Previous Datasheet Index Next Data Sheet Data Sheet No. PD-6.065 IR2110E6 HIGH AND LOW SIDE DRIVER Product Summary Features n Floating channel designed for bootstrap operation Fully operational to +600V Tolerant to negative transient voltage dV/dt immune n Gate drive supply range from 10 to 20V n Undervoltage lockout for both channels n Separate logic supply range from 5 to 20V Logic and power ground ±5V offset n CMOS Schmitt-triggered inputs with pull-down n Cycle by cycle edge-triggered shutdown logic n Matched propagation delay for both channels n Outputs in phase with inputs Absolute Maximum Ratings VOFFSET 600V max. IO+/- 2A / 2A VOUT 10 - 20V ton/off (typ.) 120 & 94 ns Delay Matching 10 ns Description The IR2110E6 is a high voltage, high speed power MOSFET and IGBT driver with independent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. Logic inputs are compatible with standard CMOS or LSTTL outputs. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts. Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in Figures 28 through 35. Symbol VB VS VHO VCC VLO VDD VSS VIN dVS/dt PD RthJA Tj TS TL Parameter Min. High Side Floating Supply Absolute Voltage High Side Floating Supply Offset Voltage High Side Output Voltage Low Side Fixed Supply Voltage Low Side Output Voltage Logic Supply Voltage Logic Supply Offset Voltage Logic Input Voltage (HIN, LIN & SD) Allowable Offset Supply Voltage Transient (Fig. 16) Package Power Dissipation @ TA ≤ = 25°C (Fig. 19) Thermal Resistance, Junction to Ambient Junction Temperature Storage Temperature Package Mounting Surface Temperature Weight To Order Max. -0.5 VS + 20 — 600 VS -0.5 VB + 0.5 -0.5 20 -0.5 VCC + 0.5 -0.5 VSS + 20 VCC - 20 VCC + 0.5 VSS - 0.5 VDD + 0.5 — 50 — 1.6 — 75 -55 125 -55 150 300 (for 5 seconds) 0.45 (typical) Units V V/ns W °C/W °C g Previous Datasheet Index Next Data Sheet IR2110E6 Recommended Operating Conditions The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The V S and VSS offset ratings are tested with all supplies biased at 15V differential. Typical ratings at other bias conditions are shown in Figures 36 and 37. Symbol VB VS VHO VCC VLO VDD VSS VIN Parameter Min. High Side Floating Supply Absolute Voltage High Side Floating Supply Offset Voltage High Side Output Voltage Low Side Fixed Supply Voltage Low Side Output Voltage Logic Supply Voltage Logic Supply Offset Voltage Logic Input Voltage (HIN, LIN & SD) VS + 10 -4 VS 10 0 VSS + 5 -5 VSS Max. Units VS + 20 600 VB 20 VCC VSS + 20 5 VDD V Dynamic Electrical Characteristics VBIAS (VCC , VBS, VDD) = 15V, and V SS = COM unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Figure 3. Tj = 25°C Symbol Parameter ton toff t sd tr tf Mt Min Turn-On Propagation Delay Turn-Off Propagation Delay Shutdown Propagation Delay Turn-On Rise Time Turn-Off Fall Time Delay Matching, HS & LS Turn-On/Off — — — — — — Tj = -55 to 125°C