IRF IR2183

Data Sheet No. PD60173 rev.G
IR2183(4)(S) & (PbF)
HALF-BRIDGE DRIVER
Features
• Floating channel designed for bootstrap operation
•
•
•
•
•
•
•
•
Packages
Fully operational to +600V
Tolerant to negative transient voltage
dV/dt immune
Gate drive supply range from 10 to 20V
Undervoltage lockout for both channels
3.3V and 5V input logic compatible
Matched propagation delay for both channels
Logic and power ground +/- 5V offset.
Lower di/dt gate driver for better noise immunity
Output source/sink current capability 1.4A/1.8A
Also available LEAD-FREE (PbF)
Description
14-Lead PDIP
IR21834
8-Lead PDIP
IR2183
8-Lead SOIC
IR2183S
14-Lead SOIC
IR21834S
IR2181/IR2183/IR2184 Feature Comparison
The IR2183(4)(S) are high voltage,
high speed power MOSFET and IGBT
!
"!$"
%!
&''
"#"
drivers with dependent high and low
side referenced output channels. Pro*797
&
"
79&**
prietary HVIC and latch immune
*797:
&
*79;
"<
CMOS technologies enable rugge
&
="
79&**
*79;:
$>:?<
&
dized monolithic construction. The
*79:
"<
&
="
9&*@
logic input is compatible with standard
*79::
$>:?<
&
CMOS or LSTTL output, down to 3.3V
logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction.
The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration
which operates up to 600 volts.
Typical Connection
IR2183
(Refer to Lead Assignment for correct pin
configuration) This/These diagram(s) show
electrical connections only. Please refer to our
Application Notes and DesignTips for proper circuit
board layout.
www.irf.com
IR21834
1
IR2183(4)(S) & (PbF)
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured
under board mounted and still air conditions.
Symbol
Definition
Min.
Max.
Units
VB
High side floating absolute voltage
-0.3
625
VS
High side floating supply offset voltage
VB - 25
VB + 0.3
VHO
High side floating output voltage
VS - 0.3
VB + 0.3
VCC
Low side and logic fixed supply voltage
-0.3
25
VLO
Low side output voltage
-0.3
VCC + 0.3
VCC + 0.3
DT
Programmable dead-time pin voltage (IR21834 only)
VSS - 0.3
VIN
Logic input voltage (HIN & )
VSS - 0.3
VSS + 10
VSS
Logic ground (IR21834 only)
VCC - 25
VCC + 0.3
dVS/dt
PD
RthJA
Allowable offset supply voltage transient
Package power dissipation @ TA ≤ +25°C
Thermal resistance, junction to ambient
—
50
(8-lead PDIP)
—
1.0
(8-lead SOIC)
—
0.625
(14-lead PDIP)
—
1.6
(14-lead SOIC)
—
1.0
(8-lead PDIP)
—
125
(8-lead SOIC)
—
200
(14-lead PDIP)
—
75
—
120
TJ
Junction temperature
(14-lead SOIC)
—
150
TS
Storage temperature
-50
150
TL
Lead temperature (soldering, 10 seconds)
—
300
V
V/ns
W
°C/W
°C
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the
recommended conditions. The VS and VSS offset rating are tested with all supplies biased at 15V differential.
Symbol
Min.
Max.
VB
High side floating supply absolute voltage
Definition
VS + 10
VS + 20
VS
High side floating supply offset voltage
Note 1
600
VHO
High side floating output voltage
VS
VB
VCC
Low side and logic fixed supply voltage
10
20
VLO
Low side output voltage
0
VCC
VIN
Logic input voltage (HIN & )
VSS
VSS + 5
DT
Programmable dead-time pin voltage (IR21834 only)
VSS
VCC
VSS
Logic ground (IR21834 only)
-5
5
Units
V
TA
Ambient temperature
-40
125
°C
Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip
DT97-3 for more details).
Note 2: HIN and LIN pins are internally clamped with a 5.2V zener diode.
2
www.irf.com
IR2183(4)(S) & (PbF)
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15V, VSS = COM, CL = 1000 pF, TA = 25°C, DT = VSS unless otherwise specified.
