MAXIM MAX4183

19-1221; Rev 3; 8/01
Single/Dual/Quad, 270MHz, 1mA, SOT23,
Current-Feedback Amplifiers with Shutdown
The MAX4180–MAX4187 feature 0.08%/0.03° differential gain and phase errors, a 20ns settling time to 0.1%,
and a 450V/µs slew rate, making them ideal for highperformance video applications. The MAX4180/
MAX4181/MAX4183/MAX4185 have a low-power shutdown mode that reduces power-supply current to 135µA
and places the outputs in a high-impedance state. This
feature makes them ideal for multiplexing applications.
The single MAX4180/MAX4181 are offered in spacesaving 6-pin SOT23 packages.
Features
♦ Ultra-Low Supply Current: 1mA per Amplifier
♦ Shutdown Mode
Outputs Placed in High-Z
Supply Current Reduced to 135µA
♦ Operate from a Single +5V Supply or
Dual ±5V Supplies
♦ Wide Bandwidth
270MHz -3dB Small-Signal Bandwidth
(MAX4181/MAX4184/MAX4185/MAX4187)
♦ 450V/µs Slew Rate
♦ Fast, 20ns Settling Time to 0.1%
♦ Excellent Video Specifications
Gain Flatness to 70MHz
(MAX4180/MAX4182/MAX4183/MAX4186)
0.08%/0.03° Differential Gain/Phase
♦ Low Distortion:
-73dBc SFDR (fC = 5MHz, VOUT = 2Vp-p)
♦ Available in Tiny Surface-Mount Packages
6-Pin SOT23 (MAX4180/MAX4181)
10-Pin µMAX (MAX4183/MAX4185)
16-Pin QSOP (MAX4186/MAX4187)
Ordering Information
________________________Applications
Portable/Battery-Powered
Video/Multimedia Systems
High-Definition
Surveillance Video
Broadcast and High-Definition
TV Systems
Professional
Cameras
High-Speed A/D Buffers
CCD Imaging Systems
Video Switching/
Multiplexing
PART
TEMP
RANGE
PINPACKAGE
TOP
MARK
MAX4180EUT-T
-40°C to +85°C
6 SOT23-6
AAAB
MAX4180ESA
-40°C to +85°C
8 SO
Pin Configurations
Medical Imaging
Selector Guide
NO. OF
AMPS
SHUTDOWN
MODE
OPTIMIZED
FOR
MAX4180
1
Yes
AV ≥ 2
MAX4181
1
Yes
AV ≥ 1
MAX4182
2
No
AV ≥ 2
MAX4183
2
Yes
AV ≥ 2
MAX4184
2
No
AV ≥ 1
MAX4185
2
Yes
AV ≥ 1
MAX4186
4
No
AV ≥ 2
MAX4187
4
No
AV ≥ 1
PART
—
Ordering Information continued at end of data sheet.
TOP VIEW
SINGLE
OUT 1
VEE 2
MAX4180
MAX4181
IN+ 3
6
VCC
5
SHDN
4
IN-
SOT23-6
Pin Configurations continued at end of data sheet.
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
1
MAX4180–MAX4187
General Description
The MAX4180 family of current-feedback amplifiers
combines high-speed performance, low distortion,
and excellent video specifications with ultra-low-power
operation in miniature packages. They operate from
±2.25V to ±5.5V dual supplies, or from a single +5V
supply. They require only 1mA of supply current per amplifier while delivering up to ±60mA of output current
drive. The MAX4180/MAX4182/MAX4183/MAX4186
are compensated for applications with a closed-loop
gain of +2 (6dB) or greater, and provide a -3dB bandwidth of 240MHz and a 0.1dB bandwidth of 70MHz.
The MAX4181/MAX4184/MAX4185/MAX4187 are compensated for applications with a +1 (0dB) or greater
gain, and provide a -3dB bandwidth of 270MHz and a
0.1dB bandwidth of 60MHz.
MAX4180–MAX4187
Single/Dual/Quad, 270MHz, 1mA, SOT23,
Current-Feedback Amplifiers with Shutdown
ABSOLUTE MAXIMUM RATINGS
Supply Voltage (VCC to VEE) .................................................12V
Analog Input Voltage.......................(VEE - 0.3V) to (VCC + 0.3V)
Differential Input Voltage.......................................................±2V
SHDN Input Voltage ........................(VEE - 0.3V) to (VCC + 0.3V)
Short-Circuit Duration (OUT to GND, VCC or VEE).....Continuous
Continuous Power Dissipation (TA = +70°C)
6-Pin SOT23 (derate 7.10mW/°C above +70°C)...........571mW
8-Pin SO (derate 5.88mW/°C above +70°C).................471mW
10-Pin µMAX (derate 5.60mW/°C above +70°C) ..........444mW
14-Pin SO (derate 8.33mW/°C above +70°C)...............667mW
16-Pin QSOP (derate 8.30mW/°C above +70°C)..........667mW
Operating Temperature Range ...........................-40°C to +85°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
DC ELECTRICAL CHARACTERISTICS—Dual Supplies
(VCC = +5V, VEE = -5V, VIN+ = 0, SHDN ≥ 3V; TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)
PARAMETER
Input Voltage Range
Input Offset Voltage
Input Offset-Voltage Drift
SYMBOL
CONDITIONS
VCM
Guaranteed by CMRR test
VOS
VCM = 0
MIN
TYP
±3.6
±3.9
±1.5
TCVOS
Input Offset-Voltage Matching
MAX4182–MAX4187
MAX
UNITS
V
±7
mV
±12
µV/°C
±1
mV
Input Bias Current
(Positive Input)
IB+
±1
±7
µA
Input Bias Current
(Negative Input)
IB-
±1
±12
µA
Input Resistance
(Positive Input)
RIN+
Input Resistance
(Negative Input)
RIN-
Common-Mode Rejection Ratio
Open-Loop Transresistance
CMRR
TR
Output Voltage Swing
VSW
Output Current
IOUT
-3.6V ≤ VIN+ ≤ 3.6V, -1V ≤ (VIN+ - VIN-) ≤ 1V
250
Output Resistance
