24AA014/24LC014 1K I2C™ Serial EEPROM Device Selection Table Part Number VCC Range Package Types Max Clock 24AA014 1.8V - 5.5V 400 kHz 24LC014 2.5V - 5.5V Temp. Range (1) 400 kHz SOIC, TSSOP PDIP, MSOP A0 1 8 VCC A0 1 8 VCC I A1 2 7 WP A1 2 7 WP I A2 3 6 SCL A2 3 6 SCL VSS 4 5 SDA VSS 4 5 SDA Note 1: 100 kHz for VCC < 2.5V Features: DFN • Single-supply with operation down to 1.8V • Low-power CMOS technology: - 1 mA active current, typical - 1 μA standby current, typical at 5.5V • Organized as a single block of 128 bytes (128 x 8) • Hardware write protection for entire array • 2-wire serial interface bus, I2C™ compatible • 100 kHz and 400 kHz clock compatibility • Page write buffer for up to 16 bytes • Self-timed write cycle (including auto-erase) • 5 ms max. write cycle time • Address lines allow up to eight devices on bus • 1,000,000 erase/write cycles • ESD protection > 4,000V • Data retention > 200 years • 8-pin PDIP, SOIC, TSSOP, DFN and MSOP packages • Available for extended temperature ranges: - Industrial (I): -40°C to 8 VCC A1 2 7 WP A2 3 VSS 4 6 SCL 5 SDA Block Diagram A0 A1 A2 I/O Control Logic WP HV Generator Memory Control Logic EEPROM Array XDEC SDA SCL Write-Protect Circuitry YDEC VCC VSS Sense Amp. R/W Control +85°C Description: The Microchip Technology Inc. 24AA014/24LC014 is a 1 Kbit Serial Electrically Erasable PROM with operation down to 1.8V. The device is organized as a single block of 128 x 8-bit memory with a 2-wire serial interface. Low-current design permits operation with typical standby and active currents of only 1 μA and 1 mA, respectively. The device has a page write capability for up to 16 bytes of data. Functional address lines allow the connection of up to eight 24AA014/24LC014 devices on the same bus for up to 8 Kbits of contiguous EEPROM memory. The device is available in the standard 8-pin PDIP, 8-pin SOIC (150 mil), TSSOP, 2x3 DFN and MSOP packages. © 2005 Microchip Technology Inc. A0 1 Pin Function Table Name VSS Function Ground SDA Serial Data SCL Serial Clock VCC Power Supply A0, A1, A2 Chip Selects WP Hardware Write-Protect DS21809C-page 1 24AA014/24LC014 1.0 ELECTRICAL CHARACTERISTICS Absolute Maximum Ratings (†) VCC .............................................................................................................................................................................6.5V All inputs and outputs w.r.t. VSS ......................................................................................................... -0.6V to VCC +1.0V Storage temperature ...............................................................................................................................-65°C to +150°C Ambient temperature with power applied ................................................................................................-65°C to +125°C ESD protection on all pins ......................................................................................................................................................≥ 4 kV † NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. TABLE 1-1: DC CHARACTERISTICS All parameters apply across the specified operating ranges unless otherwise noted. Parameter VCC = +1.8V to +5.5V Industrial (I): TA = -40°C to +85°C Symbol Min. Max. Units Conditions SCL and SDA pins: High-level input voltage VIH 0.7 VCC — V Low-level input voltage VIL — 0.3 VCC V Hysteresis of Schmitt Trigger inputs VHYS 0.05 VCC — V (Note 1) Low-level output voltage VOL — 0.40 V IOL = 3.0 mA, VCC = 4.5V IOL = 2.1 mA, VCC = 2.5V Input leakage current ILI — ±1 μΑ VIN = VSS or VCC, WP = Vss Output leakage current ILO — ±1 μA VOUT = VSS or VCC Pin capacitance (all inputs/outputs) CIN, COUT — 10 pF VCC = 5.0V (Note 1) TA = 25°C, f = 1 MHz Operating current ICC Read — 1 mA VCC = 5.5V, SCL = 400 kHz ICC Write — 3 mA VCC = 5.5V ICCS — 1 μA VCC = 5.5V, SDA = SCL = VCC WP = VSS, A0, A1, A2 = VSS Standby current Note 1: This parameter is periodically sampled and not 100% tested. DS21809C-page 2 © 2005 Microchip Technology Inc. 24AA014/24LC014 TABLE 1-2: AC CHARACTERISTICS All parameters apply across the specified operating ranges