Symbol
Definition
Min.
Typ.
Max. Units Test Conditions
ton
toff
Turn-on propagation delay
—
180
270
Turn-off propagation delay
—
220
330
MT
Delay matching | ton - toff
Turn-on rise time
—
0
35
tr
—
40
60
tf
Turn-off fall time
—
20
35
Deadtime: LO turn-off to HO turn-on(DTLO-HO) &
HO turn-off to LO turn-on (DTHO-LO)
280
4
400
5
520
6
Deadtime matching = | DTLO-HO - DTHO-LO |
—
0
50
—
0
600
DT
MDT
|
VS = 0V
VS = 0V or 600V
nsec
VS = 0V
VS = 0V
µsec
nsec
RDT= 0
RDT = 200k (IR21834)
RDT=0
RDT = 200k (IR21834)
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15V, VSS = COM, DT= V SS and TA = 25°C unless otherwise specified. The VIL, VIH and IIN
parameters are referenced to VSS/COM and are applicable to the respective input leads: HIN and LIN. The VO, IO and Ron
parameters are referenced to COM and are applicable to the respective output leads: HO and LO.
Symbol
Definition
Min. Typ. Max. Units Test Conditions
VIH
Logic “1” input voltage for HIN & logic “0” for 2.7
—
—
VIL
Logic “0” input voltage for HIN & logic “1” for —
—
0.8
VOH
High level output voltage, VBIAS - VO
—
—
1.2
VOL
Low level output voltage, VO
—
—
0.1
ILK
Offset supply leakage current
—
—
50
IQBS
Quiescent VBS supply current
20
60
150
IQCC
0.4
1.0
1.6
IIN+
Quiescent VCC supply current
Logic “1” input bias current
—
5
20
IIN-
Logic “0” input bias current
—
1
2
VCCUV+
VCC and VBS supply undervoltage positive going
8.0
8.9
9.8
VBSUV+
threshold
VCCUV-
VCC and VBS supply undervoltage negative going
7.4
8.2
9.0
VBSUV-
threshold
VCCUVH
Hysteresis
0.3
0.7
—
IO+
Output high short circuit pulsed current
1.4
1.9
—
IO-
Output low short circuit pulsed current
1.8
2.3
—
VCC = 10V to 20V
V
VCC = 10V to 20V
IO = 0A
IO = 0A
µA
mA
VB = VS = 600V
VIN = 0V or 5V
VIN = 0V or 5V
HIN = 5V, = 0V
µA
HIN = 0V, = 5V
V
VBSUVH
www.irf.com
A
VO = 0V,
PW ≤ 10 µs
VO = 15V,
PW ≤ 10 µs
3
IR2183(4)(S) & (PbF)
Functional Block Diagrams
VB
2183
UV
DETECT
VSS/COM
LEVEL
SHIFT
HIN
DT
HO
R
HV
LEVEL
SHIFTER
Q
R
PULSE
FILTER
S
VS
PULSE
GENERATOR
DEADTIME &
SHOOT-THROUGH
PREVENTION
VCC
UV
DETECT
+5V
VSS/COM
LEVEL
SHIFT
LIN
LO
DELAY
COM
VSS
VB
21834
UV
DETECT
HO
R
VSS/COM
LEVEL
SHIFT
HIN
HV
LEVEL
SHIFTER
Q
S
VS
PULSE
GENERATOR
DEADTIME &
SHOOT-THROUGH
PREVENTION
DT
VCC
UV
DETECT
+5V
LIN
R
PULSE
FILTER
VSS/COM
LEVEL
SHIFT
DELAY
LO
COM
VSS
4
www.irf.com
IR2183(4)(S) & (PbF)
Lead Definitions
Symbol Description
HIN
Logic input for high side gate driver output (HO), in phase (referenced to COM for IR2183 and
VSS for IR21834)
Logic input for low side gate driver output (LO), out of phase (referenced to COM for IR2183
DT
