Data Sheet No. PD60260 IRS2108/IRS21084(S)PbF HALF-BRIDGE DRIVER Features • Floating channel designed for bootstrap operation • Fully operational to +600 V • Tolerant to negative transient voltage, dV/dt • • • • • • • • • • • Packages 8-Lead PDIP immune Gate drive supply range from 10 V to 20 V Undervoltage lockout for both channels 3.3 V, 5 V, and 15 V input logic compatible Cross-conduction prevention logic Matched propagation delay for both channels High-side output in phase with HIN input Low-side output out of phase with input Logic and power ground +/- 5 V offset Internal 540 ns deadtime, and programmable up to 5 µs with one external RDT resistor (IRS21084) Lower di/dt gate driver for better noise immunity RoHS compliant 14-Lead PDIP 8-Lead SOIC 14-Lead SOIC Description Feature Comparison The IRS2108/IRS21084 are high volt age, high speed power MOSFET and "!$" ton/toff ! '! IGBT drivers with dependent high- and "#" %& %& low-side referenced output channels. 9:*9;: * " 99*9 Proprietary HVIC and latch immune 9:< * 9:= ">< CMOS technologies enable ruggedized * ?" 99*9 $$@"><> 9:=< * monolithic construction. The logic input 9:A*9;9 ">< * ?" J>*9 is compatible with standard CMOS or $$@"><> 9:A< * LSTTL output, down to 3.3 V logic. The ?" :*:< * ": 9;< output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 600 V. Typical Connection IRS21084 IRS2108 (Refer to Lead Assignments for correct pin configuration). These diagrams show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com 1 IRS2108/IRS21084(S)PbF Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol Definition VB High-side floating absolute voltage VS Min. Max. -0.3 625 High-side floating supply offset voltage VB - 25 VB + 0.3 VHO High-side floating output voltage VS - 0.3 VB + 0.3 VCC Low-side and logic fixed supply voltage -0.3 25 VLO Low-side output voltage -0.3 VCC + 0.3 DT Programmable deadtime pin voltage (IRS21084 only) Logic input voltage (HIN & ) V SS - 0.3 VSS - 0.3 VCC + 0.3 VIN Logic ground (IRS21084 only ) VCC - 25 VCC + 0.3 VSS dVS/dt PD RthJA Allowable offset supply voltage transient 50 (8 lead PDIP) — 1.0 (8 lead SOIC) — 0.625 (14 lead PDIP) — 1.6 (14 lead SOIC) — 1.0 (8 lead PDIP) — 125 (8 lead SOIC) — 200 (14 lead PDIP) — 75 (14 lead SOIC) — 120 Thermal resistance, junction to ambient V VCC + 0.3 — Package power dissipation @ TA ≤ +25 oC Units TJ Junction temperature — 150 TS Storage temperature -50 150 TL Lead temperature (soldering, 10 seconds) — 300 V/ns W °C/W °C Recommended Operating Conditions The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset rating are tested with all supplies biased at a 15 V differential. Symbol VB VS VHO VCC VLO Definition High-side floating supply absolute voltage High-side floating supply