Typ. Max. Min. Max 120 94 110 25 17 — 150 125 140 35 25 10 Typical Connection — — — — — — 260 220 235 50 40 — Units ns Test Conditions VS = 0V VS = 600V VS = 600V CL = 1000pf CL = 1000pf Hton-Lton / Ht off-Ltoff upto to 600V 500V up HO VDD VDD VB HIN HIN VS SD SD LIN LIN V CC VSS VSS COM VCC TO LOAD LO To Order Previous Datasheet Index Next Data Sheet IR2110E6 Static Electrical Characteristics VBIAS (VCC, VBS, VDD) = 15V, unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all three logic input leads: HIN, LIN and SD. The V O and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO. Tj = -55 to 125°C Tj = 25°C Symbol Parameter VIH VIL Logic “1” Input Voltage Logic “0” Input Voltage Min Typ. Max. Min. Max Units 3.1 6.4 9.5 12.6 — — — — — — — — — — — — — — — — 1.8 3.8 6 8.3 3.3 6.8 10 13.3 — — — — — — — — 1.7 3.6 5.7 7.9 V V W V Test Conditions VDD = 5V VDD = 10V VDD = 15V VDD = 20V VDD = 5V VDD = 10V VDD = 15V VDD = 20 VOH High Level Output Voltage, VBIAS - VO — 0.7 1.2 — 1.5 VOL Low Level Output Voltage, VO — — 0.1 — 0.1 I LK Offset Supply Leakage Current — — 50 — 250 VB = VS = 600V I QBS Quiescent VBS Supply Current — 125 230 — 500 VIN = 0V or VDD I QCC Quiescent V CC Supply Current — 180 340 — 600 I QDD Quiescent V DD Supply Current — 5 30 — 60 I IN+ Logic “1” Input Bias Current — 15 40 — 70 VIN = VDD I IN- Logic “0” Input Bias Current — — 1 — 10 VIN = 0V VBSUV+ VBS Supply Undervoltage Positive Going Threshold VBSUV- VBS Supply Undervoltage Negative Going Threshold VCCUV+ VCC Supply Undervoltage Positive Going Threshold VCCUV- VCC Supply Undervoltage Negative Going Threshold 7.5 8.6 9.7 — — 7.0 8.2 9.4 — — 7.4 8.5 9.6 — — 7.0 8.2 9.4 — — 2 — — — — 2 — — — — I O+ I O- Output High Short Circuit Pulsed Current Output Low Short Circuit Pulsed Current V µA VIN = VIL, IO = 0A VIN = 0V or VDD VIN = 0V or VDD V A To Order VIN = VIH, IO = 0A VOUT = 0V, VIN = VDD PW < = 10µs VOUT = 15V, VIN = 0V PW < = 10 µs Previous Datasheet Index Next Data Sheet IR2110E6 10 to 600V Figure 1. Input/Output Timing Diagram Figure 2. Floating Supply Voltage Transient Test Circuit (0 to 600V) 50% 50% HIN LIN ton t off tr 90% HO LO Figure 3. Switching Time Test Circuit tf 90% 10% 10% Figure 4. Switching Time Waveform Definition HIN LIN 50% SD 50% LO 50% HO 10% t sd HO LO MT 90% MT 90% LO Figure 5. Shutdown Waveform Definitions HO Figure 6. Delay Matching Waveform Definitions To Order Previous Datasheet Index Next Data Sheet 250 250 200 200 Turn-On Delay Time ( Turn-On Delay Time ( IR2110E6 150 Max. 100 Typ. 50 Max. 150 Typ. 100 50 0 0 -50 -25 0 25 50 75 100 10 125 12 Temperature (°C) 250 250 200 200 150 Max. Typ. 0 20 Max. 150 Typ. 100 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 14 16 18 20 VBIAS Supply Voltage (V) Figure 8A. Turn-Off Time vs. Temperature Figure 8B. Turn-Off Time vs. Voltage 250 250 200 200 Shutdown Delay time Shutdown Delay Time 18 50 50 150 Max. 100 16 Figure 