Disabled Output Leakage
Current
160
Ω
dB
-50
-58
RL = 1kΩ, VOUT = ±3.6V
0.8
3.0
RL = 150Ω, VOUT = ±2.5V
0.3
0.9
RL = 1kΩ
±3.75
±4.0
RL = 150Ω
±3.0
±3.3
MΩ
V
±3.0
±60
mA
ISC
±80
mA
ROUT
0.2
Ω
IOUT(OFF)
RL = 30Ω
±32
SHDN ≤ VIL, VOUT ≤ ±3V (Notes 2, 4)
SHDN Logic Low Threshold
VIL
(Notes 3, 4)
SHDN Logic High Threshold
VIH
(Notes 3, 4)
2
kΩ
-3.6V ≤ VCM ≤ 3.6V
RL = 100Ω
Output Short-Circuit Current
800
±0.1
±6.0
µA
VCC - 3.0
V
VCC - 2.0
_______________________________________________________________________________________
V
TOP VIEW
SING
OUT 1
Single/Dual/Quad, 270MHz, 1mA, SOT23,
Current-Feedback Amplifiers with Shutdown
(VCC = +5V, VEE = -5V, VIN+ = 0, SHDN ≥ 3V; TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)
PARAMETER
SYMBOL
SHDN Logic Input Bias Current
IIN
CONDITIONS
MIN
VEE ≤ SHDN ≤ VCC (Note 4)
TYP
MAX
UNITS
±0.1
±2.0
µA
Positive Power-Supply
Rejection Ratio
PSRR+
VEE = -5V, VCC = 4.5V to 5.5V
60
71
dB
Negative Power-Supply
Rejection Ratio
PSRR-
VCC = 5V, VEE = -4.5V to -5.5V
53
62
dB
Operating Supply Voltage
VCC/VEE
Quiescent Supply Current
per Amplifier
IS
Shutdown Supply Current
per Amplifier
IS(OFF)
±2.25
RL = ∞
±5.50
MAX418_EUT
1.0
1.3
All other packages
1.0
1.2
135
180
SHDN = 0, RL = ∞ (Note 4)
V
mA
µA
DC ELECTRICAL CHARACTERISTICS—Single Supply
(VCC = +5V, VEE = 0, VIN+ = 2.5V, SHDN ≥ 3V, RL to VCC/2; TA = TMIN to TMAX, unless otherwise noted. Typical values are at
TA = +25°C.) (Note 1)
PARAMETER
Input Voltage Range
Input Offset Voltage
Input Offset Voltage Drift
SYMBOL
CONDITIONS
VCM
VOS
MIN
TYP
1.3 to
3.7
1.1 to
3.9
VCM = 2.5V
±1.5
TCVOS
Input Offset Voltage Matching
MAX4182–MAX4187
MAX
UNITS
V
±7
mV
±12
µV/°C
±1
mV
Input Bias Current
(Positive Input)
IB+
±1
±7
µA
Input Bias Current
(Negative Input)
IB-
±1
±12
µA
Input Resistance
(Positive Input)
RIN+
Input Resistance
(Negative Input)
RIN-
Common-Mode
Rejection Ratio
CMRR
Open-Loop
Transresistance
TR
1.3V ≤ VIN+ ≤ 3.7V, -1V ≤ (VIN+ - VIN-) ≤ 1V
800
kΩ
160
Ω
-50
-58
dB
RL = 1kΩ, VOUT = 1.2V to 3.8V
0.8
2.5
RL = 150Ω, VOUT = 1.4V to 3.6V
0.275
0.9
1.15 to
3.85
1.35 to
3.65
1.0 to
4.0
1.2 to
3.8
1.3 to
3.7
1.3V ≤ VCM ≤ 3.7V
RL = 1kΩ
Output Voltage Swing
VSW
RL = 150Ω
RL = 100Ω
250
MΩ
V
V
_______________________________________________________________________________________
3
MAX4180–MAX4187
DC ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)
MAX4180–MAX4187
Single/Dual/Quad, 270MHz, 1mA, SOT23,
Current-Feedback Amplifiers with Shutdown
DC ELECTRICAL CHARACTERISTICS—Single Supply (continued)
(VCC = +5V, VEE = 0, VIN+ = 2.5V, SHDN ≥ 3V, RL to VCC/2; TA = TMIN to TMAX, unless otherwise noted. Typical values are at
TA = +25°C.) (Note 1)
PARAMETER
Output Current
Output Short-Circuit Current
Output Resistance
Disabled Output
Leakage Current
SYMBOL
MIN
TYP
±18
±30
mA
ISC
±50
mA
ROUT
0.2
Ω
IOUT
IOUT(OFF)
CONDITIONS
RL = 30Ω
SHDN ≤ VIL, 1.2V ≤ VOUT ≤ 3.8V
(Notes 2, 4)
SHDN Logic-Low Threshold
VIL
(Notes 3, 4)
SHDN Logic-High Threshold
VIH
(Notes 3, 4)
SHDN Logic Input Bias Current
IIN
0 ≤ SHDN ≤ VCC (Note 4)
Power-Supply Rejection Ratio
Operating Supply Voltage
PSRR
IS
Shutdown Supply Current
per Amplifier
IS(OFF)
µA
VCC 3.0
V
V
±0.1
VCC = 4.5V to 5.5V
60
±2.0
71
4.5
RL = ∞
µA
dB
5.5
MAX418_EUT
1.0
1.25
All other packages
1.0
1.2
135
180
SHDN = 0, RL = ∞ (Note 4)
UNITS
±4.0
VCC 2.0
VCC
Quiescent Supply Current
per Amplifier
±0.1
MAX
V
mA
µA
AC ELECTRICAL CHARACTERISTICS—Dual Supplies (MAX4180/4182/4183/4186)
(VCC = +5V, VEE = -5V, VIN = 0, SHDN ≥ 3V, AV = +2V/V; see Table 1 for RF and RG values; TA = +25°C, unless otherwise noted.)
PARAMETER
SYMBOL
CONDITIONS
Small-Signal -3dB Bandwidth
(Note 5)
BWSS
<0.5dB peaking
Large-Signal -3dB Bandwidth
BWLS
VOUT = 2Vp-p, RL = 1kΩ
Bandwidth for 0.1dB Flatness
(Note 5)
BW0.1dB
Slew Rate (Note 5)
Settling Time to 0.1%
MIN
RL=1kΩ
180
RL=150Ω
150
RL = 1kΩ
VOUT = 2V step, RL = 1kΩ
245
190
30
RL = 150Ω
SR
TYP
70
70
Rising edge
340
450
Falling edge
315
420
MAX
UNITS
MHz
MHz
MHz
V/µs
tS
VOUT = 2V step, RL = 1kΩ
20
ns
Rise/Fall Time
tR, tF
VOUT = 2V step, RL = 1kΩ
5
ns
Spurious-Free Dynamic Range
SFDR
fC = 5MHz, VOUT = 2Vp-p
Second Harmonic Distortion
fC = 5MHz, VOUT = 2Vp-p
Third Harmonic Distortion
fC = 5MHz, VOUT = 2Vp-p
4
RL = 1kΩ
73
RL = 150Ω
57
RL = 1kΩ
-83
RL = 150Ω
-68
RL = 1kΩ
-73
RL = 150Ω
-57
_______________________________________________________________________________________
dBc
dBc
dBc
Single/Dual/Quad, 270MHz, 1mA, SOT23,
Current-Feedback Amplifiers with Shutdown
(VCC = +5V, VEE = -5V, VIN = 0, SHDN ≥ 3V, AV = +2V/V; see Table 1 for RF and RG values; TA = +25°C, unless otherwise noted.)
PARAMETER
SYMBOL
CONDITIONS
Differential Phase Error
DP
NTSC
Differential Gain Error
DG
NTSC
Input Noise-Voltage Density
en
f = 10kHz
Input Noise-Current Density
Input Capacitance
(Positive Input)
in
MIN
0.03
RL = 150Ω
0.30
RL = 1kΩ
0.08
RL = 150Ω
0.01
Disabled Output Capacitance
ZOUT
COUT(OFF)
MAX
f = 10kHz
4
IN-
5
UNITS
degrees
%
2
IN+
CIN+
Output Impedance
TYP
RL = 1kΩ
nV/√Hz
pA/√Hz
1.5
pF
4.8
Ω
SHDN ≤ VIL, VOUT ≤ ±3V (Notes 2, 4)
4
pF
f = 10kHz
Turn-On Time from SHDN
tON
(Note 4)
40
ns
Turn-Off Time to SHDN
tOFF
(Note 4)
400
ns
200
µs
dB
Power-Up Time
Off-Isolation
SHDN ≤ 2V, RL = 150Ω, f = 10MHz
-60
Crosstalk
f = 10MHz, MAX4182/4183/4186
-60
dB
Gain Matching to 0.1dB
f = 10MHz, MAX4182/4183/4186
25
MHz
AC ELECTRICAL CHARACTERISTICS—Dual Supplies (MAX4181/4184/4185/4187)
(VCC = +5V, VEE = -5V, VIN+ = 0, SHDN ≥ 3V, AV = +1V/V; see Table 1 for RF values; TA = +25°C, unless otherwise noted.)
PARAMETER
SYMBOL
CONDITIONS
Small-Signal -3dB Bandwidth
(Note 5)
BWSS
<0.5dB peaking
Large-Signal -3dB Bandwidth
BWLS
VOUT = 2Vp-p, RL = 1kΩ
Bandwidth for 0.1dB Flatness
(Note 5)
BW0.1dB
VOUT = 2V step, RL = 1kΩ
Settling Time to 0.1%
tS
VOUT = 2V step, RL = 1kΩ
tR and tF
VOUT = 2V step, RL = 1kΩ
SFDR
fC = 5MHz, VOUT = 2Vp-p
Second Harmonic Distortion
fC = 5MHz, VOUT = 2Vp-p
Third Harmonic Distortion
fC = 5MHz, VOUT = 2Vp-p
Differential Phase Error
DP
TYP
195
270
205
90
20
RL = 150Ω
SR
Spurious-Free Dynamic Range
MIN
RL = 150Ω
RL = 1kΩ
Slew Rate (Note 5)
Rise/Fall Time
RL = 1kΩ
NTSC
60
55
Rising edge
250
320
Falling edge
200
265
MAX
UNITS
MHz
MHz
MHz
V/µs
21
ns
5
ns
RL = 1kΩ
57
RL = 150Ω
66
RL = 1kΩ
-70
RL = 150Ω
-73
RL = 1kΩ
-57
RL = 150Ω
-66
RL = 1kΩ
0.01
RL = 150Ω
0.48
dB
dB
dB
degrees
________________________________________________________________________________________
5
MAX4180–MAX4187
AC ELECTRICAL CHARACTERISTICS—Dual Supplies (MAX4180/4182/4183/4186) (cont.)
MAX4180–MAX4187
Single/Dual/Quad, 270MHz, 1mA, SOT23,
Current-Feedback Amplifiers with Shutdown
AC ELECTRICAL CHARACTERISTICS—Dual Supplies (MAX4181/4184/4185/4187) (cont.)
(VCC = +5V, VEE = -5V, VIN+ = 0, SHDN ≥ 3V, AV = +1V/V; see Table 1 for RF values; TA = +25°C, unless otherwise noted.)
PARAMETER
SYMBOL
CONDITIONS
Differential Gain Error
DG
NTSC
Input Noise-Voltage Density
en
f = 10kHz
Input Noise-Current Density
in
f = 10kHz
Input Capacitance
(Positive Input)
Output Impedance
MIN
0.09
RL = 150Ω
0.16
MAX
IN+
4
IN-
5
nV/√Hz
pA/√Hz
1.5
f = 10kHz
UNITS
%
2
CIN+
ZOUT
TYP
RL = 1kΩ
pF
4.8
Ω
pF
SHDN ≤ VIL, VOUT ≤ ±3V (Notes 2, 4)
4
Turn-On Time from SHDN
tON
(Note 4)
50
ns
Turn-Off Time to SHDN
tOFF
(Note 4)
400
ns
200
µs
Disabled Output Capacitance
COUT(OFF)
Power-Up Time
Off-Isolation
SHDN ≤ 2V, RL = 150Ω, f = 10MHz
-54
dB
Crosstalk
f = 10MHz, MAX4184/MAX4185/MAX4187
-60
dB
Gain Matching to 0.1dB
f = 10MHz, MAX4184/MAX4185/MAX4187
25
MHz
AC ELECTRICAL CHARACTERISTICS—Single Supply (MAX4180/4182/4183/4186)
(VCC = +5V, VEE = 0, VIN+ = 2.5V, SHDN ≥ 3V, AV = +2V/V; see Table 1 for RF and RG values; TA = +25°C, unless otherwise noted.)
