19-1221; Rev 3; 8/01 Single/Dual/Quad, 270MHz, 1mA, SOT23, Current-Feedback Amplifiers with Shutdown The MAX4180–MAX4187 feature 0.08%/0.03° differential gain and phase errors, a 20ns settling time to 0.1%, and a 450V/µs slew rate, making them ideal for highperformance video applications. The MAX4180/ MAX4181/MAX4183/MAX4185 have a low-power shutdown mode that reduces power-supply current to 135µA and places the outputs in a high-impedance state. This feature makes them ideal for multiplexing applications. The single MAX4180/MAX4181 are offered in spacesaving 6-pin SOT23 packages. Features ♦ Ultra-Low Supply Current: 1mA per Amplifier ♦ Shutdown Mode Outputs Placed in High-Z Supply Current Reduced to 135µA ♦ Operate from a Single +5V Supply or Dual ±5V Supplies ♦ Wide Bandwidth 270MHz -3dB Small-Signal Bandwidth (MAX4181/MAX4184/MAX4185/MAX4187) ♦ 450V/µs Slew Rate ♦ Fast, 20ns Settling Time to 0.1% ♦ Excellent Video Specifications Gain Flatness to 70MHz (MAX4180/MAX4182/MAX4183/MAX4186) 0.08%/0.03° Differential Gain/Phase ♦ Low Distortion: -73dBc SFDR (fC = 5MHz, VOUT = 2Vp-p) ♦ Available in Tiny Surface-Mount Packages 6-Pin SOT23 (MAX4180/MAX4181) 10-Pin µMAX (MAX4183/MAX4185) 16-Pin QSOP (MAX4186/MAX4187) Ordering Information ________________________Applications Portable/Battery-Powered Video/Multimedia Systems High-Definition Surveillance Video Broadcast and High-Definition TV Systems Professional Cameras High-Speed A/D Buffers CCD Imaging Systems Video Switching/ Multiplexing PART TEMP RANGE PINPACKAGE TOP MARK MAX4180EUT-T -40°C to +85°C 6 SOT23-6 AAAB MAX4180ESA -40°C to +85°C 8 SO Pin Configurations Medical Imaging Selector Guide NO. OF AMPS SHUTDOWN MODE OPTIMIZED FOR MAX4180 1 Yes AV ≥ 2 MAX4181 1 Yes AV ≥ 1 MAX4182 2 No AV ≥ 2 MAX4183 2 Yes AV ≥ 2 MAX4184 2 No AV ≥ 1 MAX4185 2 Yes AV ≥ 1 MAX4186 4 No AV ≥ 2 MAX4187 4 No AV ≥ 1 PART — Ordering Information continued at end of data sheet. TOP VIEW SINGLE OUT 1 VEE 2 MAX4180 MAX4181 IN+ 3 6 VCC 5 SHDN 4 IN- SOT23-6 Pin Configurations continued at end of data sheet. ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. 1 MAX4180–MAX4187 General Description The MAX4180 family of current-feedback amplifiers combines high-speed performance, low distortion, and excellent video specifications with ultra-low-power operation in miniature packages. They operate from ±2.25V to ±5.5V dual supplies, or from a single +5V supply. They require only 1mA of supply current per amplifier while delivering up to ±60mA of output current drive. The MAX4180/MAX4182/MAX4183/MAX4186 are compensated for applications with a closed-loop gain of +2 (6dB) or greater, and provide a -3dB bandwidth of 240MHz and a 0.1dB bandwidth of 70MHz. The MAX4181/MAX4184/MAX4185/MAX4187 are compensated for applications with a +1 (0dB) or greater gain, and provide a -3dB bandwidth of 270MHz and a 0.1dB bandwidth of 60MHz. MAX4180–MAX4187 Single/Dual/Quad, 270MHz, 1mA, SOT23, Current-Feedback Amplifiers with Shutdown ABSOLUTE MAXIMUM RATINGS Supply Voltage (VCC to VEE) .................................................12V Analog Input Voltage.......................(VEE - 0.3V) to (VCC + 0.3V) Differential Input Voltage.......................................................±2V SHDN Input Voltage ........................(VEE - 0.3V) to (VCC + 0.3V) Short-Circuit Duration (OUT to GND, VCC or VEE).....Continuous Continuous Power Dissipation (TA = +70°C) 6-Pin SOT23 (derate 7.10mW/°C above +70°C)...........571mW 8-Pin SO (derate 5.88mW/°C above +70°C).................471mW 10-Pin µMAX (derate 5.60mW/°C above +70°C) ..........444mW 14-Pin SO (derate 8.33mW/°C above +70°C)...............667mW 16-Pin QSOP (derate 8.30mW/°C above +70°C)..........667mW Operating Temperature Range ...........................-40°C to +85°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. DC ELECTRICAL CHARACTERISTICS—Dual Supplies (VCC = +5V, VEE = -5V, VIN+ = 0, SHDN ≥ 3V; TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER Input Voltage Range Input Offset Voltage Input Offset-Voltage Drift SYMBOL CONDITIONS VCM Guaranteed by CMRR test VOS VCM = 0 MIN TYP ±3.6 ±3.9 ±1.5 TCVOS Input Offset-Voltage Matching MAX4182–MAX4187 MAX UNITS V ±7 mV ±12 µV/°C ±1 mV Input Bias Current (Positive Input) IB+ ±1 ±7 µA Input Bias Current (Negative Input) IB- ±1 ±12 µA Input Resistance (Positive Input) RIN+ Input Resistance (Negative Input) RIN- Common-Mode Rejection Ratio Open-Loop Transresistance CMRR TR Output Voltage Swing VSW Output Current IOUT -3.6V ≤ VIN+ ≤ 3.6V, -1V ≤ (VIN+ - VIN-) ≤ 1V 250 Output Resistance Disabled Output Leakage Current 160 Ω dB -50 -58 RL = 1kΩ, VOUT = ±3.6V 0.8 3.0 RL = 150Ω, VOUT = ±2.5V 0.3 0.9 RL = 1kΩ ±3.75 ±4.0 RL = 150Ω ±3.0 ±3.3 MΩ V ±3.0 ±60 mA ISC ±80 mA ROUT 0.2 Ω IOUT(OFF) RL = 30Ω ±32 SHDN ≤ VIL, VOUT ≤ ±3V (Notes 2, 4) SHDN Logic Low Threshold VIL (Notes 3, 4) SHDN Logic High Threshold VIH (Notes 3, 4) 2 kΩ -3.6V ≤ VCM ≤ 3.6V RL = 100Ω Output Short-Circuit Current 800 ±0.1 ±6.0 µA VCC - 3.0 V VCC - 2.0 _______________________________________________________________________________________ V TOP VIEW SING OUT 1 Single/Dual/Quad, 270MHz, 1mA, SOT23, Current-Feedback Amplifiers with Shutdown (VCC = +5V, VEE = -5V, VIN+ = 0, SHDN ≥ 3V; TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL SHDN Logic Input Bias Current IIN CONDITIONS MIN VEE ≤ SHDN ≤ VCC (Note 4) TYP MAX UNITS ±0.1 ±2.0 µA Positive Power-Supply Rejection Ratio PSRR+ VEE = -5V, VCC = 4.5V to 5.5V 60 71 dB Negative Power-Supply Rejection Ratio PSRR- VCC = 5V, VEE = -4.5V to -5.5V 53 62 dB Operating Supply Voltage VCC/VEE Quiescent Supply Current per Amplifier IS Shutdown Supply Current per Amplifier IS(OFF) ±2.25 RL = ∞ ±5.50 MAX418_EUT 1.0 1.3 All other packages 1.0 1.2 135 180 SHDN = 0, RL = ∞ (Note 4) V mA µA DC ELECTRICAL CHARACTERISTICS—Single Supply (VCC = +5V, VEE = 0, VIN+ = 2.5V, SHDN ≥ 3V, RL to VCC/2; TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER Input Voltage Range Input Offset Voltage Input Offset Voltage Drift SYMBOL CONDITIONS VCM VOS MIN TYP 1.3 to 3.7 1.1 to 3.9 VCM = 2.5V ±1.5 TCVOS Input Offset Voltage Matching MAX4182–MAX4187 MAX UNITS V ±7 mV ±12 µV/°C ±1 mV Input Bias Current (Positive Input) IB+ ±1 ±7 µA Input Bias Current (Negative Input) IB- ±1 ±12 µA Input Resistance (Positive Input) RIN+ Input Resistance (Negative Input) RIN- Common-Mode Rejection Ratio CMRR Open-Loop Transresistance TR 1.3V ≤ VIN+ ≤ 3.7V, -1V ≤ (VIN+ - VIN-) ≤ 1V 800 kΩ 160 Ω -50 -58 dB RL = 1kΩ, VOUT = 1.2V to 3.8V 0.8 2.5 RL = 150Ω, VOUT = 1.4V to 3.6V 0.275 0.9 1.15 to 3.85 1.35 to 3.65 1.0 to 4.0 1.2 to 3.8 1.3 to 3.7 1.3V ≤ VCM ≤ 3.7V RL = 1kΩ Output Voltage Swing VSW RL = 150Ω RL = 100Ω 250 MΩ V V _______________________________________________________________________________________ 3 MAX4180–MAX4187 DC ELECTRICAL CHARACTERISTICS—Dual Supplies (continued) MAX4180–MAX4187 Single/Dual/Quad, 270MHz, 1mA, SOT23, Current-Feedback Amplifiers with Shutdown DC ELECTRICAL CHARACTERISTICS—Single Supply (continued) (VCC = +5V, VEE = 0, VIN+ = 2.5V, SHDN ≥ 3V, RL to VCC/2; TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER Output Current Output Short-Circuit Current Output Resistance Disabled Output Leakage Current SYMBOL MIN TYP ±18 ±30 mA ISC ±50 mA ROUT 0.2 Ω IOUT IOUT(OFF) CONDITIONS RL = 30Ω SHDN ≤ VIL, 1.2V ≤ VOUT ≤ 3.8V (Notes 2, 4) SHDN Logic-Low Threshold VIL (Notes 3, 4) SHDN Logic-High Threshold VIH (Notes 3, 4) SHDN Logic Input Bias Current IIN 0 ≤ SHDN ≤ VCC (Note 4) Power-Supply Rejection Ratio Operating Supply Voltage PSRR IS Shutdown Supply Current per Amplifier IS(OFF) µA VCC 3.0 V V ±0.1 VCC = 4.5V to 5.5V 60 ±2.0 71 4.5 RL = ∞ µA dB 5.5 MAX418_EUT 1.0 1.25 All other packages 1.0 1.2 135 180 SHDN = 0, RL = ∞ (Note 4) UNITS ±4.0 VCC 2.0 VCC Quiescent Supply Current per Amplifier ±0.1 MAX V mA µA AC ELECTRICAL CHARACTERISTICS—Dual Supplies (MAX4180/4182/4183/4186) (VCC = +5V, VEE = -5V, VIN = 0, SHDN ≥ 3V, AV = +2V/V; see Table 1 for RF and RG values; TA = +25°C, unless otherwise noted.) PARAMETER SYMBOL CONDITIONS Small-Signal -3dB Bandwidth (Note 5) BWSS <0.5dB peaking Large-Signal -3dB Bandwidth BWLS VOUT = 2Vp-p, RL = 1kΩ Bandwidth for 0.1dB Flatness (Note 5) BW0.1dB Slew Rate (Note 5) Settling Time to 0.1% MIN RL=1kΩ 180 RL=150Ω 150 RL = 1kΩ VOUT = 2V step, RL = 1kΩ 245 190 30 RL = 150Ω SR TYP 70 70 Rising edge 340 450 Falling edge 315 420 MAX UNITS MHz MHz MHz V/µs tS VOUT = 2V step, RL = 1kΩ 20 ns Rise/Fall Time tR, tF VOUT = 2V step, RL = 1kΩ 5 ns Spurious-Free Dynamic Range SFDR fC = 5MHz, VOUT = 2Vp-p Second Harmonic Distortion fC = 5MHz, VOUT = 2Vp-p Third Harmonic Distortion fC = 5MHz, VOUT = 2Vp-p 4 RL = 1kΩ 73 RL = 150Ω 57 RL = 1kΩ -83 RL = 150Ω -68 RL = 1kΩ -73 RL = 150Ω -57 _______________________________________________________________________________________ dBc dBc dBc Single/Dual/Quad, 270MHz, 1mA, SOT23, Current-Feedback Amplifiers with Shutdown (VCC = +5V, VEE = -5V, VIN = 0, SHDN ≥ 3V, AV = +2V/V; see Table 1 for RF and RG values; TA = +25°C, unless otherwise noted.) PARAMETER SYMBOL CONDITIONS Differential Phase Error DP NTSC Differential Gain Error DG NTSC Input Noise-Voltage Density en f = 10kHz Input Noise-Current Density Input Capacitance (Positive Input) in MIN 0.03 RL = 150Ω 0.30 RL = 1kΩ 0.08 RL = 150Ω 0.01 Disabled Output Capacitance ZOUT COUT(OFF) MAX f = 10kHz 4 IN- 5 UNITS degrees % 2 IN+ CIN+ Output Impedance TYP RL = 1kΩ nV/√Hz pA/√Hz 1.5 pF 4.8 Ω SHDN ≤ VIL, VOUT ≤ ±3V (Notes 2, 4) 4 pF f = 10kHz Turn-On Time from SHDN tON (Note 4) 40 ns Turn-Off Time to SHDN tOFF (Note 4) 400 ns 200 µs dB Power-Up Time Off-Isolation SHDN ≤ 2V, RL = 150Ω, f = 10MHz -60 Crosstalk f = 10MHz, MAX4182/4183/4186 -60 dB Gain Matching to 0.1dB f = 10MHz, MAX4182/4183/4186 25 MHz AC ELECTRICAL CHARACTERISTICS—Dual Supplies (MAX4181/4184/4185/4187) (VCC = +5V, VEE = -5V, VIN+ = 0, SHDN ≥ 3V, AV = +1V/V; see Table 1 for RF values; TA = +25°C, unless otherwise noted.) PARAMETER SYMBOL CONDITIONS Small-Signal -3dB Bandwidth (Note 5) BWSS <0.5dB peaking Large-Signal -3dB Bandwidth BWLS VOUT = 2Vp-p, RL = 1kΩ Bandwidth for 0.1dB Flatness (Note 5) BW0.1dB VOUT = 2V step, RL = 1kΩ Settling Time to 0.1% tS VOUT = 2V step, RL = 1kΩ tR and tF VOUT = 2V step, RL = 1kΩ SFDR fC = 5MHz, VOUT = 2Vp-p Second Harmonic Distortion fC = 5MHz, VOUT = 2Vp-p Third Harmonic Distortion fC = 5MHz, VOUT = 2Vp-p Differential Phase Error DP TYP 195 270 205 90 20 RL = 150Ω SR Spurious-Free Dynamic Range MIN RL = 150Ω RL = 1kΩ Slew Rate (Note 5) Rise/Fall Time RL = 1kΩ NTSC 60 55 Rising edge 250 320 Falling edge 200 265 MAX UNITS MHz MHz MHz V/µs 21 ns 5 ns RL = 1kΩ 57 RL = 150Ω 66 RL = 1kΩ -70 RL = 150Ω -73 RL = 1kΩ -57 RL = 150Ω -66 RL = 1kΩ 0.01 RL = 150Ω 0.48 dB dB dB degrees ________________________________________________________________________________________ 5 MAX4180–MAX4187 AC ELECTRICAL CHARACTERISTICS—Dual Supplies (MAX4180/4182/4183/4186) (cont.) MAX4180–MAX4187 Single/Dual/Quad, 270MHz, 1mA, SOT23, Current-Feedback Amplifiers with Shutdown AC ELECTRICAL CHARACTERISTICS—Dual Supplies (MAX4181/4184/4185/4187) (cont.) (VCC = +5V, VEE = -5V, VIN+ = 0, SHDN ≥ 3V, AV = +1V/V; see Table 1 for RF values; TA = +25°C, unless otherwise noted.) PARAMETER SYMBOL CONDITIONS Differential Gain Error DG NTSC Input Noise-Voltage Density en f = 10kHz Input Noise-Current Density in f = 10kHz Input Capacitance (Positive Input) Output Impedance MIN 0.09 RL = 150Ω 0.16 MAX IN+ 4 IN- 5 nV/√Hz pA/√Hz 1.5 f = 10kHz UNITS % 2 CIN+ ZOUT TYP RL = 1kΩ pF 4.8 Ω pF SHDN ≤ VIL, VOUT ≤ ±3V (Notes 2, 4) 4 Turn-On Time from SHDN tON (Note 4) 50 ns Turn-Off Time to SHDN tOFF (Note 4) 400 ns 200 µs Disabled Output Capacitance COUT(OFF) Power-Up Time Off-Isolation SHDN ≤ 2V, RL = 150Ω, f = 10MHz -54 dB Crosstalk f = 10MHz, MAX4184/MAX4185/MAX4187 -60 dB Gain Matching to 0.1dB f = 10MHz, MAX4184/MAX4185/MAX4187 25 MHz AC ELECTRICAL CHARACTERISTICS—Single Supply (MAX4180/4182/4183/4186) (VCC = +5V, VEE = 0, VIN+ = 2.5V, SHDN ≥ 3V, AV = +2V/V; see Table 1 for RF and RG values; TA = +25°C, unless otherwise noted.) PARAMETER SYMBOL CONDITIONS Small-Signal -3dB Bandwidth (Note 5) BWSS <0.5dB