TI M38510/65760BRA

SN54HCT540, SN74HCT540
OCTAL BUFFERS AND LINE DRIVERS
WITH 3-STATE OUTPUTS
SCLS008C – MARCH 1984 – REVISED MARCH 2003
D
D
D
D
D
D
D
D
Operating Voltage Range of 4.5 V to 5.5 V
Low Power Consumption, 80-µA Max ICC
Typical tpd = 12 ns
±6-mA Output Drive at 5 V
Low Input Current of 1 µA Max
Inputs Are TTL-Voltage Compatible
High-Current 3-State Outputs Interface
Directly With System Bus or Can Drive Up
To 15 LSTTL Loads
Data Flow-Through Pinout (All Inputs on
Opposite Side From Outputs)
SN54HCT540 . . . J PACKAGE
SN74HCT540 . . . DW OR N PACKAGE
(TOP VIEW)
OE1
A1
A2
A3
A4
A5
A6
A7
A8
GND
description/ordering information
1
20
2
19
3
18
4
17
5
16
6
15
7
14
8
13
9
12
10
11
VCC
OE2
Y1
Y2
Y3
Y4
Y5
Y6
Y7
Y8
These octal buffers and line drivers are designed to have the performance of the ’HCT240 devices and a pinout
with inputs and outputs on opposite sides of the package. This arrangement greatly facilitates printed circuit
board layout.
The 3-state control gate is a 2-input NOR. If either output-enable (OE1 or OE2) input is high, all eight outputs
are in the high-impedance state. The ’HCT540 devices provide inverted data at the outputs.
To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup
resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
ORDERING INFORMATION
PDIP – N
–40°C to 85°C
ORDERABLE
PART NUMBER
PACKAGE†
TA
SOIC – DW
Tube
SN74HCT540N
Tube
SN74HCT540DW
Tape and reel
SN74HCT540DWR
TOP-SIDE
MARKING
SN74HCT540N
HCT540
–55°C to 125°C
CDIP – J
Tube
SNJ54HCT540J
SNJ54HCT540J
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are
available at www.ti.com/sc/package.
FUNCTION TABLE
(each buffer/driver)
INPUTS
OE1
OE2
A
OUTPUT
Y
L
L
L
H
L
L
H
L
H
X
X
Z
X
H
X
Z
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2003, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
On products compliant to MIL-PRF-38535, all parameters are tested
unless otherwise noted. On all other products, production
processing does not necessarily include testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SN54HCT540, SN74HCT540
OCTAL BUFFERS AND LINE DRIVERS
WITH 3-STATE OUTPUTS
SCLS008C – MARCH 1984 – REVISED MARCH 2003
logic diagram (positive logic)
OE1
OE2
A1
1
19
2
18
Y1
To Seven Other Channels
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V
Input clamp current, IIK (VI < 0 or VI > VCC) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA
Output clamp current, IOK (VO < 0 or VO > VCC) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA
Continuous output current, IO (VO = 0 to VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±35 mA
Continuous current through VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±70 mA
Package thermal impedance, θJA (see Note 2): DW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58°C/W
N package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions (see Note 3)
SN54HCT540
NOM
MAX
MIN
NOM
MAX
4.5
5
5.5
4.5
5
5.5
VCC
VIH
Supply voltage
VIL
VI
Low-level input voltage
Input voltage
0
VO
tt
Output voltage
0
High-level input voltage
VCC = 4.5 V to 5.5 V
VCC = 4.5 V to 5.5 V
SN74HCT540
MIN
2
2
0.8
Input transition (rise and fall) time
VCC
VCC
500
0
0
UNIT
V
V
0.8
V
VCC
VCC
V
500
ns
V
TA
Operating free-air temperature
–55
125
–40
85
°C
NOTE 3: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN54HCT540, SN74HCT540
OCTAL BUFFERS AND LINE DRIVERS
WITH 3-STATE OUTPUTS
SCLS008C – MARCH 1984 – REVISED MARCH 2003
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
VOH
VI = VIH or VIL
IOH = –20 µA
IOH = –6 mA
45V
4.5
VOL
VI = VIH or VIL
IOL = 20 µA
IOL = 6 mA
45V
4.5
II
IOZ
VI = VCC or 0
VO = VCC or 0,
ICC
VI = VCC or 0,
One input at 0.5 V or 2.4 V,
Other inputs at 0 or VCC
∆ICC†
VI = VIH or VIL
IO = 0
TA = 25°C
TYP
MAX
SN54HCT540
MIN
MAX
SN74HCT540
MIN
4.4
4.499
4.4
4.4
3.98
4.3
3.7
3.84
MAX
UNIT
V
0.001
0.1
0.1
0.1
0.17
0.26
0.4
0.33
5.5 V
±0.1
±100
±1000
±1000
nA
5.5 V
±0.01
±0.5
±10
±5
µA
8
160
80
µA
1.4
2.4
3
2.9
mA
3
10
10
10
pF
5.5 V
5.5 V
4.5 V
to 5.5 V
Ci
MIN
V
† This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or VCC.