offset voltage High-side floating output voltage Low-side and logic fixed supply voltage Low-side output voltage Min. Max. VS + 10 Note 1 VS 10 0 COM VSS VS + 20 600 VB 20 VCC VCC VCC Units V IRS2108 VIN Logic input voltage IRS21084 DT Programmable deadtime pin voltage (IRS21084 only) VS VCC VSS Logic ground (IRS21084 only ) -5 5 TA Ambient temperature -40 125 °C Note 1: Logic operational for VS of -5 V to +600 V. Logic state held for VS of -5 V to -VBS. (Please refer to the Design Tip DT97-3 for more details). www.irf.com 2 IRS2108/IRS21084(S)PbF Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15 V, VSS = COM, CL = 1000 pF, TA = 25 °C, DT = VSS unless otherwise specified. Symbol Definition Min. Typ. Max. Units Test Conditions ton Turn-on propagation delay — 220 300 toff Turn-off propagation delay — 200 280 VS = 0 V VS = 0 V or 600 V Delay matching | ton - toff | — 0 30 tr Turn-on rise time — 100 220 tf Turn-off fall time — 35 80 400 540 680 4 5 6 µs RDT = 200 kΩ (IR21084) — 0 60 ns RDT=0 Ω — 0 600 MT DT MDT Deadtime: LO turn-off to HO turn-on(DTLO-HO) & HO turn-off to LO turn-on (DTHO-LO) Deadtime matching = | DTLO-HO - DTHO-LO | ns VS = 0 V RDT= 0 Ω RDT= 200 kΩ (IR21084) Static Electrical Characteristics VBIAS (VCC, VBS) = 15 V, V SS = COM, DT= V SS and TA = 25 °C unless otherwise specified. The VIL, VIH, and IIN parameters are referenced to VSS/COM and are applicable to the respective input leads: HIN and LIN. The VO, IO, and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO. Symbol Definition Min. Typ. Max. Units Test Conditions VIH Logic “1” input voltage for HIN & logic “0” for 2.5 — — VIL Logic “0” input voltage for HIN & logic “1” for — — 0.8 VOH High level output voltage, VBIAS - VO — 0.05 0.2 VOL Low level output voltage, VO — 0.02 0.1 ILK Offset supply leakage current — — 50 IQBS Quiescent VBS supply current 20 75 130 IQCC Quiescent VCC supply current 0.4 1.0 1.6 IIN+ Logic “1” input bias current — 5 20 IIN- Logic “0” input bias current — — 5 8.0 8.9 9.8 7.4 8.2 9.0 Hysteresis 0.3 0.7 — IO+ Output high short circuit pulsed current 120 290 — IO- Output low short circuit pulsed current 250 600 — VCCUV+ VCC and VBS supply undervoltage positive going VBSUV+ threshold VCCUV- VCC and VBS supply undervoltage negative going VBSUV- threshold VCCUVH VBSUVH VCC = 10 V to 20 V V IO = 2 mA VB = VS = 600 V µA mA RDT=0 Ω HIN = 5 V, = 0 V µA HIN = 0 V, = 5 V V mA www.irf.com VIN = 0 V or 5 V VIN = 0 V or 5 V VO = 0 V, PW ≤ 10 µs VO = 15 V, PW ≤ 10 µs 3 IRS2108/IRS21084(S)PbF Functional Block Diagram VB UV DETECT 2108 HO R HV LEVEL SHIFTER VSS/COM LEVEL SHIFT HIN DT R PULSE FILTER Q S VS PULSE GENERATOR VCC DEADTIME & SHOOT-THROUGH PREVENTION UV DETECT +5V VSS/COM LEVEL SHIFT LIN LO DELAY COM VSS VB 21084 UV DETECT HO R VSS/COM LEVEL SHIFT HIN HV LEVEL SHIFTER R PULSE FILTER S VS PULSE GENERATOR VCC DEADTIME & SHOOT-THROUGH PREVENTION DT UV DETECT +5V LIN Q VSS/COM LEVEL SHIFT DELAY LO COM VSS www.irf.com 4 IRS2108/IRS21084(S)PbF Lead Definitions Symbol Description HIN Logic input for high-side gate driver output (HO), in phase (referenced to COM for IRS2108 and VSS for IRS21084) Logic input for low-side gate driver output (LO), out of phase (referenced to COM for IRS2108 and VSS for IRS21084) DT Programmable deadtime lead, referenced to VSS (IR21084 only) VSS Logic ground (IRS21084 only) VB High-side floating supply HO High-side gate driver output VS High-side floating supply return VCC Low-side and logic fixed supply LO Low-side gate driver output COM Low-side return Lead Assignments VCC VB 8 1 VCC VB 8 HIN HO 7 2 HIN HO 7 3 LIN VS 6 LIN VS 6 4 COM LO 5 COM LO 5 1 2 www.irf.com 3 4 8 Lead PDIP 8 Lead SOIC IRS2108PbF IRS2108SPbF 1 VCC 2 HIN VB 14 14 1 VCC 13 2 HIN VB 13 12 11 3 LIN HO 12 3 LIN HO 4 DT VS 11 4 DT VS 5 VSS 10 5 VSS 10 6 COM 9 6 COM 9 7 LO 8 7 LO 8 14 Lead PDIP 14 Lead SOIC IRS21084PbF IRS21084SPbF 5 IRS2108/IRS21084(S)PbF 5^ 5^ `` Figure 1. Input/Output Timing Diagram <^ ` <^ '^ '^ 5^ 5^ `` <^ 5^ <^ 5^ '^ '^ Figure 2. Switching Time Waveform Definitions <^ ` '^ <^ '^ _ Figure 3. Deadtime Waveform Definitions www.irf.com 6 500 400 300 M ax. 200 Typ. 100 0 -50 -25 0 25 50 75 100 125 Turn-On Propagation Delay (ns) Turn-On Propagation Delay (ns) IRS2108/IRS21084(S)PbF 500 400 M ax. 300 Typ. 200 100 0 10 12 Turn-Off Propagation Delay (ns) Turn-Off Propagation Delay (ns) 500 400 300 M ax. 200 Typ. 100 -25 0 25 50 75 100 125 Temperature ( oC) Figure 5A. Turn-Off Propagation Delay vs.Tem perature www.irf.com 16 18 20 Figure 4B. Turn-On Propagation Delay vs. Supply Voltage Figure 4A. Turn-On Propagation Delay vs. Tem perature 0 -50 14 V BIAS Supply Voltage (V) Temperature ( oC) 500 400 M ax. 300 Typ. 200 100 0 10 12 14 16 18 20 V BIAS Supply Voltage (V) Figure 5B. Turn-Off Propagation Delay vs. Supply Voltage 7 IRS2108/IRS21084(S)PbF 500 Turn-On Rise Time (ns) Turn-On Rise Time (ns ) 500 400 300 200 Max. 100 400 300 Max. 200 100 Typ. Typ. 0 0 -50 -25 0 25 50 75 100 10 125 12 o Temperature ( C) 20 200 Turn-Off Fall Time (ns)e ) Turn-Off Fall Tim Turn-Off Fall Time (ns) 18 Figure 6B. Turn-On Rise Time vs. Supply Voltage 200 150 100 50 150 100 50 0 -25 0 25 50 75 100 o Temperature ( C) Figure 7A. Turn-Off Fall Tim e vs. Temperature www.irf.com 16 V BIAS Supply Voltage (V) Figure 6A. Turn-On Rise Time vs.Temperature 0 -50 14 125 10 12 14 16 18 20 Input Voltage (V) Figure 7B. Turn-Off Fall Time vs. Input voltage 8 1000 1000 800 800 Deadtime (ns) Deadtime (ns) IRS2108/IRS21084(S)PbF Max. 600 Typ. 400 Typ. 600 Min. 400 