ispGDX 160V/VA TM In-System Programmable 3.3V Generic Digital Crosspoint TM Features Functional Block Diagram ISP Control I/O Pins A I/O Pins D • HIGH PERFORMANCE E2CMOS® TECHNOLOGY — 3.3V Core Power Supply — 3.5ns Input-to-Output/3.5ns Clock-to-Output Delay* — 250MHz Maximum Clock Frequency* — TTL/3.3V/2.5V Compatible Input Thresholds and Output Levels (Individually Programmable)* — Low-Power: 16.5mA Quiescent Icc* — 24mA IOL Drive with Programmable Slew Rate Control Option — PCI Compatible Drive Capability* — Schmitt Trigger Inputs for Noise Immunity — Electrically Erasable and Reprogrammable — Non-Volatile E2CMOS Technology I/O Cells Boundary Scan Control Global Routing Pool (GRP) I/O Cells I/O Pins C • IN-SYSTEM PROGRAMMABLE GENERIC DIGITAL CROSSPOINT FAMILY — Advanced Architecture Addresses Programmable PCB Interconnect, Bus Interface Integration and Jumper/Switch Replacement — “Any Input to Any Output” Routing — Fixed HIGH or LOW Output Option for Jumper/DIP Switch Emulation — Space-Saving PQFP and BGA Packaging — Dedicated IEEE 1149.1-Compliant Boundary Scan Test I/O Pins B Description • ispGDXV™ OFFERS THE FOLLOWING ADVANTAGES — 3.3V In-System Programmable Using Boundary Scan Test Access Port (TAP) — Change Interconnects in Seconds • FLEXIBLE ARCHITECTURE — Combinatorial/Latched/Registered Inputs or Outputs — Individual I/O Tri-state Control with Polarity Control — Dedicated Clock/Clock Enable Input Pins (four) or Programmable Clocks/Clock Enables from I/O Pins (40) — Single Level 4:1 Dynamic Path Selection (Tpd = 3.5ns) — Programmable Wide-MUX Cascade Feature Supports up to 16:1 MUX — Programmable Pull-ups, Bus Hold Latch and Open Drain on I/O Pins — Outputs Tri-state During Power-up (“Live Insertion” Friendly) The ispGDXV/VA architecture provides a family of fast, flexible programmable devices to address a variety of system-level digital signal routing and interface requirements including: • Multi-Port Multiprocessor Interfaces • Wide Data and Address Bus Multiplexing (e.g. 16:1 High-Speed Bus MUX) • Programmable Control Signal Routing (e.g. Interrupts, DMAREQs, etc.) • Board-Level PCB Signal Routing for Prototyping or Programmable Bus Interfaces The devices feature fast operation, with input-to-output signal delays (Tpd) of 3.5ns and clock-to-output delays of 3.5ns. • DESIGN SUPPORT THROUGH LATTICE’S ispGDX DEVELOPMENT SOFTWARE — MS Windows or NT / PC-Based or Sun O/S — Easy Text-Based Design Entry — Automatic Signal Routing — Program up to 100 ISP Devices Concurrently — Simulator Netlist Generation for Easy Board-Level Simulation The architecture of the devices consists of a series of programmable I/O cells interconnected by a Global Routing Pool (GRP). All I/O pin inputs enter the GRP directly or are registered or latched so they can be routed to the required I/O outputs. I/O pin inputs are defined as four sets (A,B,C,D) which have access to the four MUX inputs * “VA” Version Only Copyright © 2000 Lattice Semiconductor Corporation. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A. Tel. (503) 268-8000; 1-800-LATTICE; FAX (503) 268-8556; http://www.latticesemi.com gdx160va_04 1 July 2000 Specifications ispGDX160V/VA Description (Continued) found in each I/O cell. Each output has individual, programmable I/O tri-state control (OE), output latch clock (CLK), clock enable (CLKEN), and two multiplexer control (MUX0 and MUX1) inputs. Polarity for these signals is programmable for each I/O cell. The MUX0 and MUX1 inputs control a fast 4:1 MUX, allowing dynamic selection of up to four signal sources for a given output. A wider 16:1 MUX can be implemented with the MUX expander feature of each I/O and a propagation delay increase of 2.0ns. OE, CLK, CLKEN, and MUX0 and MUX1 inputs can be driven directly from selected sets of I/O pins. Optional dedicated clock input pins give minimum clockto-output delays. CLK and CLKEN share the same set of I/O pins. CLKEN disables the register clock when CLKEN = 0. In addition, there are no pin-to-pin routing constraints for 1:1 or 1:n signal routing. That is, any I/O pin configured as an input can drive one or more I/O pins configured as outputs. Through in-system programming, connections between I/O pins and architectural features (latched or registered inputs or outputs, output enable control, etc.) can be defined. In keeping with its data path application focus, the ispGDXV devices contain no programmable logic arrays. All input pins include Schmitt trigger buffers for noise immunity. These connections are programmed into the device using non-volatile E2CMOS technology. Non-volatile technology means the device configuration is saved even when the power is removed from the device. All I/O pins are equipped with IEEE1149.1-compliant Boundary Scan Test circuitry for enhanced testability. In addition, in-system programming is supported through the Test Access Port via a special set of private commands. The device pins also have the ability to set outputs to fixed HIGH or LOW logic levels (Jumper or DIP Switch mode). Device outputs are specified for 24mA sink and 12mA source current (at JEDEC LVTTL levels) and can be tied together in parallel for greater drive. On the ispGDXVA, each I/O pin is individually programmable for 3.3V or 2.5V output levels as described later. Programmable output slew rate control can be defined independently for each I/O pin to reduce overall ground bounce and switching noise. The ispGDXV I/Os are designed to withstand “live insertion” system environments. The I/O buffers are disabled during power-up and power-down cycles. When designing for “live insertion,” absolute maximum rating conditions for the Vcc and I/O pins must still be met. Table 1. ispGDXV Family Members ispGDXV/VA Device ispGDX80VA ispGDX160V/VA ispGDX240VA I/O Pins 80 160 240 I/O-OE Inputs* 20 40 60 I/O-CLK / CLKEN Inputs* 20 40 60 I/O-MUXsel1 Inputs* I/O-MUXsel2 Inputs* 20 20 40 40 60 60 Dedicated Clock Pins** 2 4 4 EPEN 1 1 1 TOE 1 4 1 1 4 1 1 4 1 BSCAN Interface RESET Pin Count/Package 100-Pin TQFP 208-Pin PQFP 388-Ball fpBGA 208-Ball fpBGA 272-Ball BGA * The CLK/CLK_EN, OE, MUX0 and MUX1 terminals on each I/O cell can each be assigned to 25% of the I/Os. ** Global clock pins Y0, Y1, Y2 and Y3 are multiplexed with CLKEN0, CLKEN1, CLKEN2 and CLKEN3 respectively in all devices. 2 Specifications ispGDX160V/VA Architecture The various I/O pin sets are also shown in the block diagram below. The A, B, C, and D I/O pins are grouped together with one group per side. The ispGDXV/VA architecture is different from traditional PLD architectures, in keeping with its unique application focus. The block diagram is shown below. The programmable interconnect consists of a single Global Routing Pool (GRP). Unlike ispLSI devices, there are no programmable logic arrays on the device. Control signals for OEs, Clocks/Clock Enables and MUX Controls must come from designated sets of I/O pins. The polarity of these signals can be independently programmed in each I/O cell. I/O Architecture Each I/O cell contains a 4:1 dynamic MUX controlled by two select lines as well as a 4x4 crossbar switch controlled by software for increased routing flexiability (Figure 1). The four data inputs to the MUX (called M0, M1, M2, and M3) come from I/O signals in the GRP and/or adjacent I/O cells. Each MUX data input can access one quarter of the total I/Os. For example, in a 160 I/O ispGDXV, each data input can connect to one of 40 I/O pins. MUX0 and MUX1 can be driven by designated I/O pins called MUXsel1 and MUXsel2. Each MUXsel input covers 25% of the total I/O pins (e.g. 40 out of 160). MUX0 and MUX1 can be driven from either MUXsel1 or MUXsel2. Each I/O cell drives a unique pin. The OE control for each I/O pin is independent and may be driven via the GRP by one of the designated I/O pins (I/O-OE set). The I/O-OE set consists of 25% of the total I/O pins. Boundary Scan test is supported by dedicated registers at each I/O pin. In-system programming is accomplished through the standard Boundary Scan protocol. Figure 1. ispGDXV/VA I/O Cell and GRP Detail (160 I/O Device) Logic “0” Logic “1” 160 I/O Inputs I/OCell 0 I/O Cell 159 I/O Cell 1 I/O Cell 158 •• • E2CMOS Programmable Interconnect To 2 Adjacent I/O Cells above From MUX Outputs of 2 Adjacent I/O Cells 4-to-1 MUX N+2 I/O Group A I/O Group B I/O Group C I/O Group D N+1 N-1 • • • • • • Register or Latch M0 M1 M2 M3 MUX0 MUX1 4x4 Crossbar Switch N-2 From MUX Outputs of 2 Adjacent I/O Cells Prog. Prog. Pull-up Bus Hold Latch (VCCIO) Bypass Option A B D Q CLK To 2 Adjacent I/O Cells below CLK_EN Reset I/O Pin C R Prog. Open Drain 2.5V/3.3V Output Prog. Slew Rate Boundary Scan Cell I/O Cell N •• • I/O Cell 78 I/O Cell 81 •••••• I/O Cell 79 80 I/O Cells I/O Cell 80 80 I/O Cells 160 Input GRP Inputs Vertical Outputs Horizontal Global Y0-Y3 Reset Global Clocks / Clock_Enables ispGDXV/VA architecture enhancements over ispGDX (5V) 3 Specifications ispGDX160V/VA allow adjacent I/O cell outputs to be directly connected without passing through the global routing pool. The relationship between the [N+i] adjacent cells and A, B, C and D inputs will vary depending on where the I/O cell is located on the physical die. The I/O cells can be grouped into “normal” and “reflected” I/O cells or I/O “hemispheres.” These are defined as: I/O MUX Operation MUX0 Data Input Selected 0 0 M0 0 1 M1 1 1 M2 1 0 M3 Device Flexible mapping of MUXselx to MUXx allows the user to change the MUX select assignment after the ispGDXV/ VA device has been soldered to the board. Figure 1 shows that the I/O cell can accept (by programming the appropriate fuses) inputs from the MUX outputs of four adjacent I/O cells, two above and two below. This enables cascading of the MUXes to enable wider (up to 16:1) MUX implementations. Normal I/O Cells Reflected I/O Cells ispGDX80VA B9-B0, A19-A0, D19-D10 B10-B19, C0-C19, D0-D9 ispGDX160V/VA B19-B0, A39-A0, D39-D20 B20-B39, C0-C39, D0-D19 ispGDX240VA B29-B0, A59-A0, D59-D30 B30-B59, C0-C59, D0-D29 Table 2 shows the relationship between adjacent I/O cells as well as their relationship to direct MUX inputs. Note that the MUX expansion is circular and that I/O cell B20, for example, draws on I/Os B19 and B18, as well as B21 and B22, even though they are in different hemispheres of the physical die. Table 2 shows some typical cases and all boundary cases. All other cells can be extrapolated from the pattern shown in the table. The I/O cell also includes a programmable flow-through