switching characteristics over recommended operating free-air temperature range, CL = 50 pF
(unless otherwise noted) (see Figure 1)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
tpd
d
A
Y
ten
OE
Y
tdis
di
OE
Y
tt
Y
VCC
TA = 25°C
MIN
TYP
MAX
SN54HCT540
MIN
MAX
SN74HCT540
MIN
MAX
4.5 V
13
20
30
25
5.5 V
12
18
27
23
4.5 V
20
30
45
38
5.5 V
18
27
41
34
4.5 V
19
30
45
38
5.5 V
18
27
41
34
4.5 V
8
12
18
15
5.5 V
7
11
16
14
UNIT
ns
ns
ns
ns
switching characteristics over recommended operating free-air temperature range, CL = 150 pF
(unless otherwise noted) (see Figure 1)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
tpd
d
A
Y
ten
OE
Y
tt
Y
VCC
TA = 25°C
MIN
TYP
MAX
SN54HCT540
MIN
MAX
SN74HCT540
MIN
MAX
4.5 V
20
30
45
38
5.5 V
19
27
41
34
4.5 V
26
40
60
50
5.5 V
25
36
54
45
4.5 V
17
42
63
53
5.5 V
14
38
57
48
UNIT
ns
ns
ns
operating characteristics, TA = 25°C
PARAMETER
Cpd
TEST CONDITIONS
Power dissipation capacitance per buffer/driver
POST OFFICE BOX 655303
No load
• DALLAS, TEXAS 75265
TYP
35
UNIT
pF
3
SN54HCT540, SN74HCT540
OCTAL BUFFERS AND LINE DRIVERS
WITH 3-STATE OUTPUTS
SCLS008C – MARCH 1984 – REVISED MARCH 2003
PARAMETER MEASUREMENT INFORMATION
VCC
From Output
Under Test
CL
(see Note A)
PARAMETER
S1
Test
Point
tPZH
ten
RL
S2
1 kΩ
tPZL
tPHZ
tdis
S2
50 pF
or
150 pF
Open
Closed
Closed
Open
1 kΩ
––
LOAD CIRCUIT
2.7 V
S1
50 pF
tPLZ
tpd or tt
Input 1.3 V
0.3 V
CL
RL
2.7 V
50 pF
or
150 pF
Open
Closed
Closed
Open
Open
Open
3V
1.3 V
0.3 V 0 V
tr
tf
VOLTAGE WAVEFORM
INPUT RISE AND FALL TIMES
Output
Control
(Low-Level
Enabling)
3V
Input
1.3 V
1.3 V
0V
tPLH
In-Phase
Output
1.3 V
10%
tPHL
90%
90%
tr
tPHL
Out-ofPhase
Output
90%
VOH
1.3 V
10% V
OL
tf
tPLH
1.3 V
10%
1.3 V
10%
tf
3V
1.3 V
1.3 V
0V
tPZL
Output
Waveform 1
(See Note B)
tPLZ
≈VCC
1.3 V
10%
tPZH
90%
VOH
VOL
tr
VOLTAGE WAVEFORMS
PROPAGATION DELAY AND OUTPUT RISE AND FALL TIMES
Output
Waveform 2
(See Note B)
VOL
tPHZ
1.3 V
90%
VOH
≈0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES FOR 3-STATE OUTPUTS
NOTES: A. CL includes probe and test-fixture capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following
characteristics: PRR ≤ 1 MHz, ZO = 50 Ω, tr = 6 ns, tf = 6 ns.
D. The outputs are measured one at a time with one input transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
Figure 1. Load Circuit and Voltage Waveforms
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
PACKAGE OPTION ADDENDUM
www.ti.com
11-Apr-2013
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
(2)
MSL Peak Temp
Op Temp (°C)
Top-Side Markings
(3)
(4)
JM38510/65760BRA
ACTIVE
CDIP
J
20
1
TBD
A42
N / A for Pkg Type
-55 to 125
JM38510/
65760BRA
M38510/65760BRA
ACTIVE
CDIP
J
20
1
TBD
A42
N / A for Pkg Type
-55 to 125
JM38510/
65760BRA
SN54HCT540J
ACTIVE
CDIP
J
20
1
TBD
A42
N / A for Pkg Type
-55 to 125
SN54HCT540J
SN74HCT540DW
ACTIVE
SOIC
DW
20
25
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
HCT540
SN74HCT540DWE4
ACTIVE
SOIC
DW
20
25
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
HCT540
SN74HCT540DWG4
ACTIVE
SOIC
DW
20
25
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
HCT540
SN74HCT540DWR
ACTIVE
SOIC
DW
20
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
HCT540
SN74HCT540DWRE4
ACTIVE
SOIC
DW
20
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
HCT540
SN74HCT540DWRG4
ACTIVE
SOIC
DW
20
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
HCT540
SN74HCT540N
ACTIVE
PDIP
N
20
20
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
-40 to 85
SN74HCT540N
TBD
Call TI
Call TI
-40 to 85
20
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
-40 to 85
TBD
Call TI
Call TI
-55 to 125
TBD
A42
N / A for Pkg Type
-55 to 125
SN74HCT540N3
OBSOLETE
PDIP
N
20
SN74HCT540NE4
ACTIVE
PDIP
N
20
SNJ54HCT540FK
OBSOLETE
LCCC
FK
20
SNJ54HCT540J
ACTIVE
CDIP
J
20
1
SN74HCT540N
SNJ54HCT540J
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
11-Apr-2013
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a
continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF SN54HCT540, SN74HCT540 :
• Catalog: SN74HCT540
• Military: SN54HCT540
NOTE: Qualified Version Definitions:
• Catalog - TI's standard catalog product
• Military - QML certified for Military and Defense Applications
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
26-Jan-2013
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
SN74HCT540DWR
Package Package Pins
Type Drawing
SOIC
DW
20
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
2000
330.0
24.4
Pack Materials-Page 1
10.8
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
13.0
2.7
12.0
24.0
Q1
PACKAGE MATERIALS INFORMATION
www.ti.com
26-Jan-2013
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
SN74HCT540DWR
SOIC
DW
20
2000
367.0
367.0
45.0
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated