M68AW512M 8 Mbit (512K x16) 3.0V Asynchronous SRAM FEATURES SUMMARY ■ ■ ■ ■ ■ ■ ■ ■ SUPPLY VOLTAGE: 2.7 to 3.6V 512K x 16 bits SRAM with OUTPUT ENABLE EQUAL CYCLE and ACCESS TIME: 55ns SINGLE BYTE READ/WRITE LOW STANDBY CURRENT LOW VCC DATA RETENTION: 1.5V TRI-STATE COMMON I/O AUTOMATIC POWER DOWN Figure 1. Package 44 1 TSOP44 Type II (ND) September 2004 1/19 M68AW512M TABLE OF CONTENTS FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 1. Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SUMMARY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Figure 2. Table 1. Figure 3. Figure 4. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 TSOP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Write Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Table 2. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Table 3. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Table 4. Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 5. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 6. AC Measurement Load Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Table 5. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Table 6. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 7. Address Controlled, Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 8. Chip Enable or Output Enable Controlled, Read Mode AC Waveforms.. . . . . . . . . . . . . 10 Figure 9. Chip Enable or UB/LB Controlled, Standby Mode AC Waveforms . . . . . . . . . . . . . . . . . 10 Table 7. Read and Standby Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 10.Write Enable Controlled, Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 11.Chip Enable Controlled, Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 12.UB/LB Controlled, Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 8. Write Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 13.Low VCC Data Retention AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 9. Low VCC Data Retention Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 14.TSOP44 Type II - 44 lead Plastic Thin Small Outline Type II, Package Outline . . . . . . . 16 Table 10. TSOP 44 TypeII - 44 lead Plastic Thin Small Outline TypeII, Package Mechanical Data 16 PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 11. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Table 12. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2/19 M68AW512M SUMMARY DESCRIPTION The M68AW512M is a 8 Mbit (8,388,608 bit) CMOS SRAM, organized as 524,288 words by 16 bits. The device features fully static operation requiring no external clocks or timing strobes, with equal address access and cycle times. It requires a single 2.7 to 3.6V supply. This device has an au- tomatic power-down feature, reducing the power consumption by over 99% when deselected. The M68AW512M is available in TSOP44 Type II packages. Figure 2. Logic Diagram Table 1. Signal Names VCC 19 16 A0-A18 DQ0-DQ15 W A0-A16 Address Inputs DQ0-DQ15 Data Input/Output E Chip Enable G Output Enable W Write Enable UB Upper Byte Enable Input LB Lower Byte Enable Input VCC Supply Voltage VSS Ground NC Not Connected Internally DU Don’t Use as Internally Connected E M68AW512M G UB LB VSS AI05835c 3/19 M68AW512M Figure 3. TSOP Connections A4 A3 A2 A1 A0 E DQ0 DQ1 DQ2 DQ3 VCC VSS DQ4 DQ5 DQ6 DQ7 W A18 A17 A16 A15 A14 44 1 2 43 42 3 4 41 5 40 6 39 7 38 8 37 