± SLLS349J − JUNE 1999 − REVISED MARCH 2004 D RS-232 Bus-Pin ESD Protection Exceeds D D D D D D D D D D DB OR PW PACKAGE (TOP VIEW) ±15 kV Using Human-Body Model (HBM) Meets or Exceeds the Requirements of TIA/EIA-232-F and ITU v.28 Standards Operates With 3-V to 5.5-V VCC Supply Operates Up To 250 kbit/s Five Drivers and Three Receivers Low Standby Current . . . 1 µA Typical External Capacitors . . . 4 × 0.1 µF Accepts 5-V Logic Input With 3.3-V Supply Always-Active Noninverting Receiver Output (ROUT1B) Alternative High-Speed Pin-Compatible Device (1 Mbit/s) − SNx5C3238 Applications − Battery-Powered Systems, PDAs, Notebooks, Subnotebooks, Laptops, Palmtop PCs, Hand-Held Equipment, Modems, and Printers C2 + GND C2− V− DOUT1 DOUT2 DOUT3 RIN1 RIN2 DOUT4 RIN3 DOUT5 FORCEON FORCEOFF 1 28 2 27 3 26 4 25 5 24 6 23 7 22 8 21 9 20 10 19 11 18 12 17 13 16 14 15 C1+ V+ VCC C1− DIN1 DIN2 DIN3 ROUT1 ROUT2 DIN4 ROUT3 DIN5 ROUT1B INVALID description/ordering information The MAX3238 consists of five line drivers, three line receivers, and a dual charge-pump circuit with ±15-kV ESD (HBM) protection pin to pin (serial-port connection pins, including GND). The device meets the requirements of TIA/EIA-232-F and provides the electrical interface between notebook and subnotebook computer applications. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. In addition, the device includes an always-active noninverting output (ROUT1B), which allows applications using the ring indicator to transmit data while the device is powered down. These devices operate at data signaling rates up to 250 kbit/s and a maximum of 30-V/µs driver output slew rate. ORDERING INFORMATION ORDERABLE PART NUMBER PACKAGE† TA SSOP (DB) −0°C to 70°C TSSOP (PW) SSOP (DB) −40°C to 85°C TSSOP (PW) Tube of 50 MAX3238CDB Reel of 2000 MAX3238CDBR Tube of 50 MAX3238CPW Reel of 2000 MAX3238CPWR Tube of 50 MAX3238IDB Reel of 2000 MAX3238IDBR Tube of 50 MAX3238IPW Reel of 2000 MAX3238IPWR TOP-SIDE MARKING MAX3238C MA3238C MAX3238I MB3238I † Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 2004, Texas Instruments Incorporated !"#$%&'(!$" !) *+%%,"( ') $# -+./!*'(!$" 0'(, %$0+*() *$"#$%& ($ )-,*!#!*'(!$") -,% (1, (,%&) $# ,2') ")(%+&,"() )('"0'%0 3'%%'"(4 %$0+*(!$" -%$*,))!"5 0$,) "$( ",*,))'%!/4 !"*/+0, (,)(!"5 $# '// -'%'&,(,%) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 ± SLLS349J − JUNE 1999 − REVISED MARCH 2004 description/ordering information (continued) Flexible control options for power management are featured when the serial port and driver inputs are inactive. The auto-powerdown plus feature functions when FORCEON is low and FORCEOFF is high. During this mode of operation, if the device does not sense valid signal transitions on all receiver and driver inputs for approximately 30 s, the built-in charge pump and drivers are powered down, reducing the supply current to 1 µA. By disconnecting the serial port or placing the peripheral drivers off, auto-powerdown plus occurs if there is no activity in the logic levels for the driver inputs. Auto-powerdown plus can be disabled when FORCEON and FORCEOFF are high. With auto-powerdown plus enabled, the device activates automatically when a valid signal is applied to any receiver or driver input. INVALID is high (valid data) if any receiver input voltage is greater than 2.7 V or less than −2.7 V, or has been between −0.3 V and 0.3 V for less than 30 µs. INVALID is low (invalid data) if all receiver input voltages are between −0.3 V and 0.3 V for more than 30 µs. Refer to Figure 5 for receiver input levels. Function Tables EACH DRIVER INPUTS OUTPUT DOUT DRIVER STATUS X Z Powered off Normal operation with auto-powerdown plus disabled