LatticeSC/M Family Data Sheet DS1004 Version 02.1, June 2008 LatticeSC/M Family Data Sheet Introduction January 2008 Data Sheet DS1004 Features ■ High Performance FPGA Fabric • 15K to 115K four input Look-up Tables (LUT4s) • 139 to 942 I/Os • 700MHz global clock; 1GHz edge clocks ■ 4 to 32 High Speed SERDES and flexiPCS™ (per Device) • Performance ranging from 600Mbps to 3.8Gbps • Excellent Rx jitter tolerance (0.8UI at 3.125Gbps) • Low Tx jitter (0.25UI typical at 3.125Gbps) • Built-in Pre-emphasis and equalization • Low power (typically 105mW per channel) • Embedded Physical Coding Sublayer (PCS) provides pre-engineered implementation for the following standards: – GbE, XAUI, PCI Express, SONET, Serial RapidIO, 1G Fibre Channel, 2G Fibre Channel ■ 2Gbps High Performance PURESPEED™ I/O • Supports the following performance bandwidths – Differential I/O up to 2Gbps DDR (1GHz Clock) – Single-ended memory interfaces up to 800Mbps • 144 Tap programmable Input Delay (INDEL) block on every I/O dynamically aligns data to clock for robust performance – Dynamic bit Adaptive Input Logic (AIL) monitoring and control circuitry per pin that automatically ensures proper set-up and hold – Dynamic bus: uses control bus from DLL – Static per bit • Electrical standards supported: – LVCMOS 3.3/2.5/1.8/1.5/1.2, LVTTL – SSTL 3/2/18 I, II; HSTL 18/15 I, II – PCI, PCI-X – LVDS, Mini-LVDS, Bus-LVDS, MLVDS, LVPECL, RSDS, Hypertransport • Programmable On Die Termination (ODT) – Includes Thevenin Equivalent and low power VTT termination options ■ Memory Intensive FPGA • sysMEM™ embedded Block RAM – 1 to 7.8 Mbits memory – True Dual Port/Pseudo Dual Port/Single Port – Dedicated FIFO logic for all block RAM – 500MHz performance • Additional 240K to 1.8Mbits distributed RAM ■ sysCLOCK™ Network • Eight analog PLLs per device – Frequency range from 15MHz to 1GHz – Spread spectrum support • 12 DLLs per device with direct control of I/O delay – Frequency range from 100MHz to 700MHz • Extensive clocking network – 700MHz primary and 325 MHz secondary clocks – 1GHz I/O-connected edge clocks • Precision Clock Divider – Phase matched x2 and x4 division of incoming clocks • Dynamic Clock Select (DCS) – Glitch free clock MUX ■ Masked Array for Cost Optimization (MACO™) Blocks • On-chip structured ASIC Blocks provide preengineered IP for low power, low cost system level integration ■ High Performance System Bus • Ties FPGA elements together with a standard bus framework – Connects to peripheral user interfaces for run-time dynamic configuration ■ System Level Support • IEEE standard 1149.1 Boundary Scan, plus ispTRACY™ internal logic analyzer • IEEE Standard 1532 in-system configuration • 1.2V and 1.0V operation • Onboard oscillator for initialization and general use • Embedded PowerPC microprocessor interface • Low cost wire-bond and high pin count flip-chip packaging • Low cost SPI Flash RAM configuration © 2008 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 1-1 DS1004 Introduction_01.6 Introduction LatticeSC/M Family Data Sheet Lattice Semiconductor Table 1-1. LatticeSC Family Selection Guide Device SC15 SC25 SC40 SC80 SC115 LUT4s (K) 15 25 40 80 115 sysMEM Blocks (18Kb) 56 104 216 308 424 Embedded Memory (Mbits) 1.03 1.92 3.98 5.68 7.8 Max. Distributed Memory (Mbits) 0.24 0.41 0.65 1.28 1.84 Number of 3.8Gbps SERDES (Max.) 8 16 16 32 32 DLLs 12 12 12 12 12 Analog PLLs 8 8 8 8 8 MACO Blocks 4 6 10 10 12 Package I/O/SERDES Combinations (1mm ball pitch) 256-ball fpBGA (17 x 17mm) 139/4 900-ball fpBGA (31 x 31mm) 300/8 378/8 1020-ball fcBGA (33 x 33mm) 476/16 1152-ball fcBGA (35 x 35mm) 562/16 604/16 1704-ball fcBGA (42.5 x 42.5mm) 660/16 660/16 904/32 942/32 Note: The information in this preliminary data sheet is by definition not final and subject to change. Please consult the Lattice website and your local Lattice sales manager to ensure you have the latest information regarding the specifications for these products as you make critical design decisions. The LatticeSCM devices add MACO-enabled IP functionality to the base LatticeSC devices. Table 1-2 shows the type and number of each pre-engineered IP core. Table 1-2. LatticeSCM Family SCM15 SCM25 SCM40 SCM80 SCM115 flexiMAC Blocks • 1GbE Mode • 10GbE Mode • PCI Express Mode Device 1 2 2 2 4 SPI4.2 Blocks 1 2 2 2 2 Memory Controller Blocks • DDR/DDR2 DRAM Mode • QDR II/II+ SRAM Mode • RLDRAM I • RLDRAM II CIO/SIO 1 2 2 2 2 Low Speed CDR Blocks 0 0 2 2 2 PCI Express LTSSM (PHY) Blocks 1 0 2 2 2 Note: See each IP core user’s guide for more information about support for specific LatticeSCM devices. Introduction The LatticeSC family of FPGA combines a high-performance FPGA fabric, high-speed SERDES, high-performance I/Os and large embedded RAM in a single industry leading architecture. This FPGA family is fabricated in a state of the art technology to provide one of the highest performing FPGAs in the industry. This family of devices includes features to meet the needs of today’s communication network systems. These features include SERDES with embedded advance PCS (Physical Coding sub-layer), up to 7.8 Mbits of sysMEM embedded block RAM, dedicated logic to support system level standards such as RAPIDIO, HyperTransport, SPI4.2, SFI-4, UTOPIA, XGMII and CSIX. The devices in this family feature clock multiply, divide and phase shift PLLs, numerous DLLs and dynamic glitch free clock MUXs which are required in today’s high end system designs. High speed, high bandwidth I/O make this family ideal for high throughput systems. 1-2 Introduction LatticeSC/M Family Data Sheet Lattice Semiconductor The ispLEVER® design tool from Lattice allows large complex designs to be efficiently implemented using the LatticeSC family of FPGA devices. Synthesis library support for LatticeSC is available for popular logic synthesis tools. The ispLEVER tool uses the synthesis tool output along with the constraints from its floor planning tools to place and route the design in the LatticeSC device. The ispLEVER tool extracts the timing from the routing and backannotates it into the design for timing verification. Lattice provides many pre-designed IP (Intellectual Property) ispLeverCORE™ modules for the LatticeSC family. By using these IPs as standardized blocks, designers are free to concentrate on the unique aspects of their design, increasing their productivity. Innovative high-performance FPGA architecture, high-speed SERDES with PCS support, sysMEM embedded memory and high performance I/O are combined in the LatticeSC to provide excellent performance for today’s leading edge systems designs. Table 1-3 details the performance of several common functions implemented within the LatticeSC. Table1-3. Speed Performance for Typical Functions1 Performance (MHz)2 Functions 32-bit Address Decoder 539 64-bit Address Decoder 517 32:1 Multiplexer 779 64-bit Adder (ripple) 353 32x8 Distributed Single Port (SP) RAM 768 64-bit Counter (up or down counter, non-loadable) 369 True Dual-Port 1024x18 bits 372 FIFO Port A: x36 bits, B: x9 bits 375 1. For additional information, see Typical Building BLock Function Performance table in this data sheet. 2. Advance information (-7 speed grade). 1-3 LatticeSC/M Family Data Sheet Architecture June 2008 Data Sheet DS1004 Architecture Overview The LatticeSC architecture contains an array of logic blocks surrounded by Programmable I/O Cells (PIC). Interspersed between the rows of logic blocks are rows of sysMEM Embedded Block RAM (EBR). The upper left and upper right corners of the devices contain SERDES blocks and their associated PCS blocks, as show in Figure 2-1. Top left and top right corner of the device contain blocks of SERDES. Each block of SERDES contains four channels (quad). Each channel contains a single serializer and de-serializer, synchronization and word alignment logic. The SERDES quad connects with the Physical Coding Sub-layer (PCS) blocks that contain logic to simultaneously perform alignment, coding, de-coding and other functions. The SERDES quad block has separate supply, ground and reference voltage pins. The PICs contain logic to facilitate the conditioning of signals to and from the I/O before they leave or enter the FPGA fabric. The block provides DDR and shift register capabilities that act as a gearbox between high speed I/O and the FPGA fabric. The blocks also contain programmable Adaptive Input Logic that adjusts the delay applied to signals as they enter the device to optimize setup and hold times and ensure robust performance. sysMEM EBRs are large dedicated fast memory blocks. They can be configured as RAM, ROM or FIFO. These blocks have dedicated logic to simplify the implementation of FIFOs. The PFU, PIC and EBR blocks are arranged in a two-dimensional grid with rows and columns as shown in Figure 2-1. These blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources. The corners contain the sysCLOCK Analog Phase Locked Loop (PLL) and Delay Locked Loop (DLL) Blocks. The PLLs have multiply, divide and phase shifting capability; they are used to manage the phase relationship of the clocks. The LatticeSC architecture provides eight analog PLLs per device and 12 DLLs. The DLLs provide a simple delay capability and can also be used to calibrate other delays within the device. Every device in the family has a JTAG Port with internal Logic Analyzer (ispTRACY) capability. The sysCONFIG™ port which allows for serial or parallel device configuration. The system bus simplifies the connections of the external microprocessor to the device for tasks such as SERDES and PCS configuration or interface to the general FPGA logic. The LatticeSC devices use 1.2V as their core voltage operation with 1.0V operation also possible. © 2008 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 2-1 DS1004 Architecture_01.9 Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor Figure 2-1. Simplified Block Diagram (Top Level) Quad SERDES Quad SERDES sysCLOCK Analog PLLs Physical Coding Sublayer (PCS) sysCLOCK DLLs Programmable I/O Cell (PIC) includes PURESPEED I/O Interface Structured ASIC Block (MACO) Programmable Function Unit (PFU) Each PIC contains four Programmable I/Os (PIO) sysMEM Embedded Block RAM (EBR) Three PICs per four PFUs sysCLOCK Analog PLLs sysCLOCK DLLs 2-2 Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor PFU Blocks The core of the LatticeSC devices consists of PFU blocks. The PFUs can be programmed to perform Logic, Arithmetic, Distributed RAM and Distributed ROM functions. Each PFU block consists of four interconnected slices, numbered 0-3 as shown in Figure 2-2. All the interconnections to and from PFU blocks are from routing. There are 53 inputs and 25 outputs associated with each PFU block. Figure 2-2. PFU Diagram From Routing LUT4 & CARRY LUT4 & CARRY LUT4 & CARRY Slice 0 D FF/ Latch D FF/ Latch LUT4 & CARRY LUT4 & CARRY Slice 1 D FF/ Latch LUT4 & CARRY LUT4 & CARRY Slice 3 Slice 2 D FF/ Latch D FF/ Latch LUT4 & CARRY D FF/ Latch D FF/ Latch D FF/ Latch To Routing Slice Each slice contains two LUT4 lookup tables feeding two registers (programmed to be in FF or Latch mode), and some associated logic that allows the LUTs to be combined to implement 5, 6, 7 and 8 Input LUTs (LUT5, LUT6, LUT7 and LUT8). There is control logic to perform set/reset functions (programmable as synchronous/asynchronous), clock select, chip-select and wider RAM/ROM functions. Figure 2-3 shows an overview of the internal logic of the slice. The registers in the slice can be configured for positive/negative and edge/level clocks. There are 14 input signals: 13 signals from routing and one from the carry-chain (from adjacent slice or PFU). There are seven outputs: six to routing and one to carry-chain (to adjacent PFU). Table 2-1 lists the signals associated with each slice. 2-3 Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor Figure 2-3. Slice Diagram FCO from Slice/PFU, FCI into Different Slice/PFU Slice OFX1 A1 B1 C1 D1 CO F1 F Q1 D LUT4 & CARRY FF/ Latch CI From Routing To Routing M1 M0 OFX0 LUT Expansion Mux CO A0 B0 C0 D0 LUT4 & CARRY F0 F OFX0 FF/ Latch CI Control Signals selected and inverted per slice in routing Q0 D CE CLK LSR FCI into Slice/PFU, FCO from Different Slice/PFU Note: some interslice signals not shown. Table 2-1. Slice Signal Descriptions Function Type Input Data signal A0, B0, C0, D0 Inputs to LUT4 Signal Names Input Data signal A1, B1, C1, D1 Inputs to LUT4 Input Multi-purpose M0 Description Multipurpose Input Input Multi-purpose M1 Multipurpose Input Input Control signal CE Clock Enable Input Control signal LSR Local Set/Reset Input Control signal CLK System Clock Input Inter-PFU signal FCI Fast Carry In1 Output Data signals F0, F1 Output Data signals Q0, Q1 Output Data signals OFX0 Output of a LUT5 MUX Output Data signals OFX1 Output of a LUT6, LUT7, LUT82 MUX depending on the slice Output Inter-PFU signal FCO For the right most PFU the fast carry chain output2 LUT4 output register bypass signals Register Outputs 1. See Figure 2-2 for connection details. 2. Requires two PFUs. 2-4 Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor Modes of Operation Each Slice is capable of four modes of operation: Logic, Ripple, RAM and ROM. Table 2-2 lists the modes and the capability of the Slice blocks. Table 2-2. Slice Modes Logic PFU Slice LUT 4x2 or LUT 5x1 Ripple RAM ROM 2-bit Arithmetic Unit SPR 16x2 DPR 16x2 ROM 16x2 Logic Mode In this mode, the LUTs in each Slice are configured as combinatorial lookup tables. A LUT4 can have 16 possible input combinations. Any logic function with four inputs can be generated by programming this lookup table. Since there are two LUT4s per Slice, a LUT5 can be constructed within one Slice. Larger lookup tables such as LUT6, LUT7 and LUT8 can be constructed by concatenating other Slices in the PFU. Ripple Mode Ripple mode allows the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each Slice: • • • • • Addition 2-bit Subtraction 2-bit Up counter 2-bit Down counter 2-bit Comparator functions of A and B inputs - A greater-than-or-equal-to B - A not-equal-to B - A less-than-or-equal-to B Ripple Mode includes an optional configuration that performs arithmetic using fast carry chain methods. In this configuration (also referred to as CCU2 mode) two additional signals, Carry Generate and Carry Propagate, are generated on a per slice basis to allow fast arithmetic functions to be constructed by concatenating Slices. RAM Mode In this mode, distributed RAM can be constructed using each LUT block as a 16x1-bit memory. Through the combination of LUTs and Slices, a variety of different memories can be constructed. The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the Slice. Table 2-3 shows the number of Slices required to implement different distributed RAM primitives. Dual port memories involve the pairing of two Slices, one Slice functions as the read-write port. The other companion Slice supports the readonly port. For more information on RAM mode, please see details of additional technical documentation at the end of this data sheet. Table 2-3. Number of Slices Required For Implementing Distributed RAM SPR16x2 DPR16x2 1 2 Number of Slices Note: SPR = Single Port RAM, DPR = Dual Port RAM ROM Mode The ROM mode uses the same principal as the RAM modes, but without the Write port. Pre-loading is accomplished through the programming interface during configuration. 2-5 Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor PFU Modes of Operation Slices can be combined within a PFU to form larger functions. Table 2-4 tabulates these modes and documents the functionality possible at the PFU level. Table 2-4. PFU Modes of Operation Ripple RAM ROM LUT 4x8 or MUX 2x1 x 8 Logic 2-bit Add x 4 SPR 16x2 x 4 DPR 16x2 x 2 ROM 16x1 x 8 LUT 5x4 or MUX 4x1 x 4 2-bit Sub x 4 SPR 16x4 x 2 DPR 16x4 x 1 ROM 16x2 x 4 LUT 6x2 or MUX 8x1 x 2 2-bit Counter x 4 SPR 16x8 x 1 ROM 16x4 x 2 LUT 7x1 or MUX 16x1 x 1 2-bit Comp x 4 ROM 16x8 x1 Routing There are many resources provided in the LatticeSC devices to route signals individually or as busses with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments. The inter-PFU connections are made with x1 (spans two PFU), x2 (spans three PFU) and x6 (spans seven PFU) resources. The x1 and x2 connections provide fast and efficient connections in horizontal, vertical and diagonal directions. All connections are buffered to ensure high-speed operation even with long high-fanout connections. The ispLEVER design tool takes the output of the synthesis tool and places and routes the design. Generally, the place and route tool is completely automatic, although an interactive routing editor is available to optimize the design. sysCLOCK Network The LatticeSC devices have three distinct clock networks for use in distributing high-performance clocks within the device: primary clocks, secondary clocks and edge clocks. In addition to these dedicated clock networks, users are free to route clocks within the device using the general purpose routing. Figure 2-4 shows the clock resources available to each slice. Figure 2-4. Slice Clock Selection Primary Clock Secondary Clock 12 6 Clock to Slice Routing GND Note: GND is available to switch off the network. Primary Clock Sources LatticeSC devices have a wide variety of primary clock sources available. Primary clocks sources consists of the following: • Primary clock input pins • Edge clock input pins • Two outputs per DLL 2-6 Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor • • • • Two outputs per PLL Clock divider outputs Digital Clock Select (DCS) block outputs Three outputs per SERDES quad Figure 2-5 shows the arrangement of the primary clock sources. Figure 2-5. Clock Sources Primary/ Edge Clock PIOs Edge Clock PIOs PLL PLL PLL DLL Primary/ Edge Clock PIOs SERDES DCS PLL SERDES DCS Clock Dividers (3 per SERDES Channel) (3 per SERDES Channel) DLL Primary/ Edge Clock PIOs DLL DLL 4 Edge Clock PIOs Edge Clock PIOs DCS DCS Primary Clock Sources Primary/ Edge Clock PIOs 24 24 DCS Clock Dividers DCS Clock Dividers DLL DLL DLL DLL 8 DLL DLL DLL DLL PLL Primary/ Edge Clock PIOs Clock Dividers DCS DCS Clock Dividers PLL PLL PLL Edge Clock PIOs Primary/ Edge Clock PIOs Edge Clock PIOs Primary/ Edge Clock PIOs Primary Clock Routing The clock routing structure in LatticeSC devices consists of 12 Primary Clock lines per quadrant. The primary clocks are generated from 64:1 MUXs located in each quadrant. Three of the inputs to each 64:1 MUX comes from local routing, one is connected to GND and rest of the 60 inputs are from the primary clock sources. Figure 2-6 shows this clock routing. 2-7 Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor Figure 2-6. Per Quadrant Clock Selection 12 feedlines per quadrants 4 + Clock 12 feedlines 60times Primary Sourcesfrom upper and lower half From Local Routing 3 From Local Routing 60 GND 3 From Local Routing 60 GND 3 60 GND 12 Primary 12 Primary Clock per Clocks Quadrants Note: GND is available to switch off the network. Secondary Clocks In addition to the primary clock network and edge clocks the LatticeSC devices also contain a secondary clock network. Built of X6 style routing elements this secondary clock network is ideal for routing slower speed clock and control signals throughout the device preserving high-speed clock networks for the most timing critical signals. Edge Clocks LatticeSC devices have a number of high-speed edge clocks that are intended for use with the PIOs in the implementation of high-speed interfaces. There are eight edge clocks per bank for the top and bottom of the device. The left and right sides have eight edge clocks per side for both banks located on that side. Figure 2-7 shows the arrangement of edge clocks. Edge clock resources can be driven from a variety of sources. Edge clock resources can be driven from: • • • • • Edge clock PIOs in the same bank Primary clock PIOs in the same bank Routing Adjacent PLLs and DLLs ELSR output from the clock divider 2-8 Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor Figure 2-7. Edge Clock Resources Bank 1 SERDES SERDES Bank 2 Bank 7 Edge clock Bank 3 Bank 6 Bank 5 Bank 4 Precision Clock Divider Each set of edge clocks has four high-speed dividers associated with it. These are intended for generating a slower speed system clock from the high-speed edge clock. The block operates in a DIV2 or DIV4 mode and maintains a known phase relationship between the divided down clock and high-speed clock based on the release of its reset signal. The clock dividers can be fed from selected PIOs, PLLs and routing. The clock divider outputs serve as primary clock sources. This circuit also generates an edge local set/reset (ELSR) signal which is fed to the PIOs via the edge clock network and is used for the rest of the I/O gearing logic. Figure 2-8. Clock Divider Circuit Divided clock S/R S/R S/R S/R Clock derived from selected PIOs, PLLs and routing ELSR LSR Register chain to synchronize LSR to clock input Dynamic Clock Select (DCS) The DCS is a global clock buffer with smart multiplexer functions. It takes two independent input clock sources and outputs a clock signal without any glitches or runt pulses. This is achieved irrespective of where the select signal is 2-9 Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor toggled. There are eight DCS blocks per device, located in pairs at the center of each side. Figure 2-9 illustrates the DCS Block diagram. Figure 2-9. DCS Block Diagram CLK0 CLK1 DCS DCSOUT SEL Figure 2-10 shows timing waveforms for one of the DCS operating modes. The DCS block can be programmed to other modes. For more information on the DCS, please see details of additional technical documentation at the end of this data sheet. Figure 2-10. DCS Waveforms CLK0 CLK1 SEL DCSOUT Clock Boosting There are programmable delays available in the clock signal paths in the PFU, PIC and EBR blocks. These allow setup and clock-to-output times to be traded to meet critical timing without slowing the system clock. If this feature is enabled then the design tool automatically uses these delays to improve timing performance. Global Set/Reset There is a global set/reset (GSR) network on the device that is distributed to all FFs, PLLs, DLLs and other blocks on the device. This GSR network can operate in two modes: a) asynchronous - no clock is required to get into or out of the reset state. b) synchronous - The global GSR net is synchronized to a user selected clock. In this mode it continues to be asynchronous to get into the reset state, but is synchronous to get out of the reset state. This allows all registers on the device to become operational in the same clock period. The synchronous GSR goes out of reset in two cycles from the clock edge where the setup time of the FF was met (not from the GSR being released). sysCLOCK Phase Locked Loops (PLLs) The sysCLOCK PLLs provide the ability to synthesize clock frequencies. Each PLL has four dividers associated with it: input clock divider, feedback divider and two clock output dividers. The input divider is used to divide the input clock signal, while the feedback divider is used to multiply the input clock signal. 2-10 Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor The setup and hold times of the device can be improved by programming a delay in the feedback or input path of the PLL which will advance or delay the output clock with reference to the input clock. This delay can be either programmed during configuration or can be adjusted dynamically. The Phase Select block can modify the phase of the clock signal if desired. The Spread Spectrum block supports the modulation of the PLL output frequency. This reduces the peak energy in the fundamental and its harmonics providing for lower EMI (Electro Magnetic Interference). The sysCLOCK PLL can be configured at power-up and then, if desired, reconfigured dynamically through the serial memory interface bus which connects with the on-chip system bus. For example, the user can select inputs, loop filters, divider setting, delay settings and phase shift settings. The user can also directly access the SMI bus through the routing. The PLL clock input, from pin or routing, feeds into an input divider. There are four sources of feedback signal to the feedback divider: from the clock net, directly from the voltage controlled oscillator (VCO) output, from the routing or from an external pin. The signal from the input clock divider and the feedback divider are passed through the programmable delay before entering the phase frequency detector (PFD) unit. The output of this PFD is used to control the voltage controlled oscillator. There is a PLL_LOCK signal to indicate that VCO has locked on to the input clock signal. Figure 2-11 shows the sysCLOCK PLL diagram. Figure 2-11. PLL Diagram CLKOP CLKI Div Div Prog Delay PFD CLKFB Div RSTN VCO/ Loop Filter Phase Adjust Prog Delay Prog Delay Div CLKOS Optional Internal Feedback From PFD LOCK For more information on the PLL, please see details of additional technical documentation at the end of this data sheet. Spread Spectrum Clocking (SSC) The PLL supports spread spectrum clocking to reduce peak EMI by using “down-spread” modulation. The spread spectrum operation will vary the output frequency (at 30KHz to 500KHz) in a range that is between its nominal value, down to a frequency that is a programmable 1%, 2%, or 3% lower than normal. Digital Locked Loop (DLLs) In addition to PLLs, the LatticeSC devices have up to 12 DLLs per device. DLLs assist in the management of clocks and strobes. DLLs are well suited to applications where the clock may be stopped or transferring jitter from input to output is important, for example forward clocked interfaces. PLLs are good for applications requiring the lowest output jitter or jitter filtering. All DLL outputs are routed as primary/edge clock sources. The DLL has two independent clock outputs, CLKOP and CLKOS. These outputs can individually select one of the outputs from the tapped delay line. The CLKOS has optional fine phase shift and divider blocks to allow this output to be further modified, if required. The fine phase shift block allows the CLKOS output to phase shifted a further 45, 22.5 or 11.25 degrees relative to its normal position. LOCK output signal is asserted when the DLL is locked. The ALU HOLD signal setting allows users to freeze the DLL at its current delay setting. 2-11 Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor There is a Digital Control (DCNTL) bus available from the DLL block. This Digital Control bus is available to the delay lines in the PIC blocks in the adjacent banks. The UDDCNTL signal allows the user to latch the current value on the digital control bus. Figure 2-12 shows the DLL block diagram of the DLL inputs and outputs. The output of the phase frequency detector controls an arithmetic logic unit (ALU) to add or subtract one delay tap. The digital output of this ALU is used to control the delay value of the delay chain and this digital code is transmitted via the DCNTL bus. The sysCLOCK DLL can be configured at power-up, then, if desired, reconfigured dynamically through the Serial Memory Interface bus which interfaces with the on-chip Microprocessor Interface (MPI) bus. In addition, users can drive the SMI interface from routing if desired. The user can configure the DLL for many common functions such as clock injection match and single delay cell. Lattice provides primitives in its design for time reference delay (DDR memory) and clock injection delay removal. Figure 2-12. DLL Diagram CLKI PFD Phase Adj Duty50 Phase Adj Duty50 Delay Chain CLKFB ALU CLKOP CLKOS LOCK ALUHOLD DCNTL Gen UDDCNTL DCNTL RSTN PLL/DLL Cascading The LatticeSC devices have been designed to allow certain combinations of PLL and DLL cascading. The allowable combinations are as follows: • • • • PLL to PLL PLL to DLL DLL to DLL DLL to PLL DLLs are used to shift the clock in relation to the data for source synchronous inputs. PLLs are used for frequency synthesis and clock generation for source synchronous interfaces. Cascading PLL and DLL blocks allows applications to utilize the unique benefits of both DLL and PLLs. When cascading the DLL to the PLL, the DLL can be used to drive the PLL to create fine phase shifts of an input clock signal. Figure 2-13 shows a shift of all outputs for CLKOP and CLKOS out in time. 2-12 Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor Figure 2-13. DLL to PLL CLKOP CLKI DLL CLKOS PLL CLKOS SMI Bus Figure 2-14 shows a shift of only CLKOP out in time. Figure 2-14. PLL to DLL CLKI PLL CLKOP DLL CLKOS SMI Bus Figure 2-15 shows a shift of only CLKOS out in time. Figure 2-15. PLL to DLL CLKI PLL CLKOS DLL CLKOS SMI Bus For further information on the DLL, please see details of additional technical documentation at the end of this data sheet. sysMEM Memory Block The sysMEM block can implement single port, true dual port, pseudo dual port or FIFO memories. Dedicated FIFO support logic allows the LatticeSC devices to efficiently implement FIFOs without consuming LUTs or routing resources for flag generation. Each block can be used in a variety of depths and widths as shown in Table 2-5. Memory with ranges from x1 to x18 in all modes: single port, pseudo-dual port and FIFO also providing x36. 2-13 Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor Table 2-5. sysMEM Block Configurations Memory Mode Configurations Single Port 16,384 x 1 8,192 x 2 4,096 x 4 2,048 x 9 1,024 x 18 512 x 36 True Dual Port 16,384 x 1 8,192 x 2 4,096 x 4 2,048 x 9 1,024 x 18 Pseudo Dual Port 16,384 x 1 8,192 x 2 4,096 x 4 2,048 x 9 1,024 x 18 512 x 36 FIFO 16,384 x 1 8,192 x 2 4,096 x 4 2,048 x 9 1,024 x 18 512 x 36 Bus Size Matching All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1 and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port. RAM Initialization and ROM Operation If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM. Single, Dual and Pseudo-Dual Port Modes In all the sysMEM RAM modes the input data and address for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the output. A clock is required even in asynchronous read mode. The EBR memory supports two forms of write behavior for dual port operation: 1. Normal — data on the output appears only during a read cycle. During a write cycle, the data (at the current address) does not appear on the output. 2. Write Through — a copy of the input data appears at the output of the same port. FIFO Configuration The FIFO has a write port with Data-in, WCE, WE and WCLK signals. There is a separate read port with Data-out, RCE, RE and RCLK signals. The FIFO internally generates Almost Full, Full, Almost Empty, and Empty Flags. The Full and Almost Full flags are registered with WCLK. The Empty and Almost Empty flags are registered with RCLK. 2-14 Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor EBR Asynchronous Reset EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the reset is applied and released a clock cycle after the low-to-high transition of the reset, as shown in Figure 2-16. Figure 2-16. EBR Asynchronous Reset (Including GSR) Timing Diagram Reset Clock Clock Enable If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after the EBR read and write clock inputs are in a steady state condition for a minimum of 1/fMAX (EBR clock). The reset release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge. If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during device Wake Up must occur before the release of the device I/Os becoming active. These instructions apply to all EBR RAM, ROM, FIFO and shift register implementations. For the EBR FIFO mode, the GSR signal is always enabled and the WE and RE signals act like the clock enable signals in Figure 2-16. The reset timing rules apply to the RPReset input vs. the RE input and the RST input vs. the WE and RE inputs. Both RST and RPReset are always asynchronous EBR inputs. For the EBR shift register mode, the GSR signal is always enabled and the local RESET pin is always asynchronous. Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled. For more information about on-chip memory, see TN1094, On-Chip Memory Usage Guide for LatticeSC Devices. Programmable I/O Cells (PIC) Each PIC contains four PIOs connected to their respective PURESPEED I/O Buffer which are then connected to the PADs as shown in Figure 2-17. The PIO Block supplies the output data (DO) and the Tri-state control signal (TO) to PURESPEED I/O buffer, and receives input (DI) from the buffer. The PIO contains advanced capabilities to allow the support of speeds up to 2Gbps. These include dedicated shift and DDR logic and adaptive input logic. The dedicated resources simplify the design of robust interfaces. 2-15 Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor Figure 2-17. PIC Diagram PIO A TD Tristate Register Block IOLT0 DO TO OPOS0 ONEG0 OPOS1 ONEG1 OPOS2 ONEG2 OPOS3 ONEG3 PADA "T" Output Register Block DO PURESPEED I/O Buffer INCK INDD INFF IPOS0 INEG0 IPOS1 INEG1 IPOS2 INEG2 IPOS3 INEG3 RUNAIL LOCK CLK CE LSR GSRN ELSR ECLK DI DI Input Register Block (including delay and AIL elements*) HCLKOUT LCLKOUT CEO LSRO GSR LSRO HCLKIN LCLKIN Control Muxes UPDATE Update Block POS Update NEG Update PIO B PADB “C” PIO C PADC “T” PIO D PADD “C” *AIL only on A or C pads located on the left, right and bottom of the device. The A/B PIOs on the left and the right of the device can be paired to form a differentiated driver. The A/B and C/D PIOs on all sides of the device can be paired to form differential receivers. Either A or C PIOs on all sides except the one on top also provide a connection to an adaptive input logic capability that facilitates the implementation of 2-16 Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor high-speed interfaces in the LatticeSC devices. Figure 2-18 shows how differential receivers and drivers are arranged between PIOs. Figure 2-18. Differential Drivers and Receivers PIO A PADA "T" PIO B PADB "C" PIO C PADC "T" PIO D PADD "C" *Differential Driver only available on right and left of the device. PIO The PIO contains five blocks: an input register block, output register block, tristate register block, update block, and a control logic block. These blocks contain registers for both single data rate (SDR), double data rate (DDR), and shift register operation along with the necessary clock and selection logic. Input Register Block The input register block contains delay elements and registers that can be used to condition signals before they are passed to the device core. Figure 2-20 show the diagram of the input register block. The signal from the PURESPEED I/O buffer (DI) enters the input register block and can be used for three purposes, as a source for the combinatorial (INDD) and clock outputs (INCK), the input into the SDR register/latch block and the input to the delay block. The output of the delay block can be used as combinatorial (INDD) and clock (INCK) outputs, an input to the DDR/Shift Register Block or an input into the SDR register block. Input SDR Register/Latch Block The SDR register/latch block has a latch and a register/latch that can be used in a variety of combinations to provide a registered or latched output (INFF). The latch operates off high-speed input clocks and latches data on the positive going edge. The register/latch operates off the low-speed input clock and registers/latches data on the positive going edge. Both the latch and the register/latch have a clock enable input that is driven by the input clock enable. In addition both have a variety of programmable options for set/reset including, set or reset, asynchronous or synchronous Local Set Reset LSR (LSR has precedence over CE) and Global Set Reset GSR enable or disable. The register and latch LSR inputs are driven from LSRI, which is generated from the PIO control MUX. The GSR inputs are driven from the GSR output of the PIO control MUX, which allows the global set-reset to be disabled on a PIO basis. Input Delay Block The delay block uses 144 tapped delay lines to obtain coarse and fine delay resolution. These delays can be adjusted during configuration or automatically via DLL or AIL blocks. The Adaptive Input Logic (AIL) uses this delay block to adjust automatically the delay in the data path to ensure that it has sufficient setup and hold time. The delay line in this block matches the delay line that is used in the 12 on-chip DLLs. The delay line can be set via configuration bits or driven from a calibration bus that allows the setting to be controlled either from one of the onchip DLLs or user logic. Controlling the delay from one of the on-chip DLLs allow the delay to be calibrated to the DLL clock and hence compensated for the variations in process, voltage and temperature. 2-17 Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor Adaptive Input Logic (AIL) Overview The Adaptive Input Logic (AIL) provides the ability of the input logic to dynamically find a solution by monitoring multiple samples of the input data. The input data signal from the input buffer is run through a delay chain. Data, transitions, jitter, noise are all contained inside of the delay chain. The AIL will then search the delay chain for a clean sampling point for data. Once found the AIL will monitor and walk with the data dynamically. This novel approach of using a delay chain to create multiple copies of the data provides a lower power solution than oversampling data with a higher speed clock. Figure 2-19 provides a high level view of the AIL methodology. Figure 2-19. LatticeSC AIL Delay of Input Data Waveform Input Data Signal Delay Chain AIL Acquisition Window The AIL slides the acquisition window through the delay chain searching for stable data based solely on data transitions. A specific training pattern is not required to perform this bit alignment, simply data transitions. The size of the acquisition window is user-selectable allowing the AIL to operate over the full range of the PURESPEED I/O range. Based on dynamic user control the AIL can either continuously adjust the window location based on data edge detection or it can be locked to a specific delay. The AIL operates on single data and double data rate interfaces and is available on most FPGA input pins on the LatticeSC device and all buffer types. The AIL block is low power using only 0.003 mW/MHz typical (6 mW @ 2 Gbps) for PRBS 27 data. Multiple AIL inputs can be used to create a bus with a FPGA circuit to realign the bus to a common clock cycle. The FPGA circuit to realign the bus is required and is provided by Lattice as a reference design. For more information on the LatticeSC AIL please refer to the LatticeSC AIL User’s Guide. Input DDR/Shift Block The DDR/Shift block contains registers and associated logic that support DDR and shift register functions using the high-speed clock and the associated transfer to the low-speed clock domain. It functions as a gearbox allowing high-speed incoming data to be passed into the FPGA fabric. Each PIO supports DDR and x2 shift functions. If desired PIOs A and B or C and D can be combined to form x4 shift functions. The PIOs A and C on the left, right and bottom of the device also contain an optional Adaptive Input Logic (AIL) element. This logic automatically aligns incoming data with the clock allowing for easy design of high-speed interfaces. Figure 2-21 shows a simplified block diagram of the shift register block. The shift block in conjunction with the update and clock divider blocks automatically handles the hand off between the low-speed and high-speed clock domains. 2-18 Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor Figure 2-20. Input Register Block1 CLKENABLE CLKDISABLE INDD INCK SDR Register/Latch Block INFF D-Type/ Latch Latch DI (from PURESPEED I/O Buffer) To Routing Delay Block Optional Adaptive Input Logic2 DDR/Shift Register Block • DDR • DDR + half clock • DDR + shift x1 • DDR + shift x2 • DDR + shift x43 • Shift x1 • Shift x2 • Shift x43 IPOS0 IPOS1 INEG0 INEG1 LCLKIN (ECLK/SCLK) HCLKIN (ECLK/SCLK) LOCK RUNAIL DCNTL[0:8] (From DLL) 1. UPDATE, Set and Reset not shown for clarity 2. Adaptive input logic is only available in selected PIO 3. By four shift modes utilize DDR/shift register block from paired PIO. 4. CLKDISABLE is used to block the transitions on the DQS pin during post-amble. Its main use is to disable DQS (typically found in DDR memory interfaces) or other clock signals. It can also be used to disable any/all input signals to save power. 2-19 Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor Figure 2-21. Input DDR/Shift Register Block From paired PIO for wide muxing To paired PIO for wide muxing Bypass used for DDR IPOS0 (Can act as IPOS2 when paired) Data Input (From Delay Block) IPOS1 (Can act as IPOS3 when paired) HCLKIN LCLKIN POS Update NEG Update Bypass used for DDR INEG0 (Can act as INEG2 when paired) Used for DDR with Half Clock Transfer INEG1 (Can act as INEG3 when paired) From paired PIO for wide muxing To paired PIO for wide muxing Output Register Block The output register block provides the ability to register signals from the core of the device before they are passed to the PURESPEED I/O buffers. The block contains a register for SDR operation and a group of registers for DDR and shift register operation. The output signal (DO) can be derived directly from one of the inputs (bypass mode), the SDR register or the DDR/shift register block. Figure 2-22 shows the diagram of the Output Register Block. Output SDR Register/Latch Block The SDR register operates on the positive edge of the high-speed clock. It has clock enable that is driven by the clock enable output signal generated by the control MUX. In addition it has a variety of programmable options for set/reset including, set or reset, asynchronous or synchronous Local Set Reset LSR (LSR has precedence over CE) and Global Set Reset GSR enable or disable. The register LSR input is driven from LSRO, which is generated from the PIO control MUX. The GSR inputs is driven from the GSR output of the PIO control MUX, which allows the global set-reset to be disabled on a PIO basis. Output DDR/Shift Block The DDR/Shift block contains registers and associated logic that support DDR and shift register functions using the high-speed clock and the associated transfer from the low-speed clock domain. It functions as a gearbox allowing low-speed parallel data from the FPGA fabric be output as a higher speed serial stream. Each PIO supports DDR and x2 shift functions. If desired PIOs A and B or C and D can be combined to form x4 shift functions. Figure 2-22 shows a simplified block diagram of the shift register block. 2-20 Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor Figure 2-22. Output Register Block1 To Tri-state Block SDR Register From Routing OPOS0 ONEG0 OPOS1 ONEG1 From LCLKOUT Control HCLKOUT MUX DDR/Shift Register Block • DDR DO (to PURESPEED I/O Buffer) • DDR + half clock • DDR + shift x2 • DDR + shift x42 • Shift x2 • Shift x42 Notes: 1. CE, Update, Set and Reset not shown for clarity. 2. By four shift modes utilizes DDR/Shift register block from paired PIO. 3. DDR/Shift register block shared with tristate block. Figure 2-23. Output/Tristate DDR/Shift Register Block Bypass Used for DDR/DDRX Modes From paired PIO ( x4 shift modes) To paired PIO (x4 shift modes) OPOS0 (Can act as OPOS2 when paired) Shift x2 / x4 Output OPOS1 (Can act as OPOS3 when paired) LCLKOUT TSDDR/DDRX HCLKOUT POS Update NEG Update ODDR/DDR/ X2/X4 Bypass Used for DDR/DDRX Modes From paired PIO ( x4 shift modes) ONEG0 (Can act as ONEG2 when paired) ONEG1 (Can act as ONEG3 when paired) 2-21 To paired PIO (x4 shift modes) Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor Tristate Register Block The tristate register block provides the ability to register tri-state control signals from the core of the device before they are passed to the PURESPEED I/O buffers. The block contains a register for SDR operation and a group of three registers for DDR and shift register operation. The output signal tri-state control signal (TO) can be derived directly from one of the inputs (bypass mode), the SDR shift register, the DDR registers or the data associated with the buffer (for open drain emulation). Figure 2-24 shows the diagram of the Tristate Register Block. Tristate SDR Register/Latch Block The SDR register operates on the positive edge of the high-speed clock. In it has a variety of programmable options for set/reset including, set or reset, asynchronous or synchronous Local Set Reset LSR and Global Set Reset GSR enable or disable. The register LSR input is driven from LSRO, which is generated from the PIO control MUX. The GSR input is driven from the GSR output of the PIO control MUX, which allows the global set-reset to be disabled on a PIO basis. Tristate DDR/Shift Register Block The DDR/Shift block is shared with the output block allowing DDR support using the high-speed clock and the associated transfer from the low-speed clock domain. It functions as a gearbox allowing low–speed parallel data from the FPGA fabric to provide a high-speed tri-state control stream. There is a special mode for DDR-II memory interfaces where the termination is controlled by the output tristate signal. During WRITE cycle when the FPGA is driving the lines, the parallel terminations are turned off. During READ cycle when the FPGA is receiving data, the parallel terminations are turned on. Figure 2-24. Tristate Register Block1 TD VCC GND From Routing From Control MUX OPOS1 ONEG1 DDR/Shift Register Block2 • DDR TO (To PURESPEED I/O Buffer) • DDR + half clock LCLKOUT HCLKOUT Notes: 1. CE, Update, Set and Reset not shown for clarity. 