Data Sheet No. PD60173 rev.G IR2183(4)(S) & (PbF) HALF-BRIDGE DRIVER Features • Floating channel designed for bootstrap operation • • • • • • • • Packages Fully operational to +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 10 to 20V Undervoltage lockout for both channels 3.3V and 5V input logic compatible Matched propagation delay for both channels Logic and power ground +/- 5V offset. Lower di/dt gate driver for better noise immunity Output source/sink current capability 1.4A/1.8A Also available LEAD-FREE (PbF) Description 14-Lead PDIP IR21834 8-Lead PDIP IR2183 8-Lead SOIC IR2183S 14-Lead SOIC IR21834S IR2181/IR2183/IR2184 Feature Comparison The IR2183(4)(S) are high voltage, high speed power MOSFET and IGBT ! "!$" %! &'' "#" drivers with dependent high and low side referenced output channels. Pro*797 & " 79&** prietary HVIC and latch immune *797: & *79; "< CMOS technologies enable rugge & =" 79&** *79;: $>:?< & dized monolithic construction. The *79: "< & =" 9&*@ logic input is compatible with standard *79:: $>:?< & CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts. Typical Connection IR2183 (Refer to Lead Assignment for correct pin configuration) This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com IR21834 1 IR2183(4)(S) & (PbF) Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol Definition Min. Max. Units VB High side floating absolute voltage -0.3 625 VS High side floating supply offset voltage VB - 25 VB + 0.3 VHO High side floating output voltage VS - 0.3 VB + 0.3 VCC Low side and logic fixed supply voltage -0.3 25 VLO Low side output voltage -0.3 VCC + 0.3 VCC + 0.3 DT Programmable dead-time pin voltage (IR21834 only) VSS - 0.3 VIN Logic input voltage (HIN & ) VSS - 0.3 VSS + 10 VSS Logic ground (IR21834 only) VCC - 25 VCC + 0.3 dVS/dt PD RthJA Allowable offset supply voltage transient Package power dissipation @ TA ≤ +25°C Thermal resistance, junction to ambient — 50 (8-lead PDIP) — 1.0 (8-lead SOIC) — 0.625 (14-lead PDIP) — 1.6 (14-lead SOIC) — 1.0 (8-lead PDIP) — 125 (8-lead SOIC) — 200 (14-lead PDIP) — 75 — 120 TJ Junction temperature (14-lead SOIC) — 150 TS Storage temperature -50 150 TL Lead temperature (soldering, 10 seconds) — 300 V V/ns W °C/W °C Recommended Operating Conditions The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset rating are tested with all supplies biased at 15V differential. Symbol Min. Max. VB High side floating supply absolute voltage Definition VS + 10 VS + 20 VS High side floating supply offset voltage Note 1 600 VHO High side floating output voltage VS VB VCC Low side and logic fixed supply voltage 10 20 VLO Low side output voltage 0 VCC VIN Logic input voltage (HIN & ) VSS VSS + 5 DT Programmable dead-time pin voltage (IR21834 only) VSS VCC VSS Logic ground (IR21834 only) -5 5 Units V TA Ambient temperature -40 125 °C Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip DT97-3 for more details). Note 2: HIN and LIN pins are internally clamped with a 5.2V zener diode. 