ZILOG 216CO2

CUSTOMER
PROCUREMENTSPECIFICATION
216COl/CO2
CPUCENTRALPROCESSINGUNIT
FEATURES
Part
Zi 6COl
Z16CO2
Memory
Address
8 Mbytes
64 Kbytes
Memory
Extension
48 Mbytes
384 Kbytes
Speed
(MHz)
10
10
H
Extendable Register Files
1
Nine Basic Instruction Types
n
40/48-Pin PDIP and 44-Pin PLCC Packages’
n
Eight User-Selectable Addressing Modes
n
+4.5 I V,, I +5.5-Volt Operating Range
n
Seven Data Types
n
Low-Power CMOS
H
Supports Three Interrupt Types and Four Traps
n
0°C to +70°C Temperature Range
n
RISC-Like Load/Store Architecture
GENERAL DESCRIPTION
The Z16COl/CO2 CPU are members of the 16-bit
processor and controller family. Designed using a
RISC-like Load/Store architecture, the CPU can operate in
either system or normal modes, permitting privileged
operations and improving operating system organization
and implementation.
The processor’s resources include seven data types that
range from bits to 32-bit long words, and byte and word
strings, plus eight user-selectable addressing modes. The
nine basic instruction types can be combined with various
data types and addressing modes to form a powerful set
of 414 instructions.
To boost the main CPU’s performance capability, the
processor core includes hardwired control and is a
16-bit real-time processor functioning at register access
speeds. Register flexibility is created by grouping or
overlapping multiple registers, and by allowing extended
register file capabilities as the system expands. Easy
extended register file control is accomplished through a
single instruction stream communication.
The extended processing architecture features provide a
modular approach to expanding both the hardware and
software capabilities of the Z16COl/CO2.
TheCPUsupportsthreetypesof interrupts (non-maskable,
vectored, and non-vectored) and four traps (system call,
extended process architecture instruction, privileged
instructions, and segmentation trap). The vectored and
non-vectored interrupts are maskable.
cPs95scc0103
(3/95)
Notes:
All Signals with a preceding front slash, “/“, are active Low, e.g.:
B/AN(WORDis active Low); /B/W^(BYTE is active Low, only).
Powerconnections follow conventionaldescriptions below:
Connection
Circuit
Device
Power
Ground
“cc
GND
V DO
“ss
1
216CWCO2 +cPs95sccolo3
~ziLfli5
GENERAL DESCRIPTION (Continued)
Z-Bus
internal Data Bus
0
Z16COO CPU Functional Block Diagram
AD13 c)
AD14 c)
AD13 c)
AD12 c)
AD11 c)
REAMWRITE
hwlM4u/sYsTEM
BYTEWORD
3laius
ST1
ADi ,AM).AD? ,c)
A06 .A& -
~573
~ST2
AD10 c)
zid~i
YBw”
AM .-
3m
A03
.-
A02 .AD1 ,-
IWAlT
/STOP
AW -
iNMI
lnlemlpN
M
INVI
:
:
sN4
sN2
:
:
sN2
SNl
Z16COVCO2 Signal Descriptions
2
Z-Bus
Interface
Z16COlKO2
cPs95scc0103
PIN DESCRIPTION
AD6
SN6
SN5
AD7
AD6
AD4
SN4
AD5
AD3
iD2
AD1
sN2
GND
CLOCK
IAS
NIC
ww
Nils
WIW
BUSACK
IWAIT
/BUSREP
SNO
216CO2 40-Pin PDIP
SNI
216COl 46-Pin PDIP
Z16CO2 44-Pin PLCC
3
Z16COlKO2 +
cPs95scc0103
ABSOLUTE MAXIMUM RATINGS
Voltages on V,, with respect to V,, . ... . .. .. . . .. .-0.3V to +7.OV
Voltages on all inputs with respect to
Vss........““............................................. -0.3V to V,,+O.3V
Storage Temperature.. .... ...... .... .. ..... .... .. ... .-65”C to + 150%
Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operating of the device at
any condition above these indicated in the operational
sectionsof these specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods
may affect device reliability.