latch or register that can be placed in the input or output path and bypassed for combinatorial outputs. As shown in Figure 1, when the input control MUX of the register/ latch selects the “A” path, the register/latch gets its inputs from the 4:1 MUX and drives the I/O output. When selecting the “B” path, the register/latch is directly driven by the I/O input while its output feeds the GRP. The programmable polarity Clock to the latch or register can be connected to any I/O in the I/O-CLK/CLKEN set (onequarter of total I/Os) or to one of the dedicated clock input pins (Yx). The programmable polarity Clock Enable input to the register can be programmed to connect to any of the I/O-CLK/CLKEN input pin set or to the global clock enable inputs (CLKENx). Use of the dedicated clock inputs gives minimum clock-to-output delays and minimizes delay variation with fanout. Combinatorial output mode may be implemented by a dedicated architecture bit and bypass MUX. I/O cell output polarity can be programmed as active high or active low. Figure 2. I/O Hemisphere Configuration of ispGDX160V/VA D20 D19 D0 B0 B19 B20 B39 C0 A39 The ispGDXV/VA allows adjacent I/O cell MUXes to be cascaded to form wider input MUXes (up to 16 x 1) without incurring an additional full Tpd penalty. However, there are certain dependencies on the locality of the adjacent MUXes when used along with direct MUX inputs. D39 C39 MUX Expander Using Adjacent I/O Cells I/O cell 159 A0 I/O cell index increases in this direction I/O cell 0 I/O cell 79 I/O cell index increases in this direction MUX1 I/O cell 80 Adjacent I/O Cells Direct and Expander Input Routing Expansion inputs MUXOUT[n-2], MUXOUT[n-1], MUXOUT[n+1], and MUXOUT[n+2] are fuse-selectable for each I/O cell MUX. These expansion inputs share the same path as the standard A, B, C and D MUX inputs, and Table 2 also illustrates the routing of MUX direct inputs that are accessible when using adjacent I/O cells as inputs. Take I/O cell D23 as an example, which is also shown in Figure 3. 4 Specifications ispGDX160V/VA Figure 3. Adjacent I/O Cells vs. Direct Input Path for ispGDX160V/VA, I/O D23 Special Features Slew Rate Control ispGDX160V/VA I/O Cell All output buffers contain a programmable slew rate control that provides software-selectable slew rate options. I/O Group A D21 MUX Out S1 S0 I/O Group B .m0 4x4 Crossbar Switch D22 MUX Out I/O Group C .m1 .m2 Open Drain Control D23 All output buffers provide a programmable Open-Drain option which allows the user to drive system level reset, interrupt and enable/disable lines directly without the need for an off-chip Open-Drain or Open-Collector buffer. Wire-OR logic functions can be performed at the printed circuit board level. .m3 D24 MUX Out I/O Group D D25 MUX Out It can be seen from Figure 3 that if the D21 adjacent I/O cell is used, the I/O group “A” input is no longer available as a direct MUX input. Pull-up Resistor All pins have a programmable active pull-up. A typical resistor value for the pull-up ranges from 50kΩ to 80kΩ. The ispGDXV/VA can implement MUXes up to 16 bits wide in a single level of logic, but care must be taken when combining adjacent I/O cell outputs with direct MUX inputs. Any particular combination of adjacent I/O cells as MUX inputs will dictate what I/O groups (A, B, C or D) can be routed to the remaining inputs. By properly choosing the adjacent I/O cells, all of the MUX inputs can be utilized. Output Latch (Bus Hold) All pins have a programmable circuit that weakly holds the previously driven state when all drivers connected to the pin (including the pin's output driver as well as any other devices connected to the pin by external bus) are tristated. Table 2. Adjacent I/O Cells (Mapping of ispGDX160V/VA) ispGDX160VA New Features Unique to the ispGDX160VA are user-programmable I/Os supporting either 3.3V or 2.5V output voltage level options. The ispGDX160VA uses a VCCIO pin to provide the 2.5V reference voltage when used. The ispGDX160VA VCCIO pin occupies the same location as VCC on the ispGDX160V, allowing drop-in replacement. The ispGDX160VA offers improved performance by reducing fanout delays and has PCI compatible drive capability. Data A/ Data B/ Data C/ Data D/ MUXOUT MUXOUT MUXOUT MUXOUT Reflected I/O Cells Normal I/O Cells B20 B22 B21 B19 B18 B21 B22 B23 B24 B22 B23 B20 B21 B19 B20 B23 B25 B24 B22 B21 D16 D18 D17 D15 D14 D17 D19 D18 D16 D15 D18 D20 D19 D17 D16 D19 D21 D20 D18 D17 D20 D18 D19 D21 D22 D21 D19 D20 D22 D23 D22 D20 D21 D23 D24 D23 D21 D22 D24 D25 B16 B14 B15 B17 B18 B17 B15 B16 B18 B19 B18 B19 B16 B17 B18 B19 B20 B20 B21 B17 Only the ispGDX160VA is available in the fastest (3.5ns) Commercial speed grade and in -5,-7, and -9ns Industrial grades in all packages. The ispGDX160VA has a device ID different from the ispGDX160V requiring that the latest Lattice download software be used for programming and verification. Although the ispGDX160VA and ispGDX160V are functionally equivalent, they are not 100% JEDEC compatible. All design files must be recompiled targeting the ispGDX160VA. 5 Specifications ispGDX160V/VA Applications Programmable Switch Replacement (PSR) The ispGDXV/VA Family architecture has been developed to deliver an in-system programmable signal routing solution with high speed and high flexibility. The devices are targeted for three similar but distinct classes of endsystem applications: Includes solid-state replacement and integration of mechanical DIP Switch and jumper functions. Through in-system programming, pins of the ispGDXV/VA devices can be driven to HIGH or LOW logic levels to emulate the traditional device outputs. PSR functions do not require any input pin connections. Programmable, Random Signal Interconnect (PRSI) These applications actually require somewhat different silicon features. PRSI functions require that the device support arbitrary signal routing on-chip between any two pins with no routing restrictions. The routing connections are static (determined at programming time) and each input-to-output path operates independently. As a result, there is little need for dynamic signal controls (OE, clocks, etc.). Because the ispGDXV/VA device will interface with control logic outputs from other components (such as ispLSI or ispMACH) on the board (which frequently change late in the design process as control logic is finalized), there must be no restrictions on pin-to-pin signal routing for this type of application. This class includes PCB-level programmable signal routing and may be used to provide arbitrary signal swapping between chips. It opens up the possibilities of programmable system hardware. It is characterized by the need to provide a large number of 1:1 pin connections which are statically configured, i.e., the pin-to-pin paths do not need to change dynamically in response to control inputs. Programmable Data Path (PDP) This application area includes system data path transceiver, MUX and latch functions. With today’s 32- and 64-bit microprocessor buses, but standard data path glue components still relegated primarily to eight bits, PCBs are frequently crammed with a dozen or more data path glue chips that use valuable real estate. Many of these applications consist of “on-board” bus and memory interfaces that do not require the very high drive of standard glue functions but can benefit from higher integration. Therefore, there is a need for a flexible means to integrate these on-board data path functions in an analogous way to programmable logic’s solution to control logic integration. Lattice’s CPLDs make an ideal control logic complement to the ispGDXV/VA in-system programmable data path devices as shown below. PDP functions, on the other hand, require the ability to dynamically switch signal routing (MUXing) as well as latch and tri-state output signals. As a result, the programmable interconnect is used to define possible signal routes that are then selected dynamically by control signals from an external MPU or control logic. These functions are usually formulated early in the conceptual design of a product. The data path requirements are driven by the microprocessor, bus and memory architecture defined for the system. This part of the design is the earliest portion of the system design frozen, and will not usually change late in the design because the result would be total system and PCB redesign. As a result, the ability to accommodate arbitrary any pin-to-any pin rerouting is not a strong requirement as long as the designer has the ability to define his functions with a reasonable degree of freedom initially. Figure 4. ispGDXV/VA Complements Lattice CPLDs Address Inputs (from P) Control Inputs (from P) Data Path Bus #1 ispLSI/ ispMACH Device Decoders System Clock(s) As a result, the ispGDXV/VA architecture has been defined to support PSR and PRSI applications (including bidirectional paths) with no restrictions, while PDP applications (using dynamic MUXing) are supported with a minimal number of restrictions as described below. In this way, speed and cost can be optimized and the devices can still support the system designer’s needs. ISP/JTAG Buffers / Registers Interface State Machines Control Outputs ispGDXV/VA Device Buffers / Registers Configuration (Switch) Outputs The following diagrams illustrate several ispGDXV/VA applications. Data Path Bus #2 6 Specifications ispGDX160V/VA Applications (Continued) Figure 5. Address Demultiplex/Data Buffering Designing with the ispGDXV/VA As mentioned earlier, this architecture satisfies the PRSI class of applications without restrictions: any I/O pin as a single input or bidirectional can drive any other I/O pin as output. Control Bus MUXed Address Data Bus XCVR I/OA I/OB OEA OEB Buffered Data For the case of PDP applications, the designer does have to take into consideration the limitations on pins that can be used as control (MUX0, MUX1, OE, CLK) or data (MUXA-D) inputs. The restrictions on control inputs are not likely to cause any major design issues because the input possibilities span 25% of the total pins. To Memory/ Peripherals Address Latch D Address Q The MUXA-D input partitioning requires that designers consciously assign pinouts so that MUX inputs are in the appropriate, disjoint groups. For example, since the MUXA group includes I/O0-39 (160 I/O device), it is not possible to use I/O0 and I/O9 in the same MUX function. As previously discussed, data path functions will be assigned early in the design process and these restrictions are reasonable in order to optimize speed and cost. CLK Figure 6. Data Bus Byte Swapper XCVR I/OA D0-7 I/OB XCVR Data Bus A Control Bus OEA OEB I/OA OEA OEB XCVR D8-15 I/OA User Electronic Signature I/OB Data Bus B D0-7 The ispGDXV/VA Family includes dedicated User Electronic Signature (UES) E2CMOS storage to allow users to code design-specific information into the devices to identify particular manufacturing dates, code revisions, or the like. The UES information is accessible through the boundary scan programming port via a specific command. This information can be read even when the security cell is programmed. D8-15 I/OB XCVR OEA OEB I/OA I/OB OEA OEB Security The ispGDXV/VA Family includes a security feature that prevents reading the device program once set. Even when set, it does not inhibit reading the UES or device ID code. It can be erased only via a device bulk erase. Figure 7. Four-Port Memory Interface Bus 1 Bus 2 Bus 3 Bus 4 4-to-1 16-Bit MUX Bidirectional Port #1 OE1 Memory Port Port #2 OE2 OEM Port #3 OE3 SEL0 Port #4 OE4 SEL1 To Memory Note: All OE and SEL lines driven by external arbiter logic (not shown). 