unless otherwise noted. Vcc = 1.8V to 5.5V Industrial (I): TA = -40°C to +85°C Vcc = 1.8V - 5.5V Vcc = 2.5V - 5.5V STD MODE FAST MODE Symbol Parameter Min. Max. Min. Max. Units Clock frequency Clock high time Clock low time SDA and SCL rise time SDA and SCL fall time Start condition hold time FCLK THIGH TLOW TR TF THD:STA — 4000 4700 — — 4000 100 — — 1000 300 — — 600 1300 — — 600 400 — — 300 300 — kHz ns ns ns ns ns Start condition setup time TSU:STA 4700 — 600 — ns Data input hold time Data input setup time Stop condition setup time Output valid from clock Bus free time THD:DAT TSU:DAT TSU:STO TAA TBUF 0 250 4000 — 4700 — — — 3500 — 0 100 600 — 1300 — — — 900 — ns ns ns ns ns Remarks (Note 1) (Note 1) After this period, the first clock pulse is generated Only relevant for repeated Start condition (Note 2) (Note 2) Time the bus must be free before a new transmission can start (Note 1), CB ≤ 100 pF TOF — 250 20 +0.1 250 ns Output fall time from VIH minimum to VIL maximum CB — 50 — 50 ns (Note 3) Input filter spike suppression TSP (SDA and SCL pins) — 5 — 5 ms Byte or Page mode Write cycle time TWC Endurance 1M — 1M — cycles 25°C, (Note 4) Note 1: Not 100% tested. CB = total capacitance of one bus line in pF. 2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region (minimum 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions. 3: The combined TSP and VHYS specifications are due to Schmitt Trigger inputs which provide improved noise spike suppression. This eliminates the need for a TI specification for standard operation. 4: This parameter is not tested but ensured by characterization. For endurance estimates in a specific application, please consult the Total Endurance™ Model which can be downloaded from Microchip’s web site at www.microchip.com. FIGURE 1-1: BUS TIMING DATA THIGH TF SCL TR TSU:STA TLOW SDA IN TSP THD:DAT TSU:DAT TSU:STO THD:STA TAA TBUF SDA OUT © 2005 Microchip Technology Inc. DS21809C-page 3 24AA014/24LC014 2.0 PIN DESCRIPTIONS 2.1 SDA Serial Data This is a bidirectional pin used to transfer addresses and data into and out of the device. It is an open drain terminal. Therefore, the SDA bus requires a pull-up resistor to VCC (typical 10 kΩ for 100 kHz, 2 kΩ for 400 kHz). For normal data transfer SDA is allowed to change only during SCL low. Changes during SCL high are reserved for indicating the Start and Stop conditions. 2.2 3.0 FUNCTIONAL DESCRIPTION The 24AA014/24LC014 supports a bidirectional, 2-wire bus and data transmission protocol. A device that sends data onto the bus is defined as transmitter, and a device receiving data as receiver. The bus has to be controlled by a master device that generates the Serial Clock (SCL), controls the bus access and generates the Start and Stop conditions while the 24AA014/ 24LC014 works as slave. Both master and slave can operate as transmitter or receiver, but the master device determines which mode is activated. SCL Serial Clock The SCL input is used to synchronize the data transfer to and from the device. 2.3 A0, A1, A2 The levels on the inputs A0, A1 and A2 are compared with the corresponding bits in the slave address. The chip is selected if the compare is true. Up to eight 24AA014/24LC014 devices may be connected to the same bus by using different Chip Select bit combinations. These inputs must be connected to either VCC or VSS. 2.4 WP WP is the hardware write-protect pin. It must be tied to VCC or VSS. If tied to VCC, the hardware write protection is enabled. If the WP pin is tied to VSS the hardware write protection is disabled. 