DIN FORCEON FORCEOFF TIME ELAPSED SINCE LAST RIN OR DIN TRANSITION X X L L H H X H H H H X L L L H <30 s H H L H <30 s L L L H >30 s Z H L H >30 s Z Normal operation with auto-powerdown plus enabled Powered off by auto-powerdown plus feature H = high level, L = low level, X = irrelevant, Z = high impedance EACH RECEIVER INPUTS RIN1 RIN2−RIN3 FORCEOFF OUTPUTS TIME ELAPSED SINCE LAST RIN OR DIN TRANSITION ROUT1B ROUT L X L X L Z H X L X H Z L L H <30 s L H L H H <30 s L L H L H <30 s H H H H H <30 s H L Open Open H >30 s L H RECEIVER STATUS Powered off while ROUT1B is active Normal operation with auto-powerdown plus disabled/enabled H = high level, L = low level, X = irrelevant, Z = high impedance (off), Open = input disconnected or connected driver off 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 ± SLLS349J − JUNE 1999 − REVISED MARCH 2004 logic diagram (positive logic) DIN1 DIN2 DIN3 DIN4 DIN5 FORCEOFF FORCEON ROUT1B ROUT1 ROUT2 ROUT3 24 5 23 6 22 7 19 10 17 12 DOUT1 DOUT2 DOUT3 DOUT4 DOUT5 14 13 Auto-powerdown Plus 15 INVALID 16 21 8 20 9 18 11 RIN1 RIN2 RIN3 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 ± SLLS349J − JUNE 1999 − REVISED MARCH 2004 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage range, VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 6 V Positive output supply voltage range, V+ (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 7 V Negative output supply voltage range, V− (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to −7 V Supply voltage difference, V+ − V− (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 V Input voltage range, VI: Driver (FORCEOFF, FORCEON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 6 V Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −25 V to 25 V Output voltage range, VO: Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −13.2 V to 13.2 V Receiver (INVALID) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to VCC + 0.3 V Package thermal impedance, θJA (see Notes 2 and 3): DB package . . . . . . . . . . . . . . . . . . . . . . . . . . . 62°C/W PW package . . . . . . . . . . . . . . . . . . . . . . . . . . 62°C/W Operating virtual junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltages are with respect to network GND. 2. Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) − TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability. 3. The package thermal impedance is calculated in accordance with JESD 51-7. recommended operating conditions (see Note 4 and Figure 6) VCC = 3.3 V VCC = 5 V Supply voltage VIH Driver and control high-level input voltage DIN, FORCEOFF, FORCEON VIL VI Driver and control low-level input voltage DIN, FORCEOFF, FORCEON Driver and control input voltage DIN, FORCEOFF, FORCEON VI Receiver input voltage VCC = 3.3 V VCC = 5 V MAX3238C TA Operating free-air temperature MAX3238I MIN NOM MAX 3 3.3 3.6 4.5 5 5.5 UNIT V 2 V 2.4 0.8 V 0 5.5 V −25 25 V 0 70 −40 85 °C NOTE 4: Testing supply conditions are C1−C4 = 0.1 µF at VCC = 3.3 V ± 0.15 V; C1−C4 = 0.22 µF at VCC = 3.3 V ± 0.3 V; and C1 = 0.047 µF and C2−C4 = 0.33 µF at VCC = 5 V ± 0.5 V. electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 6) PARAMETER II ICC Input leakage current Supply current (TA = 25 25°C) C) TEST CONDITIONS FORCEOFF, FORCEON MIN TYP‡ MAX ±0.01 ±1 µA 0.5 2 mA Auto-powerdown plus disabled No load, FORCEOFF and FORCEON at VCC Powered off No load, FORCEOFF at GND 1 10 Auto-powerdown plus enabled No load, FORCEOFF at VCC, FORCEON at GND, All RIN are open or grounded 1 10 UNIT µA ‡ All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C. NOTE 4: Testing supply conditions are C1−C4 = 0.1 µF at VCC = 3.3 V ± 0.15 V; C1−C4 = 0.22 µF at VCC = 3.3 V ± 0.3 V; and C1 = 0.047 µF and C2−C4 = 0.33 µF at VCC = 5 V ± 0.5 V. 