7 Specifications ispGDX160VA Absolute Maximum Ratings 1,2 Supply Voltage Vcc ................................. -0.5 to +5.4V Input Voltage Applied ............................... -0.5 to +5.6V Off-State Output Voltage Applied ............ -0.5 to +5.6V Storage Temperature ................................ -65 to 150°C Case Temp. with Power Applied .............. -55 to 125°C Max. Junction Temp. (TJ) with Power Applied ... 150°C 1. Stresses above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications). 2. Compliance with the Thermal Management section of the Lattice Semiconductor Data Book or CD-ROM is a requirement. DC Recommended Operating Conditions SYMBOL PARAMETER VCC Supply Voltage VCCIO I/O Reference Voltage MIN. MAX. UNITS Commercial TA = 0°C to +70°C 3.00 3.60 V Industrial TA = -40°C to +85°C 3.00 3.60 V 2.3 3.60 V Table 2-0005/gdx160va Capacitance (TA=25oC, f=1.0 MHz) SYMBOL C1 C2 PARAMETER I/O Capacitance Dedicated Clock Capacitance PACKAGE TYPE TYPICAL UNITS PQFP 7 pf BGA, fpBGA 10 pf PQFP 8 pf BGA, fpBGA 10 pf TEST CONDITIONS VCC = 3.3V, VI/O = 2.0V VCC = 3.3V, VY = 2.0V Table 2-0006/gdx160va Erase/Reprogram Specifications PARAMETER Erase/Reprogram Cycles 8 MINIMUM MAXIMUM UNITS 10,000 — Cycles Specifications ispGDX160VA Switching Test Conditions Figure 8. Test Load Input Pulse Levels GND to VCCIO(MIN) < 1.5ns 10% to 90% Input Rise and Fall Time Input Timing Reference Levels VCCIO(MIN)/2 Output Timing Reference Levels VCCIO(MIN)/2 Output Load See Figure 8 VCCIO R1 Device Output 3-state levels are measured 0.5V from steady-state active level. Test Point CL* R2 Output Load Conditions (See Figure 8) 3.3V R1 R2 R1 153Ω 134Ω 156Ω 144Ω 35pF Active High ∞ 134Ω ∞ 144Ω 35pF Active Low 153Ω ∞ 156Ω ∞ 35pF Active High to Z at VOH -0.5V ∞ 134Ω ∞ 144Ω 5pF Active Low to Z at VOL+0.5V 153Ω ∞ 156Ω ∞ 5pF ∞ ∞ ∞ ∞ 35pF TEST CONDITION A B C *CL includes Test Fixture and Probe Capacitance. 2.5V D Slow Slew R2 0213D CL Table 2-0004A/gdx160va DC Electrical Characteristics for 3.3V Range1 Over Recommended Operating Conditions SYMBOL PARAMETER CONDITION MIN. TYP. – 3.0 – VCCIO VIL VIH Input Low Voltage VOH ≤ VOUT or VOUT ≤ VOL (MAX) -0.3 Input High Voltage VOH ≤ VOUT or VOUT ≤ VOL(MAX) 2.0 VOL Output Low Voltage VCC = VCC (MIN) IOL = +100µA VOH I/O Reference Voltage Output High Voltage VCC = VCC (MIN) MAX. UNITS 3.6 V – 0.8 V – 5.25 V – – 0.2 V IOL = +24mA – – 0.55 V IOH = -100µA 2.8 – – V IOH = -12mA 2.4 – – V Table 2-0007/gdx160va 1. I/O voltage configuration must be set to VCC. 9 Specifications ispGDX160VA DC Electrical Characteristics for 2.5V Range1 Over Recommended Operating Conditions SYMBOL VCCIO VIL VIH PARAMETER CONDITION MIN. TYP. – 2.3 – 2.7 V I/O Reference Voltage MAX. UNITS Input Low Voltage VOH(MIN) ≤ VOUT or VOUT ≤ VOL(MAX) -0.3 – 0.7 V Input High Voltage VOH(MIN) ≤ VOUT or VOUT ≤ VOL(MAX) 1.7 – 5.25 V VOL Output Low Voltage VOH Output High Voltage VCCIO=MIN, IOL = 100µA – – 0.2 V VCCIO=MIN, IOL = 8mA – – 0.6 V VCCIO=MIN, IOH = -100µA 2.1 – – V VCCIO=MIN, IOH = -8mA 1.8 – – 1. I/O voltage configuration must be set to VCCIO. V 2.5V/gdx160va DC Electrical Characteristics Over Recommended Operating Conditions SYMBOL IIL IIH IPU IBHLS IBHHS IBHLO IBHHO IBHT IOS1 ICCQ4 MIN. TYP.2 MAX. UNITS 0V ≤ VIN ≤ VIL (MAX) – – -10 µA (VCCIO-0.2) ≤ VIN ≤ VCCIO – – 10 µA VCCIO ≤ VIN ≤ 5.25V – – 50 µA – – -200 µA Bus Hold Low Sustaining Current 0V ≤ VIN ≤ VIL (MAX) VIN = VIL (MAX) 40 – – µA Bus Hold High Sustaining Current VIN = VIH (MIN) -40 – – µA Bus Hold Low Overdrive Current 0V ≤ VIN ≤ VCCIO – – 550 µA 0V ≤ VIN ≤ VCCIO – – -550 µA CONDITION PARAMETER Input or I/O Low Leakage Current Input or I/O High Leakage Current I/O Active Pullup Current Bus Hold High Overdrive Current Bus Hold Trip Points Output Short Circuit Current Quiescent Power Supply Current ICC Dynamic Power Supply Current per Input Switching ICONT 5 Maximum Continuous I/O Pin Sink Current Through Any GND Pin VIL – VIH V VCC = 3.3V, VOUT = 0.5V, TA = 25°C – – -250 mA VIL = 0.5V, VIH = VCC – 16.5 – mA One input toggling at 50% duty cycle, outputs open. – See Note 3 – mA/ MHz – – 160 mA – DC Char_gdx160va 1. One output at a time for a maximum of one second. VOUT = 0.5V was selected to avoid test problems by tester ground degradation. Characterized, but not 100% tested. 2. Typical values are at VCC = 3.3V and TA = 25°C. 3. ICC / MHz = (0.003 x I/O cell fanout) + 0.029. e.g. An input driving four I/O cells at 40MHz results in a dynamic ICC of approximately ((0.003 x 4) + 0.029) x 40 = 1.64mA. 4. For a typical application with 50% of I/O pins used as inputs, 50% used as outputs or bi-directionals. 5. This parameter limits the total current sinking of I/O pins surrounding the nearest GND pin. 10 Specifications ispGDX160VA External Timing Parameters Over Recommended Operating Conditions TEST1 PARAMETER COND. # tpd2 tsel2 fmax (Tog.) fmax (Ext.) tsu1 tsu2 tsu3 tsu4 tsuce1 tsuce2 tsuce3 th1 th2 th3 th4 thce1 thce2 thce3 tgco12 tgco22 tco12 tco22 ten2 tdis2 ttoeen2 ttoedis2 twh twl trst trw tsl tsk -5 -3 DESCRIPTION UNITS MIN. MAX. MIN. MAX. A 1 Data Prop. Delay from Any I/O pin to Any I/O Pin (4:1 MUX) – 3.5 – 5.0 ns A 2 Data Prop. Delay from MUXsel Inputs to Any Output (4:1 MUX) – 3.5 – 5.0 ns – 3 Clock Frequency, Max. Toggle – 4 Clock Frequency with External Feedback ( – 250 – 143 – MHz 166.7 – 111 – MHz 5 Input Latch or Register Setup Time Before Yx 3.0 – 4.0 – ns – 6 Input Latch or Register Setup Time Before I/O Clock 2.5 – 3.0 – ns – 7 Output Latch or Register Setup Time Before Yx 2.5 – 4.0 – ns – 8 Output Latch or Register Setup Time Before I/O Clock 2.0 – 3.0 – ns – 9 Global Clock Enable Setup Time Before Yx 2.5 – 2.5 – ns – 10 Global Clock Enable Setup Time Before I/O Clock 1.5 – 1.5 – ns – 11 I/O Clock Enable Setup Time Before Yx 3.0 – 4.5 – ns – 12 Input Latch or Reg. Hold Time (Yx) 0.0 – 0.0 – ns – 13 Input Latch or Reg. Hold Time (I/O Clock) 0.5 – 1.5 – ns – 14 Output Latch or Reg. Hold Time (Yx) 0.0 – 0.0 – ns – 15 Output Latch or Reg. Hold Time (I/O Clock) 1.0 – 1.5 – ns – 16 Global Clock Enable Hold Time (Yx) 0.0 – 0.0 – ns – 17 Global Clock Enable Hold Time (I/O Clock) 1.0 – 1.5 – ns – 18 I/O Clock Enable Hold Time (Yx) 0.0 – 0.0 – ns A 19 Output Latch or Reg. Clock (from Yx) to Output Delay – 3.5 – 5.0 ns A 20 Input Latch or Register Clock (from Yx) to Output Delay – 6.0 – 8.5 ns A 21 Output Latch or Register Clock (from I/O pin) to Output Delay – 4.0 – 6.0 ns A 22 Input Latch or Register Clock (from I/O pin) to Output Delay – 7.0 – 9.5 ns 1 tsu3+tgco1 ) B 23 Input to Output Enable – 5.0 – 6.0 ns C 24 Input to Output Disable – 5.0 – 6.0 ns B 25 Test OE Output Enable – 6.0 – 6.0 ns C 26 Test OE Output Disable – 6.0 – 6.0 ns – 27 Clock Pulse Duration, High 2.0 – 3.5 – ns – 28 Clock Pulse Duration, Low 2.0 – 3.5 – ns – 29 Register Reset Delay from RESET Low – 8.0 – 14.0 ns – 30 Reset Pulse Width 5.0 – 10.0 – ns D 31 Output Delay Adder for Output Timings Using Slow Slew Rate – 3.5 – 5.0 ns ns 0.5 – 0.5 – A 32 Output Skew (tgco1 Across Chip) 1. All timings measured with one output switching, fast output slew rate setting, except tsl. 2. The delay parameters are measured with Vcc as I/O voltage reference. An additional 0.5ns delay is incurred when Vccio is used as I/O voltage reference. 11 Specifications ispGDX160VA External Timing Parameters Over Recommended Operating Conditions TEST1 PARAMETER COND. # tpd2 tsel2 fmax (Tog.) fmax (Ext.) tsu1 tsu2 tsu3 tsu4 tsuce1 tsuce2 tsuce3 th1 th2 th3 th4 thce1 thce2 thce3 tgco12 tgco22 tco12 tco22 ten2 tdis2 ttoeen2 ttoedis2 twh twl trst trw tsl tsk -9 -7 DESCRIPTION UNITS MIN. MAX. MIN. MAX. A 1 Data Prop. Delay from Any I/O pin to Any I/O Pin (4:1 MUX) – 7.0 – 9.0 ns A 2 Data Prop. Delay from MUXsel Inputs to Any Output (4:1 MUX) – 7.0 – 9.0 ns – 3 Clock Frequency, Max. Toggle 100 – 83 – MHz – 4 Clock Frequency with External Feedback ( 80 – 62.5 – MHz – 5 Input Latch or Register Setup Time Before Yx 5.5 – 7.0 – ns – 6 Input Latch or Register Setup Time Before I/O Clock 4.5 – 6.0 – ns – 7 Output Latch or Register Setup Time Before Yx 5.5 – 7.0 – ns – 8 Output Latch or Register Setup Time Before I/O Clock 4.5 – 6.0 – ns – 9 Global Clock Enable Setup Time Before Yx 3.5 – 4.0 – ns – 10 Global Clock Enable Setup Time Before I/O Clock 2.5 – 3.0 – ns – 11 I/O Clock Enable Setup Time Before Yx 6.5 – 8.5 – ns – 12 Input Latch or Reg. Hold Time (Yx) 0.0 – 0.0 – ns – 13 Input Latch or Reg. Hold Time (I/O Clock) 2.5 – 3.0 – ns – 14 Output Latch or Reg. Hold Time (Yx) 0.0 – 0.0 – ns – 15 Output Latch or Reg. Hold Time (I/O Clock) 2.5 – 3.0 – ns – 16 Global Clock Enable Hold Time (Yx) 0.0 – 0.0 – ns – 17 Global Clock Enable Hold Time (I/O Clock) 2.5 – 3.0 – ns – 18 I/O Clock Enable Hold Time (Yx) 0.0 – 0.0 – ns A 19 Output Latch or Reg. Clock (from Yx) to Output Delay – 7.0 – 9.0 ns A 20 Input Latch or Register Clock (from Yx) to Output Delay – 11.0 – 13.5 ns A 21 Output Latch or Register Clock (from I/O pin) to Output Delay – 9.0 – 11.5 ns A 22 Input Latch or Register Clock (from I/O pin) to Output Delay – 13.0 – 15.7 ns 1 tsu3+tgco1 ) B 23 Input to Output Enable – 8.5 – 10.5 ns C 24 Input to Output Disable – 8.5 – 10.5 ns B 25 Test OE Output Enable – 8.5 – 10.5 ns C 26 Test OE Output Disable – 8.5 – 10.5 ns – 27 Clock Pulse Duration, High 5.0 – 6.0 – ns – 28 Clock Pulse Duration, Low 5.0 – 6.0 – ns – 29 Register Reset Delay from RESET Low – 18.0 – 22.0 ns – 30 Reset Pulse Width 14.0 – 18.0 – ns D 31 Output Delay Adder for Output Timings Using Slow Slew Rate – 7.0 – 9.0 ns ns 1.0 – A 32 Output Skew (tgco1 Across Chip) – 0.5 1. All timings measured with one output switching, fast output slew rate setting, except tsl. 2. The delay parameters are measured with Vcc as I/O voltage reference. An additional 0.5ns delay is incurred when Vccio is used as I/O voltage reference. 