PARAMETER
SYMBOL
CONDITIONS
Small-Signal -3dB Bandwidth
(Note 5)
BWSS
<0.5dB peaking
Large-Signal -3dB Bandwidth
BWLS
VOUT = 2Vp-p, RL = 1kΩ
Bandwidth for 0.1dB Flatness
(Note 5)
BW0.1dB
Slew Rate (Note 5)
Settling Time to 0.1%
Rise/Fall Time
Spurious-Free Dynamic Range
155
SR
VOUT = 2V step, RL = 1kΩ
TYP
210
165
110
RL = 1kΩ
20
50
40
Rising edge
260
340
Falling edge
220
300
MAX
UNITS
MHz
MHz
MHz
V/µs
tS
VOUT = 2V step, RL = 1kΩ
20
ns
tR and tF
VOUT = 2V step, RL = 1kΩ
6
ns
SFDR
fC = 5MHz, VOUT = 2Vp-p
fC = 5MHz, VOUT = 2Vp-p
Third Harmonic Distortion
fC = 5MHz, VOUT = 2Vp-p
6
RL = 1kΩ
RL = 150Ω
RL = 150Ω
Second Harmonic Distortion
Differential Phase Error
MIN
DP
NTSC
RL = 1kΩ
72
RL = 150Ω
57
RL = 1kΩ
-80
RL = 150Ω
-76
RL = 1kΩ
-72
RL = 150Ω
-57
RL = 1kΩ
0.01
RL = 150Ω
0.35
_______________________________________________________________________________________
dB
dBc
dBc
degrees
Single/Dual/Quad, 270MHz, 1mA, SOT23,
Current-Feedback Amplifiers with Shutdown
(VCC = +5V, VEE = 0, VIN+ = 2.5V, SHDN ≥ 3V, AV = +2V/V; see Table 1 for RF and RG values; TA = +25°C, unless otherwise noted.)
PARAMETER
SYMBOL
CONDITIONS
Differential Gain Error
DG
NTSC
Input Noise-Voltage Density
en
f = 10kHz
Input Noise-Current Density
in
Input Capacitance
(Positive Input)
CIN+
Output Impedance
ZOUT
MIN
TYP
RL= 1kΩ
0.10
RL= 150Ω
0.03
MAX
%
2
f = 10kHz
IN+
4
IN-
5
f = 10kHz
UNITS
nV/√Hz
pA/√Hz
1.5
pF
4.8
Ω
SHDN ≤ VIL, 1.2V ≤ VOUT ≤ 3.8V (Notes 2, 4)
4
pF
Turn-On Time from SHDN
tON
(Note 4)
40
ns
Turn-Off Time to SHDN
tOFF
(Note 4)
400
ns
Disabled Output Capacitance
COUT(OFF)
Power-Up Time
200
µs
Off-Isolation
SHDN ≤ 2V, RL = 150Ω, f = 10MHz
-60
dB
Crosstalk
f = 10MHz, MAX4182/MAX4183/MAX4186
-60
dB
Gain Matching to 0.1dB
f = 10MHz, MAX4182/MAX4183/MAX4186
25
MHz
AC ELECTRICAL CHARACTERISTICS—Single Supply (MAX4181/4184/4185/4187)
(VCC = +5V, VEE = 0, VIN+ = 2.5V, SHDN ≥ 3V, AV = +1V/V; see Table 1 for RF values; TA = +25°C, unless otherwise noted.)
PARAMETER
SYMBOL
CONDITIONS
Small-Signal -3dB Bandwidth
(Note 5)
BWSS
<0.5dB peaking
Large-Signal -3dB Bandwidth
BWLS
VOUT = 2Vp-p, RL = 1kΩ
Bandwidth for 0.1dB Flatness
(Note 5)
Slew Rate (Note 5)
Settling Time to 0.1%
Rise/Fall Time
Spurious-Free Dynamic Range
BW0.1dB
MIN
TYP
175
220
RL = 150Ω
170
110
RL = 1kΩ
16
RL = 150Ω
40
30
Rising edge
210
275
Falling edge
170
215
MAX
UNITS
MHz
MHz
MHz
SR
VOUT = 2V step, RL = 1kΩ
tS
VOUT = 2V step, RL = 1kΩ
22
ns
tR and tF
VOUT = 2V step, RL = 1kΩ
7
ns
SFDR
fC = 5MHz, VOUT = 2Vp-p
Second Harmonic Distortion
fC = 5MHz, VOUT = 2Vp-p
Third Harmonic Distortion
fC = 5MHz, VOUT = 2Vp-p
Differential Phase Error
RL = 1kΩ
DP
NTSC
RL = 1kΩ
55
RL = 150Ω
59
RL = 1kΩ
-61
RL = 150Ω
-72
RL = 1kΩ
-55
RL = 150Ω
-59
RL = 1kΩ
0.01
RL = 150Ω
0.35
V/µs
dB
dBc
dBc
degrees
_______________________________________________________________________________________
7
MAX4180–MAX4187
AC ELECTRICAL CHARACTERISTICS—Single Supply (MAX4180/4182/4183/4186) (cont.)
AC ELECTRICAL CHARACTERISTICS—Single Supply (MAX4181/4184/4185/4187) (cont.)
(VCC = +5V, VEE = 0, VIN+ = 2.5V, SHDN ≥ 3V, AV = +1V/V; see Table 1 for RF values; TA = +25°C, unless otherwise noted.)
PARAMETER
SYMBOL
CONDITIONS
Differential Gain Error
DG
NTSC
Input Noise-Voltage Density
en
f = 10kHz
Input Noise-Current Density
CIN+
Output Impedance
ZOUT
Disabled Output Capacitance
MIN
TYP
RL= 1kΩ
0.10
RL= 150Ω
0.03
MAX
IN+
4
IN-
5
f = 10kHz
COUT(OFF) SHDN ≤ VIL, 1.2V ≤ VOUT ≤ 3.8V (Notes 2, 4)
UNITS
%
2
f = 10kHz
in
Input Capacitance
(Positive Input)
nV/√Hz
pA/√Hz
1.5
pF
4.8
Ω
4
pF
Turn-On Time from SHDN
tON
(Note 4)
40
ns
Turn-Off Time to SHDN
tOFF
(Note 4)
400
ns
200
µs
Power-Up Time
Off-Isolation
SHDN ≤ 2V, RL = 150Ω, f = 10MHz
-54
dB
Crosstalk
f = 10MHz, MAX4184/MAX4185/MAX4187
-60
dB
Gain Matching to 0.1dB
f = 10MHz, MAX4184/MAX4185/MAX4187
25
MHz
Note 1: The MAX418_EUT is 100% production tested at TA = +25°C. Specifications over temperature limits are guaranteed by
design.
Note 2: Does not include current into the external-feedback network.
Note 3: Over operating supply-voltage range.
Note 4: Specification applies to MAX4180/MAX4181/MAX4183 and MAX4185.
Note 5: The AC specifications shown are not measured in a production test environment. The minimum AC specifications given are
based on the combination of worst-case design simulations along with a sample characterization of units. These minimum
specifications are for design guidance only and are not intended to guarantee AC performance (see AC Testing/Performance). For 100% testing of those parameters, contact the factory.
__________________________________________Typical Operating Characteristics
(VCC = +5V, VEE = -5V, TA = +25°C, unless otherwise noted.)
0
-1
-2
RF = RG = 680Ω
RL = 100Ω
OR
RF = RG = 820Ω
RL = 150Ω
-3
-4
-5
10
100
FREQUENCY (MHz)
8
1000
0
-1
RF = RG = 680Ω
RL = 100Ω
OR
RF = RG = 820Ω
RL = 150Ω
-2
-3
2
1
-1
-2
-4
-5
100
RF = 1kΩ
RL = 150Ω
OR
RF = 560Ω
RL = 100Ω
-3
-6
FREQUENCY (MHz)
RF = 2.4kΩ
RL = 1kΩ
0
-6
10
VIN = 20mVp-p
AV = +1V/V
3
-5
1
1000
MAX1480-87 TOCD
RF = RG = 1.2kΩ
RL = 1kΩ
1
-4
-6
1
2
4
GAIN (dB)
RF = RG = 1.2kΩ
RL = 1kΩ
1
VCC = +5V
VIN = 20mVp-p
AV = +2V/V
3
MAX1480-87 TOCB
2
4
NORMALIZED GAIN (dB)
VIN = 20mVp-p
AV = +2V/V
MAX1480-87 TOCA
4
3
MAX4181 SMALL-SIGNAL GAIN
vs. FREQUENCY (DUAL SUPPLIES)
MAX4180 SMALL-SIGNAL GAIN
vs. FREQUENCY (SINGLE SUPPLY)
MAX4180 SMALL-SIGNAL GAIN
vs. FREQUENCY (DUAL SUPPLIES)
NORMALIZED GAIN (dB)
MAX4180–MAX4187
Single/Dual/Quad, 270MHz, 1mA, SOT23,
Current-Feedback Amplifiers with Shutdown
1
10
100
1000
FREQUENCY (MHz)
_______________________________________________________________________________________
TOP VIEW
SING
OUT 1
Single/Dual/Quad, 270MHz, 1mA, SOT23,
Current-Feedback Amplifiers with Shutdown
MAX4182/MAX4183 SMALL-SIGNAL GAIN
vs. FREQUENCY (DUAL SUPPLIES)
RF = 2.4kΩ
RL = 1kΩ
0
-1
-2
RF = 1kΩ
RL = 150Ω
OR
RF = 560Ω
RL = 100Ω
-3
-4
-5
2
RF = RG = 620Ω
RL = 100Ω
RF = 620Ω
RL = 100Ω
-6
100
10
1000
1
10
100
FREQUENCY (MHz)
MAX4186 SMALL-SIGNAL GAIN
vs. FREQUENCY (DUAL SUPPLIES)
MAX4187 SMALL-SIGNAL GAIN
vs. FREQUENCY
MAX4180 GAIN FLATNESS vs.
FREQUENCY (SINGLE & DUAL SUPPLIES)
VS = ±5V
VIN = 20mVp-p
AV = +1V/V
3
2
RF = 1.6kΩ
RL = 1kΩ
0.4
0.3
0.2
0.1
1
RF = RG = 750Ω
RL = 150Ω
-2
-3
0
-1
RF = 680Ω
RL = 100Ω
-2
-3
-4
RF = RG = 680Ω
RL = 100Ω
-5
1
100
10
0
-0.2
-0.5
-6
-0.6
1
1000
10
100
VCC = +5V
RF = RG = 820kΩ
RL = 150Ω
VIN = 20mVp-p
AV = +2V/V
-0.4
-5
1000
VS = ±5V
RF = RG = 1.2kΩ
RL = 1kΩ
VS = ±5V
RF = RG = 820Ω
RL = 150Ω
-0.1
-0.3
RF = 910Ω
RL = 150Ω
-4
-6
GAIN (dB)
GAIN (dB)
-1
VCC = +5V
RF = RG = 1.2kΩ
RL = 1kΩ
1
10
100
FREQUENCY (MHz)
FREQUENCY (MHz)
MAX4181 GAIN FLATNESS vs.
FREQUENCY (SINGLE & DUAL SUPPLIES)
MAX4180 LARGE-SIGNAL GAIN
vs. FREQUENCY (DUAL SUPPLIES)
MAX4180 LARGE-SIGNAL GAIN
vs. FREQUENCY (SINGLE SUPPLY)
VS = ±5V
RF = 1kΩ
RL = 150Ω
0.2
0.1
0
-0.1
VCC = +5V
RF = 2.4kΩ
RL = 1kΩ
VS = ±5V
RF = 2.4kΩ
RL = 1kΩ
-0.2
-0.3
4
AV = +2V/V
VOUT = 2Vp-p
3
2
1
0
-1
-2
RF = RG = 1.2kΩ
RL = 1kΩ
OR
RF = RG = 820Ω
RL = 150Ω
-3
-4
-0.4
VIN = 20mVp-p
AV = +1V/V
-0.5
-5
1
10
100
FREQUENCY (MHz)
1000
VCC = +5V
AV = +2V/V
3
2
VOUT = 1Vp-p
RF = RG = 680Ω
RL = 100Ω
1
0
-1
RF = RG = 820Ω
RL = 150Ω
VOUT = 2Vp-p
OR
RF = RG = 1.2kΩ
RL = 1kΩ
VOUT = 2Vp-p
-2
-3
-4
-5
-6
-6
-0.6
1000
4
NORMALIZED GAIN (dB)
VCC = +5V
RF = 1kΩ
RL = 150Ω
NORMALIZED GAIN (dB)
0.4
MAX1480-87 TOCH
FREQUENCY (MHz)
MAX1480-87 TOCK
4
MAX4180-87DD
RF = RG = 1.1kΩ
RL = 1kΩ
MAX1480-87 TOCF
FREQUENCY (MHz)
0
0.3
1000
FREQUENCY (MHz)
VS = ±5V
VIN = 20mVp-p
AV = +2V/V
1
RF = 750Ω
RL = 150Ω
-2
-5
1
1000
MAX4180-87CC
2
100
0
-4
-5
10
RF = 1.5kΩ
RL = 1kΩ
-1
-3
-6
1
NORMALIZED GAIN (dB)
-3
-4
-6
GAIN (dB)
RF = RG = 680Ω
RL = 150Ω
-2
2
1
0
-1
VS = ±5V
VIN = 20mVp-p
AV = +1V/V
3
RF = RG = 1kΩ
1
MAX1480-87 TOCJ
GAIN (dB)
1
VS = ±5V
VIN = 20mVp-p
AV = +2V/V
3
4
MAX4180-87AA
2
4
GAIN (dB)
MAX1480-87 TOCE
VCC = +5V
VIN = 20mVp-p
AV = +1V/V
3
NORMALIZED GAIN (dB)
4
MAX4184/MAX4185 SMALL-SIGNAL GAIN
vs. FREQUENCY (DUAL SUPPLIES)
MAX4180-87BB
MAX4181 SMALL-SIGNAL GAIN
vs. FREQUENCY (SINGLE SUPPLY)
1
10
100
FREQUENCY (MHz)
1000
1
10
100
1000
FREQUENCY (MHz)
_______________________________________________________________________________________
9
MAX4180–MAX4187
Typical Operating Characteristics (continued)
(VCC = +5V, VEE = -5V, TA = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(VCC = +5V, VEE = -5V, TA = +25°C, unless otherwise noted.)