2. DDR/Shift Register Block shared with output register block. From Output I/O Architecture Rules Table 2-6 shows the PIO usage for x1, x2, x4 gearing. The checkmarks in the columns show the specific PIOs that are used for each gearing mode. When using x2 or x4 gearing, any PIO which is not used for gearing can still be used as an output. 2-22 Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor Table 2-6. Input/Output/Tristate Gearing Resource Rules Input/Output Logic Tri-State/Bidi PIO x1 x2 x4 x1 x2/x4 A ✓ ✓ ✓ ✓ N/A B ✓ C ✓ D ✓ ✓ N/A No I/O Logic ✓ N/A No I/O Logic No I/O Logic ✓ N/A No I/O Logic No I/O Logic ✓ Note: Pin can still be used without I/O logic. Control Logic Block The control logic block allows the modification of control signals selected by the routing before they are used in the PIO. It can optionally invert all signals passing through it except the Global Set/Reset. Global Set/Reset can be enabled or disabled. It can route either the edge clock or the clock to the high-speed clock nets. The clock provided to the PIO by routing is used as the slow-speed clocks. In addition this block contains delays that can be inserted in the clock nets to enable Lattice’s unique cycle boosting capability. Update Block The update block is used to generate the POS update and NEG update signals used by the DDR/Shift register blocks within the PIO. Note the update block is only required in shift modes. This is required in order to do the high speed to low speed handoff. One of these update signals is also selected and output from the PIC as the signal UPDATE. It consists of a shift chain that operates off either the high-speed input or output clock. The values of each register in the chain are set or reset depending on the desired mode of operation. The set/reset signal is generated from either the edge reset ELSR or the local reset LSR. These signals are optionally inverted by the Control Logic Block and provided to the update block as ELSRUP and LSRUP. The Lattice design tools automatically configure and connect the update block when one of the DDR or shift register primitives is used. Figure 2-25. Update Block ÷1/2/4 POS Update NEG Update HCLKUP ESLRUP UPDATE LSRUP LCLKUP PURESPEED I/O Buffer Each I/O is associated with a flexible buffer referred to as PURESPEED I/O buffer. These buffers are arranged around the periphery of the device in seven groups referred to as Banks. The PURESPEED I/O buffers allow users to implement the wide variety of standards that are found in today’s systems including LVCMOS, SSTL, HSTL, LVDS and LVPECL. The availability of programmable on-chip termination for both input and output use, further enhances the utility of these buffers. 2-23 Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor PURESPEED I/O Buffer Banks LatticeSC devices have seven PURESPEED I/O buffer banks; each is capable of supporting multiple I/O standards. Each PURESPEED I/O bank has its own I/O supply voltage (VCCIO), and two voltage references VREF1 and VREF2 resources allowing each bank to be completely independent from each other. Figure 2-26 shows the seven banks and their associated supplies. Table 2-7 lists the maximum number of I/Os per bank for the whole LatticeSC family. In the LatticeSC devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS, PCI33 and PCIX33) are powered using VCCIO. In addition to the bank VCCIO supplies, the LatticeSC devices have a VCC core logic power supply, and a VCCAUX supply that power all differential and referenced buffers. VCCAUX also powers a predriver of single-ended output buffers to enhance buffer performance. Each bank can support up to two separate VREF voltages, VREF1 and VREF2 that set the threshold for the referenced input buffers. In the LatticeSC devices any I/O pin in a bank can be configured to be a dedicated reference voltage supply pin. Each I/O is individually configurable based on the bank’s supply and reference voltages. Differential drivers have user selectable internal or external bias. External bias is brought in by the VREF1 pin in the bank. External bias for differential buffers is needed for applications that requires tighter than standard output common mode range. Since a bank can have only one external bias circuit for differential drivers, LVDS and RSDS differential outputs can be mixed in a bank but not with HYPT (HyperTransport). If a differential driver is configured in a bank, one pin in that bank becomes a DIFFR pin. This DIFFR pin must be connected to ground via an external 1K +/-1% ohm resistor. Note that differential drivers are not supported in banks 1, 4 and 5. In addition, there are dedicated Terminating Supply (VTT) pins to be used as terminating voltage for one of the two ways to perform parallel terminations. These VTT pins are available in banks 2-7, these pins are not available in some packages. When VTT termination is not required, or used to provide the common mode termination voltage (VCMT), these pins can be left unconnected on the device. If the internal or external VCMT function for differential input termination is used, the VTT pins should be unconnected and allowed to float. There are further restrictions on the use of VTT pins, for additional details refer to technical information at the end of this data sheet. 2-24 Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor VCCIO1 VREF1[1] GND VREF2[1] Figure 2-26. LatticeSC Banks SERDES SERDES Bank 1 Bank 7 VTT7 VREF2[7] VCCIO2 VREF1[2] Bank 2 VCCIO7 VREF1[7] VTT2 VREF2[2] GND VCCIO6 VREF1[6] VCCIO3 VREF1[3] Bank 6 Bank 3 GND VTT6 VREF2[6] VTT[3] VREF2[3] GND GND GND VCCIO4 VREF1[4] GND VTT5 VREF2[5] VCCIO5 VREF1[5] VTT4 VREF2[4] Bank 4 Bank 5 Table 2-7. Maximum Number of I/Os Per Bank in LatticeSC Family LFSC/M15 LFSC/M25 LFSC/M40 LFSC/M80 LFSC/M115 Bank1 Device 104 80 136 80 136 Bank2 28 36 60 96 136 Bank3 60 84 96 132 156 Bank4 72 100 124 184 208 Bank5 72 100 124 184 208 Bank6 60 84 96 132 156 Bank7 28 36 60 96 136 Note: Not all the I/Os of the Banks are available in all the packages The LatticeSC devices contain three types of PURESPEED I/O buffers: 1. Left and Right Sides (Banks 2, 3, 6 and 7) These buffers can support LVCMOS standards up to 2.5V. A differential output driver (for LVDS, RSDS, and HYPT) is provided on all primary PIO pairs (A and B) and differential receivers are available on all pairs. Complimentary drivers are available. Adaptive input logic is available on PIOs A or C. 2. Top Side (Bank 1) These buffers can support LVCMOS standards up to 3.3V, including PCI33, PCI-X33 and SSTL-33. Differential receivers are provided on all PIO pairs but differential drivers for LVDS, RSDS, and HYPT are not available. Adaptive input logic is not available on this side. Complimentary output drivers are available. 2-25 Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor 3. Bottom Side (Banks 4 and 5) These buffers can support LVCMOS standards up to 3.3V, including PCI33, PCI-X33 and SSTL-33. Differential receivers are provided on all PIO pairs but true HLVDS, RSDS, and HYPT differential drivers are not available. Adaptive input logic is available on PIOs A or C. Table 2-8 lists the standards supported by each side. Table 2-8. I/O Standards Supported by Different Banks Top Side Banks 1 Description Right Side Banks 2-3 Bottom Side Banks 4-5 Left Side Banks 6-7 I/O Buffer Type Single-ended, Differential Receiver Single-ended, Differen- Single-ended, tial Receiver and Driver Differential Receiver Single-ended, Differential Receiver and Driver Output Standards Supported LVTTL LVCMOS33 LVCMOS25 LVCMOS18 LVCMOS15 LVCMOS12 SSTL18_I, II SSTL25_ I, II SSTL33_ I, II HSTL15_I, II, III1, IV1 HSTL18_I, II,III1, IV1 SSTL18D_I, II SSTL25D_I, II SSTL33D_I, II HSTL15D_I, II HSTL18D_I, II PCI33 PCIX15 PCIX33 AGP1X33 AGP2X33 MLVDS/BLVDS GTL2, GTL+2 LVCMOS25 LVCMOS18 LVCMOS15 LVCMOS12 SSTL18_I, II SSTL25_ I, II HSTL15_I,III HSTL18_I,II,III PCIX15 SSTL18D_I, II SSTL25D_I, II HSTL15D_I, II HSTL18D_I, II LVDS/RSDS/HYPT Mini-LVDS MLVDS/BLVDS GTL2, GTL+2 LVTTL LVCMOS33 LVCMOS25 LVCMOS18 LVCMOS15 LVCMOS12 SSTL18_I, II SSTL25_ I, II SSTL33_ I, II HSTL15_I, II, III1, IV1 HSTL18_I, II,III1, IV1 SSTL18D_I, II SSTL25D_I, II SSTL33D_I, II HSTL15D_I, II HSTL18D_I, II PCI33 PCIX15 PCIX33 AGP1X33 AGP2X33 MLVDS/BLVDS GTL2, GTL+2 LVCMOS25 LVCMOS18 LVCMOS15 LVCMOS12 SSTL18_I, II SSTL25_ I, II HSTL15_I,III HSTL18_I,II,III PCIX15 SSTL18D_I, II SSTL25D_I, II HSTL15D_I, II HSTL18D_I, II LVDS/RSDS/HYPT Mini-LVDS MLVDS/BLVDS GTL2, GTL+2 Input Standards Supported Single-ended, Differential Single-ended, Differential Single-ended, Differential Single-ended, Differential Clock Inputs Single-ended, Differential Single-ended, Differential Single-ended, Differential Single-ended, Differential Differential Output Support via Emulation LVDS/MLVDS/BLVDS/ LVPECL MLVDS/BLVDS/ LVPECL LVDS/MLVDS/BLVDS/ LVPECL MLVDS/BLVDS/ LVPECL AIL Support No Yes Yes Yes 1. Input only. 2. Input only. Outputs supported by bussing multiple outputs together. Supported Standards The LatticeSC PURESPEED I/O buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 12, 15, 18, 25 and 33 standards. In the LVCMOS and LVTTL modes, the buffer has individually configurable options for drive strength, termination resistance, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) and open drain. Other single-ended standards supported include SSTL, HSTL, GTL (input only), GTL+ (input only), PCI33, PCIX33, PCIX15, AGP-1X33 and AGP-2X33. Differential standards supported include LVDS, RSDS, BLVDS, MLVDS, LVPECL, HyperTransport, differential SSTL and differential HSTL. Tables 12 and 13 show the I/O standards (together with their supply and reference voltages) supported by the LatticeSC devices. The tables also provide the available internal termination schemes. For further information on utilizing the PURESPEED I/O buffer to support a variety of standards please see details of additional technical documentation at the end of this data sheet. 2-26 Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor Table 2-9. Supported Input Standards Input Standard VREF (Nom.) VCCIO1 (Nom.) — 3.3 On-chip Termination Single Ended Interfaces LVTTL333 3 LVCMOS 33, 25, 18, 15, 12 — PCI33, PCIX33, AGP1X333 — None 3.3/2.5/1.8/1.5/1.2 None 3.3 2 PCIX15 0.75 1.5 AGP2X33 1.32 — None None / VCCIO / 2: 50, 60/ VTT: 60, 75, 120, 210 None 2 HSTL18_I, II 0.9 1.8 None / VCCIO / 2: 50, 60/ VTT: 60, 75, 120, 210 HSTL18_III, IV 1.08 1.82 None / VCCIO: 50 HSTL15_I, II 0.75 2 1.5 None / VCCIO / 2: 50, 60/ VTT: 60, 75, 120, 210 HSTL15_III, IV 0.9 1.52 None / VCCIO: 50 SSTL33_I, II 1.5 3.3 None SSTL25_I, II 1.25 2.52 None / VCCIO / 2: 50, 60/ VTT: 60, 75, 120, 210 SSTL18_I, II 0.9 1.82 None / VCCIO / 2: 50, 60/ VTT: 60, 75, 120, 210 GTL+, GTL 1.0 / 0.8 1.5 / 1.22 SSTL18D_I, II — 1.82 None / Diff: 120, 150, 220, 420/ Diff to VCMT: 120, 150, 220, 420 / VCCIO / 2: 50, 60/ VTT: 60, 75, 120, 210 SSTL25D_I, II — 2.52 None / Diff: 120, 150, 220, 420/ Diff to VCMT: 120, 150, 220, 420 / VCCIO / 2: 50, 60/ VTT: 60, 75, 120, 210 SSTL33D_I, II — 3.3 None HSTL15D_I, II — 2 1.5 None / Diff: 120, 150, 220, 420/ Diff to VCMT: 120, 150, 220, 420 / VCCIO / 2: 50, 60/ VTT: 60, 75, 120, 210 HSTL18D_I, II — 1.82 None / Diff: 120, 150, 220, 420/ Diff to VCMT: 120, 150, 220, 420 / VCCIO / 2: 50, 60/ VTT: 60, 75, 120, 210 LVDS — — None / Diff: 120, 150, 220, 240/ Diff to VCMT: 120, 150, 220, 240 None / VCCIO: 50 Differential Interfaces Mini-LVDS — — None / Diff: 120, 150 / Diff to VCMT: 120, 150 BLVDS25 — — None MLVDS25 — — None HYPT (Hyper Transport) — — None / Diff: 120, 150, 220, 240/ Diff to VCMT: 120, 150, 220, 240 RSDS — — None / Diff: 120, 150, 220, 240/ Diff to VCMT: 120, 150, 220, 240 LVPECL33 — ≤2.5 None / Diff: 120, 150, 220, 240/ Diff to VCMT: 120, 150, 220, 240 1. When not specified VCCIO can be set anywhere in the valid operating range. 2. VCCIO needed for on-chip termination to VCCIO/2 or VCCIO only. VCCIO is not specified for off-chip termination or VTT termination. 3. All ratioed input buffers and dedicated pin input buffers include hysteresis with a typical value of 50mV. 2-27 Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor Table 2-10. Supported Output Standards4 Output Standard Drive VCCIO (Nom) On-chip Output Termination LVTTL/D1 8mA, 16mA, 24mA 3.3 None. LVCMOS33/D1 8mA, 16mA, 24mA 3.3 None 1, 2 LVCMOS25/D 4mA, 8mA, 12mA, 16mA, 2.5 None, series: 25, 33, 50, 100 LVCMOS18/D1, 2 4mA, 8mA, 12mA, 16mA, 1.8 None, series: 25, 33, 50, 100 1, 2 4mA, 8mA, 12mA, 16mA, 1.5 None, series: 25, 33, 50, 100 2mA, 4mA, 8mA, 12mA 1.2 None, series: 25, 33, 50, 100 PCIX15 N/A 1.5 None PCI33, PCIX33, AGP1X33, AGP2X33 N/A 3.3 None HSTL18_I N/A 1.8 None, series: 50 HSTL18_II N/A 1.8 None, series: 25, series + parallel to VCCIO/2: 25 + 60 HSTL15_I N/A 1.5 None, series: 50 Single-ended Interfaces LVCMOS15/D LVCMOS12/D1, 2 HSTL15_II N/A 1.5 None, series: 25, series + parallel to VCCIO/2: 25 + 60 SSTL33_I N/A 3.3 None SSTL33_II N/A 3.3 None SSTL25_I N/A 2.5 None, series: 50 SSTL25_II N/A 2.5 None, series: 33, series + parallel to VCCIO/2: 33+ 60 SSTL18_ I N/A 1.8 None, series: 33 N/A 1.8 None, series: 33, series + parallel to VCCIO/2: 33+ 60 SSTL18D_I N/A 1.8 None, series: 33 SSTL25D_I N/A 2.5 None, series: 50 SSTL18D_II, SSTL25D_II N/A 1.2/2.5/3.3 SSTL33D_I, II N/A 3.3 HSTL15D_I, HSTL18D_I N/A 1.5/1.8 None, series: 50 HST15D_II, HSTL18D_II N/A 1.5/1.8 None, series: 25, series + parallel to VCCIO/2: 25 + 60 SSTL18_II Differential Interfaces LVDS None, series: 33, series + parallel to VCCIO/2: 33+ 60 None 2mA, 3.5mA, 4mA, 6mA N/A None Mini-LVDS 3.5mA, 4mA, 6mA N/A None BLVDS25 N/A N/A None MLVDS25 N/A N/A None 3 LVPECL33 HYPT (Hyper Transport) RSDS 1. 2. 3. 4. N/A 3.3 None 3.5mA, 4mA, 6mA N/A None 2mA, 3.5mA, 4mA, 6mA N/A None D refers to open drain capability. User can select either drive current or driver impedances but not both. Emulated with external resistors. No GTL or GTL+ support. 2-28 Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor PCI Clamp A programmable PCI clamp is available on the top and bottom banks of the device. The PCI clamp can be turned “ON” or “OFF” on each pin independently. The PCI clamp is used when implementing a 3.3V PCI interface. The PCI Specification, Revision 2.2 requires the use of clamping diodes for 3.3V operation. For more information on the PCI interface, please refer to the PCI Specification, Revision 2.2. Programmable Slew Rate Control All output and bidirectional buffers have an optional programmable output slew rate control that can be configured for either low noise or high-speed performance. Each I/O pin has an individual slew rate control. This allows designers to specify slew rate control on a pin-by-pin basis. This slew rate control affects both the rising and falling edges. Programmable Termination Many of the I/O standards supported by the LatticeSC devices require termination at the transmitter, receiver or both. The SC devices provide the capability to implement many kinds of termination on-chip, minimizing stub lengths and hence improving performance. Utilizing this feature also has the benefit of reducing the number of discrete components required on the circuit board. The termination schemes can be split into two categories single-ended and differential. Single Ended Termination Single Ended Outputs: The SC devices support a number of different terminations for single ended outputs: • • • • Series Parallel to VCCIO or GND Parallel to VCCIO/2 Parallel to VCCIO/2 combined with series Figure 2-27 shows the single ended output schemes that are supported. The nominal values of the termination resistors are shown in Table 2-10. 2-29 Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor Figure 2-27. Output Termination Schemes Termination Type Series termination (controlled output impedance) Discrete Off-Chip Solution Zo Lattice On-Chip Solution Zo Zo Zo ON-chip OFF-chip ON-chip VCCIO or GND Parallel termination to VCCIO, or parallel driving end OFF-chip VCCIO or GND Zo Zo Zo ON-chip Zo OFF-chip ON-chip OFF-chip VCCIO VCCIO/2 2Zo Zo Parallel termination to VCCIO/2 driving end Zo Zo 2Zo ON-chip OFF-chip GND ON-chip OFF-chip VCCIO/2 VCCIO/2 Combined series + parallel termination to VCCIO/2 at driving end (only series termination moved on-chip) Zo Zo Rs Rs Zo Zo ON-chip ON-chip OFF-chip OFF-chip VCCIO VCCIO/2 2Zo Combined series + parallel to VCCIO/2 driving end Rs Zo Rs Zo Zo 2Zo ON-chip OFF-chip 2-30 GND ON-chip OFF-chip Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor Single Ended Inputs: The SC devices support a number of different termination schemes for single ended inputs: • Parallel to VCCIO or GND • Parallel to VCCIO/2 • Parallel to VTT Figure 2-28 shows the single ended input schemes that are supported. The nominal values of the termination resistors are shown in Table 2-9. Figure 2-28. Input Termination Schemes Discrete Off-Chip Solution Termination Type Lattice On-Chip Solution VCCIO or GND Parallel termination to to VCCIO, or parallel to GND receiving end VCCIO or GND Zo Zo Zo Zo OFF-chip ON-chip OFF-chip ON-chip VCCIO VCCIO2 2Zo Zo Parallel termination to VCCIO/2 receiving end Zo Zo 2Zo GND OFF-chip ON-chip OFF-chip VTT VTT Zo Parallel termination to VTT at receiving end ON-chip Zo Zo Zo OFF-chip ON-chip OFF-chip ON-chip In many situations designers can chose whether to use Thevenin or parallel to VTT termination. The Thevenin approach has the benefit of not requiring a termination voltage to be applied to the device. The parallel to VTT approach consumes less power. VTT Termination Resources Each I/O bank, except bank 1, has a number of VTT pins that must be connected if VTT is used. Note VTT pins can sink or source current and the power supply they are connected to must be able to handle the relatively high currents associated with the termination circuits. Note: VTT is not available in all package styles. On-chip parallel termination to VTT is supported at the receiving end only. On-chip parallel output termination to VTT is not supported. The VTT internal bus is also connected to the internal VCMT node. Thus in one bank designers can implement either VTT termination or VCMT termination for differential inputs. DDRII/RLDRAMII Termination Support The DDR II memory and RLDRAMII (in Bidirection Data mode) standards require that the on-chip termination to VTT be turned on when a pin is an input and off when the pin is an output. The LatticeSC devices contain the required circuitry to support this behavior. For additional detail refer to technical information at the end of the data sheet. 2-31 Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor Differential Input Termination The LatticeSC device allows two types of differential termination. The first is a single resistor across the differential inputs. The second is a center-tapped system where each input is terminated to the on-chip termination bus VCMT. The VCMT bus is DC-coupled through an internal capacitor to ground. Figure 2-29 shows the differential termination schemes and Table 2-9 shows the nominal values of the termination resistors. Figure 2-29. Differential Termination Scheme Termination Type Discrete Off-Chip Solution Zo Zo + - 2Zo Differential termination Lattice On-Chip Solution Zo 2Zo Zo OFF-chip ON-chip Zo OFF-chip ON-chip Zo Zo Differential and common mode termination + - Zo VCMT + - GND Zo Zo Zo Zo OFF-chip ON-chip OFF-chip + - GND ON-chip Calibration There are two calibration sources that are associated with the termination scheme used in the LatticeSC devices: • DIFFR – This pin occurs in each bank that supports differential drivers and must be connected through a 1K+/-1% resistor to ground if differential outputs are used. Note that differential drivers are not supported in banks 1, 4 and 5. • XRES – There is one of these pins per device. It is used for several functions including calibrating on-chip termination. This pin should always be connected through a 1K+/-1% resistor to ground. The LatticeSC devices support two modes of calibration: • Continuous – In this mode the SC devices continually calibrate the termination resistances. Calibration happens several times a second. Using this mode ensures that termination resistances remain calibrated as the silicon junction temperature changes. • User Request – In this mode the calibration circuit operates continuously. However, the termination resistor values are only updated on the assertion of the calibration_update signal available to the core logic. For more information on calibration, refer to the details of additional technical documentation at the end of this data sheet. Hot Socketing The LatticeSC devices have been carefully designed to ensure predictable behavior during power-up and powerdown. To ensure proper power sequencing, care must be taken during power-up and power-down as described below. During power-up and power-down sequences, the I/Os remain in tristate until the power supply voltage is high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled to within specified limits, 2-32 Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor this allows for easy integration with the rest of the system. These capabilities make the LatticeSC ideal for many multiple power supply and hot-swap applications. The maximum current during hot socketing is 4mA. See Hot Socketing Specifications in Chapter 3 of this data sheet. Power-Up Requirements To prevent high power supply and input pin currents, each VCC, VCC12, VCCAUX, VCCIO and VCCJ power supplies must have a monotonic ramp up time of 75 ms or less to reach its minimum operating voltage. Apart from VCC and VCC12, which have an additional requirement, and VCCIO and VCCAUX, which also have an additional requirement, the VCC, VCC12, VCCAUX, VCCIO and VCCJ power supplies can ramp up in any order, with no restriction on the time between them. However, the ramp time for each must be 75 ms or less. Configuration of the device will not proceed until the last power supply has reached its minimum operating voltage. Additional Requirement for VCC and VCC12: VCC12 must always be higher than VCC. This condition must be maintained at ALL times, including during powerup and power-down. Note that for 1.2V only operation, it is advisable to source both of these supplies from the same power supply. Additional Requirement for VCCIO and VCCAUX: If any VCCIOs are 1.2/1.5/1.8V, then VCCAUX MUST be applied before them. If any VCCIO is 1.2/1.5/1.8V and is powered up before VCCAUX, then when VCCAUX is powered up, it may drag VCCIO up with it as it crosses through the VCCIO value. (Note: If the VCCIO supply is capable of sinking current, as well as the more usual sourcing capability, this behavior is eliminated. However, the amount of current that the supply needs to sink is unknown and is likely to be in the hundreds of milliamps range). Power-Down Requirements To prevent high power supply and input pin currents, power must be removed monotonically from either VCC or VCCAUX (and must reach the power-down trip point of 0.5V for VCC, 0.95V for VCCAUX) before power is removed monotonically from VCC12, any of the VCCIOs, or VCCJ. Note that VCC12 can be removed at the same time as VCC, but it cannot be removed earlier. In many applications, VCC and VCC12 will be sourced from the same power supply and so will be removed together. For systems where disturbance of the user pins is a don't care condition, the power supplies can be removed in any order as long as they power down monotonically within 200ms of each other. Additionally, if any banks have VCCIO=3.3V nominal (potentially banks 1, 4, 5) then VCCIO for those banks must not be lower than VCCAUX during power-down. The normal variation in ramp-up times of power supplies and voltage regulators is not a concern here. Note: The SERDES power supplies are NOT included in these requirements and have no specific sequencing requirements. However, when using the SERDES with VDDIB or VDDOB that is greater than 1.2V (1.5V nominal for example), the SERDES should not be left in a steady state condition with the 1.5V power applied and the 1.2V power not applied. Both the 1.2V and 1.5V power should be applied to the SERDES at nominally the same time. The normal variation in the ramp-up times of power supplies and voltage regulators is not a concern here. SERDES Power Supply Sequencing Requirements When using the SERDES with 1.5V VDDIB or VDDOB supplies, the SERDES should not be left in a steady state condition with the 1.5V power applied and the 1.2V power not applied. Both the 1.2V and the 1.5V power should be applied to the SERDES at nominally the same time. The normal variation in ramp-up times of power supples and voltage regulators is not a concern. Additional Requirement for SERDES Power Supply All VCC12 pins need to be connected on all devices independent of functionality used on the device. This analog supply is used by both the RX and TX portions of the SERDES and is used to control the core SERDES logic regardless of the SERDES being used in the design. VDDIB and VDDOB are used as supplies for the terminations on the CML input and output buffers. If a particular channel is not used, these can be UNCONNECTED (floating). 2-33 Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor VDDAX25 needs to be connected independent of the use of the SERDES. This supply is used to control the SERDES CML I/O regardless of the SERDES being used in the design. Supported Source Synchronous Interfaces The LatticeSC devices contain a variety of hardware, such as delay elements, DDR registers and PLLs, to simplify the implementation of Source Synchronous interfaces. Table 2-11 lists Source Synchronous and DDR/QDR standards supported in the LatticeSC. For additional detail refer to technical information at the end of the data sheet. Table 2-11. Source Synchronous Standards Table1 Source Synchronous Standard Clocking Speeds (MHz) Data Rate (Mbps) RapidIO DDR 500 1000 HyperTransport2 DDR 800 1600 SPI4.2 (POS-PHY4)/NPSI DDR 500 1000 SFI4/XSBI DDR SDR 334 667 667 XGMII DDR 156.25 312 CSIX SDR 250 250 QDRII/QDRII+ memory interface DDR 300 600 DDR memory interface DDR 240 480 DDRII memory interface DDR 333 667 RLDRAM memory interface DDR 400 800 1. Memory width is dependent on the system design and limited by the number of I/Os in the device. 2. Tested using non-coupled, six-inch traces fed directly into an edge clock resource. flexiPCS™ (Physical Coding Sublayer Block) flexiPCS Functionality The LatticeSC family combines a high-performance FPGA fabric, high-performance I/Os and large embedded RAM in a single industry leading architecture. LatticeSC devices also feature up to 32 channels of embedded SERDES with associated Physical Coding Sublayer (PCS) logic. The flexiPCS logic can be configured to support numerous industry standard high-speed data transfer protocols. Each channel of flexiPCS logic contains dedicated transmit and receive SERDES for high-speed, full-duplex serial data transfers at data rates up to 3.8 Gbps. The PCS logic in each channel can be configured to support an array of popular data protocols including SONET (STS-12/STS-12c, STS-48/STS-48c, and TFI-5 support of 10 Gbps or above), Gigabit Ethernet (compliant to the IEEE 1000BASE-X specification), 1.02 or 2.04 Gbps Fibre Channel, PCI-Express, and Serial RapidIO. In addition, the protocol based logic can be fully or partially bypassed in a number of configurations to allow users flexibility in designing their own high-speed data interface. Protocols requiring data rates above 3.8 Gbps can be accommodated by dedicating either one pair or all four channels in one flexiPCS quad block to one data link. One quad can support full-duplex serial data transfers at data rates up to 15.2 Gbps. A single flexiPCS quad can be configured to support 10Gb Ethernet (with a fully compliant XAUI interface), 10Gb Fibre Channel, and x4 PCI-Express and 4x RapidIO. The flexiPCS also provides bypass modes that allow a direct 8-bit or 10-bit interface from the SERDES to the FPGA logic which can also be geared to run at 1/2 speed for a 16-bit or 20-bit interface to the FPGA logic. Each SERDES pin can be DC coupled independently and can allow for both high-speed and low-speed operation down to DC rates on the same SERDES pin, as required by some Serial Digital Video applications. The ispLEVER design tools from Lattice support all modes of the flexiPCS. Most modes are dedicated to applications associated with a specific industry standard data protocol. Other more general purpose modes allow a user to 2-34 Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor define their own operation. With ispLEVER, the user can define the mode for each quad in a design. Nine modes are currently supported by the ispLEVER design flow: • • • • • • • • • 8-bit SERDES Only 10-bit SERDES Only SONET (STS-12/STS-48) Gigabit Ethernet Fibre Channel XAUI Serial RapidIO PCI-Express Generic 8b10b flexiPCS Quad The flexiPCS logic is arranged in quads containing logic for four independent full-duplex data channels. Each device in the LatticeSC family has up to eight quads of flexiPCS logic. The LatticeSC Family Selection Guide table on the first page of this data sheet contains the number of flexiPCS channels present on the chip. Note that in some packages (particularly lower pin count packages), not all channels from all quads on a given device may be bonded to package pins. Each quad supports up to four channels of full-duplex data and can be programmed into any one of several protocol based modes. Each quad requires its own reference clock which can be sourced externally or from the FPGA logic. The user can utilize between one and four channels in a quad, depending on the application. Figure 2-30 shows an example of four flexiPCS quads in a LatticeSC device. Quads are labeled according to the address of their software controlled registers. Figure 2-30. LatticeSC flexiPCS FPGA Logic flexiPCS Quad 360 PCS/FPGA Interface flexiPCS Quad 361 PCS/FPGA Interface flexiPCS Quad 3E1 PCS/FPGA Interface FPGA Logic I/Os 2-35 flexiPCS Quad 3E0 PCS/FPGA Interface Channel 0 PCS Logic Channel 1 PCS Logic Channel 2 PCS Logic Channel 3 PCS Logic SERDES Interface Channel 0 PCS Logic SERDES Interface Channel 1 PCS Logic flexiPCS Quad 3E0 High Speed Serial Data Channel 2 PCS Logic Channel 3 PCS Logic Channel 3 PCS Logic Channel 2 PCS Logic Channel 1 PCS Logic Channel 0 PCS Logic FPGA Logic I/Os flexiPCS Quad 3E1 High Speed Serial Data F PGA Logic I/Os F PGA Logic I/Os Channel 3 PCS Logic SERDES Interface Channel 2 PCS Logic SERDES Interface Channel 1 PCS Logic flexiPCS Quad 361 High Speed Serial Data Channel 0 PCS Logic flexiPCS Quad 360 High Speed Serial Data Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor Since each quad has its own reference clock, different quads can support different standards on the same chip. This feature makes the LatticeSC family of devices ideal for bridging between different standards. flexiPCS quads are not dedicated solely to industry standard protocols. Each quad (and each channel within a quad) can be programmed for many user defined data manipulation modes. For example, modes governing userdefined word alignment and multi-channel alignment can be programmed for non-standard protocol applications. For more information on the functions and use of the flexiPCS, refer to the LatticeSC flexiPCS Data Sheet. System Bus Each LatticeSC device connects the FPGA elements with a standardized bus framework referred to as a System Bus. Multiple bus masters optimize system performance by sharing resources between different bus masters such as the MPI and configuration logic. The wide data bus configuration of 32 bits with 4-bit parity supports high-bandwidth, data intensive applications. There are two types of interfaces on the System Bus, master and slave. A master interface has the ability to perform actions on the bus, such as writes and reads to and from a specific address. A slave interface responds to the actions of a master by accepting data and address on a write and providing data on a read. The System Bus has a memory map which describes each of the slave peripherals that is connected on the bus. Using the addresses listed in the memory map, a master interface can access each of the slave peripherals on the System Bus. Any and all peripherals on the System Bus can be used at the same time. Table 2-12 list all of the available user peripherals on the System Bus after device power-up. Table 2-12. System Bus User Peripherals Peripheral Name Interface Type Micro Processor Interface MPI Master User Master Interface UMI Master User Slave Interface USI Slave Serial Management Interface (PLL, DLL, User Logic) SMI Slave Physical Coding Sublayer PCS Slave Direct FPGA Access DFA Slave The peripherals listed in Table 2-12 can be added when the System Bus module is created using Module IP/Manager (ispLEVER Module/IP Manager). Figure 2-31 also lists the existing peripherals on the System Bus. The gray boxes are available only during configuration. Refer to Lattice technical note TN1080, LatticeSC sysCONFIG Usage Guide, for configuration options. The Status and Config box refers to internal System Bus registers. This document presents all the interfaces listed in Table 2-12 in detail to help the user utilize the desired functions of the System Bus. 2-36 Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor Figure 2-31. LatticeSC System Bus Interfaces DFA (Direct Access from MPI) SMI (PLL, DLL, USER LOGIC) CONFIG (MASTER) STATUS and CONFIG (SYS REG) USI (SLAVE) System Bus MPI (MASTER) PCS (LEFT, RIGHT and INTER-QUAD) (SLAVE) EBR INIT (WRITE) UMI (MASTER) Several interfaces exist between the System Bus and other FPGA elements. The MPI interface acts as a bridge between the external microprocessor bus and System Bus. The MPI may work in an independent clock domain from the System Bus if the System Bus clock is not sourced from the external microprocessor clock. Pipelined operation allows high-speed memory interface to the EBR and peripheral access without the requirement for additional cycles on the bus. Burst transfers allow optimal use of the memory interface by giving advance information of the nature of the transfers. Details for the majority of the peripherals can be found in the associated technical documentation, see details at the end of this data sheet. Additional details of the MPI are provided below. Microprocessor Interface (MPI) The LatticeSC family devices have a dedicated synchronous MPI function block. The MPI is programmable to operate with PowerPC/PowerQUICC MPC860/MPC8260 series microprocessors. The MPI implements an 8-, 16-, or 32-bit interface with 1-bit, 2-bit, or 4-bit parity to the host processor (PowerPC) that can be used for configuration and read-back of the FPGA as well as for user-defined data processing and general monitoring of FPGA functions. The control portion of the MPI is available following power-up of the FPGA if the mode pins specify MPI mode, even if the FPGA is not yet configured. The width of the data port is selectable among 8-, 16-, or 32-bit and the parity bus can be 1-, 2-, or 4-bit. In configuration mode the data and parity bus width are related to the state of the M[0:3] mode pins. For post-configuration use, the MPI must be included in the configuration bit stream by using an MPI library element in your design from the ispLEVER primitive library, or by setting the bit of the MPI configuration control register prior to the start of configuration. The user can also enable and disable the parity bus through the configuration bit stream. These pads can be used as general I/O when they are not needed for MPI use. The MPI block also provides the capability to interface directly to the FPGA fabric with a databus after configuration.The bus protocol is still handled by the MPI block but the direct FPGA access allows high-speed block data transfers such as DMA transactions. Figure 2-32 shows one of the ways a PowerPC is connected to MPI. 2-37 Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor Figure 2-32. PowerPCI and MPI Schematic PowerPC LatticeSC FPGA TSZ[0:1] MPI_TSZ[0:1] RETRY MPI_RTRY TEA MPI_TEA BURST MPI_BURST 1, 2, 4 DP[0:m] DP[0:m] 8, 16, 32 D[0:n] A[14:31] CLKOUT RD/WR TA BDIP IRQx TS D[0:n] PPC_A[14:31] MPI_CLK MPI_RW MPI_ACK MPI_BDIP MPI_IRQ MPI_STRB CS0 CS1 DOUT CCLK To DaisyChained Devices DONE INIT HDC LDC Bus Controller Configuration and Testing The following section describes the configuration and testing features of the LatticeSC family of devices. IEEE 1149.1-Compliant Boundary Scan Testability All LatticeSC devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port has its own supply voltage VCCJ and can operate with LVCMOS33, 25 and 18 standards. For additional detail refer to technical information at the end of the data sheet. Device Configuration All LatticeSC devices contain three possible ports that can be used for device configuration. The serial port, which supports bit-wide configuration, and the sysCONFIG port that supports both byte-wide and serial configuration. The MPI port supports 8-bit, 16-bit or 32-bit configuration. The serial port supports both the IEEE Std. 1149.1 Boundary Scan specification and the IEEE Std. 1532 In-System Configuration specification. The sysCONFIG port is a 20-pin interface with six of the I/Os used as dedicated pins and the rest being dual-use pins. When sysCONFIG mode is not used, these dual-use pins are available for general purpose I/O. All I/Os for the sysCONFIG and MPI ports are in I/O bank #1. On power-up, the FPGA SRAM is ready to be configured with the sysCONFIG port active. The IEEE 1149.1 serial mode can be activated any time after power-up by sending the appropriate command through the TAP port. Once a configuration port is selected, that port is locked and another configuration port cannot be activated until the next re-initialization sequence. For additional detail refer to technical information at the end of the data sheet. 2-38 Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor Internal Logic Analyzer Capability (ispTRACY) All LatticeSC devices support an internal logic analyzer diagnostic feature. The diagnostic features provide capabilities similar to an external logic analyzer, such as programmable event and trigger condition and deep trace memory. This feature is enabled by Lattice’s ispTRACY. The ispTRACY utility is added into the user design at compile time. For additional detail refer to technical information at the end of the data sheet. Temperature Sensing Lattice provides a way to monitor the die temperature by using a temperature-sensing diode that is designed into every LatticeSC device. The difference in VBE of the diode at two different forward currents varies with temperature. This relationship is shown in Figure 2-33. The accuracy of the temperature-sensing diode is typically +/- 10°C. On packages that include PROBE_GND, the most accurate measurements will occur between the TEMP pin and the PROBE_GND pin. On packages that do not include PROBE_GND, measurements should be made between the TEMP pin and board ground. This temperature-sensing diode is designed to work with an external temperature sensor such as the Maxim 1617A. The Maxim 1617A is configured to measure difference in VBE (of the temperature-sensing diode) at 10µA and at 100µA. This difference in VBE voltage varies with temperature at approximately 1.64 mV/°C. A typical device with a 85°C junction temperature will measure approximately 593mV. For additional detail refer to the temperaturesensing diode technical note, TN1115. Figure 2-33. Sensing Diode Typical Characteristics 0.88 0.80 100μA 10μA 0.75 Voltage 0.70 0.65 VBE difference increases with temperature 0.65 0.55 0.50 -50 -25 0 25 50 75 100 Junction Temperature (°C) 125 Oscillator Every LatticeSC device has an internal CMOS oscillator, which is used as a master serial clock for configuration and is also available as a potential general purpose clock (MCK) for the FPGA core. There is a K divider (divide by 2/4/8/16/32/64/128) available with this oscillator to get lower MCK frequencies. This clock is available as a general purpose clock signal to the software routing tool. For additional detail refer to technical information at the end of the data sheet. 2-39 Architecture LatticeSC/M Family Data Sheet Lattice Semiconductor Density Shifting The LatticeSC family has been designed to ensure that different density devices in the same package have the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case. 2-40 LatticeSC/M Family Data Sheet DC and Switching Characteristics June 2008 Data Sheet DS1004 Absolute Maximum Ratings Supply Voltage VCC, VCC12, VDDIB, VDDOB . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to 1.6V Supply Voltage VCCAUX, VDDAX25, VTT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to 2.75V Supply Voltage VCCJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to 3.6V Supply Voltage VCCIO (Banks 1, 4, 5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to 3.6V Supply Voltage VCCIO (Banks 2, 3, 6, 7). . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to 2.75V Input or I/O Tristate Voltage Applied (Banks 1, 4, 5) . . . . . . . . . . . . . . . . . . . -0.5 to 3.6V Input or I/O Tristate Voltage Applied (Banks 2, 3, 6, 7) . . . . . . . . . . . . . . . . -0.5 to 2.75V Storage Temperature (Ambient) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -65 to 150°C Junction Temperature Under Bias (Tj) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +125°C Notes: 1. Stress above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. 2. Compliance with the Lattice Thermal Management document is required. 3. All voltages referenced to GND. 4. Undershoot and overshoot of -2V to (VIHMAX +2) volts is permitted for a duration of <20ns. Recommended Operating Conditions Symbol Min. Max. Units Core Supply Voltage (Nominal 1.2V Operation) 0.95 1.26 V Programmable I/O Auxiliary Supply Voltage 2.375 2.625 V Programmable I/O Driver Supply Voltage (Banks 1, 4, 5) 1.14 3.45 V Programmable I/O Driver Supply Voltage (Banks 2, 3, 6, 7) 1.14 2.625 V VCC124, 5 Internal 1.2V Power Supply Voltage for Configuration Logic and FPGA PLL, SERDES PLL Power Supply Voltage and SERDES Analog Supply Voltage 1.14 1.26 V VDDIB SERDES Input Buffer Supply Voltage 1.14 1.575 V VDDOB SERDES Output Buffer Supply Voltage 1.14 1.575 V VDDAX25 SERDES Termination Auxiliary Supply Voltage 2.375 2.625 V VCCJ1, 5 Supply Voltage for IEEE 1149.1 Test Access Port 1.71 3.45 V 2, 3 Programmable I/O Termination Power Supply 0.5 VCCAUX - 0.5 V tJCOM Junction Temperature, Commercial Operation 0 +85 C tJIND Junction Temperature, Industrial Operation -40 105 C VCC5 VCCAUX 6 VCCIO1, 2, 5, 6 VCCIO VTT 1, 2, 5, 6 Parameter 1. If VCCIO or VCCJ is set to 2.5V, they must be connected to the same power supply as VCCAUX. 2. See recommended voltages by I/O standard in subsequent table. 3. When VTT termination is not required, or used to provide the common mode termination voltage (VCMT), these pins can be left unconnected on the device. 4. VCC12 cannot be lower than VCC at any time. For 1.2V operation, it is recommended that the VCC and VCC12 supplies be tied together with proper noise decoupling between the digital VCC and analog VCC12 supplies. 5. VCC, VCCIO (all banks), VCC12 and VCCJ must reach their minimum values before configuration will proceed. 6. If VCCIO for a bank is nominally 1.2V/1.5V/1.8V, then VCCAUX must always be higher than VCCIO during power up. © 2008 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 3-1 DS1004 DC and Switching_01.9 DC and Switching Characteristics LatticeSC/M Family Data Sheet Lattice Semiconductor Power Supply Ramp Rates Symbol tRAMP Parameter Condition Power supply ramp rates for all power supplies Min. Typ. Max Units 3.45 — — mV/µs — — 75 ms Condition Min. Typ. Max Units 0 <= VIN <= VIH (MAX) — — ±1500 µA — — 4 mA Over process, voltage, temperature 1. See the Power-up and Power-Down requirements section for more details on power sequencing. 2. From 0.5V to minimum operating voltage. Hot Socketing Specifications1 Symbol Parameter IDK Programmable and dedicated Input or I/O leakage current2, 3, 4, 5, 6 IHDIN SERDES average input current when device powered down and inputs driven7 1. 2. 3. 4. 5. 6. 