12 Specifications ispGDX160VA External Timing Parameters (Continued) ispGDX160VA timings are specified with a GRP load (fanout) of four I/O cells. The figure below shows the ∆ GRP Delay with increased GRP loads. These deltas apply to any signal path traversing the GRP (MUXA-D, OE, CLK/CLKEN, MUXsel0-1). Global Clock signals which do not use the GRP have no fanout delay adder. ispGDX160VA Maximum ∆ GRP Delay vs. I/O Cell Fanout ∆ GRP Delay (ns) 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 4 10 20 30 40 50 I/O Cell Fanout 13 60 70 Specifications ispGDX160VA Internal Timing Parameters1 Over Recommended Operating Conditions -3 PARAMETER DESCRIPTION1 # -5 MIN. MAX. MIN. MAX. UNITS Inputs tio 32 Input Buffer Delay — 0.4 — 0.9 ns GRP tgrp 33 GRP Delay — 1.1 — 1.1 ns MUX tmuxd 34 I/O Cell MUX A/B/C/D Data Delay — 1.0 — 1.5 ns tmuxexp tmuxs 35 36 I/O Cell MUX A/B/C/D Expander Delay I/O Cell Data Select — — 1.5 1.0 — — 2.0 1.5 ns ns tmuxsio tmuxsg 37 38 I/O Cell Data Select (I/O Clock) I/O Cell Data Select (Yx Clock) — — 1.5 1.5 — — 3.0 2.0 ns ns tmuxselexp Register 39 I/O Cell MUX Data Select Expander Delay — 1.5 — 2.0 ns tiolat tiosu 40 41 I/O Latch Delay I/O Register Setup Time Before Clock — — 1.0 0.8 — — 1.0 2.0 ns ns tioh tioco 42 43 I/O Register Hold Time After Clock I/O Register Clock to Output Delay — — 1.7 1.2 — — 1.5 0.5 ns ns tior tcesu 44 45 I/O Reset to Output Delay I/O Clock Enable Setup Time Before Clock — — 1.0 2.3 — — 1.5 2.0 ns ns tceh Data Path 46 I/O Clock Enable Hold Time After Clock — 0.2 — 0.5 ns tfdbk tiobp 47 48 I/O Register Feedback Delay I/O Register Bypass Delay — — 0.6 0.0 — — 0.9 0.0 ns ns tioob tmuxcg 49 50 I/O Register Output Buffer Delay I/O Register A/B/C/D Data Input MUX Delay (Yx Clock) — — 0.0 1.5 — — 0.0 2.0 ns ns tmuxcio tiodg 51 52 I/O Register A/B/C/D Data Input MUX Delay (I/O Clock) I/O Register I/O MUX Delay (Yx Clock) — — 1.5 3.5 — — 3.0 4.0 ns ns tiodio Outputs 53 I/O Register I/O MUX Delay (I/O Clock) — 3.5 — 5.0 ns tob tobs 54 55 Output Buffer Delay Output Buffer Delay (Slow Slew Option) — — 1.0 4.5 — — 1.5 6.5 ns ns toeen toedis 56 57 I/O Cell OE to Output Enable I/O Cell OE to Output Disable — — 3.5 3.5 — — 4.0 4.0 ns ns tgoe ttoe 58 59 GRP Output Enable and Disable Delay Test OE Enable and Disable Delay — — 0.0 2.5 — — 0.0 2.0 ns ns Clocks tioclk 60 I/O Clock Delay — 0.3 — 2.0 ns tgclk tgclkeng 61 62 Global Clock Delay Global Clock Enable (Yx Clock) — — 1.3 1.5 — — 2.0 2.5 ns ns tgclkenio tioclkeng 63 64 Global Clock Enable (I/O Clock) I/O Clock Enable (Yx Clock) — — 1.0 0.5 — — 3.5 2.5 ns ns 65 Global Reset to I/O Register Latch — 6.0 — 11.0 ns Global Reset tgr 1. Internal Timing Parameters are not tested and are for reference only. 2. Refer to the Timing Model in this data sheet for further details. 14 Specifications ispGDX160VA Internal Timing Parameters1 Over Recommended Operating Conditions -7 PARAMETER DESCRIPTION1 # -9 MIN. MAX. MIN. MAX. UNITS Inputs tio 32 Input Buffer Delay — 1.4 — 1.9 ns GRP tgrp 33 GRP Delay — 1.1 — 1.1 ns MUX tmuxd 34 I/O Cell MUX A/B/C/D Data Delay — 2.0 — 2.5 ns tmuxexp tmuxs 35 36 I/O Cell MUX A/B/C/D Expander Delay I/O Cell Data Select — — 2.5 2.0 — — 3.0 2.5 ns ns tmuxsio tmuxsg 37 38 I/O Cell Data Select (I/O Clock) I/O Cell Data Select (Yx Clock) — — 4.5 2.5 — — 6.0 3.0 ns ns tmuxselexp Register 39 I/O Cell MUX Data Select Expander Delay — 2.5 — 3.0 ns tiolat tiosu 40 41 I/O Latch Delay I/O Register Setup Time Before Clock — — 1.0 3.2 — — 1.0 4.4 ns ns tioh tioco 42 43 I/O Register Hold Time After Clock I/O Register Clock to Output Delay — — 2.3 0.5 — — 2.6 0.5 ns ns tior tcesu 44 45 I/O Reset to Output Delay I/O Clock Enable Setup Time Before Clock — — 1.5 2.5 — — 1.5 2.0 ns ns tceh Data Path 46 I/O Clock Enable Hold Time After Clock — 1.0 — 2.0 ns tfdbk tiobp 47 48 I/O Register Feedback Delay I/O Register Bypass Delay — — 1.2 0.3 — — 1.3 0.6 ns ns tioob tmuxcg 49 50 I/O Register Output Buffer Delay I/O Register A/B/C/D Data Input MUX Delay (Yx Clock) — — 0.6 2.5 — — 0.7 3.0 ns ns tmuxcio tiodg 51 52 I/O Register A/B/C/D Data Input MUX Delay (I/O Clock) I/O Register I/O MUX Delay (Yx Clock) — — 4.5 5.0 — — 6.0 6.0 ns ns tiodio Outputs 53 I/O Register I/O MUX Delay (I/O Clock) — 7.0 — 9.0 ns tob tobs 54 55 Output Buffer Delay Output Buffer Delay (Slow Slew Option) — — 2.2 9.2 — — 2.9 11.9 ns ns toeen toedis 56 57 I/O Cell OE to Output Enable I/O Cell OE to Output Disable — — 6.0 6.0 — — 7.5 7.5 ns ns tgoe ttoe 58 59 GRP Output Enable and Disable Delay Test OE Enable and Disable Delay — — 0.0 2.5 — — 0.0 3.0 ns ns Clocks tioclk 60 I/O Clock Delay — 3.2 — 4.4 ns tgclk tgclkeng 61 62 Global Clock Delay Global Clock Enable (Yx Clock) — — 2.7 3.7 — — 3.4 5.4 ns ns tgclkenio tioclkeng 63 64 Global Clock Enable (I/O Clock) I/O Clock Enable (Yx Clock) — — 5.7 4.2 — — 8.4 6.4 ns ns 65 Global Reset to I/O Register Latch — 13.7 — 16.4 ns Global Reset tgr 1. Internal Timing Parameters are not tested and are for reference only. 2. Refer to the Timing Model in this data sheet for further details. 15 Specifications ispGDX160V Absolute Maximum Ratings 1,2 Supply Voltage Vcc ................................. -0.5 to +5.4V Input Voltage Applied ............................... -0.5 to +5.6V Off-State Output Voltage Applied ............ -0.5 to +5.6V Storage Temperature ................................ -65 to 150°C Case Temp. with Power Applied .............. -55 to 125°C Max. Junction Temp. (TJ) with Power Applied ... 150°C 1. Stresses above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications). 2. Compliance with the Thermal Management section of the Lattice Semiconductor Data Book or CD-ROM is a requirement. DC Recommended Operating Conditions SYMBOL PARAMETER MAX. UNITS Commercial TA = 0°C to +70°C 3.0 3.6 V Industrial TA = -40°C to +85°C 3.0 3.6 V Input Low Voltage -0.3 0.8 V Input High Voltage 2.0 5.25 VCC Supply Voltage VIL VIH1 1 MIN. V Table 2-0005/gdxv 1. Typical 100mV of input hysteresis. Capacitance (TA=25oC, f=1.0 MHz) TYPICAL UNITS I/O Capacitance 8 pf VCC = 3.3V, VI/O = 2.0V Dedicated Clock Capacitance 10 pf VCC = 3.3V, VY = 2.0V SYMBOL C1 C2 PARAMETER TEST CONDITIONS Table 2 - 0006 Erase/Reprogram Specifications PARAMETER Erase/Reprogram Cycles 16 MINIMUM MAXIMUM UNITS 10,000 — Cycles Specifications ispGDX160V Switching Test Conditions Input Pulse Levels + 3.3V GND to 3.0V ≤ 1.5ns 10% to 90% Input Rise and Fall Time Input Timing Reference Levels 1.5V Output Timing Reference Levels 1.5V Output Load R1 Device Output Test Point See figure at right Output Load Conditions TEST CONDITION R1 R2 CL 153Ω 134Ω 35pF Active High ∞ 134Ω 35pF Active Low A B C D 153Ω ∞ 35pF Active High to Z at VOH -0.5V ∞ 134Ω 5pF Active Low to Z at VOL +0.5V 153Ω ∞ 5pF ∞ ∞ Slow Slew CL * R2 3-state levels are measured 0.5V from steady-state active level. *CL includes Test Fixture and Probe Capacitance. 35pF Table 2-0004A DC Electrical Characteristics Over Recommended Operating Conditions SYMBOL MIN. TYP.2 MAX. UNITS IOL =24 mA – – 0.55 V Output High Voltage IOH =-12 mA 2.4 – – V Input or I/O Low Leakage Current 0V ≤ VIN ≤ VIL (Max.) – – -10 µA Input or I/O High Leakage Current VCC ≤ VIN ≤ 5.25V – – 10 µA I/O Active Pull-Up Current 0V ≤ VIN ≤ VIL – – -150 µA Bus Hold Low Sustaining Current VIN = VIL (Max.) 50 – – µA Bus Hold High Sustaining Current VIN = VIH (Min.) -50 – – µA Bus Hold Low Overdrive Current 0V ≤ VIN ≤ VCC – – 550 µA Bus Hold High Overdrive Current 0V ≤ VIN ≤ VCC – PARAMETER VOL VOH IIL IIH IIL-PU IBHLS IBHHS IBHLO IBHHO IBHT IOS1 ICCQ4 ICC Output Low Voltage ICONT5 Maximum Continuous I/O Pin Sink Current Through Any GND Pin CONDITION Bus Hold Trip Points – -550 µA VIL – VIH V Output Short Circuit Current VCC = 3.3V, VOUT = 0.5V, TA = 25˚C – – -250 mA Quiescent Power Supply Current VIL = 0.5V, VIH = VCC – 70 – mA Dynamic Power Supply Current per Input Switching One input toggling @ 50% duty cycle, outputs open. – See Note 3 – mA/MHz – – 96 mA 1. One output at a time for a maximum duration of one second. VOUT = 0.5V was selected to avoid test problems by tester ground degradation. Characterized but not 100% tested. 2. Typical values are at VCC = 3.3V and TA = 25oC. 3. ICC / MHz = (0.01 x I/O cell fanout) + 0.04 e.g. An input driving four I/O cells at 40 MHz results in a dynamic ICC of approximately ((0.01 x 4) + 0.04) x 40 = 3.2 mA. 4. For a typical application with 50% of I/O pins used as inputs, 50% used as outputs or bidirectionals. 