NSC LM2852YMXA-1.2

LM2852
2A 500/1500kHz Synchronous SIMPLE SWITCHER ® Buck
Regulator
General Description
Features
SWITCHER ®
The LM2852 SIMPLE
synchronous buck regulator is a high frequency step-down switching voltage regulator capable of driving up to a 2A load with excellent line and
load regulation. The LM2852 can accept an input voltage
between 2.85V and 5.5V and deliver an output voltage that is
factory programmable from 0.8V to 3.3V in 100mV increments. The LM2852 is available with a choice of two switching frequencies - 500kHz (LM2852Y) or 1.5MHz (LM2852X).
It also features internal, type-three compensation to deliver a
low component count solution. The exposed-pad TSSOP-14
package enhances the thermal performance of the LM2852.
n Input voltage range of 2.85 to 5.5V
n Factory EEPROM set output voltages from 0.8V to 3.3V
in 100mV increments
n Maximum load current of 2A
n Voltage Mode Control
n Internal type-three compensation
n Switching frequency of 500kHz or 1.5MHz
n Low standby current of 10µA
n Internal 60 mΩ MOSFET switches
n Standard voltage options 0.8/1.0/1.2/1.5/1.8/2.5/3.3 volts
Applications
n Low voltage point of load regulation
n Local solution for FPGA/DSP/ASIC core power
n Broadband networking and communications
infrastructure
n Portable computing
Typical Application Circuit
20127001
20127002
SIMPLE SWITCHER ®
SIMPLE SWITCHERreg; is a registered trademark of National Semiconductor Corporation
© 2006 National Semiconductor Corporation
DS201270
www.national.com
LM2852 2A 500/1500kHz Synchronous SIMPLE SWITCHER ® Buck Regulator
October 2006
LM2852
Connection Diagram
TOP VIEW
20127003
MXA14A
ETSSOP-14
NC (Pins 5, 12 and 13): No connect. These pins must be
tied to ground or left floating in the application.
Pin Descriptions
AVIN (Pin 1): Chip bias input pin. This provides power to the
logic of the chip. Connect to the input voltage or a separate
rail.
EN (Pin 2): Enable. Connect this pin to ground to disable the
chip; connect to AVIN or leave floating to enable the chip;
enable is internally pulled up.
SGND (Pin 3): Signal ground.
SS (Pin 4): Soft-start pin. Connect this pin to a small capacitor to control startup. The soft-start capacitance range is
restricted to values 1 nF to 50 nF.
www.national.com
PVIN (Pins 6, 7): Input supply pin. PVIN is connected to the
input voltage. This rail connects to the source of the internal
power PFET.
SW (Pins 8, 9): Switch pin. Connect to the output inductor.
PGND (Pins 10, 11): Power ground. Connect this to an
internal ground plane or other large ground plane.
SNS (Pin 14): Output voltage sense pin. Connect this pin to
the output voltage as close to the load as possible.
Exposed Pad: Connect to ground.
2
LM2852
Ordering Information
Order Number
Frequency
LM2852YMXA-0.8
Voltage
Option
Package Type
Package
Drawing
0.8
94 Units, Rail
LM2852YMXAX-0.8
2500 Units, Tape and Reel
LM2852YMXA-1.0
1.0
94 Units, Rail
LM2852YMXAX-1.0
2500 Units, Tape and Reel
LM2852YMXA-1.2
1.2
94 Units, Rail
LM2852YMXAX-1.2
2500 Units, Tape and Reel
LM2852YMXA-1.5
LM2852YMXAX-1.5
LM2852YMXA-1.8
1.5
500kHz
94 Units, Rail
2500 Units, Tape and Reel
1.8
94 Units, Rail
LM2852YMXAX-1.8
2500 Units, Tape and Reel
LM2852YMXA-2.5
2.5
94 Units, Rail
LM2852YMXAX-2.5
2500 Units, Tape and Reel
LM2852YMXA-3.0
3.0
94 Units, Rail
LM2852YMXAX-3.0
2500 Units, Tape and Reel
LM2852YMXA-3.3
3.3
LM2852YMXAX-3.3
LM2852XMXA-0.8
0.8
94 Units, Rail
TSSOP-14 exposed
pad
LM2852XMXAX-0.8
1.0
94 Units, Rail
94 Units, Rail
LM2852XMXAX-1.0
2500 Units, Tape and Reel
LM2852XMXA-1.2
1.2
94 Units, Rail
LM2852XMXAX-1.2
2500 Units, Tape and Reel
LM2852XMXA-1.5
LM2852XMXA-1.8
MXA14A
2500 Units, Tape and Reel
2500 Units, Tape and Reel
LM2852XMXA-1.0
LM2852XMXAX-1.5
Supplied As
1.5
1500kHz
94 Units, Rail
2500 Units, Tape and Reel
1.8
94 Units, Rail
LM2852XMXAX-1.8
LM2852XMXA-2.5
2500 Units, Tape and Reel
2.5
94 Units, Rail
LM2852XMXAX-2.5
LM2852XMXA-3.0
2500 Units, Tape and Reel
3.0
94 Units, Rail
LM2852XMXAX-3.0
LM2852XMXA-3.3
2500 Units, Tape and Reel
3.3
94 Units, Rail
LM2852XMXAX-3.3
2500 Units, Tape and Reel
Note: Contact factory for other voltage options.