7. See Hot Socket power up/down information in Chapter 2 of this document. Assumes monotonic rise/fall rates for all power supplies. Sensitive to power supply sequencing as described in hot socketing section. Assumes power supplies are between 0 and maximum recommended operations conditions. IDK is additive to IPU, IPD or IBH. Represents DC conditions. For the first 20ns after hot insertion, current specification is 8 mA. Assumes that the device is powered down with all supplies grounded, both P and N inputs driven by a CML driver with maximum allowed VDDOB of 1.575V, 8b/10b data and internal AC coupling. DC Electrical Characteristics5 Over Recommended Operating Conditions Min.3 Typ. Max. Units 0 ≤ VIN ≤ VIH (MAX) — — 10 µA IPU I/O Active Pull-up Current 0 ≤ VIN ≤ 0.7 VCCIO -30 — -210 µA IPD I/O Active Pull-down CurVIL (MAX) ≤ VIN ≤ VIH (MAX) rent 30 — 210 µA IBHLS Bus Hold Low Sustaining VIN = VIL (MAX) Current 30 — — µA IBHHS Bus Hold High Sustaining VIN = 0.7VCCIO Current -30 — — µA IBHLO Bus Hold Low Overdrive Current 0 ≤ VIN ≤ VIH (MAX) — — 210 µA IBHLH Bus Hold High Overdrive 0 ≤ VIN ≤ VIH (MAX) Current — — -210 µA ICL PCI Low Clamp Current -25 + (VIN + 1)/0.015 — — mA 25 + (VIN - VCC -1)/ 0.015 — — mA Symbol IIL, IIH 1 Parameter Input or I/O Low leakage Condition -3 < VIN ≤ -1 ICH PCI High Clamp Current VBHT Bus Hold trip Points 0 ≤ VIN ≤ VIH (MAX) VIL (MAX) — VIH (MIN) V C1 I/O Capacitance2 VCCIO = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V, VCC = 1.2V, VCCIP2 = 1.2V, VCCAUX = 2.5, VIO = 0 to VIH (MAX) — 8 — pf C32 Dedicated Input Capacitance2 VCCIO = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V, VCC = 1.2V, VCCIP2 = 1.2V, VCCAUX = 2.5, VIO = 0 to VIH (MAX) — 6 — pf VCC + 4 > VIN ≥ VCC + 1 1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Bus maintenance circuits are disabled. 2. TA 25°C, f = 1.0MHz 3. IPU, IPD, IBHLS and IBHHS have minimum values of 15 or -15µA if V CCIO is set to 1.2V nominal. 4. This table does not apply to SERDES pins. 5. For programmable I/Os. 3-2 DC and Switching Characteristics LatticeSC/M Family Data Sheet Lattice Semiconductor Initialization and Standby Supply Current The table below indicates initialization and standby supply current while operating at 85°C junction temperature (TJ), which is the high end of the commercial temperature range, and 105°C, which is the high end of the industrial temperature range. This data assumes all outputs are tri-stated and all inputs are configured as LVCMOS and held at VCCIO or GND. The remaining SERDES supply current for VDDIB and VDDOB is detailed in the SERDES section of this data sheet. For power at your design temperature, it is recommended to use the Power Calculator tool which is accessible in ispLEVER or can be used as a standalone tool. For more information on supply current, see the reference to additional technical documentation available at the end of this data sheet. Over Recommended Operating Conditions 25°C Typ.1 Symbol Condition (VCC = 1.2V +/- 5%) Parameter Device Core Operating Power Supply Current ICC (VCC = 1.0V +/- 5%) ICC12 ICCAUX ICCIO and ICCJ Core Operating Power Supply Current 1.2V Power Supply Current for Configuration Logic, FPGA PLL, SERDES PLL and SERDES Analog Supplies Auxiliary Operating Power Supply Current Bank Power Supply Current (per bank) 105°C Max.2 Units All -5, -6 -7 -5, -6 LFSC/M15 65 449 678 755 mA LFSC/M25 113 798 1255 1343 mA LFSC/M40 159 1178 2006 1981 mA LFSC/M80 276 2122 3827 3569 mA LFSC/M115 454 3376 — 5679 mA LFSC/M15 45 312 471 524 mA LFSC/M25 79 554 872 933 mA LFSC/M40 110 818 1393 1375 mA LFSC/M80 191 1473 2658 2478 mA LFSC/M115 315 2344 — 3943 mA LFSC/M15 23 39 59 35 mA LFSC/M25 25 50 78 56 mA LFSC/M40 31 78 133 89 mA LFSC/M80 50 108 195 123 mA LFSC/M115 65 131 — 154 mA LFSC/M15 7 12 19 14 mA LFSC/M25 9 16 25 18 mA LFSC/M40 12 23 39 25 mA LFSC/M80 13 25 45 23 mA LFSC/M115 16 27 — 26 mA LFSC/M15 0.1 0.2 0.3 0.2 mA LFSC/M25 0.3 0.6 1.0 0.7 mA LFSC/M40 0.4 0.9 1.5 1.0 mA LFSC/M80 0.5 1.1 2.1 1.3 mA LFSC/M115 0.7 1.5 — 1.8 mA 1. ICC is specified at TJ = 25°C and typical VCC. 2. ICC is specified at the respective commercial and industrial maximum TJ and VCC limits. 3-3 85°C Max.2 DC and Switching Characteristics LatticeSC/M Family Data Sheet Lattice Semiconductor PURESPEED I/O Recommended Operating Conditions VCCIO (V) Standard VREF (V) Min. Typ. Max. Min. Typ. Max. LVCMOS 33 3.135 3.3 3.465 — — — LVCMOS 25 2.375 2.5 2.625 — — — LVCMOS 18 1.71 1.8 1.89 — — — LVCMOS 15 1.425 1.5 1.575 — — — LVCMOS 12 1.14 1.2 1.26 — — — LVTTL 3.135 3.3 3.465 — — — PCI33 3.135 3.3 3.465 — — — PCIX33 3.135 3.3 3.465 — — — PCIX15 1.425 1.5 1.575 0.49VCCIO 0.5VCCIO 0.51VCCIO AGP1X33 3.135 3.3 3.465 — — — AGP2X33 3.135 3.3 3.465 0.39VCCIO 0.4VCCIO 0.41VCCIO SSTL18_I, II3 1.71 1.8 1.89 0.833 0.9 0.969 3 SSTL25_I, II 2.375 2.5 2.625 1.15 1.25 1.35 SSTL33_I, II3 3.135 3.3 3.465 1.3 1.5 1.7 3 HSTL15_I, II 1.425 1.5 1.575 0.68 0.75 0.9 HSTL15_III1, 3 and IV1, 3 1.425 1.5 1.575 0.68 0.9 0.9 HSTL 18_I3, II3 1.71 1.8 1.89 0.816 0.9 1.08 HSTL 18_ III1, 3, IV1, 3 1.71 1.8 1.89 0.816 1.08 1.08 GTL12 , GTLPLUS15 — — — 0.882 1.0 1.122 LVDS — — — — — — 1, 3 1, 3 Mini-LVDS — — — — — — RSDS — — — — — — HYPT (Hyper Transport) LVPECL33 (outputs)2 LVPECL33 (inputs)2, 4 — — — — — — 3.135 3.3 3.465 — — — — ≤ 2.5 — — — — BLVDS252, 3 2.375 2.5 2.625 — — — 2, 3 MLVDS25 2.375 2.5 2.625 — — — SSTL18D_I3, II3 1.71 1.8 1.89 — — — 3 SSTL25D_I , II 2.375 2.5 2.625 — — — SSTL33D_I3, II3 3.135 3.3 3.465 — — — HSTL15D_I , II 1.425 1.5 1.575 — — — HSTL18D_I3, II3 1.71 1.8 1.89 — — — 3 3 1. 2. 3. 4. 3 Input only. Inputs on chip. Outputs are implemented with the addition of external resisters. Input for this standard does not depend on the value of VCCIO. Inputs for this standard cannot be in 3.3V VCCIO banks (≤ 2.5V only). 3-4 DC and Switching Characteristics LatticeSC/M Family Data Sheet Lattice Semiconductor PURESPEED I/O Single-Ended DC Electrical Characteristics Over Recommended Operating Conditions Input/Output Standard LVCMOS 33 LVTTL LVCMOS 25 LVCMOS 18 LVCMOS 15 LVCMOS 12 VIL VIH Min. (V) Max. (V) Min. (V) Max. (V) -0.3 0.8 2 3.465 -0.3 -0.3 -0.3 -0.3 -0.3 0.8 0.7 0.35VCCIO 0.35VCCIO 0.35VCCIO 2 1.7 0.65VCCIO 0.65VCCIO 0.65VCCIO 3.465 2.65 2.65 2.65 2.65 VOL Max. (V) VOH Min. (V) IOL (mA) IOH (mA) 0.4 2.4 24, 16, 8 -24, -16, -8 0.2 VCCIO - 0.2 0.1 -0.1 0.4 2.4 24, 16, 8 -24, -16, -8 0.2 VCCIO - 0.2 0.1 -0.1 0.4 VCCIO - 0.4 16, 12, 8, 4 -16, -12, -8, -4 0.2 VCCIO - 0.2 0.1 -0.1 0.4 VCCIO - 0.4 16, 12, 8, 4 -16, -12, -8, -4 0.2 VCCIO - 0.2 0.1 -0.1 0.4 VCCIO - 0.4 16, 12, 8, 4 -16, -12, -8, -4 0.2 VCCIO - 0.2 0.1 -0.1 0.3 VCCIO - 0.3 12, 8, 4, 2 -12, -8, -4, -2 0.2 VCCIO - 0.2 0.1 -0.1 PCIX15 -0.3 0.3VCCIO 0.5VCCIO 1.5 0.1VCCIO 0.9VCCIO 1.5 -0.5 PCI33 -0.3 0.3VCCIO 0.5VCCIO 3.465 0.1VCCIO 0.9VCCIO 1.5 -0.5 PCIX33 -0.3 0.35VCCIO 0.5VCCIO 3.465 0.1VCCIO 0.9VCCIO 1.5 -0.5 AGP-1X, AGP-2X -0.3 0.3VCCIO 0.5VCCIO 3.465 0.1VCCIO 0.9VCCIO 1.5 -0.5 SSTL3_I -0.3 VREF - 0.2 VREF + 0.2 3.465 0.7 VCCIO - 1.1 8 -8 SSTS3_I OST2 -0.3 VREF - 0.2 VREF + 0.2 3.465 0.9 VCCIO - 1.3 8 -8 SSTL3_II -0.3 VREF - 0.2 VREF + 0.2 3.465 0.5 VCCIO - 0.9 16 -16 SSTL3_II OST2 -0.3 VREF - 0.2 VREF + 0.2 3.465 0.9 VCCIO - 0.13 16 -16 SSTL2_I -0.3 VREF - 0.18 VREF + 0.18 2.65 0.54 VCCIO - 0.62 7.6 -7.6 SSTL2_I OST2 -0.3 VREF - 0.18 VREF + 0.18 2.65 0.73 VCCIO - 0.81 7.6 -7.6 SSTL2_II -0.3 VREF - 0.18 VREF + 0.18 2.65 0.35 VCCIO - 0.43 15.2 -15.2 SSTL2_II OST2 -0.3 VREF - 0.18 VREF + 0.18 2.65 0.73 VCCIO - 0.81 15.2 -15.2 SSTL18_I -0.3 VREF - 0.125 VREF + 0.125 2.65 0.28 VCCIO - 0.28 13.4 -13.4 SSTL18_II -0.3 VREF - 0.125 VREF + 0.125 2.65 0.28 VCCIO - 0.28 13.4 -13.4 HSTL15_I -0.3 VREF - 0.1 VREF + 0.1 2.65 0.4 VCCIO - 0.4 8 -8 HSTL15_II -0.3 VREF - 0.1 VREF + 0.1 2.65 0.4 VCCIO - 0.4 16 -16 HSTL15_III1 -0.3 VREF - 0.1 VREF + 0.1 2.65 N/A N/A N/A N/A HSTL15_IV1 -0.3 VREF - 0.1 VREF + 0.1 2.65 N/A N/A N/A N/A HSTL18_I -0.3 VREF - 0.1 VREF + 0.1 2.65 0.4 VCCIO - 0.4 9.6 -9.6 HSTL18_II -0.3 VREF - 0.1 VREF + 0.1 2.65 0.4 VCCIO - 0.4 19.2 -19.2 HSTL18_III1 -0.3 VREF - 0.1 VREF + 0.1 2.65 N/A N/A N/A N/A HSTL18_IV1 -0.3 VREF - 0.1 VREF + 0.1 2.65 N/A N/A N/A N/A GTL121, GTLPLUS151 -0.3 VREF - 0.2 VREF + 0.2 N/A N/A N/A N/A N/A 1. Input only. 2. Input with on-chip series termination. 3-5 DC and Switching Characteristics LatticeSC/M Family Data Sheet Lattice Semiconductor PURESPEED I/O Differential Electrical Characteristics LVDS Over Recommended Operating Conditions Parameter Symbol Parameter Description Test Conditions VINP, VINM Input voltage VTHD Differential input threshold (Q-Q) VCM Input common mode voltage IIN Input current Power on or power off VOH Output high voltage for VOP or VOM VOL Output low voltage for VOP or VOM VOD Output voltage differential ΔVOD Change in VOD between high and low VOS Output voltage offset ΔVOS Change in VOS between H and L ISAB Typ. Max. Units 0 — 2.4 V +/-100 — — mV 0.05 1.2 2.35 V — — +/-10 µA RT = 100 Ohm — 1.38 1.60 V RT = 100 Ohm 0.9V 1.03 — V (VOP - VOM), RT = 100 Ohm 250 350 450 mV — — 50 mV 1.125 1.20 1.375 V — — 50 mV — — 12 mA (VOP - VOM)/2, RT = 100 Ohm Output short circuit current Min. VOD = 0V Driver outputs shorted Notes: 1. Data is for 3.5mA differential current drive. Other differential driver current options are available. 2. If the low power mode of the input buffer is used, the minimum VCM is 600 mV. Hyper Transport Over Recommended Operating Conditions Parameter Symbol Description Min. Typ. Max. Units VOD Differential output voltage 500 600 700 mV ΔVOD Change in VOD magnitude -15 — 15 mV VOCM Output common mode voltage 560 600 640 mV ΔVOCM Change in VOCM magnitude -15 — 15 mV VID Input differential voltage 500 600 700 mV ΔVID Input differential voltage -15 — 15 mV VICM Input common mode voltage 500 600 700 mV ΔVICM Change in VICM magnitude -15 — 15 mV Notes: 1. Data is for 6mA differential current drive. Other differential driver current options are available. 2. If the low power mode of the input buffer is used, the minimum VCM is 600 mV. 3-6 DC and Switching Characteristics LatticeSC/M Family Data Sheet Lattice Semiconductor Mini-LVDS Over Recommended Operating Conditions Parameter Symbol Description Min. Typ. Max. Units ZO Single-ended PCB trace impedance 30 50 75 ohms RT Differential termination resistance 60 100 150 ohms 300 — 600 mV 1 1.2 1.4 V VOD Output voltage, differential, |VOP - VOM| VOS Output voltage, common mode, |VOP + VOM|/2 ΔVOD Change in VOD, between H and L — — 50 mV ΔVID Change in VOS, between H and L — — 50 mV VTHD Input voltage, differential, |VINP - VINM| mV VCM Input voltage, common mode, |VINP + VINM|/2 0.3+(VTHD/2) TR, TF Output rise and fall times, 20% to 80% TODUTY Output clock duty cycle TIDUTY Input clock duty cycle 40 200 — 600 — 2.1-(VTHD/2) — — 500 ps 45 — 55 % — 60 % Note: Data is for 6mA differential current drive. Other differential driver current options are available. RSDS Over Recommended Operating Conditions Parameter Symbol Description Min. Typ. Max. Units VOD Output voltage, differential, RT = 100 ohms 100 200 600 mV VOS Output voltage, common mode 0.5 1.2 1.5 V IRSDS Differential driver output current 1 2 6 mA VTHD Input voltage differential 100 — — mV VCM Input common mode voltage 0.3 — 1.5 V TR, TF Output rise and fall times, 20% to 80% — 500 — ps TODUTY Output clock duty cycle 45 50 55 % Note: Data is for 2mA drive. Other differential driver current options are available. 3-7 DC and Switching Characteristics LatticeSC/M Family Data Sheet Lattice Semiconductor Differential HSTL and SSTL Differential HSTL and SSTL outputs are implemented as a pair of complementary single-ended outputs. All allowable single-ended output classes (class I and class II) are supported in this mode. MLVDS The LatticeSC devices support the MLVDS standard. This industry standard is emulated using controlled impedance complementary LVCMOS outputs in conjunction with a parallel external resistor across the driver outputs. MLVDS is intended for use when multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-1 is one possible solution for bi-directional multi-point differential signals. Figure 3-1. MLVDS Multi-Point Output Example Heavily loaded backplane, effective Zo ~ 50 to 70 ohms differential 2.5V 2.5V 50 50-70 ohms, +/- 1% 50-70 ohms, +/- 1% 50 2.5V 2.5V 50 50 ... + - + 2.5V 2.5V 50 - + - 50 + 2.5V 2.5V 50 - 50 Table 3-1. MLVDS DC Conditions1 Over Recommended Operating Conditions Nominal Symbol Description Zo = 50 Zo = 70 Units 50 50 ohm ZOUT Output impedance RTLEFT Left end termination 50 70 ohm RTRIGHT Right end termination 50 70 ohm VOH Output high voltage 1.50 1.575 V VOL Output low voltage 1.00 0.925 V VOD Output differential voltage 0.50 0.65 V VCM Output common mode voltage 1.25 1.25 V IDC DC output current 20.0 18.5 mA 1. For input buffer, see LVDS table. 3-8 DC and Switching Characteristics LatticeSC/M Family Data Sheet Lattice Semiconductor BLVDS The LatticeSC devices support BLVDS standard. This standard is emulated using controlled impedance complementary LVCMOS outputs in conjunction with a parallel external resistor across the driver outputs. BLVDS is intended for use when multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one possible solution for bi-directional multi-point differential signals. Figure 3-2. BLVDS Multi-point Output Example Heavily loaded backplane, effective Zo ~ 45 to 90 ohms differential 2.5V 2.5V 100 45-90 ohms, +/- 1% % 45-90 - ohms, +/- 1% 100 2.5V 2.5V 100 100 ... + 2.5V + 2.5V 100 - + 2.5V 100 + 2.5V 100 - 100 Table 3-2. BLVDS DC Conditions1 Over Recommended Operating Conditions Nominal Symbol Description Zo = 45 Zo = 90 Units ZOUT Output impedance 100 100 ohm RTLEFT Left end termination 45 90 ohm RTRIGHT Right end termination 45 90 ohm VOH Output high voltage 1.375 1.48 V VOL Output low voltage 1.125 1.02 V VOD Output differential voltage 0.25 0.46 V VCM Output common mode voltage 1.25 1.25 V IDC DC output current 11.2 10.2 mA 1. For input buffer, see LVDS table. 3-9 DC and Switching Characteristics LatticeSC/M Family Data Sheet Lattice Semiconductor LVPECL The LatticeSC devices support differential LVPECL standard. This standard is emulated using controlled impedance complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The scheme shown in Figure 3-3 is one possible solution for point-to-point signals. Figure 3-3. Differential LVPECL 3.3V 85 ohms +/-1% 24mA ~16 ohms 150 ohms 3.3V 85 ohms +/-1% 24mA ~16 ohms 100 ohms Zback + - Transmission line, Zo = 100 ohm differential ON-chip OFF-chip Table 3-3. LVPECL DC Conditions1 Over Recommended Operating Conditions Symbol Description Nominal Units ZOUT Output impedance 16 ohm RS Driver series resistor 85 ohm RP Driver parallel resistor 150 ohm RT Receiver termination 100 ohm VOH Output high voltage 2.03 V VOL Output low voltage 1.27 V VOD Output differential voltage 0.76 V VCM Output common mode voltage 1.65 V ZBACK Back impedance 86 ohm IDC DC output current 12.6 mA 1. For input buffer, see LVDS table. For further information on LVPECL, BLVDS, MLVDS and other differential interfaces please see details of additional technical documentation at the end of this data sheet. On-die Differential Common Mode Termination Symbol CCMT Description Capacitance VCMT to GND 3-10 Min. Typ. Max. Units — 40 — pF DC and Switching Characteristics LatticeSC/M Family Data Sheet Lattice Semiconductor Typical Building Block Function Performance Over Recommended Commercial Operating Conditions at VCC = 1.2V +/- 5% Pin to Pin Performance (LVCMOS25 12 mA Drive) Function -7* Units 32-bit Decoder 6.65 ns Combinatorial (Pin to LUT to Pin) 5.58 ns Basic Functions Embedded Memory Functions (Single Port RAM) Pin to EBR Input Register Setup (Global Clock) 1.66 ns EBR Output Clock to Pin (Global Clock) 8.54 ns Pin to PFU RAM Register Setup (Global Clock) 1.32 ns PFU RAM Clock to Pin (Global Clock) 6.83 ns -7* Units 32-Bit Decoder 539 MHz 64-Bit Decoder 517 MHz 16:1 MUX 1003 MHz 32:1 MUX 798 MHz 16-Bit Adder 672 MHz 64-Bit Adder 353 MHz 16-Bit Counter 719 MHz 64-Bit Counter 369 MHz 32x8 SP RAM (PFU, Output Registered) 768 MHz 128x8 SP RAM (PFU, Output Registered) 545 MHz 372 MHz Distributed (PFU) RAM (Single Port RAM) *Typical performance per function Register-to-Register Performance Function Basic Functions Embedded Memory Functions Single Port RAM (512x36 Bits) True Dual Port RAM 1024x18 Bits (No EBR Out Reg) 326 MHz True dual port RAM 1024x18 Bits (EBR Reg) 372 MHz FIFO port (A: x36 bits, B: x9 Bits, No EBR Out Reg) 353 MHz FIFO port (A: x36 bits, B: x9 Bits, EBR Reg) 375 MHz True DP RAM Width Cascading (1024x72) 372 MHz 9x9 1-stage Multiplier 209 MHz 18x18 1-Stage Multiplier 155 MHz 9x9 3-Stage Pipelined Multiplier 373 MHz 18x18 4-Stage Pipelined Multiplier 314 MHz 9x9 Constant Multiplier 372 MHz DSP Functions *Typical performance per function 3-11 DC and Switching Characteristics LatticeSC/M Family Data Sheet Lattice Semiconductor Switching Characteristics All devices are 100% functionally tested. Listed below are representative values of internal and external timing parameters. For more specific, more precise, and worst-case guaranteed data at a particular temperature and voltage, use the values reported by the static timing analyzer in the ispLEVER design tool from Lattice and back-annotate to the simulation net list. 3-12 DC and Switching Characteristics LatticeSC/M Family Data Sheet Lattice Semiconductor LatticeSC/M External Switching Characteristics3 Over Recommended Commercial Operating Conditions at VCC = 1.2V +/- 5% -7 Parameter Description Min. -6 -5 Max. Min. Max. Min. Max. Units General I/O Pin Parameters (using Primary Clock without PLL)2 tCO Global Clock Input to Output - PIO Output Register 2.83 5.74 2.83 6.11 2.83 6.49 ns tSU Global Clock Input Setup - PIO Input Register without fixed input delay -0.66 — -0.66 — -0.66 — ns tH Global Clock Input Hold - PIO Input Register without fixed input delay 1.73 — 1.95 — 2.16 — ns tSU_IDLY Global Clock Input Setup - PIO Input Register with input delay 0.86 — 1.03 — 1.20 — ns tH_IDLY Global Clock Input Hold - PIO Input Register with input delay -0.17 — -0.17 — -0.17 — ns fMAX_PFU Global Clock frequency of PFU register — 700 — 700 — 700 MHz fMAX_IO Global Clock frequency of I/O register — 1000 — 1000 — 1000 MHz tGC_SKEW Global Clock skew — 89 — 103 — 116 ps General I/O Pin Parameters (using Primary Clock with PLL)1, 2 tCO Global Clock Input to Output - PIO Output Register 2.25 4.81 2.25 5.08 2.25 5.37 ns tSU Global Clock Input Setup - PIO Input Register without fixed input delay -0.07 — -0.07 — -0.07 — ns tH Global Clock Input Hold - PIO Input Register without fixed input delay 0.80 — 0.93 — 1.04 — ns General I/O Pin Parameters (using Edge Clock without PLL)2 tCO Edge Clock Input to Output - PIO Output Register 2.38 4.77 2.38 5.04 2.38 5.33 ns tSU Edge Clock Input Setup - PIO Input Register without fixed input delay -0.08 — -0.08 — -0.08 — ns tH Edge Clock Input Hold - PIO Input Register 0.49 — 0.58 — 0.66 — ns tSU_IDLY Edge Clock Input Setup - PIO Input Register with input delay 0.81 — 0.97 — 1.12 — ns tH_IDLY Edge Clock Input Hold - PIO Input Register with input delay -0.34 — -0.34 — -0.34 — ns tEC_SKEW Edge Clock skew — 28 — 32 — 36 ps General I/O Pin Parameters (using Latch FF without PLL)2 tSU Latch FF, Input Setup - PIO Input Register without fixed input delay -0.14 — -0.14 — -0.14 — ns tH Latch FF, Input Hold - PIO Input Register without fixed input delay 0.58 — 0.68 — 0.77 — ns tSU_IDLY Latch FF, Input Setup - PIO Input Register with input delay 0.70 — 0.68 — 0.77 — ns tH_IDLY Latch FF, Input Hold - PIO Input Register with input delay -0.30 — -0.30 — -0.30 — ns 1. No PLL delay tuning (clock injection removal mode, system clock feedback). 2. Using LVCMOS25 12mA I/O. Timing adders for other supported I/O technologies are specified in the LatticeSC Family Timing Adders table. 3. Complete Timing Parameters for a user design are incorporated when running ispLEVER. This is a sampling of the key timing parameters. Timing specs are for non-AIL applications. 3-13 DC and Switching Characteristics LatticeSC/M Family Data Sheet Lattice Semiconductor LatticeSC/M Family Timing Adders Over Recommended Operating Conditions at VCC = 1.2V +/- 5% -7 Buffer Type Description -6 -5 Min. Max. Min. Max. Min. Max. Units Input Adjusters LVDS LVDS -0.031 -0.031 -0.011 -0.011 0.009 0.009 ns RSDS RSDS -0.031 -0.031 -0.011 -0.011 0.009 0.009 ns BLVDS25 BLVDS -0.031 -0.031 -0.011 -0.011 0.009 0.009 ns MLVDS25 MLVDS -0.031 -0.031 -0.011 -0.011 0.009 0.009 ns HYPT Hypertransport -0.02 -0.029 -0.001 -0.004 0.02 0.017 ns LVPECL33 LVPECL -0.031 -0.031 -0.011 -0.011 0.009 0.009 ns HSTL18_I HSTL_18 class I -0.013 -0.015 0.015 0.007 0.042 0.029 ns HSTL18_II HSTL_18 class II -0.013 -0.015 0.015 0.007 0.042 0.029 ns HSTL18_III HSTL_18 class III -0.016 -0.018 0.008 0.003 0.032 0.023 ns HSTL18_IV HSTL_18 class IV -0.016 -0.018 0.008 0.003 0.032 0.023 ns HSTL18D_I Differential HSTL 18 class I 0.006 0.001 0.029 0.024 0.052 0.046 ns HSTL18D_II Differential HSTL 18 class II 0.006 0.001 0.029 0.024 0.052 0.046 ns HSTL15_I HSTL_15 class I -0.005 -0.016 0.026 -0.001 0.057 0.014 ns HSTL15_II HSTL_15 class II -0.005 -0.016 0.026 -0.001 0.057 0.014 ns HSTL15_III HSTL_15 class III -0.013 -0.015 0.015 0.007 0.042 0.029 ns HSTL15_IV HSTL_15 class IV -0.013 -0.015 0.015 0.007 0.042 0.029 ns HSTL15D_I Differential HSTL 15 class I -0.021 -0.022 0.001 -0.009 0.022 0.003 ns HSTL15D_II Differential HSTL 15 class II -0.021 -0.022 0.001 -0.009 0.022 0.003 ns SSTL33_I SSTL_3 class I -0.036 -0.061 -0.181 -0.313 -0.326 -0.565 ns SSTL33_II SSTL_3 class II -0.036 -0.061 -0.181 -0.313 -0.326 -0.565 ns SSTL33D_I Differential SSTL_3 class I 0.012 0.012 0.034 0.028 0.055 0.043 ns SSTL33D_II Differential SSTL_3 class II 0.012 0.012 0.034 0.028 0.055 0.043 ns SSTL25_I SSTL_2 class I 0.003 -0.008 0.03 0.011 0.058 0.03 ns SSTL25_II SSTL_2 class II 0.003 -0.008 0.03 0.011 0.058 0.03 ns SSTL25D_I Differential SSTL_2 class I 0.006 0 0.031 0.023 0.056 0.046 ns SSTL25D_II Differential SSTL_2 class II 0.006 0 0.031 0.023 0.056 0.046 ns SSTL18_I SSTL_18 class I -0.013 -0.015 0.015 0.007 0.042 0.029 ns SSTL18_II SSTL_18 class II -0.013 -0.015 0.015 0.007 0.042 0.029 ns SSTL18D_I Differential SSTL_18 class I 0.006 0.001 0.029 0.024 0.052 0.046 ns SSTL18D_II Differential SSTL_18 class II 0.006 0.001 0.029 0.024 0.052 0.046 ns LVTTL33 LVTTL 0.034 0.034 -0.05 -0.05 -0.134 -0.134 ns LVCMOS33 LVCMOS 3.3 0.034 0.034 -0.05 -0.05 -0.134 -0.134 ns LVCMOS25 LVCMOS 2.5 0 0 0 0 0 0 ns LVCMOS18 LVCMOS 1.8 -0.068 -0.068 -0.087 -0.087 -0.105 -0.105 ns LVCMOS15 LVCMOS 1.5 -0.131 -0.131 -0.186 -0.186 -0.241 -0.241 ns LVCMOS12 LVCMOS 1.2 -0.238 -0.238 -0.364 -0.364 -0.49 -0.49 ns PCI33 PCI 0.034 0.034 -0.05 -0.05 -0.134 -0.134 ns PCIX33 PCI-X 3.3 0.034 0.034 -0.05 -0.05 -0.134 -0.134 ns PCIX15 PCI-X 1.5 -0.005 -0.016 0.026 -0.001 0.057 0.014 ns AGP1X33 AGP-1X 3.3 0.034 0.034 -0.05 -0.05 -0.134 -0.134 ns 3-14 DC and Switching Characteristics LatticeSC/M Family Data Sheet Lattice Semiconductor LatticeSC/M Family Timing Adders (Continued) Over Recommended Operating Conditions at VCC = 1.2V +/- 5% -7 Buffer Type Description -6 -5 Min. Max. Min. Max. Min. Max. Units AGP2X33 AGP-2X -0.036 -0.061 -0.181 -0.313 -0.326 -0.565 ns GTLPLUS15 GTLPLUS15 -0.013 -0.017 0.012 0.004 0.037 0.024 ns GTL12 GTL12 -0.063 -0.071 -0.007 -0.048 0.056 -0.032 ns Output Adjusters LVDS LVDS 0.708 0.854 0.856 1.021 1.005 1.189 ns RSDS RSDS 0.708 0.854 0.856 1.021 1.005 1.189 ns BLVDS25 BLVDS -0.129 0.05 -0.136 0.069 -0.136 0.083 ns MLVDS25 MLVDS -0.059 0.059 -0.057 0.096 -0.054 0.133 ns LVPECL33 LVPECL -0.334 -0.181 -0.325 -1.389 -0.315 -2.598 ns HYPT Hypertransport 0.677 0.854 0.83 1.027 0.984 1.201 ns HSTL18_I HSTL_18 class I 0.132 0.209 0.153 0.24 0.175 0.272 ns HSTL18_II HSTL_18 class II 0.24 0.176 0.268 0.255 0.298 0.333 ns HSTL18D_I Differential HSTL 18 class I 0.132 0.209 0.153 0.24 0.175 0.272 ns HSTL18D_II Differential HSTL 18 class II 0.24 0.176 0.268 0.255 0.298 0.333 ns HSTL15_I HSTL_15 class I 0.096 0.172 0.112 0.198 0.129 0.224 ns HSTL15_II HSTL_15 class II 0.208 0.131 0.233 0.203 0.259 0.275 ns HSTL15D_I Differential HSTL 15 class I 0.096 0.172 0.112 0.198 0.129 0.224 ns HSTL15D_II Differential HSTL 15 class II 0.208 0.131 0.233 0.203 0.259 0.275 ns SSTL33_I SSTL_3 class I 0.133 0.177 0.11 0.166 0.088 0.154 ns SSTL33_II SSTL_3 class II 0.173 0.247 0.164 0.253 0.156 0.258 ns SSTL33D_I Differential SSTL_3 class I 0.133 0.177 0.11 0.166 0.088 0.154 ns SSTL33D_II Differential SSTL_3 class II 0.173 0.247 0.164 0.253 0.156 0.258 ns SSTL25_I SSTL_2 class I 0.215 0.125 0.239 0.228 0.264 0.331 ns SSTL25_II SSTL_2 class II 0.277 0.181 0.311 0.284 0.345 0.387 ns SSTL25D_I Differential SSTL_2 class I 0.215 0.125 0.239 0.228 0.264 0.331 ns SSTL25D_II Differential SSTL_2 class II 0.277 0.181 0.311 0.284 0.345 0.387 ns SSTL18_I SSTL_2 class I 0.16 0.081 0.179 0.173 0.199 0.265 ns SSTL18_II SSTL_2 class II 0.238 0.15 0.263 0.244 0.295 0.338 ns SSTL18D_I Differential SSTL_2 class I 0.16 0.081 0.179 0.173 0.199 0.265 ns SSTL18D_II Differential SSTL_2 class II 0.238 0.15 0.263 0.244 0.295 0.338 ns LVTTL33_8mA LVTTL 8mA drive -0.346 -0.165 -0.496 -0.296 -0.646 -0.428 ns LVTTL33_16mA LVTTL 16mA drive -0.11 -0.18 -0.218 -0.32 -0.325 -0.46 ns LVTTL33_24mA LVTTL 24mA drive -0.012 -0.18 -0.099 -0.321 -0.185 -0.463 ns LVCMOS33_8mA LVCMOS 3.3 8mA drive -0.346 -0.165 -0.496 -0.296 -0.646 -0.428 ns LVCMOS33_16mA LVCMOS 3.3 16mA drive -0.11 -0.18 -0.218 -0.32 -0.325 -0.46 ns LVCMOS33_24mA LVCMOS 3.3 24mA drive -0.012 -0.18 -0.099 -0.321 -0.185 -0.463 ns LVCMOS25_4mA LVCMOS 2.5 4mA drive -0.174 0.004 -0.195 0.002 -0.215 0 ns LVCMOS25_8mA LVCMOS 2.5 8mA drive 0 0 0 0 0 0 ns LVCMOS25_12mA LVCMOS 2.5 12mA drive 0.094 -0.025 0.107 0.096 0.12 0.216 ns LVCMOS25_16mA LVCMOS 2.5 16mA drive 0.145 -0.054 0.162 0.063 0.181 0.179 ns LVCMOS25_OD LVCMOS 2.5 open drain 0.073 -0.125 0.081 -0.081 0.091 -0.09 ns 3-15 DC and Switching Characteristics LatticeSC/M Family Data Sheet Lattice Semiconductor LatticeSC/M Family Timing Adders (Continued) Over Recommended Operating Conditions at VCC = 1.2V +/- 5% -7 Buffer Type Description -6 -5 Min. Max. Min. Max. Min. Max. Units LVCMOS18_4mA LVCMOS 1.8 4mA drive -0.278 -0.099 -0.312 -0.115 -0.345 -0.131 ns LVCMOS18_8mA LVCMOS 1.8 8mA drive -0.073 -0.078 -0.078 -0.084 -0.083 -0.089 ns LVCMOS18_12mA LVCMOS 1.8 12mA drive 0.024 -0.106 0.019 -0.004 0.016 0.099 ns LVCMOS18_16mA LVCMOS 1.8 16mA drive 0.074 -0.134 0.08 -0.022 0.088 0.089 ns LVCMOS18_OD LVCMOS 1.8 open drain 0.002 -0.206 0 -0.196 -0.002 -0.221 ns LVCMOS15_4mA LVCMOS 1.5 4mA drive -0.344 -0.164 -0.379 -0.186 -0.412 -0.209 ns LVCMOS15_8mA LVCMOS 1.5 8mA drive -0.125 -0.137 -0.145 -0.157 -0.164 -0.176 ns LVCMOS15_12mA LVCMOS 1.5 12mA drive -0.027 -0.166 -0.043 -0.07 -0.059 0.026 ns LVCMOS15_16mA LVCMOS 1.5 16mA drive 0.025 -0.195 0.013 -0.089 0.003 0.017 ns LVCMOS15_OD LVCMOS 1.5 open drain -0.047 -0.267 -0.067 -0.267 -0.087 -0.299 ns LVCMOS12_2mA LVCMOS 1.2 2mA drive -0.473 -0.293 -0.505 -0.317 -0.537 -0.34 ns LVCMOS12_4mA LVCMOS 1.2 4mA drive -0.218 -0.239 -0.25 -0.271 -0.28 -0.303 ns LVCMOS12_8mA LVCMOS 1.2 8mA drive -0.109 -0.269 -0.143 -0.181 -0.176 -0.093 ns LVCMOS12_12mA LVCMOS 1.2 12mA drive -0.054 -0.3 -0.085 -0.203 -0.114 -0.106 ns LVCMOS12_OD LVCMOS 1.2 open drain -0.126 -0.371 -0.166 -0.398 -0.204 -0.43 ns PCI33 PCI -0.216 -0.791 -0.417 -1.263 -0.618 -1.735 ns PCIX33 PCI-X 3.3 -0.216 -0.791 -0.417 -1.263 -0.618 -1.735 ns PCIX15 PCI-X 1.5 0.208 0.227 0.233 0.312 0.259 0.398 ns AGP1X33 AGP-1X 3.3 -0.216 -0.791 -0.417 -1.263 -0.618 -1.735 ns AGP2X33 AGP-2X -0.216 -0.791 -0.417 -1.263 -0.618 -1.735 ns 3-16 DC and Switching Characteristics LatticeSC/M Family Data Sheet Lattice Semiconductor LatticeSC/M Internal Timing Parameters1 Over Recommended Commercial Operating Conditions at VCC = 1.2V +/- 5% -7 Parameter Symbol Description Min. -6 Max. Min. -5 Max. Min. Max. Units PFU Logic Mode Timing tLUT4_PFU CTOF_DEL — 0.045 — 0.050 — 0.054 ns tLUT5_PFU MTOOFX_DEL LUT5 delay (inputs to output) — 0.152 — 0.172 — 0.192 ns tLSR_PFU LSR_DEL Set/Reset to output (asynchronous) — 0.378 — 0.426 — 0.474 ns tSUM_PFU M_SET Clock to Mux (M0,M1) input setup time 0.113 — 0.131 — 0.148 — ns tHM_PFU M_HLD Clock to Mux (M0,M1) input hold time -0.041 — -0.046 — -0.052 — ns tSUD_PFU DIN_SET Clock to D input setup time 0.072 — 0.083 — 0.094 — ns tHD_PFU DIN_HLD Clock to D input hold time -0.028 — -0.032 — -0.035 — ns tCK2Q_PFU REG_DEL Clock to Q delay, D-type register configuration — 0.224 — 0.252 — 0.279 ns tLE2Q_PFU LTCH_DEL Clock to Q delay latch configuration — 0.294 — 0.331 — 0.367 ns TLTCH_DEL D to Q throughput delay when latch is enabled — 0.300 — 0.338 — 0.376 ns tLD2Q_PFU LUT4 delay (A to D inputs to F output) PFU Memory Mode Timing tCORAM_PFU CLKTOF_DEL Clock to Output — 0.575 — 0.649 — 0.724 ns tSUDATA_PFU DIN_SET Data Setup Time -0.024 — -0.026 — -0.027 — ns tHDATA_PFU DIN_HLD tSUADDR_PFU WAD_SET tHADDR_PFU WAD_HLD tSUWREN_PFU WE_SET tHWREN_PFU WE_HLD Data Hold Time 0.075 — 0.084 — 0.094 — ns Address Setup Time -0.176 — -0.196 — -0.215 — ns Address Hold Time 0.110 — 0.124 — 0.138 — ns Write/Read Enable Setup Time 0.014 — 0.019 — 0.024 — ns Write/Read Enable Hold Time 0.078 — 0.086 — 0.094 — ns Input Buffer Delay(LVCMOS25) — 0.578 — 0.661 — 0.744 ns PIC Timing PIO Input/Output Buffer Timing tIN_PIO IN_DEL tOUT_PIO DOPADI_DEL Output Buffer Delay(LVCMOS25) — 2.712 — 3.027 — 3.395 ns tSUI_PIO DIN_SET Input Register Setup Time (Data Before Clock) -0.156 — -0.175 — -0.194 — ns tHI_PIO DIN_HLD Input Register Hold Time (Data after Clock) -0.267 — -0.306 — -0.345 — ns tCOO_PIO CK_DEL Output Register Clock to Output Delay — 0.513 — 0.571 — 0.639 ns tSUCE_PIO CE_SET Input Register Clock Enable Setup Time — 0.000 — 0.000 — 0.000 ns tHCE_PIO CE_HLD Input Register Clock Enable Hold Time — 0.129 — 0.145 — 0.161 ns tSULSR_PIO LSR_SET Set/Reset Setup Time 0.057 — 0.060 — 0.063 — ns tHLSR_PIO LSR_HLD Set/Reset Hold Time -0.151 — -0.159 — -0.169 — ns tLE2Q_PIO CK_DEL Input Register Clock to Q delay latch configuration — 0.335 — 0.372 — 0.410 ns tLD2Q_PIO DIN_DEL Input Register D to Q throughput delay when latch is enabled — 0.578 — 0.647 — 0.717 ns 3-17 DC and Switching Characteristics LatticeSC/M Family Data Sheet Lattice Semiconductor LatticeSC/M Internal Timing Parameters1 (Continued) Over Recommended Commercial Operating Conditions at VCC = 1.2V +/- 5% -7 Parameter Symbol -6 -5 Description Min. Max. Min. Max. Min. Max. Units — 1.900 — 2.116 — 2.335 ns EBR Timing tCO_EBR CK_Q_DEL Clock (Read) to output from Address or Data tCOO_EBR CK_Q_DEL Clock (Write) to output from EBR output Register 0.390 — 0.444 — 0.498 — ns tSUDATA_EBR D_CK_SET Setup Data to EBR Memory (Write clk) -0.173 — -0.192 — -0.210 — ns tHDATA_EBR D_CK_HLD Hold Data to EBR Memory (Write clk) 0.276 — 0.305 — 0.335 — ns tSUADDR_EBR A_CK_SET Setup Address to EBR Memory (Write clk) -0.165 — -0.182 — -0.200 — ns tHADDR_EBR Hold Address to EBR Memory (Write clk) 0.269 — 0.298 — 0.327 — ns tSUWREN_EBR CE_CK_SET Setup Write/Read Enable to EBR Memory (Write/Read clk) 0.225 — 0.226 — 0.226 — ns tHWREN_EBR CE_CK_HLD Hold Write/Read Enable to EBR Memory (write/read clk) 0.073 — 0.095 — 0.116 — ns tSUCE_EBR CS_CK_SET Clock Enable Setup Time to EBR Output Register (Read clk) 0.261 — 0.269 — 0.276 — ns tHCE_EBR CS_CK_HLD Clock Enable Hold Time to EBR Output Register (Read clk) 0.023 — 0.039 — 0.055 — ns tRSTO_EBR RESET_Q_DEL Reset To Output Delay Time from EBR Output Register (asynchronous) — 0.589 — 0.673 — 0.757 ns A_CK_HLD Cycle Boosting Timing tDEL1 DEL1 Cycle boosting delay 1 applies to PIO, PFU, EBR — 0.480 — 0.524 — 0.570 ns tDEL2 DEL2 Cycle boosting delay 2 applies to PIO, PFU, EBR — 0.922 — 1.005 — 1.090 ns tDEL3 DEL3 Cycle boosting delay 3 applies to PIO, PFU, EBR — 1.366 — 1.488 — 1.612 ns 1. Complete timing parameters for a user design will be incorporated when running ispLEVER. This is a sampling of the key timing parameters. 3-18 DC and Switching Characteristics LatticeSC/M Family Data Sheet Lattice Semiconductor Input Delay Block/AIL Timing Parameter Description tFDEL Fine delay time tCDEL Coarse delay time jtAIL AIL jitter tolerance Min. Typ. Max. Units 35 45 80 ps 1120 1440 2560 ps 1 1- ((N * tFDEL) / (Clock Period)) UI 1. N = number of fine delays used in a particular AIL setting GSR Timing -7 Parameter tSYNC_GSR_MAX Description Maximum operating frequency for synchronous GSR Minimum pulse width of tASYNC_GSR_MPW asynchronous input -6 -5 VCC Min. Max. Min. Max. Min. Max. Units 1.14V — 438 — 417 — 398 MHz 0.95V — 378 — 355 — 337 MHz — — — — — 3.3 — ns Note: Synchronous GSR goes out of reset in two cycles from the clock edge where the setup time of the FF was met. Internal System Bus Timing -7 Parameter tHCLK Description Maximum operating frequency for internal system bus HCLK. -6 -5 Min. Max. Min. Max. Min. Max. Units — 200 — 200 — 200 MHz Note: There is no minimum frequency. If HCLK is sourced from the embedded oscillator, the minimum frequency limitation of the oscillator/ divider is about 0.3 MHz. Refer to the osciallator data for missing configuration modes. 3-19 DC and Switching Characteristics LatticeSC/M Family Data Sheet Lattice Semiconductor Timing Diagrams PFU Timing Diagrams Figure 3-4. Slice Single/Dual Port Write Cycle Timing CK WRE AD AD DI D DO Old Data D Notes: • Rising Edge for latching WREN, WAD and DATAIN. • WREN must continue past falling edge clock. • Data output occurs on negative edge. Figure 3-5. Slice Single/Dual Port Read Cycle Timing CK WRE AD AD DO Old Data D 3-20 DC and Switching Characteristics LatticeSC/M Family Data Sheet Lattice Semiconductor EBR Memory Timing Diagrams Figure 3-6. Read Mode CLKA CSA WEA ADA A0 A1 A0 A1 A0 tSU tH DIA D0 D1 tACCESS tACCESS tACCESS D0 Invalid Data DOA tACCESS tACCESS D1 D0 Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive of the clock. Figure 3-7. Read Mode with Input Registers Only CLKA CSA WEA ADA A0 tSU DIA A1 A0 A1 tH D0 D1 tACCESS DOA Invalid Data tACCESS D0 output is only updated during a read cycle 3-21 D1 DC and Switching Characteristics LatticeSC/M Family Data Sheet Lattice Semiconductor Figure 3-8. Read Mode with Input and Output Registers CLKA CSA WEA A0 ADA tSU A1 D1 D1 D0 Mem(n) data from previous read DOA A0 tH D0 DIA A1 A0 D0 DOA tACCESS DOA (Registered) tACCESS D0 Mem(n) data from previous read D1 output is only updated during a read cycle Figure 3-9. Write Through (SP Read/Write On Port A, Input Registers Only) CLKA CSA WEA Three consecutive writes to A0 ADA A0 tSU DIA A1 tH D0 D2 D1 tACCESS DOA A0 Data from Prev Read or Write tACCESS D0 D3 D4 tACCESS D1 tACCESS D2 D3 D4 Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive of the clock. 3-22 DC and Switching Characteristics LatticeSC/M Family Data Sheet Lattice Semiconductor Figure 3-10. FIFO Reset Waveform Asynchronous RESET, RESET pulse width (tRW), RESET to Flag valid (tRSF), RESET hold time (tRSH) tRW RST tRSH tRSU RE tRSF EF, AE flags tRSH tRSU WE tRSF FF, AF flags DO Note: RE and WE must be deactivated tRSU before the Positive FIFO reset edge and enabled tRSH after the FIFO reset negative edge. Figure 3-11. Read Pointer Reset Waveform RST_B tRW tRSU RE RESET pulse width (tRW), RESET to Flag valid (tRSF), RESET hold time (tRSH) tRSH RCLK tRSF tACCESS_E EF, AE flags WE tRSU tRSH WCLK tACCESS_F FF, AF flags Note: RE and WE must be deactivated tRSU before the Positive FIFO reset edge and enabled tRSH after the FIFO reset negative edge. 3-23 DC and Switching Characteristics LatticeSC/M Family Data Sheet Lattice Semiconductor Figure 3-12. Waveforms First Read after Full Flag CS Last Write (FIFO FULL) WCLK tSU1 tH1 WE FF (flag) tCO tSKEW tCO RCLK tSU1 tH1 First Read RE Figure 3-13. Waveform First Write after Empty Flag CS Last Read (FIFO Empty) RCLK tSU1 tH1 RE EF (flag) tSKEW tCO tCO WCLK tSU1 WE 3-24 tH1 First Write DC and Switching Characteristics LatticeSC/M Family Data Sheet Lattice Semiconductor sysCLOCK PLL Timing Over Recommended Operating Conditions Parameter Description fIN Input Clock Frequency (CLKI, CLKFB) fOUT Output Clock Frequency (CLKOP, CLKOS) fVCO PLL VCO Frequency fPFD Phase Detector Input Frequency Conditions Min. Typ Max. Units 2 — 1000 MHz 1.5625 — 1000 MHz 100 — 1000 MHz 2 — 700 MHz Default duty cycle selected (at 50% levels) 45 — 55 % 2 MHz ≤ fPFD ≤ 10 MHz — — 200 ps fPFD > 10 MHz — — 100 ps AC Characteristics tDT Output Clock Duty Cycle tOPJIT1 Output Clock Period Jitter 1 Output Clock Cycle-to-Cycle Jitter — — 100 ps tSKEW Output Clock-to-Clock Skew (Between Two Outputs with the Same Phase Setting) — — 20 ps tLOCK PLL Lock-in Time — — 1 ms tIPJIT Input Clock Period Jitter — — ±250 ps tHI Input Clock High Time At 80% level 350 — — ps tLO Input Clock Low Time At 20% level 350 — — ps tRSWA Analog Reset Signal Pulse Width 100 — — ns tRSWD Digital Reset Signal Pulse Width 3 — — ns tDEL Timeshift Delay Step Size 40 80 120 ps tRANGE Timeshift Delay Range — +/- 560 — ps fSS Spread Spectrum Modulation Frequency 30 — 500 KHz % Spread Percentage Downspread for SS Mode 0.5 — 1.5 % VCO Clock Phase Adjustment Accuracy -5 — 5 ° tCPJIT 1. Values are measured with FPGA logic active, no additional I/Os toggling and REFCLK total jitter = 30 ps 3-25 DC and Switching Characteristics LatticeSC/M Family Data Sheet Lattice Semiconductor sysCLOCK DLL Timing Over Recommended Operating Conditions Parameter Description Conditions Min. Typ. Max. Units fIN Input Clock Frequency (CLKI, CLKFB) 100 — 700 MHz fOUTOP Output Clock Frequency (CLKOP) 100 — 700 MHz fOUTOS Output Clock Frequency (CLKOS) 25 — 700 MHz Output Clock Duty Cycle Output Clock Duty Cycle (at 50% levels, 50% duty cycle input clock, duty cycle correction turned off, time reference delay mode) 38 — 62 % Output Clock Duty Cycle Output Clock Duty Cycle (at 50% levels, arbitrary duty cycle input clock, duty cycle correction turned on, time reference delay mode) 45 — 55 % tDUTYCIR Output Clock Duty Cycle Output Clock Duty Cycle (at 50% levels, arbitrary duty cycle input clock, duty cycle correction turned on, clock injection removal mode) 40 — 60 % tOPJIT1 Output Clock Period Jitter — — 200 ps tCPJIT1 Output Clock Cycle-to-Cycle Jitter — — 200 ps tSKEW Output Clock to Clock Skew (Between Two Outputs with the Same Phase Setting) — — 100 ps tLOCK DLL Lock-in Time 8 — 18500 cycles tIDUTY Input Clock Duty Cycle tIPJIT Input Clock Period Jitter tHI Input Clock High Time tLO Input Clock Low Time tRSWD Reset Signal Pulse Width 3 tFDEL Timeshift Delay Step Size 35 tDLL Delay Through the DLL when No Delay Taps are Chosen but Not in Bypass Mode. — 760 AC Characteristics tDUTY tDUTYRD Applies to all operating conditions 35 — 65 % — — +/- 250 ps At 80% level 500 — — ps At 20% level 500 — — ps — — ns 45 80 ps — ps 1. Values are measured with FPGA logic active, no additional I/Os toggling and REFCLK total jitter = 30 ps. 3-26 DC and Switching Characteristics LatticeSC/M Family Data Sheet Lattice Semiconductor LatticeSC/M sysCONFIG Port Timing Over Recommended Operating Conditions Parameter Description Min. Max. Units 0 — ns General Configuration Timing tSMODE M[3:0] Setup Time to INITN High tHMODE M[3:0] Hold Time from INITN High 600 — ns — ns tRW RESETN Pulse Width Low to Start Reconfiguration (1.2 V) 50 (or 100 at 0.95V) tPGW PROGRAMN Pulse Width Low to Start Reconfiguration (1.2 V) 50 (or 100 at 0.95V) — ns fESB_CLK_FRQ System Bus ESB_CLK Frequency (No Wait States) — 133 MHz ns sysCONFIG Master Parallel Configuration Mode tSMB D[7:0] Setup Time to RCLK High 6 — tHMB D[7:0] Hold Time to RCLK High 0 — ns RCLK Low Time (Non-compressed Bitstreams) 0.5 0.5 CCLK periods RCLK Low Time (Compressed Bitstreams) 0.5 7.5 CCLK periods RCLK High Time 0.5 0.5 CCLK periods tCLMB tCHMB sysCONFIG SPI Port tCFGX INITN High to CSCK Low — 80 ns tCSSPI INITN High to CSSPIN Low 0 2 µs tSCK CSCK Low before CSSPIN Low 0 — ns tSOCDO CSCK Low to Output Valid — 15 ns tCSPID CSSPIN Low to CSCK high Setup Time — 15 ns fMAXSPI Max CCLK Frequency - SPI Flash Fast Read Opcode (0x0B) (SPIFASTN=0) — 50 MHz tSUSPI SOSPI/D0 Data Setup Time Before CSCK 7 — ns tHSPI SOSPI/D0 Data Hold Time After CSCK Master Clock Frequency Duty Cycle 2 — ns Selected value - 30% Selected value + 30% MHz 40 60 % 4.4 — ns sysCONFIG Master Serial Configuration Mode tSMS DIN Setup Time tHMS DIN Hold Time 0 — ns fCMS CCLK Frequency (No Divider) 90 190 MHz fC_DIV CCLK Frequency (Div 128) 0.70 1.48 MHz tD CCLK to DOUT Delay — 7.5 ns — 10 ns sysCONFIG Master Parallel Configuration Mode tAVMP RCLK to Address Valid tSMP D[7:0] Setup Time to RCLK High 6 — ns tHMP D[7:0] Hold Time to RCLK High 0 — ns CCLK periods RCLK Low Time (Non-compressed Bitstream) 7.5 7.5 RCLK Low Time (Compressed Bitstream) 0.5 63.5 tCHMP RCLK High Time 0.5 0.5 CCLK periods tDMP CCLK to DOUT — 7.5 ns tCLMP 3-27 DC and Switching Characteristics LatticeSC/M Family Data Sheet Lattice Semiconductor LatticeSC/M sysCONFIG Port Timing (Continued) Over Recommended Operating Conditions Parameter Description Min. Max. Units sysCONFIG Asynchronous Peripheral Configuration Mode tWRAP WRN, CS0N and CS1 Pulse Width 5 - ns tSAP D[7:0] Setup Time 1.5 - ns tRDYAP RDY Delay — 8 ns tBAP RDY Low 1 8 CCLK periods tWR2AP Earliest WRN After RDY Goes High 0 — ns tDENAP RDN to D[7:0] Enable/Disable — 7.5 ns tDAP CCLK to DOUT — 7.5 ns 5.2 — ns sysCONFIG Slave Serial Configuration Mode tSSS DIN Setup Time tHSS DIN Hold Time 0 — ns tCHSS CCLK High Time 3.75 — ns tCLSS CCLK Low Time 3.75 — ns fCSS CCLK Frequency — 150 MHz tDSS CCLK to DOUT — 7.5 ns sysCONFIG Slave Parallel Configuration Mode tS1SP CS0N, CS1, WRN Setup Time 5.2 — ns tH1SP CS0N, CS1, WRN Hold Time 0 — ns tS2SP D[7:0] Setup Time 5.2 — ns tH2SP D[7:0] Hold Time 0 — ns tCHSP CCLK High Time 3.75 — ns tCL CCLK Low Time 3.75 — ns fCSP CCLK Frequency — 150 MHz sysCONFIG MPI Port -7 Parameter Description -6 -5 Min. Max. Min. Max. Min. Max. Units tMPICTRL_SET MPI Control (MPCSTRBN, MPCWRN, MPCCLK, etc.) to MPCCLK Setup Time 4.9 — 5.2 — 5.5 — ns tMPIADR_SET MPI Address to MPCCLK Setup Time 3.9 — 4.2 — 4.5 — ns tMPIDAT_SET MPI Write Data to MPCCLK Setup Time 4.9 — 5.2 — 5.5 — ns tMPIDPAR_SET MPI Write Parity Data to MPCCLK Setup Time 3.9 — 4.2 — 4.5 — ns tMPI_HLD All Hold Times 0 — 0 — 0 — ns tMPICTRL_DEL MPCCLK to MPI Control (MPCTA, MPCTEA, MPCRETRY) — 5.6 — 6.7 — 8.7 ns tMPIDAT_DEL MPCCLK to MPI Data — 5.6 — 6.7 — 8.7 ns tMPIDPAR_DEL MPCCLK to MPI Parity Data — 4.9 — 5.7 — 7.7 ns fMPI_CLK_FRQ MPCCLK Frequency — 100 — 83 — 66 MHz 3-28 DC and Switching Characteristics LatticeSC/M Family Data Sheet Lattice Semiconductor JTAG Port Timing Specifications Over Recommended Operating Conditions Symbol Parameter Min. Max. Units — 25 MHz tBTCP TCK [BSCAN] Clock Pulse Width 40 — ns tBTCPH TCK [BSCAN] Clock Pulse Width High 50 — mV/ns tBTCPL TCK [BSCAN] Clock Pulse Width Low — 10 ns tBTS TCK [BSCAN] Setup Time — 10 ns tBTH TCK [BSCAN] Hold Time 8 — ns tBTRF TCK [BSCAN] Rise/Fall Time 10 — ns tBTCO TAP Controller Falling Edge of Clock to Valid Output 20 — ns tBTCODIS TAP Controller Falling Edge of Clock to Valid Disable 20 — ns tBTCOEN TAP Controller Falling Edge of Clock to Valid Enable — 10 ns tBTCRS BSCAN Test Capture Register Setup Time 8 — ns tBTCRH BSCAN Test Capture Register Hold Time 10 — ns tBUTCO BSCAN Test Update Register, Falling Edge of Clock to Valid Output — 25 ns tBTUODIS BSCAN Test Update Register, Falling Edge of Clock to Valid Disable — 25 ns tBTUPOEN BSCAN Test Update Register, Falling Edge of Clock to Valid Enable — 25 ns fMAX Figure 3-14. JTAG Port Timing Waveforms TMS TDI tBTS tBTCPH tBTH tBTCP tBTCPL TCK tBTCO tBTCOEN TDO Valid Data tBTCRS Data to be captured from I/O tBTCODIS Valid Data tBTCRH Data Captured tBTUPOEN tBUTCO Data to be driven out to I/O Valid Data 3-29 tBTUODIS Valid Data DC and Switching Characteristics LatticeSC/M Family Data Sheet Lattice Semiconductor Switching Test Conditions Figure 3-15 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 3-4. Figure 3-15. Output Test Load, LVTTL and LVCMOS Standards DUT Test Poi nt CL Table 3-4. Test Fixture Required Components, Non-Terminated Interfaces Test Condition CL LVTTL and other LVCMOS settings (L -> H, H -> L) 30pF Timing Ref. LVCMOS 3.3 = 1.5V — LVCMOS 2.5 = VCCIO/2 — LVCMOS 1.8 = VCCIO/2 — LVCMOS 1.5 = VCCIO/2 — LVCMOS 1.2 = VCCIO/2 LVCMOS 2.5 I/O (Z -> H) LVCMOS 2.5 I/O (Z -> L) 30pF LVCMOS 2.5 I/O (H -> Z) LVCMOS 2.5 I/O (L -> Z) — VCCIO/2 VOL VCCIO/2 VOH VOH - 0.15 VOL VOL + 0.15 VOH Note: Output test conditions for all other interfaces are determined by the respective standards. 