5. This parameter limits the total current sinking of I/O pins surrounding the nearest GND pin. 17 Specifications ispGDX160V External Timing Parameters Over Recommended Operating Conditions 1 PARAMETER TEST COND. tpd tsel fmax (Tog.) fmax (Ext.) tsu1 tsu2 tsu3 tsu4 tsuce1 tsuce2 tsuce3 th1 th2 th3 th4 thce1 thce2 thce3 tgco1 tgco2 tco1 tco2 ten tdis ttoeen ttoedis twh twl trst trw tsl tsk # -5 DESCRIPTION -7 UNITS MIN. MAX. MIN. MAX. A 1 Data Prop. Delay from Any I/O pin to Any I/O pin (4:1 MUX) A 2 Data Prop. Delay from MUXsel Inputs to Any Output (4:1 MUX) – 3 Clock Frequency, Max. Toggle – 4 Clock Frequency with External Feedback ( – 5 – – – 5.0 – 7.0 ns – 6.5 – 9.0 ns 143 – 100 – MHz 110 – 80.0 – MHz Input Latch or Register Setup Time Before Yx 4.0 – 5.5 – ns 6 Input Latch or Register Setup Time Before I/O Clock 3.0 – 4.5 – ns 7 Output Latch or Register Setup Time Before Yx 4.0 – 5.5 – ns – 8 Output Latch or Register Setup Time Before I/O Clock 3.0 – 4.5 – ns – 9 Global Clock Enable Setup Time Before Yx 2.5 – 3.5 – ns – 10 Global Clock Enable Setup Time Before I/O Clock 1.5 – 2.5 – ns – 11 I/O Clock Enable Setup Time Before Yx 4.5 – 6.5 – ns – 12 Input Latch or Register Hold Time (Yx) 0.0 – 0.0 – ns – 13 Input Latch or Register Hold Time (I/O Clock) 1.5 – 2.5 – ns – 14 Output Latch or Register Hold Time (Yx) 0.0 – 0.0 – ns – 15 Output Latch or Register Hold Time (I/O Clock) 1.5 – 2.5 – ns – 16 Global Clock Enable Hold Time (Yx) 0.0 – 0.0 – ns – 17 Global Clock Enable Hold Time (I/O Clock) 1.5 – 2.5 – ns 1 tsu3+tgco1 ) – 18 I/O Clock Enable Hold Time (Yx) 0.0 – 0.0 – ns A 19 Output Latch or Register Clock (from Yx) to Output Delay – 5.0 – 7.0 ns A 20 Input Latch or Register Clock (from Yx) to Output Delay – 8.5 – 11.0 ns A 21 Output Latch or Register Clock (from I/O pin) to Output Delay – 6.0 – 9.0 ns A 22 Input Latch or Register Clock (from I/O pin) to Output Delay – 9.5 – 13.0 ns B 23 Input to Output Enable – 6.0 – 8.5 ns C 24 Input to Output Disable – 6.0 – 8.5 ns B 25 Test OE Output Enable – 9.0 – 12.0 ns C 26 Test OE Output Disable – 9.0 – 12.0 ns – 27 Clock Pulse Duration, High 3.5 – 5.0 – ns – 28 Clock Pulse Duration, Low 3.5 – 5.0 – ns – 29 Register Reset Delay from RESET Low – 14.0 – 18.0 ns – 30 Reset Pulse Width 10.0 – 14.0 – ns D 31 Output Delay Adder for Output Timings Using Slow Slew Rate – 8.0 – 12.0 ns – 0.5 – 0.5 ns A 32 Output Skew (tgco1 Across Chip) 1. All timings measured with one output switching, fast output slew rate setting, except tsl. 18 Specifications ispGDX160V External Timing Parameters (Continued) ispGDX160V timings are specified with a GRP load (fanout) of four I/O cells. The figure below shows the ∆ GRP Delay with increased GRP loads. These deltas apply to any signal path traversing the GRP (MUXA-D, OE, CLK/CLKEN, MUXsel0-1). Global Clock signals which do not use the GRP have no fanout delay adder. ispGDX160V Maximum ∆ GRP Delay vs. I/O Cell Fanout ∆ GRP Delay (ns) 10 8 6 4 2 0 4 10 20 30 40 50 I/O Cell Fanout 19 60 70 Specifications ispGDX160V Internal Timing Parameters1 Over Recommended Operating Conditions -5 PARAMETER DESCRIPTION1 # -7 MIN. MAX. MIN. MAX. UNITS Inputs tio 32 Input Buffer Delay — 0.9 — 1.4 ns GRP tgrp 33 GRP Delay — 1.1 — 1.1 ns MUX tmuxd 34 I/O Cell MUX A/B/C/D Data Delay — 1.5 — 2.0 ns tmuxexp tmuxs 35 36 I/O Cell MUX A/B/C/D Expander Delay I/O Cell Data Select — — 2.0 3.0 — — 2.5 4.0 ns ns tmuxsio tmuxsg 37 38 I/O Cell Data Select (I/O Clk) I/O Cell Data Select (Yx Clk) — — 4.5 3.5 — — 6.5 4.5 ns ns tmuxselexp Register 39 I/O Cell MUX Data Select Expander Delay — 3.5 — 4.5 ns tiolat tiosu 40 41 I/O Latch Delay I/O Register Setup Time Before Clock — — 1.0 2.0 — — 1.0 3.2 ns ns tioh tioco 42 43 I/O Register Hold Time After Clock I/O Register Clock to Output Delay — — 1.5 0.5 — — 2.3 0.5 ns ns tior tcesu 44 45 I/O Reset to Output Delay I/O Clock Enable Setup Time Before Clock — — 1.5 2.0 — — 1.5 2.5 ns ns tceh Data Path 46 I/O Clock Enable Hold Time After Clock — 0.5 — 1.0 ns tfdbk tiobp 47 48 I/O Register Feedback Delay I/O Register Bypass Delay — — 0.9 0.0 — — 1.2 0.3 ns ns tioob tmuxcg 49 50 I/O Register Output Buffer Delay I/O Register A/B/C/D Data Input MUX Delay (Yx Clk) — — 0.0 2.0 — — 0.6 2.5 ns ns tmuxcio tiodg 51 52 I/O Register A/B/C/D Data Input MUX Delay (I/O Clk) I/O Register I/O MUX Delay (Yx Clk) — — 3.0 4.0 — — 4.5 5.0 ns ns tiodio Outputs 53 I/O Register I/O MUX Delay (I/O Clk) — 5.0 — 7.0 ns tob tobs 54 55 Output Buffer Delay Output Buffer Delay (Slow Slew Option) — — 1.5 9.5 — — 2.2 14.2 ns ns toeen toedis 56 57 I/O Cell OE to Output Enable I/O Cell OE to Output Disable — — 4.0 4.0 — — 6.0 6.0 ns ns tgoe ttoe 58 59 GRP Output Enable and Disable Delay Test OE Enable and Disable Delay — — 0.0 5.0 — — 0.0 6.0 ns ns Clocks tioclk 60 I/O Clock Delay — 2.0 — 3.2 ns tgclk tgclkeng 61 62 Global Clock Delay Global Clock Enable (Yx Clk) — — 2.0 2.5 — — 2.7 3.7 ns ns tgclkenio tioclkeng 63 64 Global Clock Enable (I/O Clk) I/O Clock Enable (Yx Clk) — — 3.5 2.5 — — 5.7 4.2 ns ns 65 Global Reset to I/O Register Latch — 11.0 — 13.7 ns Global Reset tgr 1. Internal Timing Parameters are not tested and are for reference only. 2. Refer to the Timing Model in this data sheet for further details. 20 Specifications ispGDX160V/VA Switching Waveforms DATA (I/O INPUT) VALID INPUT MUXSEL (I/O INPUT) VALID INPUT tsu tsel DATA (I/O INPUT) VALID INPUT th t gco CLK tco tpd COMBINATORIAL I/O OUTPUT REGISTERED I/O OUTPUT 1/fmax (external fdbk) Combinatorial Output t suce t ceh OE (I/O INPUT) CLKEN tdis ten Registered Output COMBINATORIAL I/O OUTPUT I/O Output Enable/Disable RESET t rw twh t rst twl REGISTERED I/O OUTPUT CLK (I/O INPUT) Clock Width Reset ispGDXV Timing Model tgoe #58 OE MUX Expander Input tmuxd #34 tmuxs #36 tmuxio #37 tmuxg #38 tmuxcg #50 tmuxcio #51 TOE ttoe #59 A B C D tiobp #48 D MUX0 GRP MUX Expander Output tmuxexp #35 tmuxselexp #39 Q tioob #49 I/O Pin CLKEN MUX1 tob #54 tobs #55 toeen #56 toedis #57 CLK tgrp #33 tiod #52, #53 tiolat #40 tiosu #41 tioh #42 tioco #43 tior #44 tcesu #45 tceh #46 tgr #65 RESET tfdbk #47 tio #32 CLKEN CLK tioclkeg #64 tioclk #60 Y0,1,2,3 0902/gdx160v/va tgclk #61 Y0,1,2,3, Enable tgclkeng #62 tgclkenio #63 21 Specifications ispGDX160V/VA ispGDX Development System The ispGDX Development System supports ispGDX design using a simple language syntax and an easy-touse Graphical User Interface (GUI) called Design Manager. From creation to In-System Programming, the ispGDX system is an easy-to-use, self-contained design tool delivered on CD-ROM media. Status Bar and the work area. The figure below shows these elements of the ispGDX GUI. The Menu Bar displays topics related to functions used in the design process. Access the various drop-down menus and submenus by using the mouse or “hot” keys. The menu items available in the ispGDX system are FILE, EDIT, DEVICE, INVOKE, INTERFACES, VIEW, WINDOW and HELP. Features • Easy-to-use Text Entry System The Tool Bar is a quick and easy way to perform many of the functions found in the menus with a single click of the mouse. File, Edit, Undo, Redo, Find, Print Download and Compiler are just some of the Icons found in the ispGDX Tool Bar. For instance, the Compiler Icon performs the same function as the Invoke => Compiler menu commands, including design analysis and rule checking and the fitting operation. • ispGDX Design Compiler - Design Rule Checker - I/O Connectivity Checker - Automatic Compiler Function • Industry Standard JEDEC File for Programming • Min / Max Timing Report • Interfaces To Popular Timing Simulators The Status Bar displays action prompts and the line and column numbers reflect the location of the cursor within the message window or the work area. • User Electronic Signature (UES) Support • Detailed Log and Report Files For Easy Design Debug • On-Line Help Workstation Version • Windows® 3.1x, Windows 95, Windows 98 and Windows NT® Compatible Graphical User Interface The ispGDX software is also available for use under the Sun O/S 4.1.x or Solaris 2.4 or 2.5. The Sun version of the ispGDX software is invoked from the command line under the UNIX operating system. A GUI is not supported in this environment. • SUN O/S, Command Line Driven version available PC Version With the ispGDX GUI for the PC, command line entry is not required. The tools run under Microsoft Windows 3.1, Windows 95, Windows 98 and Windows NT. When the ispGDX software is invoked, the Design Manager and an accompanying message window are displayed. The Design Manager consists of the Menu Bar, Tool Bar, In the UNIX environment, the ispGDX Design File (GDF) must be created using a text editor. Once the GDF has been created, invoke the ispGDX workstation software from the UNIX command line. The following is an example of how to invoke ispGDX software. Lattice’s ispGDX Development System Interface Usage: ispGDX [-i input_file] [-of[edif|orcad|viewlogic|verilog|vhdl]] [-p part name] [-r par_file] Where: -i input_file -of [edif | orcad | viewlogic | verilog | vhdl] -p part_name -r par_file 22 ispGDX design file Output format ispGDX part number Read parameters from parameter file Specifications ispGDX160V/VA ispGDX Development System (Continued) This example shows a simple, but complete, 32-bit 3:1 MUX design. Once completed, the compiler takes over. The GDF File The GDF file is a simple text description of the design function, device and pin parameters. The file has four parts: device selection, set and constant statements, a pin section and a connection section. A sample file looks like this: Powerful Syntax Lattice’s ispGDX Design System uses simple, but powerful, syntax to easily define a design. The !(bang) operator controls pin polarity and can be used in both the pin and connection sections of the design definition. Dot extensions define data inputs, select controls for the 4:1 multiplexor, and control inputs of sequential elements and tri-state buffers. Dot extensions are .M# (MUX Input), .S# (MUX Select), and control functions, such as .CLK, .EN, .OE and .A (shown in adjacent table). Pin Attributes are assigned in the pin section of the GDF as well. SLOWSLEW selects the slow slew rate for an output buffer. The Pull parameter can be used to select the internal pull-up or bus hold latch. OPEN drain can be used to select open drain operation. The COMB attribute distinguishes the structure for bidirectional pins. If COMB is used, the input register, or latch, of an output buffer will be applied to bidirectional pins. // 32-Bit Data 3 to 1 Mux DESIGN datamux; PART ispGDX160V-7Q208; PARAM SECURITY ON; PARAM OPENDRAIN ON; PARAM PULL HOLD; SET SET SET SET BUS_A BUS_B BUS_C BUS_D INPUT INPUT INPUT OUTPUT // // // // USE OPEN DRAIN OPTION USE BUS HOLD LATCH OPTION [dataA31..dataA0]; [dataB31..dataB0]; [dataC31..dataC0]; [dataD31..dataD0]; BUS_A BUS_B BUS_C BUS_D Please consult the ispGDX Development System Manual for full details. {A31..A0}; {B31..B0}; {C31..C0}; {D31..D0}; ispGDX GDF File Dot Extensions INPUT [oe] {B37}; INPUT [clk] {B36}; INPUT [sel1] INPUT [sel0] {B38}; {B39}; Type Dot Ext. .M0 MUXA Data input to 4:1 MUX MUX Input .M1 MUXB Data input to 4:1 MUX .M2 MUXC Data Input to 4:1 MUX .M3 MUXD Data input to 4:1 MUX .S0 MUX0 Selection input to 4:1 MUX .S1 MUX1 Selection input to 4:1 MUX MUX Selection BEGIN BUS_D.m0 BUS_D.m1 BUS_D.m2 BUS_D.m3 = = = = BUS_A; BUS_B; BUS_C; VCC; Control // Default all // outputs to VCC MUX Output Description .CLK Clock for a register .EN Latch enable for a latch signal .OE Output enable for 3-state output or bidirectional signal .CE Clock enable for register clock .A Adjacent MUX output of an I/O cell ispGDXV Dot Ext BUS_D.s1 = sel1; BUS_D.s0 = sel0; BUS_D.oe = oe; BUS_D.clk = clk; END 23 Specifications ispGDX160V/VA ispGDX Development System (Continued) The ispGDX Design System Compiler Third-Party Timing Simulation After the GDF file is created, the compiler checks the syntax and provides helpful hints and the location of any syntax errors. The compiler performs design rule checks, such as, clock and enable designations, the use of input/ output/BIDI usage, and the proper use of attributes. I/O connectivity is also checked to ensure polarity, MUX selection controls, and connections are properly made. Compilation is completed automatically and report and programming files are saved. The ispGDX Design System will generate simulation netlists as specified by a user. The simulation netlist formats available are: EDIF, Verilog (OVI compliant), VHDL (VITAL compliant), Viewlogic, and OrCAD. For In-System Programming, Lattice’s ispGDX devices may be programmed, alone or in a chain with up to 100 other Lattice ISP devices, using Lattice’s ISP Daisy Chain Download software. This powerful Windows-based tool can be launched from the Tool Bar or by Invoking the Download option from the drop down menu within the ispGDX Design System. ISP Daisy Chain Download version 7.1 or above supports the ispGDX Family devices. Reports Generated When the ispGDX system compiles a design and generates the specified netlists, the following output files are created: Report Files: .log Compiler History .rpt Compiler Report .mfr Maximum Frequency Timing Report .tsu Set-up and Hold Timing Report .tco Clock to Out Timing Report .tpt Timing Report Simulation File: .sim Post-Route Simulation With LAC Format Netlists: .edo .vlo .ifo .vho .vhn .vto EDIF Output Verilog Output OrCAD Output VHDL non-VITAL with Maximum Delays Output VHDL non-VITAL with Maximum Delays Output VHDL VITAL Output Download: .jed JEDEC Device Programming File 24 Specifications ispGDX160V/VA In-System Programmability All necessary programming of the ispGDXV/VA is done via four TTL level logic interface signals. These four signals are fed into the on-chip programming circuitry where a state machine controls the programming. when the pin is left unconnected, in which case the pin is pulled high by the permanent internal pullup. This allows ISP programming and BSCAN testing to take place as specified by the Instruction Table. On-chip programming can be accomplished using an IEEE 1149.1 boundary scan protocol. The IEEE 1149.1compliant interface signals are Test Data In (TDI), Test Data Out (TDO), Test Clock (TCK) and Test Mode Select (TMS) control. The EPEN pin is also used to enable or disable the JTAG port. When the pin is driven low, the JTAG TAP controller is driven to a reset state asynchronously. It stays there while the pin is held low. After pulling the pin high the JTAG controller becomes active. The intent of this feature is to allow the JTAG interface to be directly controlled by the data bus of an embedded controller (hence the name Embedded Port Enable). The EPEN signal is used as a “device select” to prevent spurious programming and/or testing from occuring due to random bit patterns on the data bus. Figure 9 illustrates the block diagram for the ispJTAG interface. The embedded controller port enable pin (EPEN) is used to enable the JTAG tap controller and in that regard has similar functionality to a TRST pin. When the pin is driven high, the JTAG TAP controller is enabled. This is also true Figure 9. ispJTAG Device Programming Interface TDO TDI TMS TCK ispJTAG Programming Interface EPEN ispGDX 160V/VA Device ispLSI Device ispMACH Device 25 ispGDX 160V/VA Device ispGDX 160V/VA Device Specifications ispGDX160V/VA Boundary Scan The ispGDXV/VA devices provide IEEE1149.1a test capability and ISP programming through a standard Boundary Scan Test Access Port (TAP) interface. allows customers using boundary scan test to have full test capability with only a single BSDL file. The ispGDXV/VA devices are identified by the 32-bit JTAG IDCODE register. The device ID assignments are listed in Table 4. The boundary scan circuitry on the ispGDXV/VA Family operates independently of the programmed pattern. This Figure 10. Boundary Scan Register Circuit for I/O Pins HIGHZ EXTEST SCANIN (from previous cell BSCAN Registers BSCAN Latches D D Q TOE Normal Function OE Q 0 1 EXTEST PROG_MODE Normal Function Shift DR D Q D Q Clock DR D 0 I/O Pin 1 Q SCANOUT (to next cell) Update DR Reset Table 3. I/O Shift Register Order DEVICE ispGDX160V/VA I/O SHIFT REGISTER ORDER TDI, TOE, Y2, Y3, RESET, Y1, Y0, I/O B20 .. B39, I/O C0 .. C39, I/O D0 .. D19, I/O B19 .. B0, I/O A39.. A0, I/O D39 .. D20, TDO I/O Shift Reg Order/ispGDXVA Table 4. ispGDX160V/VA Device ID Codes DEVICE 32-BIT BOUNDARY SCAN ID CODE ispGDX160V 0000, 0000, 0011, 0101, 0011, 0000, 0100, 0011 ispGDX160VA 0001, 0000, 0011, 0101, 0011, 0000, 0100, 0011 ID Code/GDX160V/VA 26 Specifications ispGDX160V/VA Boundary Scan (Continued) The ispJTAG programming is accomplished by executing Lattice private instructions under the Boundary Scan State Machine. Downlowad (ispDCD™), ispCODE ‘C’ routines or any third-party programmers. Contact Lattice Technical Support to obtain more detailed programming information. Details of the programming sequence are transparent to the user and are handled by Lattice ISP Daisy Chain Figure 11. Boundary Scan Register Circuit for Input-Only Pins Input Pin SCANIN (from previous cell D SCANOUT (to next cell) Q Shift DR Clock DR Figure 12. Boundary Scan State Machine 1 0 Test-Logic-Reset 0 1 Run-Test/Idle Select-DR-Scan 0 1 Capture-DR 0 Shift-DR 0 1 Exit1-DR 1 0 Pause-DR 1 1 Select-IR-Scan 0 1 Capture-IR 0 Shift-IR 0 1 Exit1-IR 1 0 Pause-IR 1 0 1 0 0 Exit2-DR 1 Update-DR 1 0 27 0 Exit2-IR 1 Update-IR 1 0 Specifications ispGDX160V/VA Boundary Scan (Continued) Figure 13. Boundary Scan Waveforms and Timing Specifications TMS TDI Tbtsu Tbtch Tbth Tbtcl Tbtcp TCK Tbtvo Tbtco TDO Valid Data Tbtcsu Data to be captured Tbtoz Valid Data Tbtch Data Captured Tbtuov Tbtuco Data to be driven out Symbol Valid Data Parameter Tbtuoz Valid Data Min Max Units tbtcp TCK [BSCAN test] clock pulse width 100 – ns tbtch TCK [BSCAN test] pulse width high 50 – ns tbtcl TCK [BSCAN test] pulse width low 50 – ns tbtsu TCK [BSCAN test] setup time 20 – ns tbth TCK [BSCAN test] hold time 25 – ns trf TCK [BSCAN test] rise and fall time 50 – mV/ns tbtco TAP controller falling edge of clock to valid output – 25 ns tbtoz TAP controller falling edge of clock to data output disable – 25 ns tbtvo TAP controller falling edge of clock to data output enable – 25 ns tbtcpsu BSCAN test Capture register setup time 20 – ns tbtcph BSCAN test Capture register hold time 25 – ns tbtuco BSCAN test Update reg, falling edge of clock to valid output – 50 ns tbtuoz BSCAN test Update reg, falling edge of clock to output disable – 50 ns tbtuov BSCAN test Update reg, falling edge of clock to output enable – 50 ns 28 Specifications ispGDX160V/VA Signal Descriptions Signal Name Description I/O Input/Output Pins – These are the general purpose bidirectional data pins. When used as outputs, each may be independently latched, registered or tristated. They can also each assume one other control function (OE, CLK/CLKEN, and MUXsel as described in the text). TOE Test Output Enable Pin – This pin tristates all I/P pins when a logic low is driven. RESET Active LOW Input Pin – Resets all I/O register outputs when LOW. Yx/CLKENx Input Pins –These can be either Global Clocks or Clock Enables. EPEN Input Pin – JTAG TAP Controller Enable Pin. When high, JTAG operation is enabled. When low, JTAG TAP controller is driven to reset. TDI Input Pin – Serial data input during ISP programming or Boundary Scan mode. TCK Input Pin – Serial data clock during ISP programming or Boundary Scan mode. TMS Input Pin – Control input during ISP programming or Boundary Scan mode. TDO Output Pin – Serial data output during ISP programming or Boundary Scan mode. GND Ground (GND) VCC Vcc – Supply voltage (3.3V). VCCIO2 Input – This pin is used if optional 2.5V output is to be used. Every I/O can independently select either 3.3V or the optional voltage as its output level. If the optional output voltage is not required, this pin must be connected to the VCC supply. Programmable pull-up resistors and bus-hold latches only draw current from this supply. NC1 No Connect. 1. NC pins are not to be connected to any active signals, VCC or GND. 2. “VA” version only. 29 Specifications ispGDX160V/VA Signal Locations: ispGDX160V/VA Signal 208-Pin PQFP 208-Ball fpBGA 272-Ball BGA TOE 178 D9 A12 RESET 185 A8 D10 Y0/CLKEN0 75 N8 V10 Y1/CLKEN1 76 R8 Y10 Y2/CLKEN2 180 B9 C11 Y3/CLKEN3 181 C9 A11 EPEN 183 A9 B10 TDI 81 P9 Y12 TCK 80 T9 U11 TMS 79 T8 V11 TDO 78 P8 W11 GND 6, 15, 25, 35, 44, 54, 63, 77, 91, 100, 110, 119, 129, 139, 148, 159, 168, 182, 195, 204 D4, D13, G7, G8, G9, A1, D4, D8, D13, D17, H4, H17, J9, J10, J11, J12, G10, H7, H8, H9, H10, K9, K10, K11, K12, L9, L10, L11, L12, M9, M10, J7, J8, J9, J10, K7, K8, M11, M12, N4, N17, U4, U8, U13, U17 K9, K10, N4, N13 VCC 1, 17, 33, 49, 65, 89, 105, 121, 137, 153, 1561, 170, 184, 193 E131, F4, F13, L4, L13, C181, D6, D11, D15, F4, F17, K4, L17, R4, R17, U6, M4, M13, N5, N11, N12 U10, U15 D5, D6, D12, E4 VCCIO 1561 E131 C181 NC 73, 74, 179 A10, P7, T7 A2, A6, A7, A10, A15, A19, A20, B1, B2, B4, B11, B14, B18, B19, B20, C2, C3, C10, D2, D3, D16, E2, E17, E19, H1, H3, H18, H20, K20, L1, N1, N3, N18 N20, T2, T4, T19, U5, U18, U19, V3, V14, V18, V19, W1, W2, W3, W7, W10, W14, W19, W20, Y1, Y2, Y6, Y9, Y11, Y18, Y20 1. VCC on ispGDX160V, VCCIO on ispGDX160VA. 30 Specifications ispGDX160V/VA I/O Locations: ispGDX160V/VA (Ordered by I/O Signal Name and 208-Pin PQFP Location) I/O Signal VCC I/O A0 I/O A1 I/O A2 I/O A3 GND I/O A4 I/O A5 I/O A6 I/O A7 I/O A8 I/O A9 I/O A10 I/O A11 GND I/O A12 VCC I/O A13 I/O A14 I/O A15 I/O A16 I/O A17 I/O A18 I/O A19 GND I/O A20 I/O A21 I/O A22 I/O A23 I/O A24 I/O A25 I/O A26 VCC I/O A27 GND I/O A28 I/O A29 I/O A30 I/O A31 I/O A32 I/O A33 I/O A34 I/O A35 GND I/O A36 I/O A37 I/O A38 I/O A39 VCC I/O B0 I/O B1 I/O B2 I/O B3 GND I/O B4 I/O B5 I/O B6 I/O B7 I/O B8 I/O B9 I/O B10 I/O B11 GND I/O B12 VCC Control Signal I/O 208 208 272 PQFP fpBGA BGA Signal CLK/CLKEN OE MUXsel1 MUXsel2 2 3 4 5 B2 B1 C2 A1 E4 C1 D1 E3 CLK/CLKEN OE MUXsel1 MUXsel2 CLK/CLKEN OE MUXsel1 MUXsel2 7 8 9 10 11 12 13 14 C1 D3 D2 D1 E3 E2 E1 F3 E1 F3 G4 F2 F1 G3 G2 G1 CLK/CLKEN 16 F2 H2 OE MUXsel1 MUXsel2 CLK/CLKEN OE MUXsel1 MUXsel2 18 19 20 21 22 23 24 F1 G4 G2 G3 G1 H4 H2 J4 J3 J2 J1 K2 K3 K1 CLK/CLKEN OE MUXsel1 MUXsel2 CLK/CLKEN OE MUXsel1 26 27 28 29 30 31 32 H3 H1 J1 J3 J2 J4 K1 L2 L3 L4 M1 M2 M3 M4 MUXsel2 34 K3 N2 CLK/CLKEN OE MUXsel1 MUXsel2 CLK/CLKEN OE MUXsel1 MUXsel2 36 37 38 39 40 41 42 43 K2 K4 L1 L2 L3 M1 M2 M3 P1 P2 R1 P3 R2 T1 P4 R3 CLK/CLKEN OE MUXsel1 MUXsel2 45 46 47 48 N1 N2 N3 P1 