data Sheet
IR2110E6
Static Electrical Characteristics
VBIAS (VCC, VBS, VDD) = 15V, unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and
are applicable to all three logic input leads: HIN, LIN and SD. The V O and IO parameters are referenced to COM and are
applicable to the respective output leads: HO or LO.
Tj = -55 to
125°C
Tj = 25°C
Symbol Parameter
VIH
VIL
Logic “1” Input Voltage
Logic “0” Input Voltage
Min
Typ. Max. Min. Max Units
3.1
6.4
9.5
12.6
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
1.8
3.8
6
8.3
3.3
6.8
10
13.3
—
—
—
—
—
—
—
—
1.7
3.6
5.7
7.9
V
V
W
V
Test Conditions
VDD = 5V
VDD = 10V
VDD = 15V
VDD = 20V
VDD = 5V
VDD = 10V
VDD = 15V
VDD = 20
VOH
High Level Output Voltage, VBIAS - VO
—
0.7
1.2
—
1.5
VOL
Low Level Output Voltage, VO
—
—
0.1
—
0.1
I LK
Offset Supply Leakage Current
—
—
50
—
250
VB = VS = 600V
I QBS
Quiescent VBS Supply Current
—
125
230
—
500
VIN = 0V or VDD
I QCC
Quiescent V CC Supply Current
—
180
340
—
600
I QDD
Quiescent V DD Supply Current
—
5
30
—
60
I IN+
Logic “1” Input Bias Current
—
15
40
—
70
VIN = VDD
I IN-
Logic “0” Input Bias Current
—
—
1
—
10
VIN = 0V
VBSUV+ VBS Supply Undervoltage Positive
Going Threshold
VBSUV- VBS Supply Undervoltage Negative
Going Threshold
VCCUV+ VCC Supply Undervoltage Positive
Going Threshold
VCCUV- VCC Supply Undervoltage Negative
Going Threshold
7.5
8.6
9.7
—
—
7.0
8.2
9.4
—
—
7.4
8.5
9.6
—
—
7.0
8.2
9.4
—
—
2
—
—
—
—
2
—
—
—
—
I O+
I O-
Output High Short Circuit Pulsed
Current
Output Low Short Circuit Pulsed
Current
V
µA
VIN = VIL, IO = 0A
VIN = 0V or VDD
VIN = 0V or VDD
V
A
To Order
VIN = VIH, IO = 0A
VOUT = 0V, VIN = VDD
PW < = 10µs
VOUT = 15V, VIN = 0V
PW < = 10 µs
Previous Datasheet
Index
Next Data Sheet
IR2110E6
10 to 600V
Figure 1. Input/Output Timing Diagram
Figure 2. Floating Supply Voltage Transient Test Circuit
(0 to 600V)
50%
50%
HIN
LIN
ton
t off
tr
90%
HO
LO
Figure 3. Switching Time Test Circuit
tf
90%
10%
10%
Figure 4. Switching Time Waveform Definition
HIN
LIN
50%
SD
50%
LO
50%
HO
10%
t sd
HO
LO
MT
90%
MT
90%
LO
Figure 5. Shutdown Waveform Definitions
HO
Figure 6. Delay Matching Waveform Definitions
To Order
Previous Datasheet
Index
Next Data Sheet
250
250
200
200
Turn-On Delay Time (
Turn-On Delay Time (
IR2110E6
150
Max.
100
Typ.
50
Max.
150
Typ.
100
50
0
0
-50
-25
0
25
50
75
100
10
125
12
Temperature (°C)
250
250
200
200
150
Max.
Typ.
0
20
Max.
150
Typ.
100
0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
14
16
18
20
VBIAS Supply Voltage (V)
Figure 8A. Turn-Off Time vs. Temperature
Figure 8B. Turn-Off Time vs. Voltage
250
250
200
200
Shutdown Delay time
Shutdown Delay Time
18
50
50
150
Max.
100
16
Figure 7B. Turn-On Time vs. Voltage
Turn-Off Delay Time (
Turn-Off Delay Time (
Figure 7A. Turn-On Time vs. Temperature
100
14
VBIAS Supply Voltage (V)
Typ.
50
Max.
150
Typ.