2 www.irf.com IR2183(4)(S) & (PbF) Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15V, VSS = COM, CL = 1000 pF, TA = 25°C, DT = VSS unless otherwise specified. Symbol Definition Min. Typ. Max. Units Test Conditions ton toff Turn-on propagation delay — 180 270 Turn-off propagation delay — 220 330 MT Delay matching | ton - toff Turn-on rise time — 0 35 tr — 40 60 tf Turn-off fall time — 20 35 Deadtime: LO turn-off to HO turn-on(DTLO-HO) & HO turn-off to LO turn-on (DTHO-LO) 280 4 400 5 520 6 Deadtime matching = | DTLO-HO - DTHO-LO | — 0 50 — 0 600 DT MDT | VS = 0V VS = 0V or 600V nsec VS = 0V VS = 0V µsec nsec RDT= 0 RDT = 200k (IR21834) RDT=0 RDT = 200k (IR21834) Static Electrical Characteristics VBIAS (VCC, VBS) = 15V, VSS = COM, DT= V SS and TA = 25°C unless otherwise specified. The VIL, VIH and IIN parameters are referenced to VSS/COM and are applicable to the respective input leads: HIN and LIN. The VO, IO and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO. Symbol Definition Min. Typ. Max. Units Test Conditions VIH Logic “1” input voltage for HIN & logic “0” for 2.7 — — VIL Logic “0” input voltage for HIN & logic “1” for — — 0.8 VOH High level output voltage, VBIAS - VO — — 1.2 VOL Low level output voltage, VO — — 0.1 ILK Offset supply leakage current — — 50 IQBS Quiescent VBS supply current 20 60 150 IQCC 0.4 1.0 1.6 IIN+ Quiescent VCC supply current Logic “1” input bias current — 5 20 IIN- Logic “0” input bias current — 1 2 VCCUV+ VCC and VBS supply undervoltage positive going 8.0 8.9 9.8 VBSUV+ threshold VCCUV- VCC and VBS supply undervoltage negative going 7.4 8.2 9.0 VBSUV- threshold VCCUVH Hysteresis 0.3 0.7 — IO+ Output high short circuit pulsed current 1.4 1.9 — IO- Output low short circuit pulsed current 1.8 2.3 — VCC = 10V to 20V V VCC = 10V to 20V IO = 0A IO = 0A µA mA VB = VS = 600V VIN = 0V or 5V VIN = 0V or 5V HIN = 5V, = 0V µA HIN = 0V, = 5V V VBSUVH www.irf.com A VO = 0V, PW ≤ 10 µs VO = 15V, PW ≤ 10 µs 3 IR2183(4)(S) & (PbF) Functional Block Diagrams VB 2183 UV DETECT VSS/COM LEVEL SHIFT HIN DT HO R HV LEVEL SHIFTER Q R PULSE FILTER S VS PULSE GENERATOR DEADTIME & SHOOT-THROUGH PREVENTION VCC UV DETECT +5V VSS/COM LEVEL SHIFT LIN LO DELAY COM VSS VB 21834 UV DETECT HO R VSS/COM LEVEL SHIFT HIN HV LEVEL SHIFTER Q S VS PULSE GENERATOR DEADTIME & SHOOT-THROUGH PREVENTION DT VCC UV DETECT +5V LIN R PULSE FILTER VSS/COM LEVEL SHIFT DELAY LO COM VSS 4 www.irf.com IR2183(4)(S) & (PbF) Lead Definitions Symbol Description HIN Logic input for high side gate driver output (HO), in phase (referenced to COM for IR2183 and VSS for IR21834) Logic input for low side gate driver output (LO), out of phase (referenced to COM for IR2183 DT Programmable dead-time lead, referenced to VSS. (IR21834 only) VSS Logic Ground (21834 only) VB High side floating supply and VSS for IR21834) HO High side gate driver output VS High side floating supply return VCC Low side and logic fixed supply LO Low side gate driver output COM Low side return Lead Assignments 1 HIN VB 8 1 HIN VB 8 2 LIN HO 7 2 LIN HO 7 3 COM VS 6 3 COM VS 6 VCC 5 LO 4 5 4 LO 8-Lead PDIP 8-Lead SOIC IR2183 IR2183S 1 HIN 2 LIN 3 VSS 4 www.irf.com VCC DT 14 14 1 HIN VB 13 2 LIN VB 13 HO 12 3 VSS HO 12 VS 11 VS 11 4 DT 5 COM 10 5 COM 10 6 LO 9 6 LO 9 7 VCC 8 7 VCC 8 14-Lead PDIP 14-Lead SOIC IR21834 IR21834S 5 IR2183(4)(S) & (PbF) <^ <^ '' _^ ' _^ 7^ 7^ Figure 1. Input/Output Timing Diagram <^ <^ '' _^ 7^ ' _^ 7^ Figure 2. Switching Time Waveform Definitions <^ <^ _^ 7^ _^ 7^ ` Figure 3. Deadtime Waveform Definitions 6 www.irf.com 500 500 Turn-on Propagation Delay (ns) Turn-on Propagation Delay (ns) IR2183(4)(S) & (PbF) 400 300 M ax. 200 Typ. 100 0 -50 -25 0 25 50 75 100 400 M ax. 300 Typ. 200 100 0 10 125 12 16 18 20 Figure 4B. Turn-on Propagation Delay vs. Supply Voltage Figure 4A. Turn-on Propagation Delay vs. Temperature 600 Turn-off Propagation Delay (ns) 600 Turn-off Propagation Delay (ns) 14 Supply Voltage (V) Temperature (oC) 500 400 300 M ax. 200 Typ. 100 -50 -25 0 25 50 75 100 Temperature (oC) Figure 5A. Turn-off Propagation Delay vs. Temperature www.irf.com 125 500 400 M ax. 300 Typ. 200 100 0 10 12 14 16 18 20 Supply Voltage (V) Figure 5B. Turn-off Propagation Delay vs. Supply Voltage 7 120 120 100 100 Turn-on Rise Time (ns) Turn-on Rise Time (ns) IR2183(4)(S) & (PbF) 80 60 40 20 M ax. Typ. 0 -50 80 M ax. 60 Typ. 40 20 0 -25 0 25 50 75 100 125 10 12 Temperature ( C) o Turn-off Fall Time (ns) Turn-off Fall Time (ns) 20 80 60 40 M ax. Typ 60 M ax. 40 Typ. 20 0 -25 0 25 50 75 100 Temperature (oC) Figure 7A. Turn-off Fall Time vs. Temperature 8 18 Figure 6B. Turn-on Rise Time vs. Supply Voltage 80 0 -50 16 Supply Voltage (V) Figure 6A. Turn-on Rise Time vs. Temperature 20 14 125 10 12 14 16 18 20 Supply Voltage (V) Figure 7B. Turn-off Fall Time vs. Supply Voltage www.irf.com 1100 1100 900 900 Deaduime (ns) Deadtime (ns) IR2183(4)(S) & (PbF) 700 M ax. 500 300 Typ. M in. 100 -50 700 M ax. 500 Typ. M in. 300 100 -25 0 25 50 75 100 125 10 12 Temperature (oC) Figure 8A. Deadtime vs. Temperature 16 18 20 Figure 8B. Deadtime vs. Supply Voltage 6 6 M ax. 5 Typ. 4 M in. 3 2 1 0 0 50 100 150 RDT (K° ) Figure 8C. Deadtime vs. RDT www.irf.com 200 Logic "1" Input Voltage (V) 7 Deadtime ( ° s) 14 Supply Voltage (v) 5 4 3 M in. 2 1 0 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 9A. Logic "1" Input Voltage vs. Temperature 9 6 6 5 5 Logic "0" Input Voltage (V) Logic "1" Input Voltage (V) IR2183(4)(S) & (PbF) 4 3 M in. 2 1 0 10 12 14 16 18 4 3 2 M ax. 1 0 -50 20 -25 0 Supply Voltage (V) 100 125 Figure 10A. Logic "0" Input Voltage vs. Temperature 5 5 High Level Output (V) Logic "0" Input Voltage (V) 75 Temperature ( C) 6 4 3 2 M ax. 0 10 12 14 16 18 Supply Voltage (V) Figure 10B. Logic "0" Input Voltage vs. Supply Voltage 10 50 o Figure 9B. Logic "1" Input Voltage vs. Supply Voltage 1 25 20 4 3 2 M ax. 1 0 -50 -25 0 25 50 75 100 125 Temperature ( C) o Figure 11A. High Level Output vs. Temperature www.irf.com 5 0.5 4 0.4 Low Level Output (V) High Level Output (V) IR2183(4)(S) & (PbF) 3 2 M ax. 1 0 10 12 14 16 18 0.3 0.2 0.1 M ax. 0.0 -50 20 -25 0 Supply Voltage (V) A) 0.4 Offset Supply Leakage Current ( Low Level Output (V) 500 400 0.3 0.2 M ax. 0.0 12 14 16 18 Supply Voltage (V) Figure 12B. Low Level Output vs. Supply Voltage www.irf.com 75 100 125 Figure 12A. Low Level Output vs. Temperature 0.5 10 50 Temperature (oC) Figure 11B. High Level Output vs. Supply Voltage 0.1 25 20 300 200 100 M ax. 0 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 13A. Offset Supply Leakage Current vs. Temperature 11 400 250 V BS Supply Current ( A) A) 500 Offset Supply Leakage Current ( IR2183(4)(S) & (PbF) 300 200 100 M ax. 0 100 200 300 400 500 200 M ax. 150 100 Typ. 50 M in. 0 -50 600 -25 0 VB Boost