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 ± SLLS349J − JUNE 1999 − REVISED MARCH 2004 DRIVER SECTION electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 6) PARAMETER TEST CONDITIONS MIN TYP† VOH VOL High-level output voltage All DOUT at RL = 3 kΩ to GND 5 5.4 Low-level output voltage All DOUT at RL = 3 kΩ to GND −5 −5.4 IIH IIL High-level input current VI = VCC VI at GND Low-level input current IOS Short-circuit output current‡ VCC = 3.6 V, VCC = 5.5 V, ro Output resistance VCC, V+, and V− = 0 V, ±0.01 VO = 0 V VO = 0 V VO = ±2 V VO = ±12 V, 300 MAX UNIT V V ±1 µA ±0.01 ±1 µA ±35 ±60 ±40 ±100 mA Ω 10M ±25 VCC = 3 V to 3.6 V µA VO = ±10 V, VCC = 4.5 V to 5.5 V ±25 † All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C. ‡ Short-circuit durations should be controlled to prevent exceeding the device absolute power-dissipation ratings, and not more than one output should be shorted at a time. NOTE 4: Testing supply conditions are C1−C4 = 0.1 µF at VCC = 3.3 V ± 0.15 V; C1−C4 = 0.22 µF at VCC = 3.3 V ± 0.3 V; and C1 = 0.047 µF and C2−C4 = 0.33 µF at VCC = 5 V ± 0.5 V. Ioff Output leakage current FORCEOFF = GND switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 6) PARAMETER TEST CONDITIONS Maximum data rate CL = 1000 pF, One DOUT switching, RL = 3 kΩ, See Figure 1 tsk(p) Pulse skew§ CL = 150 pF to 2500 pF RL = 3 kΩ to 7 kΩ, See Figure 2 SR(tr) Slew rate, transition region (see Figure 1) VCC = 3.3 V, RL = 3 kΩ to 7 kΩ MIN TYP† 150 250 kbit/s 100 ns MAX CL = 150 pF to 1000 pF 6 30 CL = 150 pF to 2500 pF 4 30 UNIT V/µs † All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C. § Pulse skew is defined as |tPLH − tPHL| of each channel of the same device. NOTE 4: Testing supply conditions are C1−C4 = 0.1 µF at VCC = 3.3 V ± 0.15 V; C1−C4 = 0.22 µF at VCC = 3.3 V ± 0.3 V; and C1 = 0.047 µF and C2−C4 = 0.33 µF at VCC = 5 V ± 0.5 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 ± SLLS349J − JUNE 1999 − REVISED MARCH 2004 RECEIVER SECTION electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 6) PARAMETER VOH VOL TEST CONDITIONS High-level output voltage IOH = −1 mA IOL = 1.6 mA Low-level output voltage VIT+ Positive-going input threshold voltage VCC = 3.3 V VCC = 5 V VIT− Negative-going input threshold voltage VCC = 3.3 V VCC = 5 V Vhys Ioff Input hysteresis (VIT+ − VIT−) MIN TYP† VCC−0.6 V VCC−0.1 V MAX V 0.4 1.5 2.4 1.8 2.4 0.6 1.2 0.8 1.5 ±0.05 FORCEOFF = 0 V V V V 0.3 Output leakage current (except ROUT1B) UNIT V ±10 µA ri Input resistance VI = ±3 V to ±25 V 3 5 7 kΩ † All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C. NOTE 4: Testing supply conditions are C1−C4 = 0.1 µF at VCC = 3.3 V ± 0.15 V; C1−C4 = 0.22 µF at VCC = 3.3 V ± 0.3 V; and C1 = 0.047 µF and C2−C4 = 0.33 µF at VCC = 5 V ± 0.5 V. switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4) PARAMETER TEST CONDITIONS tPLH tPHL Propagation delay time, low- to high-level output ten tdis Output enable time Propagation delay time, high- to low-level output Output disable time Pulse skew‡ CL = 150 pF, See Figure 3 CL = 150 pF, RL = 3 kΩ, kΩ See Figure 4 MIN TYP† MAX UNIT 150 ns 150 ns 200 ns 200 ns tsk(p) See Figure 3 50 ns † All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C. ‡ Pulse skew is defined as |tPLH − tPHL| of each channel of the same device. NOTE 4: Testing supply conditions are C1−C4 = 0.1 µF at VCC = 3.3 V ± 0.15 V; C1−C4 = 0.22 µF at VCC = 3.3 V ± 0.3 V; and C1 = 0.047 µF and C2−C4 = 0.33 µF at VCC = 5 V ± 0.5 V. 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 ± SLLS349J − JUNE 1999 − REVISED MARCH 2004 AUTO-POWERDOWN PLUS SECTION electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5) PARAMETER TEST CONDITIONS MIN VT+(valid) Receiver input threshold for INVALID high-level output voltage FORCEON = GND, FORCEOFF = VCC VT−(valid) Receiver input threshold for INVALID high-level output voltage FORCEON = GND, FORCEOFF = VCC −2.7 VT(invalid) Receiver input threshold for INVALID low-level output voltage FORCEON = GND, FORCEOFF = VCC −0.3 VOH INVALID high-level output voltage IOH = −1 mA, FORCEON = GND, FORCEOFF = VCC VOL INVALID low-level output voltage IOL = 1.6 mA, FORCEON = GND, FORCEOFF = VCC TYP† MAX UNIT 2.7 V V 0.3 V VCC−0.6 V 0.4 V † All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C. switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5) PARAMETER MIN TYP† MAX UNIT tvalid Propagation delay time, low- to high-level output 0.1 µs tinvalid Propagation delay time, high- to low-level output 50 µs ten tdis Supply enable time µs 25 Receiver or driver edge to auto-powerdown plus 15 30 60 s † All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C. PARAMETER MEASUREMENT INFORMATION 3V Generator (see Note B) Input RS-232 Output 50 Ω RL tTHL CL (see Note A) 3V FORCEOFF TEST CIRCUIT 0V Output 6V SR(tr) + t THL or t TLH tTLH 3V 3V −3 V −3 V VOH VOL VOLTAGE WAVEFORMS NOTES: A. CL includes probe and jig capacitance. B. The pulse generator has the following characteristics: PRR = 250 kbit/s, ZO = 50 Ω, 50% duty cycle, tr ≤ 10 ns, tf ≤ 10 ns. Figure 1. Driver Slew Rate POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 ± SLLS349J − JUNE 1999 − REVISED MARCH 2004 PARAMETER MEASUREMENT INFORMATION 3V Generator (see Note B) RS-232 Output 50 Ω Input 0V CL (see Note A) RL 1.5 V 1.5 V tPHL tPLH VOH 3V FORCEOFF 50% 50% Output VOL TEST CIRCUIT VOLTAGE WAVEFORMS NOTES: A. CL includes probe and jig capacitance. B. The pulse generator has the following characteristics: PRR = 250 kbit/s, ZO = 50 Ω, 50% duty cycle, tr ≤ 10 ns, tf ≤ 10 ns. Figure 2. Driver Pulse Skew 3 V or 0 V FORCEON 3V Input 1.5 V 1.5 V −3 V Output Generator (see Note B) 50 Ω tPHL CL (see Note A) 3V FORCEOFF tPLH VOH 50% Output 50% VOL TEST CIRCUIT VOLTAGE WAVEFORMS NOTES: A. CL includes probe and jig capacitance. B. The pulse generator has the following characteristics: ZO = 50 Ω, 50% duty cycle, tr ≤ 10 ns, tf ≤ 10 ns. Figure 3. Receiver Propagation Delay Times 3V 3 V or 0 V FORCEON VCC S1 Input 1.5 V 0V tPHZ (S1 at GND) RL 3 V or 0 V 1.5 V GND VOH Output 50% Output CL (see Note A) FORCEOFF Generator (see Note B) 0.3 V tPLZ (S1 at VCC) 50 Ω tPZL (S1 at VCC) 0.3 V Output 50% VOL TEST CIRCUIT NOTES: A. B. C. D. VOLTAGE WAVEFORMS CL includes probe and jig capacitance. The pulse generator has the following characteristics: ZO = 50 Ω, 50% duty cycle, tr ≤ 10 ns, tf ≤ 10 ns. tPLZ and tPHZ are the same as tdis. tPZL and tPZH are the same as ten. Figure 4. Receiver Enable and Disable Times 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 ± SLLS349J − JUNE 1999 − REVISED MARCH 2004 PARAMETER MEASUREMENT INFORMATION ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ Valid RS-232 Level, INVALID High ROUT Generator (see Note B) 2.7 V 50 Ω Indeterminate 0.3 V 0V If Signal Remains Within This Region For More Than 30 µs, INVALID Is Low† −0.3 V Indeterminate Autopowerdown Plus INVALID −2.7 V CL = 30 pF (see Note A) Valid RS-232 Level, INVALID High † Auto-powerdown plus disables drivers and reduces supply current to 1 µA. FORCEOFF FORCEON DIN DOUT TEST CIRCUIT NOTES: A. CL includes probe and jig capacitance. B. The pulse generator has the following characteristics: PRR = 5 kbit/s, ZO = 50 Ω, 50% duty cycle, tr ≤ 10 ns, tf ≤ 10 ns. Receiver Input 3V 2.7 V 0V 0V −2.7 V −3 V tinvalid tvalid