Min. 200 -50 Max. 200 -25 0 25 50 75 10 100 125 14 16 18 20 V BIAS Supply Voltage (V) Temperature (oC) Figure 8B. Deadtim e vs. Supply Voltage Figure 8A. Deadtim e vs. Tem perature 7 8 7 Input Voltage (V) 6 Max. Deadtime (µs) ( s) 12 5 Typ. 4 Min. 3 2 1 6 5 4 3 Min. 2 1 0 0 www.irf.com 50 100 150 200 0 -50 -25 0 25 50 75 100 RDT (kΩ) Temperature ( C) Figure 8C. Deadtim e vs. RDT (IR21084 Only) Figure 9A. Logic "1" Input Voltage vs. Tem perature 125 o 9 IRS2108/IRS21084(S)PbF 4.0 8 6 5 4 3 Min. 2 3.2 Input Voltage (V) Input Voltage (V) 7 2.4 1.6 Min. 0.8 1 0 10 12 14 16 18 0.0 -50 20 -25 0 Figure 9B. Logic "1" Input Voltage vs. Supply Voltage High Level Output Voltage (V ) Input Voltage (V) 3.2 2.4 1.6 Min. 0.0 12 14 16 18 V CC Supply Voltage (V) Figure 10B. Logic "0" Input Voltage vs. Supply Voltage www.irf.com 75 100 125 Figure 10A. Logic "0" Input Voltage vs. Tem perature 4.0 10 50 Temperature ( oC) V BAIS Supply Voltage (V) 0.8 25 20 0.5 0.4 0.3 0.2 Max. 0.1 Typ. 0.0 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 11A. High Level Output Voltage vs. Temperature 10 0.5 Low Level Output Voltage (V) High Level Output Voltage (V) IRS2108/IRS21084(S)PbF 0.4 0.3 0.2 Max. 0.1 Typ. 0.0 10 12 14 16 18 20 0.5 0.4 0.3 0.2 0.1 Max. Typ. 0.0 -50 -25 0 0.3 0.2 Max. 0.1 Typ. 0 18 V BIAS Supply Voltage (V) Figure 12B. Low Level Output Voltage vs. Supply Voltage www.irf.com 20 Offset Supply Leakage Current ((µA) A) Low Level Output Voltage (V) 0.4 16 100 125 Figure 12A. Low Level Output Voltage vs.Temperature 0.5 14 75 Temperature ( C) Figure 11B. High Lovel Output Voltage vs. Supply Voltage 12 50 o VBAIS Supply Voltage (V) 10 25 500 400 300 200 100 M ax. 0 -50 -25 0 25 50 75 100 125 Temperature ( oC) Figure 13A. Offset Supply Leakage Current vs. Tem perature 11 400 500 V BS Supply Current (µA) ( A) Offset Supply Leakage Current (µA) ( A) IRS2108/IRS21084(S)PbF 400 300 200 100 M ax. 300 200 M ax. 100 Typ. M in. 0 0 100 200 300 400 500 0 -50 600 -25 V B Boost Voltage (V) Figure 13B. Offset Supply Leakage Current vs. Tem perature 100 125 Figure 14A. V BS Supply Current vs. Tem perature 3.0 VCC Supply Current (mA) 400 V BS Supply Current (µA) ( A) 0 25 50 75 Temperature ( oC) 300 200 M ax. 100 Typ. 2.5 2.0 M ax. 1.5 Typ. 1.0 0.5 M in. M in. 0 10 12 14 16 18 V BS Supply Voltage (V) Figure 14B. V BS Supply Current vs. Supply Voltage www.irf.com 20 0.0 -50 -25 0 25 50 75 100 125 Temperature ( oC) Figure 15A. V CC Supply Current vs. Tem perature 12 IRS2108/IRS21084(S)PbF 60 Logic "1" Input Current ((µA) A) V CC Supply Current (mA) 3.0 2.5 2.0 1.5 Max. 1.0 Typ. 0.5 Min. 0.0 10 12 14 16 18 V CC Supply Voltage (V) 50 40 30 20 Max. 10 Typ. 0 20 -50 30 Max. 20 Typ. 0 16 18 V CC Supply Voltage (V) Figure 16B. Logic "1" Input Current