peaking Large-Signal -3dB Bandwidth BWLS VOUT = 2Vp-p, RL = 1kΩ Bandwidth for 0.1dB Flatness (Note 5) BW0.1dB Slew Rate (Note 5) Settling Time to 0.1% Rise/Fall Time Spurious-Free Dynamic Range 155 SR VOUT = 2V step, RL = 1kΩ TYP 210 165 110 RL = 1kΩ 20 50 40 Rising edge 260 340 Falling edge 220 300 MAX UNITS MHz MHz MHz V/µs tS VOUT = 2V step, RL = 1kΩ 20 ns tR and tF VOUT = 2V step, RL = 1kΩ 6 ns SFDR fC = 5MHz, VOUT = 2Vp-p fC = 5MHz, VOUT = 2Vp-p Third Harmonic Distortion fC = 5MHz, VOUT = 2Vp-p 6 RL = 1kΩ RL = 150Ω RL = 150Ω Second Harmonic Distortion Differential Phase Error MIN DP NTSC RL = 1kΩ 72 RL = 150Ω 57 RL = 1kΩ -80 RL = 150Ω -76 RL = 1kΩ -72 RL = 150Ω -57 RL = 1kΩ 0.01 RL = 150Ω 0.35 _______________________________________________________________________________________ dB dBc dBc degrees Single/Dual/Quad, 270MHz, 1mA, SOT23, Current-Feedback Amplifiers with Shutdown (VCC = +5V, VEE = 0, VIN+ = 2.5V, SHDN ≥ 3V, AV = +2V/V; see Table 1 for RF and RG values; TA = +25°C, unless otherwise noted.) PARAMETER SYMBOL CONDITIONS Differential Gain Error DG NTSC Input Noise-Voltage Density en f = 10kHz Input Noise-Current Density in Input Capacitance (Positive Input) CIN+ Output Impedance ZOUT MIN TYP RL= 1kΩ 0.10 RL= 150Ω 0.03 MAX % 2 f = 10kHz IN+ 4 IN- 5 f = 10kHz UNITS nV/√Hz pA/√Hz 1.5 pF 4.8 Ω SHDN ≤ VIL, 1.2V ≤ VOUT ≤ 3.8V (Notes 2, 4) 4 pF Turn-On Time from SHDN tON (Note 4) 40 ns Turn-Off Time to SHDN tOFF (Note 4) 400 ns Disabled Output Capacitance COUT(OFF) Power-Up Time 200 µs Off-Isolation SHDN ≤ 2V, RL = 150Ω, f = 10MHz -60 dB Crosstalk f = 10MHz, MAX4182/MAX4183/MAX4186 -60 dB Gain Matching to 0.1dB f = 10MHz, MAX4182/MAX4183/MAX4186 25 MHz AC ELECTRICAL CHARACTERISTICS—Single Supply (MAX4181/4184/4185/4187) (VCC = +5V, VEE = 0, VIN+ = 2.5V, SHDN ≥ 3V, AV = +1V/V; see Table 1 for RF values; TA = +25°C, unless otherwise noted.) PARAMETER SYMBOL CONDITIONS Small-Signal -3dB Bandwidth (Note 5) BWSS <0.5dB peaking Large-Signal -3dB Bandwidth BWLS VOUT = 2Vp-p, RL = 1kΩ Bandwidth for 0.1dB Flatness (Note 5) Slew Rate (Note 5) Settling Time to 0.1% Rise/Fall Time Spurious-Free Dynamic Range BW0.1dB MIN TYP 175 220 RL = 150Ω 170 110 RL = 1kΩ 16 RL = 150Ω 40 30 Rising edge 210 275 Falling edge 170 215 MAX UNITS MHz MHz MHz SR VOUT = 2V step, RL = 1kΩ tS VOUT = 2V step, RL = 1kΩ 22 ns tR and tF VOUT = 2V step, RL = 1kΩ 7 ns SFDR fC = 5MHz, VOUT = 2Vp-p Second Harmonic Distortion fC = 5MHz, VOUT = 2Vp-p Third Harmonic Distortion fC = 5MHz, VOUT = 2Vp-p Differential Phase Error RL = 1kΩ DP NTSC RL = 1kΩ 55 RL = 150Ω 59 RL = 1kΩ -61 RL = 150Ω -72 RL = 1kΩ -55 RL = 150Ω -59 RL = 1kΩ 0.01 RL = 150Ω 0.35 V/µs dB dBc dBc degrees _______________________________________________________________________________________ 7 MAX4180–MAX4187 AC ELECTRICAL CHARACTERISTICS—Single Supply (MAX4180/4182/4183/4186) (cont.) AC ELECTRICAL CHARACTERISTICS—Single Supply (MAX4181/4184/4185/4187) (cont.) (VCC = +5V, VEE = 0, VIN+ = 2.5V, SHDN ≥ 3V, AV = +1V/V; see Table 1 for RF values; TA = +25°C, unless otherwise noted.) PARAMETER SYMBOL CONDITIONS Differential Gain Error DG NTSC Input Noise-Voltage Density en f = 10kHz Input Noise-Current Density CIN+ Output Impedance ZOUT Disabled Output Capacitance MIN TYP RL= 1kΩ 0.10 RL= 150Ω 0.03 MAX IN+ 4 IN- 5 f = 10kHz COUT(OFF) SHDN ≤ VIL, 1.2V ≤ VOUT ≤ 3.8V (Notes 2, 4) UNITS % 2 f = 10kHz in Input Capacitance (Positive Input) nV/√Hz pA/√Hz 1.5 pF 4.8 Ω 4 pF Turn-On Time from SHDN tON (Note 4) 40 ns Turn-Off Time to SHDN tOFF (Note 4) 400 ns 200 µs Power-Up Time Off-Isolation SHDN ≤ 2V, RL = 150Ω, f = 10MHz -54 dB Crosstalk f = 10MHz, MAX4184/MAX4185/MAX4187 -60 dB Gain Matching to 0.1dB f = 10MHz, MAX4184/MAX4185/MAX4187 25 MHz Note 1: The MAX418_EUT is 100% production tested at TA = +25°C. Specifications over temperature limits are guaranteed by design. Note 2: Does not include current into the external-feedback network. Note 3: Over operating supply-voltage range. Note 4: Specification applies to MAX4180/MAX4181/MAX4183 and MAX4185. Note 5: The AC specifications shown are not measured in a production test environment. The minimum AC specifications given are based on the combination of worst-case design simulations along with a sample characterization of units. These minimum specifications are for design guidance only and are not intended to guarantee AC performance (see AC Testing/Performance). For 100% testing of those parameters, contact the factory. __________________________________________Typical Operating Characteristics (VCC = +5V, VEE = -5V, TA = +25°C, unless otherwise noted.) 0 -1 -2 RF = RG = 680Ω RL = 100Ω OR RF = RG = 820Ω RL = 150Ω -3 -4 -5 10 100 FREQUENCY (MHz) 8 1000 0 -1 RF = RG = 680Ω RL = 100Ω OR RF = RG = 820Ω RL = 150Ω -2 -3 2 1 -1 -2 -4 -5 100 RF = 1kΩ RL = 150Ω OR RF = 560Ω RL = 100Ω -3 -6 FREQUENCY (MHz) RF = 2.4kΩ RL = 1kΩ 0 -6 10 VIN = 20mVp-p AV = +1V/V 3 -5 1 1000 MAX1480-87 TOCD RF = RG = 1.2kΩ RL = 1kΩ 1 -4 -6 1 2 4 GAIN (dB) RF = RG = 1.2kΩ RL = 1kΩ 1 VCC = +5V VIN = 20mVp-p AV = +2V/V 3 MAX1480-87 TOCB 2 4 NORMALIZED GAIN (dB) VIN = 20mVp-p AV = +2V/V MAX1480-87 TOCA 4 3 MAX4181 SMALL-SIGNAL GAIN vs. FREQUENCY (DUAL SUPPLIES) MAX4180 SMALL-SIGNAL GAIN vs. FREQUENCY (SINGLE SUPPLY) MAX4180 SMALL-SIGNAL GAIN vs. FREQUENCY (DUAL SUPPLIES) NORMALIZED GAIN (dB) MAX4180–MAX4187 Single/Dual/Quad, 270MHz, 1mA, SOT23, Current-Feedback Amplifiers with Shutdown 1 10 100 1000 FREQUENCY (MHz) _______________________________________________________________________________________ TOP VIEW SING OUT 1 Single/Dual/Quad, 270MHz, 1mA, SOT23, Current-Feedback Amplifiers with Shutdown MAX4182/MAX4183 SMALL-SIGNAL GAIN vs. FREQUENCY (DUAL SUPPLIES) RF = 2.4kΩ RL = 1kΩ 0 -1 -2 RF = 1kΩ RL = 150Ω OR RF = 560Ω RL = 100Ω -3 -4 -5 2 RF = RG = 620Ω RL = 100Ω RF = 620Ω RL = 100Ω -6 100 10 1000 1 10 100 FREQUENCY (MHz) MAX4186 SMALL-SIGNAL GAIN vs. FREQUENCY (DUAL SUPPLIES) MAX4187 SMALL-SIGNAL GAIN vs. FREQUENCY MAX4180 GAIN FLATNESS vs. FREQUENCY (SINGLE & DUAL SUPPLIES) VS = ±5V VIN = 20mVp-p AV = +1V/V 3 2 RF = 1.6kΩ RL = 1kΩ 0.4 0.3 0.2 0.1 1 RF = RG = 750Ω RL = 150Ω -2 -3 0 -1 RF = 680Ω RL = 100Ω -2 -3 -4 RF = RG = 680Ω RL = 100Ω -5 1 100 10 0 -0.2 -0.5 -6 -0.6 1 1000 10 100 VCC = +5V RF = RG = 820kΩ RL = 150Ω VIN = 20mVp-p AV = +2V/V -0.4 -5 1000 VS = ±5V RF = RG = 1.2kΩ RL = 1kΩ VS = ±5V RF = RG = 820Ω RL = 150Ω -0.1 -0.3 RF = 910Ω RL = 150Ω -4 -6 GAIN (dB) GAIN (dB) -1 VCC = +5V RF = RG = 1.2kΩ RL = 1kΩ 1 10 100 FREQUENCY (MHz) FREQUENCY (MHz) MAX4181 GAIN FLATNESS vs. FREQUENCY (SINGLE & DUAL SUPPLIES) MAX4180 LARGE-SIGNAL GAIN vs. FREQUENCY (DUAL SUPPLIES) MAX4180 LARGE-SIGNAL GAIN vs. FREQUENCY (SINGLE SUPPLY) VS = ±5V RF = 1kΩ RL = 150Ω 0.2 0.1 0 -0.1 VCC = +5V RF = 2.4kΩ RL = 1kΩ VS = ±5V RF = 2.4kΩ RL = 1kΩ -0.2 -0.3 4 AV = +2V/V VOUT = 2Vp-p 3 2 1 0 -1 -2 RF = RG = 1.2kΩ RL = 1kΩ OR RF = RG = 820Ω RL = 150Ω -3 -4 -0.4 VIN = 20mVp-p AV = +1V/V -0.5 -5 1 10 100 FREQUENCY (MHz) 1000 VCC = +5V AV = +2V/V 3 2 VOUT = 1Vp-p RF = RG = 680Ω RL = 100Ω 1 0 -1 RF = RG = 820Ω RL = 150Ω VOUT = 2Vp-p OR RF = RG = 1.2kΩ RL = 1kΩ VOUT = 2Vp-p -2 -3 -4 -5 -6 -6 -0.6 1000 4 NORMALIZED GAIN (dB) VCC = +5V RF = 1kΩ RL = 150Ω NORMALIZED GAIN (dB) 0.4 MAX1480-87 TOCH FREQUENCY (MHz) MAX1480-87 TOCK 4 MAX4180-87DD RF = RG = 1.1kΩ RL = 1kΩ MAX1480-87 TOCF FREQUENCY (MHz) 0 0.3 1000 FREQUENCY (MHz) VS = ±5V VIN = 20mVp-p AV = +2V/V 1 RF = 750Ω RL = 150Ω -2 -5 1 1000 MAX4180-87CC 2 100 0 -4 -5 10 RF = 1.5kΩ RL = 1kΩ -1 -3 -6 1 NORMALIZED GAIN (dB) -3 -4 -6 GAIN (dB) RF = RG = 680Ω RL = 150Ω -2 2 1 0 -1 VS = ±5V VIN = 20mVp-p AV = +1V/V 3 RF = RG = 1kΩ 1 MAX1480-87 TOCJ GAIN (dB) 1 VS = ±5V VIN = 20mVp-p AV = +2V/V 3 4 MAX4180-87AA 2 4 GAIN (dB) MAX1480-87 TOCE VCC = +5V VIN = 20mVp-p AV = +1V/V 3 NORMALIZED GAIN (dB) 4 MAX4184/MAX4185 SMALL-SIGNAL GAIN vs. FREQUENCY (DUAL SUPPLIES) MAX4180-87BB MAX4181 SMALL-SIGNAL GAIN vs. FREQUENCY (SINGLE SUPPLY) 1 10 100 FREQUENCY (MHz) 1000 1 10 100 1000 FREQUENCY (MHz) _______________________________________________________________________________________ 9 MAX4180–MAX4187 Typical Operating Characteristics (continued) (VCC = +5V, VEE = -5V, TA = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (VCC = +5V, VEE = -5V, TA = +25°C, unless otherwise noted.) 1 AV = +10V/V RF = 750Ω RG = 82Ω -3 -4 -4 -5 -5 -6 -6 10 100 1000 -4 -5 -6 1 10 100 1000 1 MAX4186 CROSSTALK vs. FREQUENCY RF = RG = 680Ω RL = 150Ω -20 -80 VOUTB = 2Vp-p VOUTA MEASURED AV = +1V/V -30 -40 CROSSTALK (dB) RF = RG = 1kΩ RL = 1kΩ RF = 1.5kΩ RL = 1kΩ -50 -60 -70 RF = 750Ω RL = 150Ω -80 0 -20 -40 -50 -60 -100 -110 -110 -90 -120 -120 -100 1 100 10 FREQUENCY (MHz) MAX4187 CROSSTALK vs. FREQUENCY POWER-SUPPLY REJECTION RATIO vs. FREQUENCY -30 -10 -20 VCC (MAX4180) PSRR (dB) -30 -40 -50 -60 -80 VCC (MAX4181) -50 -60 RF = 1.6kΩ RL = 1kΩ -70 -40 VEE (MAX4181) -100 -90 FREQUENCY (MHz) 100 10 1 VEE (MAX4181) -80 10 300 -70 -90 1 100 10 OUTPUT IMPEDANCE vs. FREQUENCY MAX1480-87 TOCP RF = 910Ω RL = 150Ω 0 MAX4180-87HH VOUTA = 2Vp-p VOUTD MEASURED AV = +1V/V 1 300 FREQUENCY (MHz) FREQUENCY (MHz) 0 10 -80 OUTPUT IMPEDANCE (Ω) 300 RF = RG = 1.1kΩ RL = 1kΩ -70 -100 100 RF = RG = 750Ω RL = 150Ω -30 -90 10 VOUTD = 2Vp-p VOUTA MEASURED AV = +2V/V -10 -90 -20 1000 MAX4184 CROSSTALK vs. FREQUENCY -70 -10 100 MAX4182 CROSSTALK vs. FREQUENCY -60 1 10 FREQUENCY (MHz) -50 CROSSTALK (dB) -3 FREQUENCY (MHz) VOUTB = 2Vp-p VOUTA MEASURED AV = +2V/V -40 VOUT = 2Vp-p RF = 1kΩ RL = 150Ω OR VOUT = 2Vp-p RF = 2.4kΩ RL = 1kΩ -2 FREQUENCY (MHz) -20 -30 0 -1 MAX1480-87 TOCQ 1 VOUT = 2Vp-p RF = 2.4kΩ RL = 1kΩ OR VOUT = 2Vp-p RF = 1kΩ RL = 150Ω -2 CROSSTALK (dB) -3 -1 MAX4180-87FF -2 1 VOUT = 1Vp-p RF = 560Ω RL = 100Ω 0 VOUT = 1Vp-p RF = 560Ω RL = 100Ω 2 MAX4180-87GG -1 GAIN (dB) AV = +5V/V RF = 910Ω RG = 220Ω 0 2 VCC = +5V AV = +1V/V 3 GAIN (dB) 1 MAX4180-87EE NORMALIZED GAIN (dB) 2 AV = +1V/V 3 4 MAX1480-87 TOCM VS = ±5V VIN = 20mVp-p RL = 1kΩ 3 MAX4181 LARGE-SIGNAL GAIN vs. FREQUENCY (SINGLE SUPPLY) 4 MAX1480-87 TOCL 4 MAX4181 LARGE-SIGNAL GAIN vs. FREQUENCY (DUAL SUPPLIES) MA480-87 TOCN MAX4180 SMALL-SIGNAL GAIN vs. FREQUENCY CROSSTALK (dB) MAX4180–MAX4187 Single/Dual/Quad, 270MHz, 1mA, SOT23, Current-Feedback Amplifiers with Shutdown 100 300 0.1 0.01 0.1 1 FREQUENCY (MHz) 10 100 0.1 1 10 FREQUENCY (MHz) ______________________________________________________________________________________ 100 1000 Single/Dual/Quad, 270MHz, 1mA, SOT23, Current-Feedback Amplifiers with Shutdown VOLTAGE-NOISE DENSITY vs. FREQUENCY (INPUT REFERRED) 2.8 2.6 2.4 2.2 2.0 1.8 VOUT 30 1.2kΩ 25 1.2kΩ 20 15 -40 1.4 100k 1M 10M 100M 1G -100 100 1k 10k 100k 1M 10M 100M 0.1 1G 1 100 10 FREQUENCY (Hz) FREQUENCY (MHz) MAX4180 HARMONIC DISTORTION vs. FREQUENCY (SINGLE SUPPLY) MAX4181 HARMONIC DISTORTION vs. FREQUENCY (DUAL SUPPLIES) MAX4181 HARMONIC DISTORTION vs. FREQUENCY (SINGLE SUPPLY) DISTORTION (dBc) -50 3RD (RL = 150Ω) -70 3RD (RL = 150Ω) -60 -70 -80 -80 2ND (RL = 1kΩ) -40 DISTORTION (dBc) 3RD (RL = 1kΩ) -50 2ND (RL = 150Ω) -100 1 100 10 SUPPLY CURRENT (mA) 40 MAX4180 35 MAX4181 SHUTDOWN SUPPLY CURRENT 1.00 140 SUPPLY CURRENT 110 0.75 30 35 40 45 50 5 155 125 25 20 10 1 100 OUTPUT VOLTAGE SWING vs. TEMPERATURE 95 100 RL = 1kΩ 3 OUTPUT SWING (V) f2 = f1 + 0.1MHz 25 0.1 FREQUENCY (MHz) MA4180 TOC21 1.25 MAX4180 TOC20 45 20 2ND (RL = 150Ω) SUPPLY CURRENT (OPERATING & SHUTDOWN) vs. TEMPERATURE TWO-TONE THIRD-ORDER INTERCEPT vs. FREQUENCY 15 -70 FREQUENCY (MHz) FREQUENCY (MHz) 30 3RD (RL = 150Ω) -60 -90 0.1 100 10 SHUTDOWN SUPPLY CURRENT (µA) 1 3RD (RL = 1kΩ) 2ND (RL = 1kΩ) -90 0.1 -50 -80 -90 2ND (RL = 1kΩ) MAX4180 TOC19 -40 2ND (RL = 150Ω) -30 MAX4180 TOC18 -30 MAX4180 TOC17 3RD (RL = 1kΩ) -40 10 2ND (RL = 1kΩ) 2ND (RL = 150Ω) FREQUENCY (Hz) -30 -60 -70 RL = 150Ω MA4180 TOC22 10k -60 -90 0 1k 3RD (RL = 150Ω) -80 5 100 3RD (RL = 1kΩ) -50 10 1.6 DISTORTION (dBc) VIN 35 MAX4180 TOC16 40 -30 DISTORTION (dBc) 3.0 VOLTAGE-NOISE DENSITY (nV/√Hz) 3.2 MAX4180 TOC15 45 MAX4180 TOC14 VOLTAGE-NOISE DENSITY (nV/√Hz) 3.4 THIRD-ORDER INTERCEPT (dBm) MAX4180 HARMONIC DISTORTION vs. FREQUENCY (DUAL SUPPLIES) TOTAL VOLTAGE-NOISE DENSITY vs. FREQUENCY (INPUT REFERRED) 1 -1 RL = 150Ω -3 RL = 1kΩ -5 80 100 ______________________________________________________________________________________ 11 FREQUENCY (MHz) -60 -40 -20 0 20 40 TEMPERATURE (°C) 60 80 -60 -40 -20 0 20 40 60 TEMPERATURE (°C) MAX4180–MAX4187 Typical Operating Characteristics (continued) (VCC = +5V, VEE = -5V, TA = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (VCC = +5V, VEE = -5V, TA = +25°C, unless otherwise noted.) IB- 0.4 IB+ 0.2 MA4180 TOC24 0.8 4 INPUT OFFSET VOLTAGE (mV) MA4180 TOC23 1.0 0.6 MAX4181 SMALL-SIGNAL PULSE RESPONSE INPUT OFFSET VOLTAGE vs. TEMPERATURE 3 MAX4180/87-TOC26 INPUT BIAS CURRENT vs. TEMPERATURE INPUT BIAS CURRENT (µA) +50mV IN -50mV 2 +50mV OUT 1 -50mV 0 0 0 20 40 60 80 100 -60 -40 -20 0 20 40 60 80 TEMPERATURE (°C) TEMPERATURE (°C) POWER-ON TRANSIENT SHUTDOWN RESPONSE TIME +10 VCC AV = +2V/V VIN+ = 1VDC 3V 10ns/div RF = 1kΩ, RL = 150Ω 100 MAX4180 LARGE-SIGNAL PULSE RESPONSE GND MAX4180/87-TOC29 -20 MAX4180/87-TOC28 -40 MAX4180/87-TOC27 -60 +0.5V SHDN IN -0.5V GND +5V 2V +1V VOUT OUT GND 100ns/div 100µs/div RF = 1kΩ, VIN = VCC/2, RL = ∞ RL = 1kΩ, RF = RG = 1.2kΩ MAX4180 SMALL-SIGNAL PULSE RESPONSE MAX4180 LARGE-SIGNAL PULSE RESPONSE MAX4180/87-TOC30 IN 10ns/div RL = 150Ω, RF = RG = 820Ω MAX4180 LARGE-SIGNAL PULSE RESPONSE +0.5V -1V +0.5V IN +25mV IN -0.5V -0.5V -25mV +1V +1V +50mV OUT OUT OUT -1V -1V -50mV 10ns/div RL = 100Ω, RF = RG = 680Ω 12 10ns/div RL = 150Ω, RF = RG = 820Ω MAX4180/87-TOC32 GND MAX4180/87-TOC31 MAX4180–MAX4187 Single/Dual/Quad, 270MHz, 1mA, SOT23, Current-Feedback Amplifiers with Shutdown 10ns/div RL = 1kΩ, RF = RG = 1.2kΩ ______________________________________________________________________________________ Single/Dual/Quad, 270MHz, 1mA, SOT23, Current-Feedback Amplifiers with Shutdown MAX4180 SMALL-SIGNAL PULSE RESPONSE +25mV IN MAX4180/87-TOC34 MAX4180/87-TOC33 MAX4180 SMALL-SIGNAL PULSE RESPONSE +25mV IN -25mV -25mV +50mV +50mV OUT OUT -50mV -50mV 10ns/div 10ns/div RL = 150Ω, RF = RG = 820Ω RL = 100Ω, RF = RG = 680Ω MAX4181 LARGE-SIGNAL PULSE RESPONSE +50mV IN MAX4180/87-TOC35 MAX4180/87-TOC36 MAX4181 SMALL-SIGNAL PULSE RESPONSE +1V IN -50mV -1V +50mV +1V OUT OUT -50mV -1V 10ns/div 10ns/div VS = ±5V, RL = 1kΩ, RF = 2.4kΩ RL = 1kΩ, RF = 2.4kΩ Pin Description MAX4180/MAX4181 PIN NAME MAX4180/MAX4181 FUNCTION SO SOT23-6 1, 5 — 2 4 IN- Inverting Input 3 3 IN+ Noninverting Input 4 2 VEE Negative Power Supply. Connect VEE to -5V or ground for single-supply operation. 6 1 OUT Amplifier Output 7 6 VCC Positive Power Supply. Connect VCC to +5V. 8 5 SHDN N.C. No Connection. Not internally connected. Shutdown Input. Device is enabled when SHDN ≥ (VCC - 2V) and disabled when SHDN ≤ (VCC - 3V). ______________________________________________________________________________________ 13 MAX4180–MAX4187 Typical Operating Characteristics (continued) (VCC = +5V, VEE = -5V, TA = +25°C, unless otherwise noted.) MAX4180–MAX4187 Single/Dual/Quad, 270MHz, 1mA, SOT23, Current-Feedback Amplifiers with Shutdown _________________________________________________Pin Description (continued) MAX4182/MAX4183/MAX4184/MAX4185 PIN MAX4182 MAX4184 MAX4183 MAX4185 MAX4183 MAX4185 SO SO µMAX 1 1 1 OUTA 2 2 2 INA- Amplifier A Inverting Input 3 3 3 INA+ Amplifier A Noninverting Input 4 4 4 VEE Negative Power Supply. Connect VEE to -5V or ground for single-supply operation. — 5, 7, 8, 10 — N.C. No Connection. Not internally connected. — 6 5 SHDNA Shutdown Control Input for Amplifier A. Amplifier A is enabled when SHDNA ≥ (VCC - 2V) and disabled when SHDNA ≤ (VCC - 3V). — 9 6 SHDNB Shutdown Control Input for Amplifier B. Amplifier B is enabled when SHDNB ≥ (VCC - 2V) and disabled when SHDNB ≤ (VCC - 3V). 5 11 7 INB+ Amplifier B Noninverting Input 6 12 8 INB- Amplifier B Inverting Input 7 8 13 14 9 10 OUTB VCC NAME FUNCTION Amplifier A Output Amplifier B Output Positive Power Supply. Connect VCC to +5V. MAX4186/MAX4187 PIN 14 MAX4186 MAX4187 MAX4186 MAX4187 SO QSOP 1 1 OUTA 2 2 INA- Amplifier A Inverting Input 3 3 INA+ Amplifier A Noninverting Input 4 4 VCC Positive Power Supply. Connect VCC to +5V. 5 5 INB+ Amplifier B Noninverting Input 6 6 INB- Amplifier B Inverting Input 7 7 OUTB — 8, 9 N.C. 8 10 OUTC 9 11 INC- Amplifier C Inverting Input 10 12 INC+ Amplifier C Noninverting Input 11 13 VEE 12 14 IND+ Amplifier D Noninverting Input 13 15 IND- Amplifier D Inverting Input 14 16 OUTD NAME FUNCTION Amplifier A Output Amplifier B Output No Connection. Not internally connected. Amplifier C Output Negative Power Supply. Connect VEE to -5V or ground for single-supply operation. Amplifier D Output ______________________________________________________________________________________ Single/Dual/Quad, 270MHz, 1mA, SOT23, Current-Feedback Amplifiers with Shutdown The MAX4180–MAX4187 are ultra-low-power currentfeedback amplifiers featuring bandwidths up to 270MHz, 0.1dB gain flatness to 90MHz, and low differential gain (0.08%) and phase (0.03°) errors. These amplifiers achieve ultra-high bandwidth-to-power ratios with low distortion, wide signal swing, and excellent load-driving capabilities. They are optimized for ±5V supplies but also operate from a single +5V supply while consuming only 1mA per amplifier. With ±60mA output current drive capability, the devices achieve low distortion even while driving 150Ω loads. Wide bandwidth, low power, low differential phase and gain error, and excellent gain flatness make the MAX4180–MAX4187 ideal for use in portable video equipment such as cameras, video switchers, and other battery-powered applications. Their two-stage design provides higher gain and lower distortion than conventional single-stage, current-feedback topologies. This feature, combined with fast settling time, makes these devices suitable for buffering high-speed analog-to-digital converters (ADCs). The MAX4180/MAX4181/MAX4183/MAX4185 have a low-power shutdown mode that is activated by driving the amplifiers’ SHDN input low. Placing them in shutdown reduces quiescent supply current to 135µA (typ) and places amplifier outputs in a high-impedance state. These amplifiers can be used to