2.5 Noise Protection The 24AA014/24LC014 employs a VCC threshold detector circuit that disables the internal erase/write logic if the VCC is below 1.5 volts at nominal conditions. The SCL and SDA inputs have Schmitt Trigger and filter circuits that suppress noise spikes to assure proper device operation even on a noisy bus. DS21809C-page 4 © 2005 Microchip Technology Inc. 24AA014/24LC014 4.0 BUS CHARACTERISTICS The data on the line must be changed during the low period of the clock signal. There is one bit of data per clock pulse. The following bus protocol has been defined: • Data transfer may be initiated only when the bus is not busy. • During data transfer, the data line must remain stable whenever the clock line is high. Changes in the data line while the clock line is high will be interpreted as a Start or Stop condition. Accordingly, the following bus conditions have been defined (Figure 4-1). Each data transfer is initiated with a Start condition and terminated with a Stop condition. The number of the data bytes transferred between the Start and Stop conditions is determined by the master device and is, theoretically, unlimited, though only the last sixteen will be stored when doing a write operation. When an overwrite does occur, it will replace data in a first-in first-out fashion. 4.1 4.5 Bus Not Busy (A) Each receiving device, when addressed, is required to generate an acknowledge after the reception of each byte. The master device must generate an extra clock pulse which is associated with this Acknowledge bit. Both data and clock lines remain high. 4.2 Start Data Transfer (B) A high-to-low transition of the SDA line while the clock (SCL) is high determines a Start condition. All commands must be preceded by a Start condition. 4.3 Note: A low-to-high transition of the SDA line while the clock (SCL) is high determines a Stop condition. All operations must be ended with a Stop condition. Data Valid (D) The state of the data line represents valid data when, after a Start condition, the data line is stable for the duration of the high period of the clock signal. FIGURE 4-1: SCL (A) The 24AA014/24LC014 does not generate any Acknowledge bits if an internal programming cycle is in progress. The device that acknowledges has to pull down the SDA line during the Acknowledge clock pulse in such a way that the SDA line is stable low during the high period of the acknowledge-related clock pulse. Of course, setup and hold times must be taken into account. A master must signal an end of data to the slave by not generating an Acknowledge bit on the last byte that has been clocked out of the slave. In this case, the slave must leave the data line high to enable the master to generate the Stop condition (Figure 4-2). Stop Data Transfer (C) 4.4 Acknowledge DATA TRANSFER SEQUENCE ON THE SERIAL BUS CHARACTERISTICS (B) (C) (D) (C) (A) SDA Start Condition FIGURE 4-2: Address or Acknowledge Valid Stop Condition Data Allowed to Change ACKNOWLEDGE TIMING Acknowledge Bit SCL SDA 1 2 3 4 5 6 7 Data from transmitter Transmitter must release the SDA line at this point allowing the Receiver to pull the SDA line low to acknowledge the previous eight bits of data. © 2005 Microchip Technology Inc. 8 9 1 2 3 Data from transmitter Receiver must release the SDA line at this point so the Transmitter can continue sending data. DS21809C-page 5 24AA014/24LC014 5.0 DEVICE ADDRESSING A control byte is the first byte received following the Start condition from the master device (Figure 5-1). The control byte consists of a four-bit control code; for the 24AA014/24LC014 this is set as ‘1010’ binary for read and write operations. The next three bits of the control byte are the Chip Select bits (A2, A1, A0). The Chip Select bits allow the use of up to eight 24AA014/ 24LC014 devices on the same bus and are used to select which device is accessed. The Chip Select bits in the control byte must correspond to the logic levels on the corresponding A2, A1 and A0 pins for the device to respond. These bits are in effect the three Most Significant bits of the word address. The last bit of the control byte defines the operation to be performed. When set to a ‘1’, a read operation is selected. When set to a ‘0’, a write operation is selected. Following the Start condition, the 24AA014/ 24LC014 monitors the SDA bus, checking the control byte being transmitted. Upon receiving a ‘1010’ code and appropriate Chip Select bits, the slave device outputs an Acknowledge signal on the SDA line. Depending on the state of the R/W bit, the 24AA014/24LC014 will select a read or write operation. DS21809C-page 6 FIGURE 5-1: CONTROL BYTE FORMAT Read/Write Bit Chip Select Bits Control Code S 1 0 1 0 A2 A1 A0 R/W ACK Slave Address Start Bit 5.1 Acknowledge Bit Contiguous Addressing Across Multiple Devices The Chip Select bits A2, A1 and A0 can be used to expand the contiguous address space for up to 8K bits by adding up to eight 24AA014/24LC014 devices on the same bus. In this case, software can use A0 of the control byte as address bit A8, A1 as address bit A9, and A2 as address bit A10. It is not possible to sequentially read across device boundaries. © 2005 Microchip Technology Inc. 24AA014/24LC014 6.0 WRITE OPERATIONS 6.1 Byte Write The higher order four bits of the word address remain constant. If the master should transmit more than 16 bytes prior to generating the Stop condition, the address counter will roll over and the previously received data will be overwritten. As with the byte write operation, once the Stop condition is received, an internal write cycle will begin (Figure 6-2). If an attempt is made to write to the protected portion of the array when the hardware write protection has been enabled, the device will acknowledge the command, but no data will be written. The write cycle time must be observed even if write protection is enabled. Following the Start signal from the master, the device code(4 bits), the Chip Select bits (3 bits) and the R/W bit (which is a logic low) are placed onto the bus by the master transmitter. The device will acknowledge this control byte during the ninth clock pulse. The next byte transmitted by the master is the word address and will be written into the Address Pointer of the 24AA014/ 24LC014. After receiving another Acknowledge signal from the 24AA014/24LC014, the master device will transmit the data word to be written into the addressed memory location. The 24AA014/24LC014 acknowledges again and the master generates a Stop condition. This initiates the internal write cycle and the 24AA014/24LC014 will not generate Acknowledge signals during this time (Figure 6-1). If an attempt is made to write to the protected portion of the array when the hardware write protection has been enabled, the device will acknowledge the command, but no data will be written. The write cycle time must be observed even if write protection is enabled. 6.2 Note: Page Write The write-control byte, word address and the first data byte are transmitted to the 24AA014/24LC014 in the same way as in a byte write. But instead of generating a Stop condition, the master transmits up to 15 additional data bytes to the 24AA014/24LC014 that are temporarily stored in the on-chip page buffer and will be written into the memory once the master has transmitted a Stop condition. Upon receipt of each word, the four lower order Address Pointer bits are internally incremented by one. FIGURE 6-1: 6.3 Page write operations are limited to writing bytes within a single physical page, regardless of the number of bytes actually being written. Physical page boundaries start at addresses that are integer multiples of the page buffer size (or ‘page size’) and end at addresses that are integer multiples of [page size – 1]. If a Page Write command attempts to write across a physical page boundary, the result is that the data wraps around to the beginning of the current page (overwriting data previously stored there), instead of being written to the next page, as might be expected. It is therefore necessary that the application software prevent page write operations that would attempt to cross a page boundary. Write Protection The WP pin must be tied to VCC or VSS. If tied to VCC, the entire array will be write-protected. If the WP pin is tied to VSS, write operations to all address locations are allowed. BYTE WRITE Bus Activity Master S T A R T SDA Line S Control Byte Word Address S T O P Data P A C K Bus Activity FIGURE 6-2: A C K A C K PAGE WRITE Bus Activity Master S T A R T SDA Line S Control Byte Bus Activity © 2005 Microchip Technology Inc. Word Address (n) Data (n) S T O P Data (n + 15) Data (n +1) P A C K A C K A C K A C K A C K DS21809C-page 7 24AA014/24LC014 7.0 ACKNOWLEDGE POLLING Since the device will not acknowledge during a write cycle, this can be used to determine when the cycle is complete (this