9 36 10 35 11 34 M68AW512M 12 33 13 32 14 31 15 30 16 29 28 17 27 18 26 19 25 20 24 21 22 23 AI05836c 4/19 A5 A6 A7 G UB LB DQ15 DQ14 DQ13 DQ12 VSS VCC DQ11 DQ10 DQ9 DQ8 A8 A9 A10 A11 A12 A13 M68AW512M Figure 4. Block Diagram VCC VSS A18 ROW DECODER MEMORY ARRAY A7 DQ15 (8) I/O CIRCUITS UB COLUMN DECODER DQ0 (8) LB A0 A6 (8) UB W UB E (8) LB LB G AI05838 5/19 M68AW512M OPERATION The M68AW512M has a Chip Enable power down feature which invokes an automatic standby mode whenever either Chip Enable is de-asserted (E = High) or LB and UB are de-asserted (LB and UB = High). An Output Enable (G) signal provides a high speed tri-state control, allowing fast read/ write cycles to be achieved with the common I/O data bus. Operational modes are determined by device control inputs W, E, LB and UB as summarized in the Operating Modes table (see Table 2). Read Mode The M68AW512M is in the Read mode whenever Write Enable (W) is High with Output Enable (G) Low, and Chip Enable (E) is asserted. This provides access to data from eight or sixteen, depending on the status of the signal UB and LB, of the 8,388,608 locations in the static memory array, specified by the 19 address inputs. Valid data will be available at the eight or sixteen output pins within tAVQV after the last stable address, providing G is Low and E is Low. If Chip Enable or Output Enable access times are not met, data access will be measured from the limiting parameter (tELQV, tGLQV or tBLQV) rather than the address. Data out may be indeterminate at tELQX, tGLQX and tBLQX but data lines will always be valid at tAVQV. Write Mode The M68AW512M is in the Write mode whenever the W and E are Low. Either the Chip Enable input (E) or the Write Enable input (W) must be deasserted during Address transitions for subsequent write cycles. When E (W) is Low, and UB or LB is Low, write cycle begins on the W (E)'s falling edge. When E and W are Low, and UB = LB = High, write cycle begins on the first falling edge of UB or LB. Therefore, address setup time is referenced to Write Enable, Chip Enable or UB/LB as tAVWL, tAVEL and tAVBL respectively, and is determined by the latter occurring edge. The Write cycle can be terminated by the earlier rising edge of E, W or UB/LB. If the Output is enabled (E = Low, G = Low, LB or UB = Low), then W will return the outputs to high impedance within tWLQZ of its falling edge. Care must be taken to avoid bus contention in this type of operation. Data input must be valid for tDVWH before the rising edge of Write Enable, or for tDVEH before the rising edge of E, or for tDVBH before the rising edge of UB/LB whichever occurs first, and remain valid for tWHDX, tEHDX and tBHDX respectively. Table 2. Operating Modes Operation E W G LB UB DQ0-DQ7 DQ8-DQ15 Power Deselected VIH X X X X Hi-Z Hi-Z Standby (ISB) Deselected X X X VIH VIH Hi-Z Hi-Z Standby (ISB) Lower Byte Read VIL VIH VIL VIL VIH Data Output Hi-Z Active (ICC) Lower Byte Write VIL VIL X VIL VIH Data Input Hi-Z Active (ICC) Output Disabled VIL VIH VIH X X Hi-Z Hi-Z Active (ICC) Upper Byte Read VIL VIH VIL VIH VIL Hi-Z Data Output Active (ICC) Upper Byte Write VIL VIL X VIH VIL Hi-Z Data Input Active (ICC) Word Read VIL VIH VIL VIL VIL Data Output Data Output Active (ICC) Word Write VIL VIL X VIL VIL Data Input Data Input Active (ICC) Note: 1. X = VIH or VIL. 6/19 M68AW512M MAXIMUM RATING