Programmable dead-time lead, referenced to VSS. (IR21834 only)
VSS
Logic Ground (21834 only)
VB
High side floating supply
and VSS for IR21834)
HO
High side gate driver output
VS
High side floating supply return
VCC
Low side and logic fixed supply
LO
Low side gate driver output
COM
Low side return
Lead Assignments
1
HIN
VB
8
1
HIN
VB
8
2
LIN
HO
7
2
LIN
HO
7
3
COM
VS
6
3
COM
VS
6
VCC
5
LO
4
5
4
LO
8-Lead PDIP
8-Lead SOIC
IR2183
IR2183S
1
HIN
2
LIN
3
VSS
4
www.irf.com
VCC
DT
14
14
1
HIN
VB
13
2
LIN
VB
13
HO
12
3
VSS
HO
12
VS
11
VS
11
4
DT
5
COM
10
5
COM
10
6
LO
9
6
LO
9
7
VCC
8
7
VCC
8
14-Lead PDIP
14-Lead SOIC
IR21834
IR21834S
5
IR2183(4)(S) & (PbF)
<^
<^
''
_^
'
_^
7^
7^
Figure 1. Input/Output Timing Diagram
<^
<^
''
_^
7^
'
_^
7^
Figure 2. Switching Time Waveform Definitions
<^
<^
_^
7^
_^
7^
`
Figure 3. Deadtime Waveform Definitions
6
www.irf.com
500
500
Turn-on Propagation Delay (ns)
Turn-on Propagation Delay (ns)
IR2183(4)(S) & (PbF)
400
300
M ax.
200
Typ.
100
0
-50
-25
0
25
50
75
100
400
M ax.
300
Typ.
200
100
0
10
125
12
16
18
20
Figure 4B. Turn-on Propagation Delay
vs. Supply Voltage
Figure 4A. Turn-on Propagation Delay
vs. Temperature
600
Turn-off Propagation Delay (ns)
600
Turn-off Propagation Delay (ns)
14
Supply Voltage (V)
Temperature (oC)
500
400
300
M ax.
200
Typ.
100
-50
-25
0
25
50
75
100
Temperature (oC)
Figure 5A. Turn-off Propagation Delay
vs. Temperature
www.irf.com
125
500
400
M ax.
300
Typ.
200
100
0
10
12
14
16
18
20
Supply Voltage (V)
Figure 5B. Turn-off Propagation Delay
vs. Supply Voltage
7
120
120
100
100
Turn-on Rise Time (ns)
Turn-on Rise Time (ns)
IR2183(4)(S) & (PbF)
80
60
40
20
M ax.
Typ.
0
-50
80
M ax.
60
Typ.
40
20
0
-25
0
25
50
75
100
125
10
12
Temperature ( C)
o
Turn-off Fall Time (ns)
Turn-off Fall Time (ns)
20
80
60
40
M ax.
Typ
60
M ax.
40
Typ.
20
0
-25
0
25
50
75
100
Temperature (oC)
Figure 7A. Turn-off Fall Time vs. Temperature
8
18
Figure 6B. Turn-on Rise Time vs. Supply Voltage
80
0
-50
16
Supply Voltage (V)
Figure 6A. Turn-on Rise Time vs. Temperature
20
14
125
10
12
14
16
18
20
Supply Voltage (V)
Figure 7B. Turn-off Fall Time vs. Supply Voltage
www.irf.com
1100
1100
900
900
Deaduime (ns)
Deadtime (ns)
IR2183(4)(S) & (PbF)
700
M ax.
500
300
Typ.
M in.
100
-50
700
M ax.
500
Typ.
M in.
300
100
-25
0
25
50
75
100
125
10
12
Temperature (oC)
Figure 8A. Deadtime vs. Temperature
16
18
20
Figure 8B. Deadtime vs. Supply Voltage
6
6
M ax.
5
Typ.
4
M in.
3
2
1
0
0
50
100
150
RDT (K° )
Figure 8C. Deadtime vs. RDT
www.irf.com
200
Logic "1" Input Voltage (V)
7
Deadtime ( ° s)
14
Supply Voltage (v)
5
4
3
M in.