feature can be used to maximize bus throughput). Once the Stop condition for a write command has been issued from the master, the device initiates the internally-timed write cycle and ACK polling can be initiated immediately. This involves the master sending a Start condition followed by the control byte for a Write command (R/W = 0). If the device is still busy with the write cycle, no ACK will be returned. If no ACK is returned, the Start bit and control byte must be re-sent. If the cycle is complete, the device will return the ACK and the master can then proceed with the next Read or Write command. See Figure 7-1 for a flow diagram of this operation. FIGURE 7-1: ACKNOWLEDGE POLLING FLOW Send Write Command Send Stop Condition to Initiate Write Cycle Send Start Send Control Byte with R/W = 0 Did Device Acknowledge (ACK = 0)? No Yes Next Operation DS21809C-page 8 © 2005 Microchip Technology Inc. 24AA014/24LC014 8.0 READ OPERATIONS Read operations are initiated in the same way as write operations, with the exception that the R/W bit of the slave address is set to ‘1’. There are three basic types of read operations: current address read, random read and sequential read. 8.1 Current Address Read The 24AA014/24LC014 contains an address counter that maintains the address of the last word accessed, internally incremented by one. Therefore, if the previous read access was to address n, the next current address read operation would access data from address n + 1. Upon receipt of the slave address with the R/W bit set to ‘1’, the 24AA014/24LC014 issues an acknowledge and transmits the 8-bit data word. The master will not acknowledge the transfer, but does generate a Stop condition and the 24AA014/24LC014 discontinues transmission (Figure 8-1). 8.2 Random Read Random read operations allow the master to access any memory location in a random manner. To perform this type of read operation, the word address must first be set. This is done by sending the word address to the 24AA014/24LC014 as part of a write operation. FIGURE 8-1: Once the word address is sent, the master generates a Start condition following the acknowledge. This terminates the write operation, but not before the internal Address Pointer is set. The master then issues the control byte again but with the R/W bit set to a ‘1’. The 24AA014/24LC014 will then issue an acknowledge and transmits the eight-bit data word. The master will not acknowledge the transfer, but does generate a Stop condition and the 24AA014/24LC014 discontinues transmission (Figure 8-2). After this command, the internal address counter will point to the address location following the one that was just read. 8.3 Sequential Read Sequential reads are initiated in the same way as a random read except that after the 24AA014/24LC014 transmits the first data byte, the master issues an acknowledge as opposed to a Stop condition in a random read. This directs the 24AA014/24LC014 to transmit the next sequentially addressed 8-bit word (Figure 8-3). To provide sequential reads the 24AA014/24LC014 contains an internal Address Pointer which is incremented by one at the completion of each operation. This Address Pointer allows the entire memory contents to be serially read during one operation. The internal Address Pointer will automatically roll over from address 0FFh to address 000h. CURRENT ADDRESS READ Bus Activity Master S T A R T SDA Line S Bus Activity © 2005 Microchip Technology Inc. Control Byte S T O P Data P A C K N O A C K DS21809C-page 9 24AA014/24LC014 FIGURE 8-2: Bus Activity Master SDA Line RANDOM READ S T A R T Control Byte S Bus Activity Master Control Byte S T O P Data (n) P S A C K A C K Bus Activity FIGURE 8-3: S T A R T Word Address (n) N O A C K A C K SEQUENTIAL READ Control Byte Data (n) Data (n + 1) Data (n + 2) S T O P Data (n + X) P SDA Line Bus Activity DS21809C-page 10 A C K A C K A C K A C K N O A C K © 2005 Microchip Technology Inc. 24AA014/24LC014 9.0 PACKAGING INFORMATION 9.1 Package Marking Information 8-Lead PDIP (300 mil) Example: 24LC014 I/P e3 12F 0521 XXXXXXXX T/XXXNNN YYWW 8-Lead SOIC (150 mil) XXXXXXXT XXXXYYWW NNN 8-Lead TSSOP Example: 24LC014I SN e3 052I 12F Example: XXXX 4L14 TYWW I521 NNN 12F 8-Lead MSOP Example: XXXXT 4L14I YWWNNN 52112F 8-Lead 2x3 DFN XXX YWW NN © 2005 Microchip Technology Inc. Example: 2N4 521 12 DS21809C-page 11 24AA014/24LC014 1st Line Marking Codes Part Number TSSOP MSOP 24AA014 4A14 4A14T 2N1 24LC014 4L14 4L14T 2N4 Note: DFN T = Temperature grade (I, E) Legend: XX...X T Y YY WW NNN e3 Note: Part number or part number code Temperature (I, E) Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week ‘01’) Alphanumeric traceability code (2 characters for small packages) Pb-free JEDEC designator for Matte Tin (Sn) Note: For very small packages with no room for the Pb-free JEDEC designator e3 , the marking will only appear on the outer carton or reel label. Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Please visit www.microchip.com/Pbfree for the latest information on Pb-free conversion. *Standard OTP marking consists of Microchip part number, year code, week code, and traceability code. DS21809C-page 12 © 2005 Microchip Technology Inc. 24AA014/24LC014 8-Lead Plastic Dual In-line (P) – 300 mil (PDIP) E1 D 2 n 1 α E A2 A L c A1 β B1 p eB B Units Dimension Limits n p Number of Pins Pitch Top to Seating Plane Molded Package Thickness Base to Seating Plane Shoulder to Shoulder Width Molded Package Width Overall Length Tip to Seating Plane Lead Thickness Upper Lead Width Lower Lead Width Overall Row Spacing Mold Draft Angle Top Mold Draft Angle Bottom * Controlling Parameter § Significant Characteristic A A2 A1 E E1 D L c § B1 B eB α β MIN .140 .115 .015 .300 .240 .360 .125 .008 .045 .014 .310 5 5 INCHES* NOM MAX 8 .100 .155 .130 .170 .145 .313 .250 .373 .130 .012 .058 .018 .370 10 10 .325 .260 .385 .135 .015 .070 .022 .430 15 15 MILLIMETERS NOM 8 2.54 3.56 3.94 2.92 3.30 0.38 7.62 7.94 6.10 6.35 9.14 9.46 3.18 3.30 0.20 0.29 1.14 1.46 0.36 0.46 7.87 9.40 5 10 5 10 MIN MAX 4.32 3.68 8.26 6.60 9.78 3.43 0.38 1.78 0.56 10.92 15 15 Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-018 © 2005 Microchip Technology Inc. DS21809C-page 13 24AA014/24LC014 8-Lead Plastic Small Outline (SN) – Narrow, 150 mil (SOIC) E E1 p D 2 B n 1 h α 45° c A2 A φ β L Units Dimension Limits n p Number of Pins Pitch Overall Height Molded Package Thickness Standoff § Overall Width Molded Package Width Overall Length Chamfer Distance Foot Length Foot Angle Lead Thickness Lead Width Mold Draft Angle Top Mold Draft Angle Bottom * Controlling Parameter § Significant Characteristic A A2 A1 E E1 D h L φ c B α β MIN .053 .052 .004 .228 .146 .189 .010 .019 0 .008 .013 0 0 A1 INCHES* NOM 8 .050 .061 .056 .007 .237 .154 .193 .015 .025 4 .009 .017 12 12 MAX .069 .061 .010 .244 .157 .197 .020 .030 8 .010 .020 15 15 MILLIMETERS NOM 8 1.27 1.35 1.55 1.32 1.42 0.10 0.18 5.79 6.02 3.71 3.91 4.80 4.90 0.25 0.38 0.48 0.62 0 4 0.20 0.23 0.33 0.42 0 12 0 12 MIN MAX 1.75 1.55 0.25 6.20 3.99 5.00 0.51 0.76 8 0.25 0.51 15 15 Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side. JEDEC Equivalent: MS-012 Drawing No. C04-057 DS21809C-page 14 © 2005 Microchip Technology Inc. 24AA014/24LC014 8-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm (TSSOP) E E1 p D 2 1 n B α A c φ β A1 A2 L Units Dimension Limits n p Number of Pins Pitch Overall Height Molded Package Thickness Standoff § Overall Width Molded Package Width Molded Package Length Foot Length Foot Angle Lead Thickness Lead Width Mold Draft Angle Top Mold Draft Angle Bottom * Controlling Parameter § Significant Characteristic A A2 A1 E E1 D L φ c B α β MIN INCHES NOM MAX 8 .026 .033 .002 .246 .169 .114 .020 0 .004 .007 0 0 .035 .004 .251 .173 .118 .024 4 .006 .010 5 5 .043 .037 .006 .256 .177 .122 .028 8 .008 .012 10 10 MILLIMETERS* NOM MAX 8 0.65 1.10 0.85 0.90 0.95 0.05 0.10 0.15 6.25 6.38 6.50 4.30 4.40 4.50 2.90 3.00 3.10 0.50 0.60 0.70 0 4 8 0.09 0.15 0.20 0.19 0.25 0.30 0 5 10 0 5 10 MIN Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005” (0.127mm) per side. JEDEC Equivalent: MO-153 Drawing No. C04-086 © 2005 Microchip Technology Inc. DS21809C-page 15 24AA014/24LC014 8-Lead Plastic Micro Small Outline Package (MS) (MSOP) E E1 p D 2 B n 1 α A2 A c φ A1 (F) L β Units