implement a high-speed multiplexer by connecting together the outputs of multiple amplifiers and controlling the SHDN inputs to enable one amplifier and disable all the others. The disabled amplifiers present very little load (0.1µA leakage current and 4pF capacitance) to the active amplifiers’ output. Note that the feedback network impedance of all the disabled amplifiers must be considered when calculating the total load on the active amplifier output. Application Information where G = AVCL = 1 + (RF / RG), and RIN = 1 /gM ≅ 160Ω. At low gains, G x RIN < RF. Therefore, the closed-loop bandwidth is essentially independent of closed-loop gain. Similarly, TZ > RF at low frequencies, so that: VOUT = G = 1 + (RF / RG ) VIN Layout and Power-Supply Bypassing The MAX4180–MAX4187 have an RF bandwidth and, consequently, require careful board layout, including the possible use of constant-impedance microstrip or stripline techniques. To realize the full AC performance of these high-speed amplifiers, pay careful attention to power-supply bypassing and board layout. The PC board should have at least two layers: a signal and power layer on one side, and a large, low-impedance ground plane on the other side. The ground plane should be as free of voids as possible. With multilayer boards, locate the ground plane on a layer that incorporates no signal or power traces. Regardless of whether a constant-impedance board is used, observe the following guidelines when designing the board: • Do not use wire-wrap boards. They are too inductive. • Do not use breadboards. They are too capacitive. • Do not use IC sockets. They increase parasitic capacitance and inductance. • Use surface-mount components rather than throughhole components. They give better high-frequency performance, have shorter leads, and have lower parasitic reactances. RG RF Theory of Operation The MAX4180–MAX4187 are current-feedback amplifiers, and their open-loop transfer function is expressed as a transimpedance, ∆VOUT/∆IIN, or TZ. The frequency behavior of the open-loop transimpedance is similar to the open-loop gain of a voltage-mode feedback amplifier. That is, it has a large DC value and decreases at approximately 6dB per octave. Analyzing the follower with gain, as shown in Figure 1, yields the following transfer function: RIN +1 +1 VOUT T2 MAX4180–MAX4187 VIN VOUT / VIN = G x [(TZ (S) / TZ(s) + G x (RIN + RF)] Figure 1. Current-Feedback Amplifier ______________________________________________________________________________________ 15 MAX4180–MAX4187 Detailed Description MAX4180–MAX4187 Single/Dual/Quad, 270MHz, 1mA, SOT23, Current-Feedback Amplifiers with Shutdown • Keep lines as short and as straight as possible. • Do not make 90° turns; round all corners. • Observe high-frequency bypassing techniques to maintain the amplifiers’ accuracy. The bypass capacitors should include a 0.01µF to 0.1µF ceramic capacitor between each supply pin and the ground plane, located as close to the package as possible. • Place a 1µF ceramic capacitor in parallel with each 0.01µF to 0.1µF capacitor as close to them as possible. • Place a 10µF to 15µF low-ESR tantalum at the point of entry to the power-supply pins’ PC board. The power-supply trace should lead directly from the tantalum capacitor to the VCC and VEE pins. • Keep PC traces short and use surface-mount components to minimize parasitic inductance. Maxim’s High-Speed Evaluation Board Figures 2 and 3 show layouts of Maxim’s high-speed single SOT23 and SO evaluation boards. These boards were developed using the techniques described above. The smallest available surface-mount resistors were used for feedback and back-termination to minimize their distance from the part, reducing the capacitance associated with longer lead lengths. SMA connectors were used for best high-frequency performance. Because distances are extremely short, performance is unaffected by the fact that inputs and outputs do not match a 50Ω line. However, in applications that require lead lengths greater than one-quarter of the wavelength of the highest frequency of interest, use constant-impedance traces. Fully assembled evaluation boards are available for the MAX4180ESA. Figure 2a. SOT23 High-Speed EV Board Component Placement Guide— Component Side Figure 2b. SOT23 High-Speed EV Board Layout—Component Side Figure 2c. High-Speed EV Board Layout— Solder Side Figure 3a. SO-8 High-Speed EV Board Component Placement Guide— Component Side Figure 3b. SO-8 High-Speed EV Board Layout—Component Side Figure 3c. SO-8 High-Speed EV Board Layout—Solder Side 16 ______________________________________________________________________________________ Single/Dual/Quad, 270MHz, 1mA, SOT23, Current-Feedback Amplifiers with Shutdown MAX4180–MAX4187 Table 1. Recommended Component Values MAX4180 COMPONENT/BW AV = +2V/V MAX4181 AV = +5V/V AV = +10V/V AV = +1V/V RL = 1kΩ RL = 150Ω RL = 100Ω RL = 1kΩ/150Ω RL = 1kΩ/150Ω RL = 1kΩ RL = 150Ω RL = 100Ω RF (Ω) 1.2k 820 680 520 560 2.4k 1k 560 RG (Ω) 1.2k 820 680 130 56 — — — -3dB BW (MHz) 245 190 190 120 76 270 205 200 MAX4182/MAX4183 MAX4184/MAX4185 MAX4186 MAX4187 AV = +2V/V AV = +1V/V AV = +2V/V AV = +1V/V COMPONENT/ BW RL = 1kΩ RL = 150Ω RL = 100Ω RL = 1kΩ RL = 150Ω RL = 100Ω RL = 1kΩ RL = 150Ω RL = 100Ω RL = 1kΩ RL = 150Ω RL = 100Ω RF (Ω) 1k 680 620 1.5k 750 620 1.1k 750 680 1.6k 910 680 RG (Ω) 1k 680 620 — — — 1.1k 750 680 — — — -3dB BW (MHz) 245 190 160 270 205 180 245 190 175 270 205 200 Choosing Feedback and Gain Resistors The optimum value of the external-feedback (RF) and gain-setting (RG) resistors used with the MAX4180– MAX4187 depends on the closed-loop gain and the application circuit’s load. Table 1 lists the optimum resistor values for some specific gain configurations. One-percent resistor values are preferred to maintain consistency over a wide range of production lots. Figures 4a and 4b show the standard inverting and noninverting configurations. Note: The noninverting circuit gain (Figure 4) is 1 plus the magnitude of the inverting closed-loop gain. Otherwise, the two circuits