U1 T3 U2 V1 CLK/CLKEN OE MUXsel1 MUXsel2 50 51 52 53 P2 R1 R2 T1 U3 V2 W4 V4 CLK/CLKEN OE MUXsel1 MUXsel2 CLK/CLKEN OE MUXsel1 MUXsel2 55 56 57 58 59 60 61 62 P3 T2 R3 P4 T3 R4 T4 P5 Y3 Y4 V5 W5 Y5 V6 U7 W6 CLK/CLKEN 64 R5 V7 I/O B13 I/O B14 I/O B15 I/O B16 I/O B17 I/O B18 I/O B19 GND I/O B20 I/O B21 I/O B22 I/O B23 I/O B24 I/O B25 I/O B26 VCC I/O B27 GND I/O B28 I/O B29 I/O B30 I/O B31 I/O B32 I/O B33 I/O B34 I/O B35 GND I/O B36 I/O B37 I/O B38 I/O B39 VCC I/O C0 I/O C1 I/O C2 I/O C3 GND I/O C4 I/O C5 I/O C6 I/O C7 I/O C8 I/O C9 I/O C10 I/O C11 GND I/O C12 VCC I/O C13 I/O C14 I/O C15 I/O C16 I/O C17 I/O C18 I/O C19 GND I/O C20 I/O C21 I/O C22 I/O C23 I/O C24 I/O C25 I/O C26 VCC I/O C27 NOTE: VCC and GND Pads Shown for Reference, 1VCC Control Signal 208 208 272 I/O PQFP fpBGA BGA Signal OE MUXsel1 MUXsel2 CLK/CLKEN OE MUXsel1 MUXsel2 66 67 68 69 70 71 72 N6 T5 R6 P6 T6 N7 R7 Y7 V8 W8 Y8 U9 V9 W9 CLK/CLKEN OE MUXsel1 MUXsel2 CLK/CLKEN OE MUXsel1 82 83 84 85 86 87 88 R9 N9 T10 P10 R10 N10 T11 W12 V12 U12 Y13 W13 V13 Y14 MUXsel2 90 P11 Y15 CLK/CLKEN OE MUXsel1 MUXsel2 CLK/CLKEN OE MUXsel1 MUXsel2 92 93 94 95 96 97 98 99 R11 T12 P12 R12 T13 R13 T14 P13 W15 Y16 U14 V15 W16 Y17 V16 W17 CLK/CLKEN OE MUXsel1 MUXsel2 101 102 103 104 R14 T15 T16 R15 U16 V17 W18 Y19 CLK/CLKEN OE MUXsel1 MUXsel2 106 107 108 109 P14 P15 R16 N14 T17 V20 U20 T18 CLK/CLKEN OE MUXsel1 MUXsel2 CLK OE MUXsel1 MUXsel2 111 112 113 114 115 116 117 118 P16 N15 N16 M14 M15 M16 L15 L14 T20 R18 P17 R19 R20 P18 P19 P20 CLK/CLKEN 120 L16 N19 OE MUXsel1 MUXsel2 CLK/CLKEN OE MUXsel1 MUXsel2 122 123 124 125 126 127 128 K13 K15 K14 K16 J13 J15 J14 M17 M18 M19 M20 L19 L18 L20 CLK/CLKEN OE MUXsel1 MUXsel2 CLK/CLKEN OE MUXsel1 130 131 132 133 134 135 136 J16 H14 H16 H15 H13 G16 G14 K19 K18 K17 J20 J19 J18 J17 MUXsel2 138 G15 H19 in ispGDX160V 31 Control Signal GND I/O C28 CLK/CLKEN I/O C29 OE I/O C30 MUXsel1 I/O C31 MUXsel2 I/O C32 CLK/CLKEN I/O C33 OE I/O C34 MUXsel1 I/O C35 MUXsel2 GND I/O C36 CLK/CLKEN I/O C37 OE I/O C38 MUXsel1 I/O C39 MUXsel2 VCC I/O D0 CLK/CLKEN I/O D1 OE VCC/VCCIO1 I/O D2 MUXsel1 I/O D3 MUXsel2 GND I/O D4 CLK/CLKEN I/O D5 OE I/O D6 MUXsel1 I/O D7 MUXsel2 I/O D8 CLK/CLKEN I/O D9 OE I/O D10 MUXsel1 I/O D11 MUXsel2 GND I/O D12 CLK/CLKEN VCC I/O D13 OE I/O D14 MUXsel1 I/O D15 MUXsel2 I/O D16 CLK/CLKEN I/O D17 OE I/O D18 MUXsel1 I/O D19 MUXsel2 GND VCC I/O D20 CLK/CLKEN I/O D21 OE I/O D22 MUXsel1 I/O D23 MUXsel2 I/O D24 CLK/CLKEN I/O D25 OE I/O D26 MUXsel1 VCC I/O D27 MUXsel2 GND I/O D28 CLK/CLKEN I/O D29 OE I/O D30 MUXsel1 I/O D31 MUXsel2 I/O D32 CLK/CLKEN I/O D33 OE I/O D34 MUXsel1 I/O D35 MUXsel2 GND I/O D36 CLK/CLKEN I/O D37 OE I/O D38 MUXsel1 I/O D39 MUXsel2 208 208 272 PQFP fpBGA BGA 140 141 142 143 144 145 146 147 G13 F16 F14 F15 E16 E14 E15 D16 G20 G19 F20 G18 F19 E20 G17 F18 149 150 151 152 C16 D15 D14 C15 D20 E18 D19 C20 154 155 B16 A16 D18 C19 157 158 B15 A15 B17 C17 160 161 162 163 164 165 166 167 C14 B14 A14 C13 B13 A13 C12 B12 A18 A17 C16 B16 A16 C15 D14 B15 169 D11 C14 171 172 173 174 175 176 177 A12 C11 B11 D10 A11 B10 C10 A14 C13 B13 A13 D12 C12 B12 186 187 188 189 190 191 192 C8 B8 D8 A7 C7 B7 D7 A9 B9 C9 D9 A8 B8 C8 194 A6 B7 196 197 198 199 200 201 202 203 C6 B6 A5 C5 B5 A4 B4 C4 C7 B6 A5 D7 C6 B5 A4 C5 205 206 207 208 A3 C3 B3 A2 A3 D5 C4 B3 Specifications ispGDX160V/VA I/O Locations: ispGDX160V/VA (Ordered by 208-Ball BGA Location) I/O Signal Control Signal I/O 208 208 272 PQFP fpBGA BGA Signal Control Signal 208 208 272 I/O PQFP fpBGA BGA Signal Control Signal 208 208 272 PQFP fpBGA BGA I/O A3 MUXsel2 5 A1 E3 I/O A9 OE 12 E2 G3 I/O C8 CLK 115 M15 R20 I/O D39 MUXsel2 208 A2 B3 I/O A8 CLK/CLK_EN 11 E3 F1 I/O C9 OE 116 M16 P18 I/O D36 CLK/CLKEN 205 A3 A3 I/O C33 OE 145 E14 E20 I/O A36 CLK/CLKEN 45 N1 U1 I/O D33 OE 201 A4 B5 I/O C34 MUXsel1 146 E15 G17 I/O A37 OE 46 N2 T3 I/O D30 MUXsel1 198 A5 A5 I/O C32 CLK/CLKEN 144 E16 F19 I/O A38 MUXsel1 47 N3 U2 I/O D27 MUXsel2 194 A6 B7 I/O A13 OE 18 F1 J4 I/O B13 OE 66 N6 Y7 I/O D23 MUXsel2 189 A7 D9 I/O A12 CLK/CLKEN 16 F2 H2 I/O B18 MUXsel1 71 N7 V9 I/O D17 OE 175 A11 D12 I/O A11 MUXsel2 14 F3 G1 I/O B21 OE 83 N9 V12 I/O D13 OE 171 A12 A14 I/O C30 MUXsel1 142 F14 F20 I/O B25 OE 87 N10 V13 I/O D9 OE 165 A13 C15 I/O C31 MUXsel2 143 F15 G18 I/O C3 MUXsel2 109 N14 T18 I/O D6 MUXsel1 162 A14 C16 I/O C29 OE 141 F16 G19 I/O C5 OE 112 N15 R18 I/O D3 MUXsel2 158 A15 C17 I/O A17 OE 22 G1 K2 I/O C6 MUXsel1 113 N16 P17 I/O D1 OE 155 A16 C19 I/O A15 MUXsel2 20 G2 J2 I/O A39 MUXsel2 48 P1 V1 I/O A1 OE 3 B1 C1 I/O A16 CLK/CLKEN 21 G3 J1 I/O B0 CLK/CLKEN 50 P2 U3 I/O A0 CLK/CLKEN 2 B2 E4 I/O A14 MUXsel1 19 G4 J3 I/O B4 CLK/CLKEN 55 P3 Y3 MUXsel1 207 B3 C4 I/O C28 CLK/CLKEN 140 G13 G20 I/O B7 MUXsel2 58 P4 W5 I/O D34 MUXsel1 202 B4 A4 I/O C26 MUXsel1 136 G14 J17 I/O B11 MUXsel2 62 P5 W6 I/O D32 CLK/CLKEN 200 B5 C6 I/O C27 MUXsel2 138 G15 H19 I/O B16 CLK/CLKEN 69 P6 Y8 I/O D29 OE 197 B6 B6 I/O C25 OE 135 G16 J18 I/O B23 MUXsel2 85 P10 Y13 I/O D25 OE 191 B7 B8 I/O A21 OE 27 H1 L3 I/O B27 MUXsel2 90 P11 Y15 I/O D21 OE 187 B8 B9 I/O A19 MUXsel2 24 H2 K1 I/O B30 MUXsel1 94 P12 U14 W17 I/O D38 I/O D18 MUXsel1 176 B10 C12 I/O A20 CLK/CLKEN 26 H3 L2 I/O B35 MUXsel2 99 P13 I/O D15 MUXsel2 173 B11 B13 I/O A18 MUXsel1 23 H4 K3 I/O C0 CLK/CLKEN 106 P14 T17 I/O D11 MUXsel2 167 B12 B15 I/O C24 CLK/CLKEN 134 H13 J19 I/O C1 OE 107 P15 V20 I/O D8 CLK/CLKEN 164 B13 A16 I/O C21 OE 131 H14 K18 I/O C4 CLK/CLKEN 111 P16 T20 I/O D5 OE 161 B14 A17 I/O C23 MUXsel2 133 H15 J20 I/O B1 OE 51 R1 V2 I/O D2 MUXsel1 157 B15 B17 I/O C22 MUXsel1 132 H16 K17 I/O B2 MUXsel1 52 R2 W4 I/O D0 CLK/CLKEN 154 B16 D18 I/O A22 MUXsel1 28 J1 L4 I/O B6 MUXsel1 57 R3 V5 I/O A4 CLK/CLKEN 7 C1 E1 I/O A24 CLK/CLKEN 30 J2 M2 I/O B9 OE 60 R4 V6 I/O A2 MUXsel1 4 C2 D1 I/O A23 MUXsel2 29 J3 M1 I/O B12 CLK/CLKEN 64 R5 V7 I/O D37 OE 206 C3 D5 I/O A25 OE 31 J4 M3 I/O B15 MUXsel2 68 R6 W8 I/O D35 MUXsel2 203 C4 C5 I/O C17 OE 126 J13 L19 I/O B19 MUXsel2 72 R7 W9 I/O D31 MUXsel2 199 C5 D7 I/O C19 MUXsel2 128 J14 L20 I/O B20 CLK/CLKEN 82 R9 W12 I/O D28 CLK/CLKEN 196 C6 C7 I/O C18 MUXsel1 127 J15 L18 I/O B24 CLK/CLKEN 86 R10 W13 I/O D24 CLK/CLKEN 190 C7 A8 I/O C20 CLK/CLKEN 130 J16 K19 I/O B28 CLK/CLKEN 92 R11 W15 I/O D20 CLK/CLKEN 186 C8 A9 I/O A26 MUXsel1 32 K1 M4 I/O B31 MUXsel2 95 R12 V15 I/O D19 MUXsel2 177 C10 B12 I/O A28 CLK/CLKEN 36 K2 P1 I/O B33 OE 97 R13 Y17 I/O D14 MUXsel1 172 C11 C13 I/O A27 MUXsel2 34 K3 N2 I/O B36 CLK/CLKEN 101 R14 U16 I/O D10 MUXsel1 166 C12 D14 I/O A29 OE 37 K4 P2 I/O B39 MUXsel2 104 R15 Y19 I/O D7 MUXsel2 163 C13 B16 I/O C13 OE 122 K13 M17 I/O C2 MUXsel1 108 R16 U20 I/O D4 CLK/CLKEN 160 C14 A18 I/O C15 MUXsel2 124 K14 M19 I/O B3 MUXsel2 53 T1 V4 I/O C39 MUXsel2 152 C15 C20 I/O C14 MUXsel1 123 K15 M18 I/O B5 OE 56 T2 Y4 I/O C36 CLK/CLKEN 149 C16 D20 I/O C16 CLK/CLKEN 125 K16 M20 I/O B8 CLK/CLKEN 59 T3 Y5 I/O A7 MUXsel2 10 D1 F2 I/O A30 MUXsel1 38 L1 R1 I/O B10 MUXsel1 61 T4 U7 I/O A6 MUXsel1 9 D2 G4 I/O A31 MUXsel2 39 L2 P3 I/O B14 MUXsel1 67 T5 V8 I/O A5 OE 8 D3 F3 I/O A32 CLK/CLKEN 40 L3 R2 I/O B17 OE 70 T6 U9 I/O D26 MUXsel1 192 D7 C8 I/O C11 MUXsel2 118 L14 P20 I/O B22 MUXsel1 84 T10 U12 I/O D22 MUXsel1 188 D8 C9 I/O C10 MUXsel1 117 L15 P19 I/O B26 MUXsel1 88 T11 Y14 I/O D16 CLK/CLKEN 174 D10 A13 I/O C12 CLK/CLKEN 120 L16 N19 I/O B29 OE 93 T12 Y16 I/O D12 CLK/CLKEN 169 D11 C14 I/O A33 OE 41 M1 T1 I/O B32 CLK/CLKEN 96 T13 W16 I/O C38 MUXsel1 151 D14 D19 I/O A34 MUXsel1 42 M2 P4 I/O B34 MUXsel1 98 T14 V16 I/O C37 OE 150 D15 E18 I/O A35 MUXsel2 43 M3 R3 I/O B37 OE 102 T15 V17 I/O C35 MUXsel2 147 D16 F18 I/O C7 MUXsel2 114 M14 R19 I/O B38 MUXsel1 103 T16 W18 I/O A10 MUXsel1 13 E1 G2 32 Specifications ispGDX160V/VA I/O Locations: ispGDX160V/VA (Ordered by 272-Ball BGA Location) I/O 208 208 272 PQFP fpBGA BGA Signal Control Signal 208 208 272 I/O PQFP fpBGA BGA Signal I/O Signal Control Signal I/O D36 CLK/CLKEN 205 A3 A3 I/O C32 CLK/CLKEN 144 E16 F19 I/O C5 OE 112 N15 I/O D34 MUXsel1 202 B4 A4 I/O C30 MUXsel1 142 F14 F20 I/O C7 MUXsel2 114 M14 R19 I/O D30 MUXsel1 198 A5 A5 I/O A11 MUXsel2 14 F3 G1 I/O C8 CLK 115 M15 R20 I/O D24 CLK/CLKEN 190 C7 A8 I/O A10 MUXsel1 13 E1 G2 I/O A33 OE 41 M1 T1 I/O D20 CLK/CLKEN 186 C8 A9 I/O A9 OE 12 E2 G3 I/O A37 OE 46 N2 T3 I/O D16 CLK/CLKEN 174 D10 A13 I/O A6 MUXsel1 9 D2 G4 I/O C0 CLK/CLKEN 106 P14 T17 I/O D13 OE 171 A12 A14 I/O C34 MUXsel1 146 E15 G17 I/O C3 MUXsel2 109 N14 T18 I/O D8 CLK/CLKEN 164 B13 A16 I/O C31 MUXsel2 143 F15 G18 I/O C4 CLK/CLKEN 111 P16 T20 I/O D5 OE 161 B14 A17 I/O C29 OE 141 F16 G19 I/O A36 CLK/CLKEN 45 N1 U1 I/O D4 CLK/CLKEN 160 C14 A18 I/O C28 CLK/CLKEN 140 G13 G20 I/O A38 MUXsel1 47 N3 U2 I/O D39 MUXsel2 208 A2 B3 I/O A12 CLK/CLKEN 16 F2 H2 I/O B0 CLK/CLKEN 50 P2 U3 I/O D33 OE 201 A4 B5 I/O C27 MUXsel2 138 G15 H19 I/O B10 MUXsel1 61 T4 U7 I/O D29 OE 197 B6 B6 I/O A16 CLK/CLKEN 21 G3 J1 I/O B17 OE 70 T6 U9 I/O D27 MUXsel2 194 A6 B7 I/O A15 MUXsel2 20 G2 J2 I/O B22 MUXsel1 84 T10 U12 I/O D25 OE 191 B7 B8 I/O A14 MUXsel1 19 G4 J3 I/O B30 MUXsel1 94 P12 U14 I/O D21 OE 187 B8 B9 I/O A13 OE 18 F1 J4 I/O B36 CLK/CLKEN 101 R14 U16 I/O D19 MUXsel2 177 C10 B12 I/O C26 MUXsel1 136 G14 J17 I/O C2 MUXsel1 108 R16 U20 I/O D15 MUXsel2 173 B11 B13 I/O C25 OE 135 G16 J18 I/O A39 MUXsel2 48 P1 V1 I/O D11 MUXsel2 167 B12 B15 I/O C24 CLK/CLKEN 134 H13 J19 I/O B1 OE 51 R1 V2 V4 Control Signal 208 208 272 PQFP fpBGA BGA R18 I/O D7 MUXsel2 163 C13 B16 I/O C23 MUXsel2 133 H15 J20 I/O B3 MUXsel2 53 T1 I/O D2 MUXsel1 157 B15 B17 I/O A19 MUXsel2 24 H2 K1 I/O B6 MUXsel1 57 R3 V5 I/O A1 OE 3 B1 C1 I/O A17 OE 22 G1 K2 I/O B9 OE 60 R4 V6 I/O D38 MUXsel1 207 B3 C4 I/O A18 MUXsel1 23 H4 K3 I/O B12 CLK/CLKEN 64 R5 V7 I/O D35 MUXsel2 203 C4 C5 I/O C22 MUXsel1 132 H16 K17 I/O B14 MUXsel1 67 T5 V8 I/O D32 CLK/CLKEN 200 B5 C6 I/O C21 OE 131 H14 K18 I/O B18 MUXsel1 71 N7 V9 I/O D28 CLK/CLKEN 196 C6 C7 I/O C20 CLK/CLKEN 130 J16 K19 I/O B21 OE 83 N9 V12 I/O D26 MUXsel1 192 D7 C8 I/O A20 CLK/CLKEN 26 H3 L2 I/O B25 OE 87 N10 V13 I/O D22 MUXsel1 188 D8 C9 I/O A21 OE 27 H1 L3 I/O B31 MUXsel2 95 R12 V15 I/O D18 MUXsel1 176 B10 C12 I/O A22 MUXsel1 28 J1 L4 I/O B34 MUXsel1 98 T14 V16 I/O D14 MUXsel1 172 C11 C13 I/O C18 MUXsel1 127 J15 L18 I/O B37 OE 102 T15 V17 I/O D12 CLK/CLKEN 169 D11 C14 I/O C17 OE 126 J13 L19 I/O C1 OE 107 P15 V20 I/O D9 OE 165 A13 C15 I/O C19 MUXsel2 128 J14 L20 I/O B2 MUXsel1 52 R2 W4 I/O D6 MUXsel1 162 A14 C16 I/O A23 MUXsel2 29 J3 M1 I/O B7 MUXsel2 58 P4 W5 I/O D3 MUXsel2 158 A15 C17 I/O A24 CLK/CLKEN 30 J2 M2 I/O B11 MUXsel2 62 P5 W6 I/O D1 OE 155 A16 C19 I/O A25 OE 31 J4 M3 I/O B15 MUXsel2 68 