Dimension Limits n p MIN INCHES NOM MAX MILLIMETERS* NOM 8 0.65 BSC 0.75 0.85 0.00 4.90 BSC 3.00 BSC 3.00 BSC 0.40 0.60 0.95 REF 0° 0.08 0.22 5° 5° - MIN 8 Number of Pins Pitch .026 BSC A .043 Overall Height A2 Molded Package Thickness .030 .033 .037 A1 .000 .006 Standoff E Overall Width .193 TYP. E1 .118 BSC Molded Package Width D .118 BSC Overall Length L .016 .024 .031 Foot Length Footprint (Reference) F .037 REF φ 0° 8° Foot Angle c .003 .006 .009 Lead Thickness B .009 .012 .016 Lead Width α 5° 15° Mold Draft Angle Top β 5° 15° Mold Draft Angle Bottom *Controlling Parameter Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. MAX 1.10 0.95 0.15 0.80 8° 0.23 0.40 15° 15° JEDEC Equivalent: MO-187 Drawing No. C04-111 DS21809C-page 16 © 2005 Microchip Technology Inc. 24AA014/24LC014 8-Lead Plastic Dual Flat No Lead Package (MC) 2x3x0.9 mm Body (DFN) – Saw Singulated p D b n L E PIN 1 ID INDEX AREA (NOTE 2) E2 EXPOSED METAL PAD 2 1 D2 BOTTOM VIEW TOP VIEW A A1 A3 EXPOSED TIE BAR (NOTE 1) Number of Pins Pitch Overall Height Standoff Contact Thickness Overall Length Exposed Pad Length Overall Width Exposed Pad Width Contact Width Contact Length Units Dimension Limits n p (Note 3) (Note 3) A A1 A3 D D2 E E2 b L MIN .031 .000 .055 .047 .008 .012 INCHES NOM 8 .020 BSC .035 .001 .008 REF. .079 BSC -.118 BSC -.010 .016 MAX MIN .039 .002 0.80 0.00 .064 1.39 .071 .012 .020 1.20 0.20 0.30 MILLIMETERS* NOM 8 0.50 BSC 0.90 0.02 0.20 REF. 2.00 BSC -3.00 BSC -0.25 0.40 MAX 1.00 0.05 1.62 1.80 0.30 0.50 *Controlling Parameter Notes: 1. Package may have one or more exposed tie bars at ends. 2. Pin 1 visual index feature may vary, but must be located within the hatched area. 3. Exposed pad dimensions vary with paddle size. 4. JEDEC equivalent: MO-229 Drawing No. C04-123 © 2005 Microchip Technology Inc. Revised 05/24/04 DS21809C-page 17 24AA014/24LC014 REVISION HISTORY Revision B Corrections to Section 1.0, Electrical Characteristics. Revision C Added DFN package. DS21809C-page 18 © 2005 Microchip Technology Inc. 24AA014/24LC014 THE MICROCHIP WEB SITE CUSTOMER SUPPORT Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information: Users of Microchip products can receive assistance through several channels: • Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software • General Technical Support – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing • Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives CUSTOMER CHANGE NOTIFICATION SERVICE Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest. • • • • • Distributor or Representative Local Sales Office Field Application Engineer (FAE) Technical Support Development Systems Information Line Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document. Technical support is available through the web site at: http://support.microchip.com In addition, there is a Development Systems Information Line which lists the latest versions of Microchip’s development systems software products. This line also provides information on how customers can receive currently available upgrade kits. The Development numbers are: Systems Information Line 1-800-755-2345 – United States and most of Canada 1-480-792-7302 – Other International Locations To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions. © 2005 Microchip Technology Inc. DS21809C-page 19 24AA014/24LC014 READER RESPONSE It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150. Please list the following information, and use this outline to provide us with your comments about this document. To: Technical Publications Manager RE: Reader Response Total Pages Sent ________ From: Name Company Address City / State / ZIP / Country Telephone: (_______) _________ - _________ FAX: (______) _________ - _________ Application (optional): Would you like a reply? Y Device: 24AA014/24LC014 N Literature Number: DS21809C Questions: 1. What are the best features of this document? 2. How does this document meet your hardware and software development needs? 3. Do you find the organization of this document easy to follow? If not, why? 4. What additions to the document do you think would enhance the structure and subject? 