IRF IRF7663PBF

PD-95634
IRF7663PbF
HEXFET® Power MOSFET
Trench Technology
l Ultra Low On-Resistance
l P-Channel MOSFET
l Very Small SOIC Package
l Low Profile (<1.1mm)
l Available in Tape & Reel
l Lead-Free
l
Description
A
D
S
1
8
S
2
7
D
S
3
6
D
G
4
5
D
VDSS = -20V
RDS(on) = 0.020Ω
Top View
New trench HEXFET® power MOSFETs from International
Rectifier utilize advanced processing techniques to achieve
extremely low on-resistance per silicon area. This benefit,
combined with the ruggedized device design that HEXFET
Power MOSFETs are well known for, provides the designer
with an extremely efficient and reliable device for use in a wide
variety of applications.
The new Micro8™ package has half the footprint area of the
standard SO-8. This makes the Micro8 an ideal package for
applications where printed circuit board space is at a premium.
The low profile (<1.1mm) of the Micro8 will allow it to fit easily
into extremely thin application environments such as portable
electronics and PCMCIA cards.
MICRO8™
Absolute Maximum Ratings
VDS
ID @ TA = 25°C
ID @ TA= 70°C
IDM
PD @TA = 25°C
PD @TA = 70°C
EAS
VGS
TJ, TSTG
Parameter
Max.
Units
Drain- Source Voltage
Continuous Drain Current, VGS @ -4.5V
Continuous Drain Current, VGS @ -4.5V
Pulsed Drain Current 
Power Dissipation
Power Dissipation
Linear Derating Factor
Single Pulse Avalanche Energy„
Gate-to-Source Voltage
Junction and Storage Temperature Range
-20
-8.2
-6.6
-66
1.8
1.15
10
115
± 12
-55 to + 150
V
mW/°C
mJ
V
°C
Max.
Units
70
°C/W
A
W
Thermal Resistance
Parameter
RθJA
www.irf.com
Maximum Junction-to-Ambientƒ
1
8/11/04
IRF7663PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
∆V(BR)DSS/∆TJ
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
gfs
Gate Threshold Voltage
Forward Transconductance
IDSS
Drain-to-Source Leakage Current
V(BR)DSS
IGSS
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min.
-20
–––
–––
–––
-0.60
14.5
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
-0.01
–––
–––
–––
–––
–––
–––
–––
–––
30
5.0
7.0
11
100
125
172
2520
615
375
Max. Units
Conditions
–––
V
VGS = 0V, ID = -250uA
––– V/°C Reference to 25°C, I D = -1mA
0.020
VGS = -4.5V, ID = -7.0A ‚
Ω
0.040
VGS = -2.5V, ID = -5.1A ‚
-1.2
V
VDS = VGS, ID = -250µA
–––
S
VDS = -10V, ID = -7.0A
-1.0
VDS = -16V, VGS = 0V
µA
-25
VDS = -16V, VGS = 0V, TJ = 70°C
-100
VGS = -12V
nA
100
VGS = 12V
45
ID = -6.0A
7.5
nC VDS = -10V
10.5
VGS = -5.0V ‚
–––
VDD = -10V
–––
ID = -6.0A
ns
–––
RG = 6.2Ω
–––
RD = 1.64Ω ‚
–––
VGS = 0V
–––
pF
VDS = -10V
–––
ƒ = 1.0MHz
Source-Drain Ratings and Characteristics
IS
ISM
VSD
trr
Qrr
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Min. Typ. Max. Units
–––
–––
-1.8
–––
–––
-66
–––
–––
–––
–––
70
50
-1.2
105
75
A
V
ns
nC
Conditions
MOSFET symbol
showing the
G
integral reverse
p-n junction diode.
TJ = 25°C, IS = -7.0A, VGS = 0V ‚
TJ = 25°C, IF = -2.5A
di/dt = 100A/µs ‚
D
S
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
‚ Pulse width ≤ 300µs; duty cycle ≤ 2%.