100
50
0
0
-50
-25
0
25
50
75
100
125
Temperature (°C)
10
12
14
16
18
VBIAS Supply Voltage (V)
Figure 9A. Shutdown Time vs. Temperature
Figure 9B. Shutdown Time vs. Voltage
To Order
20
Previous Datasheet
Index
Next Data Sheet
100
100
80
80
Turn-On Rise Time (n
Turn-On Rise Time (n
IR2110E6
60
40
Max.
60
Max.
40
Typ.
Typ.
20
20
0
0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
16
18
20
Figure 10B. Turn-On Rise Time vs. Voltage
50
50
40
40
Turn-Off Fall Time (n
Turn-Off Fall Time (n
Figure 10A. Turn-On Rise Time vs. Temperature
30
Max.
20
Typ.
10
30
20
Max.
Typ.
10
0
0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
14
16
18
20
VBIAS Supply Voltage (V)
Figure 11A. Turn-Off Fall Time vs. Temperature
Figure 11B. Turn-Off Fall Time vs. Voltage
15.0
15.0
12.0
12.0
Logic "1" Input Threshold
Logic "1" Input Threshold
14
VBIAS Supply Voltage (V)
Min .
9.0
6.0
3.0
9.0
6.0
Min .
3.0
0.0
0.0
-50
-25
0
25
50
75
100
125
Temperature (°C)
5
7.5
10
12.5
15
17.5
20
V DD Logic Supply Voltage (V)
Figure 12A. Logic “1” Input Threshold vs. Temperature
To Order
Figure 12B. Logic “1” Input Threshold vs. Voltage
Previous Datasheet
Index
Next Data Sheet
15.0
15.0
12.0
12.0
Logic "0" Input Threshold
Logic "0" Input Threshold
IR2110E6
9.0
Max.
6.0
3.0
9.0
6.0
3.0
Max.
0.0
0.0
-50
-25
0
25
50
75
100
125
5
7.5
Temperature (°C)
Figure 13A. Logic “0” Input Threshold vs. Temperature
15
17.5
20
5.00
High Level Output Voltag
High Level Output Voltag
12.5
Figure 13B. Logic “0” Input Threshold vs. Voltage
5.00
4.00
3.00
2.00
Max.
1.00
4.00
3.00
2.00
Max.
1.00
0.00
-50
0.00
-25
0
25
50
75
100
10
125
12
Temperature (°C)
14
16
18
20
VBIAS Supply Voltage (V)
Figure 14A. High Level Output vs. Temperature
Figure 14B. High Level Output vs. Voltage
1.00
15.0
0.80
12.0
Logic "1" Input Threshold
Low Level Output Voltag
10
V DD Logic Supply Voltage (V)
0.60
0.40
0.20
9.0
6.0
Min .
3.0
Max.
0.0
0.00
-50
-25
0
25
50
75
100
125
5
7.5
10
12.5
15
17.5
V DD Logic Supply Voltage (V)
Temperature (°C)
Figure 15A. Low Level Output vs. Temperature
To Order
Figure 15B. Low Level Output vs. Voltage
20
Previous Datasheet
Index
Next Data Sheet
IR2110E6
500
Offset Supply Leakage Curren
Offset Supply Leakage Curren
500
400
300
200
100
400
300
200
100
Max.
Max.
0
0
-50
-25
0
25
50
75
100
125
0
100
Temperature (°C)
Figure 16A. Offset Supply Current vs. Temperature
300
400
500
Figure 16B. Offset Supply Current vs. Voltage
500
500
400
400
VBS Supply Current (µ
VBS Supply Current (µ
200
V B Boost Voltage (V)
300
Max.
200
300
200
Max.
Typ.
100
100
0
Typ.
0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
Figure 17A. VBS Supply Current vs. Temperature
16
18
20
Figure 17B. VBS Supply Current vs. Voltage
625
625
500
500
VCCSupply Current (µ
VCCSupply Current (µ
14
V BS Floating Supply Voltage (V)
375
Max.
250
375
250
Max.
Typ.
125
125
0
Typ.
0
-50
-25
0
25
50
75
100
125
Temperature (°C)
10
12
14
16
18
VCC Fixed Supply Voltage (V)
Figure 18A. VCC Supply Current vs. Temperature
To Order
Figure 18B. VCC Supply Current vs. Voltage
20
Previous Datasheet
Index
Next Data Sheet
100
100
80
80
VDD Supply Current (µ
VDD Supply Current (µ
IR2110E6
60
40
60
40
Max.