3-30 VT LatticeSC/M Family Data Sheet Pinout Information January 2008 Data Sheet DS1004 Signal Descriptions Signal Name I/O Description General Purpose [Edge] indicates the edge of the device on which the pad is located. Valid edge designations are L (Left), B (Bottom), R (Right), T (Top). [Row/Column Number] indicates the PIC row or the column of the device on which the PIC exists. When Edge is T (Top) or (Bottom), only need to specify Row Number. When Edge is L (Left) or R (Right), only need to specify Column Number. P[Edge] [Row/Column Number*]_[A/B/C/D] I/O [A/B/C/D] indicates the PIO within the PIC to which the pad is connected. Some of these user programmable pins are shared with special function pins. These pin when not used as special purpose pins can be programmed as I/Os for user logic. During configuration the user-programmable I/Os are tri-stated with an internal pull-up resistor enabled. If any pin is not used (or not bonded to a package pin), it is also tri-stated with an internal pull-up resistor enabled after configuration. VREF1_x, VREF2_x — The reference supply pins for I/O bank x. Any I/O pin in a bank can be assigned as a reference supply pin, but software defaults use designated pin. NC — No connect. NC pins should not be connected to any active signals, VCC or GND. — VCCIO - The power supply pins for I/O bank x. Dedicated pins. — 1.2V supply for configuration logic, PLLs and SERDES Rx, Tx and PLL. All VCC12 pins must be connected. As VCC12 supplies power for analog circuitry, VCC12 should be quiet and isolated from noisy digital board supplies. VTT_x — Termination voltage for bank x. When VTT termination is not required, or used to provide the common mode termination voltage (VCMT), these pins can be left unconnected on the device. VCMT function is not used in the bank. If the internal or external VCMT function for differential input termination is used, the VTT pins should be unconnected and allowed to float. GND — GND - Ground. Dedicated pins. All grounds must be electrically connected at the board level. VCC — VCC - The power supply pins for core logic. Dedicated pins (1.2V/ 1.0V). VCCAUX — VCCAUX - Auxiliary power supply pin - powers all differential and referenced input buffers. Dedicated pins (2.5V). VCCJ — VCCJ - The power supply pin for JTAG Test Access Port. — VCC signal - Connected to internal VCC node. Can be used for feedback to control an external board power converter. Can be unconnected if not used. Non-SERDES Power Supplies VCCIOx 1 VCC12 PROBE_VCC © 2008 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 4-1 DS1004 Pinouts_01.8 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor Signal Descriptions (Cont.) Signal Name PROBE_GND I/O Description — GND signal - Connected to internal VSS node. Can be used for feedback to control an external board power converter. Can be unconnected if not used. PLL and Clock Functions (Used as user-programmable I/O pins when not in use for PLL, DLL or clock pins.) [LOC]_PLL[T, C]_FB_[A/B] [LOC]_DLL[T, C]_FB_[C, D, E, F] [LOC]_PLL[T, C]_IN[A/B] I PLL feedback input. Pull-ups are enabled on input pins during configuration. [LOC] indicates the corner the PLL is located in: ULC (upper left), URC (upper right), LLC (lower left) and LRC (lower right). [T, C] indicates whether input is true or complement. [A, B] indicates PLL reference within the corner. I DLL feedback input. Pull-ups are enabled on input pins during configuration. [LOC] indicates the corner the DLL is located in: ULC (upper left), URC (upper right), LLC (lower left) and LRC (lower right). [T/C] indicates whether input is true or complement. [C, D, E, F] indicates DLL reference within a corner. Note: E and F are only available on the lower corners. I PLL reference clock input. Pull-ups are enabled on input pins during configuration. [LOC] indicates the corner the PLL is located in: ULC (upper left corner), URC (upper right corner), LLC (lower left corner) and LRC (lower right corner). [T, C] indicates whether input is true or complement.[A, B] indicates PLL reference within the corner. [LOC]_DLL[T, C]_IN[C, D, E, F] DLL reference clock inputs. Pull-ups are enabled on input pins during configuration. [LOC] indicates the corner the DLL is located in: ULC (upper left corner), URC (upper right corner), LLC (lower left corner) and LRC (lower right corner). [T/C] indicates whether input is true or complement. [C, D, E, F] indicates DLL reference within a corner. Note: E and F are only available on the lower corners. PCKLxy_[0:3] can drive primary clocks, edge clocks, and CLKDIVs. PCLKxy_[4:7] can only drive edge clocks. PCLKxy_z General clock inputs. x indicates whether T (true) or C (complement). y indicates the I/O bank the clock is associated with. z indicates the clock number within a bank. Test and Programming (Dedicated pins. Pull-up is enabled on input pins during configuration.) TMS I Test Mode Select input, used to control the 1149.1 state machine. TCK I Test Clock input pin, used to clock the 1149.1 state machine. TDI I Test Data in pin, used to load data into device using 1149.1 state machine. After power-up, this TAP port can be activated for configuration by sending appropriate command. (Note: once a configuration port is selected it is locked. Another configuration port cannot be selected until the power-up sequence). TDO O Output pin -Test Data out pin used to shift data out of device using 1149.1. Configuration Pads (Dedicated pins. Used during sysCONFIG.) M[3:0] I Mode pins used to specify configuration modes values latched on rising edge of INITN. INITN I/O Open Drain pin - Indicates the FPGA is ready to be configured. During configuration, a pull-up is enabled that will pull the I/O above 1.5V. I Initiates configuration sequence when asserted low. This pin always has an active pull-up. DONE I/O Open Drain pin - Indicates that the configuration sequence is complete, and the startup sequence is in progress. CCLK I/O Configuration Clock for configuring an FPGA in sysCONFIG mode. PROGRAMN 4-2 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor Signal Descriptions (Cont.) Signal Name I/O Description Reset. (Also sent to general routing). During configuration it resets the configuration state machine. After configuration this pin can perform the global set/reset (GSR) functions or can be used as a general input pin. RESETN CFGIRQN O MPI Interrupt request active low signal is controlled by system bus interrupt controller and may be sourced from any bus error or MPI configuration error. It can be connected to one of MPC860 IRQ pins. TSALLN I Tristates all I/O. Configuration Pads (User I/O if not used. Used during sysCONFIG.) High During Configuration is output high until configuration is complete. It is used as a control output, indicating that configuration is not complete. HDC/SI O For SPI modes, this pin is used to download the read command and initial read address into the Flash memory device on the falling edge of SCK. This pin will be connected to SI of the memory. If the SPI mode is used, the 8-bit instruction code 0x03 will be downloaded followed by a 24-bit starting address of 0x000000 or a non-zero stat address for partial reconfiguration. If the SPIX mode has been selected, the 8-bit instruction captured on D[7:0] at power-up will be shifted in and followed by a 32-bit starting address of 0x000000. Low During Configuration is output low until configuration is complete. It is used as a control output, indicating that configuration is not complete. LDCN/SCS DOUT QOUT/CEON O O O For SPI modes, this is an active low chip select for Flash memories. It will go active after INITN goes high but before SCK begins. During power up LDCN will be low. Once INITN goes high, LDCN will go high for 100ns-200ns after which time it will go back low and configuration can begin. During the 100ns-200ns period, the read instruction will be latched for SPIX mode. Serial data output that can drive the D0/DIN of daisy-chained slave devices. The data-stream from this output will propagate preamble bits of the bitstream to daisy-chained devices. Data out on DOUT changes on the rising edge of CCLK. During daisy-chaining configuration, QOUT is the serial data output that can drive the D0/DIN of daisy-chained slave devices that do not propagate preamble bits. Data out on QOUT changes on the rising edge of CCLK. During parallel-chaining configuration, active low CEON enables the cascaded slave device to receive bitstream data. RDN I Used in the asynchronous peripheral configuration mode. A low on RDN changes D[7:3] into status outputs. WRN and RDN should not be used simultaneously. If they are, the write strobe overrides. WRN I When the FPGA is selected, a low on the write strobe, WRN, loads the data on D[7:0] inputs into an internal data buffer. I Used in the asynchronous peripheral, slave parallel and MPI modes. The FPGA is selected when CS0N is low and CS1 is high. During configuration, a pull-up is enabled on both except with MPI DMA access control. I/O In master parallel mode, A[21:0] is an output and will address the configuration EPROMs up to 4 MB space. For MPI configuration mode, A[17:0] will be the MPI address MPI_ADDR[31:14], A[19:18] will be the transfer size and A[21:20] will be the burst mode and burst in process. CS0N CS1 A[21:0] 4-3 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor Signal Descriptions (Cont.) Signal Name I/O Description In parallel configuration modes, D[7:0] receives configuration data, and each pin is pull-up enabled. For slave serial mode, D0 is the data input. D[n:0] I/O D[7:3] is the output internal status for peripheral mode when RDN is low. D[7:0] is also the first byte of MPI data pins. In MPI configuration mode, MPI selectable data bus width from 8 and 16-bit. Driven by a bus master in a write transaction. Driven by MPI in a read transaction. DP[m:0] I/O MPI selectable parity data bus width from 1, 2, and 3-bit DP[0] for D[7:0], DP[1] for D[15:8], and DP[2] for D[23:16]. During configuration in peripheral mode, high on BUSYN indicates another byte can be written to the FPGA. If a read operation is done when the device is selected, the same status is also available on D[7] in asynchronous peripheral mode. During configuration in slave parallel mode, low on BUSYN inhibits the external host from sending new data. The output is used by slave parallel and master serial modes only for decompression. BUSYN/RCLK/SCK O During configuration in master parallel and master byte modes, RCLK is a read clock output signal to an external memory. The RCLK frequency is the same as CCLK when used with uncompressed bitstreams. RCLK will be 1/8 the frequency of CCLK when the bitstream is compressed. During configuration in SPI modes, SCK is generated by the device and connected to the CLK input of the FLASH memory. MPI Interface (Dedicated pin) O MPI Interrupt request active low signal is controlled by system bus interrupt controller and may be sourced from any bus error or MPI configuration error. It can be connected to one of MPC860 IRQ pins. I MPI chip select pins, active low on MPI_CS0N while active high on MPI_CS1. Both have to be active during the whole transfer data phase. During transfer address phase, both can be inactive so that the decoding for them from address can be slow. If they are active during address phase, one cycle can be saved for sync read. MPI_CLK I This is the PowerPC bus clock. It can be a source of the clock for embedded system bus. If MPI_CLK is used as system bus clock, MPI will be set into sync mode by default. All of the operation on PowerPC side of MPI are synchronized to the rising edge of this clock. MPI_TSIZ[1:0] I Driven by a bus master to indicate the data transfer size for the transaction. 01 for byte, 10 for half-word, and 00 for word. MPI_WR_N I Driven high indicates that a read access is in progress. Driven low indicates that a write access is in process. MPI_BURST I Driven active low indicates that a burst transfer is in progress. Driven high indicates that the current transfer is not a burst. I Active low “Burst Data in Process” is driven by a PowerPC processor. Asserted indicates that the second beat in front of the current one is requested by the master. Negated before the burst transfer ends to abort the burst data phase. MPI_IRQ_N MPI Interface (User I/O if MPI is not used.) MPI_CS0N MPI_CS1 MPI_BDIP 4-4 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor Signal Descriptions (Cont.) Signal Name I/O Description MPI_STRBN I Driven active low indicates the start of a transaction on the PowerPC bus. MPI will strobe the address bus at next rising edge of clock. MPI_ADDR[31:14] I Address bus driven by a PowerPC bus master. Only 18-bit width is needed. It has to be the least significant bit of the PowerPC 32-bit address A[31:14]. MPI_DAT[n:0] I/O Selectable data bus width from 8, and 16-bit. Driven by a bus master in a write transaction. Driven by MPI in a read transaction. MPI_PAR[m:0] I/O Selectable parity bus width from 1, 2, and 3-bit. MPI_DP[0] for MPI_D[7:0], MPI_DP[1] for MPI_D[15:8] and MPI_DP[2] for MPI_D[23:16]. MPI_TA O Transfer acknowledge. Driven active low indicates that MPI received the data on the write cycle or returned data on the read cycle. MPI_TEA O Transfer Error Acknowledge. Driven active low indicates that MPI detects a bus error on the internal system bus for current transaction. MPI_RETRY O Active low MPI Retry requests the MPC860 to relinquish the bus and retry the cycle. Multi-chip Alignment (User I/O if not used.) MCA_DONE_OUT O Multi-chip alignment done output (to second MCA chip) MCA_DONE_IN I Multi-chip alignment done input (from second MCA chip) MCA_CLK_P[1:2]_OUT O Multi-chip alignment clock [1:2] output (sourced by MCA master chip) MCA_CLK_P[1:2]_IN I Multi-chip alignment clock [1:2] input (from MCA master chip — Temperature sensing diode pin. Dedicated pin. Accuracy is typically +/- 10°C. XRES — External reference resistor between this pin and ground. The reference resistor is used to calibrate the programmable terminating resistors used in the I/Os. Dedicated pin. Value: 1K ± 1% ohm. DIFFRx — Only used if a differential driver is used in a bank. This DIFFRx must be connected to ground via an external 1K ±1% ohm resistor for all banks that have a differential driver. [A:D]_HDINPx_[L/R] I High-speed input (positive) channel x on left [L] or right [R] side of device. PCS quad is defined in the dual function name column of the Logic Signal Connection table. [A:D]_HDINNx_[L/R] I High-speed input (negative) channel x on left [L] or right [R] side of device. PCS quad is defined in the dual function name column of the Logic Signal Connection table. [A:D]_HDOUTPx_[L/R] O High-speed output (positive) channel x on left [L] or right [R] side of device. PCS quad is defined in the dual function name column of the Logic Signal Connection table. [A:D]_HDOUTNx_[L/R] O High-speed output (negative) channel x on left [L] or right [R] side of device. PCS quad is defined in the dual function name column of the Logic Signal Connection table. [A:D]_REFCLKP_[L/R] I Ref clock input (positive), aux channel on left [L] or right [R] side of device. [A:D]_REFCLKN_[L/R] I Ref clock input (negative), aux channel on left [L] or right [R] side of device. TEMP Miscellaneous Dedicated Pins SERDES Block (Dedicated Pins) 4-5 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor Signal Descriptions (Cont.) Signal Name I/O Description — Calibration resistor to be placed between this pin and either ground or RESPN_[ULC/URC]. RESPN_[ULC/URC] is available on select packages. If available, connection of calibration resistor between RESP_[ULC/URC] and RESPN_[ULC/URC] takes precedence over connection of calibration resistor between RESP_[ULC/URC] and ground. Note: only one per side of the device. Value: 4.02K ohm +/- 1% ohm. RESPN_[ULC/URC] — Available on selected packages. If available, calibration resistor should be placed between RESP_[ULC/URC] and RESPN_[ULC/URC] instead of between RESP_[ULC/URC] and ground. Note: only one per side of the device. Value: 4.02K ohm +/- 1% ohm. [A:D]_VDDIBx_[L/R] — Input buffer power supply for channel x (1.2V/1.5V) on left [L] or right [R] side of device. [A:D]_VDDOBx_[L/R] — Output buffer power supply for channel x (1.2V/1.5V) on left [L] or right [R] side of device. [A:D]_VDDAX25_[L/R] — Auxiliary power for input and output termination (2.5V) on left [L] or right [R] side of device. RESP_[ULC/URC] 1. The ispLEVER software tools may specify VDDRX, VDDTX, VDDP and VCCL pins. These pins should be considered VCC12 pins. Note: Signals listed as Signal A / Signal B define the same physical pin that is used for different functions based on configuration mode. 4-6 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor Pin Information Summary 256 fpBGA Pin Type 900 fpBGA 1020 fcBGA LFSC/M15 LFSC/M15 LFSC/M25 LFSC/M25 LFSC/M40 139 300 378 476 562 Differential Pair User I/O 60 141 182 235 277 LVDS Output Pairs 22 44 60 60 78 Dedicated 9 11 11 11 11 Muxes/MPI sysBus 0 55 55 55 72 Single Ended User I/O Configuration JTAG (excluding VCCJ) 4 4 4 4 4 Dedicated Pins 2 4 4 4 4 VCC 10 46 46 40 40 VCC12 10 35 35 36 36 VCCAUX VCCIO VTT 10 36 36 32 32 Bank 1 3 18 18 10 10 Bank 2 2 14 14 8 8 Bank 3 2 15 15 10 10 Bank 4 3 15 15 10 10 Bank 5 3 15 15 10 10 Bank 6 2 15 15 10 10 Bank 7 2 16 16 8 8 Bank 2 0 2 2 2 2 Bank 3 0 3 3 3 3 Bank 4 0 3 3 3 3 Bank 5 0 3 3 3 3 Bank 6 0 3 3 3 3 Bank 7 0 2 2 2 2 GND 26 177 177 134 134 NC 0 102 24 92 6 Bank 1 21/8 63/30 63/30 68/32 68/32 Bank 2 15/7 26/13 30/15 34/17 54/27 Bank 3 19/8 43/20 62/29 84/42 94/47 Bank 4 25/11 50/22 66/32 84/41 99/48 Bank 5 25/11 49/23 65/32 88/44 99/49 Bank 6 19/8 43/20 62/29 84/42 94/47 Bank 7 15/7 26/13 30/15 34/17 54/27 Bank 2 5 7 9 9 15 Bank 3 6 15 21 21 24 Bank 6 6 15 21 21 24 Single Ended User / Differential I/O per Bank LVDS Output Pairs Per Bank Bank 7 VCCJ 5 7 9 9 15 1 1 1 1 1 SERDES (signal + power supply) 28 60 60 108 108 Total 256 900 900 1020 1152 4-7 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor Pin Information Summary (Cont.) 1152 fcBGA Pin Type LFSC/M40 1704 fcBGA LFSC/M80 LFSC/M115 LFSC/M80 LFSC/M115 Single Ended User I/O 604 Differential Pair User I/O 302 330 330 452 470 LVDS Output Pairs 78 102 102 114 132 Dedicated 11 11 11 11 11 Muxes/MPI sysBus 72 72 72 72 72 Configuration 660 660 904 942 JTAG (excluding VCCJ) 4 4 4 4 4 Dedicated Pins 4 4 4 4 4 VCC 44 44 44 76 76 VCC12 52 52 52 88 88 38 38 38 52 52 10 10 10 10 10 VCCAUX Bank 1 Bank 2 9 9 9 12 12 Bank 3 12 12 12 14 14 Bank 4 12 12 12 14 14 Bank 5 12 12 12 14 14 Bank 6 12 12 12 14 14 Bank 7 9 9 9 12 12 Bank 2 3 3 3 4 4 Bank 3 3 3 3 4 4 Bank 4 3 3 3 5 5 Bank 5 3 3 3 5 5 Bank 6 3 3 3 4 4 Bank 7 3 3 3 4 4 GND 130 130 130 184 184 NC 62 6 6 52 14 Bank 1 80/40 80/40 80/40 80/40 80/40 Bank 2 60/30 76/38 76/38 96/48 103/51 Bank 3 96/48 108/54 108/54 132/66 144/72 Bank 4 106/53 106/53 106/53 184/92 184/92 Bank 5 106/53 106/53 106/53 184/92 184/92 Bank 6 96/48 108/54 108/54 132/66 144/72 Bank 7 60/30 76/38 76/38 96/48 103/51 Bank 2 15 21 21 24 27 Bank 3 24 30 30 33 39 Bank 6 24 30 30 33 39 Bank 7 15 21 21 24 27 1 1 1 1 1 VCCIO VTT Single Ended User / Differential I/O per Bank LVDS Output Pairs Per Bank VCCJ SERDES (signal + power supply) 108 108 108 212 212 Total 1152 1152 1152 1704 1704 4-8 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M15 Logic Signal Connections: 256 fpBGA1,2 LFSC/M15 Ball Number Ball Function VCCIO Bank E4 A_VDDAX25_L - Dual Function B1 A_REFCLKP_L - C1 A_REFCLKN_L - D2 RESP_ULC - F5 RESETN 1 D1 DONE 1 E1 INITN 1 E2 M0 1 E3 M1 1 E5 M2 1 E6 M3 1 F2 PL15A 7 ULC_PLLT_IN_A/ULC_PLLT_FB_B F1 PL15B 7 ULC_PLLC_IN_A/ULC_PLLC_FB_B F3 PL17A 7 ULC_DLLT_IN_C/ULC_DLLT_FB_D G1 PL17B 7 ULC_DLLC_IN_C/ULC_DLLC_FB_D G4 PL18D 7 VREF2_7 H3 PL22A 7 H2 PL22B 7 H5 PL22C 7 G5 PL22D 7 DIFFR_7 H1 PL23A 7 PCLKT7_1 J1 PL23B 7 PCLKC7_1 J2 PL24A 7 PCLKT7_0 VREF1_7 J3 PL24B 7 PCLKC7_0 H4 PL24C 7 PCLKT7_2 H6 PL24D 7 PCLKC7_2 J4 PL26A 6 PCLKT6_0 K5 PL26B 6 PCLKC6_0 J5 PL26C 6 PCLKT6_1 J6 PL26D 6 PCLKC6_1 K1 PL28A 6 L1 PL28B 6 L4 PL28C 6 PCLKT6_2 K4 PL28D 6 PCLKC6_2 L2 PL31C 6 VREF1_6 L3 PL35A 6 M3 PL35B 6 M2 PL35D 6 M1 PL37A 6 N1 PL37B 6 P2 PL41D 6 M5 PL43A 6 4-9 DIFFR_6 VREF2_6 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M15 Logic Signal Connections: 256 fpBGA1,2 (Cont.) LFSC/M15 Ball Number Ball Function VCCIO Bank Dual Function M4 PL43B 6 P1 PL45A 6 LLC_DLLT_IN_F/LLC_DLLT_FB_E R1 PL45B 6 LLC_DLLC_IN_F/LLC_DLLC_FB_E R2 XRES - P3 TEMP 6 R3 PB3A 5 LLC_PLLT_IN_A/LLC_PLLT_FB_B N4 PB3B 5 LLC_PLLC_IN_A/LLC_PLLC_FB_B T3 PB3C 5 LLC_DLLT_IN_C/LLC_DLLT_FB_D T2 PB3D 5 LLC_DLLC_IN_C/LLC_DLLC_FB_D N5 PB5D 5 VREF1_5 P5 PB8A 5 R5 PB8B 5 T4 PB9A 5 T5 PB9B 5 R6 PB12A 5 PCLKT5_3 T6 PB12B 5 PCLKC5_3 L5 PB13C 5 P6 PB15A 5 PCLKT5_0 T7 PB15B 5 PCLKC5_0 M7 PB15D 5 VREF2_5 R8 PB16A 5 PCLKT5_1 T8 PB16B 5 PCLKC5_1 N7 PB17A 5 PCLKT5_2 N8 PB17B 5 PCLKC5_2 R9 PB20A 5 T9 PB20B 5 M8 PB21A 5 M9 PB21B 5 P8 PB24A 5 P9 PB24B 5 T10 PB28A 4 R11 PB28B 4 N9 PB31A 4 N10 PB31B 4 T11 PB32A 4 R12 PB32B 4 P11 PB35A 4 PCLKT4_2 M10 PB35B 4 PCLKC4_2 T12 PB36A 4 PCLKT4_1 P12 PB36B 4 PCLKC4_1 T13 PB37A 4 PCLKT4_0 T14 PB37B 4 PCLKC4_0 R15 PB37C 4 VREF2_4 4-10 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M15 Logic Signal Connections: 256 fpBGA1,2 (Cont.) LFSC/M15 Ball Number Ball Function VCCIO Bank Dual Function N12 PB39C 4 T15 PB40A 4 PCLKT4_3 R16 PB40B 4 PCLKC4_3 L12 PB43A 4 M12 PB43B 4 P16 PB44A 4 N16 PB44B 4 R14 PB47C 4 P15 PB48A 4 LRC_DLLT_IN_C/LRC_DLLT_FB_D M13 PB48B 4 LRC_DLLC_IN_C/LRC_DLLC_FB_D VREF1_4 N13 PB49A 4 LRC_PLLT_IN_A/LRC_PLLT_FB_B P14 PB49B 4 LRC_PLLC_IN_A/LRC_PLLC_FB_B M16 PR45B 3 LRC_DLLC_IN_F/LRC_DLLC_FB_E L16 PR45A 3 LRC_DLLT_IN_F/LRC_DLLT_FB_E M14 PR43B 3 M15 PR43A 3 K16 PR41D 3 J16 PR37B 3 H16 PR37A 3 L13 PR35D 3 L14 PR35B 3 L15 PR35A 3 K12 PR31C 3 VREF1_3 J13 PR28D 3 PCLKC3_2 K13 PR28C 3 PCLKT3_2 H15 PR28B 3 VREF2_3 DIFFR_3 F16 PR28A 3 J11 PR26D 3 J12 PR26C 3 PCLKT3_1 J15 PR26B 3 PCLKC3_0 PCLKC3_1 J14 PR26A 3 PCLKT3_0 E16 PR24D 2 PCLKC2_2 D16 PR24C 2 PCLKT2_2 H11 PR24B 2 PCLKC2_0 H12 PR24A 2 PCLKT2_0 H13 PR23B 2 PCLKC2_1 H14 PR23A 2 PCLKT2_1 G12 PR22D 2 DIFFR_2 G13 PR22C 2 VREF1_2 F8 PR22B 2 F9 PR22A 2 G16 PR18D 2 VREF2_2 F15 PR17B 2 URC_DLLC_IN_C/URC_DLLC_FB_D 4-11 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M15 Logic Signal Connections: 256 fpBGA1,2 (Cont.) LFSC/M15 Ball Number Ball Function VCCIO Bank Dual Function F14 PR17A 2 URC_DLLT_IN_C/URC_DLLT_FB_D E15 PR15B 2 URC_PLLC_IN_A/URC_PLLC_FB_B E14 PR15A 2 URC_PLLT_IN_A/URC_PLLT_FB_B D9 VCCJ - C16 TDO - B15 TMS - TDO B16 TCK - E13 TDI - C14 PROGRAMN 1 C15 CCLK 1 A15 PT43D 1 HDC/SI A14 PT43C 1 LDCN/SCS B14 PT41A 1 CS1 E12 PT39B 1 CS0N D13 PT39A 1 RDN D12 PT37D 1 WRN E10 PT37C 1 D7 C11 PT37B 1 D6 D10 PT37A 1 D5 A13 PT36D 1 D4 B12 PT36C 1 D3 A12 PT35B 1 D2 C12 PT35A 1 D1 A11 PT33B 1 D0 B11 PT33A 1 QOUT/CEON E9 PT32D 1 VREF2_1 E8 PT32B 1 DOUT D8 PT28C 1 BUSYN/RCLK/SCK A10 PT27B 1 PCLKC1_0 C10 PT27A 1 PCLKT1_0 E7 PT21C 1 VREF1_1 C9 A_VDDIB3_L - A9 A_HDINP3_L - PCS 360 CH 3 IN P B9 A_HDINN3_L - PCS 360 CH 3 IN N A8 A_HDOUTP3_L - PCS 360 CH 3 OUT P B8 A_HDOUTN3_L - PCS 360 CH 3 OUT N C8 A_VDDOB3_L - B7 A_HDOUTN2_L - C7 A_VDDOB2_L - A7 A_HDOUTP2_L - PCS 360 CH 2 OUT P B6 A_HDINN2_L - PCS 360 CH 2 IN N A6 A_HDINP2_L - PCS 360 CH 2 IN P C6 A_VDDIB2_L - 4-12 PCS 360 CH 2 OUT N Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M15 Logic Signal Connections: 256 fpBGA1,2 (Cont.) LFSC/M15 Ball Number Ball Function VCCIO Bank C5 A_VDDIB1_L - A5 A_HDINP1_L - B5 A_HDINN1_L - PCS 360 CH 1 IN N A4 A_HDOUTP1_L - PCS 360 CH 1 OUT P PCS 360 CH 1 OUT N B4 A_HDOUTN1_L - C4 A_VDDOB1_L - Dual Function PCS 360 CH 1 IN P B3 A_HDOUTN0_L - C3 A_VDDOB0_L - A3 A_HDOUTP0_L - PCS 360 CH 0 OUT P B2 A_HDINN0_L - PCS 360 CH 0 IN N PCS 360 CH 0 IN P A2 A_HDINP0_L - C2 A_VDDIB0_L - A1 GND - A16 GND - B10 GND - C13 GND - D15 GND - D3 GND - E11 GND - F13 GND - G14 GND - G2 GND - G8 GND - H10 GND - J7 GND - K15 GND - K3 GND - K9 GND - M6 GND - N11 GND - N14 GND - N2 GND - P10 GND - P4 GND - R13 GND - R7 GND - G10 VCC - G7 VCC - G9 VCC - H7 VCC - H8 VCC - H9 VCC - J10 VCC - J8 VCC - 4-13 PCS 360 CH 0 OUT N Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M15 Logic Signal Connections: 256 fpBGA1,2 (Cont.) LFSC/M15 Ball Number Ball Function VCCIO Bank J9 VCC - K8 VCC - F6 VCC12 - F11 VCC12 - L11 VCC12 - L6 VCC12 - K7 VCC12 - K10 VCC12 - F10 VCCAUX - F7 VCCAUX - T1 GND - G11 VCCAUX - K11 VCCAUX - L10 VCCAUX - L9 VCCAUX - L7 VCCAUX - L8 VCCAUX - T16 GND - G6 VCCAUX - K6 VCCAUX - B13 VCCIO1 - D11 VCCIO1 - D14 VCCIO1 - F12 VCCIO2 - G15 VCCIO2 - K14 VCCIO3 - N15 VCCIO3 - M11 VCCIO4 - P13 VCCIO4 - R10 VCCIO4 - N6 VCCIO5 - P7 VCCIO5 - R4 VCCIO5 - K2 VCCIO6 - N3 VCCIO6 - F4 VCCIO7 - G3 VCCIO7 - D4 VCC12 - D7 VCC12 - D5 VCC12 - D6 VCC12 - 1. Differential pair grouping within a PIC is A (True) and B (Complement) and C (True) and D (Complement). 2. The LatticeSC/M15 in a 256-pin package does not support an MPI interface. 4-14 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M15, LFSC/M25 Logic Signal Connections: 900 fpBGA1, 2 LFSC/M15 Ball Number Ball Function VCCIO Bank F7 A_VDDAX25_L - LFSC/M25 Dual Function Ball Function VCCIO Bank A_VDDAX25_L - B1 A_REFCLKP_L - A_REFCLKP_L - C1 A_REFCLKN_L - A_REFCLKN_L - D5 VCC12 - VCC12 - A2 RESP_ULC - RESP_ULC - E5 VCC12 - VCC12 D4 VCC12 - VCC12 - H5 RESETN 1 RESETN 1 H6 TSALLN 1 TSALLN 1 G6 DONE 1 DONE 1 G5 INITN 1 INITN 1 F5 M0 1 M0 1 F6 M1 1 M1 1 1 Dual Function F4 M2 1 M2 E4 M3 1 M3 1 D3 PL15A 7 ULC_PLLT_IN_A/ULC_PLLT_FB_B PL16A 7 ULC_PLLT_IN_A/ULC_PLLT_FB_B D2 PL15B 7 ULC_PLLC_IN_A/ULC_PLLC_FB_B PL16B 7 ULC_PLLC_IN_A/ULC_PLLC_FB_B J6 PL15C 7 PL16C 7 J5 PL15D 7 PL16D 7 E3 PL17A 7 ULC_DLLT_IN_C/ULC_DLLT_FB_D PL17A 7 ULC_DLLT_IN_C/ULC_DLLT_FB_D E2 PL17B 7 ULC_DLLC_IN_C/ULC_DLLC_FB_D PL17B 7 ULC_DLLC_IN_C/ULC_DLLC_FB_D K4 PL17C 7 ULC_PLLT_IN_B/ULC_PLLT_FB_A PL17C 7 ULC_PLLT_IN_B/ULC_PLLT_FB_A J4 PL17D 7 ULC_PLLC_IN_B/ULC_PLLC_FB_A PL17D 7 ULC_PLLC_IN_B/ULC_PLLC_FB_A F3 PL18A 7 ULC_DLLT_IN_D/ULC_DLLT_FB_C PL18A 7 ULC_DLLT_IN_D/ULC_DLLT_FB_C G3 PL18B 7 ULC_DLLC_IN_D/ULC_DLLC_FB_C PL18B 7 ULC_DLLC_IN_D/ULC_DLLC_FB_C K5 PL18C 7 PL18C 7 K6 PL18D 7 VREF2_7 PL18D 7 F2 PL19A 7 PL22A 7 F1 PL19B 7 PL22B 7 E1 PL19C 7 PL22C 7 D1 PL19D 7 PL22D 7 K3 PL22A 7 PL25A 7 L3 PL22B 7 PL25B 7 VREF2_7 L6 PL22C 7 VREF1_7 PL25C 7 M6 PL22D 7 DIFFR_7 PL25D 7 VREF1_7 DIFFR_7 J1 PL23A 7 PCLKT7_1 PL26A 7 PCLKT7_1 K1 PL23B 7 PCLKC7_1 PL26B 7 PCLKC7_1 L1 PL24A 7 PCLKT7_0 PL27A 7 PCLKT7_0 M1 PL24B 7 PCLKC7_0 PL27B 7 PCLKC7_0 P8 PL24C 7 PCLKT7_2 PL27C 7 PCLKT7_2 R8 PL24D 7 PCLKC7_2 PL27D 7 PCLKC7_2 N2 PL26A 6 PCLKT6_0 PL29A 6 PCLKT6_0 N1 PL26B 6 PCLKC6_0 PL29B 6 PCLKC6_0 R7 PL26C 6 PCLKT6_1 PL29C 6 PCLKT6_1 R6 PL26D 6 PCLKC6_1 PL29D 6 PCLKC6_1 4-15 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M15, LFSC/M25 Logic Signal Connections: 900 fpBGA1, 2 (Cont.) LFSC/M15 Ball Number Ball Function VCCIO Bank N3 PL27A 6 P3 PL27B 6 P4 PL27C 6 LFSC/M25 Dual Function PCLKT6_3 Ball Function VCCIO Bank PL30A 6 PL30B 6 PL30C 6 6 Dual Function PCLKT6_3 P2 PL28A 6 PL31A R2 PL28B 6 PL31B 6 T3 PL28C 6 PCLKT6_2 PL31C 6 PCLKT6_2 R3 PL28D 6 PCLKC6_2 PL31D 6 PCLKC6_2 6 P1 PL31A 6 PL34A R1 PL31B 6 PL34B 6 R5 PL31C 6 PL34C 6 R4 PL31D 6 PL34D 6 VREF1_6 T2 PL32A 6 PL35A 6 U2 PL32B 6 PL35B 6 T1 PL33A 6 PL38A 6 U1 PL33B 6 PL38B 6 V1 PL35A 6 PL42A 6 W1 PL35B 6 PL42B 6 V6 PL35D 6 PL42D 6 V2 PL36A 6 PL43A 6 W2 PL36B 6 PL43B 6 Y1 PL37A 6 PL44A 6 AA1 PL37B 6 PL44B 6 AB1 PL39A 6 PL48A 6 AC1 PL39B 6 PL48B 6 Y5 PL40A 6 PL49A 6 Y6 PL40B 6 PL49B 6 AD2 PL41A 6 PL51A 6 AE2 PL41B 6 AB5 PL41D 6 AC3 PL43A AD3 PL43B DIFFR_6 PL51B 6 PL51D 6 6 PL52A 6 6 PL52B 6 VREF2_6 VREF1_6 DIFFR_6 VREF2_6 AF1 PL44A 6 PL55A 6 AG1 PL44B 6 PL55B 6 AB6 PL44C 6 LLC_DLLT_IN_E/LLC_DLLT_FB_F PL55C 6 LLC_DLLT_IN_E/LLC_DLLT_FB_F AC5 PL44D 6 LLC_DLLC_IN_E/LLC_DLLC_FB_F PL55D 6 LLC_DLLC_IN_E/LLC_DLLC_FB_F AF2 PL45A 6 LLC_DLLT_IN_F/LLC_DLLT_FB_E PL57A 6 LLC_DLLT_IN_F/LLC_DLLT_FB_E AG2 PL45B 6 LLC_DLLC_IN_F/LLC_DLLC_FB_E PL57B 6 LLC_DLLC_IN_F/LLC_DLLC_FB_E AC6 PL45C 6 LLC_PLLT_IN_B/LLC_PLLT_FB_A PL57C 6 LLC_PLLT_IN_B/LLC_PLLT_FB_A AC7 PL45D 6 LLC_PLLC_IN_B/LLC_PLLC_FB_A PL57D 6 LLC_PLLC_IN_B/LLC_PLLC_FB_A AE4 XRES - XRES - AG4 VCC12 - VCC12 - AD5 TEMP 6 TEMP 6 AF5 VCC12 - VCC12 - AH1 PB3A 5 LLC_PLLT_IN_A/LLC_PLLT_FB_B PB3A 5 LLC_PLLT_IN_A/LLC_PLLT_FB_B AJ1 PB3B 5 LLC_PLLC_IN_A/LLC_PLLC_FB_B PB3B 5 LLC_PLLC_IN_A/LLC_PLLC_FB_B 4-16 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M15, LFSC/M25 Logic Signal Connections: 900 fpBGA1, 2 (Cont.) LFSC/M15 LFSC/M25 Ball Number Ball Function VCCIO Bank Dual Function Ball Function VCCIO Bank Dual Function AF4 PB3C 5 LLC_DLLT_IN_C/LLC_DLLT_FB_D PB3C 5 LLC_DLLT_IN_C/LLC_DLLT_FB_D AE5 PB3D 5 LLC_DLLC_IN_C/LLC_DLLC_FB_D PB3D 5 LLC_DLLC_IN_C/LLC_DLLC_FB_D AG3 PB4A 5 LLC_DLLT_IN_D/LLC_DLLT_FB_C PB4A 5 LLC_DLLT_IN_D/LLC_DLLT_FB_C LLC_DLLC_IN_D/LLC_DLLC_FB_C PB4B 5 LLC_DLLC_IN_D/LLC_DLLC_FB_C PB4C 5 AH2 PB4B 5 AD6 PB4C 5 AJ2 PB5A 5 PB5A 5 AK2 PB5B 5 PB5B 5 AD7 PB5C 5 AD8 PB5D 5 AH3 PB7A AJ3 PB7B PB5C 5 PB5D 5 5 PB11A 5 5 PB11B 5 VREF1_5 VREF1_5 AF9 PB7C 5 PB11C 5 AE10 PB7D 5 PB11D 5 AK3 PB8A 5 PB12A 5 AJ4 PB8B 5 PB12B 5 AE11 PB9A 5 PB13A 5 AF10 PB9B 5 PB13B 5 AK4 PB11A 5 PB16A 5 AK5 PB11B 5 PB16B 5 AH10 PB12A 5 PCLKT5_3 PB20A 5 PCLKT5_3 AH11 PB12B 5 PCLKC5_3 PB20B 5 PCLKC5_3 AF13 PB12C 5 PCLKT5_4 PB20C 5 PCLKT5_4 AE14 PB12D 5 PCLKC5_4 PB20D 5 PCLKC5_4 AK6 PB13A 5 PCLKT5_5 PB21A 5 PCLKT5_5 AK7 PB13B 5 PCLKC5_5 PB21B 5 PCLKC5_5 AF14 PB13C 5 AJ11 PB15A 5 PCLKT5_0 PB21C 5 PB23A 5 PCLKT5_0 PCLKC5_0 AJ12 PB15B 5 PCLKC5_0 PB23B 5 AH13 PB15D 5 VREF2_5 PB23D 5 VREF2_5 AK8 PB16A 5 PCLKT5_1 PB24A 5 PCLKT5_1 AK9 PB16B 5 PCLKC5_1 PB24B 5 PCLKC5_1 AH14 PB17A 5 PCLKT5_2 PB25A 5 PCLKT5_2 AG14 PB17B 5 PCLKC5_2 PB25B 5 PCLKC5_2 AK10 PB19A 5 PB28A 5 AK11 PB19B 5 PB28B 5 5 AH15 PB20A 5 PB29A AG15 PB20B 5 PB29B 5 AH12 PB21A 5 PB31A 5 AJ13 PB21B 5 PB31B 5 AD15 PB21C 5 PB31C 5 AE15 PB21D 5 PB31D 5 AK12 PB23A 5 PB32A 5 AK13 PB23B 5 PB32B 5 AJ14 PB24A 5 PB33A 5 AJ15 PB24B 5 PB33B 5 4-17 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M15, LFSC/M25 Logic Signal Connections: 900 fpBGA1, 2 (Cont.) LFSC/M15 Ball Number Ball Function VCCIO Bank AK14 PB25A AK15 AK16 LFSC/M25 Ball Function VCCIO Bank 5 PB35A 5 PB25B 5 PB35B 5 PB27A 4 PB37A 4 AK17 PB27B 4 PB37B 4 AJ16 PB28A 4 PB38A 4 AJ17 PB28B 4 PB38B 4 AE16 PB28C 4 PB38C 4 4 Dual Function AH16 PB29A 4 PB39A AG16 PB29B 4 PB39B 4 AK18 PB31A 4 PB41A 4 AK19 PB31B 4 PB41B 4 AH17 PB32A 4 PB42A 4 AH18 PB32B 4 PB42B 4 AG17 PB32D 4 PB42D 4 AJ18 PB33A 4 PB43A 4 Dual Function AJ19 PB33B 4 PB43B 4 AK20 PB35A 4 PCLKT4_2 PB46A 4 PCLKT4_2 AK21 PB35B 4 PCLKC4_2 PB46B 4 PCLKC4_2 AF18 PB36A 4 PCLKT4_1 PB47A 4 PCLKT4_1 AG18 PB36B 4 PCLKC4_1 PB47B 4 PCLKC4_1 AJ20 PB37A 4 PCLKT4_0 PB49A 4 PCLKT4_0 AJ21 PB37B 4 PCLKC4_0 PB49B 4 PCLKC4_0 AG19 PB37C 4 VREF2_4 PB49C 4 VREF2_4 AK22 PB39A 4 PCLKT4_5 PB51A 4 PCLKT4_5 AK23 PB39B 4 PCLKC4_5 PB51B 4 PCLKC4_5 AH19 PB39C 4 AK24 PB40A 4 PCLKT4_3 AK25 PB40B 4 AE19 PB40C 4 AE20 PB40D 4 AE21 PB41A 4 PB51C 4 PB52A 4 PCLKT4_3 PCLKC4_3 PB52B 4 PCLKC4_3 PCLKT4_4 PB52C 4 PCLKT4_4 PCLKC4_4 PB52D 4 PCLKC4_4 PB53A 4 AF21 PB41B 4 PB53B 4 AG21 PB43A 4 PB55A 4 AG22 PB43B 4 PB55B 4 AH22 PB44A 4 PB56A 4 AH23 PB44B 4 PB56B 4 AH21 PB44C 4 PB56C 4 AK28 PB45A 4 PB60A 4 AK29 PB45B 4 PB60B 4 AE22 PB45C 4 PB60C 4 AJ28 PB47A 4 PB67A 4 AH28 PB47B 4 AE24 PB47C 4 AE25 PB47D 4 AJ29 PB48A 4 VREF1_4 LRC_DLLT_IN_C/LRC_DLLT_FB_D 4-18 PB67B 4 PB67C 4 PB67D 4 PB68A 4 VREF1_4 LRC_DLLT_IN_C/LRC_DLLT_FB_D Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M15, LFSC/M25 Logic Signal Connections: 900 fpBGA1, 2 (Cont.) LFSC/M15 LFSC/M25 Ball Number Ball Function VCCIO Bank Dual Function Ball Function VCCIO Bank Dual Function AH29 PB48B 4 LRC_DLLC_IN_C/LRC_DLLC_FB_D PB68B 4 LRC_DLLC_IN_C/LRC_DLLC_FB_D AE26 PB48C 4 PB68C 4 AD25 PB48D 4 PB68D 4 AJ30 PB49A 4 LRC_PLLT_IN_A/LRC_PLLT_FB_B PB69A 4 LRC_PLLT_IN_A/LRC_PLLT_FB_B AH30 PB49B 4 LRC_PLLC_IN_A/LRC_PLLC_FB_B PB69B 4 LRC_PLLC_IN_A/LRC_PLLC_FB_B AG28 PB49C 4 LRC_DLLT_IN_D/LRC_DLLT_FB_C PB69C 4 LRC_DLLT_IN_D/LRC_DLLT_FB_C AG29 PB49D 4 LRC_DLLC_IN_D/LRC_DLLC_FB_C PB69D 4 LRC_DLLC_IN_D/LRC_DLLC_FB_C AF26 VCC12 - VCC12 - AD27 PROBE_VCC - PROBE_VCC - AG27 VCC12 - VCC12 - AE28 PROBE_GND - PROBE_GND - AC25 PR45D 3 LRC_PLLC_IN_B/LRC_PLLC_FB_A PR57D 3 AD26 PR45C 3 LRC_PLLT_IN_B/LRC_PLLT_FB_A PR57C 3 LRC_PLLT_IN_B/LRC_PLLT_FB_A AF28 PR45B 3 LRC_DLLC_IN_F/LRC_DLLC_FB_E PR57B 3 LRC_DLLC_IN_F/LRC_DLLC_FB_E AF29 PR45A 3 LRC_DLLT_IN_F/LRC_DLLT_FB_E PR57A 3 LRC_DLLT_IN_F/LRC_DLLT_FB_E AC26 PR44D 3 LRC_DLLC_IN_E/LRC_DLLC_FB_F PR55D 3 LRC_DLLC_IN_E/LRC_DLLC_FB_F AB26 PR44C 3 LRC_DLLT_IN_E/LRC_DLLT_FB_F PR55C 3 LRC_DLLT_IN_E/LRC_DLLT_FB_F AG30 PR44B 3 PR55B 3 AF30 PR44A 3 PR55A 3 AC28 PR43B 3 PR52B 3 AB28 PR43A 3 PR52A 3 AB27 PR41D 3 PR51D 3 AE30 PR41B 3 PR51B 3 AD30 PR41A 3 PR51A 3 AB25 PR40B 3 PR49B 3 AA25 PR40A 3 PR49A 3 AA30 PR39B 3 PR48B 3 VREF2_3 Y30 PR39A 3 PR48A 3 W29 PR37B 3 PR44B 3 V29 PR37A 3 PR44A 3 U30 PR36B 3 PR43B 3 T30 PR36A 3 V25 PR35D 3 PR43A 3 PR42D 3 W28 PR35B 3 PR42B 3 V28 PR35A 3 PR42A 3 R30 PR33B 3 PR38B 3 P30 PR33A 3 PR38A 3 N30 PR32B 3 PR35B 3 M29 PR32A 3 PR35A 3 U26 PR31D 3 T26 PR31C 3 U28 PR31B T28 DIFFR_3 LRC_PLLC_IN_B/LRC_PLLC_FB_A VREF2_3 DIFFR_3 PR34D 3 PR34C 3 3 PR34B 3 PR31A 3 PR34A 3 M30 PR28D 3 PCLKC3_2 PR31D 3 PCLKC3_2 L29 PR28C 3 PCLKT3_2 PR31C 3 PCLKT3_2 VREF1_3 4-19 VREF1_3 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M15, LFSC/M25 Logic Signal Connections: 900 fpBGA1, 2 (Cont.) LFSC/M15 Ball Number Ball Function VCCIO Bank R29 PR28B 3 P29 PR28A 3 P27 PR27C 3 N29 PR27B N28 PR27A R25 PR26D 3 R26 PR26C R28 P28 LFSC/M25 Dual Function Ball Function VCCIO Bank PR31B 3 Dual Function PR31A 3 PR30C 3 3 PR30B 3 3 PR30A 3 PCLKC3_1 PR29D 3 PCLKC3_1 3 PCLKT3_1 PR29C 3 PCLKT3_1 PR26B 3 PCLKC3_0 PR29B 3 PCLKC3_0 PR26A 3 PCLKT3_0 PR29A 3 PCLKT3_0 N27 PR24D 2 PCLKC2_2 PR27D 2 PCLKC2_2 P26 PR24C 2 PCLKT2_2 PR27C 2 PCLKT2_2 PCLKC2_0 PCLKT3_3 PCLKT3_3 L30 PR24B 2 PCLKC2_0 PR27B 2 K30 PR24A 2 PCLKT2_0 PR27A 2 PCLKT2_0 J30 PR23B 2 PCLKC2_1 PR26B 2 PCLKC2_1 H30 PR23A 2 PCLKT2_1 PR26A 2 PCLKT2_1 M26 PR22D 2 DIFFR_2 PR25D 2 DIFFR_2 M25 PR22C 2 VREF1_2 PR25C 2 VREF1_2 G29 PR22B 2 PR25B 2 F29 PR22A 2 PR25A 2 H28 PR19D 2 PR22D 2 J28 PR19C 2 PR22C 2 E30 PR19B 2 PR22B 2 E29 PR19A 2 PR22A 2 L26 PR18D 2 PR18D 2 L25 PR18C 2 PR18C 2 VREF2_2 VREF2_2 F28 PR18B 2 URC_DLLC_IN_D/URC_DLLC_FB_C PR18B 2 URC_DLLC_IN_D/URC_DLLC_FB_C G28 PR18A 2 URC_DLLT_IN_D/URC_DLLT_FB_C PR18A 2 URC_DLLT_IN_D/URC_DLLT_FB_C K26 PR17D 2 URC_PLLC_IN_B/URC_PLLC_FB_A PR17D 2 URC_PLLC_IN_B/URC_PLLC_FB_A K25 PR17C 2 URC_PLLT_IN_B/URC_PLLT_FB_A PR17C 2 URC_PLLT_IN_B/URC_PLLT_FB_A D30 PR17B 2 URC_DLLC_IN_C/URC_DLLC_FB_D PR17B 2 URC_DLLC_IN_C/URC_DLLC_FB_D D29 PR17A 2 URC_DLLT_IN_C/URC_DLLT_FB_D PR17A 2 URC_DLLT_IN_C/URC_DLLT_FB_D G26 PR15D 2 PR16D 2 H26 PR15C 2 PR16C 2 E28 PR15B 2 URC_PLLC_IN_A/URC_PLLC_FB_B PR16B 2 URC_PLLC_IN_A/URC_PLLC_FB_B D28 PR15A 2 URC_PLLT_IN_A/URC_PLLT_FB_B PR16A 2 URC_PLLT_IN_A/URC_PLLT_FB_B J25 VCCJ - H25 TDO - VCCJ - TDO - J26 TMS - TMS - G25 TCK - TCK - TDO G24 TDI - TDI - F26 PROGRAMN 1 PROGRAMN 1 H24 MPIIRQN 1 MPIIRQN 1 F25 CCLK 1 CCLK 1 D27 VCC12 - VCC12 - E26 VCC12 - VCC12 - CFGIRQN/MPI_IRQ_N 4-20 TDO CFGIRQN/MPI_IRQ_N Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M15, LFSC/M25 Logic Signal Connections: 900 fpBGA1, 2 (Cont.) LFSC/M15 Ball Number Ball Function VCCIO Bank A29 RESP_URC - LFSC/M25 Dual Function Ball Function VCCIO Bank RESP_URC - D26 VCC12 - VCC12 - C30 A_REFCLKN_R - A_REFCLKN_R - B30 A_REFCLKP_R - A_REFCLKP_R - F24 A_VDDAX25_R - A_VDDAX25_R - D25 VCC12 - VCC12 - C28 A_VDDIB0_R - A_VDDIB0_R - Dual Function B28 A_HDINP0_R - PCS 3E0 CH 0 IN P A_HDINP0_R - PCS 3E0 CH 0 IN P B27 A_HDINN0_R - PCS 3E0 CH 0 IN N A_HDINN0_R - PCS 3E0 CH 0 IN N VCC12 - PCS 3E0 CH 0 OUT P A_HDOUTP0_R - A_VDDOB0_R - PCS 3E0 CH 0 OUT N A_HDOUTN0_R - A_VDDOB1_R - PCS 3E0 CH 1 OUT N A_HDOUTN1_R - E25 VCC12 - A28 A_HDOUTP0_R - C27 A_VDDOB0_R - A27 A_HDOUTN0_R - C26 A_VDDOB1_R - A26 A_HDOUTN1_R - PCS 3E0 CH 0 OUT P PCS 3E0 CH 0 OUT N PCS 3E0 CH 1 OUT N D24 VCC12 - VCC12 - A25 A_HDOUTP1_R - PCS 3E0 CH 1 OUT P A_HDOUTP1_R - PCS 3E0 CH 1 OUT P B26 A_HDINN1_R - PCS 3E0 CH 1 IN N A_HDINN1_R - PCS 3E0 CH 1 IN N B25 A_HDINP1_R - PCS 3E0 CH 1 IN P A_HDINP1_R - PCS 3E0 CH 1 IN P E24 VCC12 - VCC12 - C25 A_VDDIB1_R - A_VDDIB1_R - D23 VCC12 - VCC12 - C24 A_VDDIB2_R - A_VDDIB2_R - B24 A_HDINP2_R - PCS 3E0 CH 2 IN P A_HDINP2_R - PCS 3E0 CH 2 IN P B23 A_HDINN2_R - PCS 3E0 CH 2 IN N A_HDINN2_R - PCS 3E0 CH 2 IN N VCC12 - PCS 3E0 CH 2 OUT P A_HDOUTP2_R - A_VDDOB2_R - PCS 3E0 CH 2 OUT N A_HDOUTN2_R - A_VDDOB3_R - PCS 3E0 CH 3 OUT N A_HDOUTN3_R - E23 VCC12 - A24 A_HDOUTP2_R - C23 A_VDDOB2_R - A23 A_HDOUTN2_R - C22 A_VDDOB3_R - A22 A_HDOUTN3_R - PCS 3E0 CH 2 OUT P PCS 3E0 CH 2 OUT N PCS 3E0 CH 3 OUT N D22 VCC12 - VCC12 - A21 A_HDOUTP3_R - PCS 3E0 CH 3 OUT P A_HDOUTP3_R - PCS 3E0 CH 3 OUT P B22 A_HDINN3_R - PCS 3E0 CH 3 IN N A_HDINN3_R - PCS 3E0 CH 3 IN N B21 A_HDINP3_R - PCS 3E0 CH 3 IN P A_HDINP3_R - PCS 3E0 CH 3 IN P E22 VCC12 - VCC12 - C21 A_VDDIB3_R - A_VDDIB3_R - G22 PT43D 1 HDC/SI PT49D 1 HDC/SI F22 PT43C 1 LDCN/SCS PT49C 1 LDCN/SCS B20 PT41B 1 D8/MPI_DATA8 PT49B 1 D8/MPI_DATA8 B19 PT41A 1 CS1/MPI_CS1 PT49A 1 CS1/MPI_CS1 A20 PT40D 1 D9/MPI_DATA9 PT47D 1 D9/MPI_DATA9 A19 PT40C 1 D10/MPI_DATA10 PT47C 1 D10/MPI_DATA10 D19 PT39B 1 CS0N/MPI_CS0N PT47B 1 CS0N/MPI_CS0N D18 PT39A 1 RDN/MPI_STRB_N PT47A 1 RDN/MPI_STRB_N 4-21 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M15, LFSC/M25 Logic Signal Connections: 900 fpBGA1, 2 (Cont.) LFSC/M15 LFSC/M25 Ball Number Ball Function VCCIO Bank Dual Function Ball Function VCCIO Bank Dual Function F19 PT37D 1 WRN/MPI_WR_N PT46D 1 WRN/MPI_WR_N F18 PT37C 1 D7/MPI_DATA7 PT46C 1 D7/MPI_DATA7 C18 PT37B 1 D6/MPI_DATA6 PT46B 1 D6/MPI_DATA6 C17 PT37A 1 D5/MPI_DATA5 PT46A 1 D5/MPI_DATA5 E17 PT36D 1 D4/MPI_DATA4 PT45D 1 D4/MPI_DATA4 E16 PT36C 1 D3/MPI_DATA3 PT45C 1 D3/MPI_DATA3 G18 PT35B 1 D2/MPI_DATA2 PT45B 1 D2/MPI_DATA2 G17 PT35A 1 D1/MPI_DATA1 PT45A 1 D1/MPI_DATA1 B18 PT33B 1 D0/MPI_DATA0 PT43B 1 D0/MPI_DATA0 B17 PT33A 1 QOUT/CEON PT43A 1 QOUT/CEON G16 PT32D 1 VREF2_1 PT42D 1 VREF2_1 A18 PT32B 1 DOUT PT42B 1 DOUT A17 PT32A 1 MCA_DONE_IN PT42A 1 MCA_DONE_IN H18 PT31B 1 MCA_CLK_P1_OUT PT41B 1 MCA_CLK_P1_OUT H17 PT31A 1 MCA_CLK_P1_IN PT41A 1 MCA_CLK_P1_IN D17 PT29B 1 MCA_CLK_P2_OUT PT39B 1 MCA_CLK_P2_OUT D16 PT29A 1 MCA_CLK_P2_IN PT39A 1 MCA_CLK_P2_IN F17 PT28D 1 MCA_DONE_OUT PT38D 1 MCA_DONE_OUT F16 PT28C 1 BUSYN/RCLK/SCK PT38C 1 BUSYN/RCLK/SCK C16 PT28B 1 DP0/MPI_PAR0 PT38B 1 DP0/MPI_PAR0 C15 PT28A 1 MPI_TA PT38A 1 MPI_TA B16 PT27B 1 PCLKC1_0 PT37B 1 PCLKC1_0 B15 PT27A 1 PCLKT1_0/MPI_CLK PT37A 1 PCLKT1_0/MPI_CLK H16 PT25D 1 DP3/PCLKC1_4/MPI_PAR3 PT35D 1 DP3/PCLKC1_4/MPI_PAR3 A16 PT25B 1 MPI_RETRY PT35B 1 MPI_RETRY A15 PT25A 1 A0/MPI_ADDR14 PT35A 1 A0/MPI_ADDR14 G15 PT24D 1 A1/MPI_ADDR15 PT33D 1 A1/MPI_ADDR15 F15 PT24C 1 A2/MPI_ADDR16 PT33C 1 A2/MPI_ADDR16 E15 PT24B 1 A3/MPI_ADDR17 PT33B 1 A3/MPI_ADDR17 D15 PT24A 1 A4/MPI_ADDR18 PT33A 1 A4/MPI_ADDR18 C14 PT23B 1 A5/MPI_ADDR19 PT32B 1 A5/MPI_ADDR19 C13 PT23A 1 A6/MPI_ADDR20 PT32A 1 A6/MPI_ADDR20 H14 PT21C 1 VREF1_1 PT31C 1 VREF1_1 B14 PT21B 1 A7/MPI_ADDR21 PT31B 1 A7/MPI_ADDR21 B13 PT21A 1 A8/MPI_ADDR22 PT31A 1 A8/MPI_ADDR22 G14 PT20B 1 A9/MPI_ADDR23 PT29B 1 A9/MPI_ADDR23 F14 PT20A 1 A10/MPI_ADDR24 PT29A 1 A10/MPI_ADDR24 A14 PT19B 1 A11/MPI_ADDR25 PT28B 1 A11/MPI_ADDR25 A13 PT19A 1 A12/MPI_ADDR26 PT28A 1 A12/MPI_ADDR26 G13 PT17D 1 D11/MPI_DATA11 PT27D 1 D11/MPI_DATA11 H13 PT17C 1 D12/MPI_DATA12 PT27C 1 D12/MPI_DATA12 E14 PT17B 1 A13/MPI_ADDR27 PT27B 1 A13/MPI_ADDR27 E13 PT17A 1 A14/MPI_ADDR28 PT27A 1 A14/MPI_ADDR28 G12 PT15D 1 A16/MPI_ADDR30 PT25D 1 A16/MPI_ADDR30 G11 PT15C 1 D13/MPI_DATA13 PT25C 1 D13/MPI_DATA13 4-22 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M15, LFSC/M25 Logic Signal Connections: 900 fpBGA1, 2 (Cont.) LFSC/M15 LFSC/M25 Ball Number Ball Function VCCIO Bank Dual Function Ball Function VCCIO Bank Dual Function D14 PT15B 1 A15/MPI_ADDR29 PT25B 1 A15/MPI_ADDR29 D13 PT15A 1 A17/MPI_ADDR31 PT25A 1 A17/MPI_ADDR31 F12 PT13D 1 A19/MPI_TSIZ1 PT24D 1 A19/MPI_TSIZ1 F13 PT13C 1 A20/MPI_BDIP PT24C 1 A20/MPI_BDIP B12 PT11B 1 A18/MPI_TSIZ0 PT24B 1 A18/MPI_TSIZ0 B11 PT11A 1 MPI_TEA PT24A 1 MPI_TEA E12 PT10D 1 D14/MPI_DATA14 PT23D 1 D14/MPI_DATA14 D12 PT10C 1 DP1/MPI_PAR1 PT23C 1 DP1/MPI_PAR1 G10 PT9B 1 A21/MPI_BURST PT23B 1 A21/MPI_BURST G9 PT9A 1 D15/MPI_DATA15 PT23A 1 D15/MPI_DATA15 C10 A_VDDIB3_L - A_VDDIB3_L - E9 VCC12 - VCC12 - B10 A_HDINP3_L - PCS 360 CH 3 IN P A_HDINP3_L - PCS 360 CH 3 IN P B9 A_HDINN3_L - PCS 360 CH 3 IN N A_HDINN3_L - PCS 360 CH 3 IN N A10 A_HDOUTP3_L - PCS 360 CH 3 OUT P A_HDOUTP3_L - PCS 360 CH 3 OUT P VCC12 - PCS 360 CH 3 OUT N A_HDOUTN3_L - A_VDDOB3_L - PCS 360 CH 2 OUT N A_HDOUTN2_L - A_VDDOB2_L - PCS 360 CH 2 OUT P A_HDOUTP2_L - VCC12 - D9 VCC12 - A9 A_HDOUTN3_L - C9 A_VDDOB3_L - A8 A_HDOUTN2_L - PCS 360 CH 3 OUT N PCS 360 CH 2 OUT N C8 A_VDDOB2_L - A7 A_HDOUTP2_L - E8 VCC12 - B8 A_HDINN2_L - PCS 360 CH 2 IN N A_HDINN2_L - PCS 360 CH 2 IN N B7 A_HDINP2_L - PCS 360 CH 2 IN P A_HDINP2_L - PCS 360 CH 2 IN P C7 A_VDDIB2_L - A_VDDIB2_L - D8 VCC12 - VCC12 - C6 A_VDDIB1_L - A_VDDIB1_L - PCS 360 CH 2 OUT P E7 VCC12 - VCC12 - B6 A_HDINP1_L - PCS 360 CH 1 IN P A_HDINP1_L - PCS 360 CH 1 IN P B5 A_HDINN1_L - PCS 360 CH 1 IN N A_HDINN1_L - PCS 360 CH 1 IN N A6 A_HDOUTP1_L - PCS 360 CH 1 OUT P A_HDOUTP1_L - PCS 360 CH 1 OUT P VCC12 - PCS 360 CH 1 OUT N A_HDOUTN1_L - A_VDDOB1_L - PCS 360 CH 0 OUT N A_HDOUTN0_L - A_VDDOB0_L - PCS 360 CH 0 OUT P A_HDOUTP0_L - VCC12 - D7 VCC12 - A5 A_HDOUTN1_L - C5 A_VDDOB1_L - A4 A_HDOUTN0_L - PCS 360 CH 1 OUT N PCS 360 CH 0 OUT N C4 A_VDDOB0_L - A3 A_HDOUTP0_L - E6 VCC12 - B4 A_HDINN0_L - PCS 360 CH 0 IN N A_HDINN0_L - PCS 360 CH 0 IN N PCS 360 CH 0 IN P PCS 360 CH 0 IN P B3 A_HDINP0_L - A_HDINP0_L - C3 A_VDDIB0_L - A_VDDIB0_L - D6 VCC12 - VCC12 - L5 NC - PL21A 7 M5 NC - PL21B 7 G2 NC - PL20A 7 4-23 PCS 360 CH 0 OUT P Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M15, LFSC/M25 Logic Signal Connections: 900 fpBGA1, 2 (Cont.) LFSC/M15 Ball Number Ball Function VCCIO Bank G1 NC LFSC/M25 Ball Function VCCIO Bank - PL20B 7 Dual Function M4 NC - NC - J3 NC - NC - P5 NC - NC - W5 NC - PL48C 6 T6 NC - PL35C 6 U3 NC - PL36A 6 V3 NC - PL36B 6 T5 NC - PL39A 6 T4 NC - PL39B 6 V5 NC - PL43C 6 U6 NC - PL42C 6 U4 NC - PL40A 6 U5 NC - PL40B 6 V4 NC - PL43D 6 Y2 NC - PL47A 6 AA2 NC - PL47B 6 W3 NC - PL47D 6 Y3 NC - PL47C 6 AB3 NC - NC - AC4 NC - PL53A 6 AD4 NC - PL53B 6 AE3 NC - PL56A 6 AF3 NC - PL56B 6 AF7 NC - PB7A 5 AF6 NC - PB7B 5 AH4 NC - PB8A 5 AG5 NC - PB8B 5 AF8 NC - PB9A 5 AG8 NC - PB9B 5 AG7 NC - NC - AG10 NC - NC - AF12 NC - NC - AH7 NC - PB15A 5 AE13 NC - PB15D 5 AG13 NC - PB23C 5 AH8 NC - PB15B 5 AJ5 NC - PB17A 5 AJ6 NC - PB17B 5 AF15 NC - PB21D 5 AJ7 NC - PB19A 5 AJ8 NC - PB19B 5 AE12 NC - PB15C 5 AF16 NC - PB38D 4 AF19 NC - PB49D 4 4-24 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M15, LFSC/M25 Logic Signal Connections: 900 fpBGA1, 2 (Cont.) LFSC/M15 Ball Number Ball Function VCCIO Bank AH20 NC AK27 AJ24 LFSC/M25 Ball Function VCCIO Bank - PB51D 4 NC - NC - NC - NC - Dual Function AF17 NC - PB42C 4 AH27 NC - PB61B 4 AD23 NC - PB57A 4 AE23 NC - PB57B 4 AH24 NC - PB59A 4 AH25 NC - PB59B 4 AH26 NC - PB61A 4 AF24 NC - PB63A 4 AG24 NC - PB63B 4 AG25 NC - PB64A 4 AF25 NC - PB64B 4 AG26 NC - PB65A 4 AF27 NC - PB65B 4 AD28 NC - PR56B 3 AC27 NC - PR56A 3 AE29 NC - PR53B 3 AD29 NC - PR53A 3 AB30 NC - NC - AA28 NC - NC - Y27 NC - PR47C 3 W27 NC - PR47D 3 V30 NC - PR47A 3 W30 NC - PR47B 3 W26 NC - PR43D 3 V26 NC - PR43C 3 U25 NC - PR42C 3 T27 NC - PR40B 3 R27 NC - PR40A 3 V27 NC - PR39B 3 U27 NC - PR39A 3 U29 NC - PR36B 3 T29 NC - PR36A 3 T24 NC - PR35C 3 Y25 NC - PR48C 3 P24 NC - NC - K28 NC - NC - P23 NC - NC - L28 NC - NC - M27 NC - PR21B 2 L27 NC - PR21A 2 H27 NC - PR20B 2 G27 NC - PR20A 2 4-25 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M15, LFSC/M25 Logic Signal Connections: 900 fpBGA1, 2 (Cont.) LFSC/M15 Ball Number Ball Function VCCIO Bank E19 NC G21 G20 LFSC/M25 Ball Function VCCIO Bank - NC - NC - NC - NC - NC - G19 NC - NC - F9 NC - NC - A11 NC - NC - G7 NC - NC - Dual Function AH9 NC - NC - H8 VCC12 - VCC12 - T8 VCC12 - VCC12 - AB9 VCC12 - VCC12 - AC8 VCC12 - VCC12 - AB22 VCC12 - VCC12 - AC23 VCC12 - VCC12 - R23 VCC12 - VCC12 - H23 VCC12 - VCC12 - H15 VCC12 - VCC12 - L24 VTT_2 2 VTT_2 2 T23 VTT_2 2 VTT_2 2 AC24 VTT_3 3 VTT_3 3 T25 VTT_3 3 VTT_3 3 W25 VTT_3 3 VTT_3 3 AD24 VTT_4 4 VTT_4 4 AE17 VTT_4 4 VTT_4 4 AE18 VTT_4 4 VTT_4 4 AC15 VTT_5 5 VTT_5 5 AD16 VTT_5 5 VTT_5 5 AE9 VTT_5 5 VTT_5 5 AA6 VTT_6 6 VTT_6 6 T7 VTT_6 6 VTT_6 6 W6 VTT_6 6 VTT_6 6 L7 VTT_7 7 VTT_7 7 P7 VTT_7 7 VTT_7 7 AA10 VCC - VCC - AA11 VCC - VCC - AA12 VCC - VCC - AA13 VCC - VCC - AA14 VCC - VCC - AA17 VCC - VCC - AA18 VCC - VCC - AA19 VCC - VCC - AA20 VCC - VCC - AA21 VCC - VCC - AA22 VCC - VCC - AA9 VCC - VCC - 4-26 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M15, LFSC/M25 Logic Signal Connections: 900 fpBGA1, 2 (Cont.) LFSC/M15 Ball Number Ball Function VCCIO Bank AB10 VCC AB21 J10 LFSC/M25 Ball Function VCCIO Bank - VCC - VCC - VCC - VCC - VCC - Dual Function J21 VCC - VCC - K10 VCC - VCC - K11 VCC - VCC - K12 VCC - VCC - K13 VCC - VCC - K14 VCC - VCC - K17 VCC - VCC - K18 VCC - VCC - K19 VCC - VCC - K20 VCC - VCC - K21 VCC - VCC - K22 VCC - VCC - K9 VCC - VCC - L10 VCC - VCC - L21 VCC - VCC - M10 VCC - VCC - M21 VCC - VCC - N10 VCC - VCC - N21 VCC - VCC - P10 VCC - VCC - P21 VCC - VCC - U10 VCC - VCC - U21 VCC - VCC - V10 VCC - VCC - V21 VCC - VCC - W10 VCC - VCC - W21 VCC - VCC - Y10 VCC - VCC - Y21 VCC - VCC - H11 VCCAUX - VCCAUX - H12 VCCAUX - VCCAUX - H19 VCCAUX - VCCAUX - H20 VCCAUX - VCCAUX - M23 VCCAUX - VCCAUX - M24 VCCAUX - VCCAUX - N23 VCCAUX - VCCAUX - N24 VCCAUX - VCCAUX - U23 VCCAUX - VCCAUX - U24 VCCAUX - VCCAUX - V23 VCCAUX - VCCAUX - V24 VCCAUX - VCCAUX - W23 VCCAUX - VCCAUX - 4-27 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M15, LFSC/M25 Logic Signal Connections: 900 fpBGA1, 2 (Cont.) LFSC/M15 Ball Number Ball Function VCCIO Bank W24 VCCAUX AC17 AC18 LFSC/M25 Ball Function VCCIO Bank - VCCAUX - VCCAUX - VCCAUX - VCCAUX - VCCAUX - Dual Function AC19 VCCAUX - VCCAUX - AD17 VCCAUX - VCCAUX - AD18 VCCAUX - VCCAUX - AD19 VCCAUX - VCCAUX - AC12 VCCAUX - VCCAUX - AC13 VCCAUX - VCCAUX - AC14 VCCAUX - VCCAUX - AD12 VCCAUX - VCCAUX - AD13 VCCAUX - VCCAUX - AD14 VCCAUX - VCCAUX - U7 VCCAUX - VCCAUX - U8 VCCAUX - VCCAUX - V7 VCCAUX - VCCAUX - V8 VCCAUX - VCCAUX - W7 VCCAUX - VCCAUX - W8 VCCAUX - VCCAUX - M7 VCCAUX - VCCAUX - M8 VCCAUX - VCCAUX - N7 VCCAUX - VCCAUX - N8 VCCAUX - VCCAUX - H10 VCCIO1 - VCCIO1 - H21 VCCIO1 - VCCIO1 - H22 VCCIO1 - VCCIO1 - H9 VCCIO1 - VCCIO1 - J11 VCCIO1 - VCCIO1 - J12 VCCIO1 - VCCIO1 - J13 VCCIO1 - VCCIO1 - J14 VCCIO1 - VCCIO1 - J15 VCCIO1 - VCCIO1 - J16 VCCIO1 - VCCIO1 - J17 VCCIO1 - VCCIO1 - J18 VCCIO1 - VCCIO1 - J19 VCCIO1 - VCCIO1 - J20 VCCIO1 - VCCIO1 - J23 VCCIO2 - VCCIO2 - J24 VCCIO2 - VCCIO2 - K23 VCCIO2 - VCCIO2 - K24 VCCIO2 - VCCIO2 - L22 VCCIO2 - VCCIO2 - L23 VCCIO2 - VCCIO2 - M22 VCCIO2 - VCCIO2 - N22 VCCIO2 - VCCIO2 - 4-28 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M15, LFSC/M25 Logic Signal Connections: 900 fpBGA1, 2 (Cont.) LFSC/M15 Ball Number Ball Function VCCIO Bank P22 VCCIO2 - LFSC/M25 Dual Function Ball Function VCCIO Bank VCCIO2 - R22 VCCIO2 - VCCIO2 - AA23 VCCIO3 - VCCIO3 - AA24 VCCIO3 - VCCIO3 - AB23 VCCIO3 - VCCIO3 - AB24 VCCIO3 - VCCIO3 - T22 VCCIO3 - VCCIO3 - U22 VCCIO3 - VCCIO3 - V22 VCCIO3 - VCCIO3 - W22 VCCIO3 - VCCIO3 - Y22 VCCIO3 - VCCIO3 - Y23 VCCIO3 - VCCIO3 - Y24 VCCIO3 - VCCIO3 - AB16 VCCIO4 - VCCIO4 - AB17 VCCIO4 - VCCIO4 - AB18 VCCIO4 - VCCIO4 - AB19 VCCIO4 - VCCIO4 - AB20 VCCIO4 - VCCIO4 - AC20 VCCIO4 - VCCIO4 - AC21 VCCIO4 - VCCIO4 - AC22 VCCIO4 - VCCIO4 - AD20 VCCIO4 - VCCIO4 - AD21 VCCIO4 - VCCIO4 - AD22 VCCIO4 - VCCIO4 - AB11 VCCIO5 - VCCIO5 - AB12 VCCIO5 - VCCIO5 - AB13 VCCIO5 - VCCIO5 - AB14 VCCIO5 - VCCIO5 - AB15 VCCIO5 - VCCIO5 - AC10 VCCIO5 - VCCIO5 - AC11 VCCIO5 - VCCIO5 - AC9 VCCIO5 - VCCIO5 - AD10 VCCIO5 - VCCIO5 - AD11 VCCIO5 - VCCIO5 - AD9 VCCIO5 - VCCIO5 - AA7 VCCIO6 - VCCIO6 - AA8 VCCIO6 - VCCIO6 - AB7 VCCIO6 - VCCIO6 - AB8 VCCIO6 - VCCIO6 - T9 VCCIO6 - VCCIO6 U9 VCCIO6 - VCCIO6 - V9 VCCIO6 - VCCIO6 - W9 VCCIO6 - VCCIO6 - Y7 VCCIO6 - VCCIO6 - Y8 VCCIO6 - VCCIO6 - 4-29 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M15, LFSC/M25 Logic Signal Connections: 900 fpBGA1, 2 (Cont.) LFSC/M15 Ball Number Ball Function VCCIO Bank Y9 VCCIO6 J7 J8 LFSC/M25 Ball Function VCCIO Bank - VCCIO6 - VCCIO7 - VCCIO7 - VCCIO7 - VCCIO7 - K7 VCCIO7 - VCCIO7 - K8 VCCIO7 - VCCIO7 - L8 VCCIO7 - VCCIO7 - L9 VCCIO7 - VCCIO7 - M9 VCCIO7 - VCCIO7 - N9 VCCIO7 - VCCIO7 - P9 VCCIO7 - VCCIO7 - R9 VCCIO7 - VCCIO7 - Dual Function A1 GND - GND - A30 GND - GND - AA15 GND - GND - AA16 GND - GND - AK1 GND - GND - AK30 GND - GND - K15 GND - GND - K16 GND - GND - L11 GND - GND - L12 GND - GND - L13 GND - GND - L14 GND - GND - L15 GND - GND - L16 GND - GND - L17 GND - GND - L18 GND - GND - L19 GND - GND - L20 GND - GND - M11 GND - GND - M12 GND - GND - M13 GND - GND - M14 GND - GND - M15 GND - GND - M16 GND - GND - M17 GND - GND - M18 GND - GND - M19 GND - GND - M20 GND - GND - N11 GND - GND - N12 GND - GND - N13 GND - GND - N14 GND - GND - N15 GND - GND - N16 GND - GND - 4-30 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M15, LFSC/M25 Logic Signal Connections: 900 fpBGA1, 2 (Cont.) LFSC/M15 Ball Number Ball Function VCCIO Bank N17 GND N18 N19 LFSC/M25 Ball Function VCCIO Bank - GND - GND - GND - GND - GND - Dual Function N20 GND - GND - P11 GND - GND - P12 GND - GND - P13 GND - GND - P14 GND - GND - P15 GND - GND - P16 GND - GND - P17 GND - GND - P18 GND - GND - P19 GND - GND - P20 GND - GND - R10 GND - GND - R11 GND - GND - R12 GND - GND - R13 GND - GND - R14 GND - GND - R15 GND - GND - R16 GND - GND - R17 GND - GND - R18 GND - GND - R19 GND - GND - R20 GND - GND - R21 GND - GND - T10 GND - GND - T11 GND - GND - T12 GND - GND - T13 GND - GND - T14 GND - GND - T15 GND - GND - T16 GND - GND - T17 GND - GND - T18 GND - GND - T19 GND - GND - T20 GND - GND - T21 GND - GND - U11 GND - GND - U12 GND - GND - U13 GND - GND - U14 GND - GND - U15 GND - GND - U16 GND - GND - U17 GND - GND - 4-31 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M15, LFSC/M25 Logic Signal Connections: 900 fpBGA1, 2 (Cont.) LFSC/M15 Ball Number Ball Function VCCIO Bank U18 GND U19 U20 LFSC/M25 Ball Function VCCIO Bank - GND - GND - GND - GND - GND - V11 GND - GND - V12 GND - GND - V13 GND - GND - V14 GND - GND - V15 GND - GND - V16 GND - GND - V17 GND - GND - V18 GND - GND - V19 GND - GND - V20 GND - GND - W11 GND - GND - W12 GND - GND - W13 GND - GND - W14 GND - GND - W15 GND - GND - W16 GND - GND - W17 GND - GND - W18 GND - GND - W19 GND - GND - W20 GND - GND - Y11 GND - GND - Y12 GND - GND - Y13 GND - GND - Y14 GND - GND - Y15 GND - GND - Y16 GND - GND - Y17 GND - GND - Y18 GND - GND - Y19 GND - GND - Y20 GND - GND - H2 VCCIO7 - VCCIO7 - N4 VCCIO7 - VCCIO7 - N6 VCCIO7 - VCCIO7 - J2 VCCIO7 - VCCIO7 - L2 VCCIO7 - VCCIO7 - H4 VCCIO7 - VCCIO7 - Dual Function AB2 VCCIO6 - VCCIO6 - AD1 VCCIO6 - VCCIO6 - W4 VCCIO6 - VCCIO6 - AA4 VCCIO6 - VCCIO6 - AE7 VCCIO5 - VCCIO5 - AH6 VCCIO5 - VCCIO5 - 4-32 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M15, LFSC/M25 Logic Signal Connections: 900 fpBGA1, 2 (Cont.) LFSC/M15 Ball Number Ball Function VCCIO Bank AG11 VCCIO5 - LFSC/M25 Dual Function Ball Function VCCIO Bank VCCIO5 - AJ9 VCCIO5 - VCCIO5 - AJ23 VCCIO4 - VCCIO4 - AG20 VCCIO4 - VCCIO4 - AJ26 VCCIO4 - VCCIO4 - AG23 VCCIO4 - VCCIO4 - AC29 VCCIO3 - VCCIO3 - AA26 VCCIO3 - VCCIO3 - Y28 VCCIO3 - VCCIO3 - AA29 VCCIO3 - VCCIO3 - G30 VCCIO2 - VCCIO2 - J29 VCCIO2 - VCCIO2 - K27 VCCIO2 - VCCIO2 - N25 VCCIO2 - VCCIO2 - F20 VCCIO1 - VCCIO1 - C19 VCCIO1 - VCCIO1 - C12 VCCIO1 - VCCIO1 - F11 VCCIO1 - VCCIO1 - H1 GND - GND - L4 GND - GND - M3 GND - GND - N5 GND - GND - K2 GND - GND - M2 GND - GND - P6 GND - GND - G4 GND - GND - H3 GND - GND - AC2 GND - GND - AA3 GND - GND - AE1 GND - GND - Y4 GND - GND - AB4 GND - GND - AA5 GND - GND - AE6 GND - GND - AE8 GND - GND - AH5 GND - GND - AG9 GND - GND - AG6 GND - GND - AF11 GND - GND - AG12 GND - GND - AJ10 GND - GND - AK26 GND - GND - AJ22 GND - GND - AF20 GND - GND - AJ25 GND - GND - 4-33 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M15, LFSC/M25 Logic Signal Connections: 900 fpBGA1, 2 (Cont.) LFSC/M15 Ball Number Ball Function VCCIO Bank AJ27 GND AF23 AF22 LFSC/M25 Ball Function VCCIO Bank - GND - GND - GND - GND - GND - AE27 GND - GND - AA27 GND - GND - AB29 GND - GND - Y26 GND - GND - AC30 GND - GND - Y29 GND - GND - F30 GND - GND - E27 GND - GND - Dual Function F27 GND - GND - P25 GND - GND - H29 GND - GND - K29 GND - GND - R24 GND - GND - M28 GND - GND - J27 GND - GND - N26 GND - GND - E20 GND - GND - E21 GND - GND - F21 GND - GND - F23 GND - GND - G23 GND - GND - D21 GND - GND - D20 GND - GND - E18 GND - GND - C20 GND - GND - C11 GND - GND - A12 GND - GND - E11 GND - GND - F8 GND - GND - G8 GND - GND - D11 GND - GND - D10 GND - GND - H7 GND - GND - F10 GND - GND - E10 GND - GND - AC16 NC - NC - J22 VCC - VCC - J9 VCC - VCC - B2 NC - NC - C2 RESPN_ULC - RESPN_ULC - C29 RESPN_URC - RESPN_URC - 4-34 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M15, LFSC/M25 Logic Signal Connections: 900 fpBGA1, 2 (Cont.) LFSC/M15 Ball Number Ball Function VCCIO Bank B29 NC - LFSC/M25 Dual Function Ball Function VCCIO Bank NC - 1. Differential pair grouping within a PIC is A (True) and B (Complement) and C (True) and D (Complement). 