Voltage (V) 75 100 125 Figure 14A. VBS Supply Current vs. Temperature 250 5 V CC Supply Current (mA) V BS Supply Current ( A) 50 Temperature (oC) Figure 13B. Offset Supply Leakage Current vs. VB Boost Voltage 200 150 M ax. 100 Typ. 50 M in. 0 10 12 14 16 18 VBS Floating Supply Voltage (V) Figure 14B. VBS Supply Current vs. VBS Floating Supply Voltage 12 25 20 4 3 2 1 M ax. Typ. M in. 0 -50 -25 0 25 50 Temperature 75 100 125 ( oC) Figure 15A. V CC Supply Current vs. Tem perature www.irf.com 4 3 2 1 0 10 12 14 16 18 20 A) V CC Supply Current (mA) 5 120 Logic "1" Input Bias Current ( IR2183(4)(S) & (PbF) 100 80 60 40 M ax. Typ. 20 0 -50 -25 0 V CC Supply Voltage (V) A) A) 5 Logic "1" Input Bias Current ( 100 Logic "0" Input Bias Current ( 4 80 60 M ax. Typ. 0 10 12 14 16 18 Supply Voltage (V) Figure 16B. Logic "1" Input Bias Current vs. Supply Voltage www.irf.com 75 100 125 Figure 16A. Logic "1" Input Bias Current vs. Temperature 120 20 50 Temperature (oC) Figure 15B. V CC Supply Current vs. V CC Supply Voltage 40 25 20 3 2 M ax. 1 0 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 17A. Logic "0" Input Bias Current vs. Temperature 13 4 3 2 M ax. 1 0 10 12 14 16 18 20 V CC and V BS UV Threshold (+) (V) A) 5 Logic "0" Input Bias Current ( IR2183(4)(S) & (PbF) 12 11 10 M ax. 9 Typ. M in. 8 7 6 -50 -25 0 Figure 17B. Logic "0" Input Bias Current vs. Supply Voltage 100 125 5 11 Output Source Current (A) V CC and V BS UVThreshold (-) (V) 75 Figure 18. VCC and VBS Undervoltage Threshold (+) vs. Temperature 12 10 M ax. 9 Typ. 8 M in. 7 -25 0 25 50 75 100 125 Temperature (oC) Figure 19. VCC and VBS Undervoltage Threshold (-) vs. Temperature 14 50 Temperature (oC) Supply Voltage (V) 6 -50 25 4 3 Typ. 2 1 0 -50 M in. -25 0 25 50 75 100 125 Temperature (oC) Figure 20A. Output Source Current vs. Temperature www.irf.com IR2183(4)(S) & (PbF) 5.0 Output Sink Current (A) Output Source Current (A) 5 4 3 2 Typ. 1 3.0 Typ. 2.0 M in. M in. 1.0 -50 0 10 12 14 16 18 20 -25 0 25 50 75 100 Supply Voltage (V) Temperature (oC) Figure 20B. Output Source Current vs. Supply Voltage Figure 21A. Output Sink Current vs. Temperature 125 140 5 120 4 Temprature (oC) Output Sink Current (A) 4.0 3 2 Typ. 1 100 80 140v 70v 60 0v 40 M in. 20 0 10 12 14 16 18 Supply Voltage (V) Figure 21B. Output Sink Current vs. Supply Voltage www.irf.com 20 1 10 100 1000 Frequency (KHz) Figure 22. IR2183 vs. Frequency (IRFBC20), Rgate=33Ω , V CC=15V 15 140 140 120 120 100 140v 80 70v 0v 60 Temperature (oC) Temperature (oC) IR2183(4)(S) & (PbF) 40 100 140v 80 70v 60 0v 40 20 20 1 10 100 1 1000 100 1000 Frequency (KHz) Frequency (KHz) Figure 23. IR2183 vs. Frequency (IRFBC30), Rgate=22Ω , V CC=15V 140 10 Figure 24. IR2183 vs. Frequency (IRFBC40), Rgate=15Ω , V CC=15V 140v 140 70v 0v 100 80 60 40 100 80 60 140v 70v 40 0v 20 20 1 10 100 1000 Frequency (KHz) Figure 25. IR2183 vs. Frequency (IRFPE50), Rgate=10Ω , V CC=15V 16 120 Temperature (oC) Temperature (oC) 120 1 10 100 1000 Frequency (KHz) Figure 26. IR21834 vs. Frequency (IRFBC20), Rgate=33Ω , V CC=15V www.irf.com 140 140 120 120 100 80 60 140v 70v 0v 40 Temperature (oC) Temperature (oC) IR2183(4)(S) & (PbF) 140v 80 70v 60 0v 40 20 20 1 10 100 1 1000 10 100 1000 Frequency (KHz) Frequency (KHz) Figure 