7B. Turn-On Time vs. Voltage Turn-Off Delay Time ( Turn-Off Delay Time ( Figure 7A. Turn-On Time vs. Temperature 100 14 VBIAS Supply Voltage (V) Typ. 50 Max. 150 Typ. 100 50 0 0 -50 -25 0 25 50 75 100 125 Temperature (°C) 10 12 14 16 18 VBIAS Supply Voltage (V) Figure 9A. Shutdown Time vs. Temperature Figure 9B. Shutdown Time vs. Voltage To Order 20 Previous Datasheet Index Next Data Sheet 100 100 80 80 Turn-On Rise Time (n Turn-On Rise Time (n IR2110E6 60 40 Max. 60 Max. 40 Typ. Typ. 20 20 0 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 16 18 20 Figure 10B. Turn-On Rise Time vs. Voltage 50 50 40 40 Turn-Off Fall Time (n Turn-Off Fall Time (n Figure 10A. Turn-On Rise Time vs. Temperature 30 Max. 20 Typ. 10 30 20 Max. Typ. 10 0 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 14 16 18 20 VBIAS Supply Voltage (V) Figure 11A. Turn-Off Fall Time vs. Temperature Figure 11B. Turn-Off Fall Time vs. Voltage 15.0 15.0 12.0 12.0 Logic "1" Input Threshold Logic "1" Input Threshold 14 VBIAS Supply Voltage (V) Min . 9.0 6.0 3.0 9.0 6.0 Min . 3.0 0.0 0.0 -50 -25 0 25 50 75 100 125 Temperature (°C) 5 7.5 10 12.5 15 17.5 20 V DD Logic Supply Voltage (V) Figure 12A. Logic “1” Input Threshold vs. Temperature To Order Figure 12B. Logic “1” Input Threshold vs. Voltage Previous Datasheet Index Next Data Sheet 15.0 15.0 12.0 12.0 Logic "0" Input Threshold Logic "0" Input Threshold IR2110E6 9.0 Max. 6.0 3.0 9.0 6.0 3.0 Max. 0.0 0.0 -50 -25 0 25 50 75 100 125 5 7.5 Temperature (°C) Figure 13A. Logic “0” Input Threshold vs. Temperature 15 17.5 20 5.00 High Level Output Voltag High Level Output Voltag 12.5 Figure 13B. Logic “0” Input Threshold vs. Voltage 5.00 4.00 3.00 2.00 Max. 1.00 4.00 3.00 2.00 Max. 1.00 0.00 -50 0.00 -25 0 25 50 75 100 10 125 12 Temperature (°C) 14 16 18 20 VBIAS Supply Voltage (V) Figure 14A. High Level Output vs. Temperature Figure 14B. High Level Output vs. Voltage 1.00 15.0 0.80 12.0 Logic "1" Input Threshold Low Level Output Voltag 10 V DD Logic Supply Voltage (V) 0.60 0.40 0.20 9.0 6.0 Min . 3.0 Max. 0.0 0.00 -50 -25 0 25 50 75 100 125 5 7.5 10 12.5 15 17.5 V DD Logic Supply Voltage (V) Temperature (°C) Figure 15A. Low Level Output vs. Temperature To Order Figure 15B. Low Level Output vs. Voltage 20 Previous Datasheet Index Next Data Sheet IR2110E6 500 Offset Supply Leakage Curren Offset Supply Leakage Curren 500 400 300 200 100 400 300 200 100 Max. Max. 0 0 -50 -25 0 25 50 75 100 125 0 100 Temperature (°C) Figure 16A. Offset Supply Current vs. Temperature 300 400 500 Figure 16B. Offset Supply Current vs. Voltage 500 500 400 400 VBS Supply Current (µ VBS Supply Current (µ 200 V B Boost Voltage (V) 300 Max. 200 300 200 Max. Typ. 100 100 0 Typ. 