2
1
0
-50
-25
0
25
50
75
100
125
Temperature (oC)
Figure 9A. Logic "1" Input Voltage
vs. Temperature
9
6
6
5
5
Logic "0" Input Voltage (V)
Logic "1" Input Voltage (V)
IR2183(4)(S) & (PbF)
4
3
M in.
2
1
0
10
12
14
16
18
4
3
2
M ax.
1
0
-50
20
-25
0
Supply Voltage (V)
100
125
Figure 10A. Logic "0" Input Voltage
vs. Temperature
5
5
High Level Output (V)
Logic "0" Input Voltage (V)
75
Temperature ( C)
6
4
3
2
M ax.
0
10
12
14
16
18
Supply Voltage (V)
Figure 10B. Logic "0" Input Voltage
vs. Supply Voltage
10
50
o
Figure 9B. Logic "1" Input Voltage
vs. Supply Voltage
1
25
20
4
3
2
M ax.
1
0
-50
-25
0
25
50
75
100
125
Temperature ( C)
o
Figure 11A. High Level Output vs. Temperature
www.irf.com
5
0.5
4
0.4
Low Level Output (V)
High Level Output (V)
IR2183(4)(S) & (PbF)
3
2
M ax.
1
0
10
12
14
16
18
0.3
0.2
0.1
M ax.
0.0
-50
20
-25
0
Supply Voltage (V)
A)
0.4
Offset Supply Leakage Current (
Low Level Output (V)
500
400
0.3
0.2
M ax.
0.0
12
14
16
18
Supply Voltage (V)
Figure 12B. Low Level Output vs. Supply Voltage
www.irf.com
75
100
125
Figure 12A. Low Level Output vs. Temperature
0.5
10
50
Temperature (oC)
Figure 11B. High Level Output vs. Supply Voltage
0.1
25
20
300
200
100
M ax.
0
-50
-25
0
25
50
75
100
125
Temperature (oC)
Figure 13A. Offset Supply Leakage Current
vs. Temperature
11
400
250
V BS Supply Current ( A)
A)
500
Offset Supply Leakage Current (
IR2183(4)(S) & (PbF)
300
200
100
M ax.
0
100
200
300
400
500
200
M ax.
150
100
Typ.
50
M in.
0
-50
600
-25
0
VB Boost Voltage (V)
75
100
125
Figure 14A. VBS Supply Current
vs. Temperature
250
5
V CC Supply Current (mA)
V BS Supply Current ( A)
50
Temperature (oC)
Figure 13B. Offset Supply Leakage Current
vs. VB Boost Voltage
200
150
M ax.
100
Typ.
50
M in.
0
10
12
14
16
18
VBS Floating Supply Voltage (V)
Figure 14B. VBS Supply Current
vs. VBS Floating Supply Voltage
12
25
20
4
3
2
1
M ax.
Typ.
M in.
0
-50
-25
0
25
50
Temperature
75
100
125
( oC)
Figure 15A. V CC Supply Current
vs. Tem perature
www.irf.com
4
3
2
1
0
10
12
14
16
18
20
A)
V CC Supply Current (mA)
5
120
Logic "1" Input Bias Current (
IR2183(4)(S) & (PbF)
100
80
60
40
M ax.
Typ.
20
0
-50
-25
0
V CC Supply Voltage (V)
A)
A)
5
Logic "1" Input Bias Current (
100
Logic "0" Input Bias Current (
4
80
60
M ax.
Typ.
0
10
12
14
16
18
Supply Voltage (V)
Figure 16B. Logic "1" Input Bias Current
vs. Supply Voltage
www.irf.com
75
100
125
Figure 16A. Logic "1" Input Bias Current
vs. Temperature
120
20
50
Temperature (oC)
Figure 15B. V CC Supply Current
vs. V CC Supply Voltage
40
25
20
3
2
M ax.
1
0
-50
-25
0
25
50
75
100
125
Temperature (oC)
Figure 17A. Logic "0" Input Bias Current
vs. Temperature
13
4
3
2
M ax.
1
0
10
12
14
16
18
20
V CC and V BS UV Threshold (+) (V)
A)
5
Logic "0" Input Bias Current (
IR2183(4)(S) & (PbF)
12
11
10
M ax.
9
Typ.
M in.