2. The LatticeSC/M15 and LatticeSC/M25 in a 900-pin package supports a 16-bit MPI interface. 4-35 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M25, LFSC/M40 Logic Signal Connections: 1020 fcBGA1, 2 LFSC/M25 Ball Number Ball Function VCCIO Bank C28 A_REFCLKP_L D28 B28 F28 J21 LFSC/M40 Dual Function Ball Function VCCIO Bank - A_REFCLKP_L - A_REFCLKN_L - A_REFCLKN_L - VCC12 - VCC12 - RESP_ULC - RESP_ULC - RESETN 1 RESETN 1 Dual Function J20 TSALLN 1 TSALLN 1 K20 DONE 1 DONE 1 K21 INITN 1 INITN 1 K23 M0 1 M0 1 J23 M1 1 M1 1 J24 M2 1 M2 1 K24 M3 1 M3 1 K25 PL16A 7 ULC_PLLT_IN_A/ULC_PLLT_FB_B PL16A 7 ULC_PLLT_IN_A/ULC_PLLT_FB_B J25 PL16B 7 ULC_PLLC_IN_A/ULC_PLLC_FB_B PL16B 7 ULC_PLLC_IN_A/ULC_PLLC_FB_B K26 PL16C 7 PL16C 7 K27 PL16D 7 PL16D 7 D32 PL17A 7 ULC_DLLT_IN_C/ULC_DLLT_FB_D PL17A 7 ULC_DLLT_IN_C/ULC_DLLT_FB_D D31 PL17B 7 ULC_DLLC_IN_C/ULC_DLLC_FB_D PL17B 7 ULC_DLLC_IN_C/ULC_DLLC_FB_D M23 PL17C 7 ULC_PLLT_IN_B/ULC_PLLT_FB_A PL17C 7 ULC_PLLT_IN_B/ULC_PLLT_FB_A N23 PL17D 7 ULC_PLLC_IN_B/ULC_PLLC_FB_A PL17D 7 ULC_PLLC_IN_B/ULC_PLLC_FB_A E32 PL18A 7 ULC_DLLT_IN_D/ULC_DLLT_FB_C PL18A 7 ULC_DLLT_IN_D/ULC_DLLT_FB_C E31 PL18B 7 ULC_DLLC_IN_D/ULC_DLLC_FB_C PL18B 7 ULC_DLLC_IN_D/ULC_DLLC_FB_C PL18C 7 J28 PL18C 7 K28 PL18D 7 F32 PL20A 7 VREF2_7 PL18D 7 PL21A 7 F31 PL20B 7 PL21B 7 L25 PL20C 7 PL21C 7 L26 PL20D 7 PL21D 7 G31 PL21A 7 PL22A 7 G32 PL21B 7 PL22B 7 J29 PL22A 7 PL25A 7 7 VREF2_7 H29 PL22B 7 PL25B M25 PL22C 7 PL25C 7 N25 PL22D 7 PL25D 7 H31 PL25A 7 PL23A 7 H32 PL25B 7 PL23B 7 M24 PL25C 7 VREF1_7 PL23C 7 N24 PL25D 7 DIFFR_7 PL23D 7 DIFFR_7 L32 PL26A 7 PCLKT7_1 PL35A 7 PCLKT7_1 PCLKC7_1 VREF1_7 M32 PL26B 7 PCLKC7_1 PL35B 7 R25 PL26C 7 PCLKT7_3 PL35C 7 PCLKT7_3 R24 PL26D 7 PCLKC7_3 PL35D 7 PCLKC7_3 N31 PL27A 7 PCLKT7_0 PL36A 7 PCLKT7_0 N32 PL27B 7 PCLKC7_0 PL36B 7 PCLKC7_0 P27 PL27C 7 PCLKT7_2 PL36C 7 PCLKT7_2 P28 PL27D 7 PCLKC7_2 PL36D 7 PCLKC7_2 P30 PL29A 6 PCLKT6_0 PL38A 6 PCLKT6_0 P29 PL29B 6 PCLKC6_0 PL38B 6 PCLKC6_0 T23 PL29C 6 PCLKT6_1 PL38C 6 PCLKT6_1 T24 PL29D 6 PCLKC6_1 PL38D 6 PCLKC6_1 4-36 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M25, LFSC/M40 Logic Signal Connections: 1020 fcBGA1, 2 (Cont.) LFSC/M25 Ball Number Ball Function VCCIO Bank P32 PL30A 6 LFSC/M40 Dual Function Ball Function VCCIO Bank PL39A 6 Dual Function P31 PL30B 6 PL39B 6 R28 PL30C 6 PCLKT6_3 PL39C 6 PCLKT6_3 T28 PL30D 6 PCLKC6_3 PL39D 6 PCLKC6_3 R30 PL31A 6 PL40A 6 R29 PL31B 6 PL40B 6 T25 PL31C 6 PCLKT6_2 PL40C 6 PCLKT6_2 T26 PL31D 6 PCLKC6_2 PL40D 6 PCLKC6_2 R31 PL34A 6 PL43A 6 R32 PL34B 6 PL43B 6 U23 PL34C 6 U24 PL34D T31 T32 VREF1_6 PL43C 6 6 PL43D 6 PL35A 6 PL44A 6 PL35B 6 PL44B 6 T27 PL35C 6 PL44C 6 U28 PL35D 6 PL44D 6 U32 PL36A 6 PL45A 6 U31 PL36B 6 PL45B 6 U26 PL36C 6 PL45C 6 U25 PL36D 6 PL45D 6 V32 PL38A 6 PL47A 6 V31 PL38B 6 PL47B 6 V24 PL38C 6 PL47C 6 V23 PL38D 6 PL47D 6 V29 PL39A 6 PL48A 6 6 V30 PL39B 6 PL48B U27 PL39C 6 PL48C 6 V28 PL39D 6 PL48D 6 W30 PL40A 6 PL49A 6 W29 PL40B 6 PL49B 6 V25 PL40C 6 PL49C 6 W26 PL40D 6 PL49D 6 W31 PL42A 6 PL51A 6 Y31 PL42B 6 PL51B 6 W27 PL42C 6 PL51C 6 Y27 PL42D 6 W28 PL43A 6 Y28 PL43B Y26 PL43C W25 W32 DIFFR_6 PL51D 6 PL52A 6 6 PL52B 6 6 PL52C 6 PL43D 6 PL52D 6 PL44A 6 PL53A 6 Y32 PL44B 6 PL53B 6 AB28 PL44C 6 PL53C 6 AA28 PL44D 6 PL53D 6 AB32 PL47A 6 PL60A 6 AA32 PL47B 6 PL60B 6 AB27 PL47C 6 PL60C 6 AC27 PL47D 6 PL60D 6 AD31 PL48A 6 PL61A 6 AC31 PL48B 6 PL61B 6 4-37 VREF1_6 DIFFR_6 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M25, LFSC/M40 Logic Signal Connections: 1020 fcBGA1, 2 (Cont.) LFSC/M25 Ball Number Ball Function VCCIO Bank Y24 PL48C Y23 AD29 LFSC/M40 Dual Function Ball Function VCCIO Bank 6 PL61C 6 PL48D 6 PL61D 6 PL49A 6 PL62A 6 AD30 PL49B 6 PL62B 6 AF28 PL49C 6 PL62C 6 AE28 PL49D 6 PL62D 6 AC28 PL51A 6 PL65A 6 AD28 PL51B 6 PL65B 6 AB26 PL51C 6 PL65C 6 AC26 PL51D 6 AC32 PL52A 6 AD32 PL52B AA24 PL52C AA23 AE30 VREF2_6 PL65D 6 PL66A 6 6 PL66B 6 6 PL66C 6 PL52D 6 PL66D 6 PL53A 6 PL67A 6 6 Dual Function VREF2_6 AE29 PL53B 6 PL67B AC25 PL53C 6 PL67C 6 AB25 PL53D 6 PL67D 6 AE31 PL55A 6 PL69A 6 AE32 PL55B 6 PL69B 6 AE26 PL55C 6 LLC_DLLT_IN_E/LLC_DLLT_FB_F PL69C 6 LLC_DLLT_IN_E/LLC_DLLT_FB_F AE27 PL55D 6 LLC_DLLC_IN_E/LLC_DLLC_FB_F PL69D 6 LLC_DLLC_IN_E/LLC_DLLC_FB_F AF32 PL56A 6 PL70A 6 AF31 PL56B 6 PL70B 6 AC24 PL56C 6 PL70C 6 AD25 PL56D 6 PL70D 6 AG32 PL57A 6 LLC_DLLT_IN_F/LLC_DLLT_FB_E PL71A 6 LLC_DLLT_IN_F/LLC_DLLT_FB_E AG31 PL57B 6 LLC_DLLC_IN_F/LLC_DLLC_FB_E PL71B 6 LLC_DLLC_IN_F/LLC_DLLC_FB_E AC23 PL57C 6 LLC_PLLT_IN_B/LLC_PLLT_FB_A PL71C 6 LLC_PLLT_IN_B/LLC_PLLT_FB_A AD24 PL57D 6 LLC_PLLC_IN_B/LLC_PLLC_FB_A PL71D 6 LLC_PLLC_IN_B/LLC_PLLC_FB_A AH32 XRES - XRES - AH31 TEMP 6 TEMP 6 AJ32 PB3A 5 LLC_PLLT_IN_A/LLC_PLLT_FB_B PB3A 5 LLC_PLLT_IN_A/LLC_PLLT_FB_B AK32 PB3B 5 LLC_PLLC_IN_A/LLC_PLLC_FB_B PB3B 5 LLC_PLLC_IN_A/LLC_PLLC_FB_B AF27 PB3C 5 LLC_DLLT_IN_C/LLC_DLLT_FB_D PB3C 5 LLC_DLLT_IN_C/LLC_DLLT_FB_D AG28 PB3D 5 LLC_DLLC_IN_C/LLC_DLLC_FB_D PB3D 5 LLC_DLLC_IN_C/LLC_DLLC_FB_D AK31 PB4A 5 LLC_DLLT_IN_D/LLC_DLLT_FB_C PB4A 5 LLC_DLLT_IN_D/LLC_DLLT_FB_C AL31 PB4B 5 LLC_DLLC_IN_D/LLC_DLLC_FB_C PB4B 5 LLC_DLLC_IN_D/LLC_DLLC_FB_C AE25 PB4C 5 PB4C 5 AE24 PB4D 5 PB4D 5 AK30 PB5A 5 PB5A 5 AL30 PB5B 5 PB5B 5 AD23 PB5C 5 PB5C 5 AE23 PB5D 5 AK29 PB7A 5 VREF1_5 PB5D 5 PB7A 5 AL29 PB7B 5 PB7B 5 AF26 PB7C 5 PB7C 5 AF25 PB7D 5 PB7D 5 AJ28 PB8A 5 PB8A 5 AK28 PB8B 5 PB8B 5 4-38 VREF1_5 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M25, LFSC/M40 Logic Signal Connections: 1020 fcBGA1, 2 (Cont.) LFSC/M25 Ball Number Ball Function VCCIO Bank AJ31 PB9A 5 LFSC/M40 Dual Function Ball Function VCCIO Bank PB9A 5 AH30 PB9B 5 PB9B 5 AM30 PB11A 5 PB11A 5 AM29 PB11B 5 PB11B 5 AH29 PB11C 5 PB11C 5 AH28 PB11D 5 PB11D 5 AJ27 PB12A 5 PB13A 5 AK27 PB12B 5 PB13B 5 AE22 PB12C 5 PB13C 5 AF23 PB12D 5 PB13D 5 AL28 PB13A 5 PB15A 5 AL27 PB13B 5 PB15B 5 AC21 PB13C 5 PB15C 5 AD21 PB13D 5 PB15D 5 AM28 PB15A 5 PB17A 5 AM27 PB15B 5 PB17B 5 AG23 PB15C 5 PB17C 5 AF22 PB15D 5 PB17D 5 AG26 PB16A 5 PB19A 5 AG25 PB16B 5 PB19B 5 AL26 PB17A 5 PB22A 5 AM26 PB17B 5 PB22B 5 AJ24 PB19A 5 PB25A 5 Dual Function AK24 PB19B 5 PB25B 5 AE21 PB19C 5 PB25C 5 AE20 PB19D 5 PB25D 5 AJ22 PB20A 5 PCLKT5_3 PB30A 5 PCLKT5_3 AK22 PB20B 5 PCLKC5_3 PB30B 5 PCLKC5_3 AG22 PB20C 5 PCLKT5_4 PB30C 5 PCLKT5_4 AH22 PB20D 5 PCLKC5_4 PB30D 5 PCLKC5_4 AL23 PB21A 5 PCLKT5_5 PB31A 5 PCLKT5_5 AL22 PB21B 5 PCLKC5_5 PB31B 5 PCLKC5_5 AH23 PB21C 5 PB31C 5 AH24 PB21D 5 PB31D 5 AJ21 PB23A 5 PCLKT5_0 PB33A 5 PCLKT5_0 AK21 PB23B 5 PCLKC5_0 PB33B 5 PCLKC5_0 AE19 PB23C 5 PB33C 5 AF19 PB23D 5 VREF2_5 PB33D 5 VREF2_5 AM23 PB24A 5 PCLKT5_1 PB34A 5 PCLKT5_1 PCLKC5_1 AM22 PB24B 5 PCLKC5_1 PB34B 5 AH25 PB24C 5 PCLKT5_6 PB34C 5 PCLKT5_6 AH26 PB24D 5 PCLKC5_6 PB34D 5 PCLKC5_6 AL21 PB25A 5 PCLKT5_2 PB35A 5 PCLKT5_2 AL20 PB25B 5 PCLKC5_2 PB35B 5 PCLKC5_2 AG20 PB25C 5 PCLKT5_7 PB35C 5 PCLKT5_7 AG19 PB25D 5 PCLKC5_7 PB35D 5 PCLKC5_7 AJ19 PB28A 5 PB37A 5 AK19 PB28B 5 PB37B 5 AD18 PB28C 5 PB37C 5 AE18 PB28D 5 PB37D 5 4-39 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M25, LFSC/M40 Logic Signal Connections: 1020 fcBGA1, 2 (Cont.) LFSC/M25 Ball Number Ball Function VCCIO Bank AM21 PB29A 5 LFSC/M40 Dual Function Ball Function VCCIO Bank PB38A 5 AM20 PB29B 5 PB38B 5 AH21 PB29C 5 PB38C 5 AH20 PB29D 5 PB38D 5 AJ18 PB31A 5 PB39A 5 AK18 PB31B 5 PB39B 5 AH19 PB31C 5 PB39C 5 AH18 PB31D 5 PB39D 5 AL19 PB32A 5 PB41A 5 AM19 PB32B 5 PB41B 5 AH17 PB32C 5 PB41C 5 AG17 PB32D 5 PB41D 5 AL18 PB33A 5 PB42A 5 5 AM18 PB33B 5 PB42B AC17 PB33C 5 PB42C 5 AD17 PB33D 5 PB42D 5 5 AL17 PB35A 5 PB43A AM17 PB35B 5 PB43B 5 AE17 PB35C 5 PB43C 5 AF17 PB35D 5 PB43D 5 AM16 PB37A 4 PB45A 4 4 AL16 PB37B 4 PB45B AF16 PB37C 4 PB45C 4 AE16 PB37D 4 PB45D 4 AM15 PB38A 4 PB46A 4 AL15 PB38B 4 PB46B 4 AD16 PB38C 4 PB46C 4 AC16 PB38D 4 PB46D 4 AM14 PB39A 4 PB47A 4 AL14 PB39B 4 PB47B 4 AG16 PB39C 4 PB47C 4 AH16 PB39D 4 PB47D 4 AK15 PB41A 4 PB49A 4 AJ15 PB41B 4 PB49B 4 AH15 PB41C 4 PB49C 4 AH14 PB41D 4 PB49D 4 AM13 PB42A 4 PB50A 4 AM12 PB42B 4 PB50B 4 AH13 PB42C 4 PB50C 4 AH12 PB42D 4 PB50D 4 AK14 PB43A 4 PB51A 4 Dual Function AJ14 PB43B 4 PB51B 4 AE15 PB43C 4 PB51C 4 AD15 PB43D 4 PB51D 4 AL13 PB46A 4 PCLKT4_2 PB53A 4 PCLKT4_2 AL12 PB46B 4 PCLKC4_2 PB53B 4 PCLKC4_2 AG14 PB46C 4 PCLKT4_7 PB53C 4 PCLKT4_7 AG13 PB46D 4 PCLKC4_7 PB53D 4 PCLKC4_7 AM11 PB47A 4 PCLKT4_1 PB54A 4 PCLKT4_1 AM10 PB47B 4 PCLKC4_1 PB54B 4 PCLKC4_1 4-40 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M25, LFSC/M40 Logic Signal Connections: 1020 fcBGA1, 2 (Cont.) LFSC/M25 LFSC/M40 Ball Number Ball Function VCCIO Bank Dual Function Ball Function VCCIO Bank AH11 PB47C 4 PCLKT4_6 PB54C 4 PCLKT4_6 AH10 PB47D 4 PCLKC4_6 PB54D 4 PCLKC4_6 Dual Function AK12 PB49A 4 PCLKT4_0 PB55A 4 PCLKT4_0 AJ12 PB49B 4 PCLKC4_0 PB55B 4 PCLKC4_0 VREF2_4 PB55C 4 VREF2_4 PB55D 4 AF14 PB49C 4 AE14 PB49D 4 AL11 PB51A 4 PCLKT4_5 PB57A 4 PCLKT4_5 AL10 PB51B 4 PCLKC4_5 PB57B 4 PCLKC4_5 AH9 PB51C 4 PB57C 4 AH8 PB51D 4 PB57D 4 AK11 PB52A 4 PCLKT4_3 PB58A 4 PCLKT4_3 AJ11 PB52B 4 PCLKC4_3 PB58B 4 PCLKC4_3 AH7 PB52C 4 PCLKT4_4 PB58C 4 PCLKT4_4 AH6 PB52D 4 PCLKC4_4 PB58D 4 PCLKC4_4 AK8 PB53A 4 PB67A 4 AJ8 PB53B 4 PB67B 4 AF11 PB53C 4 PB67C 4 AD12 PB55A 4 PB69A 4 AE12 PB55B 4 PB69B 4 AM6 PB56A 4 PB70A 4 AM5 PB56B 4 PB70B 4 AC12 PB56C 4 PB70C 4 AL6 PB57A 4 PB73A 4 AL5 PB57B 4 PB73B 4 AG7 PB59A 4 PB74A 4 AG8 PB59B 4 PB74B 4 AK6 PB60A 4 PB75A 4 4 AJ6 PB60B 4 PB75B AF10 PB60C 4 PB75C 4 AE11 PB60D 4 PB75D 4 AM4 PB61A 4 PB77A 4 AM3 PB61B 4 PB77B 4 AH5 PB63A 4 PB78A 4 AH4 PB63B 4 PB78B 4 AK5 PB64A 4 PB79A 4 AJ5 PB64B 4 PB79B 4 AF8 PB64C 4 PB79C 4 AF7 PB64D 4 PB79D 4 AL4 PB65A 4 PB81A 4 4 AL3 PB65B 4 PB81B AG5 PB65C 4 PB81C 4 AF6 PB65D 4 PB81D 4 AK3 PB67A 4 PB82A 4 AJ3 PB67B 4 PB82B 4 AE10 PB67C 4 AD10 PB67D 4 VREF1_4 PB82C 4 PB82D 4 VREF1_4 AL2 PB68A 4 LRC_DLLT_IN_C/LRC_DLLT_FB_D PB83A 4 LRC_DLLT_IN_C/LRC_DLLT_FB_D AK2 PB68B 4 LRC_DLLC_IN_C/LRC_DLLC_FB_D PB83B 4 LRC_DLLC_IN_C/LRC_DLLC_FB_D AE9 PB68C 4 PB83C 4 AE8 PB68D 4 PB83D 4 4-41 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M25, LFSC/M40 Logic Signal Connections: 1020 fcBGA1, 2 (Cont.) LFSC/M25 LFSC/M40 Ball Number Ball Function VCCIO Bank Dual Function Ball Function VCCIO Bank Dual Function AJ1 PB69A 4 LRC_PLLT_IN_A/LRC_PLLT_FB_B PB85A 4 LRC_PLLT_IN_A/LRC_PLLT_FB_B LRC_PLLC_IN_A/LRC_PLLC_FB_B AK1 PB69B 4 LRC_PLLC_IN_A/LRC_PLLC_FB_B PB85B 4 AJ2 PB69C 4 LRC_DLLT_IN_D/LRC_DLLT_FB_C PB85C 4 LRC_DLLT_IN_D/LRC_DLLT_FB_C AH3 PB69D 4 LRC_DLLC_IN_D/LRC_DLLC_FB_C PB85D 4 LRC_DLLC_IN_D/LRC_DLLC_FB_C AH1 PROBE_VCC - PROBE_VCC - AH2 PROBE_GND - PROBE_GND - AD9 PR57D 3 LRC_PLLC_IN_B/LRC_PLLC_FB_A PR71D 3 AC10 PR57C 3 LRC_PLLT_IN_B/LRC_PLLT_FB_A PR71C 3 LRC_PLLT_IN_B/LRC_PLLT_FB_A AG2 PR57B 3 LRC_DLLC_IN_F/LRC_DLLC_FB_E PR71B 3 LRC_DLLC_IN_F/LRC_DLLC_FB_E LRC_DLLT_IN_F/LRC_DLLT_FB_E LRC_DLLT_IN_F/LRC_DLLT_FB_E AG1 PR57A 3 PR71A 3 AD8 PR56D 3 PR70D 3 AC9 PR56C 3 PR70C 3 AF2 PR56B 3 PR70B 3 LRC_PLLC_IN_B/LRC_PLLC_FB_A AF1 PR56A 3 PR70A 3 AE6 PR55D 3 LRC_DLLC_IN_E/LRC_DLLC_FB_F PR69D 3 LRC_DLLC_IN_E/LRC_DLLC_FB_F AE7 PR55C 3 LRC_DLLT_IN_E/LRC_DLLT_FB_F PR69C 3 LRC_DLLT_IN_E/LRC_DLLT_FB_F AE1 PR55B 3 PR69B 3 AE2 PR55A 3 PR69A 3 AB8 PR53D 3 PR67D 3 AC8 PR53C 3 PR67C 3 AE4 PR53B 3 PR67B 3 AE3 PR53A 3 PR67A 3 AA10 PR52D 3 PR66D 3 AA9 PR52C 3 PR66C 3 AD1 PR52B 3 PR66B 3 AC1 PR52A 3 PR66A 3 AC7 PR51D 3 AB7 PR51C AD5 AC5 VREF2_3 PR65D 3 3 PR65C 3 PR51B 3 PR65B 3 PR51A 3 PR65A 3 AE5 PR49D 3 PR62D 3 AF5 PR49C 3 PR62C 3 AD3 PR49B 3 PR62B 3 AD4 PR49A 3 PR62A 3 Y10 PR48D 3 PR61D 3 Y9 PR48C 3 PR61C 3 AC2 PR48B 3 PR61B 3 AD2 PR48A 3 PR61A 3 AC6 PR47D 3 PR60D 3 AB6 PR47C 3 PR60C 3 AA1 PR47B 3 PR60B 3 AB1 PR47A 3 PR60A 3 AA5 PR44D 3 PR53D 3 AB5 PR44C 3 PR53C 3 Y1 PR44B 3 PR53B 3 W1 PR44A 3 PR53A 3 W8 PR43D 3 PR52D 3 Y7 PR43C 3 PR52C 3 Y5 PR43B 3 PR52B 3 W5 PR43A 3 PR52A 3 4-42 VREF2_3 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M25, LFSC/M40 Logic Signal Connections: 1020 fcBGA1, 2 (Cont.) LFSC/M25 LFSC/M40 Ball Number Ball Function VCCIO Bank Dual Function Ball Function VCCIO Bank Dual Function Y6 PR42D 3 DIFFR_3 PR51D 3 DIFFR_3 W6 PR42C 3 PR51C 3 Y2 PR42B 3 PR51B 3 W2 PR42A 3 PR51A 3 W7 PR40D 3 PR49D 3 V8 PR40C 3 PR49C 3 W4 PR40B 3 PR49B 3 W3 PR40A 3 PR49A 3 V5 PR39D 3 PR48D 3 U6 PR39C 3 PR48C 3 V3 PR39B 3 PR48B 3 V4 PR39A 3 PR48A 3 V10 PR38D 3 PR47D 3 V9 PR38C 3 PR47C 3 V2 PR38B 3 PR47B 3 V1 PR38A 3 PR47A 3 U8 PR36D 3 PR45D 3 U7 PR36C 3 PR45C 3 U2 PR36B 3 PR45B 3 U1 PR36A 3 PR45A 3 U5 PR35D 3 PR44D 3 T6 PR35C 3 PR44C 3 T1 PR35B 3 PR44B 3 T2 PR35A 3 PR44A 3 U9 PR34D 3 PR43D 3 U10 PR34C 3 R1 PR34B 3 R2 PR34A 3 T7 PR31D 3 PCLKC3_2 T8 PR31C 3 PCLKT3_2 PR40C R4 PR31B 3 PR40B 3 R3 PR31A 3 PR40A 3 T5 PR30D 3 PCLKC3_3 PR39D 3 PCLKC3_3 R5 PR30C 3 PCLKT3_3 PR39C 3 PCLKT3_3 P2 PR30B 3 PR39B 3 P1 PR30A 3 PR39A 3 T9 PR29D 3 PCLKC3_1 PR38D 3 T10 PR29C 3 PCLKT3_1 PR38C 3 PCLKT3_1 P4 PR29B 3 PCLKC3_0 PR38B 3 PCLKC3_0 P3 PR29A 3 PCLKT3_0 PR38A 3 PCLKT3_0 P5 PR27D 2 PCLKC2_2 PR36D 2 PCLKC2_2 P6 PR27C 2 PCLKT2_2 PR36C 2 PCLKT2_2 N1 PR27B 2 PCLKC2_0 PR36B 2 PCLKC2_0 N2 PR27A 2 PCLKT2_0 PR36A 2 PCLKT2_0 R9 PR26D 2 PCLKC2_3 PR35D 2 PCLKC2_3 R8 PR26C 2 PCLKT2_3 PR35C 2 PCLKT2_3 M1 PR26B 2 PCLKC2_1 PR35B 2 PCLKC2_1 PCLKT2_1 VREF1_3 PR43C 3 PR43B 3 VREF1_3 PR43A 3 PR40D 3 PCLKC3_2 3 PCLKT3_2 PCLKC3_1 L1 PR26A 2 PCLKT2_1 PR35A 2 N9 PR25D 2 DIFFR_2 PR23D 2 DIFFR_2 M9 PR25C 2 VREF1_2 PR23C 2 VREF1_2 4-43 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M25, LFSC/M40 Logic Signal Connections: 1020 fcBGA1, 2 (Cont.) LFSC/M25 Ball Number Ball Function VCCIO Bank H1 PR25B 2 H2 PR25A N8 PR22D M8 LFSC/M40 Dual Function Ball Function VCCIO Bank PR23B 2 2 PR23A 2 2 PR25D 2 PR22C 2 PR25C 2 H4 PR22B 2 PR25B 2 J4 PR22A 2 PR25A 2 G1 PR21B 2 PR22B 2 G2 PR21A 2 PR22A 2 L7 PR20D 2 PR21D 2 L8 PR20C 2 PR21C 2 F2 PR20B 2 PR21B 2 F1 PR20A 2 PR21A 2 K5 PR18D 2 J5 PR18C 2 E2 PR18B 2 E1 PR18A 2 N10 PR17D 2 M10 PR17C D2 PR17B URC_DLLT_IN_C/URC_DLLT_FB_D VREF2_2 Dual Function PR18D 2 PR18C 2 URC_DLLC_IN_D/URC_DLLC_FB_C PR18B 2 URC_DLLT_IN_D/URC_DLLT_FB_C PR18A 2 URC_DLLT_IN_D/URC_DLLT_FB_C URC_PLLC_IN_B/URC_PLLC_FB_A PR17D 2 URC_PLLC_IN_B/URC_PLLC_FB_A 2 URC_PLLT_IN_B/URC_PLLT_FB_A PR17C 2 URC_PLLT_IN_B/URC_PLLT_FB_A 2 URC_DLLC_IN_C/URC_DLLC_FB_D PR17B 2 URC_DLLC_IN_C/URC_DLLC_FB_D URC_DLLT_IN_C/URC_DLLT_FB_D D1 PR17A 2 K6 PR16D 2 K7 PR16C 2 J8 PR16B 2 URC_PLLC_IN_A/URC_PLLC_FB_B K8 PR16A 2 URC_PLLT_IN_A/URC_PLLT_FB_B J10 VCCJ TDO URC_DLLC_IN_D/URC_DLLC_FB_C PR17A 2 PR16D 2 PR16C 2 PR16B 2 URC_PLLC_IN_A/URC_PLLC_FB_B PR16A 2 URC_PLLT_IN_A/URC_PLLT_FB_B VCCJ - J9 TDO - TDO - K9 TMS - TMS - J12 TCK - TCK - J13 TDI - TDI - K12 PROGRAMN 1 PROGRAMN 1 K13 MPIIRQN 1 MPIIRQN 1 K10 CCLK 1 CCLK 1 CFGIRQN/MPI_IRQ_N VREF2_2 F5 RESP_URC - RESP_URC - B5 VCC12 - VCC12 - D5 A_REFCLKN_R - A_REFCLKN_R - C5 A_REFCLKP_R - A_REFCLKP_R - TDO CFGIRQN/MPI_IRQ_N B2 A_VDDIB0_R - A_VDDIB0_R - C1 A_HDINP0_R - PCS 3E0 CH 0 IN P A_HDINP0_R - PCS 3E0 CH 0 IN P C2 A_HDINN0_R - PCS 3E0 CH 0 IN N A_HDINN0_R - PCS 3E0 CH 0 IN N PCS 3E0 CH 0 OUT P A_HDOUTP0_R - PCS 3E0 CH 0 OUT P A_VDDOB0_R - A3 A_HDOUTP0_R - D3 A_VDDOB0_R - B3 A_HDOUTN0_R - D4 A_VDDOB1_R - PCS 3E0 CH 0 OUT N B4 A_HDOUTN1_R - PCS 3E0 CH 1 OUT N A_HDOUTN1_R - PCS 3E0 CH 1 OUT N A4 A_HDOUTP1_R - PCS 3E0 CH 1 OUT P A_HDOUTP1_R - PCS 3E0 CH 1 OUT P H5 A_HDINN1_R - PCS 3E0 CH 1 IN N A_HDINN1_R - PCS 3E0 CH 1 IN N G5 A_HDINP1_R - PCS 3E0 CH 1 IN P A_HDINP1_R - PCS 3E0 CH 1 IN P F4 A_VDDIB1_R - A_VDDIB1_R - H6 A_VDDIB2_R - A_VDDIB2_R - F6 A_HDINP2_R - A_HDINP2_R - PCS 3E0 CH 2 IN P 4-44 A_HDOUTN0_R - A_VDDOB1_R - PCS 3E0 CH 0 OUT N PCS 3E0 CH 2 IN P Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M25, LFSC/M40 Logic Signal Connections: 1020 fcBGA1, 2 (Cont.) LFSC/M25 LFSC/M40 Ball Number Ball Function VCCIO Bank Dual Function Ball Function VCCIO Bank Dual Function G6 A_HDINN2_R - PCS 3E0 CH 2 IN N A_HDINN2_R - PCS 3E0 CH 2 IN N PCS 3E0 CH 2 OUT P A_HDOUTP2_R - PCS 3E0 CH 2 OUT P A_VDDOB2_R - A6 A_HDOUTP2_R - D6 A_VDDOB2_R - B6 A_HDOUTN2_R - D7 A_VDDOB3_R - B7 A_HDOUTN3_R - PCS 3E0 CH 3 OUT N A_HDOUTN3_R - PCS 3E0 CH 3 OUT N A7 A_HDOUTP3_R - PCS 3E0 CH 3 OUT P A_HDOUTP3_R - PCS 3E0 CH 3 OUT P G7 A_HDINN3_R - PCS 3E0 CH 3 IN N A_HDINN3_R - PCS 3E0 CH 3 IN N F7 A_HDINP3_R - PCS 3E0 CH 3 IN P A_HDINP3_R - PCS 3E0 CH 3 IN P H7 A_VDDIB3_R - A_VDDIB3_R - H8 B_VDDIB0_R - B_VDDIB0_R - F8 B_HDINP0_R - PCS 3E1 CH 0 IN P B_HDINP0_R - PCS 3E1 CH 0 IN P G8 B_HDINN0_R - PCS 3E1 CH 0 IN N B_HDINN0_R - PCS 3E1 CH 0 IN N PCS 3E1 CH 0 OUT P B_HDOUTP0_R - PCS 3E1 CH 0 OUT P B_VDDOB0_R - A8 B_HDOUTP0_R - D8 B_VDDOB0_R - PCS 3E0 CH 2 OUT N - A_VDDOB3_R - B8 B_HDOUTN0_R - B_VDDOB1_R - B9 B_HDOUTN1_R - PCS 3E1 CH 1 OUT N B_HDOUTN1_R - PCS 3E1 CH 1 OUT N A9 B_HDOUTP1_R - PCS 3E1 CH 1 OUT P B_HDOUTP1_R - PCS 3E1 CH 1 OUT P H10 B_HDINN1_R - PCS 3E1 CH 1 IN N B_HDINN1_R - PCS 3E1 CH 1 IN N G10 B_HDINP1_R - PCS 3E1 CH 1 IN P B_HDINP1_R - PCS 3E1 CH 1 IN P H9 B_VDDIB1_R - B_VDDIB1_R - H11 B_VDDIB2_R - B_VDDIB2_R - F11 B_HDINP2_R - PCS 3E1 CH 2 IN P B_HDINP2_R - PCS 3E1 CH 2 IN P G11 B_HDINN2_R - PCS 3E1 CH 2 IN N B_HDINN2_R - PCS 3E1 CH 2 IN N PCS 3E1 CH 2 OUT P B_HDOUTP2_R - PCS 3E1 CH 2 OUT P B_VDDOB2_R - A11 B_HDOUTP2_R - B_VDDOB2_R PCS 3E1 CH 2 OUT N B_HDOUTN0_R - B_VDDOB1_R - PCS 3E0 CH 2 OUT N D9 D11 PCS 3E1 CH 0 OUT N A_HDOUTN2_R B_HDOUTN2_R - B_VDDOB3_R - PCS 3E1 CH 0 OUT N B11 B_HDOUTN2_R - D12 B_VDDOB3_R - B12 B_HDOUTN3_R - PCS 3E1 CH 3 OUT N B_HDOUTN3_R - PCS 3E1 CH 3 OUT N A12 B_HDOUTP3_R - PCS 3E1 CH 3 OUT P B_HDOUTP3_R - PCS 3E1 CH 3 OUT P G12 B_HDINN3_R - PCS 3E1 CH 3 IN N B_HDINN3_R - PCS 3E1 CH 3 IN N F12 B_HDINP3_R - PCS 3E1 CH 3 IN P B_HDINP3_R - PCS 3E1 CH 3 IN P H12 B_VDDIB3_R - B_VDDIB3_R - B10 VCC12 - VCC12 D10 B_REFCLKN_R - B_REFCLKN_R - C10 B_REFCLKP_R - B_REFCLKP_R - PCS 3E1 CH 2 OUT N J15 PT49D 1 HDC/SI PT61D 1 HDC/SI K15 PT49C 1 LDCN/SCS PT61C 1 LDCN/SCS E13 PT49B 1 D8/MPI_DATA8 PT59B 1 D8/MPI_DATA8 F13 PT49A 1 CS1/MPI_CS1 PT59A 1 CS1/MPI_CS1 H13 PT47D 1 D9/MPI_DATA9 PT58D 1 D9/MPI_DATA9 G13 PT47C 1 D10/MPI_DATA10 PT58C 1 D10/MPI_DATA10 E14 PT47B 1 CS0N/MPI_CS0N PT57B 1 CS0N/MPI_CS0N F14 PT47A 1 RDN/MPI_STRB_N PT57A 1 RDN/MPI_STRB_N H14 PT46D 1 WRN/MPI_WR_N PT55D 1 WRN/MPI_WR_N G14 PT46C 1 D7/MPI_DATA7 PT55C 1 D7/MPI_DATA7 D13 PT46B 1 D6/MPI_DATA6 PT55B 1 D6/MPI_DATA6 D14 PT46A 1 D5/MPI_DATA5 PT55A 1 D5/MPI_DATA5 E15 PT45D 1 D4/MPI_DATA4 PT54D 1 D4/MPI_DATA4 4-45 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M25, LFSC/M40 Logic Signal Connections: 1020 fcBGA1, 2 (Cont.) LFSC/M25 LFSC/M40 Ball Number Ball Function VCCIO Bank Dual Function Ball Function VCCIO Bank Dual Function E16 PT45C 1 D3/MPI_DATA3 PT54C 1 D3/MPI_DATA3 C13 PT45B 1 D2/MPI_DATA2 PT53B 1 D2/MPI_DATA2 C14 PT45A 1 D1/MPI_DATA1 PT53A 1 D1/MPI_DATA1 B14 PT43B 1 D0/MPI_DATA0 PT51B 1 D0/MPI_DATA0 B13 PT43A 1 QOUT/CEON PT51A 1 QOUT/CEON L13 PT42D 1 VREF2_1 PT50D 1 VREF2_1 C15 PT42B 1 DOUT PT50B 1 DOUT D15 PT42A 1 MCA_DONE_IN PT50A 1 MCA_DONE_IN MCA_CLK_P1_OUT J16 PT41B 1 MCA_CLK_P1_OUT PT49B 1 K16 PT41A 1 MCA_CLK_P1_IN PT49A 1 MCA_CLK_P1_IN H15 PT39D 1 D21/PCLKC1_1/MPI_DATA21 PT47D 1 D21/PCLKC1_1/MPI_DATA21 H16 PT39C 1 D22/PCLKT1_1/MPI_DATA22 PT47C 1 D22/PCLKT1_1/MPI_DATA22 A14 PT39B 1 MCA_CLK_P2_OUT PT47B 1 MCA_CLK_P2_OUT A13 PT39A 1 MCA_CLK_P2_IN PT47A 1 MCA_CLK_P2_IN G16 PT38D 1 MCA_DONE_OUT PT46D 1 MCA_DONE_OUT F16 PT38C 1 BUSYN/RCLK/SCK PT46C 1 BUSYN/RCLK/SCK B16 PT38B 1 DP0/MPI_PAR0 PT46B 1 DP0/MPI_PAR0 B15 PT38A 1 MPI_TA PT46A 1 MPI_TA L16 PT37C 1 DP2/MPI_PAR2 PT45C 1 DP2/MPI_PAR2 A16 PT37B 1 PCLKC1_0 PT45B 1 PCLKC1_0 A15 PT37A 1 PCLKT1_0/MPI_CLK PT45A 1 PCLKT1_0/MPI_CLK D24/PCLKT1_4/MPI_DATA24 L17 PT35C 1 D24/PCLKT1_4/MPI_DATA24 PT43C 1 A17 PT35B 1 MPI_RETRY PT43B 1 MPI_RETRY A18 PT35A 1 A0/MPI_ADDR14 PT43A 1 A0/MPI_ADDR14 F17 PT33D 1 A1/MPI_ADDR15 PT42D 1 A1/MPI_ADDR15 G17 PT33C 1 A2/MPI_ADDR16 PT42C 1 A2/MPI_ADDR16 B17 PT33B 1 A3/MPI_ADDR17 PT42B 1 A3/MPI_ADDR17 B18 PT33A 1 A4/MPI_ADDR18 PT42A 1 A4/MPI_ADDR18 H17 PT32D 1 D25/PCLKC1_5/MPI_DATA25 PT41D 1 D25/PCLKC1_5/MPI_DATA25 H18 PT32C 1 D26/PCLKT1_5/MPI_DATA26 PT41C 1 D26/PCLKT1_5/MPI_DATA26 A19 PT32B 1 A5/MPI_ADDR19 PT41B 1 A5/MPI_ADDR19 A20 PT32A 1 A6/MPI_ADDR20 PT41A 1 A6/MPI_ADDR20 L20 PT31C 1 VREF1_1 PT39C 1 VREF1_1 J17 PT31B 1 A7/MPI_ADDR21 PT39B 1 A7/MPI_ADDR21 A8/MPI_ADDR22 K17 PT31A 1 A8/MPI_ADDR22 PT39A 1 C18 PT29B 1 A9/MPI_ADDR23 PT38B 1 A9/MPI_ADDR23 D18 PT29A 1 A10/MPI_ADDR24 PT38A 1 A10/MPI_ADDR24 B19 PT28B 1 A11/MPI_ADDR25 PT37B 1 A11/MPI_ADDR25 B20 PT28A 1 A12/MPI_ADDR26 PT37A 1 A12/MPI_ADDR26 E17 PT27D 1 D11/MPI_DATA11 PT35D 1 D11/MPI_DATA11 E18 PT27C 1 D12/MPI_DATA12 PT35C 1 D12/MPI_DATA12 C20 PT27B 1 A13/MPI_ADDR27 PT35B 1 A13/MPI_ADDR27 C19 PT27A 1 A14/MPI_ADDR28 PT35A 1 A14/MPI_ADDR28 H19 PT25D 1 A16/MPI_ADDR30 PT33D 1 A16/MPI_ADDR30 G19 PT25C 1 D13/MPI_DATA13 PT33C 1 D13/MPI_DATA13 D20 PT25B 1 A15/MPI_ADDR29 PT33B 1 A15/MPI_ADDR29 D19 PT25A 1 A17/MPI_ADDR31 PT33A 1 A17/MPI_ADDR31 H20 PT24D 1 A19/MPI_TSIZ1 PT30D 1 A19/MPI_TSIZ1 G20 PT24C 1 A20/MPI_BDIP PT30C 1 A20/MPI_BDIP E19 PT24B 1 A18/MPI_TSIZ0 PT30B 1 A18/MPI_TSIZ0 4-46 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M25, LFSC/M40 Logic Signal Connections: 1020 fcBGA1, 2 (Cont.) LFSC/M25 LFSC/M40 Ball Number Ball Function VCCIO Bank Dual Function Ball Function VCCIO Bank F19 PT24A 1 MPI_TEA PT30A 1 MPI_TEA J18 PT23D 1 D14/MPI_DATA14 PT28D 1 D14/MPI_DATA14 K18 PT23C 1 DP1/MPI_PAR1 PT28C 1 DP1/MPI_PAR1 E20 PT23B 1 A21/MPI_BURST PT27B 1 A21/MPI_BURST D15/MPI_DATA15 D15/MPI_DATA15 Dual Function F20 PT23A 1 PT27A 1 C23 B_REFCLKP_L - B_REFCLKP_L - D23 B_REFCLKN_L - B_REFCLKN_L - B23 VCC12 - VCC12 - H21 B_VDDIB3_L - B_VDDIB3_L - F21 B_HDINP3_L - PCS 361 CH 3 IN P B_HDINP3_L - PCS 361 CH 3 IN P G21 B_HDINN3_L - PCS 361 CH 3 IN N B_HDINN3_L - PCS 361 CH 3 IN N A21 B_HDOUTP3_L - PCS 361 CH 3 OUT P B_HDOUTP3_L - PCS 361 CH 3 OUT P B21 B_HDOUTN3_L - PCS 361 CH 3 OUT N B_HDOUTN3_L - PCS 361 CH 3 OUT N D21 B_VDDOB3_L - B_VDDOB3_L - B22 B_HDOUTN2_L - PCS 361 CH 2 OUT N B_HDOUTN2_L - D22 B_VDDOB2_L - B_VDDOB2_L - PCS 361 CH 2 OUT N A22 B_HDOUTP2_L - PCS 361 CH 2 OUT P B_HDOUTP2_L - PCS 361 CH 2 OUT P G22 B_HDINN2_L - PCS 361 CH 2 IN N B_HDINN2_L - PCS 361 CH 2 IN N F22 B_HDINP2_L - PCS 361 CH 2 IN P B_HDINP2_L - PCS 361 CH 2 IN P H22 B_VDDIB2_L - B_VDDIB2_L - H24 B_VDDIB1_L - B_VDDIB1_L - G23 B_HDINP1_L - PCS 361 CH 1 IN P B_HDINP1_L - PCS 361 CH 1 IN P H23 B_HDINN1_L - PCS 361 CH 1 IN N B_HDINN1_L - PCS 361 CH 1 IN N A24 B_HDOUTP1_L - PCS 361 CH 1 OUT P B_HDOUTP1_L - PCS 361 CH 1 OUT P B24 B_HDOUTN1_L - PCS 361 CH 1 OUT N B_HDOUTN1_L - PCS 361 CH 1 OUT N D24 B_VDDOB1_L - B_VDDOB1_L - B25 B_HDOUTN0_L - PCS 361 CH 0 OUT N B_HDOUTN0_L - D25 B_VDDOB0_L - B_VDDOB0_L - PCS 361 CH 0 OUT N A25 B_HDOUTP0_L - PCS 361 CH 0 OUT P B_HDOUTP0_L - PCS 361 CH 0 OUT P G25 B_HDINN0_L - PCS 361 CH 0 IN N B_HDINN0_L - PCS 361 CH 0 IN N F25 B_HDINP0_L - PCS 361 CH 0 IN P B_HDINP0_L - PCS 361 CH 0 IN P H25 B_VDDIB0_L - B_VDDIB0_L - H26 A_VDDIB3_L - A_VDDIB3_L - F26 A_HDINP3_L - PCS 360 CH 3 IN P A_HDINP3_L - PCS 360 CH 3 IN P G26 A_HDINN3_L - PCS 360 CH 3 IN N A_HDINN3_L - PCS 360 CH 3 IN N A26 A_HDOUTP3_L - PCS 360 CH 3 OUT P A_HDOUTP3_L - PCS 360 CH 3 OUT P B26 A_HDOUTN3_L - PCS 360 CH 3 OUT N A_HDOUTN3_L - PCS 360 CH 3 OUT N D26 A_VDDOB3_L - A_VDDOB3_L - B27 A_HDOUTN2_L - PCS 360 CH 2 OUT N A_HDOUTN2_L - D27 A_VDDOB2_L - A_VDDOB2_L - PCS 360 CH 2 OUT N A27 A_HDOUTP2_L - PCS 360 CH 2 OUT P A_HDOUTP2_L - PCS 360 CH 2 OUT P G27 A_HDINN2_L - PCS 360 CH 2 IN N A_HDINN2_L - PCS 360 CH 2 IN N F27 A_HDINP2_L - PCS 360 CH 2 IN P A_HDINP2_L - PCS 360 CH 2 IN P H27 A_VDDIB2_L - A_VDDIB2_L - F29 A_VDDIB1_L - A_VDDIB1_L - G28 A_HDINP1_L - PCS 360 CH 1 IN P A_HDINP1_L - PCS 360 CH 1 IN P H28 A_HDINN1_L - PCS 360 CH 1 IN N A_HDINN1_L - PCS 360 CH 1 IN N A29 A_HDOUTP1_L - PCS 360 CH 1 OUT P A_HDOUTP1_L - PCS 360 CH 1 OUT P B29 A_HDOUTN1_L - PCS 360 CH 1 OUT N A_HDOUTN1_L - PCS 360 CH 1 OUT N D29 A_VDDOB1_L - A_VDDOB1_L - 4-47 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M25, LFSC/M40 Logic Signal Connections: 1020 fcBGA1, 2 (Cont.) LFSC/M25 LFSC/M40 Ball Number Ball Function VCCIO Bank Dual Function Ball Function VCCIO Bank Dual Function B30 A_HDOUTN0_L - PCS 360 CH 0 OUT N A_HDOUTN0_L - PCS 360 CH 0 OUT N D30 A_VDDOB0_L - A_VDDOB0_L - A30 A_HDOUTP0_L - PCS 360 CH 0 OUT P A_HDOUTP0_L - PCS 360 CH 0 OUT P C31 A_HDINN0_L - PCS 360 CH 0 IN N A_HDINN0_L - PCS 360 CH 0 IN N C32 A_HDINP0_L - PCS 360 CH 0 IN P A_HDINP0_L - PCS 360 CH 0 IN P B31 A_VDDIB0_L - A_VDDIB0_L - AL25 NC - PB26A 5 AL24 NC - PB26B 5 AG27 NC - PB26C 5 AH27 NC - PB26D 5 AM25 NC - PB27A 5 AM24 NC - PB27B 5 AL9 NC - PB62A 4 AL8 NC - PB62B 4 AK9 NC - PB63A 4 AJ9 NC - PB63B 4 AG10 NC - PB63C 4 AG11 NC - PB63D 4 J30 NC - PL26A 7 7 H30 NC - PL26B M28 NC - PL26C 7 N28 NC - PL26D 7 J32 NC - PL27A 7 J31 NC - PL27B 7 N26 NC - PL27C 7 N27 NC - PL27D 7 K31 NC - PL29A 7 K32 NC - PL29B 7 P25 NC - PL29C 7 P26 NC - PL29D 7 L27 NC - PL22C 7 L28 NC - PL22D 7 M29 NC - PL30A 7 L29 NC - PL30B 7 M30 NC - PL31A 7 L30 NC - PL31B 7 7 L31 NC - PL34A M31 NC - PL34B 7 AA29 NC - PL56A 6 AA30 NC - PL56B 6 AB31 NC - PL57A 6 AA31 NC - PL57B 6 AG30 NC - PL57C 6 AG29 NC - PL57D 6 AB29 NC - PL58A 6 AB30 NC - PL58B 6 Y25 NC - PL58C 6 AA25 NC - PL58D 6 AA8 NC - PR58D 3 Y8 NC - PR58C 3 4-48 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M25, LFSC/M40 Logic Signal Connections: 1020 fcBGA1, 2 (Cont.) LFSC/M25 Ball Number Ball Function VCCIO Bank AB3 NC - LFSC/M40 Dual Function Ball Function VCCIO Bank PR58B 3 AB4 NC - PR58A 3 AG4 NC - PR57D 3 AG3 NC - PR57C 3 AA2 NC - PR57B 3 AB2 NC - PR57A 3 AA3 NC - PR56B 3 AA4 NC - PR56A 3 L5 NC - PR22D 2 L6 NC - PR22C 2 M2 NC - PR34B 2 L2 NC - PR34A 2 2 L3 NC - PR31B M3 NC - PR31A 2 L4 NC - PR30B 2 M4 NC - PR30A 2 P7 NC - PR29D 2 P8 NC - PR29C 2 K1 NC - PR29B 2 K2 NC - PR29A 2 N6 NC - PR27D 2 N7 NC - PR27C 2 J2 NC - PR27B 2 J1 NC - PR27A 2 N5 NC - PR26D 2 M5 NC - PR26C 2 H3 NC - PR26B 2 J3 NC - PR26A 2 A5 VDDAX25_R - VDDAX25_R - A28 VDDAX25_L - VDDAX25_L - AJ25 NC - PB21A 5 AK25 NC - PB21B 5 AF20 NC - PB27C 5 AG6 NC - PB62C 4 AM7 NC - PB66A 4 AL7 NC - PB66B 4 AD13 NC - PB66C 4 AC13 NC - PB66D 4 AC20 NC - PB22C 5 AD20 NC - PB22D 5 AM9 NC - PB61A 4 AM8 NC - PB61B 4 AF13 NC - PB61C 4 AE13 NC - PB61D 4 E30 VCC12 - VCC12 - E29 VCC12 - VCC12 - E27 VCC12 - VCC12 - E26 VCC12 - VCC12 - E25 VCC12 - VCC12 - E24 VCC12 - VCC12 - 4-49 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M25, LFSC/M40 Logic Signal Connections: 1020 fcBGA1, 2 (Cont.) LFSC/M25 Ball Number Ball Function VCCIO Bank E22 VCC12 E21 E3 LFSC/M40 Dual Function Ball Function VCCIO Bank - VCC12 - VCC12 - VCC12 - VCC12 - VCC12 - E4 VCC12 - VCC12 - E6 VCC12 - VCC12 - E7 VCC12 - VCC12 - E8 VCC12 - VCC12 - E9 VCC12 - VCC12 - E11 VCC12 - VCC12 - E12 VCC12 - VCC12 - A23 GND - GND - A31 GND - GND - AA13 GND - GND - AA15 GND - GND - AA18 GND - GND - AA20 GND - GND - AA26 GND - GND - AA6 GND - GND - AB10 GND - GND - AB24 GND - GND - AC14 GND - GND - AC22 GND - GND - AC29 GND - GND - AC3 GND - GND - AD11 GND - GND - AD19 GND - GND - AD27 GND - GND - AD7 GND - GND - AF12 GND - GND - AF18 GND - GND - AF24 GND - GND - AF30 GND - GND - AF4 GND - GND - AG15 GND - GND - AG21 GND - GND - AG9 GND - GND - AJ10 GND - GND - AJ16 GND - GND - AJ20 GND - GND - AJ26 GND - GND - AJ29 GND - GND - AJ4 GND - GND - AK13 GND - GND - AK17 GND - GND - AK23 GND - GND - AK7 GND - GND - AL1 GND - GND - AL32 GND - GND - AM2 GND - GND - AM31 GND - GND - 4-50 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M25, LFSC/M40 Logic Signal Connections: 1020 fcBGA1, 2 (Cont.) LFSC/M25 Ball Number Ball Function VCCIO Bank B1 GND LFSC/M40 Dual Function Ball Function VCCIO Bank - GND - B32 GND - GND - C11 GND - GND - C12 GND - GND - C16 GND - GND - C21 GND - GND - C22 GND - GND - C24 GND - GND - C25 GND - GND - C26 GND - GND - C27 GND - GND - C29 GND - GND - C3 GND - GND - C30 GND - GND - C4 GND - GND - C6 GND - GND - C7 GND - GND - C8 GND - GND - C9 GND - GND - D17 GND - GND - F18 GND - GND - F3 GND - GND - F30 GND - GND - F9 GND - GND - G15 GND - GND - G24 GND - GND - G29 GND - GND - G3 GND - GND - J14 GND - GND - J22 GND - GND - J26 GND - GND - J6 GND - GND - K11 GND - GND - K19 GND - GND - K30 GND - GND - K4 GND - GND - L23 GND - GND - L9 GND - GND - M13 GND - GND - M15 GND - GND - M18 GND - GND - M20 GND - GND - M27 GND - GND - M7 GND - GND - N12 GND - GND - N14 GND - GND - N19 GND - GND - N21 GND - GND - N29 GND - GND - N3 GND - GND - 4-51 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M25, LFSC/M40 Logic Signal Connections: 1020 fcBGA1, 2 (Cont.) LFSC/M25 Ball Number Ball Function VCCIO Bank P10 GND P13 P15 LFSC/M40 Dual Function Ball Function VCCIO Bank - GND - GND - GND - GND - GND - P18 GND - GND - P20 GND - GND - P24 GND - GND - R12 GND - GND - R14 GND - GND - R16 GND - GND - R17 GND - GND - R19 GND - GND - R21 GND - GND - R26 GND - GND - R6 GND - GND - T15 GND - GND - T18 GND - GND - T30 GND - GND - T4 GND - GND - U15 GND - GND - U18 GND - GND - U29 GND - GND - U3 GND - GND - V12 GND - GND - V14 GND - GND - V16 GND - GND - V17 GND - GND - V19 GND - GND - V21 GND - GND - V27 GND - GND - V7 GND - GND - W13 GND - GND - W15 GND - GND - W18 GND - GND - W20 GND - GND - W23 GND - GND - W9 GND - GND - Y12 GND - GND - Y14 GND - GND - Y19 GND - GND - Y21 GND - GND - Y30 GND - GND - Y4 GND - GND - N13 VCC - VCC - N15 VCC - VCC - N16 VCC - VCC - N17 VCC - VCC - N18 VCC - VCC - N20 VCC - VCC - P14 VCC - VCC - P16 VCC - VCC - 4-52 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M25, LFSC/M40 Logic Signal Connections: 1020 fcBGA1, 2 (Cont.) LFSC/M25 Ball Number Ball Function VCCIO Bank P17 VCC LFSC/M40 Dual Function Ball Function VCCIO Bank - VCC - P19 VCC - VCC - R13 VCC - VCC - R15 VCC - VCC - R18 VCC - VCC - R20 VCC - VCC - T13 VCC - VCC - T14 VCC - VCC - T16 VCC - VCC - T17 VCC - VCC - T19 VCC - VCC - T20 VCC - VCC - U13 VCC - VCC - U14 VCC - VCC - U16 VCC - VCC - U17 VCC - VCC - U19 VCC - VCC - U20 VCC - VCC - V13 VCC - VCC - V15 VCC - VCC - V18 VCC - VCC - V20 VCC - VCC - W14 VCC - VCC - W16 VCC - VCC - W17 VCC - VCC - W19 VCC - VCC - Y13 VCC - VCC - Y15 VCC - VCC - Y16 VCC - VCC - Y17 VCC - VCC - Y18 VCC - VCC - Y20 VCC - VCC - C17 VCCIO1 - VCCIO1 - D16 VCCIO1 - VCCIO1 - F15 VCCIO1 - VCCIO1 - F24 VCCIO1 - VCCIO1 - G18 VCCIO1 - VCCIO1 - G9 VCCIO1 - VCCIO1 - J11 VCCIO1 - VCCIO1 - J19 VCCIO1 - VCCIO1 - K14 VCCIO1 - VCCIO1 - K22 VCCIO1 - VCCIO1 - G4 VCCIO2 - VCCIO2 - J7 VCCIO2 - VCCIO2 - K3 VCCIO2 - VCCIO2 - L10 VCCIO2 - VCCIO2 - M6 VCCIO2 - VCCIO2 - N4 VCCIO2 - VCCIO2 - P9 VCCIO2 - VCCIO2 - R7 VCCIO2 - VCCIO2 - 4-53 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M25, LFSC/M40 Logic Signal Connections: 1020 fcBGA1, 2 (Cont.) LFSC/M25 Ball Number Ball Function VCCIO Bank AA7 VCCIO3 - LFSC/M40 Dual Function Ball Function VCCIO Bank VCCIO3 - AB9 VCCIO3 - VCCIO3 - AC4 VCCIO3 - VCCIO3 - AD6 VCCIO3 - VCCIO3 - AF3 VCCIO3 - VCCIO3 - T3 VCCIO3 - VCCIO3 - U4 VCCIO3 - VCCIO3 - V6 VCCIO3 - VCCIO3 W10 VCCIO3 - VCCIO3 - Y3 VCCIO3 - VCCIO3 - AC11 VCCIO4 - VCCIO4 AD14 VCCIO4 - VCCIO4 - AF15 VCCIO4 - VCCIO4 - AF9 VCCIO4 - VCCIO4 AG12 VCCIO4 - VCCIO4 - AJ13 VCCIO4 - VCCIO4 - AJ7 VCCIO4 - VCCIO4 - AK10 VCCIO4 - VCCIO4 - AK16 VCCIO4 - VCCIO4 - AK4 VCCIO4 - VCCIO4 - AC19 VCCIO5 - VCCIO5 - AD22 VCCIO5 - VCCIO5 - AF21 VCCIO5 - VCCIO5 - AG18 VCCIO5 - VCCIO5 - AG24 VCCIO5 - VCCIO5 - AJ17 VCCIO5 - VCCIO5 - AJ23 VCCIO5 - VCCIO5 - AJ30 VCCIO5 - VCCIO5 - AK20 VCCIO5 - VCCIO5 - AK26 VCCIO5 - VCCIO5 - AA27 VCCIO6 - VCCIO6 - AB23 VCCIO6 - VCCIO6 - AC30 VCCIO6 - VCCIO6 - AD26 VCCIO6 - VCCIO6 - AF29 VCCIO6 - VCCIO6 - T29 VCCIO6 - VCCIO6 - U30 VCCIO6 - VCCIO6 - V26 VCCIO6 - VCCIO6 W24 VCCIO6 - VCCIO6 - Y29 VCCIO6 - VCCIO6 - G30 VCCIO7 - VCCIO7 - J27 VCCIO7 - VCCIO7 - K29 VCCIO7 - VCCIO7 - L24 VCCIO7 - VCCIO7 M26 VCCIO7 - VCCIO7 - N30 VCCIO7 - VCCIO7 - P23 VCCIO7 - VCCIO7 R27 VCCIO7 - VCCIO7 - AA11 VCCAUX - VCCAUX - AA12 VCCAUX - VCCAUX - 4-54 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M25, LFSC/M40 Logic Signal Connections: 1020 fcBGA1, 2 (Cont.) LFSC/M25 Ball Number Ball Function VCCIO Bank AA21 VCCAUX AA22 AB11 LFSC/M40 Dual Function Ball Function VCCIO Bank - VCCAUX - VCCAUX - VCCAUX - VCCAUX - VCCAUX - AB12 VCCAUX - VCCAUX - AB15 VCCAUX - VCCAUX - AB16 VCCAUX - VCCAUX - AB17 VCCAUX - VCCAUX - AB18 VCCAUX - VCCAUX - AB21 VCCAUX - VCCAUX - AB22 VCCAUX - VCCAUX - L11 VCCAUX - VCCAUX - L12 VCCAUX - VCCAUX - L14 VCCAUX - VCCAUX - L15 VCCAUX - VCCAUX - L18 VCCAUX - VCCAUX - L19 VCCAUX - VCCAUX - L21 VCCAUX - VCCAUX - L22 VCCAUX - VCCAUX - M11 VCCAUX - VCCAUX - M12 VCCAUX - VCCAUX - M21 VCCAUX - VCCAUX - M22 VCCAUX - VCCAUX - P11 VCCAUX - VCCAUX - P22 VCCAUX - VCCAUX - R11 VCCAUX - VCCAUX - R22 VCCAUX - VCCAUX - V11 VCCAUX - VCCAUX - V22 VCCAUX - VCCAUX - W11 VCCAUX - VCCAUX - W22 VCCAUX - VCCAUX - N11 VTT_2 2 VTT_2 2 R10 VTT_2 2 VTT_2 2 T11 VTT_3 3 VTT_3 3 U11 VTT_3 3 VTT_3 3 Y11 VTT_3 3 VTT_3 3 AB13 VTT_4 4 VTT_4 4 AB14 VTT_4 4 VTT_4 4 AC15 VTT_4 4 VTT_4 4 AB19 VTT_5 5 VTT_5 5 AB20 VTT_5 5 VTT_5 5 AC18 VTT_5 5 VTT_5 5 T22 VTT_6 6 VTT_6 6 U22 VTT_6 6 VTT_6 6 Y22 VTT_6 6 VTT_6 6 N22 VTT_7 7 VTT_7 7 R23 VTT_7 7 VTT_7 7 M17 VCC12 - VCC12 - M16 VCC12 - VCC12 - T12 VCC12 - VCC12 - T21 VCC12 - VCC12 - 4-55 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M25, LFSC/M40 Logic Signal Connections: 1020 fcBGA1, 2 (Cont.) LFSC/M25 Ball Number Ball Function VCCIO Bank U12 VCC12 LFSC/M40 Dual Function Ball Function VCCIO Bank - VCC12 - U21 VCC12 - VCC12 - AA16 VCC12 - VCC12 - AA17 VCC12 - VCC12 - M14 VCC12 - VCC12 - P12 VCC12 - VCC12 - W12 VCC12 - VCC12 - AA14 VCC12 - VCC12 - AA19 VCC12 - VCC12 - W21 VCC12 - VCC12 - P21 VCC12 - VCC12 - M19 VCC12 - VCC12 - A2 GND - GND - A10 GND - GND - E28 NC - NC - E5 NC - NC F10 NC - NC - E10 NC - NC - E23 NC - NC - F23 NC - NC - 1. Differential pair grouping within a PIC is A (True) and B (Complement) and C (True) and D (Complement). 2. The LatticeSC/M25 and LatticeSC/M40 in a 1020-pin package support a 16-bit MPI interface. 