STANDARD TEST CONDITIONS
The DC characteristics below apply for the following test
conditions, unless otherwise noted. All voltages are referenced to GND (OV). Positive current flows into the referenced pin.
All AC parameters assume a total load capacitance
(including parasitic capacitances) or 100 pf max, except
for parameter 6 (50 pf max). Timing reference between two
output signals assume a load difference of 50 pf max.
Available operating temperature ranges are:
The Ordering Information section lists package temperature ranges and product numbers.
s = 0°C to +7O”C, + 4.5v s V,,I
(Z16COi,Zl6CO2)
+ 5.5v
E = -4OOC to +lOO”C, + 4.5V IV&
(Z16CO1, Zi 6CO2)
+ 5.5V
DC CHARACTERISTICS
SYm
VCH
VCL
Parameter
ClockinputHighVoltage
ClockinputLowVoltage
InputHighVoltage
VI,
V,, RESET InputHighVoltageon /RESETPin
V,, NMI
InputHighVoltageon NMI Pin
InputLowVoltage
Vi,
VOH
OutputHighVoltage
VOL
OutputLowVoltage
I
InputLeakage
I\ SEGT
InputLeakageon /SEGTPin
IOL
OutputLeakage
V,, PowerSupplyCurrent
ICC
4
MIN
MAX
v&I.4
-0.3
2.0
2.4
2.4
-0.3
2.4
v,,to.3
0.45
v,,to.3
v,$o.3
v,,tD.3
0.8
-100
0.4
L-10
100
*lo
35
Units
Condition
v
v
v
v
v
V
V
Drivenby ExternalClockGenerator
Drivenby ExternalClockGenerator
I”J\
f#I
p4
rnA
b:4;‘:$
I,,=-250uA
+2.4V
0.4V< VIN< t2.4V
10MHz
Z16GOllCO2
cPs95sccolo3
piu3E
’
FOOTNOTES TO AC CHARACTERISTICS
ZlGCOlR
10 MHz
Equation
No.
Symbol
11
13
16
17
19
TdA(DR)
TdDS(A)
TdDW(DS)
TdA(MR)
TwMRh
20
21
22
25
27
TdMR(A)
TdDW(DSW)
TdMR(DR)
TdA(AS)
TdAS(DR)
TwCI-20ns
TwCh-25ns
2TcC-60ns
TwCh-20ns
2TcG60ns
28
29
30
32
33
TdDS(AS)
TwAS
TdAS(A)
TdAS(DSR)
TdDSR(DR)
TwCI-20ns
TwCh-5n.s
TwCI-7Ons
TwCEns
TcCtTwCh-6Ons
’
2TcCtTwCh-6On.s
TwClt5ns
TcCtTwCh-3Ons
TwCh-20ns
TcC-20ns
_
*
35
36
38
40
41
TdDS(DW)
TdA(DSR)
TwDSR
TwDSW
TdDSI(DR)
TwCI-15ns
TcC-35ns
TcCtTwCh-3Ons
TcC-25n.s
2TcC-80ns
43
44
46
48
68
69
TwDS
TdAS(DSA)
TdDSA(DR)
TdS(AS)
TWA
TdDS(s)
2TcC-40ns
4TcCtTwCI-30ns
2TcCtTwCh-75ns
TwCh-20ns
TcCSOns
TwCI-1Ons
ACTimingTestConditions:
VoL=0.8V
VOH=
2.ov
'I,,= 0.8V
V,,= 2.4V
v,,, =0.45v
yHc= v,, - 0.4v
,
Zl6COlKO2 cPs95sccolo3
AC CHARACTERISTICS
No.