Max.
20
20
Typ.
Typ.
0
0
-50
-25
0
25
50
75
100
125
5
7.5
Temperature (°C)
Figure 19A. VDD Supply Current vs. Temperature
12.5
15
17.5
20
Figure 19B. VDD Supply Current vs. Voltage
100
100
80
80
Logic "1" Input Bias Current
Logic "1" Input Bias Current
10
V DD Logic Supply Voltage (V)
60
40
Max.
20
60
40
Max.
20
Typ.
T yp.
0
0
-50
-25
0
25
50
75
100
125
5
7.5
Temperature (°C)
12.5
15
17.5
20
Figure 20B. Logic “1” Input Current vs. Voltage
5.00
5.00
4.00
4.00
Logic "0" Input Bias Current
Logic "0" Input Bias Current
Figure 20A. Logic “1” Input Current vs. Temperature
3.00
2.00
1.00
10
VDD Logic Supply Voltage (V)
Max.
0.00
3.00
2.00
1.00
Max.
0.00
-50
-25
0
25
50
75
100
125
Temperature (°C)
5
7.5
10
12.5
15
17.5
V DD Logic Supply Voltage (V)
Figure 21A. Logic “0” Input Current vs. Temperature
To Order
Figure 21B. Logic “0” Input Current vs. Voltage
20
Previous Datasheet
Index
Next Data Sheet
IR2110E6
11.0
10.0
VBS Undervoltage Lockout
VBS Undervoltage Lockout
11.0
Max.
9.0
Typ.
8.0
Min .
7.0
10.0
Max.
9.0
Typ.
8.0
7.0
6.0
Min .
6.0
-50
-25
0
25
50
75
100
125
-50
-25
0
Temperature (°C)
Figure 22. VBS Undervoltage (+) vs. Temperature
75
100
125
11.0
10.0
VCCUndervoltage Lockout
VCCUndervoltage Lockout
50
Figure 23. VBS Undervoltage (-) vs. Temperature
11.0
Max.
9.0
Typ.
8.0
Min .
7.0
10.0
Max.
9.0
Typ.
8.0
7.0
6.0
Min .
6.0
-50
-25
0
25
50
75
100
125
-50
-25
0
Temperature (°C)
25
50
75
100
125
Temperature (°C)
Figure 24. VCC Undervoltage (+) vs. Temperature
Figure 25. VCC Undervoltage (-) vs. Temperature
5.00
5.00
4.00
4.00
3.00
Output Source Curren
Output Source Curren
25
Temperature (°C)
Typ.
Min .
2.00
1.00
0.00
-50
3.00
2.00
Typ.
1.00
Min .
0.00
-25
0
25
50
75
100
125
Temperature (°C)
10
12
14
16
18
V BIAS Supply Voltage (V)
Figure 26A. Output Source Current vs. Temperature
To Order
Figure 26B. Output Source Current vs. Voltage
20
Previous Datasheet
Index
Next Data Sheet
5.00
5.00
4.00
4.00
3.00
Output Sink Current
Output Sink Current
IR2110E6
Typ.
Min .
2.00
1.00
0.00
-50
3.00
2.00
Typ.
1.00
Min .