Stressing the device above the rating listed in the Absolute Maximum Ratings table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not im- plied. Exposure to Absolute Maximum Rating conditions for periods greater than 1 sec periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents. Table 3. Absolute Maximum Ratings Symbol Value Unit 20 mA Ambient Operating Temperature –55 to 125 °C TSTG Storage Temperature –65 to 150 °C VCC Supply Voltage –0.5 to 4.6 V –0.5 to VCC +0.5 V 1 W IO (1) TA VIO (2) PD Parameter Output Current Input or Output Voltage Power Dissipation Note: 1. One output at a time, not to exceed 1 second duration. 2. Up to a maximum operating VCC of 3.6V only. 7/19 M68AW512M DC AND AC PARAMETERS This section summarizes the operating and measurement conditions, as well as the DC and AC characteristics of the device. The parameters in the following DC and AC Characteristic tables are derived from tests performed under the Measure- ment Conditions listed in the relevant tables. Designers should check that the operating conditions in their projects match the measurement conditions when using the quoted parameters. Table 4. Operating and AC Measurement Conditions Parameter M68AW512M VCC Supply Voltage 2.7 to 3.6V Range 1 0 to 70°C Range 6 –40 to 85°C Ambient Operating Temperature Load Capacitance (CL) 30pF Output Circuit Protection Resistance (R1) 3.0kΩ Load Resistance (R2) 3.1kΩ Input Rise and Fall Times ≤ 1ns/V Input Pulse Voltages 0 to VCC Input and Output Timing Ref. Voltages VCC/2 Output Transition Timing Ref. Voltages VRL = 0.3VCC; VRH = 0.7VCC Figure 5. AC Measurement I/O Waveform Figure 6. AC Measurement Load Circuit VCC I/O Timing Reference Voltage R1 VCC VCC/2 0V DEVICE UNDER TEST OUT CL R2 Output Timing Reference Voltage VCC 0V 0.7VCC 0.3VCC AI05831 CL includes probe and 1 TTLcapacitance AI05832 8/19 M68AW512M Table 5. Capacitance CIN COUT Test Condition Parameter(1,2) Symbol Max Unit VIN = 0V 8 pF VOUT = 0V 10 pF Max Unit 70ns 35 mA 55ns 40 mA 4 mA 20 µA Input Capacitance on all pins (except DQ) Output Capacitance Min Note: 1. Sampled only, not 100% tested. 2. At TA = 25°C, f = 1 MHz, VCC = 3.0V. Table 6. DC Characteristics Symbol Parameter ICC1 (1,2) Operating Supply Current ICC2 (3) Operating Supply Current ISB Standby Supply Current CMOS ILI Input Leakage Current ILO Output Leakage Current VIH Test Condition VCC = 3.6V, f = 1/tAVAV, IOUT = 0mA Min Typ VCC = 3.6V, f = 1MHz, IOUT = 0mA VCC = 3.6V, f = 0, E ≥ VCC –0.2V or LB=UB ≥ VCC –0.2V 1 0V ≤ VIN ≤ VCC –1 1 µA 0V ≤ VOUT ≤ VCC (4) –1 1 µA Input High Voltage 2.2 VCC + 0.3 V VIL Input Low Voltage –0.3 0.6 V VOH Output High Voltage IOH = –1.0mA VOL Output Low Voltage IOL = 2.1mA Note: 1. 2. 3. 4. 2.4 V 0.4 V Average AC current, cycling at tAVAV minimum. E = VIL, LB OR/AND UB = VIL, VIN = VIL OR VIH. E ≤ 0.2V, LB OR/AND UB ≤ 0.2V, VIN ≤ 0.2V OR VIN ≥ VCC –0.2V. Output disabled. 9/19 M68AW512M Figure 7. Address Controlled, Read Mode AC Waveforms tAVAV A0-A18 VALID tAVQV tAXQX DATA VALID DQ0-DQ7 and/or DQ8-DQ15 AI05839 Note: E = Low, G = Low, W = High, UB = Low and/or LB = Low. Figure 8. Chip Enable or Output Enable Controlled, Read Mode AC Waveforms. tAVAV VALID A0-A18 tAVQV tAXQX tELQV tEHQZ E tELQX tGLQV tGHQZ G tGLQX DQ0-DQ15 VALID tBLQV tBHQZ UB, LB tBLQX AI05840 Note: Write Enable (W) = High. Figure 9. Chip Enable or UB/LB Controlled, Standby Mode AC Waveforms E, UB, LB ICC ISB tPU tPD 50% AI03856 10/19 M68AW512M Table 7. Read and Standby Mode AC Characteristics M68AW512M Symbol Parameter Unit 55 70 tAVAV Read Cycle Time Min 55 70 ns tAVQV Address Valid to Output Valid Max 55 70 ns Data hold from address change Min 5 5 ns tBHQZ (2,3) Upper/Lower Byte Enable High to Output Hi-Z Max 20 25 ns tBLQV Upper/Lower Byte Enable Low to Output Valid Max 55 70 ns Upper/Lower Byte Enable Low to Output Transition Min 5 5 ns tEHQZ (2,3) Chip Enable High to Output Hi-Z Max 20 25 ns tELQV Chip Enable Low to Output Valid Max 55 70 ns Chip Enable Low to Output Transition Min 5 5 ns tGHQZ (2,3) Output Enable High to Output Hi-Z Max 20 25 ns tGLQV Output Enable Low to Output Valid Max 25 35 ns Output Enable Low to Output Transition Min 5 5 ns tPD (4) Chip Enable or UB/LB High to Power Down Max 55 70 ns tPU (4) Chip Enable or UB/LB Low to Power Up Min 0 0 ns tAXQX (1) tBLQX (1) tELQX (1) tGLQX (2) Note: 1. Test conditions assume transition timing reference level = 0.3VCC or 0.7VCC. 2. At any given temperature and voltage condition, tGHQZ is less than tGLQX, tBHQZ is less than tBLQX and tEHQZ is less than tELQX for any given device. 3. These parameters are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels. 4. Tested initially and after any design or process changes that may affect these parameters. 11/19 M68AW512M Figure 10. Write Enable Controlled, Write AC Waveforms tAVAV VALID A0-A18 tAVWH tELWH tWHAX E tWLWH tAVWL W tWHQX tWLQZ tWHDX DQ0-DQ15 DATA (1) DATA (1) DATA INPUT tDVWH tBLWH UB, LB AI05841 Note: 1. During this period DQ0-DQ15 are in output state and input signals should not be applied. Figure 11. Chip Enable Controlled, Write AC Waveforms tAVAV VALID A0-A18 tAVEH tAVEL tELEH tEHAX E tWLEH W tEHDX DATA INPUT DQ0-DQ15 tDVEH tBLEH UB, LB AI05842 12/19 M68AW512M Figure 12. UB/LB Controlled, Write AC Waveforms tAVAV A0-A18 VALID tAVBH tBHAX tELBH E tWLBH W tBHDX DQ0-DQ15 DATA (1) DATA INPUT tDVBH tAVBL tBLBH UB, LB AI05843 Note: 1. During this period DQ0-DQ15 are in output state and input signals should not be applied. 13/19 M68AW512M Table 8. Write Mode AC Characteristics M68AW512M Symbol Parameter Unit 55 70 tAVAV Write Cycle Time Min 55 70 ns tAVBH Address Valid to LB, UB High Min 45 60 ns tAVBL Address Valid to LB, UB Low Min 0 0 ns tAVEH Address Valid to Chip Enable High Min 45 60 ns tAVEL Address valid to Chip Enable Low Min 0 0 ns tAVWH Address Valid to Write Enable High Min 45 60 ns tAVWL Address Valid to Write Enable Low Min 0 0 ns tBHAX LB, UB High to Address Transition Min 0 0 ns tBHDX LB, UB High to Input Transition Min 0 0 ns tBLBH LB, UB Low to LB, UB High Min 45 60 ns tBLEH LB, UB Low to Chip Enable High Min 45 60 ns tBLWH LB, UB Low to Write Enable High Min 45 60 ns tDVBH Input Valid to LB, UB High Min 25 30 ns tDVEH Input Valid to Chip Enable High Min 25 30 ns tDVWH Input Valid to Write Enable High Min 25 30 ns tEHAX Chip Enable High to Address Transition Min 0 0 ns tEHDX Chip enable High to Input Transition Min 0 0 ns tELBH Chip Enable Low to LB, UB High Min 45 60 ns tELEH Chip Enable Low to Chip Enable High Min 45 60 ns tELWH Chip Enable Low to Write Enable High Min 45 60 ns tWHAX Write Enable High to Address Transition Min 0 0 ns tWHDX Write Enable High to Input Transition Min 0 0 ns Write Enable High to Output Transition Min 5 5 ns tWLBH Write Enable Low to LB, UB High Min 45 60 ns tWLEH Write Enable Low to Chip Enable High Min 45 60 ns Write Enable Low to Output Hi-Z Max 20 20 ns Write Enable Low to Write Enable High Min 45 60 ns tWHQX (1) tWLQZ (1,2) tWLWH Note: 1. At any given temperature and voltage condition, tWLQZ is less than tWHQX for any given device. 