Symbol
1
2
3
4
5
6
7
8
9
TcC
ClockCycleTime
TwCh
ClockWidth(High)
TwCl
ClockWidth(Low) ClockFallTime
TfC
TrC
ClockRiseTime
TdC(SNv) Clock+SegmentNumberValid(50pfload)
TdC(SNn) Clocktsegment NumberNotValid
TdC(Bz) , Clockt Bus Float
TdC(A)
ClocktAddressValid
10
11
12
13
14
15
16
1.7
18
19
TdC(Az)
TdA(DR)
TsDR(C)
TdDS(A)
TdC(DW)’
ThDR(DS)
TdDW(DS)
TdA(MR)
TdC(MR)
TwMRh
20
21
22
23
24
25
26
27
28
29
TdMR(A) /MREQ[ AddressNotActive
TdDW(DSW)WriteDataValidto /DS Fall(Write)Delay
TdMR(DR) /MREQ[ReadDataRequiredValid
ClockFall/MREQRiseDelay
TdC(MR)
TdC(ASf) Clock+ /AS Fall Delay
AddressValidto /AS RiseDelay
TdA(AS)
TdC(ASr) Clock[ /AS RiseDelay
TdAS(DR) /AS + ReadDataRequiredValid
TdDS(AS) /DS + /AS Fall Delay
TwAS
/AS Width(Low)
30
31
32
33
34
35
36
37
38
39
/AS t AddressNotActiveDelay
TdAS(A)
TdAz(DSR) AddressFloatto /DS (Read)FallDelay
TdAS(DSR) /AS t /DS (Read)FallDelay
TdDSR(DR) /DS (Read)Fallto ReadDataRequiredValid
TdC(DSr) ClockFallto /OS RiseDelay
TdDS(DW) /DS + WriteDataNotValid
TdA(DSR) AddressValidto /DS (Read)FallDelay
TdC(DSR) ClockRise/DS (Read)FallDelay
TwDSR
/DS (Read)Width(Low)
TdC(DSWj ClockFallto /DS (Write)FallDelay
40
41
42
43
44
45
46
47
TwDSW
TdDSI(DR)
TdC(DSf)
TwDS
TdAS(DSA)
TdC(DSA)
TdDSA(DR)
TdC(S)
6
Parameter
Clock+ AddressFloat
AddressValidto ReadDataRequiredValid
ReadDatato ClockFallSetupTime
/DStAddressActive
Clock+ WriteDataValid
ReadDatato /DS RiseHoldTime
WriteDataValidto /DS RiseDelay
AddressValidto /MREQFallDelay
ClockFallto /MREQFallDelay
/MREQWidth(High)
/DS (Write)Width(Low)
/DS (l/O) [ ReadDataRequiredValid
Clock [ /DS (l/O) FallDelay
/DS (l/O) Width(Low)
/AS t /DS (Acknowledge)
FallDelay
Clock+ /DS (Acknowledge)
FallDelay
/DS (Acknowledge)
[ ReadDataRequiredDelay
ClockRiseto StatusValidDelay
216CO1/2
10 MHz
Min
Max
100
40
40
**
**
**
10
10
50
0
50
50
50
180
20
45*
60
0
110*
20
50
80
20
15*
140*
50
35
20
25
140
20*
35*
30
0
35*
80
30
25*
65*
45
110*
45
75*
120*
45
160
410*
45
165*
50
I
Zl6COllCO2
cPs95sccolo3
~ZllJJE
AC CHARACTERISTICS
(Continued)
216CO112
10 MHz
Min
Max
No.
Symbol
Parameter
48
49
50
51
52
53
54
TdS(AS)
TSR(C)
ThR(C)
TwNMl
TsNMI(C)
TsVI(C)
ThVI(C)
StatusValidto /AS RiseDelay
/RESET
to ClockRiseSetupTime
/RESET
to ClockRiseHoldTime
/NMI Width(Low)
/NMIto ClockRiseSetupTime
/VI, /NVIto ClockRiseSetupTime
/VI, /NVIto ClockRiseHoldTime
55
56
57
58
59
60
61
TsSGT(C)
ThSGT(C)
TsMI(C)
ThMI(C)
TdC(M0)
TsSTP(C)
ThSTP(C)
/SEGTto ClockRiseSetupTime
/SEGTto ClockRiseHoldTime
/Mt to ClockRiseSetupTime
/MI to ClockRiseHoldTime
.