are identical. • The input offset voltage (VOS) times the closed-loop gain (1 = RF / RG). • The positive input bias current (IB+) times the source resistor (RS) (usually 50Ω or 75Ω), plus the negative input bias current (IB-) times the parallel combination of RG and RF. In current-feedback amplifiers, the input bias currents at the IN+ and IN- terminals do not track each other and may have opposite polarity, so there is no benefit to matching the resistance at both inputs. The equation for the total DC error at the output is: DC and Noise Errors Several major error sources must be considered in any op amp. These apply equally to the MAX4180– MAX4187. Offset-error terms are given by the equation below. Voltage and current-noise errors are root-square summed and are therefore computed separately. In Figure 5, the total output offset voltage is determined by the following factors: VOUT = [(I ) ( )( ) ] B+ RS + IB− RF || RG + VOS 1 + RF RG The total output-referred noise voltage is: R = 1+ F n(OUT) R G e ( ) ( ) ( ) 2 2 i R + i R || R + e 2 n− F G n n+ S ______________________________________________________________________________________ 17 MAX4180–MAX4187 Single/Dual/Quad, 270MHz, 1mA, SOT23, Current-Feedback Amplifiers with Shutdown The MAX4180–MAX4187 have a very low, 2nV/√Hz noise voltage. The current noise at the positive input (in+) is 4pA/√Hz, and the current noise at the inverting input is 5pA/√Hz. An example of the DC error calculations, using the MAX4180 typical data and typical operating circuit where R F = R G = 1.2kΩ (R F || R G = 600Ω) and RS = 37.5Ω, gives the following: VOUT = 1x10 −6 x37.5 + 2x10 −6 x 600 + 1.5x10 −3 x 1+ 1 VOUT = 4.1mV ( ) ( ) Calculating the total output noise in a similar manner yields: 2 ( ) en(OUT) = 1+ 1 4 x 10−12 x 37.5 + 5 x 10−12 x 255 + 2 x 10−9 2 2 Video Line Driver The MAX4180–MAX4187 are well suited to drive coaxial transmission lines when the cable is terminated at both ends, as shown in Figure 6. Cable-frequency response can cause variations in the signal’s flatness. See Table 1 for optimum RF and RG values. Driving Capacitive Loads The MAX4180–MAX4187 are optimized for AC performance. They are not designed to drive highly capacitive loads. Reactive loads decrease phase margin and may produce excessive ringing and oscillation. Figure 7a shows a circuit that eliminates this problem. Placing the small (usually 5Ω to 22Ω) isolation resistor, RS, before the reactive load prevents ringing and oscillation. At higher capacitive loads, the interaction of the load capacitance and isolation resistor controls AC performance. Figures 7b and 7c show the MAX4180 and MAX4181 frequency response with a 47pF capaci- en(OUT) = 4.8nV/ Hz RF RG IB- With a 200MHz system bandwidth, this calculates to 102µVRMS (approximately 612µVp-p, choosing the sixsigma value). VOUT IB+ MAX4180–MAX4187 RS VIN RS RT RF RG Figure 5. Output Offset Voltage VOUT RO RG 820Ω RF 820Ω MAX4180–MAX4187 +5V VOUT = -(RF / RG) x VIN 0.1µF Figure 4a. Inverting Gain Configuration 75Ω VIN RS RT RG RF MAX4180 75Ω CABLE VOUT RO MAX4180–MAX4187 VIDEO IN 75Ω 75Ω 0.1µF 0.1µF -5V VIDEO LINE DRIVER VOUT = [1+ (RF / RG) VIN Figure 4b. Noninverting Gain Configuration 18 75Ω CABLE Figure 6. Video Line Driver ______________________________________________________________________________________ VIDEO OUT Single/Dual/Quad, 270MHz, 1mA, SOT23, Current-Feedback Amplifiers with Shutdown RF AC Testing/Performance RS VIN CL RL Figure 7a. Using an Isolation Resistor (RS) for High-Capacitive Loads 6 MAX4180 VIN = 20mVp-p AV = +2V/V RF = RG = 1.2kΩ RL = 1kΩ || 47pF 5 NORMALIZED GAIN (dB) 4 3 RS = 0 2 1 0 RS = 20Ω -1 -2 AC specifications on high-speed amplifiers are usually guaranteed without 100% production testing. Since these high-speed devices are sensitive to external parasitics introduced when automatic handling equipment is used, it is impractical to guarantee AC parameters through volume production testing. These parasitics are greatly reduced when using the recommended PC board layout (like the Maxim EV kit). Characterizing the part in this way more accurately represents the amplifier’s true AC performance. Some manufacturers guarantee AC specifications without clearly stating how this guarantee is made. The AC specifications of the MAX4180–MAX4187 are derived through worst-case design simulations combined with a sample characterization of 100 units. The AC performance distributions along with the worst-case simulation results for MAX4180 and MAX4181 are shown in Figures 8–11. These distributions are repeatable provided that the proper board layout and power-supply bypassing are used (see Layout and Power-Supply Bypassing section). -3 -4 1 10 100 1000 FREQUENCY (MHz) Figure 7b. Frequency Response with Capacitive Load (With and Without Isolation Resistor) 6 MAX4181 VIN = 20mVp-p AV = +1V/V RF = 2.4kΩ RL = 1kΩ || 47pF 5 4 GAIN (dB) 3 RS = 0 2 1 0 RS = 20Ω -1 -2 -3 -4 1 10 100 1000 FREQUENCY (MHz) Figure 7c. Frequency Response with Capacitive Load (With and Without Isolation Resistor) ______________________________________________________________________________________ 19 MAX4180–MAX4187 RG tive load. Note that in each case, gain peaking is substantially reduced when the 20Ω resistor is used to isolate the capacitive load from the amplifier output. 