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) Figure 17A. VBS Supply Current vs. Temperature 16 18 20 Figure 17B. VBS Supply Current vs. Voltage 625 625 500 500 VCCSupply Current (µ VCCSupply Current (µ 14 V BS Floating Supply Voltage (V) 375 Max. 250 375 250 Max. Typ. 125 125 0 Typ. 0 -50 -25 0 25 50 75 100 125 Temperature (°C) 10 12 14 16 18 VCC Fixed Supply Voltage (V) Figure 18A. VCC Supply Current vs. Temperature To Order Figure 18B. VCC Supply Current vs. Voltage 20 Previous Datasheet Index Next Data Sheet 100 100 80 80 VDD Supply Current (µ VDD Supply Current (µ IR2110E6 60 40 60 40 Max. Max. 20 20 Typ. Typ. 0 0 -50 -25 0 25 50 75 100 125 5 7.5 Temperature (°C) Figure 19A. VDD Supply Current vs. Temperature 12.5 15 17.5 20 Figure 19B. VDD Supply Current vs. Voltage 100 100 80 80 Logic "1" Input Bias Current Logic "1" Input Bias Current 10 V DD Logic Supply Voltage (V) 60 40 Max. 20 60 40 Max. 20 Typ. T yp. 0 0 -50 -25 0 25 50 75 100 125 5 7.5 Temperature (°C) 12.5 15 17.5 20 Figure 20B. Logic “1” Input Current vs. Voltage 5.00 5.00 4.00 4.00 Logic "0" Input Bias Current Logic "0" Input Bias Current Figure 20A. Logic “1” Input Current vs. Temperature 3.00 2.00 1.00 10 VDD Logic Supply Voltage (V) Max. 0.00 3.00 2.00 1.00 Max. 0.00 -50 -25 0 25 50 75 100 125 Temperature (°C) 5 7.5 10 12.5 15 17.5 V DD Logic Supply Voltage (V) Figure 21A. Logic “0” Input Current vs. Temperature To Order Figure 21B. Logic “0” Input Current vs. Voltage 20 Previous Datasheet Index Next Data Sheet IR2110E6 11.0 10.0 VBS Undervoltage Lockout VBS Undervoltage Lockout 11.0 Max. 9.0 Typ. 8.0 Min . 7.0 10.0 Max. 9.0 Typ. 8.0 7.0 6.0 Min . 6.0 -50 -25 0 25 50 75 100 125 -50 -25 0 Temperature (°C) Figure 22. VBS Undervoltage (+) vs. Temperature 75 100 125 11.0 10.0 VCCUndervoltage Lockout VCCUndervoltage Lockout 50 Figure 23. VBS Undervoltage (-) vs. Temperature 11.0 Max. 9.0 Typ. 8.0 Min . 7.0 10.0 Max. 9.0 Typ. 8.0 7.0 6.0 Min . 6.0 -50 -25 0 25 50 75 100 125 -50 -25 0 Temperature (°C) 25 50 75 100 125 Temperature (°C) Figure 24. VCC Undervoltage (+) vs. Temperature Figure 25. VCC Undervoltage (-) vs. Temperature 5.00 5.00 4.00 4.00 3.00 Output Source Curren Output Source Curren 25 Temperature (°C) Typ. Min . 2.00 1.00 0.00 -50 3.00 2.00 Typ. 1.00 Min . 0.00 -25 0 25 50 75 100 125 Temperature (°C) 10 12 14 16 18 V BIAS Supply Voltage (V) Figure 26A. Output Source Current vs. Temperature To Order Figure 26B. Output Source Current vs. Voltage 20 Previous Datasheet Index Next Data Sheet 5.00 5.00 4.00 4.00 3.00 Output Sink Current Output Sink Current IR2110E6 Typ. Min . 2.00 1.00 0.00 -50 3.00 2.00 Typ. 1.00 Min . 0.00 -25 0 25 50 75 100 125 10 12 Temperature (°C) Figure 27A. Output Sink Current vs. Temperature 100 75 10 V 50 Junction Temperature Junction Temperature 20 32 0V 125 14 0V 25 14 0V 100 75 10 V 50 25 1E+3 1E+4 1E+5 0 1E+2 1E+6 1E+3 Frequency (Hz) 1E+4 1E+5 1E+6 Frequency (Hz) Figure 28. IR2110 TJ vs. Frequency (IRFBC20) Ω , VCC = 15V RGATE = 33Ω 32 0V 150 Figure 29. IR2110 TJ vs. Frequency (IRFBC30) Ω, VCC = 15V RGATE = 22Ω 14 0V 32 0V 150 14 0V 