vs. Supply Voltage www.irf.com 20 Logic "0" Input Bias Current (µA) Logic "1" Input Current(µA) µ(A) 40 14 50 75 100 125 Figure 16A. Logic "1" Input Current vs. Tem perature 50 12 25 Temperature ( C) 60 10 0 o Figure 15B. V CC Supply Current vs. Supply Voltage 10 -25 6 5 Max 4 3 2 1 0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 17A. Logic "0" Input Bias Current vs. Temperature 13 12 6 5 V CC UVLO Threshold (+) (V) Logic "0" Input Bias Current (µA) IRS2108/IRS21084(S)PbF Max 4 3 2 1 11 10 Max. Typ. 9 Min. 8 7 0 10 12 14 16 18 -50 20 -25 0 50 75 100 125 o Temperature ( C) Supply Voltage (V) F i gure 17B. Lo gic "0" Input Bias Cur rent Figure 17B. Logic "0" Input Bias Current Figure 18. V CC Undervoltage Threshold (+) vs. Tem perature vs. Voltage 12 V BS UVLO Threshold (+) (V) 11 VCC UVLO Threshold (-) (V) 25 10 Max. 9 Typ. 8 Min. 7 6 -50 -25 0 25 50 75 100 125 Temperature ( oC) Figure 19. V CC Undervoltage Threshold (-) vs. Tem perature www.irf.com 11 10 Max. 9 Typ. 8 Min. 7 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 20. V BS Undervoltage Threshold (+) vs. Tem perature 14 IRS2108/IRS21084(S)PbF Output Source Current (m (mA) Α) V BS UVLO Threshold (-) (V) 11 10 9 M ax. Typ. 8 M in. 7 6 -50 -25 0 25 50 75 500 400 Typ. 300 200 100 Min. 0 -50 100 125 -25 0 50 75 100 125 Temperature (oC) Temperature ( oC) Figure 21. V BS Undervoltage Threshold (-) vs. Tem perature Figure 22A. Output Source Current vs. Tem perature 500 1000 Output Sink Current (m (mA) Α) Output Source Current (mA) (m Α) 25 400 300 200 Typ. 100 Min. 0 10 www.irf.com 12 14 16 18 20 800 600 Typ. 400 Min. 200 0 -50 -25 0 25 50 75 100 VBIAS Supply Voltage (V) Temperature (oC) Figure 22B. Output Source Current vs. Supply Voltage Figure 23A. Output Sink Curre nt vs .Te m pe rature 125 15 IRS2108/IRS21084(S)PbF 0 V S Offset Supply Voltage (V) Output Sink Current (mA) 1000 800 600 400 Typ. 200 Min. 0 -2 Typ. -4 -6 -8 -10 10 12 14 16 18 20 10 VBIAS Supply Voltage (V) 14 16 18 20 V BS Floating Supply Voltage (V) Figure 23B. Output Sink Current vs. Supply Voltage Figure 24. Maxim um V s Negative Offset vs. Supply Voltage 140 140 120 120 100 100 140 V 80 70 V 60 0V 40 20 1 10 100 1000 Frequency (kHz) Figure 25. IRS2108 vs. Frequency (IRFBC20), Rgate=33 Ω , V CC=15 V www.irf.com Temperature (o C) Temperature (ooC) Temperature ( C) 12 140 V 80 70 V 60 0V 40 20 1 10 100 1000 Frequency (kHz) Figure 26. IRS2108 vs. Frequency (IRFBC30), Rgate=22 Ω , V CC=15 V 16 140 140 120 120 100 140 V 70 V 80 0V 60 Temperature (o C) Temperature (o C) IRS2108/IRS21084(S)PbF 140 V 70 V 0V 100 80 60 40 40 20 1 20 1 10 100 1000 140 120 120 100 80 140 V p ( ()o C) Temperature 140 100 80 140 V 60 70 V 40 1000 Figure 28. IRS2108 vs. Frequency (IRFPE50), Rgate=10 Ω , V CC=15 