8
7
6
-50
-25
0
Figure 17B. Logic "0" Input Bias Current
vs. Supply Voltage
100
125
5
11
Output Source Current (A)
V CC and V BS UVThreshold (-) (V)
75
Figure 18. VCC and VBS Undervoltage Threshold (+)
vs. Temperature
12
10
M ax.
9
Typ.
8
M in.
7
-25
0
25
50
75
100
125
Temperature (oC)
Figure 19. VCC and VBS Undervoltage Threshold (-)
vs. Temperature
14
50
Temperature (oC)
Supply Voltage (V)
6
-50
25
4
3
Typ.
2
1
0
-50
M in.
-25
0
25
50
75
100
125
Temperature (oC)
Figure 20A. Output Source Current
vs. Temperature
www.irf.com
IR2183(4)(S) & (PbF)
5.0
Output Sink Current (A)
Output Source Current (A)
5
4
3
2
Typ.
1
3.0
Typ.
2.0
M in.
M in.
1.0
-50
0
10
12
14
16
18
20
-25
0
25
50
75
100
Supply Voltage (V)
Temperature (oC)
Figure 20B. Output Source Current
vs. Supply Voltage
Figure 21A. Output Sink Current
vs. Temperature
125
140
5
120
4
Temprature (oC)
Output Sink Current (A)
4.0
3
2
Typ.
1
100
80
140v
70v
60
0v
40
M in.
20
0
10
12
14
16
18
Supply Voltage (V)
Figure 21B. Output Sink Current
vs. Supply Voltage
www.irf.com
20
1
10
100
1000
Frequency (KHz)
Figure 22. IR2183 vs. Frequency (IRFBC20),
Rgate=33Ω , V CC=15V
15
140
140
120
120
100
140v
80
70v
0v
60
Temperature (oC)
Temperature (oC)
IR2183(4)(S) & (PbF)
40
100
140v
80
70v
60
0v
40
20
20
1
10
100
1
1000
100
1000
Frequency (KHz)
Frequency (KHz)
Figure 23. IR2183 vs. Frequency (IRFBC30),
Rgate=22Ω , V CC=15V
140
10
Figure 24. IR2183 vs. Frequency (IRFBC40),
Rgate=15Ω , V CC=15V
140v
140
70v
0v
100
80
60
40
100
80
60
140v
70v
40
0v
20
20
1
10
100
1000
Frequency (KHz)
Figure 25. IR2183 vs. Frequency (IRFPE50),
Rgate=10Ω , V CC=15V
16
120
Temperature (oC)
Temperature (oC)
120
1
10
100
1000
Frequency (KHz)
Figure 26. IR21834 vs. Frequency (IRFBC20),
Rgate=33Ω , V CC=15V
www.irf.com
140
140
120
120
100
80
60
140v
70v
0v
40
Temperature (oC)
Temperature (oC)
IR2183(4)(S) & (PbF)
140v
80
70v
60
0v
40
20
20
1
10
100
1
1000
10
100
1000
Frequency (KHz)
Frequency (KHz)
Figure 27. IR21834 vs. Frequency (IRFBC30),
Rgate=22Ω , V CC=15V
Figure 28. IR21834 vs. Frequency (IRFBC40),
Rgate=15Ω , V CC=15V
140v
140
120
70v
100
0v
80
60
40
120
Temperature (oC)
140
Temperature o(C)
100
100
80
140v
60
70v
0v
40
20
20
1
10
100
1000
Frequency (KHz)
Figure 29. IR21834 vs. Frequency (IRFPE50),
Rgate=10Ω , V CC=15V
www.irf.com
1
10
100
1000
Frequency (KHz)
Figure 30. IR2183s vs. Frequency (IRFBC20),
Rgate=33Ω , V CC=15V
17
IR2183(4)(S) & (PbF)
120
140v
100
70v
80
0v
60
Temperature (oC)
120
Temperature (oC)
140v 70v
140
140
0v
100
80
60
40
40
20
20
1
10
100
1
1000
140V 70V 0V
140
120
120
Temperature (oC)
Tempreture (oC)
1000
Figure 32. IR2183s vs. Frequency (IRFBC40),