0.00
-25
0
25
50
75
100
125
10
12
Temperature (°C)
Figure 27A. Output Sink Current vs. Temperature
100
75
10 V
50
Junction Temperature
Junction Temperature
20
32 0V
125
14 0V
25
14 0V
100
75
10 V
50
25
1E+3
1E+4
1E+5
0
1E+2
1E+6
1E+3
Frequency (Hz)
1E+4
1E+5
1E+6
Frequency (Hz)
Figure 28. IR2110 TJ vs. Frequency (IRFBC20)
Ω , VCC = 15V
RGATE = 33Ω
32 0V
150
Figure 29. IR2110 TJ vs. Frequency (IRFBC30)
Ω, VCC = 15V
RGATE = 22Ω
14 0V
32 0V
150
14 0V
125
100
10 V
75
50
Junction Temperature
125
Junction Temperature
18
150
125
25
0
1E+2
16
Figure 27B. Output Sink Current vs. Voltage
32 0V
150
0
1E+2
14
V BIAS Supply Voltage (V)
10 V
100
75
50
25
1E+3
1E+4
1E+5
1E+6
Frequency (Hz)
0
1E+2
1E+3
1E+4
1E+5
Frequency (Hz)
Figure 30. IR2110 TJ vs. Frequency (IRFBC40)
Ω , VCC = 15V
RGATE = 15Ω
To Order
Figure 31. IR2110 TJ vs. Frequency (IRFPE50)
Ω, VCC = 15V
RGATE = 10Ω
1E+6
Previous Datasheet
Index
Next Data Sheet
IR2110E6
32 0V
150
14 0V
100
10 V
75
50
100
10 V
75
50
25
25
0
1E+2
1E+3
1E+4
1E+5
0
1E+2
1E+6
1E+3
Frequency (Hz)
1E+5
1E+6
Figure 33. IR2110S TJ vs. Frequency (IRFBC30)
Ω , VCC = 15V
RGATE = 22Ω
32 0V 14 0V
150
125
32 0V 14 0V 10 V
150
125
10 V
Junction Temperature
Junction Temperature
1E+4
Frequency (Hz)
Figure 32. IR2110S TJ vs. Frequency (IRFBC20)
Ω, VCC = 15V
RGATE = 33Ω
100
75
50
100
75
50
25
25
0
1E+2
1E+3
1E+4
1E+5
0
1E+2
1E+6
1E+3
Frequency (Hz)
1E+4
1E+5
1E+6
Frequency (Hz)
Figure 34. IR2110S TJ vs. Frequency (IRFBC40)
Ω, VCC = 15V
RGATE = 15Ω
Figure 35. IR2110S TJ vs. Frequency (IRFPE50)
Ω , VCC = 15V
RGATE = 10Ω
20.0
VSS Logic Supply Offset Voltag
0.0
VS Offset Supply Voltage
14 0V
125
Junction Temperature
125
Junction Temperature
32 0V
150
-2.0
Typ.
-4.0
-6.0
-8.0
16.0
12.0
-10.0
8.0
Typ.
4.0
0.0
10
12
14
16
18
20
V BS Floating Supply Voltage (V)
10
12
14
16
18
V CC Fixed Supply Voltage (V)
Figure 37. Maximum VSS Positive Offset vs.
VCC Supply Voltage
Figure 36. Maximum VS Negative Offset vs.
VBS Supply Voltage
To Order
20
Previous Datasheet
Index
Next Data Sheet
IR2110E6
Functional Block Diagram
VB
UV
DETECT
VDD
R Q
S
HIN
HV
LEVEL
SHIFT
VDD /VCC
LEVEL
SHIFT
PULSE
FILTER
PULSE
GEN
R
R
Q
HO
S
VS
SD
VCC
LIN
S
UV
DETECT
VDD /VCC
LEVEL
SHIFT
LO
R Q
DELAY
VSS
COM
Lead Definitions
Lead
Symbol Description
VDD
Logic supply
HIN
Logic input for high side gate driver output (HO), in phase
SD
Logic input for shutdown
LIN
Logic input for low side gate driver output (LO), in phase
VSS
Logic ground
VB
High side floating supply
HO
High side gate drive output
VS
High side floating supply return
VCC
Low side supply
LO
Low side gate drive output
COM
Low side return
To Order
Previous Datasheet
Index
Next Data Sheet
IR2110E6
Case Outline and Dimensions — LCC
PAD ASSIGNMENTS
1 —
2 —
4 —
6 —
8 —
9 —
11 —
13 —
14 —
15 —
17 —
3, 5
7, 10
12,16
& 18
Lo
COMM
VCC
VS
VB
Ho
VDD
HIN
SD
LIN
VSS
}
NO CONNECTION
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331
EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: (44) 0883 713215
IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 3L1, Tel: (905) 475 1897
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: 6172 37066
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: (39) 1145 10111
IR FAR EAST: K&H Bldg., 2F, 3-30-4 Nishi-Ikeburo 3-Chome, Toshima-Ki, Tokyo 171 Tel: (03)3983 0641
IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371
http://www/irf.com/
Data and specifications subject to change without notice. 9/96
To Order