40 30 20 100 UNITS 20 15 100 UNITS 10 5 10 0 100 115 130 145 160 175 190 205 220 235 250 265 280 295 310 315 330 345 0 10 20 30 40 SIMULATION LOWER LIMIT NUMBER OF UNITS 50 40 30 70 80 90 100 110 120 130 140 60 100 UNITS VS = ±5V VOUT = 2V STEP AV = +2V/V RL = 1kΩ 50 40 100 UNITS SIMULATION LOWER LIMIT VS = ±5V VOUT = 2V STEP AV = +2V/V RL = 1kΩ NUMBER OF UNITS 80 60 60 Figure 8b. MAX4180 ±0.1dB Bandwidth Distribution (Dual Supplies) MAX4180 FIG.8c Figure 8a. MAX4180 -3dB Bandwidth Distribution (Dual Supplies) 70 50 ±0.1dB BANDWIDTH (MHz) -3dB BANDWIDTH (MHz) 30 20 MAX4180 FIG.8d 0 VS = ±5V VIN = 20mVp-p AV = +2V/V RL = 1kΩ SIMULATION LOWER LIMIT SIMULATION LOWER LIMIT NUMBER OF UNITS 50 25 NUMBER OF UNITS VS = ±5V VIN = 20mVp-p AV = +2V/V RL = 1kΩ MAX4180 FIG.8a 60 MAX4180 FIG.8b Single/Dual/Quad, 270MHz, 1mA, SOT23, Current-Feedback Amplifiers with Shutdown 20 10 10 0 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 RISING-EDGE SLEW RATE (V/µs) FALLING-EDGE SLEW RATE (V/µs) 50 40 SIMULATION LOWER LIMIT NUMBER OF UNITS 60 100 UNITS 30 30 25 20 15 10 10 5 0 100 115 130 145 160 175 190 205 220 235 250 265 280 295 310 315 330 345 -3dB BANDWIDTH (MHz) Figure 9a. MAX4180 -3dB Bandwidth Distribution (Single Supply) VS = +5V VIN = 20mVp-p AV = +2V/V RL = 1kΩ 35 20 0 20 40 SIMULATION LOWER LIMIT VS = +5V VIN = 20mVp-p AV = +2V/V RL = 1kΩ 70 NUMBER OF UNITS 80 Figure 8d. MAX4180 Falling-Edge Slew-Rate Distribution (Dual Supplies) MAX4180 FIG.9a Figure 8c. MAX4180 Rising-Edge Slew-Rate Distribution (Dual Supplies) 0 10 20 30 100 UNITS 40 50 60 70 80 90 100 110 120 130 140 ±0.1dB BANDWIDTH (MHz) Figure 9b. MAX4180 ±0.1dB Bandwidth Distribution (Single Supply) ______________________________________________________________________________________ MAX4180 FIG.9b 0 Single/Dual/Quad, 270MHz, 1mA, SOT23, Current-Feedback Amplifiers with Shutdown 30 100 UNITS 20 30 20 0 240 250 260 270 340 350 360 370 380 390 400 410 420 430 440 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 RISING-EDGE SLEW RATE (V/µs) FALLING-EDGE SLEW RATE (V/µs) SIMULATION LOWER LIMIT 25 20 15 100 UNITS 14 10 12 10 8 6 MAX4180 FIG 10a VS = ±5V VIN = 20mVp-p AV = +1V/V RL = 1kΩ 16 NUMBER OF UNITS VS = ±5V VIN = 20mVp-p AV = +1V/V RL = 1kΩ 30 18 MAX4180 FIG 10a 35 Figure 9d. MAX4180 Falling-Edge Slew-Rate Distribution (Single Supply) 100 UNITS SIMULATION LOWER LIMIT Figure 9c. MAX4180 Rising-Edge Slew-Rate Distribution (Single Supply) NUMBER OF UNITS MAX4180 FIG.9d 100 UNITS 10 10 0 40 SIMULATION LOWER LIMIT 40 VS = +5V VOUT = 2V STEP AV = +2V/V RL = 1kΩ 50 NUMBER OF UNITS SIMULATION LOWER LIMIT NUMBER OF UNITS 50 60 MAX4180 FIG 9c VS = +5V VOUT = 2V STEP AV = +2V/V RL = 1kΩ 60 4 5 2 160 170 180 190 200 210 220 230 240 250 260 270 0 280 0 10 20 30 -3dB BANDWIDTH (MHz) SIMULATION LOWER LIMIT NUMBER OF UNITS 90 100 110 120 VS = ±5V VIN = 2V STEP AV = +1V/V RL = 1kΩ 40 100 UNITS SIMULATION LOWER LIMIT 100 UNITS 30 20 10 10 0 80 50 NUMBER OF UNITS 50 20 70 60 MAX4180 FIG 10c 60 VS = ±5V VIN = 2V STEP AV = +1V/V RL = 1kΩ 30 60 Figure 10b. MAX4181 ±0.1dB Bandwidth Distribution (Dual Supplies) 80 40 50 ±0.1dB BANDWIDTH (MHz) Figure 10a. MAX4181 -3dB Bandwidth Distribution (Dual Supplies) 70 40 MAX4180 FIG 10d 0 0 180 190 200 210 220 230 240 250 260 270 280 290 300 RISING-EDGE SLEW RATE (V/µs) Figure 10c. MAX4181 Rising-Edge Slew-Rate Distribution (Dual Supplies) 310 140 150 160 170 180 190 200 210 220 230 240 250 260 270 FALLING-EDGE SLEW RATE (V/µs) Figure 10d. MAX4181 Falling-Edge Slew-Rate Distribution (Dual Supplies) ______________________________________________________________________________________ 21 MAX4180–MAX4187 70 20 10 10 5 160 170 180 190 200 210 220 230 240 250 260 270 0 280 0 10 20 30 -3dB BANDWIDTH (MHz) 60 70 80 90 100 110 120 SIMULATION LOWER LIMIT 100 UNITS 20 80 70 SIMULATION LOWER LIMIT 50 VS = +5V VIN = 2V STEP AV = +1V/V RL = 1kΩ 90 NUMBER OF UNITS 60 100 MAX4180 FIG 11c VS = +5V VIN = 2V STEP AV = +1V/V RL = 1kΩ 70 30 50 Figure 11b. MAX4181 ±0.1dB Bandwidth Distribution (Single Supply) 80 40 40 ±0.1dB BANDWIDTH (MHz) Figure 11a. MAX4181 -3dB Bandwidth Distribution (Single Supply) 60 50 40 100 UNITS 30 20 10 0 10 180 190 200 210 220 230 240 250 260 270 280 290 300 RISING-EDGE SLEW RATE (V/µs) Figure 11c. MAX4181 Rising-Edge Slew-Rate Distribution (Single Supply) 22 MAX4180 FIG 11b 100 UNITS 15 310 0 140 150 160 170 180 190 200 210 220 230 240 250 260 FALLING-EDGE SLEW RATE (V/µs) Figure 11d. MAX4181 Falling-Edge Slew-Rate Distribution (Single Supply) ______________________________________________________________________________________ 270 MAX4180 FIG 11d 0 20 SIMULATION LOWER LIMIT 100 UNITS VS = +5V VIN = 20mVp-p AV = +1V/V RL = 1kΩ 25 NUMBER OF UNITS 30 30 MAX4180 FIG 11a 40 VS = +5V VIN = 20mVp-p AV = +1V/V RL = 1kΩ SIMULATION LOWER LIMIT NUMBER OF UNITS 50 NUMBER OF UNITS MAX4180–MAX4187 Single/Dual/Quad, 270MHz, 1mA, SOT23, Current-Feedback Amplifiers with Shutdown Single/Dual/Quad, 270MHz, 1mA, SOT23, Current-Feedback Amplifiers with Shutdown TOP VIEW DUAL SINGLE N.C. 1 IN- 2 IN+ 3 MAX4180 MAX4181 VEE 4 8 SHDN OUTA 1 7 VCC INA- 2 6 OUT INA+ 3 5 N.C. VEE 4 SO SO DUAL QUAD OUTA 1 14 VCC OUTB 6 INB- 5 INB+ 13 IND- 13 OUTB INA- 2 12 INB- INA+ 3 11 INB+ VCC 4 N.C. 5 7 14 OUTD INA- 2 MAX4183 MAX4185 VCC OUTA 1 INA+ 3 VEE 4 MAX4182 MAX4184 8 MAX4186 MAX4187 12 IND+ 11 VEE 10 N.C. INB+ 5 10 INC+ SHDNA 6 9 SHDNB INB- 6 9 INC- N.C. 7 8 N.C. OUTB 7 8 OUTC SO SO DUAL QUAD 10 VCC OUTA 1 INAINA+ 2 3 9 MAX4183 MAX4185 8 OUTB OUTA 1 16 OUTD INA- 2 15 IND- MAX4186 MAX4187 14 IND+ INB- INA+ 3 13 VEE VEE 4 7 INB+ VCC 4 SHDNA 5 6 SHDNB INB+ 5 12 INC+ INB- 6 11 INC- OUTB 7 10 OUTC µMAX 9 N.C. 8 N.C. QSOP ______________________________________________________________________________________ 23 MAX4180–MAX4187 Pin Configurations (continued) Ordering Information (continued) Chip Information PART TEMP RANGE PINPACKAGE TOP MARK MAX4180/MAX4181 TRANSISTOR COUNT: 83 SUBSTRATE CONNECTED TO VEE MAX4181EUT-T -40°C to +85°C 6 SOT23-6 AAAC MAX4181ESA -40°C to +85°C 8 SO — MAX4182–MAX4185 TRANSISTOR COUNT: 166 SUBSTRATE CONNECTED TO VEE MAX4182ESA -40°C to +85°C 8 SO — MAX4183EUB -40°C to +85°C 10 µMAX* — MAX4183ESD -40°C to +85°C 14 SO — MAX4184ESA -40°C to +85°C 8 SO — MAX4185EUB -40°C to +85°C 10 µMAX* — MAX4185ESD -40°C to +85°C 14 SO — MAX4186ESD -40°C to +85°C 14 SO — MAX4186EEE -40°C to +85°C 16 QSOP — MAX4187ESD -40°C to +85°C 14 SO — MAX4187EEE -40°C to +85°C 16 QSOP — MAX4186/MAX4187 TRANSISTOR COUNT: 235 SUBSTRATE CONNECTED TO VEE *Contact factory for availability. Package Information 6LSOT.EPS MAX4180–MAX4187 Single/Dual/Quad, 270MHz, 1mA, SOT23, Current-Feedback Amplifiers with Shutdown Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 24 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2001 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.