ClockRiseto /MO Delay
/STOPto ClockFallSetupTime
/STOPto ClockFallHoldTime
35
10
35
0
62
63
64
65
66
67
68
69
TsW(C)
ThW(C)
TsBRQ(C)
ThBRQ(C)
TdC(BAKr)
TdC(BAKf)
TWA
TdDS(S)
/WAITto ClockFallSetupTime
/WAITto ClockFallHoldTime
/BUSREQ
to ClockRiseSetupTime
/BUSREQ
to ClockRiseHoldTime,
ClockRiseto /BUSACKRiseDelay
ClockRiseto /BUSACKFallDelay
AddressValidWidth
/DS Riseto STATUSNotValid
20
5
35
5
,
20*
35
0
35
35
35
10
50
35
0
35
35
,. 50*
30
* Clock-cycletime-dependent
characteristics.
SeeFootnotesto AC Characteristics.
** Clockmaybe stopped.
t Unitsin nanoseconds
(ns).
”
,“
7
--
@ziuE
Zl6COllCO2
cPs95sccolo3
COMPOSITE AC TIMING DIAGRAM
This composite liming dia.
gram does not show actual
timing sequences. Refer to
this diagram only for the
detailed timing relationships
of indiwdual edges. Use the
precedtng illustrations as an
exolanation of the various
iitiing sequences.
Trming measurements are
made al the followrng
voltages.
U.^.
I ^...
Clock
oulput
input
FlOal
DATAIN
n
I
Y-READ
INTERRUPT
ACKNOWLEWE
Composite AC liming
6
4.ov
2.ov
2.ov
V
D.8V
0.8V
0.8V
rD.5V
216COllCO2
cPs95scc0103
TIMING DIAGRAMS
i
-5
\
i
I
1
I
I
I
.E
.-E
I%
8
u
216COllCO2'
cPs95scc0103
TIMING DIAGRAMS (Continued)
’
WAIT
CTCLES
ADDEC
(-‘“)
C
.I
8s
IUWT
I
uw
IDIWT
.
.
x
II
‘co(lT
ADDRESS
DATA OUT
II
J
w
OUTWT
Y-t-t10
I
I
Input/Output Timing
T
L
Z16COVCO2
cPs95sccolo3
TIMING DIAGRAMS (Continued)
maL
i
.
@b-we
i
u.
$c
Ix
II
Y
<
191
Interrupt and Segment Trap
Request/Acknowledge liming
-
11
Z16COlKO2 cPs95scc0103
TIMING DIAGRAMS (Continued)
4
CLOCU
AH CVCLLS ADDED
iiD
Iii
/
AD
MAD
YDW ABMESS
)--
(Z)
S
MAO
ns
WNHE
I
Memory Read and Write Timing
Zi 6COWO2
cPs95scc0103
TIMING DIAGRAMS (Continued)
AVWLL-
-E
;..
;..
JJ
//
AD
Bus Request/Acknowledge
Timing
13
Zl6COl/C42 * ;
cPs95sccolo3
’
TIMING DIAGRAMS (Continued)
’
r
Stop Timing
0 1995 byzilog, Inc. All rights reserved. No part of this document
may be copied or reproduced in any form or by any means
without the prior written consent of Zilog, Inc. The information in
this document is subject to change without notice. Devices sold
by Zilog, Inc. are covered bywarrantyand patent indemnification
provisions appearing in Zilog, Inc. Terms and Conditions of Sale
only. Zilog, Inc. makes no warranty, express, statutory, implied or
by description, regarding the information set forth herein or
regarding the freedom of the described devices from intellectual
property infringement. Zilog, Inc. makes no warranty of merchantability or fitness for any purpose. Zilog, Inc. shall not be
responsible for any errors that may appear in this document.
Zilog, Inc. makes no commitment to update or keep current the
information contained in this document.
14
Zilog’s products are not authorized for use as critical components in life support devices or systems unless a specific written
agreement pertaining to such intended use is executed between
the customer and Zilog prior to use. Life support devices or
systems are those which are intended for surgical implantation
into the body, or which sustains life whose failure to perform,
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to result in
significant injury to the user.
Zilog, Inc. 210 East Hacienda Ave.
Campbell, CA 95008-8800
Telephone (408) 370-8000
Telex 91 O-338-7821
FAX 408 370-8058
Internet: http://www.zilog.comMlog
General Questions: infoOzilog.com