2. These parameters are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels. 14/19 M68AW512M Figure 13. Low VCC Data Retention AC Waveforms DATA RETENTION MODE 3.6V VCC 2.7V VDR > 1.5V tCDR tR E ≥ VDR – 0.2V or UB = LB ≥ VDR – 0.2V E or UB/LB AI05805 Table 9. Low VCC Data Retention Characteristics Symbol Parameter ICCDR (1) Supply Current (Data Retention) Test Condition VCC = 1.5V, E ≥ VCC –0.2V or UB = LB ≥ VCC –0.2V, f = 0 (3) Chip Deselected to Data tCDR (1,2) Retention Time tR (2) VDR (1) Operation Recovery Time Supply Voltage (Data Retention) Min E ≥ VCC –0.2V or UB = LB ≥ VCC –0.2V, f = 0 Typ Max Unit 5 10 µA 0 ns tAVAV ns 1.5 V Note: 1. All other Inputs at VIH ≥ VCC –0.2V or VIL ≤ 0.2V. 2. Tested initially and after any design or process changes that may affect these parameters. tAVAV is Read cycle time. 3. No input may exceed VCC +0.2V. 15/19 M68AW512M PACKAGE MECHANICAL Figure 14. TSOP44 Type II - 44 lead Plastic Thin Small Outline Type II, Package Outline D N E1 1 E N/2 ZD b e A2 A C A1 CP α L TSOP-d Note: Drawing is not to scale. Table 10. TSOP 44 TypeII - 44 lead Plastic Thin Small Outline TypeII, Package Mechanical Data millimeters Symbol Typ Min A Max Typ Min 1.200 Max 0.0472 A1 0.050 0.150 0.0020 0.0059 A2 0.950 1.050 0.0374 0.0413 0.0047 0.0083 b 0.350 c 0.0138 0.120 0.210 D 18.410 – – 0.7248 – – e 0.800 – – 0.0315 – – E 11.760 – – 0.4630 – – E1 10.160 – – 0.4000 – – L 0.500 0.400 0.600 0.0197 0.0157 0.0236 ZD 0.805 – – 0.0317 – – 0° 5° 0° 5° α CP N 16/19 inches 0.100 44 0.0039 44 M68AW512M PART NUMBERING Table 11. Ordering Information Scheme Example: M68AW512 M L 55 ND 6 T Device Type M68 Mode A = Asynchronous Operating Voltage W = 2.7 to 3.6V Array Organization 512 = 8 Mbit (512K x16) Option 1 M = 1 Chip Enable; Write and Standby from UB and LB Option 2 L = L-Die N = N-Die Speed Class 55 = 55 ns 70 = 70 ns Package ND = TSOP 44 Type II Operating Temperature 1 = 0 to 70 °C 6 = –40 to 85 °C Shipping T = Tape & Reel Packing For a list of available options (Speed, Package, etc.) or for further information on any aspect of this device, please contact the STMicroelectronics Sales Office nearest to you. 17/19 M68AW512M REVISION HISTORY Table 12. Document Revision History Date Version Revision Details January 2002 -01 First Issue 15-Mar-2002 -02 Document status moved to Datasheet Tables 3, 2, 7, 8 and 9 clarified 17-Jun-2002 -03 ISB clarified (Table 6) ICCDR, VDR clarified (Table 9) 03-Oct-2002 3.1 Revision numbering modified: a minor revision will be indicated by incrementing the digit after the dot, and a major revision, by incrementing the digit before the dot (revision version 03 equals 3.0). New part number added. 09-Oct-2002 3.2 Commercial code modified. 27-Sep-2004 4.0 tPD and tPU modified in Table 7., Read and Standby Mode AC Characteristics. Document structure updated without modifications of the content. 18/19 M68AW512M Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2004 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 19/19