INVALID Output Driver Input 50% VCC 50% 0V 3 V to 5 V 50% 50% 0V ≈5.5 V Driver Output ≈ −5.5 V tdis ten tdis V+ Supply Voltages ten V+ V+ −0.3 V V− +0.3 V V− V− Voltage Waveforms and Timing Diagrams Figure 5. INVALID Propagation-Delay Times and Supply-Enabling Time POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 ± SLLS349J − JUNE 1999 − REVISED MARCH 2004 APPLICATION INFORMATION CBYPASS = 0.1 µF + − 1 2 + C2 27 + GND − 4 + V+ 28 − 3 − C1+ C2+ C2− VCC V− C1− C4 DOUT1 DOUT2 DOUT3 RIN1 C3† + − 26 C1 25 5 24 6 23 7 22 8 21 9 20 DIN1 DIN2 DIN3 ROUT1 RS-232 Port RIN2 ROUT2 Logic I/Os 5 kΩ DOUT4 RIN3 10 19 11 18 DIN4 ROUT3 5 kΩ DOUT5 12 17 16 DIN5 ROUT1B 5 kΩ FORCEON FORCEOFF 13 14 Autopowerdown Plus 15 INVALID VCC vs CAPACITOR VALUES † C3 can be connected to VCC or GND. NOTES: A. Resistor values shown are nominal. B. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown. VCC 3.3 V ± 0.15 V 3.3 V ± 0.3 V 5 V ± 0.5 V 3 V to 5.5 V Figure 6. Typical Operating Circuit and Capacitor Values 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 C1 0.1 µF 0.22 µF 0.047 µF 0.22 µF C2, C3, and C4 0.1 µF 0.22 µF 0.33 µF 1 µF PACKAGE OPTION ADDENDUM www.ti.com 5-Dec-2005 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty MAX3238CDB ACTIVE SSOP DB 28 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM MAX3238CDBE4 ACTIVE SSOP DB 28 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM MAX3238CDBR ACTIVE SSOP DB 28 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM MAX3238CDBRE4 ACTIVE SSOP DB 28 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM MAX3238CDBRG4 ACTIVE SSOP DB 28 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1YEAR MAX3238CPW ACTIVE TSSOP PW 28 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM MAX3238CPWR ACTIVE TSSOP PW 28 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM MAX3238IDB ACTIVE SSOP DB 28 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM MAX3238IDBE4 ACTIVE SSOP DB 28 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM MAX3238IDBR ACTIVE SSOP DB 28 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM MAX3238IDBRE4 ACTIVE SSOP DB 28 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM MAX3238IPW ACTIVE TSSOP PW 28 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM MAX3238IPWE4 ACTIVE TSSOP PW 28 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM MAX3238IPWR ACTIVE TSSOP PW 28 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM MAX3238IPWRE4 ACTIVE TSSOP PW 28 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 50 Lead/Ball Finish MSL Peak Temp (3) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com 5-Dec-2005 accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 MECHANICAL DATA MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001 DB (R-PDSO-G**) PLASTIC SMALL-OUTLINE 28 PINS SHOWN 0,38 0,22 0,65 28 0,15 M 15 0,25 0,09 8,20 7,40 5,60 5,00 Gage Plane 1 14 0,25 A 0°–ā8° 0,95 0,55 Seating Plane 2,00 MAX 0,10 0,05 MIN PINS ** 14 16 20 24 28 30 38 A MAX 6,50 6,50 7,50 8,50 10,50 10,50 12,90 A MIN 5,90 5,90 6,90 7,90 9,90 9,90 12,30 DIM 4040065 /E 12/01 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-150 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999 PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PINS SHOWN 0,30 0,19 0,65 14 0,10 M 8 0,15 NOM 4,50 4,30 6,60 6,20 Gage Plane 0,25 1 7 0°– 8° A 0,75 0,50 Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,10 8 14 16 20 24 28 A MAX 3,10 5,10 5,10 6,60 7,90 9,80 A MIN 2,90 4,90 4,90 6,40 7,70 9,60 DIM 4040064/F 01/97 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security Telephony www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright 2005, Texas Instruments Incorporated