Rgate=15Ω , V CC=15V
Figure 31. IR2183s vs. Frequency (IRFBC30),
Rgate=22Ω , V CC=15V
100
80
60
40
100
80
60
140v
70v
0v
40
20
1
10
100
1000
Frequency (KHz)
Figure 33. IR2183s vs. Frequency (IRFPE50),
Rgate=10Ω , V CC=15V
18
100
Frequency (KHz)
Frequency (KHz)
140
10
20
1
10
100
1000
Frequency (KHz)
Figure 34. IR21834s vs. Frequency (IRFBC20),
Rgate=33Ω , V CC=15V
www.irf.com
140
140
120
120
100
80
140v
60
70v
0v
40
Temperature (oC)
Temperature (oC)
IR2183(4)(S) & (PbF)
100
140v
80
70v
0v
60
40
20
20
1
10
100
1000
Frequency (KHz)
10
100
1000
Frequency (KHz)
Figure 35. IR21834s vs. Frequency (IRFBC30),
Rgate=22Ω , V CC=15V
140
1
Fig u re 36. IR 21834s vs . Fre q u e n cy (IR FB C 40),
R gate =15 Ω , V C C =15V
140v 70v
0v
Temperature (oC)
120
100
80
60
40
20
1
10
100
1000
Frequency (KHz)
Fig u re 37. IR 21834s vs . Fre q u e n cy (IR FP E50),
R gate =10 Ω , V C C =15V
www.irf.com
19
IR2183(4)(S) & (PbF)
Case outlines
01-6014
01-3003 01 (MS-001AB)
8-Lead PDIP
D
DIM
B
5
A
FOOTPRINT
8
6
7
6
5
H
E
1
6X
2
3
0.25 [.010]
4
e
A
6.46 [.255]
3X 1.27 [.050]
e1
0.25 [.010]
A1
.0688
1.35
1.75
A1 .0040
.0098
0.10
0.25
b
.013
.020
0.33
0.51
c
.0075
.0098
0.19
0.25
D
.189
.1968
4.80
5.00
.1574
3.80
4.00
E
.1497
e
.050 BASIC
e1
MAX
1.27 BASIC
.025 BASIC
0.635 BASIC
H
.2284
.2440
5.80
6.20
K
.0099
.0196
0.25
0.50
L
.016
.050
0.40
1.27
y
0°
8°
0°
8°
y
0.10 [.004]
8X L
8X c
7
C A B
NOTES:
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA.
8-Lead SOIC
20
MIN
.0532
K x 45°
A
C
8X b
8X 1.78 [.070]
MILLIMETERS
MAX
A
8X 0.72 [.028]
INCHES
MIN
5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO
A SUBSTRATE.
01-6027
01-0021 11 (MS-012AA)
www.irf.com
IR2183(4)(S) & (PbF)
14-Lead PDIP
14-Lead SOIC (narrow body)
www.irf.com
01-6010
01-3002 03 (MS-001AC)
01-6019
01-3063 00 (MS-012AB)
21
IR2183(4)(S) & (PbF)
LEADFREE PART MARKING INFORMATION
IRxxxxxx
Part number
YWW?
Date code
Pin 1
Identifier
?
P
MARKING CODE
Lead Free Released
Non-Lead Free
Released
IR logo
?XXXX
Lot Code
(Prod mode - 4 digit SPN code)
Assembly site code
Per SCOP 200-002
ORDER INFORMATION
Basic Part (Non-Lead Free)
8-Lead PDIP IR2183 order IR2183
8-Lead SOIC IR2183S order IR2183S
14-Lead PDIP IR21834 order IR21834
14-Lead SOIC IR21834 order IR21834S
Leadfree Part
8-Lead PDIP IR2183 order IR2183PbF
8-Lead SOIC IR2183S order IR2183SPbF
14-Lead PDIP IR21834 order IR21834PbF
14-Lead SOIC IR21834 order IR21834SPbF
Thisproduct has been designed and qualified for the industrial market.
Qualification Standards can be found on IR’s Web Site http://www.irf.com
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
10/15/2004
22
www.irf.com