4-56 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M40, LFSC/M80 Logic Signal Connections: 1152 fcBGA1, 2 LFSC/M40 Ball Number Ball Function VCCIO Bank G27 A_REFCLKP_L H27 H25 LFSC/M80 Ball Function VCCIO Bank - A_REFCLKP_L - A_REFCLKN_L - A_REFCLKN_L - VCC12 - VCC12 - H26 RESP_ULC - RESP_ULC - B33 RESETN 1 RESETN 1 C34 TSALLN 1 TSALLN 1 D34 DONE 1 DONE 1 C33 INITN 1 INITN 1 J27 M0 1 M0 1 Dual Function Dual Function K27 M1 1 M1 1 M26 M2 1 M2 1 L26 M3 1 M3 1 F30 PL16A 7 ULC_PLLT_IN_A/ULC_PLLT_FB_B PL16A 7 ULC_PLLT_IN_A/ULC_PLLT_FB_B ULC_PLLC_IN_A/ULC_PLLC_FB_B PL16B 7 ULC_PLLC_IN_A/ULC_PLLC_FB_B PL16C 7 G30 PL16B 7 H28 PL16C 7 J28 PL16D 7 F31 PL17A 7 ULC_DLLT_IN_C/ULC_DLLT_FB_D PL16D 7 PL17A 7 ULC_DLLT_IN_C/ULC_DLLT_FB_D ULC_DLLC_IN_C/ULC_DLLC_FB_D G31 PL17B 7 ULC_DLLC_IN_C/ULC_DLLC_FB_D PL17B 7 N25 PL17C 7 ULC_PLLT_IN_B/ULC_PLLT_FB_A PL17C 7 ULC_PLLT_IN_B/ULC_PLLT_FB_A P25 PL17D 7 ULC_PLLC_IN_B/ULC_PLLC_FB_A PL17D 7 ULC_PLLC_IN_B/ULC_PLLC_FB_A D33 PL18A 7 ULC_DLLT_IN_D/ULC_DLLT_FB_C PL18A 7 ULC_DLLT_IN_D/ULC_DLLT_FB_C ULC_DLLC_IN_D/ULC_DLLC_FB_C ULC_DLLC_IN_D/ULC_DLLC_FB_C E33 PL18B 7 H29 PL18C 7 J29 PL18D 7 F32 PL21A 7 VREF2_7 PL18B 7 PL18C 7 PL18D 7 PL20A 7 G32 PL21B 7 PL20B 7 P26 PL21C 7 PL20C 7 N26 PL21D 7 PL20D 7 H30 PL22A 7 PL21A 7 7 VREF2_7 J30 PL22B 7 PL21B L28 PL22C 7 PL21C 7 M28 PL22D 7 PL21D 7 J31 PL23A 7 PL29A 7 K31 PL23B 7 PL29B 7 L27 PL23C 7 VREF1_7 PL29C 7 VREF1_7 M27 PL23D 7 DIFFR_7 PL29D 7 DIFFR_7 J32 PL25A 7 PL31A 7 K32 PL25B 7 PL31B 7 L29 PL25C 7 PL31C 7 M29 PL25D 7 PL31D 7 H33 PL26A 7 PL33A 7 J33 PL26B 7 PL33B 7 N27 PL26C 7 PL33C 7 P27 PL26D 7 PL33D 7 K33 PL27A 7 PL35A 7 4-57 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M40, LFSC/M80 Logic Signal Connections: 1152 fcBGA1, 2 (Cont.) LFSC/M40 Ball Number Ball Function VCCIO Bank L33 PL27B 7 LFSC/M80 Dual Function Ball Function VCCIO Bank PL35B 7 M30 PL27C 7 PL35C 7 N30 PL27D 7 PL35D 7 M31 PL29A 7 PL37A 7 N31 PL29B 7 PL37B 7 P24 PL29C 7 PL37C 7 R24 PL29D 7 PL37D 7 M33 PL30A 7 PL42A 7 N33 PL30B 7 PL42B 7 U25 PL30C 7 PL42C 7 T25 PL30D 7 PL42D 7 L34 PL31A 7 PL43A 7 M34 PL31B 7 PL43B 7 Dual Function P29 PL31C 7 PL43C 7 R29 PL31D 7 PL43D 7 N34 PL34A 7 PL46A 7 P34 PL34B 7 PL46B 7 R27 PL34C 7 PL46C 7 T27 PL34D 7 PL46D 7 R32 PL35A 7 PCLKT7_1 PL47A 7 PCLKT7_1 R31 PL35B 7 PCLKC7_1 PL47B 7 PCLKC7_1 U24 PL35C 7 PCLKT7_3 PL47C 7 PCLKT7_3 T24 PL35D 7 PCLKC7_3 PL47D 7 PCLKC7_3 P33 PL36A 7 PCLKT7_0 PL48A 7 PCLKT7_0 R33 PL36B 7 PCLKC7_0 PL48B 7 PCLKC7_0 T26 PL36C 7 PCLKT7_2 PL48C 7 PCLKT7_2 U26 PL36D 7 PCLKC7_2 PL48D 7 PCLKC7_2 T32 PL38A 6 PCLKT6_0 PL50A 6 PCLKT6_0 T31 PL38B 6 PCLKC6_0 PL50B 6 PCLKC6_0 U29 PL38C 6 PCLKT6_1 PL50C 6 PCLKT6_1 V29 PL38D 6 PCLKC6_1 PL50D 6 PCLKC6_1 T30 PL39A 6 PL51A 6 U30 PL39B 6 PL51B 6 U27 PL39C 6 PCLKT6_3 PL51C 6 PCLKT6_3 V27 PL39D 6 PCLKC6_3 PL51D 6 PCLKC6_3 R34 PL40A 6 PL52A 6 T34 PL40B 6 PL52B 6 U28 PL40C 6 PCLKT6_2 PL52C 6 PCLKT6_2 V28 PL40D 6 PCLKC6_2 PL52D 6 PCLKC6_2 V30 PL43A 6 PL55A 6 W30 PL43B 6 PL55B 6 W27 PL43C 6 PL55C 6 Y27 PL43D 6 PL55D 6 VREF1_6 T33 PL44A 6 PL56A 6 U33 PL44B 6 PL56B 6 4-58 VREF1_6 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M40, LFSC/M80 Logic Signal Connections: 1152 fcBGA1, 2 (Cont.) LFSC/M40 Ball Number Ball Function VCCIO Bank V25 PL44C W25 U34 LFSC/M80 Ball Function VCCIO Bank 6 PL56C 6 PL44D 6 PL56D 6 PL45A 6 PL57A 6 V34 PL45B 6 PL57B 6 V26 PL45C 6 PL57C 6 W26 PL45D 6 PL57D 6 V33 PL47A 6 PL60A 6 W33 PL47B 6 PL60B 6 V24 PL47C 6 PL60C 6 W24 PL47D 6 PL60D 6 W31 PL48A 6 PL63A 6 Y31 PL48B 6 PL63B 6 Y29 PL48C 6 PL63C 6 AA29 PL48D 6 PL63D 6 Y33 PL49A 6 PL65A 6 AA33 PL49B 6 PL65B 6 Y28 PL49C 6 PL65C 6 AA28 PL49D 6 PL65D 6 AB32 PL51A 6 PL76A 6 AC32 PL51B 6 PL76B 6 AA26 PL51C 6 PL76C 6 AA27 PL51D 6 PL76D 6 AB31 PL52A 6 PL77A 6 AC31 PL52B 6 PL77B 6 Y24 PL52C 6 PL77C 6 AA24 PL52D 6 PL77D 6 AE34 PL53A 6 PL78A 6 Dual Function DIFFR_6 AF34 PL53B 6 PL78B 6 AB30 PL53C 6 PL78C 6 AC30 PL53D 6 PL78D 6 AD33 PL56A 6 PL80A 6 AE33 PL56B 6 PL80B 6 AD30 PL56C 6 PL80C 6 AE30 PL56D 6 PL80D 6 AE32 PL57A 6 PL81A 6 AF32 PL57B 6 PL81B 6 AA25 PL57C 6 PL81C 6 AB25 PL57D 6 PL81D 6 AJ34 PL58A 6 PL82A 6 AK34 PL58B 6 PL82B 6 AB27 PL58C 6 PL82C 6 AC27 PL58D 6 PL82D 6 AF33 PL60A 6 PL84A 6 AG33 PL60B 6 PL84B 6 AC29 PL60C 6 PL84C 6 4-59 Dual Function DIFFR_6 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M40, LFSC/M80 Logic Signal Connections: 1152 fcBGA1, 2 (Cont.) LFSC/M40 Ball Number Ball Function VCCIO Bank AD29 PL60D AE31 AF31 LFSC/M80 Ball Function VCCIO Bank 6 PL84D 6 PL61A 6 PL85A 6 PL61B 6 PL85B 6 AF30 PL61C 6 PL85C 6 AF29 PL61D 6 PL85D 6 AH33 PL62A 6 PL86A 6 AJ33 PL62B 6 PL86B 6 6 Dual Function AC28 PL62C 6 PL86C AD28 PL62D 6 PL86D 6 AH32 PL65A 6 PL89A 6 AJ32 PL65B 6 PL89B 6 AD27 PL65C 6 AE27 PL65D 6 AG34 PL66A AH34 PL89C 6 PL89D 6 6 PL90A 6 PL66B 6 PL90B 6 AC26 PL66C 6 PL90C 6 AB26 PL66D 6 PL90D 6 AK33 PL67A 6 PL91A 6 AL33 PL67B 6 PL91B 6 VREF2_6 AG30 PL67C 6 PL91C 6 AH30 PL67D 6 PL91D 6 AL34 PL69A 6 PL93A 6 AM34 PL69B 6 PL93B 6 Dual Function VREF2_6 AJ30 PL69C 6 LLC_DLLT_IN_E/LLC_DLLT_FB_F PL93C 6 LLC_DLLT_IN_E/LLC_DLLT_FB_F AK30 PL69D 6 LLC_DLLC_IN_E/LLC_DLLC_FB_F PL93D 6 LLC_DLLC_IN_E/LLC_DLLC_FB_F AJ31 PL70A 6 PL94A 6 AH31 PL70B 6 PL94B 6 AD26 PL70C 6 PL94C 6 AD25 PL70D 6 PL94D 6 AL32 PL71A 6 LLC_DLLT_IN_F/LLC_DLLT_FB_E PL95A 6 LLC_DLLT_IN_F/LLC_DLLT_FB_E AL31 PL71B 6 LLC_DLLC_IN_F/LLC_DLLC_FB_E PL95B 6 LLC_DLLC_IN_F/LLC_DLLC_FB_E AG29 PL71C 6 LLC_PLLT_IN_B/LLC_PLLT_FB_A PL95C 6 LLC_PLLT_IN_B/LLC_PLLT_FB_A AG28 PL71D 6 LLC_PLLC_IN_B/LLC_PLLC_FB_A PL95D 6 LLC_PLLC_IN_B/LLC_PLLC_FB_A AF28 XRES - XRES - AF27 TEMP 6 TEMP 6 AM33 PB3A 5 LLC_PLLT_IN_A/LLC_PLLT_FB_B PB3A 5 LLC_PLLT_IN_A/LLC_PLLT_FB_B AN33 PB3B 5 LLC_PLLC_IN_A/LLC_PLLC_FB_B PB3B 5 LLC_PLLC_IN_A/LLC_PLLC_FB_B AH29 PB3C 5 LLC_DLLT_IN_C/LLC_DLLT_FB_D PB3C 5 LLC_DLLT_IN_C/LLC_DLLT_FB_D AJ29 PB3D 5 LLC_DLLC_IN_C/LLC_DLLC_FB_D PB3D 5 LLC_DLLC_IN_C/LLC_DLLC_FB_D AM32 PB4A 5 LLC_DLLT_IN_D/LLC_DLLT_FB_C PB4A 5 LLC_DLLT_IN_D/LLC_DLLT_FB_C AM31 PB4B 5 LLC_DLLC_IN_D/LLC_DLLC_FB_C PB4B 5 LLC_DLLC_IN_D/LLC_DLLC_FB_C AG27 PB4C 5 PB4C 5 AG26 PB4D 5 PB4D 5 AL29 PB5A 5 PB5A 5 AL28 PB5B 5 PB5B 5 4-60 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M40, LFSC/M80 Logic Signal Connections: 1152 fcBGA1, 2 (Cont.) LFSC/M40 Ball Number Ball Function VCCIO Bank AH27 PB5C 5 AH26 PB5D 5 AN32 PB7A 5 AP32 PB7B AF25 PB7C AE25 AN31 LFSC/M80 Ball Function VCCIO Bank PB5C 5 PB5D 5 PB7A 5 5 PB7B 5 5 PB7C 5 PB7D 5 PB7D 5 PB8A 5 PB9A 5 AN30 PB8B 5 PB9B 5 AK29 PB8C 5 PB9C 5 AK28 PB8D 5 PB9D 5 AP31 PB9A 5 PB11A 5 Dual Function VREF1_5 AP30 PB9B 5 PB11B 5 AD24 PB9C 5 PB11C 5 AE24 PB9D 5 PB11D 5 AM29 PB11A 5 PB13A 5 AM28 PB11B 5 PB13B 5 AJ27 PB11C 5 PB13C 5 AJ26 PB11D 5 PB13D 5 AP29 PB13A 5 PB15A 5 AP28 PB13B 5 PB15B 5 AK27 PB13C 5 PB15C 5 AK26 PB13D 5 PB15D 5 AN29 PB15A 5 PB17A 5 AN28 PB15B 5 PB17B 5 AG25 PB15C 5 PB17C 5 AG24 PB15D 5 PB17D 5 AL26 PB17A 5 PB19A 5 AL25 PB17B 5 PB19B 5 AG23 PB17C 5 PB19C 5 AG22 PB17D 5 PB19D 5 AN27 PB19A 5 PB21A 5 AN26 PB19B 5 PB21B 5 AF24 PB19C 5 PB21C 5 AF23 PB19D 5 PB21D 5 AP27 PB22A 5 PB24A 5 AP26 PB22B 5 PB24B 5 AK25 PB22C 5 PB24C 5 AK24 PB22D 5 PB24D 5 AN25 PB25A 5 PB27A 5 AN24 PB25B 5 PB27B 5 AE22 PB25C 5 PB27C 5 AE21 PB25D 5 PB27D 5 AM26 PB26A 5 PB29A 5 AM25 PB26B 5 PB29B 5 AF22 PB26C 5 PB29C 5 4-61 Dual Function VREF1_5 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M40, LFSC/M80 Logic Signal Connections: 1152 fcBGA1, 2 (Cont.) LFSC/M40 Ball Number Ball Function VCCIO Bank AF21 PB26D AN23 AN22 LFSC/M80 Ball Function VCCIO Bank 5 PB29D 5 PB27A 5 PB45A 5 PB27B 5 PB45B 5 AP23 PB29A 5 PB55A 5 AP22 PB29B 5 PB55B 5 AG21 PB29C 5 PB55C 5 AG20 PB29D 5 PB55D 5 AP25 PB30A 5 PCLKT5_3 PB48A 5 PCLKT5_3 AP24 PB30B 5 PCLKC5_3 PB48B 5 PCLKC5_3 AD21 PB30C 5 PCLKT5_4 PB48C 5 PCLKT5_4 AD20 PB30D 5 PCLKC5_4 PB48D 5 PCLKC5_4 AL23 PB31A 5 PCLKT5_5 PB49A 5 PCLKT5_5 AL22 PB31B 5 PCLKC5_5 PB49B 5 PCLKC5_5 AH24 PB31C 5 PB49C 5 AH23 PB31D 5 PB49D 5 AM23 PB33A 5 PCLKT5_0 PB51A 5 PCLKT5_0 AM22 PB33B 5 PCLKC5_0 PB51B 5 PCLKC5_0 AJ24 PB33C 5 PB51C 5 AJ23 PB33D 5 VREF2_5 PB51D 5 AN21 PB34A 5 PCLKT5_1 PB52A 5 PCLKT5_1 AN20 PB34B 5 PCLKC5_1 PB52B 5 PCLKC5_1 Dual Function Dual Function VREF2_5 AE19 PB34C 5 PCLKT5_6 PB52C 5 PCLKT5_6 AD19 PB34D 5 PCLKC5_6 PB52D 5 PCLKC5_6 AK21 PB35A 5 PCLKT5_2 PB53A 5 PCLKT5_2 AK20 PB35B 5 PCLKC5_2 PB53B 5 PCLKC5_2 AK23 PB35C 5 PCLKT5_7 PB53C 5 PCLKT5_7 AK22 PB35D 5 PCLKC5_7 PB53D 5 PCLKC5_7 AL20 PB37A 5 PB56A 5 AL19 PB37B 5 PB56B 5 AG19 PB37C 5 PB56C 5 AF19 PB37D 5 PB56D 5 AP21 PB38A 5 PB57A 5 AP20 PB38B 5 PB57B 5 AH21 PB38C 5 PB57C 5 AH20 PB38D 5 PB57D 5 AM20 PB39A 5 PB59A 5 AM19 PB39B 5 PB59B 5 AJ21 PB39C 5 PB59C 5 AJ20 PB39D 5 PB59D 5 AK19 PB41A 5 PB60A 5 AK18 PB41B 5 PB60B 5 AE18 PB41C 5 PB60C 5 AD18 PB41D 5 PB60D 5 AN19 PB42A 5 PB61A 5 AN18 PB42B 5 PB61B 5 4-62 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M40, LFSC/M80 Logic Signal Connections: 1152 fcBGA1, 2 (Cont.) LFSC/M40 Ball Number Ball Function VCCIO Bank AG18 PB42C AF18 AP19 LFSC/M80 Ball Function VCCIO Bank 5 PB61C 5 PB42D 5 PB61D 5 PB43A 5 PB63A 5 AP18 PB43B 5 PB63B 5 AJ18 PB43C 5 PB63C 5 AH18 PB43D 5 PB63D 5 AP17 PB45A 4 PB65A 4 AP16 PB45B 4 PB65B 4 AJ17 PB45C 4 PB65C 4 AH17 PB45D 4 PB65D 4 AN17 PB46A 4 PB66A 4 AN16 PB46B 4 PB66B 4 AE17 PB46C 4 PB66C 4 AD17 PB46D 4 PB66D 4 AK17 PB47A 4 PB67A 4 Dual Function AK16 PB47B 4 PB67B 4 AG17 PB47C 4 PB67C 4 AF17 PB47D 4 PB67D 4 AM16 PB49A 4 PB69A 4 AM15 PB49B 4 PB69B 4 AJ15 PB49C 4 PB69C 4 AJ14 PB49D 4 PB69D 4 AL16 PB50A 4 PB70A 4 AL15 PB50B 4 PB70B 4 AG16 PB50C 4 PB70C 4 AF16 PB50D 4 PB70D 4 AP15 PB51A 4 PB71A 4 Dual Function AP14 PB51B 4 PB71B 4 AH15 PB51C 4 PB71C 4 AH14 PB51D 4 PB71D 4 AN15 PB53A 4 PCLKT4_2 PB74A 4 PCLKT4_2 AN14 PB53B 4 PCLKC4_2 PB74B 4 PCLKC4_2 AE16 PB53C 4 PCLKT4_7 PB74C 4 PCLKT4_7 AD16 PB53D 4 PCLKC4_7 PB74D 4 PCLKC4_7 AK15 PB54A 4 PCLKT4_1 PB75A 4 PCLKT4_1 PCLKC4_1 AK14 PB54B 4 PCLKC4_1 PB75B 4 AG15 PB54C 4 PCLKT4_6 PB75C 4 PCLKT4_6 AG14 PB54D 4 PCLKC4_6 PB75D 4 PCLKC4_6 AM13 PB55A 4 PCLKT4_0 PB77A 4 PCLKT4_0 AM12 PB55B 4 PCLKC4_0 PB77B 4 PCLKC4_0 AJ12 PB55C 4 VREF2_4 PB77C 4 VREF2_4 AJ11 PB55D 4 PB77D 4 AL13 PB57A 4 PCLKT4_5 PB79A 4 PCLKT4_5 PCLKC4_5 PB79B 4 PCLKC4_5 PB79C 4 AL12 PB57B 4 AH12 PB57C 4 4-63 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M40, LFSC/M80 Logic Signal Connections: 1152 fcBGA1, 2 (Cont.) LFSC/M40 LFSC/M80 Ball Number Ball Function VCCIO Bank AH11 PB57D 4 AN13 PB58A 4 PCLKT4_3 PB80A 4 PCLKT4_3 AN12 PB58B 4 PCLKC4_3 PB80B 4 PCLKC4_3 AD14 PB58C 4 PCLKT4_4 PB80C 4 PCLKT4_4 AD15 PB58D 4 PCLKC4_4 PB80D 4 PCLKC4_4 AP13 PB61A 4 PB73A 4 AP12 PB61B 4 PB73B 4 AK13 PB61C 4 PB73C 4 AK12 PB61D 4 PB73D 4 AP11 PB62A 4 PB83A 4 AP10 PB62B 4 PB83B 4 AN11 PB63A 4 PB99A 4 AN10 PB63B 4 PB99B 4 AF14 PB63C 4 PB99C 4 AF13 PB63D 4 PB99D 4 AM10 PB67A 4 PB101A 4 AM9 PB67B 4 PB101B 4 AE14 PB67C 4 PB101C 4 AE13 PB67D 4 PB101D 4 AP9 PB69A 4 PB104A 4 AP8 PB69B 4 PB104B 4 AK11 PB69C 4 PB104C 4 AK10 PB69D 4 PB104D 4 AL10 PB70A 4 PB107A 4 AL9 PB70B 4 PB107B 4 AF12 PB70C 4 PB107C 4 AF11 PB70D 4 PB107D 4 AN9 PB73A 4 PB109A 4 AN8 PB73B 4 PB109B 4 AG11 PB73C 4 PB109C 4 AG10 PB73D 4 PB109D 4 AP7 PB74A 4 PB111A 4 AP6 PB74B 4 PB111B 4 AG13 PB74C 4 PB111C 4 AG12 PB74D 4 PB111D 4 AN7 PB75A 4 PB113A 4 AN6 PB75B 4 PB113B 4 AK9 PB75C 4 PB113C 4 AK8 PB75D 4 PB113D 4 AP5 PB77A 4 PB115A 4 AP4 PB77B 4 PB115B 4 AD11 PB77C 4 PB115C 4 AE11 PB77D 4 PB115D 4 AM7 PB78A 4 PB117A 4 AM6 PB78B 4 PB117B 4 Dual Function 4-64 Ball Function VCCIO Bank PB79D 4 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M40, LFSC/M80 Logic Signal Connections: 1152 fcBGA1, 2 (Cont.) LFSC/M40 Ball Number Ball Function VCCIO Bank AJ9 PB78C AJ8 AP3 LFSC/M80 Ball Function VCCIO Bank 4 PB117C 4 PB78D 4 PB117D 4 PB79A 4 PB119A 4 Dual Function AN3 PB79B 4 PB119B 4 AF10 PB79C 4 PB119C 4 AE10 PB79D 4 PB119D 4 AL7 PB81A 4 PB121A 4 AL6 PB81B 4 PB121B 4 AK7 PB81C 4 PB121C 4 AK6 PB81D 4 PB121D 4 AN5 PB82A 4 PB123A 4 AN4 PB82B 4 AH9 PB82C 4 AH8 PB82D 4 AM3 PB83A 4 LRC_DLLT_IN_C/LRC_DLLT_FB_D AM4 PB83B 4 LRC_DLLC_IN_C/LRC_DLLC_FB_D AG9 PB83C 4 AG8 PB83D 4 AN2 PB85A 4 LRC_PLLT_IN_A/LRC_PLLT_FB_B AM2 PB85B 4 AJ6 PB85C 4 AH6 PB85D 4 AF7 PROBE_VCC - VREF1_4 Dual Function PB123B 4 PB123C 4 PB123D 4 PB124A 4 LRC_DLLT_IN_C/LRC_DLLT_FB_D PB124B 4 LRC_DLLC_IN_C/LRC_DLLC_FB_D PB124C 4 VREF1_4 PB124D 4 PB125A 4 LRC_PLLT_IN_A/LRC_PLLT_FB_B LRC_PLLC_IN_A/LRC_PLLC_FB_B PB125B 4 LRC_PLLC_IN_A/LRC_PLLC_FB_B LRC_DLLT_IN_D/LRC_DLLT_FB_C PB125C 4 LRC_DLLT_IN_D/LRC_DLLT_FB_C LRC_DLLC_IN_D/LRC_DLLC_FB_C PB125D 4 LRC_DLLC_IN_D/LRC_DLLC_FB_C PROBE_VCC - AF8 PROBE_GND - PROBE_GND - AG7 PR71D 3 LRC_PLLC_IN_B/LRC_PLLC_FB_A PR95D 3 AG6 PR71C 3 LRC_PLLT_IN_B/LRC_PLLT_FB_A PR95C 3 LRC_PLLT_IN_B/LRC_PLLT_FB_A AL4 PR71B 3 LRC_DLLC_IN_F/LRC_DLLC_FB_E PR95B 3 LRC_DLLC_IN_F/LRC_DLLC_FB_E LRC_DLLT_IN_F/LRC_DLLT_FB_E LRC_DLLT_IN_F/LRC_DLLT_FB_E AL3 PR71A 3 PR95A 3 AD10 PR70D 3 PR94D 3 AD9 PR70C 3 PR94C 3 AH4 PR70B 3 PR94B 3 LRC_PLLC_IN_B/LRC_PLLC_FB_A AJ4 PR70A 3 PR94A 3 AK5 PR69D 3 LRC_DLLC_IN_E/LRC_DLLC_FB_F PR93D 3 LRC_DLLC_IN_E/LRC_DLLC_FB_F AJ5 PR69C 3 LRC_DLLT_IN_E/LRC_DLLT_FB_F PR93C 3 LRC_DLLT_IN_E/LRC_DLLT_FB_F AM1 PR69B 3 PR93B 3 AL1 PR69A 3 PR93A 3 AH5 PR67D 3 PR91D 3 AG5 PR67C 3 PR91C 3 AL2 PR67B 3 PR91B 3 AK2 PR67A 3 PR91A 3 AB9 PR66D 3 PR90D 3 AC9 PR66C 3 PR90C 3 AH1 PR66B 3 PR90B 3 AG1 PR66A 3 AE8 PR65D 3 VREF2_3 4-65 PR90A 3 PR89D 3 VREF2_3 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M40, LFSC/M80 Logic Signal Connections: 1152 fcBGA1, 2 (Cont.) LFSC/M40 Ball Number Ball Function VCCIO Bank AD8 PR65C 3 LFSC/M80 Dual Function Ball Function VCCIO Bank PR89C 3 AJ3 PR65B 3 PR89B 3 AH3 PR65A 3 PR89A 3 AD7 PR62D 3 PR86D 3 AC7 PR62C 3 PR86C 3 AJ2 PR62B 3 PR86B 3 AH2 PR62A 3 PR86A 3 AF6 PR61D 3 PR85D 3 AF5 PR61C 3 PR85C 3 AF4 PR61B 3 PR85B 3 AE4 PR61A 3 PR85A 3 AD6 PR60D 3 PR84D 3 AC6 PR60C 3 PR84C 3 AG2 PR60B 3 PR84B 3 AF2 PR60A 3 PR84A 3 AC8 PR58D 3 PR82D 3 AB8 PR58C 3 PR82C 3 AK1 PR58B 3 PR82B 3 AJ1 PR58A 3 PR82A 3 AB10 PR57D 3 PR81D 3 AA10 PR57C 3 PR81C 3 AF3 PR57B 3 PR81B 3 AE3 PR57A 3 PR81A 3 AE5 PR56D 3 PR80D 3 AD5 PR56C 3 PR80C 3 AE2 PR56B 3 PR80B 3 AD2 PR56A 3 PR80A 3 AC5 PR53D 3 PR78D 3 AB5 PR53C 3 PR78C 3 AF1 PR53B 3 PR78B 3 AE1 PR53A 3 PR78A 3 AA11 PR52D 3 PR77D 3 Y11 PR52C 3 PR77C 3 AC4 PR52B 3 PR77B 3 AB4 PR52A 3 PR77A 3 AA8 PR51D 3 PR76D 3 AA9 PR51C 3 PR76C 3 AC3 PR51B 3 PR76B 3 AB3 PR51A 3 PR76A 3 AA7 PR49D 3 PR65D 3 Y7 PR49C 3 PR65C 3 AA2 PR49B 3 PR65B 3 Y2 PR49A 3 PR65A 3 AA6 PR48D 3 PR63D 3 Y6 PR48C 3 PR63C 3 DIFFR_3 4-66 Dual Function DIFFR_3 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M40, LFSC/M80 Logic Signal Connections: 1152 fcBGA1, 2 (Cont.) LFSC/M40 Ball Number Ball Function VCCIO Bank Y4 PR48B 3 LFSC/M80 Dual Function Ball Function VCCIO Bank PR63B 3 Dual Function W4 PR48A 3 PR63A 3 W11 PR47D 3 PR60D 3 V11 PR47C 3 PR60C 3 W2 PR47B 3 PR60B 3 V2 PR47A 3 PR60A 3 W9 PR45D 3 PR57D 3 V9 PR45C 3 PR57C 3 V1 PR45B 3 PR57B 3 U1 PR45A 3 PR57A 3 W10 PR44D 3 PR56D 3 V10 PR44C 3 PR56C 3 U2 PR44B 3 PR56B 3 T2 PR44A 3 PR56A 3 Y8 PR43D 3 PR55D 3 W8 PR43C 3 PR55C 3 W5 PR43B 3 PR55B 3 V5 PR43A 3 PR55A 3 V7 PR40D 3 PCLKC3_2 PR52D 3 PCLKC3_2 U7 PR40C 3 PCLKT3_2 PR52C 3 PCLKT3_2 T1 PR40B 3 PR52B 3 R1 PR40A 3 PR52A 3 V8 PR39D 3 PCLKC3_3 PR51D 3 PCLKC3_3 U8 PR39C 3 PCLKT3_3 PR51C 3 PCLKT3_3 U5 PR39B 3 PR51B 3 T5 PR39A 3 V6 PR38D 3 U6 PR38C T4 PR38B VREF1_3 VREF1_3 PR51A 3 PCLKC3_1 PR50D 3 3 PCLKT3_1 PR50C 3 PCLKT3_1 3 PCLKC3_0 PR50B 3 PCLKC3_0 PCLKC3_1 T3 PR38A 3 PCLKT3_0 PR50A 3 PCLKT3_0 U9 PR36D 2 PCLKC2_2 PR48D 2 PCLKC2_2 T9 PR36C 2 PCLKT2_2 PR48C 2 PCLKT2_2 R2 PR36B 2 PCLKC2_0 PR48B 2 PCLKC2_0 P2 PR36A 2 PCLKT2_0 PR48A 2 PCLKT2_0 T11 PR35D 2 PCLKC2_3 PR47D 2 PCLKC2_3 U11 PR35C 2 PCLKT2_3 PR47C 2 PCLKT2_3 R4 PR35B 2 PCLKC2_1 PR47B 2 PCLKC2_1 R3 PR35A 2 PCLKT2_1 PR47A 2 PCLKT2_1 T8 PR34D 2 PR46D 2 R8 PR34C 2 PR46C 2 P1 PR34B 2 PR46B 2 N1 PR34A 2 PR46A 2 R6 PR31D 2 PR43D 2 P6 PR31C 2 PR43C 2 M1 PR31B 2 PR43B 2 4-67 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M40, LFSC/M80 Logic Signal Connections: 1152 fcBGA1, 2 (Cont.) LFSC/M40 Ball Number Ball Function VCCIO Bank L1 PR31A 2 LFSC/M80 Dual Function Ball Function VCCIO Bank PR43A 2 T10 PR30D 2 PR42D 2 U10 PR30C 2 PR42C 2 2 N2 PR30B 2 PR42B M2 PR30A 2 PR42A 2 R11 PR29D 2 PR37D 2 P11 PR29C 2 PR37C 2 2 N4 PR29B 2 PR37B M4 PR29A 2 PR37A 2 N5 PR27D 2 PR35D 2 M5 PR27C 2 PR35C 2 L2 PR27B 2 PR35B 2 K2 PR27A 2 PR35A 2 P8 PR26D 2 PR33D 2 N8 PR26C 2 PR33C 2 Dual Function J2 PR26B 2 PR33B 2 H2 PR26A 2 PR33A 2 M6 PR25D 2 PR31D 2 L6 PR25C 2 PR31C 2 K3 PR25B 2 PR31B 2 J3 PR25A 2 PR31A 2 M8 PR23D 2 DIFFR_2 PR29D 2 DIFFR_2 L8 PR23C 2 VREF1_2 PR29C 2 VREF1_2 K4 PR23B 2 PR29B 2 J4 PR23A 2 PR29A 2 M7 PR22D 2 PR21D 2 L7 PR22C 2 PR21C 2 J5 PR22B 2 PR21B 2 H5 PR22A 2 PR21A 2 N9 PR21D 2 PR20D 2 P9 PR21C 2 PR20C 2 G3 PR21B 2 PR20B 2 F3 PR21A 2 PR20A 2 J6 PR18D 2 PR18D 2 H6 PR18C 2 PR18C 2 VREF2_2 VREF2_2 E2 PR18B 2 URC_DLLC_IN_D/URC_DLLC_FB_C PR18B 2 D2 PR18A 2 URC_DLLT_IN_D/URC_DLLT_FB_C PR18A 2 URC_DLLT_IN_D/URC_DLLT_FB_C P10 PR17D 2 URC_PLLC_IN_B/URC_PLLC_FB_A PR17D 2 URC_PLLC_IN_B/URC_PLLC_FB_A N10 PR17C 2 URC_PLLT_IN_B/URC_PLLT_FB_A PR17C 2 URC_PLLT_IN_B/URC_PLLT_FB_A G4 PR17B 2 URC_DLLC_IN_C/URC_DLLC_FB_D PR17B 2 URC_DLLC_IN_C/URC_DLLC_FB_D F4 PR17A 2 URC_DLLT_IN_C/URC_DLLT_FB_D PR17A 2 URC_DLLT_IN_C/URC_DLLT_FB_D J7 PR16D 2 PR16D 2 H7 PR16C 2 PR16C 2 G5 PR16B 2 URC_PLLC_IN_A/URC_PLLC_FB_B PR16B 2 URC_PLLC_IN_A/URC_PLLC_FB_B F5 PR16A 2 URC_PLLT_IN_A/URC_PLLT_FB_B PR16A 2 URC_PLLT_IN_A/URC_PLLT_FB_B 4-68 URC_DLLC_IN_D/URC_DLLC_FB_C Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M40, LFSC/M80 Logic Signal Connections: 1152 fcBGA1, 2 (Cont.) LFSC/M40 Ball Number Ball Function VCCIO Bank C2 VCCJ - M9 TDO - L9 TMS - D1 TCK C1 TDI J8 K8 LFSC/M80 Ball Function VCCIO Bank VCCJ - TDO - TMS - - TCK - - TDI - PROGRAMN 1 PROGRAMN 1 MPIIRQN 1 MPIIRQN 1 Dual Function TDO CFGIRQN/MPI_IRQ_N Dual Function TDO CFGIRQN/MPI_IRQ_N B2 CCLK 1 CCLK 1 H9 RESP_URC - RESP_URC - H10 VCC12 - VCC12 - H8 A_REFCLKN_R - A_REFCLKN_R - G8 A_REFCLKP_R - A_REFCLKP_R - C3 VCC12 - VCC12 - D3 A_VDDIB0_R - A_VDDIB0_R - A3 A_HDINP0_R - PCS 3E0 CH 0 IN P A_HDINP0_R - PCS 3E0 CH 0 IN P B3 A_HDINN0_R - PCS 3E0 CH 0 IN N A_HDINN0_R - PCS 3E0 CH 0 IN N E5 VCC12 - VCC12 - A4 A_HDOUTP0_R - A_HDOUTP0_R - F6 A_VDDOB0_R - A_VDDOB0_R - B4 A_HDOUTN0_R - A_HDOUTN0_R - F7 A_VDDOB1_R - A_VDDOB1_R - B5 A_HDOUTN1_R - A_HDOUTN1_R - E6 VCC12 - VCC12 - A5 A_HDOUTP1_R - PCS 3E0 CH 1 OUT P A_HDOUTP1_R - PCS 3E0 CH 1 OUT P B6 A_HDINN1_R - PCS 3E0 CH 1 IN N A_HDINN1_R - PCS 3E0 CH 1 IN N A6 A_HDINP1_R - PCS 3E0 CH 1 IN P A_HDINP1_R - PCS 3E0 CH 1 IN P C6 VCC12 - VCC12 - D4 A_VDDIB1_R - A_VDDIB1_R - C7 VCC12 - VCC12 - D5 A_VDDIB2_R - A_VDDIB2_R - A7 A_HDINP2_R - PCS 3E0 CH 2 IN P A_HDINP2_R - PCS 3E0 CH 2 IN P B7 A_HDINN2_R - PCS 3E0 CH 2 IN N A_HDINN2_R - PCS 3E0 CH 2 IN N E7 VCC12 - VCC12 - A8 A_HDOUTP2_R - A_HDOUTP2_R - F8 A_VDDOB2_R - A_VDDOB2_R - B8 A_HDOUTN2_R - A_HDOUTN2_R - F9 A_VDDOB3_R - A_VDDOB3_R - B9 A_HDOUTN3_R - A_HDOUTN3_R - E8 VCC12 - VCC12 - PCS 3E0 CH 0 OUT P PCS 3E0 CH 0 OUT N PCS 3E0 CH 1 OUT N PCS 3E0 CH 2 OUT P PCS 3E0 CH 2 OUT N PCS 3E0 CH 3 OUT N PCS 3E0 CH 0 OUT P PCS 3E0 CH 0 OUT N PCS 3E0 CH 1 OUT N PCS 3E0 CH 2 OUT P PCS 3E0 CH 2 OUT N PCS 3E0 CH 3 OUT N A9 A_HDOUTP3_R - PCS 3E0 CH 3 OUT P A_HDOUTP3_R - PCS 3E0 CH 3 OUT P B10 A_HDINN3_R - PCS 3E0 CH 3 IN N A_HDINN3_R - PCS 3E0 CH 3 IN N A10 A_HDINP3_R - PCS 3E0 CH 3 IN P A_HDINP3_R - PCS 3E0 CH 3 IN P C10 VCC12 - VCC12 - D6 A_VDDIB3_R - A_VDDIB3_R - G10 VCC12 - VCC12 - 4-69 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M40, LFSC/M80 Logic Signal Connections: 1152 fcBGA1, 2 (Cont.) LFSC/M40 LFSC/M80 Ball Number Ball Function VCCIO Bank D7 B_VDDIB0_R - E10 B_HDINP0_R - F10 B_HDINN0_R - VCC12 - PCS 3E1 CH 0 OUT P B_HDOUTP0_R - B_VDDOB0_R - PCS 3E1 CH 0 OUT N B_HDOUTN0_R - B_VDDOB1_R - PCS 3E1 CH 1 OUT N B_HDOUTN1_R - VCC12 - PCS 3E1 CH 1 OUT P K10 VCC12 - A11 B_HDOUTP0_R - D10 B_VDDOB0_R - B11 B_HDOUTN0_R - Ball Function VCCIO Bank B_VDDIB0_R - PCS 3E1 CH 0 IN P B_HDINP0_R - PCS 3E1 CH 0 IN P PCS 3E1 CH 0 IN N B_HDINN0_R - PCS 3E1 CH 0 IN N Dual Function D11 B_VDDOB1_R - B12 B_HDOUTN1_R - L10 VCC12 - A12 B_HDOUTP1_R - PCS 3E1 CH 1 OUT P B_HDOUTP1_R Dual Function PCS 3E1 CH 0 OUT P PCS 3E1 CH 0 OUT N PCS 3E1 CH 1 OUT N F11 B_HDINN1_R - PCS 3E1 CH 1 IN N B_HDINN1_R - PCS 3E1 CH 1 IN N E11 B_HDINP1_R - PCS 3E1 CH 1 IN P B_HDINP1_R - PCS 3E1 CH 1 IN P G11 VCC12 - VCC12 - D8 B_VDDIB1_R - B_VDDIB1_R - G12 VCC12 - VCC12 - D9 B_VDDIB2_R - B_VDDIB2_R - E12 B_HDINP2_R - PCS 3E1 CH 2 IN P B_HDINP2_R - PCS 3E1 CH 2 IN P F12 B_HDINN2_R - PCS 3E1 CH 2 IN N B_HDINN2_R - PCS 3E1 CH 2 IN N VCC12 - PCS 3E1 CH 2 OUT P B_HDOUTP2_R - B_VDDOB2_R - PCS 3E1 CH 2 OUT N B_HDOUTN2_R - B_VDDOB3_R - PCS 3E1 CH 3 OUT N B_HDOUTN3_R - VCC12 - PCS 3E1 CH 3 OUT P K11 VCC12 - A13 B_HDOUTP2_R - D12 B_VDDOB2_R - B13 B_HDOUTN2_R - D13 B_VDDOB3_R - B14 B_HDOUTN3_R - L11 VCC12 - A14 B_HDOUTP3_R - PCS 3E1 CH 3 OUT P B_HDOUTP3_R PCS 3E1 CH 2 OUT P PCS 3E1 CH 2 OUT N PCS 3E1 CH 3 OUT N F13 B_HDINN3_R - PCS 3E1 CH 3 IN N B_HDINN3_R - PCS 3E1 CH 3 IN N E13 B_HDINP3_R - PCS 3E1 CH 3 IN P B_HDINP3_R - PCS 3E1 CH 3 IN P G13 VCC12 - VCC12 - E9 B_VDDIB3_R - B_VDDIB3_R - L13 VCC12 - VCC12 - J11 B_REFCLKN_R - B_REFCLKN_R - H11 B_REFCLKP_R - M15 PT61D 1 B_REFCLKP_R - HDC/SI PT77D 1 M16 PT61C F14 PT59B 1 LDCN/SCS PT77C 1 LDCN/SCS 1 D8/MPI_DATA8 PT77B 1 D8/MPI_DATA8 G14 PT59A 1 CS1/MPI_CS1 PT77A 1 CS1/MPI_CS1 L15 PT58D 1 D9/MPI_DATA9 PT75D 1 D9/MPI_DATA9 L14 PT58C 1 D10/MPI_DATA10 PT75C 1 D10/MPI_DATA10 D14 PT57B 1 CS0N/MPI_CS0N PT75B 1 CS0N/MPI_CS0N E14 PT57A 1 RDN/MPI_STRB_N PT75A 1 RDN/MPI_STRB_N L16 PT55D 1 WRN/MPI_WR_N PT74D 1 WRN/MPI_WR_N K16 PT55C 1 D7/MPI_DATA7 PT74C 1 D7/MPI_DATA7 G15 PT55B 1 D6/MPI_DATA6 PT74B 1 D6/MPI_DATA6 4-70 HDC/SI Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M40, LFSC/M80 Logic Signal Connections: 1152 fcBGA1, 2 (Cont.) LFSC/M40 LFSC/M80 Ball Number Ball Function VCCIO Bank Dual Function Ball Function VCCIO Bank Dual Function F15 PT55A 1 D5/MPI_DATA5 PT74A 1 D5/MPI_DATA5 K14 PT54D 1 D4/MPI_DATA4 PT73D 1 D4/MPI_DATA4 K13 PT54C 1 D3/MPI_DATA3 PT73C 1 D3/MPI_DATA3 B15 PT53B 1 D2/MPI_DATA2 PT73B 1 D2/MPI_DATA2 A15 PT53A 1 D1/MPI_DATA1 PT73A 1 D1/MPI_DATA1 J14 PT51D 1 D16/PCLKC1_3/MPI_DATA16 PT71D 1 D16/PCLKC1_3/MPI_DATA16 H14 PT51C 1 D17/PCLKT1_3/MPI_DATA17 PT71C 1 D17/PCLKT1_3/MPI_DATA17 A16 PT51B 1 D0/MPI_DATA0 PT71B 1 D0/MPI_DATA0 B16 PT51A 1 QOUT/CEON PT71A 1 QOUT/CEON J13 PT50D 1 VREF2_1 PT70D 1 VREF2_1 H13 PT50C 1 D18/MPI_DATA18 PT70C 1 D18/MPI_DATA18 D15 PT50B 1 DOUT PT70B 1 DOUT E15 PT50A 1 MCA_DONE_IN PT70A 1 MCA_DONE_IN J16 PT49D 1 D19/PCLKC1_2/MPI_DATA19 PT69D 1 D19/PCLKC1_2/MPI_DATA19 J17 PT49C 1 D20/PCLKT1_2/MPI_DATA20 PT69C 1 D20/PCLKT1_2/MPI_DATA20 D16 PT49B 1 MCA_CLK_P1_OUT PT69B 1 MCA_CLK_P1_OUT E16 PT49A 1 MCA_CLK_P1_IN PT69A 1 MCA_CLK_P1_IN H15 PT47D 1 D21/PCLKC1_1/MPI_DATA21 PT67D 1 D21/PCLKC1_1/MPI_DATA21 H16 PT47C 1 D22/PCLKT1_1/MPI_DATA22 PT67C 1 D22/PCLKT1_1/MPI_DATA22 C15 PT47B 1 MCA_CLK_P2_OUT PT67B 1 MCA_CLK_P2_OUT C16 PT47A 1 MCA_CLK_P2_IN PT67A 1 MCA_CLK_P2_IN L17 PT46D 1 MCA_DONE_OUT PT66D 1 MCA_DONE_OUT K17 PT46C 1 BUSYN/RCLK/SCK PT66C 1 BUSYN/RCLK/SCK E17 PT46B 1 DP0/MPI_PAR0 PT66B 1 DP0/MPI_PAR0 F17 PT46A 1 MPI_TA PT66A 1 MPI_TA G17 PT45D 1 D23/MPI_DATA23 PT65D 1 D23/MPI_DATA23 H17 PT45C 1 DP2/MPI_PAR2 PT65C 1 DP2/MPI_PAR2 A17 PT45B 1 PCLKC1_0 PT65B 1 PCLKC1_0 B17 PT45A 1 PCLKT1_0/MPI_CLK PT65A 1 PCLKT1_0/MPI_CLK G18 PT43D 1 DP3/PCLKC1_4/MPI_PAR3 PT63D 1 DP3/PCLKC1_4/MPI_PAR3 H18 PT43C 1 D24/PCLKT1_4/MPI_DATA24 PT63C 1 D24/PCLKT1_4/MPI_DATA24 E18 PT43B 1 MPI_RETRY PT63B 1 MPI_RETRY F18 PT43A 1 A0/MPI_ADDR14 PT63A 1 A0/MPI_ADDR14 J18 PT42D 1 A1/MPI_ADDR15 PT61D 1 A1/MPI_ADDR15 J19 PT42C 1 A2/MPI_ADDR16 PT61C 1 A2/MPI_ADDR16 C20 PT42B 1 A3/MPI_ADDR17 PT61B 1 A3/MPI_ADDR17 C19 PT42A 1 A4/MPI_ADDR18 PT61A 1 A4/MPI_ADDR18 K18 PT41D 1 D25/PCLKC1_5/MPI_DATA25 PT60D 1 D25/PCLKC1_5/MPI_DATA25 L18 PT41C 1 D26/PCLKT1_5/MPI_DATA26 PT60C 1 D26/PCLKT1_5/MPI_DATA26 D19 PT41B 1 A5/MPI_ADDR19 PT60B 1 A5/MPI_ADDR19 E19 PT41A 1 A6/MPI_ADDR20 PT60A 1 A6/MPI_ADDR20 H19 PT39D 1 D27/MPI_DATA27 PT59D 1 D27/MPI_DATA27 H20 PT39C 1 VREF1_1 PT59C 1 VREF1_1 A18 PT39B 1 A7/MPI_ADDR21 PT59B 1 A7/MPI_ADDR21 B18 PT39A 1 A8/MPI_ADDR22 PT59A 1 A8/MPI_ADDR22 4-71 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M40, LFSC/M80 Logic Signal Connections: 1152 fcBGA1, 2 (Cont.) LFSC/M40 LFSC/M80 Ball Number Ball Function VCCIO Bank Dual Function Ball Function VCCIO Bank Dual Function H21 PT38D 1 D28/PCLKC1_6/MPI_DATA28 PT57D 1 D28/PCLKC1_6/MPI_DATA28 J21 PT38C 1 D29/PCLKT1_6/MPI_DATA29 PT57C 1 D29/PCLKT1_6/MPI_DATA29 A19 PT38B 1 A9/MPI_ADDR23 PT57B 1 A9/MPI_ADDR23 B19 PT38A 1 A10/MPI_ADDR24 PT57A 1 A10/MPI_ADDR24 H22 PT37D 1 D30/PCLKC1_7/MPI_DATA30 PT56D 1 D30/PCLKC1_7/MPI_DATA30 J22 PT37C 1 D31/PCLKT1_7/MPI_DATA31 PT56C 1 D31/PCLKT1_7/MPI_DATA31 F20 PT37B 1 A11/MPI_ADDR25 PT56B 1 A11/MPI_ADDR25 G20 PT37A 1 A12/MPI_ADDR26 PT56A 1 A12/MPI_ADDR26 K21 PT35D 1 D11/MPI_DATA11 PT55D 1 D11/MPI_DATA11 K22 PT35C 1 D12/MPI_DATA12 PT55C 1 D12/MPI_DATA12 A20 PT35B 1 A13/MPI_ADDR27 PT55B 1 A13/MPI_ADDR27 B20 PT35A 1 A14/MPI_ADDR28 PT55A 1 A14/MPI_ADDR28 L21 PT33D 1 A16/MPI_ADDR30 PT53D 1 A16/MPI_ADDR30 L20 PT33C 1 D13/MPI_DATA13 PT53C 1 D13/MPI_DATA13 D20 PT33B 1 A15/MPI_ADDR29 PT53B 1 A15/MPI_ADDR29 E20 PT33A 1 A17/MPI_ADDR31 PT53A 1 A17/MPI_ADDR31 L19 PT30D 1 A19/MPI_TSIZ1 PT52D 1 A19/MPI_TSIZ1 K19 PT30C 1 A20/MPI_BDIP PT52C 1 A20/MPI_BDIP D21 PT30B 1 A18/MPI_TSIZ0 PT52B 1 A18/MPI_TSIZ0 E21 PT30A 1 MPI_TEA PT52A 1 MPI_TEA M20 PT28D 1 D14/MPI_DATA14 PT51D 1 D14/MPI_DATA14 M19 PT28C 1 DP1/MPI_PAR1 PT51C 1 DP1/MPI_PAR1 F21 PT27B 1 A21/MPI_BURST PT51B 1 A21/MPI_BURST G21 PT27A 1 D15/MPI_DATA15 PT51A 1 D15/MPI_DATA15 H24 B_REFCLKP_L - B_REFCLKP_L - J24 B_REFCLKN_L - B_REFCLKN_L - L22 VCC12 - VCC12 - E26 B_VDDIB3_L - B_VDDIB3_L G22 VCC12 - VCC12 - E22 B_HDINP3_L - PCS 361 CH 3 IN P B_HDINP3_L - PCS 361 CH 3 IN P F22 B_HDINN3_L - PCS 361 CH 3 IN N B_HDINN3_L - PCS 361 CH 3 IN N A21 B_HDOUTP3_L - PCS 361 CH 3 OUT P B_HDOUTP3_L - PCS 361 CH 3 OUT P L24 VCC12 - VCC12 - B_HDOUTN3_L - B_VDDOB3_L - B_HDOUTN2_L - B_VDDOB2_L - B_HDOUTP2_L - VCC12 - B21 B_HDOUTN3_L - D22 B_VDDOB3_L - B22 B_HDOUTN2_L - D23 B_VDDOB2_L - A22 B_HDOUTP2_L - K24 VCC12 - PCS 361 CH 3 OUT N PCS 361 CH 2 OUT N PCS 361 CH 2 OUT P PCS 361 CH 3 OUT N PCS 361 CH 2 OUT N PCS 361 CH 2 OUT P F23 B_HDINN2_L - PCS 361 CH 2 IN N B_HDINN2_L - PCS 361 CH 2 IN N E23 B_HDINP2_L - PCS 361 CH 2 IN P B_HDINP2_L - PCS 361 CH 2 IN P D26 B_VDDIB2_L - B_VDDIB2_L - G23 VCC12 - VCC12 - D27 B_VDDIB1_L - B_VDDIB1_L - G24 VCC12 - VCC12 - 4-72 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M40, LFSC/M80 Logic Signal Connections: 1152 fcBGA1, 2 (Cont.) LFSC/M40 LFSC/M80 Ball Number Ball Function VCCIO Bank Dual Function Ball Function VCCIO Bank Dual Function E24 B_HDINP1_L - PCS 361 CH 1 IN P B_HDINP1_L - PCS 361 CH 1 IN P F24 B_HDINN1_L - PCS 361 CH 1 IN N B_HDINN1_L - PCS 361 CH 1 IN N A23 B_HDOUTP1_L - PCS 361 CH 1 OUT P B_HDOUTP1_L - PCS 361 CH 1 OUT P VCC12 - PCS 361 CH 1 OUT N B_HDOUTN1_L - B_VDDOB1_L - PCS 361 CH 0 OUT N B_HDOUTN0_L - B_VDDOB0_L - PCS 361 CH 0 OUT P B_HDOUTP0_L - VCC12 - L25 VCC12 - B23 B_HDOUTN1_L - D24 B_VDDOB1_L - B24 B_HDOUTN0_L - PCS 361 CH 1 OUT N PCS 361 CH 0 OUT N D25 B_VDDOB0_L - A24 B_HDOUTP0_L - K25 VCC12 - F25 B_HDINN0_L - PCS 361 CH 0 IN N B_HDINN0_L - PCS 361 CH 0 IN N E25 B_HDINP0_L - PCS 361 CH 0 IN P B_HDINP0_L - PCS 361 CH 0 IN P D28 B_VDDIB0_L - B_VDDIB0_L - G25 VCC12 - VCC12 - D29 A_VDDIB3_L - A_VDDIB3_L - PCS 361 CH 0 OUT P C25 VCC12 - VCC12 - A25 A_HDINP3_L - PCS 360 CH 3 IN P A_HDINP3_L - PCS 360 CH 3 IN P B25 A_HDINN3_L - PCS 360 CH 3 IN N A_HDINN3_L - PCS 360 CH 3 IN N A26 A_HDOUTP3_L - PCS 360 CH 3 OUT P A_HDOUTP3_L - PCS 360 CH 3 OUT P VCC12 - PCS 360 CH 3 OUT N A_HDOUTN3_L - A_VDDOB3_L - PCS 360 CH 2 OUT N A_HDOUTN2_L - A_VDDOB2_L - PCS 360 CH 2 OUT P A_HDOUTP2_L - VCC12 - E27 VCC12 - B26 A_HDOUTN3_L - F26 A_VDDOB3_L - B27 A_HDOUTN2_L - PCS 360 CH 3 OUT N PCS 360 CH 2 OUT N F27 A_VDDOB2_L - A27 A_HDOUTP2_L - E28 VCC12 - B28 A_HDINN2_L - PCS 360 CH 2 IN N A_HDINN2_L - PCS 360 CH 2 IN N A28 A_HDINP2_L - PCS 360 CH 2 IN P A_HDINP2_L - PCS 360 CH 2 IN P D30 A_VDDIB2_L - A_VDDIB2_L - C28 VCC12 - VCC12 - D31 A_VDDIB1_L - A_VDDIB1_L - PCS 360 CH 2 OUT P C29 VCC12 - VCC12 - A29 A_HDINP1_L - PCS 360 CH 1 IN P A_HDINP1_L - PCS 360 CH 1 IN P B29 A_HDINN1_L - PCS 360 CH 1 IN N A_HDINN1_L - PCS 360 CH 1 IN N A30 A_HDOUTP1_L - PCS 360 CH 1 OUT P A_HDOUTP1_L - PCS 360 CH 1 OUT P VCC12 - PCS 360 CH 1 OUT N A_HDOUTN1_L - A_VDDOB1_L - PCS 360 CH 0 OUT N A_HDOUTN0_L - A_VDDOB0_L - PCS 360 CH 0 OUT P A_HDOUTP0_L - VCC12 - E29 VCC12 - B30 A_HDOUTN1_L - F28 A_VDDOB1_L - B31 A_HDOUTN0_L - PCS 360 CH 1 OUT N PCS 360 CH 0 OUT N F29 A_VDDOB0_L - A31 A_HDOUTP0_L - E30 VCC12 - B32 A_HDINN0_L - PCS 360 CH 0 IN N A_HDINN0_L - PCS 360 CH 0 IN N A32 A_HDINP0_L - PCS 360 CH 0 IN P A_HDINP0_L - PCS 360 CH 0 IN P D32 A_VDDIB0_L - A_VDDIB0_L - 4-73 PCS 360 CH 0 OUT P Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M40, LFSC/M80 Logic Signal Connections: 1152 fcBGA1, 2 (Cont.) LFSC/M40 Ball Number Ball Function VCCIO Bank C32 VCC12 E34 F34 LFSC/M80 Ball Function VCCIO Bank - VCC12 - NC - PL22A 7 NC - PL22B 7 Dual Function F33 NC - PL24A 7 G33 NC - PL24B 7 K30 NC - PL25A 7 L30 NC - PL25B 7 G34 NC - PL26A 7 H34 NC - PL26B 7 M32 NC - PL39A 7 N32 NC - PL39B 7 P28 NC - PL39C 7 R28 NC - PL39D 7 J34 NC - PL41A 7 K34 NC - PL41B 7 7 P30 NC - PL41C R30 NC - PL41D 7 W34 NC - PL59A 6 Y34 NC - PL59B 6 W32 NC - PL61A 6 Y32 NC - PL61B 6 AA34 NC - PL64A 6 AB34 NC - PL64B 6 AC34 NC - PL67A 6 AD34 NC - PL67B 6 Y30 NC - PL68A 6 AA30 NC - PL68B 6 AB33 NC - PL69A 6 AC33 NC - PL69B 6 AC2 NC - PR69B 3 AB2 NC - PR69A 3 AA5 NC - PR68B 3 Y5 NC - PR68A 3 AD1 NC - PR67B 3 AC1 NC - PR67A 3 AB1 NC - PR64B 3 AA1 NC - PR64A 3 Y3 NC - PR61B 3 W3 NC - PR61A 3 Y1 NC - PR59B 3 W1 NC - PR59A 3 R5 NC - PR41D 2 P5 NC - PR41C 2 K1 NC - PR41B 2 J1 NC - PR41A 2 4-74 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M40, LFSC/M80 Logic Signal Connections: 1152 fcBGA1, 2 (Cont.) LFSC/M40 Ball Number Ball Function VCCIO Bank R7 NC LFSC/M80 Ball Function VCCIO Bank - PR39D 2 Dual Function P7 NC - PR39C 2 N3 NC - PR39B 2 M3 NC - PR39A 2 H1 NC - PR26B 2 G1 NC - PR26A 2 L5 NC - PR25B 2 K5 NC - PR25A 2 G2 NC - PR24B 2 F2 NC - PR24A 2 F1 NC - PR22B 2 2 E1 NC - PR22A A2 GND - GND - A33 GND - GND - AA15 GND - GND - AA20 GND - GND - AA32 GND - GND - AA4 GND - GND - AB28 GND - GND - AB6 GND - GND - AC11 GND - GND - AC18 GND - GND - AC25 GND - GND - AD23 GND - GND - AD3 GND - GND - AD31 GND - GND - AE12 GND - GND - AE15 GND - GND - AE29 GND - GND - AE7 GND - GND - AE9 GND - GND - AF20 GND - GND - AF26 GND - GND - AG32 GND - GND - AG4 GND - GND - AH13 GND - GND - AH19 GND - GND - AH25 GND - GND - AH7 GND - GND - AJ10 GND - GND - AJ16 GND - GND - AJ22 GND - GND - AJ28 GND - GND - AK3 GND - GND - AK31 GND - GND - 4-75 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M40, LFSC/M80 Logic Signal Connections: 1152 fcBGA1, 2 (Cont.) LFSC/M40 Ball Number Ball Function VCCIO Bank AL11 GND AL17 AL21 LFSC/M80 Ball Function VCCIO Bank - GND - GND - GND - GND - GND - AL27 GND - GND - AL5 GND - GND - AM14 GND - GND - AM18 GND - GND - AM24 GND - GND - AM30 GND - GND - AM8 GND - GND - AN1 GND - GND - AN34 GND - GND - AP2 GND - GND - AP33 GND - GND - B1 GND - GND - Dual Function B34 GND - GND - C11 GND - GND - C12 GND - GND - C13 GND - GND - C14 GND - GND - C17 GND - GND - C21 GND - GND - C22 GND - GND - C23 GND - GND - C24 GND - GND - C26 GND - GND - C27 GND - GND - C30 GND - GND - C31 GND - GND - C4 GND - GND - C5 GND - GND - C8 GND - GND - C9 GND - GND - D18 GND - GND - E32 GND - GND - E4 GND - GND - F19 GND - GND - G16 GND - GND - G29 GND - GND - G7 GND - GND - H3 GND - GND - H31 GND - GND - J10 GND - GND - J15 GND - GND - J26 GND - GND - 4-76 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M40, LFSC/M80 Logic Signal Connections: 1152 fcBGA1, 2 (Cont.) LFSC/M40 Ball Number Ball Function VCCIO Bank K20 GND K23 K26 LFSC/M80 Ball Function VCCIO Bank - GND - GND - GND - GND - GND - K28 GND - GND - K6 GND - GND - K9 GND - GND - L12 GND - GND - L32 GND - GND - L4 GND - GND - M10 GND - GND - M17 GND - GND - M24 GND - GND - N29 GND - GND - N7 GND - GND - P15 GND - GND - P20 GND - GND - P3 GND - GND - P31 GND - GND - R10 GND - GND - R14 GND - GND - R16 GND - GND - R19 GND - GND - R21 GND - GND - R26 GND - GND - T15 GND - GND - T17 GND - GND - T18 GND - GND - T20 GND - GND - T28 GND - GND - T6 GND - GND - U16 GND - GND - U19 GND - GND - U23 GND - GND - U32 GND - GND - U4 GND - GND - V12 GND - GND - V16 GND - GND - V19 GND - GND - V3 GND - GND - Dual Function V31 GND - GND - W15 GND - GND - W17 GND - GND - W18 GND - GND - W20 GND - GND - W29 GND - GND - 4-77 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M40, LFSC/M80 Logic Signal Connections: 1152 fcBGA1, 2 (Cont.) LFSC/M40 Ball Number Ball Function VCCIO Bank W7 GND AA14 AA16 LFSC/M80 Ball Function VCCIO Bank - GND - VCC - VCC - VCC - VCC - AA17 VCC - VCC - AA18 VCC - VCC - AA19 VCC - VCC - AA21 VCC - VCC - AB13 VCC - VCC - AB22 VCC - VCC - N13 VCC - VCC - N22 VCC - VCC - P14 VCC - VCC - P16 VCC - VCC - P17 VCC - VCC - P18 VCC - VCC - P19 VCC - VCC - P21 VCC - VCC - R15 VCC - VCC - R17 VCC - VCC - R18 VCC - VCC - R20 VCC - VCC - T14 VCC - VCC - T16 VCC - VCC - T19 VCC - VCC - T21 VCC - VCC - U14 VCC - VCC - U15 VCC - VCC - U17 VCC - VCC - U18 VCC - VCC - U20 VCC - VCC - U21 VCC - VCC - V14 VCC - VCC - V15 VCC - VCC - V17 VCC - VCC - V18 VCC - VCC - V20 VCC - VCC - V21 VCC - VCC - W14 VCC - VCC - W16 VCC - VCC - W19 VCC - VCC - W21 VCC - VCC - Y15 VCC - VCC - Y17 VCC - VCC - Y18 VCC - VCC - Y20 VCC - VCC - Dual Function 4-78 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M40, LFSC/M80 Logic Signal Connections: 1152 fcBGA1, 2 (Cont.) LFSC/M40 Ball Number Ball Function VCCIO Bank AB15 VCC12 AB20 N15 LFSC/M80 Ball Function VCCIO Bank - VCC12 - VCC12 - VCC12 - VCC12 - VCC12 - N20 VCC12 - VCC12 - R13 VCC12 - VCC12 - R22 VCC12 - VCC12 - Y13 VCC12 - VCC12 - Dual Function Y22 VCC12 - VCC12 - AA12 VCCAUX - VCCAUX - AA23 VCCAUX - VCCAUX - AB12 VCCAUX - VCCAUX - AB16 VCCAUX - VCCAUX - AB17 VCCAUX - VCCAUX - AB18 VCCAUX - VCCAUX - AB19 VCCAUX - VCCAUX - AB23 VCCAUX - VCCAUX - AC12 VCCAUX - VCCAUX - AC13 VCCAUX - VCCAUX - Y19 GND - GND - AC14 VCCAUX - VCCAUX - AC17 VCCAUX - VCCAUX - AC21 VCCAUX - VCCAUX - AC22 VCCAUX - VCCAUX - AC23 VCCAUX - VCCAUX - M13 VCCAUX - VCCAUX - M14 VCCAUX - VCCAUX - M18 VCCAUX - VCCAUX - M21 VCCAUX - VCCAUX - M22 VCCAUX - VCCAUX - N12 VCCAUX - VCCAUX - N16 VCCAUX - VCCAUX - N17 VCCAUX - VCCAUX - N18 VCCAUX - VCCAUX - N19 VCCAUX - VCCAUX - N23 VCCAUX - VCCAUX - P12 VCCAUX - VCCAUX - P23 VCCAUX - VCCAUX - T13 VCCAUX - VCCAUX - T22 VCCAUX - VCCAUX - U12 VCCAUX - VCCAUX - U13 VCCAUX - VCCAUX - U22 VCCAUX - VCCAUX - V13 VCCAUX - VCCAUX - V22 VCCAUX - VCCAUX - V23 VCCAUX - VCCAUX - 4-79 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M40, LFSC/M80 Logic Signal Connections: 1152 fcBGA1, 2 (Cont.) LFSC/M40 Ball Number Ball Function VCCIO Bank W13 VCCAUX W22 Y21 LFSC/M80 Ball Function VCCIO Bank - VCCAUX - VCCAUX - VCCAUX - GND - GND - Dual Function Y25 GND - GND - C18 VCCIO1 - VCCIO1 - D17 VCCIO1 - VCCIO1 - F16 VCCIO1 - VCCIO1 - G19 VCCIO1 - VCCIO1 - J20 VCCIO1 - VCCIO1 - K12 VCCIO1 - VCCIO1 - K15 VCCIO1 - VCCIO1 - L23 VCCIO1 - VCCIO1 - Y9 GND - GND - J9 VCCIO1 - VCCIO1 - E3 VCCIO2 - VCCIO2 - G6 VCCIO2 - VCCIO2 - H4 VCCIO2 - VCCIO2 - K7 VCCIO2 - VCCIO2 - L3 VCCIO2 - VCCIO2 - M11 VCCIO2 - VCCIO2 - N6 VCCIO2 - VCCIO2 - P4 VCCIO2 - VCCIO2 - R9 VCCIO2 - VCCIO2 - AA3 VCCIO3 - VCCIO3 - AB7 VCCIO3 - VCCIO3 - AC10 VCCIO3 - VCCIO3 - AD4 VCCIO3 - VCCIO3 - AE6 VCCIO3 - VCCIO3 - AG3 VCCIO3 - VCCIO3 - AK4 VCCIO3 - VCCIO3 - T7 VCCIO3 - VCCIO3 - U3 VCCIO3 - VCCIO3 - V4 VCCIO3 - VCCIO3 - W6 VCCIO3 - VCCIO3 - Y10 VCCIO3 - VCCIO3 - AD12 VCCIO4 - VCCIO4 - AF15 VCCIO4 - VCCIO4 - AF9 VCCIO4 - VCCIO4 - AH10 VCCIO4 - VCCIO4 - AH16 VCCIO4 - VCCIO4 - AJ13 VCCIO4 - VCCIO4 - AJ7 VCCIO4 - VCCIO4 - AL14 VCCIO4 - VCCIO4 - AL8 VCCIO4 - VCCIO4 - AM11 VCCIO4 - VCCIO4 - 4-80 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M40, LFSC/M80 Logic Signal Connections: 1152 fcBGA1, 2 (Cont.) LFSC/M40 Ball Number Ball Function VCCIO Bank AM17 VCCIO4 - LFSC/M80 Dual Function Ball Function VCCIO Bank VCCIO4 - AM5 VCCIO4 - VCCIO4 - AE20 VCCIO5 - VCCIO5 - AE23 VCCIO5 - VCCIO5 - AE26 VCCIO5 - VCCIO5 - AH22 VCCIO5 - VCCIO5 - AH28 VCCIO5 - VCCIO5 - AJ19 VCCIO5 - VCCIO5 - AJ25 VCCIO5 - VCCIO5 - AL18 VCCIO5 - VCCIO5 - AL24 VCCIO5 - VCCIO5 - AL30 VCCIO5 - VCCIO5 - AM21 VCCIO5 - VCCIO5 - AM27 VCCIO5 - VCCIO5 - AA31 VCCIO6 - VCCIO6 - AB29 VCCIO6 - VCCIO6 - AC24 VCCIO6 - VCCIO6 - AD32 VCCIO6 - VCCIO6 - AE28 VCCIO6 - VCCIO6 - AG31 VCCIO6 - VCCIO6 - AK32 VCCIO6 - VCCIO6 - T29 VCCIO6 - VCCIO6 - U31 VCCIO6 - VCCIO6 - V32 VCCIO6 - VCCIO6 - W28 VCCIO6 - VCCIO6 - Y26 VCCIO6 - VCCIO6 - E31 VCCIO7 - VCCIO7 - G28 VCCIO7 - VCCIO7 - H32 VCCIO7 - VCCIO7 - K29 VCCIO7 - VCCIO7 - L31 VCCIO7 - VCCIO7 - M25 VCCIO7 - VCCIO7 - N28 VCCIO7 - VCCIO7 - P32 VCCIO7 - VCCIO7 - R25 VCCIO7 - VCCIO7 - J25 VCCIO1 - VCCIO1 - N11 VTT_2 2 VTT_2 2 R12 VTT_2 2 VTT_2 2 T12 VTT_2 2 VTT_2 2 AB11 VTT_3 3 VTT_3 3 W12 VTT_3 3 VTT_3 3 Y12 VTT_3 3 VTT_3 3 AC15 VTT_4 4 VTT_4 4 AC16 VTT_4 4 VTT_4 4 AD13 VTT_4 4 VTT_4 4 4-81 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M40, LFSC/M80 Logic Signal Connections: 1152 fcBGA1, 2 (Cont.) LFSC/M40 Ball Number Ball Function VCCIO Bank AC19 VTT_5 LFSC/M80 Ball Function VCCIO Bank 5 VTT_5 5 Dual Function AC20 VTT_5 5 VTT_5 5 AD22 VTT_5 5 VTT_5 5 AB24 VTT_6 6 VTT_6 6 W23 VTT_6 6 VTT_6 6 Y23 VTT_6 6 VTT_6 6 N24 VTT_7 7 VTT_7 7 R23 VTT_7 7 VTT_7 7 T23 VTT_7 7 VTT_7 7 M12 VDDAX25_R - VDDAX25_R - M23 VDDAX25_L - VDDAX25_L - Y16 GND - GND - Y14 GND - GND - N21 VCC12 - VCC12 - P22 VCC12 - VCC12 - AA22 VCC12 - VCC12 - AB21 VCC12 - VCC12 - AB14 VCC12 - VCC12 - AA13 VCC12 - VCC12 - P13 VCC12 - VCC12 - N14 VCC12 - VCC12 - G26 NC - NC - G9 NC - NC - J12 NC - NC - H12 NC - NC - H23 NC - NC - J23 NC - NC - 1. Differential pair grouping within a PCI is A (True) and B (complement) and C (True) and D (Complement). 2. The LatticeSC/M40 and LatticeSC/M80 in an 1152-pin package support a 32-bit MPI interface. 4-82 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M115 Logic Signal Connections: 1152 fcBGA1, 2 LFSC/M115 Ball Number Ball Function VCCIO Bank G27 A_REFCLKP_L - H27 A_REFCLKN_L - H25 VCC12 - H26 RESP_ULC - B33 RESETN 1 C34 TSALLN 1 D34 DONE 1 C33 INITN 1 J27 M0 1 K27 M1 1 Dual Function M26 M2 1 L26 M3 1 F30 PL15A 7 ULC_PLLT_IN_A/ULC_PLLT_FB_B G30 PL15B 7 ULC_PLLC_IN_A/ULC_PLLC_FB_B H28 PL15C 7 J28 PL15D 7 F31 PL17A 7 ULC_DLLT_IN_C/ULC_DLLT_FB_D G31 PL17B 7 ULC_DLLC_IN_C/ULC_DLLC_FB_D N25 PL17C 7 ULC_PLLT_IN_B/ULC_PLLT_FB_A P25 PL17D 7 ULC_PLLC_IN_B/ULC_PLLC_FB_A D33 PL18A 7 ULC_DLLT_IN_D/ULC_DLLT_FB_C ULC_DLLC_IN_D/ULC_DLLC_FB_C E33 PL18B 7 H29 PL18C 7 J29 PL18D 7 F32 PL19A 7 G32 PL19B 7 P26 PL19C 7 N26 PL19D 7 H30 PL26A 7 VREF2_7 J30 PL26B 7 L28 PL26C 7 M28 PL26D 7 J31 PL43A 7 K31 PL43B 7 L27 PL43C 7 VREF1_7 M27 PL43D 7 DIFFR_7 J32 PL45A 7 K32 PL45B 7 L29 PL45C 7 M29 PL45D 7 H33 PL47A 7 J33 PL47B 7 4-83 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M115 Logic Signal Connections: 1152 fcBGA1, 2 LFSC/M115 Ball Number Ball Function VCCIO Bank N27 PL47C 7 P27 PL47D 7 K33 PL49A 7 L33 PL49B 7 M30 PL49C 7 N30 PL49D 7 M31 PL51A 7 N31 PL51B 7 P24 PL51C 7 R24 PL51D 7 M33 PL56A 7 N33 PL56B 7 U25 PL56C 7 T25 PL56D 7 L34 PL57A 7 M34 PL57B 7 P29 PL57C 7 R29 PL57D 7 Dual Function N34 PL60A 7 P34 PL60B 7 R27 PL60C 7 T27 PL60D 7 R32 PL61A 7 PCLKT7_1 R31 PL61B 7 PCLKC7_1 U24 PL61C 7 PCLKT7_3 T24 PL61D 7 PCLKC7_3 P33 PL62A 7 PCLKT7_0 R33 PL62B 7 PCLKC7_0 T26 PL62C 7 PCLKT7_2 U26 PL62D 7 PCLKC7_2 T32 PL64A 6 PCLKT6_0 T31 PL64B 6 PCLKC6_0 U29 PL64C 6 PCLKT6_1 V29 PL64D 6 PCLKC6_1 T30 PL65A 6 U30 PL65B 6 U27 PL65C 6 PCLKT6_3 V27 PL65D 6 PCLKC6_3 R34 PL66A 6 T34 PL66B 6 U28 PL66C 6 PCLKT6_2 V28 PL66D 6 PCLKC6_2 V30 PL69A 6 4-84 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M115 Logic Signal Connections: 1152 fcBGA1, 2 LFSC/M115 Ball Number Ball Function VCCIO Bank W30 PL69B 6 W27 PL69C 6 Y27 PL69D 6 T33 PL70A 6 U33 PL70B 6 V25 PL70C 6 W25 PL70D 6 U34 PL71A 6 V34 PL71B 6 V26 PL71C 6 W26 PL71D 6 V33 PL74A 6 W33 PL74B 6 V24 PL74C 6 W24 PL74D 6 W31 PL77A 6 Y31 PL77B 6 Y29 PL77C 6 AA29 PL77D 6 Y33 PL79A 6 AA33 PL79B 6 Y28 PL79C 6 AA28 PL79D 6 AB32 PL90A 6 AC32 PL90B 6 AA26 PL90C 6 AA27 PL90D 6 AB31 PL91A 6 AC31 PL91B 6 Y24 PL91C 6 AA24 PL91D 6 AE34 PL92A 6 AF34 PL92B 6 AB30 PL92C 6 AC30 PL92D 6 AD33 PL94A 6 AE33 PL94B 6 AD30 PL94C 6 AE30 PL94D 6 AE32 PL96A 6 AF32 PL96B 6 AA25 PL96C 6 AB25 PL96D 6 4-85 Dual Function VREF1_6 DIFFR_6 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M115 Logic Signal Connections: 1152 fcBGA1, 2 LFSC/M115 Ball Number Ball Function VCCIO Bank AJ34 PL98A 6 AK34 PL98B 6 AB27 PL98C 6 AC27 PL98D 6 AF33 PL99A 6 AG33 PL99B 6 AC29 PL99C 6 AD29 PL99D 6 AE31 PL103A 6 AF31 PL103B 6 AF30 PL103C 6 AF29 PL103D 6 AH33 PL104A 6 AJ33 PL104B 6 AC28 PL104C 6 AD28 PL104D 6 AH32 PL107A 6 AJ32 PL107B 6 AD27 PL107C 6 AE27 PL107D 6 AG34 PL109A 6 AH34 PL109B 6 AC26 PL109C 6 AB26 PL109D 6 AK33 PL112A 6 AL33 PL112B 6 AG30 PL112C 6 AH30 PL112D 6 AL34 PL115A 6 AM34 PL115B 6 Dual Function VREF2_6 AJ30 PL115C 6 LLC_DLLT_IN_E/LLC_DLLT_FB_F AK30 PL115D 6 LLC_DLLC_IN_E/LLC_DLLC_FB_F AJ31 PL116A 6 AH31 PL116B 6 AD26 PL116C 6 AD25 PL116D 6 AL32 PL117A 6 LLC_DLLT_IN_F/LLC_DLLT_FB_E AL31 PL117B 6 LLC_DLLC_IN_F/LLC_DLLC_FB_E AG29 PL117C 6 LLC_PLLT_IN_B/LLC_PLLT_FB_A AG28 PL117D 6 LLC_PLLC_IN_B/LLC_PLLC_FB_A AF28 XRES - AF27 TEMP 6 AM33 PB3A 5 4-86 LLC_PLLT_IN_A/LLC_PLLT_FB_B Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M115 Logic Signal Connections: 1152 fcBGA1, 2 LFSC/M115 Ball Number Ball Function VCCIO Bank Dual Function AN33 PB3B 5 LLC_PLLC_IN_A/LLC_PLLC_FB_B AH29 PB3C 5 LLC_DLLT_IN_C/LLC_DLLT_FB_D AJ29 PB3D 5 LLC_DLLC_IN_C/LLC_DLLC_FB_D AM32 PB4A 5 LLC_DLLT_IN_D/LLC_DLLT_FB_C AM31 PB4B 5 LLC_DLLC_IN_D/LLC_DLLC_FB_C AG27 PB4C 5 AG26 PB4D 5 AL29 PB5A 5 AL28 PB5B 5 AH27 PB5C 5 AH26 PB5D 5 AN32 PB7A 5 AP32 PB7B 5 AF25 PB7C 5 AE25 PB7D 5 AN31 PB11A 5 AN30 PB11B 5 AK29 PB11C 5 AK28 PB11D 5 AP31 PB12A 5 AP30 PB12B 5 AD24 PB12C 5 AE24 PB12D 5 AM29 PB15A 5 AM28 PB15B 5 AJ27 PB15C 5 AJ26 PB15D 5 AP29 PB16A 5 AP28 PB16B 5 AK27 PB16C 5 AK26 PB16D 5 AN29 PB19A 5 AN28 PB19B 5 AG25 PB19C 5 AG24 PB19D 5 AL26 PB20A 5 AL25 PB20B 5 AG23 PB20C 5 AG22 PB20D 5 AN27 PB23A 5 AN26 PB23B 5 AF24 PB23C 5 AF23 PB23D 5 4-87 VREF1_5 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M115 Logic Signal Connections: 1152 fcBGA1, 2 LFSC/M115 Ball Number Ball Function VCCIO Bank Dual Function AP27 PB26A 5 AP26 PB26B 5 AK25 PB26C 5 AK24 PB26D 5 AN25 PB29A 5 AN24 PB29B 5 AE22 PB29C 5 AE21 PB29D 5 AM26 PB31A 5 AM25 PB31B 5 AF22 PB31C 5 AF21 PB31D 5 AN23 PB47A 5 AN22 PB47B 5 AP23 PB57A 5 AP22 PB57B 5 AG21 PB57C 5 AG20 PB57D 5 AP25 PB50A 5 PCLKT5_3 AP24 PB50B 5 PCLKC5_3 AD21 PB50C 5 PCLKT5_4 AD20 PB50D 5 PCLKC5_4 AL23 PB51A 5 PCLKT5_5 AL22 PB51B 5 PCLKC5_5 AH24 PB51C 5 AH23 PB51D 5 AM23 PB53A 5 PCLKT5_0 AM22 PB53B 5 PCLKC5_0 AJ24 PB53C 5 AJ23 PB53D 5 AN21 PB54A 5 PCLKT5_1 AN20 PB54B 5 PCLKC5_1 VREF2_5 AE19 PB54C 5 PCLKT5_6 AD19 PB54D 5 PCLKC5_6 AK21 PB55A 5 PCLKT5_2 AK20 PB55B 5 PCLKC5_2 AK23 PB55C 5 PCLKT5_7 AK22 PB55D 5 PCLKC5_7 AL20 PB58A 5 AL19 PB58B 5 AG19 PB58C 5 AF19 PB58D 5 AP21 PB61A 5 4-88 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M115 Logic Signal Connections: 1152 fcBGA1, 2 LFSC/M115 Ball Number Ball Function VCCIO Bank AP20 PB61B 5 AH21 PB61C 5 AH20 PB61D 5 AM20 PB63A 5 AM19 PB63B 5 AJ21 PB63C 5 AJ20 PB63D 5 AK19 PB66A 5 AK18 PB66B 5 AE18 PB66C 5 AD18 PB66D 5 AN19 PB69A 5 AN18 PB69B 5 AG18 PB69C 5 AF18 PB69D 5 AP19 PB71A 5 AP18 PB71B 5 AJ18 PB71C 5 AH18 PB71D 5 AP17 PB73A 4 AP16 PB73B 4 AJ17 PB73C 4 AH17 PB73D 4 AN17 PB75A 4 AN16 PB75B 4 AE17 PB75C 4 AD17 PB75D 4 AK17 PB78A 4 AK16 PB78B 4 AG17 PB78C 4 AF17 PB78D 4 AM16 PB81A 4 AM15 PB81B 4 AJ15 PB81C 4 AJ14 PB81D 4 AL16 PB83A 4 AL15 PB83B 4 AG16 PB83C 4 AF16 PB83D 4 AP15 PB86A 4 AP14 PB86B 4 AH15 PB86C 4 AH14 PB86D 4 4-89 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M115 Logic Signal Connections: 1152 fcBGA1, 2 LFSC/M115 Ball Number Ball Function VCCIO Bank Dual Function AN15 PB89A 4 PCLKT4_2 AN14 PB89B 4 PCLKC4_2 AE16 PB89C 4 PCLKT4_7 AD16 PB89D 4 PCLKC4_7 AK15 PB90A 4 PCLKT4_1 AK14 PB90B 4 PCLKC4_1 AG15 PB90C 4 PCLKT4_6 AG14 PB90D 4 PCLKC4_6 AM13 PB91A 4 PCLKT4_0 AM12 PB91B 4 PCLKC4_0 AJ12 PB91C 4 VREF2_4 AJ11 PB91D 4 AL13 PB93A 4 PCLKT4_5 AL12 PB93B 4 PCLKC4_5 AH12 PB93C 4 AH11 PB93D 4 AN13 PB94A 4 PCLKT4_3 AN12 PB94B 4 PCLKC4_3 AD14 PB94C 4 PCLKT4_4 AD15 PB94D 4 PCLKC4_4 AP13 PB87A 4 AP12 PB87B 4 AK13 PB87C 4 AK12 PB87D 4 AP11 PB97A 4 AP10 PB97B 4 AN11 PB113A 4 AN10 PB113B 4 AF14 PB113C 4 AF13 PB113D 4 AM10 PB115A 4 AM9 PB115B 4 AE14 PB115C 4 AE13 PB115D 4 AP9 PB118A 4 AP8 PB118B 4 AK11 PB118C 4 AK10 PB118D 4 AL10 PB121A 4 AL9 PB121B 4 AF12 PB121C 4 AF11 PB121D 4 AN9 PB123A 4 4-90 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M115 Logic Signal Connections: 1152 fcBGA1, 2 LFSC/M115 Ball Number Ball Function VCCIO Bank AN8 PB123B 4 AG11 PB123C 4 AG10 PB123D 4 AP7 PB125A 4 AP6 PB125B 4 AG13 PB125C 4 AG12 PB125D 4 AN7 PB127A 4 AN6 PB127B 4 AK9 PB127C 4 AK8 PB127D 4 AP5 PB129A 4 AP4 PB129B 4 AD11 PB129C 4 AE11 PB129D 4 AM7 PB131A 4 AM6 PB131B 4 AJ9 PB131C 4 AJ8 PB131D 4 AP3 PB133A 4 AN3 PB133B 4 AF10 PB133C 4 AE10 PB133D 4 AL7 PB135A 4 Dual Function AL6 PB135B 4 AK7 PB135C 4 AK6 PB135D 4 AN5 PB138A 4 AN4 PB138B 4 AH9 PB138C 4 AH8 PB138D 4 AM3 PB139A 4 LRC_DLLT_IN_C/LRC_DLLT_FB_D LRC_DLLC_IN_C/LRC_DLLC_FB_D VREF1_4 AM4 PB139B 4 AG9 PB139C 4 AG8 PB139D 4 AN2 PB141A 4 LRC_PLLT_IN_A/LRC_PLLT_FB_B AM2 PB141B 4 LRC_PLLC_IN_A/LRC_PLLC_FB_B AJ6 PB141C 4 LRC_DLLT_IN_D/LRC_DLLT_FB_C AH6 PB141D 4 LRC_DLLC_IN_D/LRC_DLLC_FB_C AF7 PROBE_VCC - AF8 PROBE_GND - AG7 PR117D 3 LRC_PLLC_IN_B/LRC_PLLC_FB_A AG6 PR117C 3 LRC_PLLT_IN_B/LRC_PLLT_FB_A 4-91 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M115 Logic Signal Connections: 1152 fcBGA1, 2 LFSC/M115 Ball Number Ball Function VCCIO Bank Dual Function AL4 PR117B 3 LRC_DLLC_IN_F/LRC_DLLC_FB_E AL3 PR117A 3 LRC_DLLT_IN_F/LRC_DLLT_FB_E AD10 PR116D 3 AD9 PR116C 3 AH4 PR116B 3 AJ4 PR116A 3 AK5 PR115D 3 LRC_DLLC_IN_E/LRC_DLLC_FB_F AJ5 PR115C 3 LRC_DLLT_IN_E/LRC_DLLT_FB_F AM1 PR115B 3 AL1 PR115A 3 AH5 PR112D 3 AG5 PR112C 3 AL2 PR112B 3 AK2 PR112A 3 AB9 PR109D 3 AC9 PR109C 3 AH1 PR109B 3 AG1 PR109A 3 AE8 PR107D 3 AD8 PR107C 3 AJ3 PR107B 3 AH3 PR107A 3 AD7 PR104D 3 AC7 PR104C 3 AJ2 PR104B 3 AH2 PR104A 3 AF6 PR103D 3 AF5 PR103C 3 AF4 PR103B 3 AE4 PR103A 3 AD6 PR99D 3 AC6 PR99C 3 AG2 PR99B 3 AF2 PR99A 3 AC8 PR98D 3 AB8 PR98C 3 AK1 PR98B 3 AJ1 PR98A 3 AB10 PR96D 3 AA10 PR96C 3 AF3 PR96B 3 AE3 PR96A 3 AE5 PR94D 3 4-92 VREF2_3 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M115 Logic Signal Connections: 1152 fcBGA1, 2 LFSC/M115 Ball Number Ball Function VCCIO Bank AD5 PR94C 3 AE2 PR94B 3 AD2 PR94A 3 AC5 PR92D 3 AB5 PR92C 3 AF1 PR92B 3 AE1 PR92A 3 AA11 PR91D 3 Y11 PR91C 3 AC4 PR91B 3 AB4 PR91A 3 AA8 PR90D 3 AA9 PR90C 3 AC3 PR90B 3 AB3 PR90A 3 AA7 PR79D 3 Y7 PR79C 3 AA2 PR79B 3 Y2 PR79A 3 AA6 PR77D 3 Y6 PR77C 3 Y4 PR77B 3 W4 PR77A 3 W11 PR74D 3 V11 PR74C 3 W2 PR74B 3 V2 PR74A 3 W9 PR71D 3 V9 PR71C 3 V1 PR71B 3 U1 PR71A 3 W10 PR70D 3 V10 PR70C 3 U2 PR70B 3 T2 PR70A 3 Y8 PR69D 3 W8 PR69C 3 W5 PR69B 3 Dual Function DIFFR_3 VREF1_3 V5 PR69A 3 V7 PR66D 3 PCLKC3_2 U7 PR66C 3 PCLKT3_2 T1 PR66B 3 R1 PR66A 3 4-93 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M115 Logic Signal Connections: 1152 fcBGA1, 2 LFSC/M115 Ball Number Ball Function VCCIO Bank Dual Function V8 PR65D 3 PCLKC3_3 U8 PR65C 3 PCLKT3_3 U5 PR65B 3 T5 PR65A 3 V6 PR64D 3 PCLKC3_1 U6 PR64C 3 PCLKT3_1 T4 PR64B 3 PCLKC3_0 T3 PR64A 3 PCLKT3_0 U9 PR62D 2 PCLKC2_2 T9 PR62C 2 PCLKT2_2 R2 PR62B 2 PCLKC2_0 P2 PR62A 2 PCLKT2_0 T11 PR61D 2 PCLKC2_3 U11 PR61C 2 PCLKT2_3 R4 PR61B 2 PCLKC2_1 R3 PR61A 2 PCLKT2_1 T8 PR60D 2 R8 PR60C 2 P1 PR60B 2 N1 PR60A 2 R6 PR57D 2 P6 PR57C 2 M1 PR57B 2 L1 PR57A 2 T10 PR56D 2 U10 PR56C 2 N2 PR56B 2 M2 PR56A 2 R11 PR51D 2 P11 PR51C 2 N4 PR51B 2 M4 PR51A 2 N5 PR49D 2 M5 PR49C 2 L2 PR49B 2 K2 PR49A 2 P8 PR47D 2 N8 PR47C 2 J2 PR47B 2 H2 PR47A 2 M6 PR45D 2 L6 PR45C 2 K3 PR45B 2 4-94 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M115 Logic Signal Connections: 1152 fcBGA1, 2 LFSC/M115 Ball Number Ball Function VCCIO Bank Dual Function J3 PR45A 2 M8 PR43D 2 DIFFR_2 L8 PR43C 2 VREF1_2 K4 PR43B 2 J4 PR43A 2 M7 PR26D 2 L7 PR26C 2 J5 PR26B 2 H5 PR26A 2 N9 PR19D 2 P9 PR19C 2 G3 PR19B 2 F3 PR19A 2 J6 PR18D 2 H6 PR18C 2 E2 PR18B 2 VREF2_2 URC_DLLC_IN_D/URC_DLLC_FB_C D2 PR18A 2 URC_DLLT_IN_D/URC_DLLT_FB_C P10 PR17D 2 URC_PLLC_IN_B/URC_PLLC_FB_A N10 PR17C 2 URC_PLLT_IN_B/URC_PLLT_FB_A G4 PR17B 2 URC_DLLC_IN_C/URC_DLLC_FB_D URC_DLLT_IN_C/URC_DLLT_FB_D F4 PR17A 2 J7 PR15D 2 H7 PR15C 2 G5 PR15B 2 URC_PLLC_IN_A/URC_PLLC_FB_B F5 PR15A 2 URC_PLLT_IN_A/URC_PLLT_FB_B C2 VCCJ - M9 TDO - L9 TMS - D1 TCK - C1 TDI - J8 PROGRAMN 1 K8 MPIIRQN 1 B2 CCLK 1 H9 RESP_URC - H10 VCC12 - H8 A_REFCLKN_R - G8 A_REFCLKP_R - C3 VCC12 - D3 A_VDDIB0_R - A3 A_HDINP0_R - PCS 3E0 CH 0 IN P B3 A_HDINN0_R - PCS 3E0 CH 0 IN N E5 VCC12 - A4 A_HDOUTP0_R - 4-95 TDO CFGIRQN/MPI_IRQ_N PCS 3E0 CH 0 OUT P Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M115 Logic Signal Connections: 1152 fcBGA1, 2 LFSC/M115 Ball Number Ball Function VCCIO Bank Dual Function F6 A_VDDOB0_R - B4 A_HDOUTN0_R - F7 A_VDDOB1_R - B5 A_HDOUTN1_R - E6 VCC12 - A5 A_HDOUTP1_R - PCS 3E0 CH 1 OUT P B6 A_HDINN1_R - PCS 3E0 CH 1 IN N A6 A_HDINP1_R - PCS 3E0 CH 1 IN P C6 VCC12 - D4 A_VDDIB1_R - C7 VCC12 - D5 A_VDDIB2_R - A7 A_HDINP2_R - PCS 3E0 CH 2 IN P B7 A_HDINN2_R - PCS 3E0 CH 2 IN N E7 VCC12 - A8 A_HDOUTP2_R - F8 A_VDDOB2_R - B8 A_HDOUTN2_R - F9 A_VDDOB3_R - B9 A_HDOUTN3_R - E8 VCC12 - A9 A_HDOUTP3_R - PCS 3E0 CH 3 OUT P B10 A_HDINN3_R - PCS 3E0 CH 3 IN N A10 A_HDINP3_R - PCS 3E0 CH 3 IN P C10 VCC12 - D6 A_VDDIB3_R - G10 VCC12 - D7 B_VDDIB0_R - E10 B_HDINP0_R - PCS 3E1 CH 0 IN P F10 B_HDINN0_R - PCS 3E1 CH 0 IN N K10 VCC12 - A11 B_HDOUTP0_R - D10 B_VDDOB0_R - B11 B_HDOUTN0_R - D11 B_VDDOB1_R - B12 B_HDOUTN1_R - PCS 3E0 CH 0 OUT N PCS 3E0 CH 1 OUT N PCS 3E0 CH 2 OUT P PCS 3E0 CH 2 OUT N PCS 3E0 CH 3 OUT N PCS 3E1 CH 0 OUT P PCS 3E1 CH 0 OUT N PCS 3E1 CH 1 OUT N L10 VCC12 - A12 B_HDOUTP1_R - PCS 3E1 CH 1 OUT P F11 B_HDINN1_R - PCS 3E1 CH 1 IN N E11 B_HDINP1_R - PCS 3E1 CH 1 IN P G11 VCC12 - D8 B_VDDIB1_R - G12 VCC12 - 4-96 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M115 Logic Signal Connections: 1152 fcBGA1, 2 LFSC/M115 Ball Number Ball Function VCCIO Bank Dual Function D9 B_VDDIB2_R - E12 B_HDINP2_R - PCS 3E1 CH 2 IN P PCS 3E1 CH 2 IN N F12 B_HDINN2_R - K11 VCC12 - A13 B_HDOUTP2_R - D12 B_VDDOB2_R - PCS 3E1 CH 2 OUT P B13 B_HDOUTN2_R - D13 B_VDDOB3_R - B14 B_HDOUTN3_R - L11 VCC12 - A14 B_HDOUTP3_R - PCS 3E1 CH 3 OUT P F13 B_HDINN3_R - PCS 3E1 CH 3 IN N PCS 3E1 CH 3 IN P E13 B_HDINP3_R - G13 VCC12 - E9 B_VDDIB3_R - L13 VCC12 - PCS 3E1 CH 2 OUT N PCS 3E1 CH 3 OUT N J11 B_REFCLKN_R - H11 B_REFCLKP_R - M15 PT93D 1 HDC/SI M16 PT93C 1 LDCN/SCS F14 PT93B 1 D8/MPI_DATA8 G14 PT93A 1 CS1/MPI_CS1 L15 PT90D 1 D9/MPI_DATA9 L14 PT90C 1 D10/MPI_DATA10 D14 PT90B 1 CS0N/MPI_CS0N E14 PT90A 1 RDN/MPI_STRB_N L16 PT89D 1 WRN/MPI_WR_N K16 PT89C 1 D7/MPI_DATA7 G15 PT89B 1 D6/MPI_DATA6 F15 PT89A 1 D5/MPI_DATA5 K14 PT87D 1 D4/MPI_DATA4 K13 PT87C 1 D3/MPI_DATA3 B15 PT87B 1 D2/MPI_DATA2 A15 PT87A 1 D1/MPI_DATA1 J14 PT86D 1 D16/PCLKC1_3/MPI_DATA16 H14 PT86C 1 D17/PCLKT1_3/MPI_DATA17 A16 PT86B 1 D0/MPI_DATA0 B16 PT86A 1 QOUT/CEON J13 PT83D 1 VREF2_1 H13 PT83C 1 D18/MPI_DATA18 D15 PT83B 1 DOUT E15 PT83A 1 MCA_DONE_IN J16 PT81D 1 D19/PCLKC1_2/MPI_DATA19 4-97 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M115 Logic Signal Connections: 1152 fcBGA1, 2 LFSC/M115 Ball Number Ball Function VCCIO Bank Dual Function J17 PT81C 1 D20/PCLKT1_2/MPI_DATA20 D16 PT81B 1 MCA_CLK_P1_OUT E16 PT81A 1 MCA_CLK_P1_IN H15 PT78D 1 D21/PCLKC1_1/MPI_DATA21 H16 PT78C 1 D22/PCLKT1_1/MPI_DATA22 C15 PT78B 1 MCA_CLK_P2_OUT C16 PT78A 1 MCA_CLK_P2_IN L17 PT75D 1 MCA_DONE_OUT K17 PT75C 1 BUSYN/RCLK/SCK E17 PT75B 1 DP0/MPI_PAR0 F17 PT75A 1 MPI_TA G17 PT73D 1 D23/MPI_DATA23 H17 PT73C 1 DP2/MPI_PAR2 A17 PT73B 1 PCLKC1_0 B17 PT73A 1 PCLKT1_0/MPI_CLK G18 PT71D 1 DP3/PCLKC1_4/MPI_PAR3 H18 PT71C 1 D24/PCLKT1_4/MPI_DATA24 E18 PT71B 1 MPI_RETRY F18 PT71A 1 A0/MPI_ADDR14 J18 PT69D 1 A1/MPI_ADDR15 J19 PT69C 1 A2/MPI_ADDR16 C20 PT69B 1 A3/MPI_ADDR17 C19 PT69A 1 A4/MPI_ADDR18 K18 PT66D 1 D25/PCLKC1_5/MPI_DATA25 L18 PT66C 1 D26/PCLKT1_5/MPI_DATA26 D19 PT66B 1 A5/MPI_ADDR19 E19 PT66A 1 A6/MPI_ADDR20 H19 PT63D 1 D27/MPI_DATA27 H20 PT63C 1 VREF1_1 A18 PT63B 1 A7/MPI_ADDR21 B18 PT63A 1 A8/MPI_ADDR22 H21 PT61D 1 D28/PCLKC1_6/MPI_DATA28 J21 PT61C 1 D29/PCLKT1_6/MPI_DATA29 A19 PT61B 1 A9/MPI_ADDR23 B19 PT61A 1 A10/MPI_ADDR24 H22 PT58D 1 D30/PCLKC1_7/MPI_DATA30 J22 PT58C 1 D31/PCLKT1_7/MPI_DATA31 F20 PT58B 1 A11/MPI_ADDR25 G20 PT58A 1 A12/MPI_ADDR26 K21 PT57D 1 D11/MPI_DATA11 K22 PT57C 1 D12/MPI_DATA12 A20 PT57B 1 A13/MPI_ADDR27 B20 PT57A 1 A14/MPI_ADDR28 4-98 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M115 Logic Signal Connections: 1152 fcBGA1, 2 LFSC/M115 Ball Number Ball Function VCCIO Bank Dual Function L21 PT55D 1 A16/MPI_ADDR30 L20 PT55C 1 D13/MPI_DATA13 D20 PT55B 1 A15/MPI_ADDR29 E20 PT55A 1 A17/MPI_ADDR31 L19 PT54D 1 A19/MPI_TSIZ1 K19 PT54C 1 A20/MPI_BDIP D21 PT54B 1 A18/MPI_TSIZ0 E21 PT54A 1 MPI_TEA M20 PT51D 1 D14/MPI_DATA14 M19 PT51C 1 DP1/MPI_PAR1 F21 PT51B 1 A21/MPI_BURST G21 PT51A 1 D15/MPI_DATA15 H24 B_REFCLKP_L - J24 B_REFCLKN_L - L22 VCC12 - E26 B_VDDIB3_L - G22 VCC12 - E22 B_HDINP3_L - PCS 361 CH 3 IN P F22 B_HDINN3_L - PCS 361 CH 3 IN N A21 B_HDOUTP3_L - PCS 361 CH 3 OUT P L24 VCC12 - B21 B_HDOUTN3_L - D22 B_VDDOB3_L - B22 B_HDOUTN2_L - D23 B_VDDOB2_L - A22 B_HDOUTP2_L - K24 VCC12 - F23 B_HDINN2_L - PCS 361 CH 2 IN N E23 B_HDINP2_L - PCS 361 CH 2 IN P D26 B_VDDIB2_L - G23 VCC12 - D27 B_VDDIB1_L - G24 VCC12 - E24 B_HDINP1_L - PCS 361 CH 3 OUT N PCS 361 CH 2 OUT N PCS 361 CH 2 OUT P PCS 361 CH 1 IN P F24 B_HDINN1_L - PCS 361 CH 1 IN N A23 B_HDOUTP1_L - PCS 361 CH 1 OUT P L25 VCC12 - B23 B_HDOUTN1_L - D24 B_VDDOB1_L - B24 B_HDOUTN0_L - D25 B_VDDOB0_L - A24 B_HDOUTP0_L - K25 VCC12 - 4-99 PCS 361 CH 1 OUT N PCS 361 CH 0 OUT N PCS 361 CH 0 OUT P Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M115 Logic Signal Connections: 1152 fcBGA1, 2 LFSC/M115 Ball Number Ball Function VCCIO Bank Dual Function F25 B_HDINN0_L - PCS 361 CH 0 IN N E25 B_HDINP0_L - PCS 361 CH 0 IN P D28 B_VDDIB0_L - G25 VCC12 - D29 A_VDDIB3_L - C25 VCC12 - A25 A_HDINP3_L - PCS 360 CH 3 IN P B25 A_HDINN3_L - PCS 360 CH 3 IN N A26 A_HDOUTP3_L - PCS 360 CH 3 OUT P E27 VCC12 - B26 A_HDOUTN3_L - F26 A_VDDOB3_L - B27 A_HDOUTN2_L - F27 A_VDDOB2_L - A27 A_HDOUTP2_L - E28 VCC12 - B28 A_HDINN2_L - PCS 360 CH 2 IN N A28 A_HDINP2_L - PCS 360 CH 2 IN P D30 A_VDDIB2_L - C28 VCC12 - D31 A_VDDIB1_L - C29 VCC12 - A29 A_HDINP1_L - PCS 360 CH 1 IN P B29 A_HDINN1_L - PCS 360 CH 1 IN N A30 A_HDOUTP1_L - PCS 360 CH 1 OUT P E29 VCC12 - B30 A_HDOUTN1_L - F28 A_VDDOB1_L - B31 A_HDOUTN0_L - F29 A_VDDOB0_L - A31 A_HDOUTP0_L - E30 VCC12 - B32 A_HDINN0_L - PCS 360 CH 0 IN N A32 A_HDINP0_L - PCS 360 CH 0 IN P D32 A_VDDIB0_L - C32 VCC12 - E34 PL30A 7 F34 PL30B 7 F33 PL34A 7 G33 PL34B 7 K30 PL38A 7 L30 PL38B 7 G34 PL40A 7 4-100 PCS 360 CH 3 OUT N PCS 360 CH 2 OUT N PCS 360 CH 2 OUT P PCS 360 CH 1 OUT N PCS 360 CH 0 OUT N PCS 360 CH 0 OUT P Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M115 Logic Signal Connections: 1152 fcBGA1, 2 LFSC/M115 Ball Number Ball Function VCCIO Bank H34 PL40B 7 M32 PL53A 7 N32 PL53B 7 P28 PL53C 7 R28 PL53D 7 J34 PL55A 7 K34 PL55B 7 P30 PL55C 7 R30 PL55D 7 W34 PL73A 6 Y34 PL73B 6 W32 PL75A 6 Y32 PL75B 6 AA34 PL78A 6 AB34 PL78B 6 AC34 PL81A 6 AD34 PL81B 6 Y30 PL82A 6 AA30 PL82B 6 AB33 PL83A 6 AC33 PL83B 6 AC2 PR83B 3 AB2 PR83A 3 AA5 PR82B 3 Y5 PR82A 3 AD1 PR81B 3 AC1 PR81A 3 AB1 PR78B 3 AA1 PR78A 3 Y3 PR75B 3 W3 PR75A 3 Y1 PR73B 3 W1 PR73A 3 R5 PR55D 2 P5 PR55C 2 K1 PR55B 2 J1 PR55A 2 R7 PR53D 2 P7 PR53C 2 N3 PR53B 2 M3 PR53A 2 H1 PR40B 2 G1 PR40A 2 4-101 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M115 Logic Signal Connections: 1152 fcBGA1, 2 LFSC/M115 Ball Number Ball Function VCCIO Bank L5 PR38B 2 K5 PR38A 2 G2 PR34B 2 F2 PR34A 2 F1 PR30B 2 E1 PR30A 2 A2 GND - A33 GND - AA15 GND - AA20 GND - AA32 GND - AA4 GND - AB28 GND - AB6 GND - AC11 GND - AC18 GND - AC25 GND - AD23 GND - AD3 GND - AD31 GND - AE12 GND - AE15 GND - AE29 GND - AE7 GND - AE9 GND - AF20 GND - AF26 GND - AG32 GND - AG4 GND - AH13 GND - AH19 GND - AH25 GND - AH7 GND - AJ10 GND - AJ16 GND - AJ22 GND - AJ28 GND - AK3 GND - AK31 GND - AL11 GND - AL17 GND - AL21 GND - AL27 GND - 4-102 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M115 Logic Signal Connections: 1152 fcBGA1, 2 LFSC/M115 Ball Number Ball Function VCCIO Bank AL5 GND - AM14 GND - AM18 GND - AM24 GND - AM30 GND - AM8 GND - AN1 GND - AN34 GND - AP2 GND - AP33 GND - B1 GND - B34 GND - C11 GND - C12 GND - C13 GND - C14 GND - C17 GND - C21 GND - C22 GND - C23 GND - C24 GND - C26 GND - C27 GND - C30 GND - C31 GND - C4 GND - C5 GND - C8 GND - C9 GND - D18 GND - E32 GND - E4 GND - F19 GND - G16 GND - G29 GND - G7 GND - H3 GND - H31 GND - J10 GND - J15 GND - J26 GND - K20 GND - K23 GND - 4-103 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M115 Logic Signal Connections: 1152 fcBGA1, 2 LFSC/M115 Ball Number Ball Function VCCIO Bank K26 GND - K28 GND - K6 GND - K9 GND - L12 GND - L32 GND - L4 GND - M10 GND - M17 GND - M24 GND - N29 GND - N7 GND - P15 GND - P20 GND - P3 GND - P31 GND - R10 GND - R14 GND - R16 GND - R19 GND - R21 GND - R26 GND - T15 GND - T17 GND - T18 GND - T20 GND - T28 GND - T6 GND - U16 GND - U19 GND - U23 GND - U32 GND - U4 GND - V12 GND - V16 GND - V19 GND - V3 GND - V31 GND - W15 GND - W17 GND - W18 GND - W20 GND - W29 GND - 4-104 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M115 Logic Signal Connections: 1152 fcBGA1, 2 LFSC/M115 Ball Number Ball Function VCCIO Bank W7 GND - AA14 VCC - AA16 VCC - AA17 VCC - AA18 VCC - AA19 VCC - AA21 VCC - AB13 VCC - AB22 VCC - N13 VCC - N22 VCC - P14 VCC - P16 VCC - P17 VCC - P18 VCC - P19 VCC - P21 VCC - R15 VCC - R17 VCC - R18 VCC - R20 VCC - T14 VCC - T16 VCC - T19 VCC - T21 VCC - U14 VCC - U15 VCC - U17 VCC - U18 VCC - U20 VCC - U21 VCC - V14 VCC - V15 VCC - V17 VCC - V18 VCC - V20 VCC - V21 VCC - W14 VCC - W16 VCC - W19 VCC - W21 VCC - Y15 VCC - Y17 VCC - 4-105 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M115 Logic Signal Connections: 1152 fcBGA1, 2 LFSC/M115 Ball Number Ball Function VCCIO Bank Y18 VCC - Y20 VCC - AB15 VCC12 - AB20 VCC12 - N15 VCC12 - N20 VCC12 - R13 VCC12 - R22 VCC12 - Y13 VCC12 - Y22 VCC12 - AA12 VCCAUX - AA23 VCCAUX - AB12 VCCAUX - AB16 VCCAUX - AB17 VCCAUX - AB18 VCCAUX - AB19 VCCAUX - AB23 VCCAUX - AC12 VCCAUX - AC13 VCCAUX - Y19 GND - AC14 VCCAUX - AC17 VCCAUX - AC21 VCCAUX - AC22 VCCAUX - AC23 VCCAUX - M13 VCCAUX - M14 VCCAUX - M18 VCCAUX - M21 VCCAUX - M22 VCCAUX - N12 VCCAUX - N16 VCCAUX - N17 VCCAUX - N18 VCCAUX - N19 VCCAUX - N23 VCCAUX - P12 VCCAUX - P23 VCCAUX - T13 VCCAUX - T22 VCCAUX - U12 VCCAUX - U13 VCCAUX - 4-106 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M115 Logic Signal Connections: 1152 fcBGA1, 2 LFSC/M115 Ball Number Ball Function VCCIO Bank U22 VCCAUX - V13 VCCAUX - V22 VCCAUX - V23 VCCAUX - W13 VCCAUX - W22 VCCAUX - Y21 GND - Y25 GND - C18 VCCIO1 - D17 VCCIO1 - F16 VCCIO1 - G19 VCCIO1 - J20 VCCIO1 - K12 VCCIO1 - K15 VCCIO1 - L23 VCCIO1 - Y9 GND - J9 VCCIO1 - E3 VCCIO2 - G6 VCCIO2 - H4 VCCIO2 - K7 VCCIO2 - L3 VCCIO2 - M11 VCCIO2 - N6 VCCIO2 - P4 VCCIO2 - R9 VCCIO2 - AA3 VCCIO3 - AB7 VCCIO3 - AC10 VCCIO3 - AD4 VCCIO3 - AE6 VCCIO3 - AG3 VCCIO3 - AK4 VCCIO3 - T7 VCCIO3 - U3 VCCIO3 - V4 VCCIO3 - W6 VCCIO3 - Y10 VCCIO3 - AD12 VCCIO4 - AF15 VCCIO4 - AF9 VCCIO4 - AH10 VCCIO4 - 4-107 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M115 Logic Signal Connections: 1152 fcBGA1, 2 LFSC/M115 Ball Number Ball Function VCCIO Bank AH16 VCCIO4 - AJ13 VCCIO4 - AJ7 VCCIO4 - AL14 VCCIO4 - AL8 VCCIO4 - AM11 VCCIO4 - AM17 VCCIO4 - AM5 VCCIO4 - AE20 VCCIO5 - AE23 VCCIO5 - AE26 VCCIO5 - AH22 VCCIO5 - AH28 VCCIO5 - AJ19 VCCIO5 - AJ25 VCCIO5 - AL18 VCCIO5 - AL24 VCCIO5 - AL30 VCCIO5 - AM21 VCCIO5 - AM27 VCCIO5 - AA31 VCCIO6 - AB29 VCCIO6 - AC24 VCCIO6 - AD32 VCCIO6 - AE28 VCCIO6 - AG31 VCCIO6 - AK32 VCCIO6 - T29 VCCIO6 - U31 VCCIO6 - V32 VCCIO6 - W28 VCCIO6 - Y26 VCCIO6 - E31 VCCIO7 - G28 VCCIO7 - H32 VCCIO7 - K29 VCCIO7 - L31 VCCIO7 - M25 VCCIO7 - N28 VCCIO7 - P32 VCCIO7 - R25 VCCIO7 - J25 VCCIO1 - N11 VTT_2 2 4-108 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M115 Logic Signal Connections: 1152 fcBGA1, 2 LFSC/M115 Ball Number Ball Function VCCIO Bank R12 VTT_2 2 T12 VTT_2 2 AB11 VTT_3 3 W12 VTT_3 3 Y12 VTT_3 3 AC15 VTT_4 4 AC16 VTT_4 4 AD13 VTT_4 4 AC19 VTT_5 5 AC20 VTT_5 5 AD22 VTT_5 5 AB24 VTT_6 6 W23 VTT_6 6 Y23 VTT_6 6 N24 VTT_7 7 R23 VTT_7 7 T23 VTT_7 7 M12 VDDAX25_R - M23 VDDAX25_L - Y16 GND - Y14 GND - N21 VCC12 - P22 VCC12 - AA22 VCC12 - AB21 VCC12 - AB14 VCC12 - AA13 VCC12 - P13 VCC12 - N14 VCC12 - G26 NC - G9 NC - J12 NC - H12 NC - H23 NC - J23 NC - 1. Differential pair grouping within a PCI is A (True) and B (complement) and C (True) and D (Complement). 2. The LatticeSC/M115 in an 1152-pin package supports a 32-bit MPI interface. 4-109 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 LFSC/M80 Ball Number Ball Function VCCIO Bank G34 A_REFCLKP_L H34 N30 LFSC/M115 Dual Function Ball Function VCCIO Bank - A_REFCLKP_L - A_REFCLKN_L - A_REFCLKN_L - VCC12 - VCC12 - H33 RESP_ULC - RESP_ULC - P25 RESETN 1 RESETN 1 P26 TSALLN 1 TSALLN 1 P31 DONE 1 DONE 1 P23 INITN 1 INITN 1 P30 M0 1 M0 1 P22 M1 1 M1 1 P24 M2 1 M2 1 R22 M3 1 M3 1 J37 PL16A 7 ULC_PLLT_IN_A/ULC_PLLT_FB_B PL15A 7 ULC_PLLT_IN_A/ULC_PLLT_FB_B ULC_PLLC_IN_A/ULC_PLLC_FB_B PL15B 7 ULC_PLLC_IN_A/ULC_PLLC_FB_B PL15C 7 J38 PL16B 7 P32 PL16C 7 R32 PL16D 7 G40 PL17A 7 ULC_DLLT_IN_C/ULC_DLLT_FB_D H40 PL17B 7 N33 PL17C 7 P33 PL17D G41 Dual Function PL15D 7 PL17A 7 ULC_DLLT_IN_C/ULC_DLLT_FB_D ULC_DLLC_IN_C/ULC_DLLC_FB_D PL17B 7 ULC_DLLC_IN_C/ULC_DLLC_FB_D ULC_PLLT_IN_B/ULC_PLLT_FB_A PL17C 7 ULC_PLLT_IN_B/ULC_PLLT_FB_A 7 ULC_PLLC_IN_B/ULC_PLLC_FB_A PL17D 7 ULC_PLLC_IN_B/ULC_PLLC_FB_A PL18A 7 ULC_DLLT_IN_D/ULC_DLLT_FB_C PL18A 7 ULC_DLLT_IN_D/ULC_DLLT_FB_C H41 PL18B 7 ULC_DLLC_IN_D/ULC_DLLC_FB_C ULC_DLLC_IN_D/ULC_DLLC_FB_C T29 PL18C 7 U29 PL18D 7 G42 PL20A 7 VREF2_7 PL18B 7 PL18C 7 PL18D 7 PL19A 7 H42 PL20B 7 PL19B 7 M34 PL20C 7 PL19C 7 M35 PL20D 7 PL19D 7 K37 PL21A 7 PL26A 7 L37 PL21B 7 PL26B 7 N34 PL21C 7 PL26C 7 P34 PL21D 7 PL26D 7 K38 PL22A 7 PL30A 7 7 L38 PL22B 7 PL30B T33 PL22C 7 PL30C 7 R33 PL22D 7 PL30D 7 J41 PL24A 7 PL34A 7 K41 PL24B 7 PL34B 7 U31 PL24C 7 PL34C 7 V31 PL24D 7 PL34D 7 K42 PL25A 7 PL38A 7 J42 PL25B 7 PL38B 7 J36 PL25C 7 PL38C 7 K36 PL25D 7 PL38D 7 N38 PL26A 7 PL40A 7 4-110 VREF2_7 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 Ball Number Ball Function VCCIO Bank LFSC/M115 Dual Function Ball Function VCCIO Bank Dual Function P38 PL26B 7 PL40B 7 N35 PL26C 7 PL40C 7 N36 PL26D 7 PL40D 7 N39 PL29A 7 PL43A 7 P39 PL29B 7 PL43B 7 R34 PL29C 7 VREF1_7 PL43C 7 VREF1_7 T34 PL29D 7 DIFFR_7 PL43D 7 DIFFR_7 L41 PL30A 7 PL44A 7 M41 PL30B 7 PL44B 7 W29 PL30C 7 PL44C 7 Y29 PL30D 7 PL44D 7 L42 PL31A 7 PL45A 7 M42 PL31B 7 PL45B 7 U32 PL31C 7 PL45C 7 V32 PL31D 7 PL45D 7 R37 PL33A 7 PL47A 7 T37 PL33B 7 PL47B 7 M36 PL33C 7 PL47C 7 M37 PL33D 7 PL47D 7 P40 PL34A 7 PL48A 7 N40 PL34B 7 PL48B 7 R35 PL34C 7 PL48C 7 T35 PL34D 7 PL48D 7 N41 PL35A 7 PL49A 7 P41 PL35B 7 PL49B 7 V33 PL35C 7 PL49C 7 U33 PL35D 7 PL49D 7 R38 PL37A 7 PL51A 7 T38 PL37B 7 PL51B 7 R36 PL37C 7 PL51C 7 T36 PL37D 7 PL51D 7 N42 PL38A 7 PL52A 7 P42 PL38B 7 PL52B 7 Y31 PL38C 7 PL52C 7 AA31 PL38D 7 PL52D 7 U37 PL39A 7 PL53A 7 V37 PL39B 7 PL53B 7 U34 PL39C 7 PL53C 7 V34 PL39D 7 PL53D 7 U39 PL41A 7 PL55A 7 T39 PL41B 7 PL55B 7 V35 PL41C 7 PL55C 7 W35 PL41D 7 PL55D 7 R41 PL42A 7 PL56A 7 T41 PL42B 7 PL56B 7 4-111 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 Ball Number Ball Function VCCIO Bank W33 PL42C Y33 PL42D W37 LFSC/M115 Dual Function Ball Function VCCIO Bank 7 PL56C 7 7 PL56D 7 PL43A 7 PL57A 7 Y37 PL43B 7 PL57B 7 Y32 PL43C 7 PL57C 7 AA32 PL43D 7 PL57D 7 U38 PL46A 7 PL60A 7 V38 PL46B 7 PL60B 7 W34 PL46C 7 PL60C 7 Y34 PL46D 7 T40 PL47A 7 PCLKT7_1 Dual Function PL60D 7 PL61A 7 PCLKT7_1 PCLKC7_1 U40 PL47B 7 PCLKC7_1 PL61B 7 AA33 PL47C 7 PCLKT7_3 PL61C 7 PCLKT7_3 AB33 PL47D 7 PCLKC7_3 PL61D 7 PCLKC7_3 R42 PL48A 7 PCLKT7_0 PL62A 7 PCLKT7_0 PCLKC7_0 T42 PL48B 7 PCLKC7_0 PL62B 7 AA34 PL48C 7 PCLKT7_2 PL62C 7 PCLKT7_2 AB34 PL48D 7 PCLKC7_2 PL62D 7 PCLKC7_2 U41 PL50A 6 PCLKT6_0 PL64A 6 PCLKT6_0 V41 PL50B 6 PCLKC6_0 PL64B 6 PCLKC6_0 V36 PL50C 6 PCLKT6_1 PL64C 6 PCLKT6_1 W36 PL50D 6 PCLKC6_1 PL64D 6 PCLKC6_1 U42 PL51A 6 PL65A 6 V42 PL51B 6 PL65B 6 AB31 PL51C 6 PCLKT6_3 PL65C 6 PCLKT6_3 AC31 PL51D 6 PCLKC6_3 PL65D 6 PCLKC6_3 W38 PL52A 6 PL66A 6 Y38 PL52B 6 PL66B 6 AA35 PL52C 6 PCLKT6_2 PL66C 6 PCLKT6_2 AB35 PL52D 6 PCLKC6_2 PL66D 6 PCLKC6_2 W39 PL55A 6 PL69A 6 Y39 PL55B 6 AB32 PL55C 6 PL69B 6 PL69C 6 AC32 PL55D 6 PL69D 6 W40 PL56A 6 PL70A 6 VREF1_6 Y40 PL56B 6 PL70B 6 AA36 PL56C 6 PL70C 6 AB36 PL56D 6 PL70D 6 W41 PL57A 6 PL71A 6 Y41 PL57B 6 PL71B 6 AA37 PL57C 6 PL71C 6 AB37 PL57D 6 PL71D 6 W42 PL59A 6 PL73A 6 Y42 PL59B 6 PL73B 6 AC33 PL59C 6 PL73C 6 4-112 VREF1_6 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 LFSC/M115 Ball Number Ball Function VCCIO Bank Dual Function Ball Function VCCIO Bank AD33 PL59D 6 PL73D 6 AA38 PL60A 6 PL74A 6 AB38 PL60B 6 PL74B 6 6 AC29 PL60C 6 PL74C AD29 PL60D 6 PL74D 6 AA41 PL61A 6 PL75A 6 AB41 PL61B 6 PL75B 6 6 AC34 PL61C 6 PL75C AD34 PL61D 6 PL75D 6 AA42 PL63A 6 PL77A 6 AB42 PL63B 6 PL77B 6 6 AC37 PL63C 6 PL77C AD37 PL63D 6 PL77D 6 AC38 PL64A 6 PL78A 6 AD38 PL64B 6 PL78B 6 AD36 PL64C 6 PL78C 6 AE36 PL64D 6 PL78D 6 AC39 PL65A 6 PL79A 6 AD39 PL65B 6 PL79B 6 AD35 PL65C 6 PL79C 6 AE35 PL65D 6 PL79D 6 AC40 PL67A 6 PL81A 6 AD40 PL67B 6 PL81B 6 AE37 PL67C 6 PL81C 6 AF37 PL67D 6 PL81D 6 AC41 PL68A 6 PL82A 6 AD41 PL68B 6 PL82B 6 AE34 PL68C 6 PL82C 6 AF34 PL68D 6 PL82D 6 AC42 PL69A 6 PL83A 6 AD42 PL69B 6 PL83B 6 AE33 PL69C 6 PL83C 6 AF33 PL69D 6 PL83D 6 AE38 PL72A 6 PL86A 6 AF38 PL72B 6 PL86B 6 AE32 PL72C 6 PL86C 6 AF32 PL72D 6 PL86D 6 AE41 PL73A 6 PL87A 6 AF41 PL73B 6 PL87B 6 AE31 PL73C 6 PL87C 6 AF31 PL73D 6 PL87D 6 AE42 PL74A 6 PL88A 6 AF42 PL74B 6 PL88B 6 AG37 PL74C 6 PL88C 6 AH37 PL74D 6 PL88D 6 4-113 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 Ball Number Ball Function VCCIO Bank LFSC/M115 Dual Function Ball Function VCCIO Bank AF40 PL76A 6 PL90A 6 AG40 PL76B 6 PL90B 6 AG36 PL76C 6 PL90C 6 AH36 PL76D 6 PL90D 6 AF39 PL77A 6 PL91A 6 AG39 PL77B 6 PL91B 6 AF29 PL77C 6 PL91C 6 AG29 PL77D 6 PL91D 6 AH42 PL78A 6 PL92A 6 AG42 PL78B 6 PL92B 6 AG35 PL78C 6 PL92C 6 6 DIFFR_6 AH35 PL78D 6 PL92D AG41 PL80A 6 PL94A 6 AH41 PL80B 6 PL94B 6 AG34 PL80C 6 PL94C 6 AH34 PL80D 6 PL94D 6 AJ42 PL81A 6 PL96A 6 AK42 PL81B 6 PL96B 6 AG33 PL81C 6 PL96C 6 AH33 PL81D 6 PL96D 6 AJ41 PL82A 6 PL98A 6 AK41 PL82B 6 PL98B 6 AJ37 PL82C 6 PL98C 6 AK37 PL82D 6 PL98D 6 AJ40 PL84A 6 PL99A 6 AK40 PL84B 6 PL99B 6 AJ34 PL84C 6 PL99C 6 AK34 PL84D 6 PL99D 6 AJ38 PL85A 6 PL103A 6 AK38 PL85B 6 PL103B 6 AH32 PL85C 6 PL103C 6 6 AJ32 PL85D 6 PL103D AL42 PL86A 6 PL104A 6 AM42 PL86B 6 PL104B 6 AK36 PL86C 6 PL104C 6 AL36 PL86D 6 PL104D 6 AL38 PL89A 6 PL107A 6 AM38 PL89B 6 PL107B 6 AJ33 PL89C 6 PL107C 6 AK33 PL89D 6 PL107D 6 AN42 PL90A 6 PL109A 6 VREF2_6 AP42 PL90B 6 PL109B 6 AH31 PL90C 6 PL109C 6 AJ31 PL90D 6 PL109D 6 AN41 PL91A 6 PL112A 6 4-114 Dual Function DIFFR_6 VREF2_6 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 Ball Number LFSC/M115 Ball Function VCCIO Bank Dual Function Ball Function VCCIO Bank AP41 PL91B 6 PL112B 6 AK35 PL91C 6 PL112C 6 AL35 PL91D 6 PL112D 6 AN38 PL93A 6 PL115A 6 AP38 PL93B 6 PL115B 6 AL37 PL93C 6 LLC_DLLT_IN_E/LLC_DLLT_FB_F PL115C 6 LLC_DLLT_IN_E/LLC_DLLT_FB_F AM37 PL93D 6 LLC_DLLC_IN_E/LLC_DLLC_FB_F PL115D 6 LLC_DLLC_IN_E/LLC_DLLC_FB_F AR41 PL94A 6 PL116A 6 AT41 PL94B 6 PL116B 6 AN37 PL94C 6 PL116C 6 AP37 PL94D 6 PL116D 6 AR39 PL95A 6 LLC_DLLT_IN_F/LLC_DLLT_FB_E PL117A 6 LLC_DLLT_IN_F/LLC_DLLT_FB_E AR40 PL95B 6 LLC_DLLC_IN_F/LLC_DLLC_FB_E PL117B 6 LLC_DLLC_IN_F/LLC_DLLC_FB_E AN36 PL95C 6 LLC_PLLT_IN_B/LLC_PLLT_FB_A PL117C 6 LLC_PLLT_IN_B/LLC_PLLT_FB_A AP36 PL95D 6 LLC_PLLC_IN_B/LLC_PLLC_FB_A PL117D 6 LLC_PLLC_IN_B/LLC_PLLC_FB_A AT40 XRES - XRES - AU41 TEMP 6 TEMP 6 Dual Function AU42 PB3A 5 LLC_PLLT_IN_A/LLC_PLLT_FB_B PB3A 5 LLC_PLLT_IN_A/LLC_PLLT_FB_B AV42 PB3B 5 LLC_PLLC_IN_A/LLC_PLLC_FB_B PB3B 5 LLC_PLLC_IN_A/LLC_PLLC_FB_B AL33 PB3C 5 LLC_DLLT_IN_C/LLC_DLLT_FB_D PB3C 5 LLC_DLLT_IN_C/LLC_DLLT_FB_D AL34 PB3D 5 LLC_DLLC_IN_C/LLC_DLLC_FB_D PB3D 5 LLC_DLLC_IN_C/LLC_DLLC_FB_D AU38 PB4A 5 LLC_DLLT_IN_D/LLC_DLLT_FB_C PB4A 5 LLC_DLLT_IN_D/LLC_DLLT_FB_C AV38 PB4B 5 LLC_DLLC_IN_D/LLC_DLLC_FB_C PB4B 5 LLC_DLLC_IN_D/LLC_DLLC_FB_C AM34 PB4C 5 PB4C 5 AM33 PB4D 5 PB4D 5 AV41 PB5A 5 PB5A 5 AW41 PB5B 5 PB5B 5 AK30 PB5C 5 AK29 PB5D 5 AW42 PB7A AY42 PB5C 5 PB5D 5 5 PB7A 5 PB7B 5 PB7B 5 AR37 PB7C 5 PB7C 5 AR38 PB7D 5 PB7D 5 AV40 PB8A 5 PB9A 5 AV39 PB8B 5 PB9B 5 AN35 PB8C 5 PB9C 5 AN34 PB8D 5 PB9D 5 AW40 PB9A 5 PB11A 5 AY40 PB9B 5 PB11B 5 AP34 PB9C 5 PB11C 5 AP35 PB9D 5 PB11D 5 AW39 PB11A 5 PB12A 5 AW38 PB11B 5 PB12B 5 AL32 PB11C 5 PB12C 5 AL31 PB11D 5 PB12D 5 VREF1_5 4-115 VREF1_5 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 Ball Number Ball Function VCCIO Bank LFSC/M115 Dual Function Ball Function VCCIO Bank AY41 PB12A 5 PB13A 5 BA41 PB12B 5 PB13B 5 AT39 PB12C 5 PB13C 5 AT38 PB12D 5 PB13D 5 AV37 PB13A 5 PB15A 5 AV36 PB13B 5 PB15B 5 AM31 PB13C 5 PB15C 5 AM32 PB13D 5 PB15D 5 BA40 PB15A 5 PB16A 5 BB40 PB15B 5 PB16B 5 AM29 PB15C 5 PB16C 5 AL29 PB15D 5 PB16D 5 AY39 PB16A 5 PB17A 5 AY38 PB16B 5 PB17B 5 AN33 PB16C 5 PB17C 5 AN32 PB16D 5 PB17D 5 BA39 PB17A 5 PB19A 5 BA38 PB17B 5 PB19B 5 AT37 PB17C 5 PB19C 5 AT36 PB17D 5 PB19D 5 AW36 PB19A 5 PB20A 5 AW35 PB19B 5 PB20B 5 AM28 PB19C 5 PB20C 5 AL28 PB19D 5 PB20D 5 BB38 PB20A 5 PB21A 5 BB39 PB20B 5 PB21B 5 AR34 PB20C 5 PB21C 5 AR33 PB20D 5 PB21D 5 AV35 PB21A 5 PB23A 5 AV34 PB21B 5 PB23B 5 AT33 PB21C 5 PB23C 5 AT34 PB21D 5 PB23D 5 BA37 PB23A 5 PB25A 5 BA36 PB23B 5 PB25B 5 AP33 PB23C 5 PB25C 5 AP32 PB23D 5 PB25D 5 AY36 PB24A 5 PB26A 5 AY35 PB24B 5 PB26B 5 AN31 PB24C 5 PB26C 5 AN30 PB24D 5 PB26D 5 BB37 PB25A 5 PB27A 5 BB36 PB25B 5 PB27B 5 AP31 PB25C 5 PB27C 5 AP30 PB25D 5 PB27D 5 AV33 PB27A 5 PB29A 5 4-116 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 Ball Number Ball Function VCCIO Bank LFSC/M115 Dual Function Ball Function VCCIO Bank AV32 PB27B 5 PB29B 5 AU36 PB27C 5 PB29C 5 AU37 PB27D 5 PB29D 5 BA35 PB28A 5 PB30A 5 BA34 PB28B 5 PB30B 5 AJ26 PB28C 5 PB30C 5 AJ27 PB28D 5 PB30D 5 AW33 PB29A 5 PB31A 5 AW32 PB29B 5 PB31B 5 AU35 PB29C 5 PB31C 5 AU34 PB29D 5 PB31D 5 BB35 PB31A 5 PB33A 5 BB34 PB31B 5 PB33B 5 AN29 PB31C 5 PB33C 5 AP29 PB31D 5 PB33D 5 AY33 PB32A 5 PB34A 5 AY32 PB32B 5 PB34B 5 AR31 PB32C 5 PB34C 5 AR30 PB32D 5 PB34D 5 AV31 PB33A 5 PB35A 5 AV30 PB33B 5 PB35B 5 AN28 PB33C 5 PB35C 5 AP28 PB33D 5 PB35D 5 BA33 PB35A 5 PB37A 5 BA32 PB35B 5 PB37B 5 AT30 PB35C 5 PB37C 5 AT31 PB35D 5 PB37D 5 BB33 PB36A 5 PB38A 5 BB32 PB36B 5 PB38B 5 AM26 PB36C 5 PB38C 5 AL26 PB36D 5 PB38D 5 AW30 PB37A 5 PB39A 5 AW29 PB37B 5 PB39B 5 AP27 PB37C 5 PB39C 5 AN27 PB37D 5 PB39D 5 BA31 PB39A 5 PB41A 5 BA30 PB39B 5 PB41B 5 AU32 PB39C 5 PB41C 5 AU33 PB39D 5 PB41D 5 BB31 PB40A 5 PB42A 5 BB30 PB40B 5 PB42B 5 AR28 PB40C 5 PB42C 5 AR27 PB40D 5 PB42D 5 AV29 PB41A 5 PB43A 5 AV28 PB41B 5 PB43B 5 4-117 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 Ball Number Ball Function VCCIO Bank LFSC/M115 Dual Function Ball Function VCCIO Bank 5 AP26 PB41C 5 PB43C AN26 PB41D 5 PB43D 5 AY30 PB43A 5 PB45A 5 AY29 PB43B 5 PB45B 5 AU30 PB43C 5 PB45C 5 AU31 PB43D 5 PB45D 5 AV27 PB44A 5 PB46A 5 AV26 PB44B 5 PB46B 5 AT28 PB44C 5 PB46C 5 AT27 PB44D 5 PB46D 5 BA29 PB45A 5 PB47A 5 BA28 PB45B 5 PB47B 5 AL25 PB45C 5 PB47C 5 AM25 PB45D 5 PB47D 5 BB29 PB47A 5 PB49A 5 Dual Function BB28 PB47B 5 PB49B 5 AN25 PB47C 5 PB49C 5 AP25 PB47D 5 PB49D 5 AY27 PB48A 5 PCLKT5_3 PB50A 5 PCLKT5_3 AY26 PB48B 5 PCLKC5_3 PB50B 5 PCLKC5_3 AT25 PB48C 5 PCLKT5_4 PB50C 5 PCLKT5_4 AT24 PB48D 5 PCLKC5_4 PB50D 5 PCLKC5_4 AW27 PB49A 5 PCLKT5_5 PB51A 5 PCLKT5_5 AW26 PB49B 5 PCLKC5_5 PB51B 5 PCLKC5_5 AU29 PB49C 5 PB51C 5 AU28 PB49D 5 BB27 PB51A 5 PCLKT5_0 PCLKC5_0 PB51D 5 PB53A 5 PCLKT5_0 PB53B 5 PCLKC5_0 PB53C 5 BB26 PB51B 5 AR25 PB51C 5 AR24 PB51D 5 VREF2_5 PB53D 5 VREF2_5 BA27 PB52A 5 PCLKT5_1 PB54A 5 PCLKT5_1 BA26 PB52B 5 PCLKC5_1 PB54B 5 PCLKC5_1 AP24 PB52C 5 PCLKT5_6 PB54C 5 PCLKT5_6 AN24 PB52D 5 PCLKC5_6 PB54D 5 PCLKC5_6 AV25 PB53A 5 PCLKT5_2 PB55A 5 PCLKT5_2 PCLKC5_2 AV24 PB53B 5 PCLKC5_2 PB55B 5 AU27 PB53C 5 PCLKT5_7 PB55C 5 PCLKT5_7 AU26 PB53D 5 PCLKC5_7 PB55D 5 PCLKC5_7 BA25 PB55A 5 PB57A 5 BA24 PB55B 5 PB57B 5 AU24 PB55C 5 PB57C 5 AU25 PB55D 5 PB57D 5 BB24 PB56A 5 PB58A 5 BB25 PB56B 5 PB58B 5 AM23 PB56C 5 PB58C 5 4-118 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 Ball Number Ball Function VCCIO Bank LFSC/M115 Dual Function Ball Function VCCIO Bank AL23 PB56D 5 PB58D 5 AW24 PB57A 5 PB61A 5 AW23 PB57B 5 PB61B 5 AN23 PB57C 5 PB61C 5 AP23 PB57D 5 PB61D 5 AY23 PB59A 5 PB63A 5 AY24 PB59B 5 PB63B 5 AU23 PB59C 5 PB63C 5 AU22 PB59D 5 PB63D 5 AV23 PB60A 5 PB66A 5 AV22 PB60B 5 PB66B 5 AM22 PB60C 5 PB66C 5 AL22 PB60D 5 PB66D 5 BA23 PB61A 5 PB69A 5 BA22 PB61B 5 PB69B 5 AN22 PB61C 5 PB69C 5 AP22 PB61D 5 PB69D 5 BB23 PB63A 5 PB71A 5 BB22 PB63B 5 PB71B 5 AT22 PB63C 5 PB71C 5 AR22 PB63D 5 PB71D 5 BB21 PB65A 4 PB73A 4 BB20 PB65B 4 PB73B 4 AR21 PB65C 4 PB73C 4 AT21 PB65D 4 PB73D 4 BA21 PB66A 4 PB75A 4 BA20 PB66B 4 PB75B 4 AP21 PB66C 4 PB75C 4 AN21 PB66D 4 PB75D 4 AV21 PB67A 4 PB78A 4 AV20 PB67B 4 PB78B 4 AM21 PB67C 4 PB78C 4 AL21 PB67D 4 PB78D 4 AY20 PB69A 4 PB81A 4 AY19 PB69B 4 PB81B 4 AU21 PB69C 4 PB81C 4 AU20 PB69D 4 PB81D 4 AW20 PB70A 4 PB83A 4 AW19 PB70B 4 PB83B 4 AP20 PB70C 4 PB83C 4 AN20 PB70D 4 PB83D 4 BB19 PB71A 4 PB86A 4 BB18 PB71B 4 PB86B 4 AM20 PB71C 4 PB86C 4 AL20 PB71D 4 PB86D 4 4-119 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 LFSC/M115 Ball Number Ball Function VCCIO Bank Dual Function Ball Function VCCIO Bank 4 PB87A 4 4 PB87B 4 4 PB87C 4 Dual Function BA19 PB73A BA18 PB73B AU19 PB73C AU18 PB73D 4 PB87D 4 AV19 PB74A 4 PCLKT4_2 PB89A 4 PCLKT4_2 AV18 PB74B 4 PCLKC4_2 PB89B 4 PCLKC4_2 AN19 PB74C 4 PCLKT4_7 PB89C 4 PCLKT4_7 AP19 PB74D 4 PCLKC4_7 PB89D 4 PCLKC4_7 BB17 PB75A 4 PCLKT4_1 PB90A 4 PCLKT4_1 BB16 PB75B 4 PCLKC4_1 PB90B 4 PCLKC4_1 AT19 PB75C 4 PCLKT4_6 PB90C 4 PCLKT4_6 PCLKC4_6 AT18 PB75D 4 PCLKC4_6 PB90D 4 BA17 PB77A 4 PCLKT4_0 PB91A 4 PCLKT4_0 BA16 PB77B 4 PCLKC4_0 PB91B 4 PCLKC4_0 AR19 PB77C 4 VREF2_4 PB91C 4 VREF2_4 AR18 PB77D 4 PB91D 4 AY17 PB79A 4 PCLKT4_5 PB93A 4 PCLKT4_5 AY16 PB79B 4 PCLKC4_5 PB93B 4 PCLKC4_5 AN18 PB79C 4 PB93C 4 AP18 PB79D 4 PB93D 4 AW17 PB80A 4 PCLKT4_3 PB94A 4 PCLKT4_3 AW16 PB80B 4 PCLKC4_3 PB94B 4 PCLKC4_3 AU17 PB80C 4 PCLKT4_4 PB94C 4 PCLKT4_4 AU16 PB80D 4 PCLKC4_4 PB94D 4 PCLKC4_4 AV17 PB81A 4 PB95A 4 AV16 PB81B 4 PB95B 4 AL18 PB81C 4 PB95C 4 AM18 PB81D 4 PB95D 4 BB15 PB83A 4 PB97A 4 BB14 PB83B 4 PB97B 4 AP17 PB83C 4 PB97C 4 AN17 PB83D 4 PB97D 4 BA15 PB84A 4 PB98A 4 BA14 PB84B 4 PB98B 4 AT16 PB84C 4 PB98C 4 AT15 PB84D 4 PB98D 4 AV15 PB85A 4 PB99A 4 AV14 PB85B 4 PB99B 4 AR16 PB85C 4 PB99C 4 AR15 PB85D 4 PB99D 4 AY14 PB87A 4 PB101A 4 AY13 PB87B 4 PB101B 4 AU15 PB87C 4 PB101C 4 AU14 PB87D 4 PB101D 4 BB13 PB88A 4 PB102A 4 4-120 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 Ball Number Ball Function VCCIO Bank LFSC/M115 Dual Function Ball Function VCCIO Bank BB12 PB88B 4 PB102B 4 AM17 PB88C 4 PB102C 4 AL17 PB88D 4 PB102D 4 AW14 PB89A 4 PB103A 4 AW13 PB89B 4 PB103B 4 AP16 PB89C 4 PB103C 4 AN16 PB89D 4 PB103D 4 BA13 PB91A 4 PB105A 4 BA12 PB91B 4 PB105B 4 AU13 PB91C 4 PB105C 4 AU12 PB91D 4 PB105D 4 BB11 PB92A 4 PB106A 4 BB10 PB92B 4 PB106B 4 AP15 PB92C 4 PB106C 4 AN15 PB92D 4 PB106D 4 AV13 PB93A 4 PB107A 4 AV12 PB93B 4 PB107B 4 AT13 PB93C 4 PB107C 4 AT12 PB93D 4 PB107D 4 BA11 PB95A 4 PB109A 4 BA10 PB95B 4 PB109B 4 AR13 PB95C 4 PB109C 4 AR12 PB95D 4 PB109D 4 AY11 PB96A 4 PB110A 4 AY10 PB96B 4 PB110B 4 AP14 PB96C 4 PB110C 4 AN14 PB96D 4 PB110D 4 BB9 PB97A 4 PB111A 4 BB8 PB97B 4 PB111B 4 AU11 PB97C 4 PB111C 4 AU10 PB97D 4 PB111D 4 AW11 PB99A 4 PB113A 4 AW10 PB99B 4 PB113B 4 AJ16 PB99C 4 PB113C 4 AJ17 PB99D 4 PB113D 4 BA9 PB100A 4 PB114A 4 BA8 PB100B 4 PB114B 4 AM15 PB100C 4 PB114C 4 AL15 PB100D 4 PB114D 4 AV11 PB101A 4 PB115A 4 AV10 PB101B 4 PB115B 4 AP13 PB101C 4 PB115C 4 AP12 PB101D 4 PB115D 4 BB7 PB103A 4 PB117A 4 BB6 PB103B 4 PB117B 4 4-121 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 Ball Number Ball Function VCCIO Bank AU9 PB103C AU8 PB103D AY8 LFSC/M115 Dual Function Ball Function VCCIO Bank 4 PB117C 4 4 PB117D 4 PB104A 4 PB118A 4 AY7 PB104B 4 PB118B 4 AU7 PB104C 4 PB118C 4 AU6 PB104D 4 PB118D 4 BA7 PB105A 4 PB119A 4 BA6 PB105B 4 PB119B 4 AN13 PB105C 4 PB119C 4 AN12 PB105D 4 PB119D 4 AV9 PB107A 4 PB121A 4 AV8 PB107B 4 PB121B 4 AT10 PB107C 4 PB121C 4 AT9 PB107D 4 PB121D 4 AW8 PB108A 4 PB122A 4 AW7 PB108B 4 PB122B 4 AP11 PB108C 4 PB122C 4 AP10 PB108D 4 PB122D 4 BB5 PB109A 4 PB123A 4 BB4 PB109B 4 PB123B 4 AR10 PB109C 4 PB123C 4 AR9 PB109D 4 PB123D 4 BA5 PB111A 4 PB125A 4 BA4 PB111B 4 PB125B 4 AT7 PB111C 4 PB125C 4 AT6 PB111D 4 PB125D 4 BB3 PB112A 4 PB126A 4 BA3 PB112B 4 PB126B 4 AM14 PB112C 4 PB126C 4 AL14 PB112D 4 PB126D 4 AY5 PB113A 4 PB127A 4 AY4 PB113B 4 PB127B 4 AN11 PB113C 4 PB127C 4 AN10 PB113D 4 PB127D 4 AV7 PB115A 4 PB129A 4 AV6 PB115B 4 PB129B 4 AM12 PB115C 4 PB129C 4 AM11 PB115D 4 PB129D 4 AW5 PB116A 4 PB130A 4 AW4 PB116B 4 PB130B 4 AT5 PB116C 4 PB130C 4 AT4 PB116D 4 PB130D 4 AY2 PB117A 4 PB131A 4 BA2 PB117B 4 PB131B 4 AP9 PB117C 4 PB131C 4 4-122 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 VCCIO Bank LFSC/M115 Ball Number Ball Function Dual Function Ball Function AP8 PB117D 4 PB131D 4 AY3 PB119A 4 PB133A 4 AW3 PB119B 4 PB133B 4 AR6 PB119C 4 PB133C 4 AR5 PB119D 4 PB133D 4 AU5 PB120A 4 PB134A 4 AV5 PB120B 4 PB134B 4 AL12 PB120C 4 PB134C 4 AL11 PB120D 4 PB134D 4 AV3 PB121A 4 PB135A 4 AV4 PB121B 4 PB135B 4 AN9 PB121C 4 PB135C 4 AN8 PB121D 4 PB135D 4 AW1 PB123A 4 PB138A 4 AY1 PB123B 4 PB138B 4 AK14 PB123C 4 PB138C 4 AK13 PB123D 4 PB138D 4 VREF1_4 VCCIO Bank Dual Function VREF1_4 AV2 PB124A 4 LRC_DLLT_IN_C/LRC_DLLT_FB_D PB139A 4 LRC_DLLT_IN_C/LRC_DLLT_FB_D AW2 PB124B 4 LRC_DLLC_IN_C/LRC_DLLC_FB_D PB139B 4 LRC_DLLC_IN_C/LRC_DLLC_FB_D AM10 PB124C 4 PB139C 4 AM9 PB124D 4 PB139D 4 AV1 PB125A 4 LRC_PLLT_IN_A/LRC_PLLT_FB_B PB141A 4 LRC_PLLT_IN_A/LRC_PLLT_FB_B AU1 PB125B 4 LRC_PLLC_IN_A/LRC_PLLC_FB_B PB141B 4 LRC_PLLC_IN_A/LRC_PLLC_FB_B AL10 PB125C 4 LRC_DLLT_IN_D/LRC_DLLT_FB_C PB141C 4 LRC_DLLT_IN_D/LRC_DLLT_FB_C AL9 PB125D 4 LRC_DLLC_IN_D/LRC_DLLC_FB_C PB141D 4 LRC_DLLC_IN_D/LRC_DLLC_FB_C AT3 PROBE_VCC - PROBE_VCC - AU2 PROBE_GND - PROBE_GND - AP7 PR95D 3 LRC_PLLC_IN_B/LRC_PLLC_FB_A PR117D 3 AN7 PR95C 3 LRC_PLLT_IN_B/LRC_PLLT_FB_A PR117C 3 LRC_PLLC_IN_B/LRC_PLLC_FB_A LRC_PLLT_IN_B/LRC_PLLT_FB_A AR3 PR95B 3 LRC_DLLC_IN_F/LRC_DLLC_FB_E PR117B 3 LRC_DLLC_IN_F/LRC_DLLC_FB_E AR4 PR95A 3 LRC_DLLT_IN_F/LRC_DLLT_FB_E PR117A 3 LRC_DLLT_IN_F/LRC_DLLT_FB_E AP6 PR94D 3 PR116D 3 AN6 PR94C 3 PR116C 3 AT2 PR94B 3 PR116B 3 AR2 PR94A 3 PR116A 3 AM6 PR93D 3 LRC_DLLC_IN_E/LRC_DLLC_FB_F PR115D 3 LRC_DLLC_IN_E/LRC_DLLC_FB_F AL6 PR93C 3 LRC_DLLT_IN_E/LRC_DLLT_FB_F PR115C 3 LRC_DLLT_IN_E/LRC_DLLT_FB_F AP5 PR93B 3 PR115B 3 AN5 PR93A 3 PR115A 3 AL8 PR91D 3 PR112D 3 AK8 PR91C 3 PR112C 3 AP2 PR91B 3 PR112B 3 AN2 PR91A 3 PR112A 3 AJ12 PR90D 3 PR109D 3 AH12 PR90C 3 PR109C 3 4-123 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 Ball Number Ball Function VCCIO Bank LFSC/M115 Dual Function Ball Function VCCIO Bank 3 AP1 PR90B 3 PR109B AN1 PR90A 3 PR109A 3 AK10 PR89D 3 PR107D 3 AJ10 PR89C 3 PR107C 3 AM5 PR89B 3 PR107B 3 AL5 PR89A 3 PR107A 3 AL7 PR86D 3 PR104D 3 VREF2_3 AK7 PR86C 3 PR104C 3 AM1 PR86B 3 PR104B 3 AL1 PR86A 3 PR104A 3 AJ11 PR85D 3 PR103D 3 AH11 PR85C 3 PR103C 3 AK5 PR85B 3 PR103B 3 AJ5 PR85A 3 PR103A 3 AK9 PR84D 3 PR99D 3 AJ9 PR84C 3 PR99C 3 AK3 PR84B 3 PR99B 3 AJ3 PR84A 3 PR99A 3 AK6 PR82D 3 PR98D 3 AJ6 PR82C 3 PR98C 3 AK2 PR82B 3 PR98B 3 AJ2 PR82A 3 PR98A 3 AH10 PR81D 3 PR96D 3 AG10 PR81C 3 PR96C 3 AK1 PR81B 3 PR96B 3 AJ1 PR81A 3 PR96A 3 AH9 PR80D 3 PR94D 3 AG9 PR80C 3 PR94C 3 AH2 PR80B 3 PR94B 3 AG2 PR80A 3 PR94A 3 AH8 PR78D 3 PR92D 3 AG8 PR78C 3 PR92C 3 AG1 PR78B 3 PR92B 3 AH1 PR78A 3 PR92A 3 AG14 PR77D 3 PR91D 3 AF14 PR77C 3 PR91C 3 AG4 PR77B 3 PR91B 3 AF4 PR77A 3 PR91A 3 AH7 PR76D 3 PR90D 3 AG7 PR76C 3 PR90C 3 AG3 PR76B 3 PR90B 3 AF3 PR76A 3 PR90A 3 AH6 PR74D 3 PR88D 3 AG6 PR74C 3 PR88C 3 AF1 PR74B 3 PR88B 3 DIFFR_3 4-124 Dual Function VREF2_3 DIFFR_3 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 Ball Number Ball Function VCCIO Bank LFSC/M115 Dual Function Ball Function VCCIO Bank AE1 PR74A 3 PR88A 3 AF12 PR73D 3 PR87D 3 AE12 PR73C 3 PR87C 3 AF2 PR73B 3 PR87B 3 AE2 PR73A 3 PR87A 3 AF11 PR72D 3 PR86D 3 AE11 PR72C 3 PR86C 3 AF5 PR72B 3 PR86B 3 AE5 PR72A 3 PR86A 3 AF10 PR69D 3 PR83D 3 AE10 PR69C 3 PR83C 3 AD1 PR69B 3 PR83B 3 AC1 PR69A 3 PR83A 3 AF9 PR68D 3 PR82D 3 AE9 PR68C 3 PR82C 3 AD2 PR68B 3 PR82B 3 AC2 PR68A 3 PR82A 3 AF6 PR67D 3 PR81D 3 AE6 PR67C 3 PR81C 3 AD3 PR67B 3 PR81B 3 AC3 PR67A 3 PR81A 3 AE8 PR65D 3 PR79D 3 AD8 PR65C 3 PR79C 3 AD4 PR65B 3 PR79B 3 AC4 PR65A 3 PR79A 3 AE7 PR64D 3 PR78D 3 AD7 PR64C 3 PR78C 3 AD5 PR64B 3 PR78B 3 AC5 PR64A 3 PR78A 3 AD6 PR63D 3 PR77D 3 AC6 PR63C 3 PR77C 3 AB1 PR63B 3 PR77B 3 AA1 PR63A 3 PR77A 3 AD9 PR61D 3 PR75D 3 AC9 PR61C 3 PR75C 3 AB2 PR61B 3 PR75B 3 AA2 PR61A 3 PR75A 3 AD14 PR60D 3 PR74D 3 AC14 PR60C 3 PR74C 3 AB5 PR60B 3 PR74B 3 AA5 PR60A 3 PR74A 3 AD10 PR59D 3 PR73D 3 AC10 PR59C 3 PR73C 3 Y1 PR59B 3 PR73B 3 W1 PR59A 3 PR73A 3 4-125 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 Ball Number Ball Function VCCIO Bank AB6 PR57D AA6 PR57C Y2 PR57B LFSC/M115 Dual Function Ball Function VCCIO Bank 3 PR71D 3 3 PR71C 3 3 PR71B 3 W2 PR57A 3 PR71A 3 AB7 PR56D 3 PR70D 3 AA7 PR56C 3 PR70C 3 Y3 PR56B 3 PR70B 3 W3 PR56A 3 PR70A 3 AC11 PR55D 3 PR69D 3 AB11 PR55C 3 PR69C 3 Y4 PR55B 3 PR69B 3 VREF1_3 Dual Function VREF1_3 W4 PR55A 3 PR69A 3 AB8 PR52D 3 PCLKC3_2 PR66D 3 PCLKC3_2 AA8 PR52C 3 PCLKT3_2 PR66C 3 PCLKT3_2 Y5 PR52B 3 PR66B 3 W5 PR52A 3 PR66A 3 AC12 PR51D 3 PCLKC3_3 PR65D 3 PCLKC3_3 AB12 PR51C 3 PCLKT3_3 PR65C 3 PCLKT3_3 V1 PR51B 3 PR65B 3 U1 PR51A 3 PR65A 3 W7 PR50D 3 PCLKC3_1 PR64D 3 V7 PR50C 3 PCLKT3_1 PR64C 3 PCLKT3_1 V2 PR50B 3 PCLKC3_0 PR64B 3 PCLKC3_0 PCLKC3_1 U2 PR50A 3 PCLKT3_0 PR64A 3 PCLKT3_0 AB9 PR48D 2 PCLKC2_2 PR62D 2 PCLKC2_2 AA9 PR48C 2 PCLKT2_2 PR62C 2 PCLKT2_2 T1 PR48B 2 PCLKC2_0 PR62B 2 PCLKC2_0 R1 PR48A 2 PCLKT2_0 PR62A 2 PCLKT2_0 AB10 PR47D 2 PCLKC2_3 PR61D 2 PCLKC2_3 AA10 PR47C 2 PCLKT2_3 PR61C 2 PCLKT2_3 U3 PR47B 2 PCLKC2_1 PR61B 2 PCLKC2_1 PCLKT2_1 PCLKT2_1 T3 PR47A 2 PR61A 2 Y9 PR46D 2 PR60D 2 W9 PR46C 2 PR60C 2 V5 PR46B 2 PR60B 2 U5 PR46A 2 PR60A 2 AA11 PR43D 2 PR57D 2 Y11 PR43C 2 PR57C 2 Y6 PR43B 2 PR57B 2 W6 PR43A 2 PR57A 2 Y10 PR42D 2 PR56D 2 W10 PR42C 2 PR56C 2 T2 PR42B 2 PR56B 2 R2 PR42A 2 PR56A 2 W8 PR41D 2 PR55D 2 4-126 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 Ball Number Ball Function VCCIO Bank V8 PR41C T4 PR41B U4 LFSC/M115 Dual Function Ball Function VCCIO Bank 2 PR55C 2 2 PR55B 2 PR41A 2 PR55A 2 2 V9 PR39D 2 PR53D U9 PR39C 2 PR53C 2 V6 PR39B 2 PR53B 2 U6 PR39A 2 PR53A 2 AA12 PR38D 2 PR52D 2 Y12 PR38C 2 PR52C 2 P1 PR38B 2 PR52B 2 N1 PR38A 2 PR52A 2 T7 PR37D 2 PR51D 2 R7 PR37C 2 PR51C 2 T5 PR37B 2 PR51B 2 R5 PR37A 2 PR51A 2 U10 PR35D 2 PR49D 2 V10 PR35C 2 PR49C 2 P2 PR35B 2 PR49B 2 N2 PR35A 2 PR49A 2 2 T8 PR34D 2 PR48D R8 PR34C 2 PR48C 2 N3 PR34B 2 PR48B 2 P3 PR34A 2 PR48A 2 M6 PR33D 2 PR47D 2 M7 PR33C 2 PR47C 2 T6 PR33B 2 PR47B 2 R6 PR33A 2 PR47A 2 V11 PR31D 2 PR45D 2 U11 PR31C 2 PR45C 2 M1 PR31B 2 PR45B 2 L1 PR31A 2 PR45A 2 Y14 PR30D 2 PR44D 2 W14 PR30C 2 PR44C 2 M2 PR30B 2 PR44B 2 L2 PR30A 2 PR44A 2 Dual Function T9 PR29D 2 DIFFR_2 PR43D 2 DIFFR_2 R9 PR29C 2 VREF1_2 PR43C 2 VREF1_2 P4 PR29B 2 PR43B 2 N4 PR29A 2 PR43A 2 N7 PR26D 2 PR40D 2 N8 PR26C 2 PR40C 2 P5 PR26B 2 PR40B 2 N5 PR26A 2 PR40A 2 K7 PR25D 2 PR38D 2 J7 PR25C 2 PR38C 2 4-127 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 Ball Number Ball Function VCCIO Bank LFSC/M115 Dual Function Ball Function VCCIO Bank J1 PR25B 2 PR38B 2 K1 PR25A 2 PR38A 2 V12 PR24D 2 PR34D 2 U12 PR24C 2 PR34C 2 K2 PR24B 2 PR34B 2 J2 PR24A 2 PR34A 2 R10 PR22D 2 PR30D 2 T10 PR22C 2 PR30C 2 L5 PR22B 2 PR30B 2 K5 PR22A 2 PR30A 2 P9 PR21D 2 PR26D 2 N9 PR21C 2 PR26C 2 L6 PR21B 2 PR26B 2 K6 PR21A 2 PR26A 2 M8 PR20D 2 PR19D 2 M9 PR20C 2 PR19C 2 H1 PR20B 2 PR19B 2 G1 PR20A 2 U14 PR18D 2 T14 PR18C 2 PR18C 2 H2 PR18B 2 URC_DLLC_IN_D/URC_DLLC_FB_C PR18B 2 G2 PR18A 2 URC_DLLT_IN_D/URC_DLLT_FB_C PR18A 2 URC_DLLT_IN_D/URC_DLLT_FB_C P10 PR17D 2 URC_PLLC_IN_B/URC_PLLC_FB_A PR17D 2 URC_PLLC_IN_B/URC_PLLC_FB_A N10 PR17C 2 URC_PLLT_IN_B/URC_PLLT_FB_A PR17C 2 URC_PLLT_IN_B/URC_PLLT_FB_A H3 PR17B 2 URC_DLLC_IN_C/URC_DLLC_FB_D PR17B 2 URC_DLLC_IN_C/URC_DLLC_FB_D URC_DLLT_IN_C/URC_DLLT_FB_D PR17A 2 URC_DLLT_IN_C/URC_DLLT_FB_D PR15D 2 VREF2_2 PR19A 2 PR18D 2 Dual Function VREF2_2 URC_DLLC_IN_D/URC_DLLC_FB_C G3 PR17A 2 R11 PR16D 2 P11 PR16C 2 PR15C 2 J5 PR16B 2 URC_PLLC_IN_A/URC_PLLC_FB_B PR15B 2 URC_PLLC_IN_A/URC_PLLC_FB_B J6 PR16A 2 URC_PLLT_IN_A/URC_PLLT_FB_B PR15A 2 URC_PLLT_IN_A/URC_PLLT_FB_B P18 VCCJ - VCCJ - P19 TDO - TDO - R21 TMS - TDO TMS - P20 TCK - TCK - P12 TDI - TDI - P17 PROGRAMN 1 P21 MPIIRQN 1 P13 CCLK H10 RESP_URC PROGRAMN 1 MPIIRQN 1 1 CCLK 1 - RESP_URC - CFGIRQN/MPI_IRQ_N N13 VCC12 - VCC12 - H9 A_REFCLKN_R - A_REFCLKN_R - G9 A_REFCLKP_R - A_REFCLKP_R - F2 VCC12 - VCC12 - H4 A_VDDIB0_R - C1 A_HDINP0_R - PCS 3E0 CH 0 IN P 4-128 A_VDDIB0_R - A_HDINP0_R - TDO CFGIRQN/MPI_IRQ_N PCS 3E0 CH 0 IN P Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 LFSC/M115 Ball Number Ball Function VCCIO Bank Dual Function Ball Function VCCIO Bank Dual Function D1 A_HDINN0_R - PCS 3E0 CH 0 IN N A_HDINN0_R - PCS 3E0 CH 0 IN N F1 VCC12 - VCC12 - A3 A_HDOUTP0_R - PCS 3E0 CH 0 OUT P A_HDOUTP0_R - A_VDDOB0_R - PCS 3E0 CH 0 OUT N A_HDOUTN0_R - A_VDDOB1_R - PCS 3E0 CH 1 OUT N A_HDOUTN1_R - E1 A_VDDOB0_R - B3 A_HDOUTN0_R - C2 A_VDDOB1_R - A4 A_HDOUTN1_R - PCS 3E0 CH 0 OUT P PCS 3E0 CH 0 OUT N PCS 3E0 CH 1 OUT N B2 VCC12 - VCC12 - B4 A_HDOUTP1_R - PCS 3E0 CH 1 OUT P A_HDOUTP1_R - PCS 3E0 CH 1 OUT P E3 A_HDINN1_R - PCS 3E0 CH 1 IN N A_HDINN1_R - PCS 3E0 CH 1 IN N D3 A_HDINP1_R - PCS 3E0 CH 1 IN P A_HDINP1_R - PCS 3E0 CH 1 IN P M10 VCC12 - VCC12 - E2 A_VDDIB1_R - A_VDDIB1_R - J11 VCC12 - VCC12 - M11 A_VDDIB2_R - A_VDDIB2_R - D4 A_HDINP2_R - PCS 3E0 CH 2 IN P A_HDINP2_R - PCS 3E0 CH 2 IN P E4 A_HDINN2_R - PCS 3E0 CH 2 IN N A_HDINN2_R - PCS 3E0 CH 2 IN N VCC12 - PCS 3E0 CH 2 OUT P A_HDOUTP2_R - A_VDDOB2_R - PCS 3E0 CH 2 OUT N A_HDOUTN2_R - A_VDDOB3_R - PCS 3E0 CH 3 OUT N A_HDOUTN3_R - K9 VCC12 - A5 A_HDOUTP2_R - D2 A_VDDOB2_R - B5 A_HDOUTN2_R - L10 A_VDDOB3_R - B6 A_HDOUTN3_R - PCS 3E0 CH 2 OUT P PCS 3E0 CH 2 OUT N PCS 3E0 CH 3 OUT N G6 VCC12 - VCC12 - A6 A_HDOUTP3_R - PCS 3E0 CH 3 OUT P A_HDOUTP3_R - PCS 3E0 CH 3 OUT P E5 A_HDINN3_R - PCS 3E0 CH 3 IN N A_HDINN3_R - PCS 3E0 CH 3 IN N D5 A_HDINP3_R - PCS 3E0 CH 3 IN P A_HDINP3_R - PCS 3E0 CH 3 IN P K12 VCC12 - VCC12 - L13 A_VDDIB3_R - A_VDDIB3_R - N14 VCC12 - VCC12 - F9 B_VDDIB0_R - B_VDDIB0_R - D6 B_HDINP0_R - PCS 3E1 CH 0 IN P B_HDINP0_R - PCS 3E1 CH 0 IN P E6 B_HDINN0_R - PCS 3E1 CH 0 IN N B_HDINN0_R - PCS 3E1 CH 0 IN N VCC12 - PCS 3E1 CH 0 OUT P B_HDOUTP0_R - B_VDDOB0_R - PCS 3E1 CH 0 OUT N B_HDOUTN0_R - B_VDDOB1_R - PCS 3E1 CH 1 OUT N B_HDOUTN1_R - J8 VCC12 - B7 B_HDOUTP0_R - G4 B_VDDOB0_R - A7 B_HDOUTN0_R - K8 B_VDDOB1_R - A8 B_HDOUTN1_R - PCS 3E1 CH 0 OUT P PCS 3E1 CH 0 OUT N PCS 3E1 CH 1 OUT N L9 VCC12 - VCC12 - B8 B_HDOUTP1_R - PCS 3E1 CH 1 OUT P B_HDOUTP1_R - PCS 3E1 CH 1 OUT P E7 B_HDINN1_R - PCS 3E1 CH 1 IN N B_HDINN1_R - PCS 3E1 CH 1 IN N D7 B_HDINP1_R - PCS 3E1 CH 1 IN P B_HDINP1_R - PCS 3E1 CH 1 IN P F10 VCC12 - VCC12 - K13 B_VDDIB1_R - B_VDDIB1_R - 4-129 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 Ball Number Ball Function VCCIO Bank LFSC/M115 Dual Function Ball Function VCCIO Bank Dual Function K14 VCC12 - VCC12 - H11 B_VDDIB2_R - B_VDDIB2_R - D8 B_HDINP2_R - PCS 3E1 CH 2 IN P B_HDINP2_R - PCS 3E1 CH 2 IN P PCS 3E1 CH 2 IN N B_HDINN2_R - PCS 3E1 CH 2 IN N VCC12 - B_HDOUTP2_R - B_VDDOB2_R - B_HDOUTN2_R - B_VDDOB3_R - B_HDOUTN3_R - VCC12 - E8 B_HDINN2_R - G5 VCC12 - B9 B_HDOUTP2_R - L12 B_VDDOB2_R - PCS 3E1 CH 2 OUT P PCS 3E1 CH 2 OUT N PCS 3E1 CH 2 OUT P A9 B_HDOUTN2_R - C5 B_VDDOB3_R - A10 B_HDOUTN3_R - H5 VCC12 - B10 B_HDOUTP3_R - PCS 3E1 CH 3 OUT P B_HDOUTP3_R - PCS 3E1 CH 3 OUT P E9 B_HDINN3_R - PCS 3E1 CH 3 IN N B_HDINN3_R - PCS 3E1 CH 3 IN N D9 B_HDINP3_R - PCS 3E1 CH 3 IN P B_HDINP3_R - PCS 3E1 CH 3 IN P J13 VCC12 - VCC12 - H12 B_VDDIB3_R - B_VDDIB3_R - J12 VCC12 - VCC12 - M14 B_REFCLKN_R - B_REFCLKN_R - L14 B_REFCLKP_R - B_REFCLKP_R - PCS 3E1 CH 3 OUT N PCS 3E1 CH 2 OUT N PCS 3E1 CH 3 OUT N J14 VCC12 - VCC12 - G12 C_VDDIB0_R - C_VDDIB0_R - D10 C_HDINP0_R - PCS 3E2 CH 0 IN P C_HDINP0_R - PCS 3E2 CH 0 IN P E10 C_HDINN0_R - PCS 3E2 CH 0 IN N C_HDINN0_R - PCS 3E2 CH 0 IN N VCC12 - PCS 3E2 CH 0 OUT P C_HDOUTP0_R - C_VDDOB0_R - PCS 3E2 CH 0 OUT N C_HDOUTN0_R - C_VDDOB1_R - PCS 3E2 CH 1 OUT N C_HDOUTN1_R - VCC12 - PCS 3E2 CH 1 OUT P H6 VCC12 - B11 C_HDOUTP0_R - M12 C_VDDOB0_R - A11 C_HDOUTN0_R - L11 C_VDDOB1_R - A12 C_HDOUTN1_R - K11 VCC12 - B12 C_HDOUTP1_R - PCS 3E2 CH 1 OUT P C_HDOUTP1_R PCS 3E2 CH 0 OUT P PCS 3E2 CH 0 OUT N PCS 3E2 CH 1 OUT N E11 C_HDINN1_R - PCS 3E2 CH 1 IN N C_HDINN1_R - PCS 3E2 CH 1 IN N D11 C_HDINP1_R - PCS 3E2 CH 1 IN P C_HDINP1_R - PCS 3E2 CH 1 IN P H13 VCC12 - VCC12 - C6 C_VDDIB1_R - C_VDDIB1_R - H15 VCC12 - VCC12 - G13 C_VDDIB2_R - C_VDDIB2_R - D12 C_HDINP2_R - PCS 3E2 CH 2 IN P C_HDINP2_R - PCS 3E2 CH 2 IN P E12 C_HDINN2_R - PCS 3E2 CH 2 IN N C_HDINN2_R - PCS 3E2 CH 2 IN N VCC12 - PCS 3E2 CH 2 OUT P C_HDOUTP2_R - C_VDDOB2_R - PCS 3E2 CH 2 OUT N C_HDOUTN2_R - C_VDDOB3_R - PCS 3E2 CH 3 OUT N C_HDOUTN3_R - J9 VCC12 - B13 C_HDOUTP2_R - K10 C_VDDOB2_R - A13 C_HDOUTN2_R - J10 C_VDDOB3_R - A14 C_HDOUTN3_R - 4-130 PCS 3E2 CH 2 OUT P PCS 3E2 CH 2 OUT N PCS 3E2 CH 3 OUT N Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 Ball Number Ball Function VCCIO Bank LFSC/M115 Dual Function Ball Function VCCIO Bank Dual Function F5 VCC12 - VCC12 - B14 C_HDOUTP3_R - PCS 3E2 CH 3 OUT P C_HDOUTP3_R - PCS 3E2 CH 3 OUT P E13 C_HDINN3_R - PCS 3E2 CH 3 IN N C_HDINN3_R - PCS 3E2 CH 3 IN N D13 C_HDINP3_R - PCS 3E2 CH 3 IN P C_HDINP3_R - PCS 3E2 CH 3 IN P F12 VCC12 - VCC12 - G14 C_VDDIB3_R - C_VDDIB3_R - F11 VCC12 - VCC12 - K15 C_REFCLKN_R - C_REFCLKN_R - J15 C_REFCLKP_R - C_REFCLKP_R - G15 VCC12 - VCC12 - H16 D_VDDIB0_R - D_VDDIB0_R - D14 D_HDINP0_R - PCS 3E3 CH 0 IN P D_HDINP0_R - PCS 3E3 CH 0 IN P E14 D_HDINN0_R - PCS 3E3 CH 0 IN N D_HDINN0_R - PCS 3E3 CH 0 IN N VCC12 - PCS 3E3 CH 0 OUT P D_HDOUTP0_R - D_VDDOB0_R - PCS 3E3 CH 0 OUT N D_HDOUTN0_R - D_VDDOB1_R - PCS 3E3 CH 1 OUT N D_HDOUTN1_R - F6 VCC12 - B15 D_HDOUTP0_R - M13 D_VDDOB0_R - A15 D_HDOUTN0_R - F8 D_VDDOB1_R - A16 D_HDOUTN1_R - PCS 3E3 CH 0 OUT P PCS 3E3 CH 0 OUT N PCS 3E3 CH 1 OUT N F7 VCC12 - VCC12 - B16 D_HDOUTP1_R - PCS 3E3 CH 1 OUT P D_HDOUTP1_R - PCS 3E3 CH 1 OUT P F15 D_HDINN1_R - PCS 3E3 CH 1 IN N D_HDINN1_R - PCS 3E3 CH 1 IN N E15 D_HDINP1_R - PCS 3E3 CH 1 IN P D_HDINP1_R - PCS 3E3 CH 1 IN P K17 VCC12 - VCC12 - F13 D_VDDIB1_R - D_VDDIB1_R - C14 VCC12 - VCC12 - C15 D_VDDIB2_R - D_VDDIB2_R - D16 D_HDINP2_R - PCS 3E3 CH 2 IN P D_HDINP2_R - PCS 3E3 CH 2 IN P E16 D_HDINN2_R - PCS 3E3 CH 2 IN N D_HDINN2_R - PCS 3E3 CH 2 IN N VCC12 - PCS 3E3 CH 2 OUT P D_HDOUTP2_R - D_VDDOB2_R - PCS 3E3 CH 2 OUT N D_HDOUTN2_R - D_VDDOB3_R - PCS 3E3 CH 3 OUT N D_HDOUTN3_R - C11 VCC12 - B17 D_HDOUTP2_R - C9 D_VDDOB2_R - A17 D_HDOUTN2_R - D17 D_VDDOB3_R - A18 D_HDOUTN3_R - PCS 3E3 CH 2 OUT P PCS 3E3 CH 2 OUT N PCS 3E3 CH 3 OUT N C17 VCC12 - VCC12 - B18 D_HDOUTP3_R - PCS 3E3 CH 3 OUT P D_HDOUTP3_R - PCS 3E3 CH 3 OUT P F17 D_HDINN3_R - PCS 3E3 CH 3 IN N D_HDINN3_R - PCS 3E3 CH 3 IN N E17 D_HDINP3_R - PCS 3E3 CH 3 IN P D_HDINP3_R - PCS 3E3 CH 3 IN P F14 VCC12 - VCC12 - F16 D_VDDIB3_R - D_VDDIB3_R - G16 VCC12 - VCC12 - M17 D_REFCLKN_R - D_REFCLKN_R - L17 D_REFCLKP_R - G18 PT77D 1 HDC/SI 4-131 D_REFCLKP_R - PT93D 1 HDC/SI Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 Ball Number Ball Function VCCIO Bank H18 PT77C F18 PT77B E18 LFSC/M115 Dual Function Ball Function VCCIO Bank Dual Function 1 LDCN/SCS PT93C 1 LDCN/SCS 1 D8/MPI_DATA8 PT93B 1 D8/MPI_DATA8 PT77A 1 CS1/MPI_CS1 PT93A 1 CS1/MPI_CS1 H19 PT75D 1 D9/MPI_DATA9 PT90D 1 D9/MPI_DATA9 G19 PT75C 1 D10/MPI_DATA10 PT90C 1 D10/MPI_DATA10 D19 PT75B 1 CS0N/MPI_CS0N PT90B 1 CS0N/MPI_CS0N D18 PT75A 1 RDN/MPI_STRB_N PT90A 1 RDN/MPI_STRB_N J20 PT74D 1 WRN/MPI_WR_N PT89D 1 WRN/MPI_WR_N K20 PT74C 1 D7/MPI_DATA7 PT89C 1 D7/MPI_DATA7 E19 PT74B 1 D6/MPI_DATA6 PT89B 1 D6/MPI_DATA6 F19 PT74A 1 D5/MPI_DATA5 PT89A 1 D5/MPI_DATA5 K18 PT73D 1 D4/MPI_DATA4 PT87D 1 D4/MPI_DATA4 J18 PT73C 1 D3/MPI_DATA3 PT87C 1 D3/MPI_DATA3 A19 PT73B 1 D2/MPI_DATA2 PT87B 1 D2/MPI_DATA2 B19 PT73A 1 D1/MPI_DATA1 PT87A 1 D1/MPI_DATA1 H17 PT71D 1 D16/PCLKC1_3/MPI_DATA16 PT86D 1 D16/PCLKC1_3/MPI_DATA16 J17 PT71C 1 D17/PCLKT1_3/MPI_DATA17 PT86C 1 D17/PCLKT1_3/MPI_DATA17 B20 PT71B 1 D0/MPI_DATA0 PT86B 1 D0/MPI_DATA0 C20 PT71A 1 QOUT/CEON PT86A 1 QOUT/CEON M20 PT70D 1 VREF2_1 PT83D 1 VREF2_1 L20 PT70C 1 D18/MPI_DATA18 PT83C 1 D18/MPI_DATA18 F20 PT70B 1 DOUT PT83B 1 DOUT G20 PT70A 1 MCA_DONE_IN PT83A 1 MCA_DONE_IN K19 PT69D 1 D19/PCLKC1_2/MPI_DATA19 PT81D 1 D19/PCLKC1_2/MPI_DATA19 J19 PT69C 1 D20/PCLKT1_2/MPI_DATA20 PT81C 1 D20/PCLKT1_2/MPI_DATA20 D20 PT69B 1 MCA_CLK_P1_OUT PT81B 1 MCA_CLK_P1_OUT E20 PT69A 1 MCA_CLK_P1_IN PT81A 1 MCA_CLK_P1_IN H21 PT67D 1 D21/PCLKC1_1/MPI_DATA21 PT78D 1 D21/PCLKC1_1/MPI_DATA21 G21 PT67C 1 D22/PCLKT1_1/MPI_DATA22 PT78C 1 D22/PCLKT1_1/MPI_DATA22 B21 PT67B 1 MCA_CLK_P2_OUT PT78B 1 MCA_CLK_P2_OUT C21 PT67A 1 MCA_CLK_P2_IN PT78A 1 MCA_CLK_P2_IN M21 PT66D 1 MCA_DONE_OUT PT75D 1 MCA_DONE_OUT L21 PT66C 1 BUSYN/RCLK/SCK PT75C 1 BUSYN/RCLK/SCK A21 PT66B 1 DP0/MPI_PAR0 PT75B 1 DP0/MPI_PAR0 A20 PT66A 1 MPI_TA PT75A 1 MPI_TA J21 PT65D 1 D23/MPI_DATA23 PT73D 1 D23/MPI_DATA23 K21 PT65C 1 DP2/MPI_PAR2 PT73C 1 DP2/MPI_PAR2 E21 PT65B 1 PCLKC1_0 PT73B 1 PCLKC1_0 F21 PT65A 1 PCLKT1_0/MPI_CLK PT73A 1 PCLKT1_0/MPI_CLK G22 PT63D 1 DP3/PCLKC1_4/MPI_PAR3 PT71D 1 DP3/PCLKC1_4/MPI_PAR3 H22 PT63C 1 D24/PCLKT1_4/MPI_DATA24 PT71C 1 D24/PCLKT1_4/MPI_DATA24 A23 PT63B 1 MPI_RETRY PT71B 1 MPI_RETRY A22 PT63A 1 A0/MPI_ADDR14 PT71A 1 A0/MPI_ADDR14 L22 PT61D 1 A1/MPI_ADDR15 PT69D 1 A1/MPI_ADDR15 M22 PT61C 1 A2/MPI_ADDR16 PT69C 1 A2/MPI_ADDR16 4-132 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 LFSC/M115 Ball Number Ball Function VCCIO Bank Dual Function Ball Function VCCIO Bank Dual Function B22 PT61B 1 A3/MPI_ADDR17 PT69B 1 A3/MPI_ADDR17 B23 PT61A 1 A4/MPI_ADDR18 PT69A 1 A4/MPI_ADDR18 K23 PT60D 1 D25/PCLKC1_5/MPI_DATA25 PT66D 1 D25/PCLKC1_5/MPI_DATA25 J23 PT60C 1 D26/PCLKT1_5/MPI_DATA26 PT66C 1 D26/PCLKT1_5/MPI_DATA26 D22 PT60B 1 A5/MPI_ADDR19 PT66B 1 A5/MPI_ADDR19 E22 PT60A 1 A6/MPI_ADDR20 PT66A 1 A6/MPI_ADDR20 K22 PT59D 1 D27/MPI_DATA27 PT63D 1 D27/MPI_DATA27 J22 PT59C 1 VREF1_1 PT63C 1 VREF1_1 D23 PT59B 1 A7/MPI_ADDR21 PT63B 1 A7/MPI_ADDR21 C23 PT59A 1 A8/MPI_ADDR22 PT63A 1 A8/MPI_ADDR22 L23 PT57D 1 D28/PCLKC1_6/MPI_DATA28 PT61D 1 D28/PCLKC1_6/MPI_DATA28 M23 PT57C 1 D29/PCLKT1_6/MPI_DATA29 PT61C 1 D29/PCLKT1_6/MPI_DATA29 A24 PT57B 1 A9/MPI_ADDR23 PT61B 1 A9/MPI_ADDR23 B24 PT57A 1 A10/MPI_ADDR24 PT61A 1 A10/MPI_ADDR24 K25 PT56D 1 D30/PCLKC1_7/MPI_DATA30 PT58D 1 D30/PCLKC1_7/MPI_DATA30 J25 PT56C 1 D31/PCLKT1_7/MPI_DATA31 PT58C 1 D31/PCLKT1_7/MPI_DATA31 F23 PT56B 1 A11/MPI_ADDR25 PT58B 1 A11/MPI_ADDR25 F22 PT56A 1 A12/MPI_ADDR26 PT58A 1 A12/MPI_ADDR26 J26 PT55D 1 D11/MPI_DATA11 PT57D 1 D11/MPI_DATA11 K26 PT55C 1 D12/MPI_DATA12 PT57C 1 D12/MPI_DATA12 E23 PT55B 1 A13/MPI_ADDR27 PT57B 1 A13/MPI_ADDR27 E24 PT55A 1 A14/MPI_ADDR28 PT57A 1 A14/MPI_ADDR28 G23 PT53D 1 A16/MPI_ADDR30 PT55D 1 A16/MPI_ADDR30 G24 PT53C 1 D13/MPI_DATA13 PT55C 1 D13/MPI_DATA13 F26 PT53B 1 A15/MPI_ADDR29 PT55B 1 A15/MPI_ADDR29 F27 PT53A 1 A17/MPI_ADDR31 PT55A 1 A17/MPI_ADDR31 H25 PT52D 1 A19/MPI_TSIZ1 PT54D 1 A19/MPI_TSIZ1 H24 PT52C 1 A20/MPI_BDIP