V Figure 27. IRS2108 vs. Frequency (IRFBC40), Rgate=15 Ω , V CC=15 V Temperature (o C) 100 Frequency (kHz) Frequency (kHz) 60 10 0V 70 V 40 0V 20 1 10 100 1000 Frequency (kHz) Figure 29. IRS21084 vs. Frequency (IRFBC20), Rgate=33 Ω , V CC=15 V www.irf.com 20 1 10 100 1000 Frequency (kHz) Figure 30. IRS21084 vs. Frequency (IRFBC30), Rgate=22 Ω , V CC=15 V 17 140 140 120 120 100 140 V 80 70 V 60 0V 40 Temperature (o C) Temperature (o C) IRS2108/IRS21084(S)PbF 140 V 70 V 100 0V 80 60 40 20 1 10 100 20 1000 1 10 Frequency (kHz) 140 120 120 100 140 V 70 V 0V 40 Temperature (o C) Temperature (o C) 140 60 1000 Figure 32. IRS21084 vs. Frequency (IRFPE50), Rgate=10 Ω , V CC=15 V Figure 31. IRS21084 vs. Frequency (IRFBC40), Rgate=15 Ω , V CC=15 V 80 100 Frequency (kHz) 140 V 100 70 V 80 0V 60 40 20 1 10 100 1000 Frequency (kHz) 20 1 10 100 1000 Frequency (kHz) Figure 33. IRS2108S vs. Frequency (IRFBC20), Rgate=33 Ω , V CC=15 V www.irf.com Figure 34. IRS2108S vs. Frequency (IRFBC30), Rgate=22 Ω , V CC=15 V 18 IRS2108/IRS21084(S)PbF 0V 100 80 60 Temperature (o C) Temperature (o C) 120 140 V 70 V 0 V 140 140 V 70 V 140 120 100 80 60 40 40 20 20 1 1 10 100 1000 10 100 1000 Frequency (kHz) Frequency (kHz) Figure 36. IRS2108S vs. Frequency (IRFPE50), Rgate=10 Ω , V CC=15 V 140 140 120 120 100 80 60 140 V 70 V 0V 40 Temperature (o C) Temperature (o C) Figure 35. IRS2108S vs. Frequency (IRFBC40), Rgate=15 Ω , V CC=15 V 100 140 V 80 70 V 60 0V 40 20 1 10 100 1000 Frequency (kHz) Figure 37. IRS21084S vs. Frequency (IRFBC20), Rgate=33 Ω , V CC=15 V www.irf.com 20 1 10 100 1000 Frequency (kHz) Figure 38. IR21084S vs. Frequency (IRFBC30), Rgate=22 Ω , V CC=15 V 19 140 140 120 120 100 140 V 80 70 V 60 0V 40 Temperature (o C) Temperature (o C) IRS2108/IRS21084(S)PbF 140 V 70 V 0V 100 80 60 40 20 20 1 10 100 1000 Frequency (kHz) Figure 39. IRS21084S vs. Frequency (IRFBC40), Rgate=15 Ω , V CC=15 V www.irf.com 1 10 100 1000 Frequency (kHz) Figure 40. IRS21084S vs. Frequency (IRFPE50), Rgate=10 Ω , V CC=15 V 20 IRS2108/IRS21084(S)PbF Case outlines 01-6014 01-3003 01 (MS-001AB) 8-Lead PDIP D DIM B 5 A FOOTPRINT 8 6 7 6 5 H E 1 6X 2 3 0.25 [.010] 4 e A 6.46 [.255] 3X 1.27 [.050] e1 0.25 [.010] A1 .0688 1.35 1.75 A1 .0040 .0098 0.10 0.25 b .013 .020 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 .1574 3.80 4.00 E .1497 e .050 BASIC e1 MAX 1.27 BASIC .025 BASIC 0.635 BASIC H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0° 8° 0° 8° y 0.10 [.004] 8X L 8X c 7 C A B NOTES: 1. DIMENSIONING & TOLERANC ING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INC HES]. 