5. What deletions from the document could be made without affecting the overall usefulness? 6. Is there any incorrect or misleading information (what and where)? 7. How would you improve this document? DS21809C-page 20 © 2005 Microchip Technology Inc. 24AA014/24LC014 PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. PART NO. Device X /XX Temperature Range Device: Package 24AA014: 1.8V, 1 Kbit Addressable Serial EEPROM 24AA014T: 1.8V, 1 Kbit Addressable Serial EEPROM (Tape and Reel) 24LC014: 2.5V, 1 Kbit Addressable Serial EEPROM 24LC014T: 2.5V, 1 Kbit Addressable Serial EEPROM (Tape and Reel) Examples: a) b) c) a) b) Temperature Range: I = -40°C to +85°C Package: P SN ST MS MC = = = = = Plastic DIP, (300 mil Body), 8-lead Plastic SOIC, (150 mil Body) TSSOP, 8-lead MSOP, 8-lead 2x3 DFN, 8-lead c) 24AA014-I/P: Industrial Temperature, 1.8V, PDIP package. 24AA014-I/SN: Industrial Temperature, 1.8V, SOIC Package. 24AA014T-I/ST: Industrial Temperature, 1.8V, TSSOP Package, Tape and Reel 24LC014-I/P: Industrial Temperature, 2.5V, PDIP Package. 24LC014T-I/SN: Industrial Temperature, 2.5V, SOIC Package, Tape and Reel 24LC014T-I/MS: Industrial Temperature, 2.5V, MSOP Package, Tape and Reel. Sales and Support Data Sheets Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following: 1. 2. 3. Your local Microchip sales office The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277 The Microchip Worldwide Site (www.microchip.com) Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using. Customer Notification System Register on our web site (www.microchip.com/cn) to receive the most current information on our products. © 2005 Microchip Technology Inc. DS21809C-page 21 24AA014/24LC014 NOTES: DS21809C-page 22 © 2005 Microchip Technology Inc. Note the following details of the code protection feature on Microchip devices: • Microchip products meet the specification contained in their particular Microchip Data Sheet. • Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. • There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. • Microchip is willing to work with the customer who is concerned about the integrity of their code. • Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.” Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. Trademarks The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance and WiperLock are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2005, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company’s quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified. © 2005 Microchip Technology Inc. DS21808C-page 23 WORLDWIDE SALES AND SERVICE AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 India - Bangalore Tel: 91-80-2229-0061 Fax: 91-80-2229-0062 China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104 India - New Delhi Tel: 91-11-5160-8631 Fax: 91-11-5160-8632 Austria - Weis Tel: 43-7242-2244-399 Fax: 43-7242-2244-393 Denmark - Ballerup Tel: 45-4450-2828 Fax: 45-4485-2829 China - Chengdu Tel: 86-28-8676-6200 Fax: 86-28-8676-6599 Japan - Kanagawa Tel: 81-45-471- 6166 Fax: 81-45-471-6122 France - Massy Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 China - Fuzhou Tel: 86-591-8750-3506 Fax: 86-591-8750-3521 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 Germany - Ismaning Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Atlanta Alpharetta, GA Tel: 770-640-0034 Fax: 770-640-0307 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260 Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387 China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760 China - Shunde Tel: 86-757-2839-5507 Fax: 86-757-2839-5571 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803 Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 England - Berkshire Tel: 44-118-921-5869 Fax: 44-118-921-5820 Taiwan - Hsinchu Tel: 886-3-572-9526 Fax: 886-3-572-6459 China - Qingdao Tel: 86-532-502-7355 Fax: 86-532-502-7205 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 San Jose Mountain View, CA Tel: 650-215-1444 Fax: 650-961-0286 Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509 03/01/05 DS21809C-page 24 © 2005 Microchip Technology Inc.