3
www.national.com
LM2852
Absolute Maximum Ratings (Note 1)
Operating Ratings
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
PVIN to GND
1.5V to 5.5V
AVIN to GND
2.85V to 5.5V
PVIN, AVIN, EN, SNS
Junction Temperature
−0.3V to 6.5V
ESD Susceptibility (Note 2)
θJA
2kV
Power Dissipation
Internally Limited
Storage Temperature Range
−65˚C to +150˚C
Maximum Junction Temp.
150˚C
14-Pin Exposed Pad TSSOP
Package
Infrared (15 sec)
Vapor Phase (60 sec)
Soldering (10 sec)
220˚C
215˚C
260˚C
−40˚C to +125˚C
38˚C/W
Electrical Characteristics AVIN = PVIN = 5V unless otherwise indicated under the Conditions column.
Limits in standard type are for TJ = 25˚C only; limits in boldface type apply over the junction temperature (TJ) range of -40˚C
to +125˚C. Minimum and Maximum limits are guaranteed through test, design, or statistical correlation. Typical values represent the most likely parametric norm at TJ = 25˚C, and are provided for reference purposes only.
Symbol
Parameter
Conditions
Min
Typ
Max
Units
V
SYSTEM PARAMETERS
VOUT
∆VOUT/∆AVIN
Voltage Tolerance3 VOUT = 0.8V option
0.782
0.818
VOUT = 1.0V option
0.9775
1.0225
VOUT = 1.2V option
1.1730
1.2270
VOUT = 1.5V option
1.4663
1.5337
VOUT = 1.8V option
1.7595
1.8405
VOUT = 2.5V option
2.4437
2.5563
VOUT = 3.0V option
2.9325
3.0675
VOUT = 3.3V option
3.2257
3.3743
Line Regulation
3
VOUT = 0.8V, 1.0V, 1.2V, 1.5V, 1.8V or
2.5V
2.85V ≤ AVIN ≤ 5.5V
0.2
0.6
%
VOUT = 3.3V
3.5V ≤ AVIN ≤ 5.5V
0.2
0.6
%
∆VOUT/∆IO
Load Regulation
Normal operation
VON
UVLO Threshold
(AVIN)
Rising
8
Falling Hysteresis
85
mV/A
2.47
2.85
V
150
210
mV
rDSON-P
PFET On
Resistance
Isw = 2A
75
140
mΩ
rDSON-N
NFET On
Resistance
Isw = 2A
55
120
mΩ
RSS
Soft-start
resistance
ICL
400
Peak Current Limit LM2852X
Threshold
LM2852Y
IQ
Operating Current Non-switching
ISD
Shutdown
EN = 0V
Quiescent Current
RSNS
kΩ
2.75
4
4.95
2.25
3
3.65
Sense pin
resistance
A
0.85
2
mA
10
25
µA
400
kΩ
PWM
fosc
www.national.com
LM2852X
1500kHz option.
1050
1500
1825
kHz
LM2852Y
500kHz option.
325
500
625
kHz
4
Symbol
Parameter
Drange
Duty Cycle Range
Conditions
Min
Typ
0
Max
Units
100
%
ENABLE CONTROL4
VIH
EN Pin Minimum
High Input
VIL
EN Pin Maximum
Low Input
IEN
EN Pin Pullup
Current
75
% of
AVIN
25
EN = 0V
% of
AVIN
1.2
µA
THERMAL CONTROLS
TSD
TJ for Thermal
Shutdown
165
˚C
TSD-HYS
Hysteresis for
Thermal Shutdown
10
˚C
Note 1: Absolute maximum ratings indicate limits beyond which damage to the device may occur. Operating Range indicates conditions for which the device is
intended to be functional, but does not guarantee specfic performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.
Note 2: Human body model: 1.5kΩ in series with 100pF. SW and PVIN pins are derated to 1.5kV
Note 3: VOUT measured in a non-switching, closed-loop configuration at the SNS pin.
Note 4: The enable pin is internally pulled up, so the LM2852 is automatically enabled unless an external enable voltage is applied.
5
www.national.com
LM2852
Electrical Characteristics AVIN = PVIN = 5V unless otherwise indicated under the Conditions column.
Limits in standard type are for TJ = 25˚C only; limits in boldface type apply over the junction temperature (TJ) range of -40˚C
to +125˚C. Minimum and Maximum limits are guaranteed through test, design, or statistical correlation. Typical values
represent the most likely parametric norm at TJ = 25˚C, and are provided for reference purposes only. (Continued)
LM2852
LM2852Y Typical Performance Characteristics (500kHz)
Efficiency vs ILoad
VOUT = 2.5V
Efficiency vs ILoad
VOUT = 1.5V
20127024
20127004
Efficiency vs ILoad
VOUT = 3.3V
Frequency vs Temperature
20127009
20127006
www.national.com
6
LM2852
LM2852X Typical Performance Characteristics (1500kHz)
Efficiency vs ILoad
VOUT = 2.5V
Efficiency vs ILoad
VOUT = 1.5V
20127026
20127025
Efficiency vs ILoad
VOUT = 3.3V
Frequency vs Temperature
20127028
20127027
7
www.national.com
LM2852
LM2852 Typical Performance Characteristics (Both Y and X Versions)
Shutdown Current vs VIN
Quiescent Current (Non-Switching) vs VIN
20127008
20127007
NMOS Switch RDSON vs Temperature
PMOS Switch RDSON vs Temperature
20127010
www.national.com
20127011
8
LM2852
Block Diagram
20127012
Applications Information
The LM2852 is a DC-DC synchronous buck regulator belonging to National Semiconductor’s SIMPLE SWITCHER ®
family. Integration of the PWM controller, power switches
and compensation network greatly reduces the component
count required to implement a switching power supply. A
typical application requires only four components: an input
capacitor, a soft-start capacitor, an output filter capacitor and
an output filter inductor.
also connected to the soft-start pin, SS. Adding a soft-start
capacitor externally increases the time it takes for the output
voltage to reach its final level.
The charging time required for the reference voltage can be
estimated using the RC time constant of the DAC resistor
and the capacitance connected to the SS pin. Three RC time
constant periods are needed for the reference voltage to
reach 95% of its final value. The actual start-up time will vary
with differences in the DAC resistance and higher-order
effects.
If little or no soft-start capacitance is connected, then the
start-up time may be determined by the time required for the
current limit current to charge the output filter capacitance.
The capacitor charging equation I = C ∆V/∆t can be used to
estimate the start-up time in this case. For example, a part
with a 3V output, a 100 µF output capacitance and a 3A
current limit threshold would require a time of 100 µs:
INPUT CAPACITOR (CIN)
Fast switching of large currents in the buck converter places
a heavy demand on the voltage source supplying PVIN. The
input capacitor, CIN, supplies extra charge when the switcher
needs to draw a burst of current from the supply. The RMS
current rating and the voltage rating of the CIN capacitor are
therefore important in the selection of CIN. The RMS current
specification can be approximated by:
where D is the duty cycle, VOUT/VIN. CIN also provides
filtering of the supply. Trace resistance and inductance degrade the benefits of the input capacitor, so CIN should be
placed very close to PVIN in the layout. A 22 µF or 47 µF
ceramic capacitor is typically sufficient for CIN. In parallel
with the large input capacitance a smaller capacitor may be
added such as a 1µF ceramic for higher frequency filtering.