125 100 10 V 75 50 Junction Temperature 125 Junction Temperature 18 150 125 25 0 1E+2 16 Figure 27B. Output Sink Current vs. Voltage 32 0V 150 0 1E+2 14 V BIAS Supply Voltage (V) 10 V 100 75 50 25 1E+3 1E+4 1E+5 1E+6 Frequency (Hz) 0 1E+2 1E+3 1E+4 1E+5 Frequency (Hz) Figure 30. IR2110 TJ vs. Frequency (IRFBC40) Ω , VCC = 15V RGATE = 15Ω To Order Figure 31. IR2110 TJ vs. Frequency (IRFPE50) Ω, VCC = 15V RGATE = 10Ω 1E+6 Previous Datasheet Index Next Data Sheet IR2110E6 32 0V 150 14 0V 100 10 V 75 50 100 10 V 75 50 25 25 0 1E+2 1E+3 1E+4 1E+5 0 1E+2 1E+6 1E+3 Frequency (Hz) 1E+5 1E+6 Figure 33. IR2110S TJ vs. Frequency (IRFBC30) Ω , VCC = 15V RGATE = 22Ω 32 0V 14 0V 150 125 32 0V 14 0V 10 V 150 125 10 V Junction Temperature Junction Temperature 1E+4 Frequency (Hz) Figure 32. IR2110S TJ vs. Frequency (IRFBC20) Ω, VCC = 15V RGATE = 33Ω 100 75 50 100 75 50 25 25 0 1E+2 1E+3 1E+4 1E+5 0 1E+2 1E+6 1E+3 Frequency (Hz) 1E+4 1E+5 1E+6 Frequency (Hz) Figure 34. IR2110S TJ vs. Frequency (IRFBC40) Ω, VCC = 15V RGATE = 15Ω Figure 35. IR2110S TJ vs. Frequency (IRFPE50) Ω , VCC = 15V RGATE = 10Ω 20.0 VSS Logic Supply Offset Voltag 0.0 VS Offset Supply Voltage 14 0V 125 Junction Temperature 125 Junction Temperature 32 0V 150 -2.0 Typ. -4.0 -6.0 -8.0 16.0 12.0 -10.0 8.0 Typ. 4.0 0.0 10 12 14 16 18 20 V BS Floating Supply Voltage (V) 10 12 14 16 18 V CC Fixed Supply Voltage (V) Figure 37. Maximum VSS Positive Offset vs. VCC Supply Voltage Figure 36. Maximum VS Negative Offset vs. VBS Supply Voltage To Order 20 Previous Datasheet Index Next Data Sheet IR2110E6 Functional Block Diagram VB UV DETECT VDD R Q S HIN HV LEVEL SHIFT VDD /VCC LEVEL SHIFT PULSE FILTER PULSE GEN R R Q HO S VS SD VCC LIN S UV DETECT VDD /VCC LEVEL SHIFT LO R Q DELAY VSS COM Lead Definitions Lead Symbol Description VDD Logic supply HIN Logic input for high side gate driver output (HO), in phase SD Logic input for shutdown LIN Logic input for low side gate driver output (LO), in phase VSS Logic ground VB High side floating supply HO High side gate drive output VS High side floating supply return VCC Low side supply LO Low side gate drive output COM Low side return To Order Previous Datasheet Index Next Data Sheet IR2110E6 Case Outline and Dimensions — LCC PAD ASSIGNMENTS 1 — 2 — 4 — 6 — 8 — 9 — 11 — 13 — 14 — 15 — 17 — 3, 5 7, 10 12,16 & 18 Lo COMM VCC VS VB Ho VDD HIN SD LIN VSS } NO CONNECTION WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: (44) 0883 713215 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 3L1, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: 6172 37066 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: (39) 1145 10111 IR FAR EAST: K&H Bldg., 2F, 3-30-4 Nishi-Ikeburo 3-Chome, Toshima-Ki, Tokyo 171 Tel: (03)3983 0641 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371 http://www/irf.com/ Data and specifications subject to change without notice. 9/96 To Order