PT54C 1 A20/MPI_BDIP C25 PT52B 1 A18/MPI_TSIZ0 PT54B 1 A18/MPI_TSIZ0 C26 PT52A 1 MPI_TEA PT54A 1 MPI_TEA K24 PT51D 1 D14/MPI_DATA14 PT51D 1 D14/MPI_DATA14 J24 PT51C 1 DP1/MPI_PAR1 PT51C 1 DP1/MPI_PAR1 F24 PT51B 1 A21/MPI_BURST PT51B 1 A21/MPI_BURST F25 PT51A 1 D15/MPI_DATA15 PT51A 1 D15/MPI_DATA15 L26 D_REFCLKP_L - D_REFCLKP_L - M26 D_REFCLKN_L - D_REFCLKN_L - G27 VCC12 - VCC12 - C29 D_VDDIB3_L - D_VDDIB3_L - F28 VCC12 - VCC12 - D26 D_HDINP3_L - PCS 363 CH 3 IN P D_HDINP3_L - PCS 363 CH 3 IN P E26 D_HDINN3_L - PCS 363 CH 3 IN N D_HDINN3_L - PCS 363 CH 3 IN N PCS 363 CH 3 OUT P D_HDOUTP3_L - PCS 363 CH 3 OUT P VCC12 - D_HDOUTN3_L - D_VDDOB3_L - B25 D_HDOUTP3_L - D24 VCC12 - A25 D_HDOUTN3_L - E25 D_VDDOB3_L - PCS 363 CH 3 OUT N 4-133 PCS 363 CH 3 OUT N Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 LFSC/M115 Ball Number Ball Function VCCIO Bank Dual Function Ball Function VCCIO Bank Dual Function PCS 363 CH 2 OUT N D_HDOUTN2_L - PCS 363 CH 2 OUT N D_VDDOB2_L - PCS 363 CH 2 OUT P D_HDOUTP2_L - A26 D_HDOUTN2_L - C34 D_VDDOB2_L - B26 D_HDOUTP2_L - PCS 363 CH 2 OUT P C32 VCC12 - VCC12 - E27 D_HDINN2_L - PCS 363 CH 2 IN N D_HDINN2_L - PCS 363 CH 2 IN N D27 D_HDINP2_L - PCS 363 CH 2 IN P D_HDINP2_L - PCS 363 CH 2 IN P G25 D_VDDIB2_L - D_VDDIB2_L - F29 VCC12 - VCC12 - H26 D_VDDIB1_L - D_VDDIB1_L - F30 VCC12 - D28 D_HDINP1_L - PCS 363 CH 1 IN P VCC12 - D_HDINP1_L - PCS 363 CH 1 IN P E28 D_HDINN1_L - PCS 363 CH 1 IN N D_HDINN1_L - PCS 363 CH 1 IN N B27 D_HDOUTP1_L - PCS 363 CH 1 OUT P D_HDOUTP1_L - PCS 363 CH 1 OUT P VCC12 - PCS 363 CH 1 OUT N D_HDOUTN1_L - D_VDDOB1_L - PCS 363 CH 0 OUT N D_HDOUTN0_L - D_VDDOB0_L - PCS 363 CH 0 OUT P D_HDOUTP0_L - F36 VCC12 - A27 D_HDOUTN1_L - F35 D_VDDOB1_L - A28 D_HDOUTN0_L - M30 D_VDDOB0_L - B28 D_HDOUTP0_L - PCS 363 CH 1 OUT N PCS 363 CH 0 OUT N PCS 363 CH 0 OUT P F37 VCC12 - VCC12 - E29 D_HDINN0_L - PCS 363 CH 0 IN N D_HDINN0_L - PCS 363 CH 0 IN N D29 D_HDINP0_L - PCS 363 CH 0 IN P D_HDINP0_L - PCS 363 CH 0 IN P H27 D_VDDIB0_L - D_VDDIB0_L - G28 VCC12 - VCC12 - J28 C_REFCLKP_L - C_REFCLKP_L - K28 C_REFCLKN_L - C_REFCLKN_L - F32 VCC12 - VCC12 - G29 C_VDDIB3_L - C_VDDIB3_L - C31 VCC12 - VCC12 - D30 C_HDINP3_L - PCS 362 CH 3 IN P C_HDINP3_L - PCS 362 CH 3 IN P E30 C_HDINN3_L - PCS 362 CH 3 IN N C_HDINN3_L - PCS 362 CH 3 IN N B29 C_HDOUTP3_L - PCS 362 CH 3 OUT P C_HDOUTP3_L - PCS 362 CH 3 OUT P F38 VCC12 - VCC12 - A29 C_HDOUTN3_L - C_HDOUTN3_L - J33 C_VDDOB3_L - C_VDDOB3_L - A30 C_HDOUTN2_L - C_HDOUTN2_L - K33 C_VDDOB2_L - C_VDDOB2_L - B30 C_HDOUTP2_L - C_HDOUTP2_L - J34 VCC12 - VCC12 - PCS 362 CH 3 OUT N PCS 362 CH 2 OUT N PCS 362 CH 2 OUT P PCS 362 CH 3 OUT N PCS 362 CH 2 OUT N PCS 362 CH 2 OUT P F31 C_HDINN2_L - PCS 362 CH 2 IN N C_HDINN2_L - PCS 362 CH 2 IN N E31 C_HDINP2_L - PCS 362 CH 2 IN P C_HDINP2_L - PCS 362 CH 2 IN P G30 C_VDDIB2_L - C_VDDIB2_L - H28 VCC12 - VCC12 - C37 C_VDDIB1_L - C_VDDIB1_L - H30 VCC12 - VCC12 - 4-134 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 Ball Number Ball Function VCCIO Bank D32 C_HDINP1_L - E32 C_HDINN1_L - B31 C_HDOUTP1_L - K32 VCC12 - A31 C_HDOUTN1_L - L32 C_VDDOB1_L - A32 C_HDOUTN0_L - LFSC/M115 Dual Function Ball Function VCCIO Bank Dual Function PCS 362 CH 1 IN P C_HDINP1_L - PCS 362 CH 1 IN P PCS 362 CH 1 IN N C_HDINN1_L - PCS 362 CH 1 IN N PCS 362 CH 1 OUT P C_HDOUTP1_L - PCS 362 CH 1 OUT P VCC12 - PCS 362 CH 1 OUT N C_HDOUTN1_L - C_VDDOB1_L - PCS 362 CH 0 OUT N C_HDOUTN0_L - C_VDDOB0_L - PCS 362 CH 0 OUT P C_HDOUTP0_L - VCC12 - PCS 362 CH 1 OUT N PCS 362 CH 0 OUT N M31 C_VDDOB0_L - B32 C_HDOUTP0_L - H37 VCC12 - E33 C_HDINN0_L - PCS 362 CH 0 IN N C_HDINN0_L - PCS 362 CH 0 IN N D33 C_HDINP0_L - PCS 362 CH 0 IN P C_HDINP0_L - PCS 362 CH 0 IN P G31 C_VDDIB0_L - C_VDDIB0_L - PCS 362 CH 0 OUT P J29 VCC12 - VCC12 - L29 B_REFCLKP_L - B_REFCLKP_L - M29 B_REFCLKN_L - B_REFCLKN_L - J31 VCC12 - VCC12 - H31 B_VDDIB3_L - B_VDDIB3_L - J30 VCC12 - VCC12 - D34 B_HDINP3_L - PCS 361 CH 3 IN P B_HDINP3_L - PCS 361 CH 3 IN P E34 B_HDINN3_L - PCS 361 CH 3 IN N B_HDINN3_L - PCS 361 CH 3 IN N PCS 361 CH 3 OUT P B_HDOUTP3_L - PCS 361 CH 3 OUT P VCC12 - B_HDOUTN3_L - B_VDDOB3_L - B_HDOUTN2_L - B_VDDOB2_L - B_HDOUTP2_L - VCC12 - B33 B_HDOUTP3_L - H38 VCC12 - A33 B_HDOUTN3_L - C38 B_VDDOB3_L - A34 B_HDOUTN2_L - L31 B_VDDOB2_L - B34 B_HDOUTP2_L - G38 VCC12 - PCS 361 CH 3 OUT N PCS 361 CH 2 OUT N PCS 361 CH 2 OUT P PCS 361 CH 3 OUT N PCS 361 CH 2 OUT N PCS 361 CH 2 OUT P E35 B_HDINN2_L - PCS 361 CH 2 IN N B_HDINN2_L - PCS 361 CH 2 IN N D35 B_HDINP2_L - PCS 361 CH 2 IN P B_HDINP2_L - PCS 361 CH 2 IN P H32 B_VDDIB2_L - B_VDDIB2_L - K29 VCC12 - VCC12 - K30 B_VDDIB1_L - B_VDDIB1_L - F33 VCC12 - VCC12 - D36 B_HDINP1_L - PCS 361 CH 1 IN P B_HDINP1_L - PCS 361 CH 1 IN P E36 B_HDINN1_L - PCS 361 CH 1 IN N B_HDINN1_L - PCS 361 CH 1 IN N B35 B_HDOUTP1_L - PCS 361 CH 1 OUT P B_HDOUTP1_L - PCS 361 CH 1 OUT P L34 VCC12 - VCC12 - A35 B_HDOUTN1_L - B_HDOUTN1_L - K35 B_VDDOB1_L - B_VDDOB1_L - B_HDOUTN0_L - B_VDDOB0_L - B_HDOUTP0_L - VCC12 - A36 B_HDOUTN0_L - G39 B_VDDOB0_L - B36 B_HDOUTP0_L - J35 VCC12 - PCS 361 CH 1 OUT N PCS 361 CH 0 OUT N PCS 361 CH 0 OUT P 4-135 PCS 361 CH 1 OUT N PCS 361 CH 0 OUT N PCS 361 CH 0 OUT P Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 LFSC/M115 Ball Number Ball Function VCCIO Bank Dual Function Ball Function VCCIO Bank Dual Function E37 B_HDINN0_L - PCS 361 CH 0 IN N B_HDINN0_L - PCS 361 CH 0 IN N D37 B_HDINP0_L - PCS 361 CH 0 IN P B_HDINP0_L - PCS 361 CH 0 IN P F34 B_VDDIB0_L - B_VDDIB0_L - N29 VCC12 - VCC12 - L30 A_VDDIB3_L - A_VDDIB3_L - K31 VCC12 - D38 A_HDINP3_L - PCS 360 CH 3 IN P VCC12 - A_HDINP3_L - PCS 360 CH 3 IN P E38 A_HDINN3_L - PCS 360 CH 3 IN N A_HDINN3_L - PCS 360 CH 3 IN N A37 A_HDOUTP3_L - PCS 360 CH 3 OUT P A_HDOUTP3_L - PCS 360 CH 3 OUT P VCC12 - PCS 360 CH 3 OUT N A_HDOUTN3_L - A_VDDOB3_L - PCS 360 CH 2 OUT N A_HDOUTN2_L - A_VDDOB2_L - PCS 360 CH 2 OUT P A_HDOUTP2_L - G37 VCC12 - B37 A_HDOUTN3_L - L33 A_VDDOB3_L - B38 A_HDOUTN2_L - D41 A_VDDOB2_L - A38 A_HDOUTP2_L - PCS 360 CH 3 OUT N PCS 360 CH 2 OUT N PCS 360 CH 2 OUT P K34 VCC12 - VCC12 - E39 A_HDINN2_L - PCS 360 CH 2 IN N A_HDINN2_L - PCS 360 CH 2 IN N D39 A_HDINP2_L - PCS 360 CH 2 IN P A_HDINP2_L - PCS 360 CH 2 IN P M32 A_VDDIB2_L - A_VDDIB2_L - J32 VCC12 - VCC12 - E41 A_VDDIB1_L - A_VDDIB1_L - M33 VCC12 - D40 A_HDINP1_L - PCS 360 CH 1 IN P VCC12 - A_HDINP1_L - PCS 360 CH 1 IN P E40 A_HDINN1_L - PCS 360 CH 1 IN N A_HDINN1_L - PCS 360 CH 1 IN N B39 A_HDOUTP1_L - PCS 360 CH 1 OUT P A_HDOUTP1_L - PCS 360 CH 1 OUT P VCC12 - PCS 360 CH 1 OUT N A_HDOUTN1_L - A_VDDOB1_L - PCS 360 CH 0 OUT N A_HDOUTN0_L - A_VDDOB0_L - PCS 360 CH 0 OUT P A_HDOUTP0_L - B41 VCC12 - A39 A_HDOUTN1_L - C41 A_VDDOB1_L - B40 A_HDOUTN0_L - E42 A_VDDOB0_L - A40 A_HDOUTP0_L - PCS 360 CH 1 OUT N PCS 360 CH 0 OUT N PCS 360 CH 0 OUT P F42 VCC12 - VCC12 - D42 A_HDINN0_L - PCS 360 CH 0 IN N A_HDINN0_L - PCS 360 CH 0 IN N C42 A_HDINP0_L - PCS 360 CH 0 IN P A_HDINP0_L - PCS 360 CH 0 IN P H39 A_VDDIB0_L - A_VDDIB0_L - F41 VCC12 - VCC12 - P16 VDDAX25_R - VDDAX25_R - P27 VDDAX25_L - VDDAX25_L - K39 NC - PL32A 7 L39 NC - PL32B 7 M38 NC - PL35A 7 K40 NC - PL36A 7 L40 NC - PL36B 7 N37 NC - PL39A 7 P37 NC - PL39B 7 4-136 Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 Ball Number Ball Function VCCIO Bank LFSC/M115 Dual Function Ball Function VCCIO Bank AG38 NC - PL95A 6 AH38 NC - PL95B 6 AJ39 NC - PL100A 6 AK39 NC - PL100B 6 AL41 NC - PL105A 6 AM41 NC - PL105B 6 AN40 NC - PL108A 6 AM40 NC - PL108B 6 AM39 NC - PL111A 6 AN39 NC - PL111B 6 AR42 NC - PL113A 6 AT42 NC - PL113B 6 AT1 NC - PR113B 3 AR1 NC - PR113A 3 AN4 NC - PR111B 3 AM4 NC - PR111A 3 AM3 NC - PR108B 3 AN3 NC - PR108A 3 AM2 NC - PR105B 3 AL2 NC - PR105A 3 AK4 NC - PR100B 3 AJ4 NC - PR100A 3 AH5 NC - PR95B 3 AG5 NC - PR95A 3 P6 NC - PR39B 2 N6 NC - PR39A 2 L3 NC - PR36B 2 K3 NC - PR36A 2 M5 NC - PR35A 2 L4 NC - PR32B 2 K4 NC - PR32A 2 A2 GND - GND - A41 GND - GND - AA20 GND - GND - AA23 GND - GND - AA3 GND - GND - AA39 GND - GND - AB20 GND - GND - AB23 GND - GND - AB4 GND - GND - AB40 GND - GND - AC17 GND - GND - AC19 GND - GND - AC21 GND - GND - AC22 GND - GND - 4-137 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 Ball Number Ball Function VCCIO Bank AC24 GND AC26 GND AC35 GND LFSC/M115 Dual Function Ball Function VCCIO Bank - GND - - GND - - GND - AC8 GND - GND - AD12 GND - GND - AD16 GND - GND - AD18 GND - GND - AD20 GND - GND - AD23 GND - GND - AD25 GND - GND - AD27 GND - GND - AD31 GND - GND - AE17 GND - GND - AE19 GND - GND - AE24 GND - GND - AE26 GND - GND - AE3 GND - GND - AE39 GND - GND - AF18 GND - GND - AF20 GND - GND - AF23 GND - GND - AF25 GND - GND - AF36 GND - GND - AF7 GND - GND - AG11 GND - GND - AG16 GND - GND - AG19 GND - GND - AG24 GND - GND - AG27 GND - GND - AG32 GND - GND - AH15 GND - GND - AH28 GND - GND - AH4 GND - GND - AH40 GND - GND - AJ35 GND - GND - AJ8 GND - GND - AK12 GND - GND - AK31 GND - GND - AL13 GND - GND - AL19 GND - GND - AL24 GND - GND - AL3 GND - GND - AL30 GND - GND - AL39 GND - GND - AM16 GND - GND - 4-138 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 Ball Number Ball Function VCCIO Bank AM27 GND AM36 GND AM7 GND LFSC/M115 Dual Function Ball Function VCCIO Bank - GND - - GND - - GND - AP4 GND - GND - AP40 GND - GND - AR14 GND - GND - AR20 GND - GND - AR23 GND - GND - AR29 GND - GND - AR35 GND - GND - AR8 GND - GND - AT11 GND - GND - AT17 GND - GND - AT26 GND - GND - AT32 GND - GND - AU3 GND - GND - AU39 GND - GND - AW12 GND - GND - AW18 GND - GND - AW22 GND - GND - AW28 GND - GND - AW34 GND - GND - AW6 GND - GND - AY15 GND - GND - AY21 GND - GND - AY25 GND - GND - AY31 GND - GND - AY37 GND - GND - AY9 GND - GND - B1 GND - GND - B42 GND - GND - BA1 GND - GND - BA42 GND - GND - BB2 GND - GND - BB41 GND - GND - C10 GND - GND - C12 GND - GND - C13 GND - GND - C16 GND - GND - C18 GND - GND - C19 GND - GND - C22 GND - GND - C24 GND - GND - C27 GND - GND - C28 GND - GND - 4-139 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 Ball Number Ball Function VCCIO Bank LFSC/M115 Dual Function Ball Function VCCIO Bank C3 GND - GND - C30 GND - GND - C33 GND - GND - C35 GND - GND - C36 GND - GND - C39 GND - GND - C4 GND - GND - C40 GND - GND - C7 GND - GND - C8 GND - GND - D15 GND - GND - D21 GND - GND - D25 GND - GND - D31 GND - GND - F4 GND - GND - F40 GND - GND - G11 GND - GND - G17 GND - GND - G26 GND - GND - G32 GND - GND - H14 GND - GND - H20 GND - GND - H23 GND - GND - H29 GND - GND - H35 GND - GND - H8 GND - GND - J3 GND - GND - J39 GND - GND - L16 GND - GND - L27 GND - GND - L36 GND - GND - L7 GND - GND - M19 GND - GND - M24 GND - GND - M4 GND - GND - M40 GND - GND - N12 GND - GND - N31 GND - GND - P35 GND - GND - P8 GND - GND - R15 GND - GND - R28 GND - GND - R3 GND - GND - R39 GND - GND - T11 GND - GND - 4-140 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 Ball Number Ball Function VCCIO Bank T16 GND T19 GND T24 LFSC/M115 Dual Function Ball Function VCCIO Bank - GND - - GND - GND - GND - T27 GND - GND - T32 GND - GND - U18 GND - GND - U20 GND - GND - U23 GND - GND - U25 GND - GND - U36 GND - GND - U7 GND - GND - G36 GND - GND - G7 GND - GND - V17 GND - GND - V19 GND - GND - V24 GND - GND - V26 GND - GND - V4 GND - GND - V40 GND - GND - W12 GND - GND - W16 GND - GND - W18 GND - GND - W20 GND - GND - W23 GND - GND - W25 GND - GND - W27 GND - GND - W31 GND - GND - Y17 GND - GND - Y19 GND - GND - Y21 GND - GND - Y22 GND - GND - AA17 VCC - VCC - AA18 VCC - VCC - AA19 VCC - VCC - AA21 VCC - VCC - AA22 VCC - VCC - AA24 VCC - VCC - AA25 VCC - VCC - AA26 VCC - VCC - AB17 VCC - VCC - AB18 VCC - VCC - AB19 VCC - VCC - AB21 VCC - VCC - AB22 VCC - VCC - AB24 VCC - VCC - 4-141 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 Ball Number Ball Function VCCIO Bank AB25 VCC AB26 VCC AC16 LFSC/M115 Dual Function Ball Function VCCIO Bank - VCC - - VCC - VCC - VCC - AC18 VCC - VCC - AC20 VCC - VCC - AC23 VCC - VCC - AC25 VCC - VCC - AC27 VCC - VCC - AD17 VCC - VCC - AD19 VCC - VCC - AD21 VCC - VCC - AD22 VCC - VCC - AD24 VCC - VCC - AD26 VCC - VCC - AE16 VCC - VCC - AE18 VCC - VCC - AE20 VCC - VCC - AE21 VCC - VCC - AE22 VCC - VCC - AE23 VCC - VCC - AE25 VCC - VCC - AE27 VCC - VCC - AF17 VCC - VCC - AF19 VCC - VCC - AF21 VCC - VCC - AF22 VCC - VCC - AF24 VCC - VCC - AF26 VCC - VCC - AG18 VCC - VCC - AG20 VCC - VCC - AG23 VCC - VCC - AG25 VCC - VCC - T18 VCC - VCC - T20 VCC - VCC - T23 VCC - VCC - T25 VCC - VCC - U17 VCC - VCC - U19 VCC - VCC - U21 VCC - VCC - U22 VCC - VCC - U24 VCC - VCC - U26 VCC - VCC - V16 VCC - VCC - V18 VCC - VCC - V20 VCC - VCC - 4-142 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 Ball Number Ball Function VCCIO Bank V21 VCC V22 VCC V23 LFSC/M115 Dual Function Ball Function VCCIO Bank - VCC - - VCC - VCC - VCC - V25 VCC - VCC - V27 VCC - VCC - W17 VCC - VCC - W19 VCC - VCC - W21 VCC - VCC - W22 VCC - VCC - W24 VCC - VCC - W26 VCC - VCC - Y16 VCC - VCC - Y18 VCC - VCC - Y20 VCC - VCC - Y23 VCC - VCC - Y25 VCC - VCC - Y27 VCC - VCC - AG22 VCC12 - VCC12 - AG26 VCC12 - VCC12 - T17 VCC12 - VCC12 - T21 VCC12 - VCC12 - T22 VCC12 - VCC12 - T26 VCC12 - VCC12 - U16 VCC12 - VCC12 - U27 VCC12 - VCC12 - AC15 VCCAUX - VCCAUX - AC28 VCCAUX - VCCAUX - AD15 VCCAUX - VCCAUX - AD28 VCCAUX - VCCAUX - AE15 VCCAUX - VCCAUX - AE28 VCCAUX - VCCAUX - AF15 VCCAUX - VCCAUX - AF28 VCCAUX - VCCAUX - AG15 VCCAUX - VCCAUX - AG28 VCCAUX - VCCAUX - AH14 VCCAUX - VCCAUX - AH16 VCCAUX - VCCAUX - AH17 VCCAUX - VCCAUX - AH18 VCCAUX - VCCAUX - AH19 VCCAUX - VCCAUX - AH20 VCCAUX - VCCAUX - AH23 VCCAUX - VCCAUX - AH24 VCCAUX - VCCAUX - AH25 VCCAUX - VCCAUX - AH26 VCCAUX - VCCAUX - 4-143 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 Ball Number Ball Function VCCIO Bank AH27 VCCAUX AH29 VCCAUX AJ14 LFSC/M115 Dual Function Ball Function VCCIO Bank - VCCAUX - - VCCAUX - VCCAUX - VCCAUX - AJ15 VCCAUX - VCCAUX - AJ28 VCCAUX - VCCAUX - AJ29 VCCAUX - VCCAUX - P14 VCCAUX - VCCAUX - P15 VCCAUX - VCCAUX - P28 VCCAUX - VCCAUX - P29 VCCAUX - VCCAUX - R14 VCCAUX - VCCAUX - R16 VCCAUX - VCCAUX - R17 VCCAUX - VCCAUX - R18 VCCAUX - VCCAUX - R19 VCCAUX - VCCAUX - R20 VCCAUX - VCCAUX - R23 VCCAUX - VCCAUX - R24 VCCAUX - VCCAUX - R25 VCCAUX - VCCAUX - R26 VCCAUX - VCCAUX - R27 VCCAUX - VCCAUX - R29 VCCAUX - VCCAUX - T15 VCCAUX - VCCAUX - T28 VCCAUX - VCCAUX - U15 VCCAUX - VCCAUX - U28 VCCAUX - VCCAUX - V15 VCCAUX - VCCAUX - V28 VCCAUX - VCCAUX - W15 VCCAUX - VCCAUX - W28 VCCAUX - VCCAUX - Y15 VCCAUX - VCCAUX - Y28 VCCAUX - VCCAUX - F3 VCCIO1 - VCCIO1 - F39 VCCIO1 - VCCIO1 - G35 VCCIO1 - VCCIO1 - G8 VCCIO1 - VCCIO1 - L19 VCCIO1 - VCCIO1 - L24 VCCIO1 - VCCIO1 - M16 VCCIO1 - VCCIO1 - M27 VCCIO1 - VCCIO1 - N11 VCCIO1 - VCCIO1 - N32 VCCIO1 - VCCIO1 - AA4 VCCIO2 - VCCIO2 - H7 VCCIO2 - VCCIO2 - J4 VCCIO2 - VCCIO2 - 4-144 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 Ball Number Ball Function VCCIO Bank LFSC/M115 Dual Function Ball Function VCCIO Bank - L8 VCCIO2 - VCCIO2 M3 VCCIO2 - VCCIO2 - P7 VCCIO2 - VCCIO2 - R4 VCCIO2 - VCCIO2 - T12 VCCIO2 - VCCIO2 - U8 VCCIO2 - VCCIO2 - V3 VCCIO2 - VCCIO2 - W11 VCCIO2 - VCCIO2 - Y7 VCCIO2 - VCCIO2 - AB3 VCCIO3 - VCCIO3 - AC7 VCCIO3 - VCCIO3 - AD11 VCCIO3 - VCCIO3 - AE4 VCCIO3 - VCCIO3 - AF8 VCCIO3 - VCCIO3 - AG12 VCCIO3 - VCCIO3 - AH3 VCCIO3 - VCCIO3 - AJ7 VCCIO3 - VCCIO3 - AK11 VCCIO3 - VCCIO3 - AL4 VCCIO3 - VCCIO3 - AM8 VCCIO3 - VCCIO3 - AP3 VCCIO3 - VCCIO3 - AR7 VCCIO3 - VCCIO3 - AU4 VCCIO3 - VCCIO3 - AL16 VCCIO4 - VCCIO4 - AM13 VCCIO4 - VCCIO4 - AM19 VCCIO4 - VCCIO4 - AR11 VCCIO4 - VCCIO4 - AR17 VCCIO4 - VCCIO4 - AT14 VCCIO4 - VCCIO4 - AT20 VCCIO4 - VCCIO4 - AT8 VCCIO4 - VCCIO4 - AW15 VCCIO4 - VCCIO4 - AW21 VCCIO4 - VCCIO4 - AW9 VCCIO4 - VCCIO4 - AY12 VCCIO4 - VCCIO4 - AY18 VCCIO4 - VCCIO4 - AY6 VCCIO4 - VCCIO4 - AL27 VCCIO5 - VCCIO5 - AM24 VCCIO5 - VCCIO5 - AM30 VCCIO5 - VCCIO5 - AR26 VCCIO5 - VCCIO5 - AR32 VCCIO5 - VCCIO5 - AT23 VCCIO5 - VCCIO5 - AT29 VCCIO5 - VCCIO5 - AT35 VCCIO5 - VCCIO5 - 4-145 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 Ball Number Ball Function VCCIO Bank AW25 VCCIO5 AW31 VCCIO5 AW37 LFSC/M115 Dual Function Ball Function VCCIO Bank - VCCIO5 - - VCCIO5 - VCCIO5 - VCCIO5 - AY22 VCCIO5 - VCCIO5 - AY28 VCCIO5 - VCCIO5 - AY34 VCCIO5 - VCCIO5 - AB39 VCCIO6 - VCCIO6 - AC36 VCCIO6 - VCCIO6 - AD32 VCCIO6 - VCCIO6 - AE40 VCCIO6 - VCCIO6 - AF35 VCCIO6 - VCCIO6 - AG31 VCCIO6 - VCCIO6 - AH39 VCCIO6 - VCCIO6 - AJ36 VCCIO6 - VCCIO6 - AK32 VCCIO6 - VCCIO6 - AL40 VCCIO6 - VCCIO6 - AM35 VCCIO6 - VCCIO6 - AP39 VCCIO6 - VCCIO6 - AR36 VCCIO6 - VCCIO6 - AU40 VCCIO6 - VCCIO6 - AA40 VCCIO7 - VCCIO7 - H36 VCCIO7 - VCCIO7 - J40 VCCIO7 - VCCIO7 - L35 VCCIO7 - VCCIO7 - M39 VCCIO7 - VCCIO7 - P36 VCCIO7 - VCCIO7 - R40 VCCIO7 - VCCIO7 - T31 VCCIO7 - VCCIO7 - U35 VCCIO7 - VCCIO7 - V39 VCCIO7 - VCCIO7 - W32 VCCIO7 - VCCIO7 - Y36 VCCIO7 - VCCIO7 - AA14 VTT_2 2 VTT_2 2 AA15 VTT_2 2 VTT_2 2 R12 VTT_2 2 VTT_2 2 V14 VTT_2 2 VTT_2 2 AB14 VTT_3 3 VTT_3 3 AB15 VTT_3 3 VTT_3 3 AE14 VTT_3 3 VTT_3 3 AJ13 VTT_3 3 VTT_3 3 AH21 VTT_4 4 VTT_4 4 AJ18 VTT_4 4 VTT_4 4 AJ19 VTT_4 4 VTT_4 4 AJ20 VTT_4 4 VTT_4 4 AJ21 VTT_4 4 VTT_4 4 4-146 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA1, 2 (Cont.) LFSC/M80 Ball Number Ball Function VCCIO Bank AH22 VTT_5 AJ22 VTT_5 AJ23 LFSC/M115 Dual Function Ball Function VCCIO Bank 5 VTT_5 5 5 VTT_5 5 VTT_5 5 VTT_5 5 AJ24 VTT_5 5 VTT_5 5 AJ25 VTT_5 5 VTT_5 5 AB28 VTT_6 6 VTT_6 6 AB29 VTT_6 6 VTT_6 6 AE29 VTT_6 6 VTT_6 6 AJ30 VTT_6 6 VTT_6 6 AA28 VTT_7 7 VTT_7 7 AA29 VTT_7 7 VTT_7 7 R31 VTT_7 7 VTT_7 7 V29 VTT_7 7 VTT_7 7 Y24 GND - GND - Y26 GND - GND - Y8 GND - GND - Y35 GND - GND - AA16 VCC12 - VCC12 - AA27 VCC12 - VCC12 - AB16 VCC12 - VCC12 - AB27 VCC12 - VCC12 - AF16 VCC12 - VCC12 - AF27 VCC12 - VCC12 - AG17 VCC12 - VCC12 - AG21 VCC12 - VCC12 - G33 NC - NC - G10 NC - NC - M15 NC - NC - L15 NC - NC - K16 NC - NC - J16 NC - NC - M18 NC - NC - L18 NC - NC - M25 NC - NC - L25 NC - NC - J27 NC - NC - K27 NC - NC - L28 NC - NC - M28 NC - NC - 1. Differential pair grouping within a PIC is A (True) and B (Complement) and C (True) and D (Complement). 2. The LatticeSC/M80 and LatticeSC/M115 in a 1704-pin package supports a 32-bit MPI interface. 4-147 Dual Function Pinout Information LatticeSC/M Family Data Sheet Lattice Semiconductor Thermal Management Thermal management is recommended as part of any sound FPGA design methodology. To assess the thermal characteristics of a system, Lattice specifies a maximum allowable junction temperature in all device data sheets. Designers must complete a thermal analysis of their specific design to ensure that the device and package do not exceed the junction temperature limits. Refer to the Thermal Management document to find the device/package specific thermal values. For Further Information For further information regarding Thermal Management, refer to the following located on the Lattice website at www.latticesemi.com. • Thermal Management document • Technical Note TN1101 - Power Estimation and Management for LatticeSC Devices • Power Calculator tool included with Lattice’s ispLEVER design tool, or as a standalone download from www.latticesemi.com/software 4-148 LatticeSC/M Family Data Sheet Ordering Information November 2007 Data Sheet DS1004 Part Number Description LF XXX XXX XX E PX – X XXXXXX X LF = Lattice FPGA Grade C = Commercial I = Industrial Device Family LatticeSC FPGA LatticeSCM FPGA Package1 F256 = 256-ball fpBGA F900 = 900-ball fpBGA FF1020 = 1020-ball Organic fcBGA FC1152 = 1152-ball Ceramic fcBGA FC1704 = 1704-ball Ceramic fcBGA SERDES Speed 3GA = 3.8G Logic Capacity 15K LUTs 25K LUTs 40K LUTs 80K LUTs 115K LUTs FN256 = 256-ball Lead-Free fpBGA FN900 = 900-ball Lead-Free fpBGA FFN1020 = 1020-ball Lead-Free Organic fcBGA FCN1152 = 1152-ball Lead-Free Ceramic fcBGA FCN1704 = 1704-ball Lead-Free Ceramic fcBGA Supply Voltage E = 1.2V Speed Grade -5 (Slowest) -6 -7 (Fastest)2 Predefined Function (LatticeSCM Only) P1 = Initial MACO Option 1. fpBGA = 1.0mm pitch BGA, fcBGA = 1.0mm flip-chip BGA (organic and ceramic). 2. Not available in the LatticeSC115 and LatticeSCM115 devices. Ordering Information Depending on the speed and temperature grade, the device can either be dual marked or single marked. The commercial grade is one speed grade faster than the associated dual marked industrial grade. The slowest commercial speed grade does not have industrial markings. The markings appear as follows: LFSC3GA25E 6F900C-5I XXXXXXXX Temperature Grade Commercial Industrial or Speed Grade LFSC3GA25E 7F900C XXXXXXXX Single or Dual Mark? -7 Either OK -6 Dual Only -5 Single Only -6 Either OK -5 Dual Only © 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 5-1 DS1004 Ordering Information_01.6 Ordering Information LatticeSC/M Family Data Sheet Lattice Semiconductor Conventional Packaging Commercial Part Number Grade Package Balls Temp. LUTs (K) LFSC3GA15E-7F256C -7 fpBGA 256 COM 15.2 LFSC3GA15E-6F256C -6 fpBGA 256 COM 15.2 LFSC3GA15E-5F256C -5 fpBGA 256 COM 15.2 LFSC3GA15E-7F900C -7 fpBGA 900 COM 15.2 LFSC3GA15E-6F900C -6 fpBGA 900 COM 15.2 LFSC3GA15E-5F900C -5 fpBGA 900 COM 15.2 Grade Package Balls Temp. LUTs (K) LFSCM3GA15EP1-7F256C -7 fpBGA 256 COM 15.2 LFSCM3GA15EP1-6F256C -6 fpBGA 256 COM 15.2 LFSCM3GA15EP1-5F256C -5 fpBGA 256 COM 15.2 LFSCM3GA15EP1-7F900C -7 fpBGA 900 COM 15.2 LFSCM3GA15EP1-6F900C -6 fpBGA 900 COM 15.2 LFSCM3GA15EP1-5F900C -5 fpBGA 900 COM 15.2 Grade Package Balls Temp. LUTs (K) LFSC3GA25E-7F900C -7 fpBGA 900 COM 25.4 LFSC3GA25E-6F900C -6 fpBGA 900 COM 25.4 LFSC3GA25E-5F900C -5 fpBGA 900 COM 25.4 LFSC3GA25E-7FF1020C -7 fcBGA 1020 COM 25.4 LFSC3GA25E-6FF1020C -6 fcBGA 1020 COM 25.4 LFSC3GA25E-5FF1020C -5 fcBGA 1020 COM 25.4 Grade Package Balls Temp. LUTs (K) LFSCM3GA25EP1-7F900C -7 fpBGA 900 COM 25.4 LFSCM3GA25EP1-6F900C -6 fpBGA 900 COM 25.4 LFSCM3GA25EP1-5F900C -5 fpBGA 900 COM 25.4 LFSCM3GA25EP1-7FF1020C -7 fcBGA 1020 COM 25.4 LFSCM3GA25EP1-6FF1020C -6 fcBGA 1020 COM 25.4 LFSCM3GA25EP1-5FF1020C -5 fcBGA 1020 COM 25.4 Grade Package Balls Temp. LUTs (K) LFSC3GA40E-7FF1020C -7 fcBGA 1020 COM 40.4 LFSC3GA40E-6FF1020C -6 fcBGA 1020 COM 40.4 Part Number Part Number Part Number Part Number LFSC3GA40E-5FF1020C -5 fcBGA 1020 COM 40.4 LFSC3GA40E-7FC1152C -7 fcBGA 1152 COM 40.4 LFSC3GA40E-6FC1152C -6 fcBGA 1152 COM 40.4 LFSC3GA40E-5FC1152C -5 fcBGA 1152 COM 40.4 5-2 Ordering Information LatticeSC/M Family Data Sheet Lattice Semiconductor Commercial (Cont.) Part Number Grade Package Balls Temp. LUTs (K) LFSCM3GA40EP1-7FF1020C -7 fcBGA 1020 COM 40.4 LFSCM3GA40EP1-6FF1020C -6 fcBGA 1020 COM 40.4 LFSCM3GA40EP1-5FF1020C -5 fcBGA 1020 COM 40.4 LFSCM3GA40EP1-7FC1152C -7 fcBGA 1152 COM 40.4 LFSCM3GA40EP1-6FC1152C -6 fcBGA 1152 COM 40.4 LFSCM3GA40EP1-5FC1152C -5 fcBGA 1152 COM 40.4 Grade Package Balls Temp. LUTs (K) LFSC3GA80E-7FC1152C Part Number -7 fcBGA 1152 COM 80.1 LFSC3GA80E-6FC1152C -6 fcBGA 1152 COM 80.1 LFSC3GA80E-5FC1152C -5 fcBGA 1152 COM 80.1 LFSC3GA80E-7FC1704C -7 fcBGA 1704 COM 80.1 LFSC3GA80E-6FC1704C -6 fcBGA 1704 COM 80.1 LFSC3GA80E-5FC1704C -5 fcBGA 1704 COM 80.1 Part Number Grade Package Balls Temp. LUTs (K) LFSCM3GA80EP1-7FC1152C -7 fcBGA 1152 COM 80.1 LFSCM3GA80EP1-6FC1152C -6 fcBGA 1152 COM 80.1 LFSCM3GA80EP1-5FC1152C -5 fcBGA 1152 COM 80.1 LFSCM3GA80EP1-7FC1704C -7 fcBGA 1704 COM 80.1 LFSCM3GA80EP1-6FC1704C -6 fcBGA 1704 COM 80.1 LFSCM3GA80EP1-5FC1704C -5 fcBGA 1704 COM 80.1 Grade Package Balls Temp. LUTs (K) LFSC3GA115E-6FC1152C -6 fcBGA 1152 COM 115.2 LFSC3GA115E-5FC1152C -5 fcBGA 1152 COM 115.2 LFSC3GA115E-6FC1704C -6 fcBGA 1704 COM 115.2 LFSC3GA115E-5FC1704C -5 fcBGA 1704 COM 115.2 Part Number Part Number Grade Package Balls Temp. LUTs (K) LFSCM3GA115EP1-6FC1152C -6 fcBGA 1152 COM 115.2 LFSCM3GA115EP1-5FC1152C -5 fcBGA 1152 COM 115.2 LFSCM3GA115EP1-6FC1704C -6 fcBGA 1704 COM 115.2 LFSCM3GA115EP1-5FC1704C -5 fcBGA 1704 COM 115.2 5-3 Ordering Information LatticeSC/M Family Data Sheet Lattice Semiconductor Industrial Grade Package Balls Temp. LUTs (K) LFSC3GA15E-6F256I Part Number -6 fpBGA 256 IND 15.2 LFSC3GA15E-5F256I -5 fpBGA 256 IND 15.2 LFSC3GA15E-6F900I -6 fpBGA 900 IND 15.2 LFSC3GA15E-5F900I -5 fpBGA 900 IND 15.2 Grade Package Balls Temp. LUTs (K) LFSCM3GA15EP1-6F256I Part Number -6 fpBGA 256 IND 15.2 LFSCM3GA15EP1-5F256I -5 fpBGA 256 IND 15.2 LFSCM3GA15EP1-6F900I -6 fpBGA 900 IND 15.2 LFSCM3GA15EP1-5F900I -5 fpBGA 900 IND 15.2 Grade Package Balls Temp. LUTs (K) LFSC3GA25E-6F900I Part Number -6 fpBGA 900 IND 25.4 LFSC3GA25E-5F900I -5 fpBGA 900 IND 25.4 LFSC3GA25E-6FF1020I -6 fcBGA 1020 IND 25.4 LFSC3GA25E-5FF1020I -5 fcBGA 1020 IND 25.4 Grade Package Balls Temp. LUTs (K) LFSCM3GA25EP1-6F900I Part Number -6 fpBGA 900 IND 25.4 LFSCM3GA25EP1-5F900I -5 fpBGA 900 IND 25.4 LFSCM3GA25EP1-6FF1020I -6 fcBGA 1020 IND 25.4 LFSCM3GA25EP1-5FF1020I -5 fcBGA 1020 IND 25.4 Grade Package Balls Temp. LUTs (K) -6 fcBGA 1020 IND 40.4 Part Number LFSC3GA40E-6FF1020I LFSC3GA40E-5FF1020I -5 fcBGA 1020 IND 40.4 LFSC3GA40E-6FC1152I -6 fcBGA 1152 IND 40.4 LFSC3GA40E-5FC1152I -5 fcBGA 1152 IND 40.4 Grade Package Balls Temp. LUTs (K) -6 fcBGA 1020 IND 40.4 Part Number LFSCM3GA40EP1-6FF1020I LFSCM3GA40EP1-5FF1020I -5 fcBGA 1020 IND 40.4 LFSCM3GA40EP1-6FC1152I -6 fcBGA 1152 IND 40.4 LFSCM3GA40EP1-5FC1152I -5 fcBGA 1152 IND 40.4 5-4 Ordering Information LatticeSC/M Family Data Sheet Lattice Semiconductor Industrial (Cont.) Part Number Grade Package Balls Temp. LUTs (K) LFSC3GA80E-6FC1152I -6 fcBGA 1152 IND 80.1 LFSC3GA80E-5FC1152I -5 fcBGA 1152 IND 80.1 LFSC3GA80E-6FC1704I -6 fcBGA 1704 IND 80.1 LFSC3GA80E-5FC1704I -5 fcBGA 1704 IND 80.1 Grade Package Balls Temp. LUTs (K) LFSCM3GA80EP1-6FC1152I Part Number -6 fcBGA 1152 IND 80.1 LFSCM3GA80EP1-5FC1152I -5 fcBGA 1152 IND 80.1 LFSCM3GA80EP1-6FC1704I -6 fcBGA 1704 IND 80.1 LFSCM3GA80EP1-5FC1704I -5 fcBGA 1704 IND 80.1 Grade Package Balls Temp. LUTs (K) LFSC3GA115E-6FC1152I Part Number -6 fcBGA 1152 IND 115.2 LFSC3GA115E-5FC1152I -5 fcBGA 1152 IND 115.2 LFSC3GA115E-6FC1704I -6 fcBGA 1704 IND 115.2 LFSC3GA115E-5FC1704I -5 fcBGA 1704 IND 115.2 Part Number Grade Package Balls Temp. LUTs (K) LFSCM3GA115EP1-6FC1152I -6 fcBGA 1152 IND 115.2 LFSCM3GA115EP1-5FC1152I -5 fcBGA 1152 IND 115.2 LFSCM3GA115EP1-6FC1704I -6 fcBGA 1704 IND 115.2 LFSCM3GA115EP1-5FC1704I -5 fcBGA 1704 IND 115.2 5-5 Ordering Information LatticeSC/M Family Data Sheet Lattice Semiconductor Lead-Free Packaging Commercial Part Number Grade Package Balls Temp. LUTs (K) LFSC3GA15E-7FN256C -7 fpBGA 256 COM 15.2 LFSC3GA15E-6FN256C -6 fpBGA 256 COM 15.2 LFSC3GA15E-5FN256C -5 fpBGA 256 COM 15.2 LFSC3GA15E-7FN900C -7 fpBGA 900 COM 15.2 LFSC3GA15E-6FN900C -6 fpBGA 900 COM 15.2 LFSC3GA15E-5FN900C -5 fpBGA 900 COM 15.2 Grade Package Balls Temp. LUTs (K) LFSCM3GA15EP1-7FN256C Part Number -7 fpBGA 256 COM 15.2 LFSCM3GA15EP1-6FN256C -6 fpBGA 256 COM 15.2 LFSCM3GA15EP1-5FN256C -5 fpBGA 256 COM 15.2 LFSCM3GA15EP1-7FN900C -7 fpBGA 900 COM 15.2 LFSCM3GA15EP1-6FN900C -6 fpBGA 900 COM 15.2 LFSCM3GA15EP1-5FN900C -5 fpBGA 900 COM 15.2 Grade Package Balls Temp. LUTs (K) LFSC3GA25E-7FN900C -7 fpBGA 900 COM 25.4 LFSC3GA25E-6FN900C -6 fpBGA 900 COM 25.4 LFSC3GA25E-5FN900C -5 fpBGA 900 COM 25.4 LFSC3GA25E-7FFN1020C -7 fcBGA 1020 COM 25.4 LFSC3GA25E-6FFN1020C -6 fcBGA 1020 COM 25.4 LFSC3GA25E-5FFN1020C -5 fcBGA 1020 COM 25.4 Part Number Grade Package Balls Temp. LUTs (K) LFSCM3GA25EP1-7FN900C Part Number -7 fpBGA 900 COM 25.4 LFSCM3GA25EP1-6FN900C -6 fpBGA 900 COM 25.4 LFSCM3GA25EP1-5FN900C -5 fpBGA 900 COM 25.4 LFSCM3GA25EP1-7FFN1020C -7 fcBGA 1020 COM 25.4 LFSCM3GA25EP1-6FFN1020C -6 fcBGA 1020 COM 25.4 LFSCM3GA25EP1-5FFN1020C -5 fcBGA 1020 COM 25.4 Grade Package Balls Temp. LUTs (K) LFSC3GA40E-7FFN1020C -7 fcBGA 1020 COM 40.4 LFSC3GA40E-6FFN1020C -6 fcBGA 1020 COM 40.4 LFSC3GA40E-5FFN1020C -5 fcBGA 1020 COM 40.4 LFSC3GA40E-7FCN1152C -7 fcBGA 1152 COM 40.4 LFSC3GA40E-6FCN1152C -6 fcBGA 1152 COM 40.4 LFSC3GA40E-5FCN1152C -5 fcBGA 1152 COM 40.4 Part Number 5-6 Ordering Information LatticeSC/M Family Data Sheet Lattice Semiconductor Commercial (Cont.) Grade Package Balls Temp. LUTs (K) LFSCM3GA40EP1-7FFN1020C Part Number -7 fcBGA 1020 COM 40.4 LFSCM3GA40EP1-6FFN1020C -6 fcBGA 1020 COM 40.4 LFSCM3GA40EP1-5FFN1020C -5 fcBGA 1020 COM 40.4 LFSCM3GA40EP1-7FCN1152C -7 fcBGA 1152 COM 40.4 LFSCM3GA40EP1-6FCN1152C -6 fcBGA 1152 COM 40.4 LFSCM3GA40EP1-5FCN1152C -5 fcBGA 1152 COM 40.4 Grade Package Balls Temp. LUTs (K) LFSC3GA80E-7FCN1152C -7 fcBGA 1152 COM 80.1 LFSC3GA80E-6FCN1152C -6 fcBGA 1152 COM 80.1 LFSC3GA80E-5FCN1152C -5 fcBGA 1152 COM 80.1 LFSC3GA80E-7FCN1704C -7 fcBGA 1704 COM 80.1 LFSC3GA80E-6FCN1704C -6 fcBGA 1704 COM 80.1 LFSC3GA80E-5FCN1704C -5 fcBGA 1704 COM 80.1 Part Number Grade Package Balls Temp. LUTs (K) LFSCM3GA80EP1-7FCN1152C Part Number -7 fcBGA 1152 COM 80.1 LFSCM3GA80EP1-6FCN1152C -6 fcBGA 1152 COM 80.1 LFSCM3GA80EP1-5FCN1152C -5 fcBGA 1152 COM 80.1 LFSCM3GA80EP1-7FCN1704C -7 fcBGA 1704 COM 80.1 LFSCM3GA80EP1-6FCN1704C -6 fcBGA 1704 COM 80.1 LFSCM3GA80EP1-5FCN1704C -5 fcBGA 1704 COM 80.1 Grade Package Balls Temp. LUTs (K) LFSC3GA115E-6FCN1152C -6 fcBGA 1152 COM 115.2 LFSC3GA115E-5FCN1152C -5 fcBGA 1152 COM 115.2 LFSC3GA115E-6FCN1704C -6 fcBGA 1704 COM 115.2 LFSC3GA115E-5FCN1704C -5 fcBGA 1704 COM 115.2 Part Number Part Number Grade Package Balls Temp. LUTs (K) LFSCM3GA115EP1-6FCN1152C -6 fcBGA 1152 COM 115.2 LFSCM3GA115EP1-5FCN1152C -5 fcBGA 1152 COM 115.2 LFSCM3GA115EP1-6FCN1704C -6 fcBGA 1704 COM 115.2 LFSCM3GA115EP1-5FCN1704C -5 fcBGA 1704 COM 115.2 5-7 Ordering Information LatticeSC/M Family Data Sheet Lattice Semiconductor Industrial Grade Package Balls Temp. LUTs (K) LFSC3GA15E-6FN256I Part Number -6 fpBGA 256 IND 15.2 LFSC3GA15E-5FN256I -5 fpBGA 256 IND 15.2 LFSC3GA15E-6FN900I -6 fpBGA 900 IND 15.2 LFSC3GA15E-5FN900I -5 fpBGA 900 IND 15.2 Grade Package Balls Temp. LUTs (K) LFSCM3GA15EP1-6FN256I -6 fpBGA 256 IND 15.2 LFSCM3GA15EP1-5FN256I -5 fpBGA 256 IND 15.2 LFSCM3GA15EP1-6FN900I -6 fpBGA 900 IND 15.2 LFSCM3GA15EP1-5FN900I -5 fpBGA 900 IND 15.2 Part Number Grade Package Balls Temp. LUTs (K) LFSC3GA25E-6FN900I Part Number -6 fpBGA 900 IND 25.4 LFSC3GA25E-5FN900I -5 fpBGA 900 IND 25.4 LFSC3GA25E-6FFN1020I -6 fcBGA 1020 IND 25.4 LFSC3GA25E-5FFN1020I -5 fcBGA 1020 IND 25.4 Grade Package Balls Temp. LUTs (K) LFSCM3GA25EP1-6FN900I -6 fpBGA 900 IND 25.4 LFSCM3GA25EP1-5FN900I -5 fpBGA 900 IND 25.4 LFSCM3GA25EP1-6FFN1020I -6 fcBGA 1020 IND 25.4 LFSCM3GA25EP1-5FFN1020I -5 fcBGA 1020 IND 25.4 Grade Package Balls Temp. LUTs (K) -6 fcBGA 1020 IND 40.4 Part Number Part Number LFSC3GA40E-6FFN1020I LFSC3GA40E-5FFN1020I -5 fcBGA 1020 IND 40.4 LFSC3GA40E-6FCN1152I -6 fcBGA 1152 IND 40.4 LFSC3GA40E-5FCN1152I -5 fcBGA 1152 IND 40.4 Grade Package Balls Temp. LUTs (K) LFSCM3GA40EP1-6FFN1020I -6 fcBGA 1020 IND 40.4 LFSCM3GA40EP1-5FFN1020I -5 fcBGA 1020 IND 40.4 LFSCM3GA40EP1-6FCN1152I -6 fcBGA 1152 IND 40.4 LFSCM3GA40EP1-5FCN1152I -5 fcBGA 1152 IND 40.4 Part Number 5-8 Ordering Information LatticeSC/M Family Data Sheet Lattice Semiconductor Industrial (Cont.) Grade Package Balls Temp. LUTs (K) LFSC3GA80E-6FCN1152I Part Number -6 fcBGA 1152 IND 80.1 LFSC3GA80E-5FCN1152I -5 fcBGA 1152 IND 80.1 LFSC3GA80E-6FCN1704I -6 fcBGA 1704 IND 80.1 LFSC3GA80E-5FCN1704I -5 fcBGA 1704 IND 80.1 Grade Package Balls Temp. LUTs (K) LFSCM3GA80EP1-6FCN1152I -6 fcBGA 1152 IND 80.1 LFSCM3GA80EP1-5FCN1152I -5 fcBGA 1152 IND 80.1 LFSCM3GA80EP1-6FCN1704I -6 fcBGA 1704 IND 80.1 LFSCM3GA80EP1-5FCN1704I -5 fcBGA 1704 IND 80.1 Part Number Grade Package Balls Temp. LUTs (K) LFSC3GA115E-6FCN1152I Part Number -6 fcBGA 1152 IND 115.2 LFSC3GA115E-5FCN1152I -5 fcBGA 1152 IND 115.2 LFSC3GA115E-6FCN1704I -6 fcBGA 1704 IND 115.2 LFSC3GA115E-5FCN1704I -5 fcBGA 1704 IND 115.2 Part Number Grade Package Balls Temp. LUTs (K) LFSCM3GA115EP1-6FCN1152I -6 fcBGA 1152 IND 115.2 LFSCM3GA115EP1-5FCN1152I -5 fcBGA 1152 IND 115.2 LFSCM3GA115EP1-6FCN1704I -6 fcBGA 1704 IND 115.2 LFSCM3GA115EP1-5FCN1704I -5 fcBGA 1704 IND 115.2 5-9 LatticeSC/M Family Data Sheet Supplemental Information January 2008 Data Sheet DS1004 For Further Information For further information about the flexiPCS see the LatticeSC/M Family flexiPCS Data Sheet available on the Lattice Semiconductor website at www.latticesemi.com. A variety of technical notes for the LatticeSC/M family are also available on the Lattice Semiconductor website at www.latticesemi.com. • • • • • • • • • • • • • • • • • LatticeSC PURESPEED I/O Usage Guide (TN1088) LatticeSC PURESPEED I/O Adaptive Input Logic User Guide (TN1158) LatticeSC sysCLOCK and PLL/DLL User’s Guide (TN1098) On-Chip Memory Usage Guide for LatticeSC Devices (TN1094) LatticeSC DDR/DDR2 SDRAM Memory Interface User’s Guide (TN1099) LatticeSC QDRII/QDRII+ SRAM Memory Interface User’s Guide (TN1096) LatticeSC sysCONFIG Usage Guide (TN1080) LatticeSC MPI/System Bus (TN1085) SPI Serial Flash Programming Using ispJTAG in LaticeSC Devices (TN1100) Power Estimation and Management for LatticeSC Devices (TN1101) LatticeSC SERDES Jitter (TN1084) LatticeSC FPGAs: Implementing 3.3V Interfaces in 2.5V VCCIO Banks (TN1110) Lattice PCI Express Demo User Guide (TN1123) LatticeSC flexiPCS/SERDES Design Guide (TN1145) Temperature Sensing Diode in LatticeSC Devices (TN1115) SPI4.2 Interoperability with ORSPI4 in LatticeSC Devices (TN1116) LatticeSC/M Hold Time Optimization (TN1117) For further information on Interface standards refer to the following websites: • • • • • JEDEC Standards (LVTTL, LVCMOS, SSTL, HSTL): www.jedec.org Hyper Transport: www.hypertransport.org Optical Interface (SPI-4.2, XSBI, CSIX and XGMII): www.oiforum.com RAPIDIO: www.rapidio.org PCI/PCIX: ww.pcisig.com © 2008 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 6-1 DS 1004 Further Information_01.2 LatticeSC/M Family Data Sheet Revision History June 2008 Date Data Sheet DS1004 Version Section February 2006 01.0 — March 2006 01.1 Introduction Architecture Change Summary Initial release. SC25 1020 I/O count changed to 476. Changed ROM 16X4 to ROM 16X2. Changed “X2 or X4” to “DIV2 or DIV4”. Added Global Set/Reset Section. DC and Switching Characteristics Added notes 5 and 6 to Recommended Operating Conditions table. Added Power Supply Ramp Rates table. Removed -5 and -6 speed grades from Typical Building Block Performance table. Added Input Delay Timing table. Added Synchronous GSR Timing table. Pinout Information Expanded PROBE_VCC and PROBE_GND description. Removed A-RXREFCLKP_[L/R] from Signal Description table. Added RESP_[ULC/URC] to Signal Description table. Added notes 1 and 2 to Signal Description table. Changed number of NCs to 28. Changed number of SERDES (signal + power supply) to 74. Removed RESP balls from NC list (B2, C2, B29, C29). Added note to VTT table. Changed RxRefclk (B2 and C2) to NC. Added RESP_ULC. Added RESP_URC. Changed RxRefclk (B29 and C29) to NC. June 2006 01.2 Introduction Changed SERDES min bandwidth from 622 Mbps to 600 Mbps. Changed max SERDES bandwidth from 3.4 Gbps to 3.8 Gbps. Corrected number of package I/Os for the SC80 and SC115 1704 pin packages. Updated speed performance for typical functions with ispLEVER 6.0 values. Architecture Changed “When these pins are not used they should be left unconnected.” with “Unused VTT pins should be connected to GND if the internal or external VCMT function is not used in the bank. If the internal or external VCMT function for differential input termination is used, the VTT pins should be unconnected and allowed to float.” Added “SERDES Power Supply Sequencing Requirements” section. Changed total bandwidth per quad from 13.6 Gbps to 15.2 Gbps. Added the accuracy of the temperature-sensing diode to be typically +/10 °C. Also referred to a temperature-sensing diode application note for more information. DC and Switching Characteristics Changed “CTAP” to “internal or external VCMT”. Changed VCC12 parameter to include VDDP, VDDTX and VDDRX. Changed typical values to match ispLEVER 6.0 Power Calculator. © 2008 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 7-1 DS 1004 Revision History Revision History LatticeSC/M Family Data Sheet Lattice Semiconductor Date Version June 2006 (cont.) 01.2 (cont.) Section Change Summary DC and Switching Updated Typical Building Block Performance with ispLEVER 6.0 values. Characteristics (cont.) Updated LatticeSC External Switching Characteristics with ispLEVER 6.0 values. Updated Lattice SC Internal Timing Parameters with ispLEVER 6.0 values. Updated Lattice SC Family Timing Adders with ispLEVER 6.0 values Changed % spread from 1 to 0.5 min and from 3 to 1.5 max. Changed conditions to refer to “with multiplication” and “without multiplication”. Changed the formula for tOPJIT with multiplication (same result, different representation). Pinout Information Expanded definition of NC. Expanded definition of GND. Expanded definition of VTT_x. Expanded definition of VCC12. Added accuracy of TEMP pin. Added RESPN_[ULC/URC]. Updated Pin Information Summary with additional devices and packages. Added additional devices and packages pinouts. Removed Power Supply and NC connections table Removed VTT table Removed LFSC25 Logic Signal Connections: 900-Ball ffBGA1 table Changed all VDDP, VDDTX and VDDRX to VCC12. Ordering Information Added dual marking. Added lead free packaging information to part number description. August 2006 01.3 Introduction Added SC40 1152 information to Table 1-1. Updated Table 1-3 with ispLEVER 6.0 SP1 results. Architecture Added SSTL18 II to Table 2-8. Changed Table 2-10 VCCIO column to “N/A” for LVDS, mini-LVDS, BLVDS25, MLVDS25, HYPT and RSDS. Changed Hypertransport performance to 700 MHz (1400 Mbps) in Table 2-11. Changed SPI4.2 performance to 500 MHz (1000 Mbps) in Table 2-11 Added “On packages that include PROBE_GND, the most accurate measurements will occur between the TEMP pin and the PROBE_GND pin. On packages that do not include PROBE_GND, measurements should be made between the TEMP pin and board ground.” Added VCCIO of 2.5 V for LVPECL33 in table 2-9. DC and Switching Characteristics Updated Typical Building Block Performance with ispLEVER 6.0 SP1 results. Updated Initialization and Standby Supply Current table to break out ICC and ICC12. Updated LatticeSC External Switching Characteristics with ispLEVER 6.0 SP1 results. Updated LatticeSC Internal Timing Parameters with ispLEVER 6.0 SP1 results. 7-2 Revision History LatticeSC/M Family Data Sheet Lattice Semiconductor Date Version Section August 2006 (cont.) 01.3 (cont.) DC and Switching Characteristics (cont.) Change Summary Updated LatticeSC Family Timing Adders with ispLEVER 6.0 SP1 results Updated PLL Timing Parameters based on PDE testing results Removed RDDATA parameter from sysCONFIG readback timing table Multiple Pinout Information Changed TDO/RDDATA to TDO Removed all MPI signals from SC15 256 pin package Dual Function Column Added note to SC15, SC25 900 pin package that the package supports a 16 bit MPI Added note that pin D3 in an SC15 and SC25 900 pin package should not be used for single-ended outputs Added note that pin D28 in an SC15 and SC25 900 pin package should not be used for single-ended outputs Added note to SC25 1020 pin package that the package supports a 16 bit MPI Added note to SC80 1152 pin package that the package supports a 32 bit MPI Added note to SC80 1704 pin package that the package supports a 32 bit MPI Ordering Information November 2006 01.4 Introduction DC and Switching Characteristics Changed “fcBGA” for the 1020 packages to “ffBGA” LatticeSC Family Selection Guide table – I/O count for SC80 device, 1704 fcBGA package changed to 904/32. I/O count for SC115 device, 1704 fcBGA package changed to 942/32. DC Electrical Characteristics table – Updated the initialization and standby supply current values. DC Electrical Characteristics table – Updated the sysCONFIG Master Parallel mode RCLK low and RCLK high time specifications. DC Electrical Characteristics table – Updated VCCIO values for LVPECL33 I/Os. Pin Information Pin Information Summary table - Changed number of single ended user I/Os from 906 to 904 for 1704 fcBGA. Removed the single-ended only output restriction on pins D3 and D28 in an SC15 and SC25 900 pin package. Ordering Information Ordering Information tables - Changed number of I/Os from 906 to 904 for 1704 fcBGA. Added ordering part numbers for LatticeSC/SCM 40K and 115K LUT devices. Added lead-free ordering part numbers. Multiple Changed number of available SC80 I/O from 906 to 904. Changed number of available SC115 I/O from 944 to 942. January 2007 01.4a Architecture Added EBR Asynchronous Reset section. February 2007 01.4b Architecture Updated EBR Asynchronous Reset section. March 2007 01.5 Architecture Added EBR asynchronous reset clarification Clarified that differential drivers are not supported in banks 1, 4 and 5 DC and Switching Characteristics Added clarification for the description of the junction temperature specification in the Absolute Maximum Ratings section. Updated Initialization and Standby Current table. Updated LatticeSC External Switching Characteristics with ispLEVER 6.1 SP1 results. 7-3 Revision History LatticeSC/M Family Data Sheet Lattice Semiconductor Date Version March 2007 (cont.) 01.5 (cont.) Section Change Summary DC and Switching Updated LatticeSC Internal Timing Parameters with ispLEVER 6.1 SP1 Characteristics (cont.) results. Updated tFDEL and tCDEL specifications. Updated LatticeSC Family Timing Adders with ispLEVER 6.1 SP1 results. Updated PLL specifications to expand frequency range down to 2 MHz and break out jitter for the different ranges. Added footnote to sysCLOCK PLL Timing table specifying the conditions for the jitter measurements. Added tDLL specification to sysCLOCK DLL Timing table. Added footnote to sysCLOCK DLL Timing table specifying the conditions for the jitter measurements. Added sysCONFIG Master Parallel Configuration Mode and sysCONFIG SPI Port to LatticeSC sysCONFIG Port Timing table. Pin Information Updated Pin Information Summary with SC40 information. Updated LFSC25 Logic Signal Connections: FF1020 with SC40 information. Updated LFSC80 Logic Signal Connections: FC1152 with SC40 information. August 2007 01.6 General Changed references of "HDC" to "HDC/SI". Changed references of "LDCN" to "LDCN/SCS". Changed references of "BUSYN/RCLK" to "BUSYN/RCLK/SCK". Changed references of "RDCFGN" to "TSALLN". Changed references of "TDO/RDDATA" to "TDO". Architecture Updated text in Ripple Mode section. Added information to Global Set/Reset. Added information for Spread Spectrum Clocking Modified information for PLL/DLL Cascading. DLL to PLL is now supported. Modified AIL Block text and figure. Modified Figure 2-20 DDR/Shift Register Block. Added Information to Hot Socketing. Added new information for I/O Architecture Rules. Added information to SERDES Power Supply Sequencing Requirements. DC and Switching Characteristics Added footnote to Hot Socketing Specifications table. Modified Initialization and Standby Supply Current table. Modified GSR Timing table. Modified sysCLOCK DLL Timing table to include IDUTY. Deleted Readback Timing information from sysCONFIG Port Timing table. Modified data in External Switching Characteristics table. Pin Information Added information to the Signal Descriptions table for HDC/SI, LDCN/ SCS. Added footnote to Signal Descriptions table. Modified Description for signal BUSYN/RCLK/SCK. Modified data in Pin Information Summary and device-specific Pinout Information tables. 7-4 Revision History LatticeSC/M Family Data Sheet Lattice Semiconductor Date Version Section September 2007 01.7 Pinout Information Supplemental Information November 2007 01.8 Ordering Information January 2008 01.9 Introduction Architecture Change Summary Added Thermal Management text section. Updated title list. Removed -7 speed grade information for 115K LUT devices in the Ordering Information tables. Corrections/Additions to memory controller list (Tables 1-2). AIL Overview – Modified power used by AIL block. PURESPEED I/O Buffer Banks – Modified VTT termination info. Added info about complimentary drivers for all banks. Supported Source Synchronous Interfaces – Modified data for DDRII in Table 2-11. DC and Switching Characteristics Recommended Operating Conditions – Changed footnote 3. Initialization and Standby Supply Current – Inserted a paragraph with info regarding the table. Also updated the table. Typical Building Block Function Performance – Added VCC=1.2V=1.2V+/-5% above Pin to Pin Performance table. LatticeSC External Switching Characteristics – Added VCC=1.2V=1.2V+/-5% above table. Reworded footnote 3. LatticeSC Family Timing Adders – Added VCC=1.2V=1.2V+/-5% above table. LatticeSC Internal Timing Parameters – Added VCC=1.2V=1.2V+/-5% above table. Reworded footnote 1. GSR Timing – Added a new table for Internal System Bus Timing after GSR Timing. LatticeSC sysCONFIG Port Timing – Corrected sysCONFIG SPI Port information. Pinout Information Supplemental Information March 2008 02.0 DC and Switching Characteristics Signal Descriptions – Modified info for VTT_x, PROBE_VCC, and PROBE_GND. Modified info for [LOC]_DLL[T,C]_IN[C,D,E,F]. Updated list of technical notes, added reference to LatticeSC/M flexiPCS Data Sheet. Updated Internal Timing Parameters table. Updated Read Mode timing diagram. Updated Read Mode with Input Registers Only timing diagram. June 2008 02.1 — Data sheet status changed from preliminary to final. Architecture Removed Read-Before-Write sysMEM EBR mode. DC and Switching Characteristics Updated LatticeSC/M External Switching Characteristics table. Updated LatticeSC/M Internal Timing Parameters table. Removed Read-Before-Write sysMEM EBR mode. 7-5