27. IR21834 vs. Frequency (IRFBC30), Rgate=22Ω , V CC=15V Figure 28. IR21834 vs. Frequency (IRFBC40), Rgate=15Ω , V CC=15V 140v 140 120 70v 100 0v 80 60 40 120 Temperature (oC) 140 Temperature o(C) 100 100 80 140v 60 70v 0v 40 20 20 1 10 100 1000 Frequency (KHz) Figure 29. IR21834 vs. Frequency (IRFPE50), Rgate=10Ω , V CC=15V www.irf.com 1 10 100 1000 Frequency (KHz) Figure 30. IR2183s vs. Frequency (IRFBC20), Rgate=33Ω , V CC=15V 17 IR2183(4)(S) & (PbF) 120 140v 100 70v 80 0v 60 Temperature (oC) 120 Temperature (oC) 140v 70v 140 140 0v 100 80 60 40 40 20 20 1 10 100 1 1000 140V 70V 0V 140 120 120 Temperature (oC) Tempreture (oC) 1000 Figure 32. IR2183s vs. Frequency (IRFBC40), Rgate=15Ω , V CC=15V Figure 31. IR2183s vs. Frequency (IRFBC30), Rgate=22Ω , V CC=15V 100 80 60 40 100 80 60 140v 70v 0v 40 20 1 10 100 1000 Frequency (KHz) Figure 33. IR2183s vs. Frequency (IRFPE50), Rgate=10Ω , V CC=15V 18 100 Frequency (KHz) Frequency (KHz) 140 10 20 1 10 100 1000 Frequency (KHz) Figure 34. IR21834s vs. Frequency (IRFBC20), Rgate=33Ω , V CC=15V www.irf.com 140 140 120 120 100 80 140v 60 70v 0v 40 Temperature (oC) Temperature (oC) IR2183(4)(S) & (PbF) 100 140v 80 70v 0v 60 40 20 20 1 10 100 1000 Frequency (KHz) 10 100 1000 Frequency (KHz) Figure 35. IR21834s vs. Frequency (IRFBC30), Rgate=22Ω , V CC=15V 140 1 Fig u re 36. IR 21834s vs . Fre q u e n cy (IR FB C 40), R gate =15 Ω , V C C =15V 140v 70v 0v Temperature (oC) 120 100 80 60 40 20 1 10 100 1000 Frequency (KHz) Fig u re 37. IR 21834s vs . Fre q u e n cy (IR FP E50), R gate =10 Ω , V C C =15V www.irf.com 19 IR2183(4)(S) & (PbF) Case outlines 01-6014 01-3003 01 (MS-001AB) 8-Lead PDIP D DIM B 5 A FOOTPRINT 8 6 7 6 5 H E 1 6X 2 3 0.25 [.010] 4 e A 6.46 [.255] 3X 1.27 [.050] e1 0.25 [.010] A1 .0688 1.35 1.75 A1 .0040 .0098 0.10 0.25 b .013 .020 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 .1574 3.80 4.00 E .1497 e .050 BASIC e1 MAX 1.27 BASIC .025 BASIC 0.635 BASIC H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0° 8° 0° 8° y 0.10 [.004] 8X L 8X c 7 C A B NOTES: 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA. 8-Lead SOIC 20 MIN .0532 K x 45° A C 8X b 8X 1.78 [.070] MILLIMETERS MAX A 8X 0.72 [.028] INCHES MIN 5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE. 01-6027 01-0021 11 (MS-012AA) www.irf.com IR2183(4)(S) & (PbF) 14-Lead PDIP 14-Lead SOIC (narrow body) www.irf.com 01-6010 01-3002 03 (MS-001AC) 01-6019 01-3063 00 (MS-012AB) 21 IR2183(4)(S) & (PbF) LEADFREE PART MARKING INFORMATION IRxxxxxx Part number YWW? Date code Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released IR logo ?XXXX Lot Code (Prod mode - 4 digit SPN code) Assembly site code Per SCOP 200-002 ORDER INFORMATION Basic Part (Non-Lead Free) 8-Lead PDIP IR2183 order IR2183 8-Lead SOIC IR2183S order IR2183S 14-Lead PDIP IR21834 order IR21834 14-Lead SOIC IR21834 order IR21834S Leadfree Part 8-Lead PDIP IR2183 order IR2183PbF 8-Lead SOIC IR2183S order IR2183SPbF 14-Lead PDIP IR21834 order IR21834PbF 14-Lead SOIC IR21834 order IR21834SPbF Thisproduct has been designed and qualified for the industrial market. Qualification Standards can be found on IR’s Web Site http://www.irf.com Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 10/15/2004 22 www.irf.com