R6 W8 I/O C39 MUXsel2 152 C15 C20 I/O A26 MUXsel1 32 K1 M4 I/O B19 MUXsel2 72 R7 W9 I/O A2 MUXsel1 4 C2 D1 I/O C13 OE 122 K13 M17 I/O B20 CLK/CLKEN 82 R9 W12 W13 I/O D37 OE 206 C3 D5 I/O C14 MUXsel1 123 K15 M18 I/O B24 CLK/CLKEN 86 R10 I/O D31 MUXsel2 199 C5 D7 I/O C15 MUXsel2 124 K14 M19 I/O B28 CLK/CLKEN 92 R11 W15 I/O D23 MUXsel2 189 A7 D9 I/O C16 CLK/CLKEN 125 K16 M20 I/O B32 CLK/CLKEN 96 T13 W16 I/O D17 OE 175 A11 D12 I/O A27 MUXsel2 34 K3 N2 I/O B35 MUXsel2 99 P13 W17 I/O D10 MUXsel1 166 C12 D14 I/O C12 CLK/CLKEN 120 L16 N19 I/O B38 MUXsel1 103 T16 W18 I/O D0 CLK/CLKEN 154 B16 D18 I/O A28 CLK/CLKEN 36 K2 P1 I/O B4 CLK/CLKEN 55 P3 Y3 I/O C38 MUXsel1 151 D14 D19 I/O A29 OE 37 K4 P2 I/O B5 OE 56 T2 Y4 I/O C36 CLK/CLKEN 149 C16 D20 I/O A31 MUXsel2 39 L2 P3 I/O B8 CLK/CLKEN 59 T3 Y5 I/O A4 CLK/CLK_EN 7 C1 E1 I/O A34 MUXsel1 42 M2 P4 I/O B13 OE 66 N6 Y7 I/O A3 MUXsel2 5 A1 E3 I/O C6 MUXsel1 113 N16 P17 I/O B16 CLK/CLKEN 69 P6 Y8 I/O A0 CLK/CLKEN 2 B2 E4 I/O C9 OE 116 M16 P18 I/O B23 MUXsel2 85 P10 Y13 OE 150 D15 E18 I/O C10 MUXsel1 117 L15 P19 I/O B26 MUXsel1 88 T11 Y14 I/O C37 I/O C33 OE 145 E14 E20 I/O C11 MUXsel2 118 L14 P20 I/O B27 MUXsel2 90 P11 Y15 I/O A8 CLK/CLKEN 11 E3 F1 I/O A30 MUXsel1 38 L1 R1 I/O B29 OE 93 T12 Y16 I/O A7 MUXsel2 10 D1 F2 I/O A32 CLK/CLKEN 40 L3 R2 I/O B33 OE 97 R13 Y17 I/O A5 OE 8 D3 F3 I/O A35 MUXsel2 43 M3 R3 I/O B39 MUXsel2 104 R15 Y19 MUXsel2 147 D16 F18 I/O C35 33 Specifications ispGDX160V/VA Signal Configuration: ispGDX160V/VA ispGDX160V/VA 272-Ball BGA Signal Diagram 20 19 18 17 16 15 14 13 A NC1 NC1 I/O D4 I/O D5 I/O D8 NC1 I/O D13 Y3/ I/O 1 D16 TOE CLKEN3 NC B NC1 NC1 NC1 I/O D2 I/O D7 I/O D11 NC1 I/O D15 I/O D19 C I/O C39 I/O VCCIO I/O D1 VCC2 D3 I/O D6 I/O D9 I/O D12 I/O D14 Y2/ I/O NC1 D18 CLKEN2 D I/O C36 I/O C38 I/O D0 GND NC1 E I/O C33 NC1 I/O C37 NC1 F I/O C30 I/O C32 I/O C35 VCC G I/O C28 I/O C29 I/O C31 H NC1 I/O C27 NC1 GND J I/O C23 I/O C24 I/O C25 I/O C26 GND GND GND GND I/O A13 K NC1 I/O C20 I/O C21 I/O C22 L I/O C19 I/O C17 M I/O C16 N VCC 12 11 10 9 8 7 6 5 4 3 I/O D20 I/O D24 NC1 NC1 I/O D30 I/O D34 I/O D36 NC1 GND A I/O NC1 EPEN D21 I/O D25 I/O D27 I/O D29 I/O D33 NC1 I/O D39 NC1 NC1 B I/O D26 I/O D28 I/O D32 I/O D35 I/O D38 NC1 NC1 I/O A1 C I/O I/O I/O 1 D23 GND D31 VCC D37 GND NC NC1 I/O A2 D I/O I/O GND VCC D10 D17 RESET I/O D22 2 1 I/O A0 I/O A3 NC1 I/O A4 E VCC I/O A5 I/O A7 I/O A8 F I/O A6 I/O A9 I/O A10 I/O A11 G GND NC1 I/O A12 NC1 H I/O A14 I/O A15 I/O A16 J GND GND GND GND I/O VCC A18 I/O A17 I/O A19 K I/O C18 VCC GND GND GND GND I/O A22 I/O A21 I/O A20 NC1 L I/O C15 I/O C14 GND GND GND GND I/O A26 I/O A25 I/O A24 I/O A23 M NC1 I/O C12 NC1 GND GND NC1 I/O A27 NC1 N P I/O C11 I/O C10 I/O C9 I/O C6 I/O A31 I/O A29 I/O A28 P R I/O C8 I/O C7 I/O C5 VCC I/O VCC A35 I/O A32 I/O A30 R T I/O C4 NC1 I/O C3 I/O C0 NC1 I/O A37 NC1 I/O A33 T U I/O C2 NC1 I/O I/O I/O NC1 GND B36 VCC B30 GND B22 TCK I/O I/O VCC B17 GND B10 VCC NC1 GND I/O B0 I/O A38 I/O A36 U V I/O C1 NC1 NC1 I/O B37 I/O B34 I/O B31 NC1 I/O B25 I/O I/O Y0/ B21 TMS CLKEN0 B18 I/O B14 I/O B12 I/O B9 I/O B6 I/O B3 NC1 I/O B1 I/O A39 V W NC1 NC1 I/O B38 I/O B35 I/O B32 I/O B28 NC1 I/O B24 I/O B20 TDO I/O B19 I/O B15 NC1 I/O B11 I/O B7 I/O B2 NC1 NC1 NC1 W Y NC1 I/O B39 NC1 I/O B33 I/O B29 I/O B27 I/O B26 I/O B23 TDI NC1 CLKEN1 NC1 I/O B16 I/O B13 NC1 I/O B8 I/O B5 I/O B4 NC1 NC1 Y 20 19 18 17 16 15 14 13 12 11 8 7 6 5 4 3 2 1 ispGDX160V/VA I/O C34 Bottom View I/O C13 I/O A34 NC1 Y1/ 10 1. NCs are not to be connected to any active signals, Vcc or GND. 2. VCCIO on ispGDX160VA. VCC on ispGDX160V. 34 9 Specifications ispGDX160V/VA Signal Configuration: ispGDX160V/VA ispGDX160V/VA 208-Ball fpBGA Signal Diagram 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 A I/O D1 I/O D3 I/O D6 I/O D9 I/O D13 I/O D17 NC I/O D23 I/O D27 I/O D30 I/O D33 I/O D36 I/O D39 I/O A3 A B I/O D0 I/O D2 I/O D5 I/O D8 I/O D11 I/O D15 Y2/ I/O I/O D18 CLKEN2 D21 I/O D25 I/O D29 I/O D32 I/O D34 I/O D38 I/O A0 I/O A1 B C I/O C36 I/O C39 I/O D4 I/O D7 I/O D10 I/O D14 Y3/ I/O I/O D19 CLKEN3 D20 I/O D24 I/O D28 I/O D31 I/O D35 I/O D37 I/O A2 I/O A4 C D I/O C35 I/O C37 I/O C38 GND VCC I/O D12 I/O D16 I/O D26 VCC VCC GND I/O A5 I/O A6 I/O A7 D E I/O C32 I/O C34 I/O VCCIO/ C33 VCC2 ispGDX160V/VA VCC I/O A8 I/O A9 I/O A10 E F I/O C29 I/O C31 I/O C30 VCC Bottom View VCC I/O A11 I/O A12 I/O A13 F G I/O C25 I/O C27 I/O C26 I/O C28 GND GND GND GND I/O A14 I/O A16 I/O A15 I/O A17 G H I/O C22 I/O C23 I/O C21 I/O C24 GND GND GND GND I/O A18 I/O A20 I/O A19 I/O A21 H J I/O C20 I/O C18 I/O C19 I/O C17 GND GND GND GND I/O A25 I/O A23 I/O A24 I/O A22 J K I/O C16 I/O C14 I/O C15 I/O C13 GND GND GND GND I/O A29 I/O A27 I/O A28 I/O A26 K L I/O C12 I/O C10 I/O C11 VCC VCC I/O A32 I/O A31 I/O A30 L M I/O C9 I/O C8 I/O C7 VCC VCC I/O A35 I/O A34 I/O A33 M N I/O C6 I/O C5 I/O C3 GND VCC VCC I/O B25 I/O I/O Y0/ B21 CLKEN0 B18 P I/O C4 I/O C1 I/O C0 I/O B35 I/O B30 I/O B27 I/O B23 TDI R I/O C2 I/O B39 I/O B36 I/O B33 I/O B31 I/O B28 I/O B24 Y1/ I/O I/O B20 CLKEN1 B19 T I/O B38 I/O B37 I/O B34 I/O B32 I/O B29 I/O B26 I/O B22 TCK TMS NC 16 15 14 13 12 11 10 9 8 7 1 EPEN RESET I/O D22 TOE TDO 1. NCs are not to be connected to any active signals, Vcc or GND. 2. VCCIO on ispGDX160VA. VCC on ispGDX160V. 35 NC 1 1 I/O B13 VCC GND I/O A38 I/O A37 I/O A36 N I/O B16 I/O B11 I/O B7 I/O B4 I/O B0 I/O A39 P I/O B15 I/O B12 I/O B9 I/O B6 I/O B2 I/O B1 R I/O B17 I/O B14 I/O B10 I/O B8 I/O B5 I/O B3 T 6 5 4 3 2 1 Specifications ispGDX160V/VA Pin Configuration: ispGDX160V/VA Control Data VCC I/O A 0 I/O A 1 I/O A 2 I/O A 3 GND I/O A 4 I/O A 5 I/O A 6 I/O A 7 I/O A 8 I/O A 9 I/O A 10 I/O A 11 GND I/O A 12 VCC I/O A 13 I/O A 14 I/O A 15 I/O A 16 I/O A 17 I/O A 18 I/O A 19 GND I/O A 20 I/O A 21 I/O A 22 I/O A 23 I/O A 24 I/O A 25 I/O A 26 VCC I/O A 27 GND I/O A 28 I/O A 29 I/O A 30 I/O A 31 I/O A 32 I/O A 33 I/O A 34 I/O A 35 GND I/O A 36 I/O A 37 I/O A 38 I/O A 39 VCC I/O B 0 I/O B 1 I/O B 2 208 207 206 205 204 203 202 201 200 199 198 197 196 195 194 193 192 191 190 189 188 187 186 185 184 183 182 181 180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 Data — CLK/CLKEN OE MUXsel1 MUXsel2 — CLK/CLKEN OE MUXsel1 MUXsel2 CLK/CLKEN OE MUXsel1 MUXsel2 — CLK/CLKEN — OE MUXsel1 MUXsel2 CLK/CLKEN OE MUXsel1 MUXsel2 — CLK/CLKEN OE MUXsel1 MUXsel2 CLK/CLKEN OE MUXsel1 — MUXsel2 — CLK/CLKEN OE MUXsel1 MUXsel2 CLK/CLKEN OE MUXsel1 MUXsel2 — CLK/CLKEN OE MUXsel1 MUXsel2 — CLK/CLKEN OE MUXsel1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 ispGDX160V/VA Top View Data Control I/O B 3 MUXsel2 GND — I/O B 4 CLK/CLKEN I/O B 5 OE I/O B 6 MUXsel1 I/O B 7 MUXsel2 I/O B 8 CLK/CLKEN I/O B 9 OE I/O B 10 MUXsel1 I/O B 11 MUXsel2 GND — I/O B 12 CLK/CLKEN VCC — I/O B 13 OE I/O B 14 MUXsel1 I/O B 15 MUXsel2 I/O B 16 CLK/CLKEN I/O B 17 OE I/O B 18 MUXsel1 I/O B 19 MUXsel2 1NC — 1NC — CLK_EN0/Y0 — CLK_EN1/Y1 — GND — TDO — TMS — TCK — TDI — I/O B 20 CLK/CLKEN I/O B 21 OE I/O B 22 MUXsel1 I/O B 23 MUXsel2 I/O B 24 CLK/CLKEN I/O B 25 OE I/O B 26 MUXsel1 VCC — I/O B 27 MUXsel2 GND — I/O B 28 CLK/CLKEN I/O B 29 OE I/O B 30 MUXsel1 I/O B 31 MUXsel2 I/O B 32 CLK/CLKEN I/O B 33 OE I/O B 34 MUXsel1 I/O B 35 MUXsel2 GND — I/O B 36 CLK/CLKEN I/O B 37 OE I/O B 38 MUXsel1 I/O B 39 MUXsel2 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 Control I/O D 39 MUXsel2 I/O D 38 MUXsel1 I/O D 37 OE I/O D 36 CLK/CLKEN GND — I/O D 35 MUXsel2 I/O D 34 MUXsel1 I/O D 33 OE I/O D 32 CLK/CLKEN I/O D 31 MUXsel2 I/O D 30 MUXsel1 I/O D 29 OE I/O D 28 CLK/CLKEN GND — I/O D 27 MUXsel2 VCC — I/O D 26 MUXsel1 I/O D 25 OE I/O D 24 CLK/CLKEN I/O D 23 MUXsel2 I/O D 22 MUXsel1 I/O D 21 OE I/O D 20 CLK/CLKEN RESET — VCC — EPEN — GND — Y3/CLK_EN3 — Y2/CLK_EN2 — NC1 — TOE — I/O D 19 MUXsel2 I/O D 18 MUXsel1 I/O D 17 OE I/O D 16 CLK/CLKEN I/O D 15 MUXsel2 I/O D 14 MUXsel1 I/O D 13 OE VCC — I/O D 12 CLK/CLKEN GND — I/O D 11 MUXsel2 I/O D 10 MUXsel1 I/O D 9 OE I/O D 8 CLK/CLKEN I/O D 7 MUXsel2 I/O D 6 MUXsel1 I/O D 5 OE I/O D 4 CLK/CLKEN GND — I/O D 3 MUXsel2 I/O D 2 MUXsel1 ispGDX160V/VA 208-Pin PQFP Pinout Diagram 1. No Connect Pins (NC) are not to be connected to any active signal, Vcc or GND. 2. VCCIO on ispGDX160VA. VCC on ispGDX160V. 36 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 Data Control VCCIO/VCC2 I/O D1 I/O D 0 VCC I/O C 39 I/O C 38 I/O C 37 I/O C 36 GND I/O C 35 I/O C 34 I/O C 33 I/O C 32 I/O C 31 I/O C 30 I/O C 29 I/O C 28 GND I/O C 27 VCC I/O C 26 I/O C 25 I/O C 24 I/O C 23 I/O C 22 I/O C 21 I/O C 20 GND I/O C 19 I/O C 18 I/O C 17 I/O C 16 I/O C 15 I/O C 14 I/O C 13 VCC I/O C 12 GND I/O C 11 I/O C 10 I/O C 9 I/O C 8 I/O C 7 I/O C 6 I/O C 5 I/O C 4 GND I/O C 3 I/O C 2 I/O C 1 I/O C 0 VCC — OE CLK/CLKEN — MUXsel2 MUXsel1 OE CLK/CLKEN — MUXsel2 MUXsel1 OE CLK/CLKEN MUXsel2 MUXsel1 OE CLK/CLKEN — MUXsel2 — MUXsel1 OE CLK/CLKEN MUXsel2 MUXsel1 OE CLK/CLKEN — MUXsel2 MUXsel1 OE CLK/CLKEN MUXsel2 MUXsel1 OE — CLK/CLKEN — MUXsel2 MUXsel1 OE CLK/CLKEN MUXsel2 MUXsel1 OE CLK/CLKEN — MUXsel2 MUXsel1 OE CLK/CLKEN — Specifications ispGDX160V/VA Part Number Description ispGDX XXXXX - X XXXX X Device Family Grade Blank = Commercial I = Industrial Device Number 160V 160VA Speed 3 = 3.5ns Tpd 5 = 5ns Tpd 7 = 7ns Tpd 9 = 9ns Tpd Package Q208 = 208-Pin PQFP B208 = 208-Ball fpBGA B272 = 272-Ball BGA 0212/ispGDXVA Ordering Information COMMERCIAL FAMILY ispGDXVA ispGDXV* tpd (ns) ORDERING NUMBER PACKAGE 3.5 ispGDX160VA-3Q208 208-Pin PQFP 3.5 ispGDX160VA-3B208 208-Ball fpBGA 3.5 ispGDX160VA-3B272 272-Ball BGA 5 ispGDX160VA-5Q208 208-Pin PQFP 5 ispGDX160VA-5B208 208-Ball fpBGA 5 ispGDX160VA-5B272 272-Ball BGA 7 ispGDX160VA-7Q208 208-Pin PQFP 7 ispGDX160VA-7B208 208-Ball fpBGA 7 ispGDX160VA-7B272 272-Ball BGA 5 ispGDX160V-5Q208 208-Pin PQFP 5 ispGDX160V-5B208 208-Ball fpBGA 5 ispGDX160V-5B272 272-Ball BGA 7 ispGDX160V-7Q208 208-Pin PQFP 7 ispGDX160V-7B208 208-Ball fpBGA 7 ispGDX160V-7B272 272-Ball BGA INDUSTRIAL FAMILY ispGDXVA ispGDXV* Table 2-0041A/ispGDXV/A tpd (ns) ORDERING NUMBER PACKAGE 5 ispGDX160VA-5Q208I 208-Pin PQFP 5 ispGDX160VA-5B208I 208-Ball fpBGA 5 ispGDX160VA-5B272I 272-Ball BGA 7 ispGDX160VA-7Q208I 208-Pin PQFP 7 ispGDX160VA-7B208I 208-Ball fpBGA 7 ispGDX160VA-7B272I 272-Ball BGA 9 ispGDX160VA-9Q208I 208-Pin PQFP 9 ispGDX160VA-9B208I 208-Ball fpBGA 9 ispGDX160VA-9B272I 272-Ball BGA 7 ispGDX160V-7Q208I 208-Pin PQFP Table 2-0041C/ispGDXV *Use ispGDX160VA for new designs. Note: The ispGDX160VA devices are dual-marked with both Commercial and Industrial grades. The Industrial speed grade is slower, e.g. ispGDX160VA-3B208-5I. 37