1
AV = +10V/V
RF = 750Ω
RG = 82Ω
-3
-4
-4
-5
-5
-6
-6
10
100
1000
-4
-5
-6
1
10
100
1000
1
MAX4186 CROSSTALK
vs. FREQUENCY
RF = RG = 680Ω
RL = 150Ω
-20
-80
VOUTB = 2Vp-p
VOUTA MEASURED
AV = +1V/V
-30
-40
CROSSTALK (dB)
RF = RG = 1kΩ
RL = 1kΩ
RF = 1.5kΩ
RL = 1kΩ
-50
-60
-70
RF = 750Ω
RL = 150Ω
-80
0
-20
-40
-50
-60
-100
-110
-110
-90
-120
-120
-100
1
100
10
FREQUENCY (MHz)
MAX4187 CROSSTALK
vs. FREQUENCY
POWER-SUPPLY REJECTION RATIO
vs. FREQUENCY
-30
-10
-20
VCC (MAX4180)
PSRR (dB)
-30
-40
-50
-60
-80
VCC (MAX4181)
-50
-60
RF = 1.6kΩ
RL = 1kΩ
-70
-40
VEE (MAX4181)
-100
-90
FREQUENCY (MHz)
100
10
1
VEE (MAX4181)
-80
10
300
-70
-90
1
100
10
OUTPUT IMPEDANCE vs. FREQUENCY
MAX1480-87 TOCP
RF = 910Ω
RL = 150Ω
0
MAX4180-87HH
VOUTA = 2Vp-p
VOUTD MEASURED
AV = +1V/V
1
300
FREQUENCY (MHz)
FREQUENCY (MHz)
0
10
-80
OUTPUT IMPEDANCE (Ω)
300
RF = RG = 1.1kΩ
RL = 1kΩ
-70
-100
100
RF = RG = 750Ω
RL = 150Ω
-30
-90
10
VOUTD = 2Vp-p
VOUTA MEASURED
AV = +2V/V
-10
-90
-20
1000
MAX4184 CROSSTALK
vs. FREQUENCY
-70
-10
100
MAX4182 CROSSTALK
vs. FREQUENCY
-60
1
10
FREQUENCY (MHz)
-50
CROSSTALK (dB)
-3
FREQUENCY (MHz)
VOUTB = 2Vp-p
VOUTA MEASURED
AV = +2V/V
-40
VOUT = 2Vp-p
RF = 1kΩ
RL = 150Ω
OR
VOUT = 2Vp-p
RF = 2.4kΩ
RL = 1kΩ
-2
FREQUENCY (MHz)
-20
-30
0
-1
MAX1480-87 TOCQ
1
VOUT = 2Vp-p
RF = 2.4kΩ
RL = 1kΩ
OR
VOUT = 2Vp-p
RF = 1kΩ
RL = 150Ω
-2
CROSSTALK (dB)
-3
-1
MAX4180-87FF
-2
1
VOUT = 1Vp-p
RF = 560Ω
RL = 100Ω
0
VOUT = 1Vp-p
RF = 560Ω
RL = 100Ω
2
MAX4180-87GG
-1
GAIN (dB)
AV = +5V/V
RF = 910Ω
RG = 220Ω
0
2
VCC = +5V
AV = +1V/V
3
GAIN (dB)
1
MAX4180-87EE
NORMALIZED GAIN (dB)
2
AV = +1V/V
3
4
MAX1480-87 TOCM
VS = ±5V
VIN = 20mVp-p
RL = 1kΩ
3
MAX4181 LARGE-SIGNAL GAIN
vs. FREQUENCY (SINGLE SUPPLY)
4
MAX1480-87 TOCL
4
MAX4181 LARGE-SIGNAL GAIN
vs. FREQUENCY (DUAL SUPPLIES)
MA480-87 TOCN
MAX4180 SMALL-SIGNAL GAIN
vs. FREQUENCY
CROSSTALK (dB)
MAX4180–MAX4187
Single/Dual/Quad, 270MHz, 1mA, SOT23,
Current-Feedback Amplifiers with Shutdown
100
300
0.1
0.01
0.1
1
FREQUENCY (MHz)
10
100
0.1
1
10
FREQUENCY (MHz)
______________________________________________________________________________________
100
1000
Single/Dual/Quad, 270MHz, 1mA, SOT23,
Current-Feedback Amplifiers with Shutdown
VOLTAGE-NOISE DENSITY
vs. FREQUENCY (INPUT REFERRED)
2.8
2.6
2.4
2.2
2.0
1.8
VOUT
30
1.2kΩ
25
1.2kΩ
20
15
-40
1.4
100k
1M
10M 100M
1G
-100
100
1k
10k
100k
1M
10M 100M
0.1
1G
1
100
10
FREQUENCY (Hz)
FREQUENCY (MHz)
MAX4180 HARMONIC DISTORTION
vs. FREQUENCY (SINGLE SUPPLY)
MAX4181 HARMONIC DISTORTION
vs. FREQUENCY (DUAL SUPPLIES)
MAX4181 HARMONIC DISTORTION
vs. FREQUENCY (SINGLE SUPPLY)
DISTORTION (dBc)
-50
3RD (RL = 150Ω)
-70
3RD (RL = 150Ω)
-60
-70
-80
-80
2ND (RL = 1kΩ)
-40
DISTORTION (dBc)
3RD (RL = 1kΩ)
-50
2ND (RL = 150Ω)
-100
1
100
10
SUPPLY CURRENT (mA)
40
MAX4180
35
MAX4181
SHUTDOWN SUPPLY CURRENT
1.00
140
SUPPLY CURRENT
110
0.75
30
35
40
45
50
5
155
125
25
20
10
1
100
OUTPUT VOLTAGE SWING
vs. TEMPERATURE
95
100
RL = 1kΩ
3
OUTPUT SWING (V)
f2 = f1 + 0.1MHz
25
0.1
FREQUENCY (MHz)
MA4180 TOC21
1.25
MAX4180 TOC20
45
20
2ND (RL = 150Ω)
SUPPLY CURRENT
(OPERATING & SHUTDOWN)
vs. TEMPERATURE
TWO-TONE THIRD-ORDER INTERCEPT
vs. FREQUENCY
15
-70
FREQUENCY (MHz)
FREQUENCY (MHz)
30
3RD (RL = 150Ω)
-60
-90
0.1
100
10
SHUTDOWN SUPPLY CURRENT (µA)
1
3RD (RL = 1kΩ)
2ND (RL = 1kΩ)