Since it is undesirable for the power supply to start up in
current limit, a soft-start capacitor must be chosen to force
the LM2852 to start up in a more controlled fashion based on
the charging of the soft-start capacitance. In this example,
suppose a 3 ms start time is desired. Three time constants
are required for charging the soft-start capacitor to 95% of
the final reference voltage. So in this case RC=1ms. The
DAC resistor, R, is 400 kΩ so C can be calculated to be
2.5nF. A 2.7nF ceramic capacitor can be chosen to yield
approximately a 3ms start-up time.
SOFT-START CAPACITOR (CSS)
The DAC that sets the reference voltage of the error amp
sources a current through a resistor to set the reference
voltage. The reference voltage is one half of the output
voltage of the switcher due to the 200kΩ divider connected
to the SNS pin. Upon start-up, the output voltage of the
switcher tracks the reference voltage with a two to one ratio
as the DAC current charges the capacitance connected to
the reference voltage node. Internal capacitance of 20pF is
permanently attached to the reference voltage node which is
SOFT-START CAPACITOR (CSS) AND FAULT
CONDITIONS
Various fault conditions such as short circuit and UVLO of
the LM2852 activate internal circuitry designed to control the
voltage on the soft-start capacitor. For example, during a
short circuit current limit event, the output voltage typically
9
www.national.com
LM2852
Applications Information
type-three, is included on-chip. The benefit to integrated
compensation is straightforward, simple power supply design. Since the output filter capacitor and inductor values
impact the compensation of the control loop, the range of L,
C and CESR values is restricted in order to ensure stability.
(Continued)
falls to a low voltage. During this time, the soft-start voltage
is forced to track the output so that once the short is removed, the LM2852 can restart gracefully from whatever
voltage the output reached during the short circuit event. The
range of soft-start capacitors is therefore restricted to values
1nF to 50nF.
OUTPUT FILTER VALUES
Table 1 details the recommended inductor and capacitor
ranges for the LM2852 that are suggested for various typical
output voltages. Values slightly different than those recommended may be used, however the phase margin of the
power supply may be degraded.
COMPENSATION
The LM2852 provides a highly integrated solution to power
supply design. The compensation of the LM2852, which is
TABLE 1. Output Filter Values
Frequency
Option
LM2852Y
(500kHz)
LM2852X
(1500kHz)
www.national.com
L (µH)
CESR (mΩ)
C (µF)
VOUT (V)
PVIN (V)
Min
Max
Min
Max
Min
Max
0.8
3.3
10
15
100
220
70
200
0.8
5.0
10
15
100
120
70
200
1.0
3.3
10
15
100
180
70
200
1.0
5.0
10
15
100
180
70
200
1.2
3.3
10
15
100
180
70
200
1.2
5.0
15
22
100
120
70
200
1.5
3.3
10
15
100
120
70
200
1.5
5.0
22
22
100
120
70
200
1.8
3.3
10
15
100
120
100
200
1.8
5.0
22
33
100
120
100
200
2.5
3.3
6.8
10
68
120
95
275
2.5
5.0
15
22
68
120
95
275
3.3
5.0
15
22
68
100
100
275
0.8
3.3
0.8
5.0
1.0
3.3
1.0
5.0
1.2
3.3
1.2
5.0
1.5
3.3
1.5
5.0
1.8
3.3
1.8
5.0
2.5
3.3
2.5
5.0
3.3
5.0
The 1500kHz version is
designed for ceramic output
capacitors which typically
have very low ESR ( < 10mΩ.)
1
10
10
LM2852
Applications Information
(Continued)
CHOOSING AN INDUCTANCE VALUE
The current ripple present in the output filter inductor is
determined by the input voltage, output voltage, switching
frequency and inductance according to the following equation:
The maximum inductor current for a 2A load would therefore
be 2A plus 60.8 mA, 2.0608A. As shown in the ripple equation, the current ripple is inversely proportional to inductance.
OUTPUT FILTER INDUCTORS
where ∆IL is the peak-to-peak current ripple, D is the duty
cycle VOUT/VIN, VIN is the input voltage applied to the PVIN
pin, VOUT is the output voltage of the switcher, f is the
switching frequency and L is the inductance of the output
filter inductor. Knowing the current ripple is important for
inductor selection since the peak current through the inductor is the load current plus one half the ripple current. Care
must be taken to ensure the peak inductor current does not
reach a level high enough to trip the current limit circuitry of
the LM2852.