2
ƒ When mounted on 1 inch square copper board, t<10 sec
„ Starting TJ = 25°C, L = 17.8mH
RG = 25Ω, IAS = -3.6A. (See Figure 10)
www.irf.com
IRF7663PbF
100
100
VGS
-7.00V
-5.00V
-4.50V
-3.50V
-3.00V
-2.70V
-2.50V
BOTTOM -2.25V
-2.25V
10
20µs PULSE WIDTH
TJ = 25 °C
1
0.1
VGS
-7.00V
-5.00V
-4.50V
-3.50V
-3.00V
-2.70V
-2.50V
BOTTOM -2.25V
TOP
-I D , Drain-to-Source Current (A)
-I D , Drain-to-Source Current (A)
TOP
1
10
-2.25V
10
20µs PULSE WIDTH
TJ = 150 °C
1
0.1
100
1
10
100
-VDS , Drain-to-Source Voltage (V)
-VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
-I D , Drain-to-Source Current (A)
100
TJ = 25 ° C
TJ = 150 ° C
V DS = -15V
20µs PULSE WIDTH
10
2.0
2.5
3.0
3.5
4.0
-VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
ID = -8.2A
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = -4.5V
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C)
Fig 4. Normalized On-Resistance
Vs. Temperature
3
IRF7663PbF
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
C, Capacitance(pF)
3000
Ciss
2000
1000
Coss
Crss
10
-VGS , Gate-to-Source Voltage (V)
4000
0
VDS =-10V
8
6
4
2
0
1
10
ID = -6.0A
100
FOR TEST CIRCUIT
SEE FIGURE 13
0
10
-V DS, Drain-to-Source Voltage (V)
100
40
50
1000
OPERATION IN THIS AREA LIMITED
BY RDS(on)
TJ = 25 ° C
-II D , Drain Current (A)
-ISD , Reverse Drain Current (A)
30
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
100
TJ = 150 ° C
10
10us
100us
10
1ms
1
0.5
V GS = 0 V
1.0
1.5
2.0
-VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
20
QG , Total Gate Charge (nC)
2.5
TC = 25 ° C
TJ = 150 ° C
Single Pulse
1
0.1
10ms
1
10
100
-VDS , Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF7663PbF
9.0
EAS , Single Pulse Avalanche Energy (mJ)
300
-ID , Drain Current (A)
7.5
6.0
4.5
3.0
1.5
0.0
25
50
75
100
125
ID
-1.6A
-2.9A
BOTTOM -3.6A
TOP
240
180
120
150
TC , Case Temperature ( °C)
Fig 9. Maximum Drain Current Vs.
Case Temperature
60
0
25
50
75
100
125
Starting TJ , Junction Temperature ( °C)
150
Fig 10. Maximum Avalanche Energy
Vs. Drain Current
Thermal Response (Z thJC )
100
D = 0.50
0.20
10
0.10
0.05
0.02
1
PDM
0.01
t1
t2
SINGLE PULSE
(THERMAL RESPONSE)
0.1
0.00001
0.0001
0.001
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5
IRF7663PbF
Micro8 Package Outline
Dimensions are shown in milimeters (inches)
LEAD ASSIGNMENTS
DIM
D
MILLIMETERS
MAX
.036
.044
0.91
1.11
A1
.004
.008
0.10
0.20
B
.010
.014
0.25
0.36
C
.005
.007
0.13
0.18
D
.116
.120
2.95
3.05
e
.0256 BASIC
0.65 BASIC
e1
.0128 BASIC
0.33 BASIC
E
.116
.120
2.95
3.05
H
.188
.198
4.78
5.03
e
L
.016
.026
0.41
0.66
6X
θ
0°
6°
0°
6°
- B-
D D D D
8 7 6 5
3
INCHES
MIN
A
3
H
E
0.25 (.010)
- A-
M
A
M
D1 D1 D2 D2
8 7 6 5
8 7 6 5
SINGLE
DUAL
1 2 3 4
1 2 3 4
1 2 3 4
S S S G
S1 G1 S2 G2
MIN
MAX
e1
RECOMMENDED FOOTPRINT
θ
1.04
( .041 )
8X
A
-CB
0.10 (.004)
A1
8X
0.08 (.003)
M
C A S
L
8X
B S
C
0.38
8X
( .015 )
8X
3.20
( .126 )
4.24
5.28
( .167 ) ( .208 )
NOTES:
1 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1982.
0.65 6X
( .0256 )
2 CONTROLLING DIMENSION : INCH.
3 DIMENSIONS DO NOT INCLUDE MOLD FLASH.
Micro8 Part Marking Information
EXAMPLE: THIS IS AN IRF 7501
LOT CODE (XX)
DATE CODE (YW) - S ee table below
Y = YEAR
W = WEEK
P = DES IGNATES LEAD - FREE
PRODUCT (OPTIONAL)
PART NUMBER
WW = (1-26) IF PRECEDED BY LAS T DIGIT OF CALENDAR YEAR
6
YEAR
Y
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
1
2
3
4
5
6
7
8
9
0
WORK
WEEK
WW = (27-52) IF PRECEDED BY A LETT ER
W
YEAR
Y
01
02
03
04
A
B
C
D
24
25
26
X
Y
Z
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
A
B
C
D
E
F
G
H
J
K
WORK
WEEK
W
27
28
29
30
A
B
C
D
50
51
52
X
Y
Z
www.irf.com
IRF7663PbF
Micro8 Tape & Reel Information
Dimensions are shown in millimeters (inches)
TERMINAL NUMBER 1
12.3 ( .484 )
11.7 ( .461 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES:
1. OUTLINE CONFORMS TO EIA-481 & EIA-541.
2. CONTROLLING DIMENSION : MILLIMETER.
330.00
(12.992)
MAX.
14.40 ( .566 )
12.40 ( .488 )
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.08/04
www.irf.com
7