-90
0.1
-50
-80
-90
2ND (RL = 1kΩ)
MAX4180 TOC19
-40
2ND (RL = 150Ω)
-30
MAX4180 TOC18
-30
MAX4180 TOC17
3RD (RL = 1kΩ)
-40
10
2ND (RL = 1kΩ)
2ND (RL = 150Ω)
FREQUENCY (Hz)
-30
-60
-70
RL = 150Ω
MA4180 TOC22
10k
-60
-90
0
1k
3RD (RL = 150Ω)
-80
5
100
3RD (RL = 1kΩ)
-50
10
1.6
DISTORTION (dBc)
VIN
35
MAX4180 TOC16
40
-30
DISTORTION (dBc)
3.0
VOLTAGE-NOISE DENSITY (nV/√Hz)
3.2
MAX4180 TOC15
45
MAX4180 TOC14
VOLTAGE-NOISE DENSITY (nV/√Hz)
3.4
THIRD-ORDER INTERCEPT (dBm)
MAX4180 HARMONIC DISTORTION
vs. FREQUENCY (DUAL SUPPLIES)
TOTAL VOLTAGE-NOISE DENSITY
vs. FREQUENCY (INPUT REFERRED)
1
-1
RL = 150Ω
-3
RL = 1kΩ
-5
80
100
______________________________________________________________________________________
11
FREQUENCY (MHz)
-60
-40
-20
0
20
40
TEMPERATURE (°C)
60
80
-60
-40
-20
0
20
40
60
TEMPERATURE (°C)
MAX4180–MAX4187
Typical Operating Characteristics (continued)
(VCC = +5V, VEE = -5V, TA = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(VCC = +5V, VEE = -5V, TA = +25°C, unless otherwise noted.)
IB-
0.4
IB+
0.2
MA4180 TOC24
0.8
4
INPUT OFFSET VOLTAGE (mV)
MA4180 TOC23
1.0
0.6
MAX4181
SMALL-SIGNAL PULSE RESPONSE
INPUT OFFSET VOLTAGE
vs. TEMPERATURE
3
MAX4180/87-TOC26
INPUT BIAS CURRENT
vs. TEMPERATURE
INPUT BIAS CURRENT (µA)
+50mV
IN
-50mV
2
+50mV
OUT
1
-50mV
0
0
0
20
40
60
80
100
-60
-40
-20
0
20
40
60
80
TEMPERATURE (°C)
TEMPERATURE (°C)
POWER-ON TRANSIENT
SHUTDOWN RESPONSE TIME
+10
VCC
AV = +2V/V
VIN+ = 1VDC
3V
10ns/div
RF = 1kΩ, RL = 150Ω
100
MAX4180
LARGE-SIGNAL PULSE RESPONSE
GND
MAX4180/87-TOC29
-20
MAX4180/87-TOC28
-40
MAX4180/87-TOC27
-60
+0.5V
SHDN IN
-0.5V
GND
+5V
2V
+1V
VOUT
OUT
GND
100ns/div
100µs/div
RF = 1kΩ, VIN = VCC/2, RL = ∞
RL = 1kΩ, RF = RG = 1.2kΩ
MAX4180
SMALL-SIGNAL PULSE RESPONSE
MAX4180
LARGE-SIGNAL PULSE RESPONSE
MAX4180/87-TOC30
IN
10ns/div
RL = 150Ω, RF = RG = 820Ω
MAX4180
LARGE-SIGNAL PULSE RESPONSE
+0.5V
-1V
+0.5V
IN
+25mV
IN
-0.5V
-0.5V
-25mV
+1V
+1V
+50mV
OUT
OUT
OUT
-1V
-1V
-50mV
10ns/div
RL = 100Ω, RF = RG = 680Ω
12
10ns/div
RL = 150Ω, RF = RG = 820Ω
MAX4180/87-TOC32
GND
MAX4180/87-TOC31
MAX4180–MAX4187
Single/Dual/Quad, 270MHz, 1mA, SOT23,
Current-Feedback Amplifiers with Shutdown
10ns/div
RL = 1kΩ, RF = RG = 1.2kΩ
______________________________________________________________________________________
Single/Dual/Quad, 270MHz, 1mA, SOT23,
Current-Feedback Amplifiers with Shutdown
MAX4180
SMALL-SIGNAL PULSE RESPONSE
+25mV
IN
MAX4180/87-TOC34
MAX4180/87-TOC33
MAX4180
SMALL-SIGNAL PULSE RESPONSE
+25mV
IN
-25mV
-25mV
+50mV
+50mV
OUT
OUT
-50mV
-50mV
10ns/div
10ns/div
RL = 150Ω, RF = RG = 820Ω
RL = 100Ω, RF = RG = 680Ω
MAX4181
LARGE-SIGNAL PULSE RESPONSE
+50mV
IN
MAX4180/87-TOC35
MAX4180/87-TOC36
MAX4181
SMALL-SIGNAL PULSE RESPONSE
+1V
IN
-50mV
-1V
+50mV
+1V
OUT
OUT
-50mV
-1V
10ns/div
10ns/div
VS = ±5V, RL = 1kΩ, RF = 2.4kΩ
RL = 1kΩ, RF = 2.4kΩ
Pin Description
MAX4180/MAX4181
PIN
NAME
MAX4180/MAX4181
FUNCTION
SO
SOT23-6
1, 5
—
2
4
IN-
Inverting Input
3
3
IN+
Noninverting Input
4
2
VEE
Negative Power Supply. Connect VEE to -5V or ground for
single-supply operation.
6
1
OUT
Amplifier Output
7
6
VCC
Positive Power Supply. Connect VCC to +5V.
8
5
SHDN
N.C.
No Connection. Not internally connected.
Shutdown Input. Device is enabled when SHDN ≥ (VCC - 2V)
and disabled when SHDN ≤ (VCC - 3V).