As an example, consider a 5V to 1.2V conversion and a
500kHz switching frequency. According to Table 1, a 15µH
inductor may be used. Calculating the expected peak-topeak ripple,
Once the inductance value is chosen, the key parameter for
selecting the output filter inductor is its saturation current
(Isat) specification. Typically Isat is given by the manufacturer
as the current at which the inductance of the coil falls to a
certain percentage of the nominal inductance. The Isat of an
inductor used in an application should be greater than the
maximum expected inductor current to avoid saturation. Below is a table of inductors that may be suitable in LM2852
applications.
TABLE 2. LM2852 Output Filter Inductors
Inductance (µH)
Part Number
Vendor
1
DO1608C-102
Coilcraft
1
DO1813P-102HC
Coilcraft
6.8
DO3316P-682
Coilcraft
Coilcraft
7
MSS1038-702NBC
10
DO3316P-103
Coilcraft
10
MSS1038-103NBC
Coilcraft
12
MSS1038-123NBC
Coilcraft
15
D03316P-153
Coilcraft
15
MSS1038-153NBC
Coilcraft
18
MSS1038-183NBC
Coilcraft
22
DO3316P-223
Coilcraft
22
MSS1038-223NBC
Coilcraft
22
DO3340P-223
Coilcraft
27
MSS1038-273NBC
Coilcraft
33
MSS1038-333NBC
Coilcraft
33
DO3340P-333
Coilcraft
11
www.national.com
LM2852
Applications Information
Table 1. Below are some examples of capacitors that can
typically be used in an LM2852 application.
(Continued)
OUTPUT FILTER CAPACITORS
The capacitors that may be used in the output filter with the
LM2852 are limited in value and ESR range according to
TABLE 3. LM2852 Output Filter Capacitors
Capacitance (µF)
Part Number
Chemistry
Vendor
10
GRM31MR61A106KE19
Ceramic
Murata
10
GRM32DR61E106K
Ceramic
Murata
68
595D686X_010C2T
Tantalum
Vishay - Sprague
68
595D686X_016D2T
Tantalum
Vishay - Sprague
100
595D107X_6R3C2T
Tantalum
Vishay - Sprague
100
595D107X_016D2T
Tantalum
Vishay - Sprague
100
NOSC107M004R0150
Niobium Oxide
AVX
100
NOSD107M006R0100
Niobium Oxide
AVX
120
595D127X_004C2T
Tantalum
Vishay - Sprague
120
595D127X_010D2T
Tantalum
Vishay - Sprague
150
595D157X_004C2T
Tantalum
Vishay - Sprague
150
595D157X_016D2T
Tantalum
Vishay - Sprague
150
NOSC157M004R0150
Niobium Oxide
AVX
150
NOSD157M006R0100
Niobium Oxide
AVX
220
595D227X_004D2T
Tantalum
Vishay - Sprague
220
NOSD227M004R0100
Niobium Oxide
AVX
220
NOSE227M006R0100
Niobium Oxide
AVX
SPLIT-RAIL OPERATION
The LM2852 can be powered using two separate voltages
for AVIN and PVIN. AVIN is the supply for the control logic;
PVIN is the supply for the power FETs. The output filter
components need to be chosen based on the value of PVIN.
For PVIN levels lower than 3.3V, use output filter component
values recommended for 3.3V. PVIN must always be equal
to or less than AVIN.
20127014
SWITCH NODE PROTECTION
The LM2852 includes protection circuitry that monitors the
voltage on the switch pin. Under certain conditions, switching is disabled in order to protect the switching devices. One
result of the protection circuitry may be observed when
www.national.com
power to the LM2852 is applied with no or light load on the
output. The output regulates to the rated voltage, but no
switching may be observed. As soon as the output is loaded,
the LM2852 begins normal switching operation.
12
expected regulated value. The sense line should not run
too close to nodes with high EMI (such as the switch
node) to minimize interference.
4. The switch node connections should be low resistance
to reduce power losses. Low resistance means the trace
between the switch pin and the inductor should be wide.
However, the area of the switch node should not be too
large since EMI increases with greater area. So connect
the inductor to the switch pin with a short, but wide trace.
Other high current connections in the application such
as PVIN and VOUT assume the same trade off between
low resistance and EMI.