4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA. 8-Lead SOIC www.irf.com MIN .0532 K x 45° A C 8X b 8X 1.78 [.070] MILLIMETERS MAX A 8X 0.72 [.028] INCHES MIN 5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE. 01-6027 01-0021 11 (MS-012AA) 21 IRS2108/IRS21084(S)PbF 14 Lead PDIP 14-Lead SOIC (narrow body) www.irf.com 01-6010 01-3002 03 (MS-001AC) 01-6019 01-3063 00 (MS-012AB) 22 IRS2108/IRS21084(S)PbF Tape & Reel 8-lead SOIC LOAD ED TA PE FEED DIRECTION A B H D F C N OT E : CO NTROLLING D IM ENSION IN MM E G C A R R I E R T A P E D IM E N S I O N F O R 8 S O I C N M etr ic Im p er i al Co d e M in M ax M in M ax A 7 .9 0 8.1 0 0. 31 1 0 .3 18 B 3 .9 0 4.1 0 0. 15 3 0 .1 61 C 11 .7 0 1 2. 30 0 .4 6 0 .4 84 D 5 .4 5 5.5 5 0. 21 4 0 .2 18 E 6 .3 0 6.5 0 0. 24 8 0 .2 55 F 5 .1 0 5.3 0 0. 20 0 0 .2 08 G 1 .5 0 n/ a 0. 05 9 n/ a H 1 .5 0 1.6 0 0. 05 9 0 .0 62 F D C B A E G H R E E L D IM E N S I O N S F O R 8 S O IC N M etr ic Im p er i al Co d e M in M ax M in M ax A 32 9. 60 3 30 .2 5 1 2 .9 76 13 .0 0 1 B 20 .9 5 2 1. 45 0. 82 4 0 .8 44 C 12 .8 0 1 3. 20 0. 50 3 0 .5 19 D 1 .9 5 2.4 5 0. 76 7 0 .0 96 E 98 .0 0 1 02 .0 0 3. 85 8 4 .0 15 F n /a 1 8. 40 n /a 0 .7 24 G 14 .5 0 1 7. 10 0. 57 0 0 .6 73 H 12 .4 0 1 4. 40 0. 48 8 0 .5 66 www.irf.com 23 IRS2108/IRS21084(S)PbF Tape & Reel 14-lead SOIC LOAD ED TA PE FEED DIRECTION A B H D F C N OT E : CO NTROLLING D IM ENSION IN MM E G C A R R I E R T A P E D IM E N S I O N F O R 1 4 S O IC N M etr ic Im p er i al Co d e M in M ax M in M ax A 7 .9 0 8.1 0 0. 31 1 0 .3 18 B 3 .9 0 4.1 0 0. 15 3 0 .1 61 C 15 .7 0 1 6. 30 0. 61 8 0 .6 41 D 7 .4 0 7.6 0 0. 29 1 0 .2 99 E 6 .4 0 6.6 0 0. 25 2 0 .2 60 F 9 .4 0 9.6 0 0. 37 0 0 .3 78 G 1 .5 0 n/ a 0. 05 9 n/ a H 1 .5 0 1.6 0 0. 05 9 0 .0 62 F D C B A E G H R E E L D IM E N S I O N S F O R 1 4 SO IC N M etr ic Im p er i al Co d e M in M ax M in M ax A 32 9. 60 3 30 .2 5 1 2 .9 76 13 .0 0 1 B 20 .9 5 2 1. 45 0. 82 4 0 .8 44 C 12 .8 0 1 3. 20 0. 50 3 0 .5 19 D 1 .9 5 2.4 5 0. 76 7 0 .0 96 E 98 .0 0 1 02 .0 0 3. 85 8 4 .0 15 F n /a 2 2. 40 n /a 0 .8 81 G 18 .5 0 2 1. 10 0. 72 8 0 .8 30 H 16 .4 0 1 8. 40 0. 64 5 0 .7 24 www.irf.com 24 IRS2108/IRS21084(S)PbF LEADFREE PART MARKING INFORMATION Part number Date code S IRxxxxxx YWW? ?XXXX Pin 1 Identifier ? P IR logo MARKING CODE Lead Free Released Non-Lead Free Released Lot Code (Prod mode - 4 digit SPN code) Assembly site code Per SCOP 200-002 ORDER INFORMATION 8-Lead PDIP IRS2108PbF 8-Lead SOIC IRS2108SPbF 8-Lead SOIC Tape & Reel IRS2108STRPbF 14-Lead PDIP IRS21084PbF 14-Lead SOIC IRS21084SPbF 14-Lead SOIC Tape & Reel IRS21084STRPbF The SOIC-8 is MSL2 qualified. The SOIC-14 is MSL3 qualified. This product has been designed and qualified for the industrial level. Qualification standards can be found at www.irf.com IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 Data and specifications subject to change without notice. 12/4/2006 www.irf.com 25