(Continued)
LAYOUT HINTS
These are several guidelines to follow while designing the
PCB layout for an LM2852 application.
1. The input bulk capacitor, CIN, should be placed very
close to the PVIN pin to keep the resistance as low as
possible between the capacitor and the pin. High current
levels will be present in this connection.
2. All ground connections must be tied together. Use a
broad ground plane, for example a completely filled back
plane, to establish the lowest resistance possible between all ground connections.
3. The sense pin connection should be made as close to
the load as possible so that the voltage at the load is the
5.
Allow area under the chip to solder the entire exposed
die attach pad to ground for improved thermal and electrical performance.
LM2852 Example Circuit Schematic
20127020
FIGURE 1.
Bill of Materials for 500kHz (LM2852Y) 3.3VIN to 1.8 VOUT Conversion
ID
Part Number
Type
Size
ETSSOP-14
Parameters
Qty
Vendor
U1
LM2852YMXA-1.8
2A Buck
LO
DO3316P-153
Inductor
CO*
595D107X_6R3C2T
Capacitor
Case Code “C”
CIN
GRM32ER60J476ME20B
Capacitor
1210
CINX
GRM21BR71C105KA01B
Capacitor
0805
1µF/X7R/16V
1
Murata
CSS
VJ0805Y272KXXA
Capacitor
0805
2.7nF ± 10%
1
Vishay-Vitramon
Rf
CRCW060310R0F
Resistor
0603
10Ω ± 10%
1
Vishay-Dale
Cf
GRM21BR71C105KA01B
Capacitor
0805
1µF/X7R/16V
1
Murata
Qty
Vendor
1
NSC
1
Coilcraft
100 µF ± 20%
1
Vishay-Sprague
47µF/X5R/6.3V
1
Murata
15 µH
* If a “non-tantalum” solution is desired use an NOSC107M004R0150, 100 µF capacitor from AVX for CO.
Bill of Materials for 1500kHz (LM2852X) 3.3V to 1.8V Conversion
Type
Size
U1
ID
LM2852XMXA-1.8
Part Number
2A Buck
ETSSOP-14
L0
DO1813P-102HC
Inductor
Parameters
1 µH
1
NSC
1
Coilcraft
C0
GRM32DR61E106K
Capacitor
1210
10 µF/X5R/25V
1
Murata
CIN
GRM32ER60J476ME20B
Capacitor
1210
47µF/X5R/6.3V
1
Murata
CINX
GRM21BR71C105KA01B
Capacitor
0805
1µF/X7R/16V
1
Murata
CSS
VJ0805Y272KXXA
Capacitor
0805
2.7nF ± 10%
1
Vishay-Vitramon
Rf
CRCW060310R0F
Cf
GRM21BR71C105KA01B
Resistor
0603
10Ω ± 10%
1
Vishay-Dale
Capacitor
0805
1µF/X7R/16V
1
Murata
13
www.national.com
LM2852
Applications Information
LM2852 2A 500/1500kHz Synchronous SIMPLE SWITCHER ® Buck Regulator
Physical Dimensions
inches (millimeters) unless otherwise noted
14-Lead ETSSOP Package
NS Package Number MXA14A
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves
the right at any time without notice to change said circuitry and specifications.
For the most current product information visit us at www.national.com.
LIFE SUPPORT POLICY
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS
WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR
CORPORATION. As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body, or
(b) support or sustain life, and whose failure to perform when
properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to result
in a significant injury to the user.
2. A critical component is any component of a life support
device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or
system, or to affect its safety or effectiveness.
BANNED SUBSTANCE COMPLIANCE
National Semiconductor follows the provisions of the Product Stewardship Guide for Customers (CSP-9-111C2) and Banned Substances
and Materials of Interest Specification (CSP-9-111S2) for regulatory environmental compliance. Details may be found at:
www.national.com/quality/green.
Lead free products are RoHS compliant.
National Semiconductor
Americas Customer
Support Center
Email: [email protected]
Tel: 1-800-272-9959
www.national.com
National Semiconductor
Europe Customer Support Center
Fax: +49 (0) 180-530 85 86
Email: [email protected]
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790
National Semiconductor
Asia Pacific Customer
Support Center
Email: [email protected]
National Semiconductor
Japan Customer Support Center
Fax: 81-3-5639-7507
Email: [email protected]
Tel: 81-3-5639-7560