______________________________________________________________________________________
13
MAX4180–MAX4187
Typical Operating Characteristics (continued)
(VCC = +5V, VEE = -5V, TA = +25°C, unless otherwise noted.)
MAX4180–MAX4187
Single/Dual/Quad, 270MHz, 1mA, SOT23,
Current-Feedback Amplifiers with Shutdown
_________________________________________________Pin Description (continued)
MAX4182/MAX4183/MAX4184/MAX4185
PIN
MAX4182
MAX4184
MAX4183
MAX4185
MAX4183
MAX4185
SO
SO
µMAX
1
1
1
OUTA
2
2
2
INA-
Amplifier A Inverting Input
3
3
3
INA+
Amplifier A Noninverting Input
4
4
4
VEE
Negative Power Supply. Connect VEE to -5V or ground for
single-supply operation.
—
5, 7, 8, 10
—
N.C.
No Connection. Not internally connected.
—
6
5
SHDNA
Shutdown Control Input for Amplifier A. Amplifier A is
enabled when SHDNA ≥ (VCC - 2V) and disabled when
SHDNA ≤ (VCC - 3V).
—
9
6
SHDNB
Shutdown Control Input for Amplifier B. Amplifier B is
enabled when SHDNB ≥ (VCC - 2V) and disabled when
SHDNB ≤ (VCC - 3V).
5
11
7
INB+
Amplifier B Noninverting Input
6
12
8
INB-
Amplifier B Inverting Input
7
8
13
14
9
10
OUTB
VCC
NAME
FUNCTION
Amplifier A Output
Amplifier B Output
Positive Power Supply. Connect VCC to +5V.
MAX4186/MAX4187
PIN
14
MAX4186
MAX4187
MAX4186
MAX4187
SO
QSOP
1
1
OUTA
2
2
INA-
Amplifier A Inverting Input
3
3
INA+
Amplifier A Noninverting Input
4
4
VCC
Positive Power Supply. Connect VCC to +5V.
5
5
INB+
Amplifier B Noninverting Input
6
6
INB-
Amplifier B Inverting Input
7
7
OUTB
—
8, 9
N.C.
8
10
OUTC
9
11
INC-
Amplifier C Inverting Input
10
12
INC+
Amplifier C Noninverting Input
11
13
VEE
12
14
IND+
Amplifier D Noninverting Input
13
15
IND-
Amplifier D Inverting Input
14
16
OUTD
NAME
FUNCTION
Amplifier A Output
Amplifier B Output
No Connection. Not internally connected.
Amplifier C Output
Negative Power Supply. Connect VEE to -5V or ground for
single-supply operation.
Amplifier D Output
______________________________________________________________________________________
Single/Dual/Quad, 270MHz, 1mA, SOT23,
Current-Feedback Amplifiers with Shutdown
The MAX4180–MAX4187 are ultra-low-power currentfeedback amplifiers featuring bandwidths up to
270MHz, 0.1dB gain flatness to 90MHz, and low differential gain (0.08%) and phase (0.03°) errors. These
amplifiers achieve ultra-high bandwidth-to-power ratios
with low distortion, wide signal swing, and excellent
load-driving capabilities. They are optimized for ±5V
supplies but also operate from a single +5V supply
while consuming only 1mA per amplifier. With ±60mA
output current drive capability, the devices achieve low
distortion even while driving 150Ω loads.
Wide bandwidth, low power, low differential phase and
gain error, and excellent gain flatness make the
MAX4180–MAX4187 ideal for use in portable video
equipment such as cameras, video switchers, and
other battery-powered applications. Their two-stage
design provides higher gain and lower distortion than
conventional single-stage, current-feedback topologies. This feature, combined with fast settling time,
makes these devices suitable for buffering high-speed
analog-to-digital converters (ADCs).
The MAX4180/MAX4181/MAX4183/MAX4185 have a
low-power shutdown mode that is activated by driving
the amplifiers’ SHDN input low. Placing them in shutdown reduces quiescent supply current to 135µA (typ)
and places amplifier outputs in a high-impedance
state. These amplifiers can be used to implement a
high-speed multiplexer by connecting together the outputs of multiple amplifiers and controlling the SHDN
inputs to enable one amplifier and disable all the others. The disabled amplifiers present very little load
(0.1µA leakage current and 4pF capacitance) to the
active amplifiers’ output. Note that the feedback network impedance of all the disabled amplifiers must be
considered when calculating the total load on the
active amplifier output.
Application Information
where G = AVCL = 1 + (RF / RG), and RIN = 1 /gM ≅ 160Ω.
At low gains, G x RIN < RF. Therefore, the closed-loop
bandwidth is essentially independent of closed-loop
gain. Similarly, TZ > RF at low frequencies, so that:
VOUT
= G = 1 + (RF / RG )
VIN
Layout and Power-Supply Bypassing
The MAX4180–MAX4187 have an RF bandwidth and,
consequently, require careful board layout, including
the possible use of constant-impedance microstrip or
stripline techniques.
To realize the full AC performance of these high-speed
amplifiers, pay careful attention to power-supply bypassing and board layout. The PC board should have at least
two layers: a signal and power layer on one side, and a
large, low-impedance ground plane on the other side.
The ground plane should be as free of voids as possible.
With multilayer boards, locate the ground plane on a
layer that incorporates no signal or power traces.
Regardless of whether a constant-impedance board is
used, observe the following guidelines when designing
the board:
• Do not use wire-wrap boards. They are too inductive.
• Do not use breadboards. They are too capacitive.
• Do not use IC sockets. They increase parasitic capacitance and inductance.
• Use surface-mount components rather than throughhole components. They give better high-frequency
performance, have shorter leads, and have lower
parasitic reactances.
RG
RF
Theory of Operation
The MAX4180–MAX4187 are current-feedback amplifiers, and their open-loop transfer function is expressed
as a transimpedance, ∆VOUT/∆IIN, or TZ. The frequency
behavior of the open-loop transimpedance is similar to
the open-loop gain of a voltage-mode feedback
amplifier. That is, it has a large DC value and decreases at approximately 6dB per octave.
Analyzing the follower with gain, as shown in Figure 1,
yields the following transfer function:
RIN
+1
+1
VOUT
T2
MAX4180–MAX4187
VIN
VOUT / VIN = G x [(TZ (S) / TZ(s) + G x (RIN + RF)]
Figure 1. Current-Feedback Amplifier
______________________________________________________________________________________
15
MAX4180–MAX4187
Detailed Description
MAX4180–MAX4187
Single/Dual/Quad, 270MHz, 1mA, SOT23,
Current-Feedback Amplifiers with Shutdown
• Keep lines as short and as straight as possible.
• Do not make 90° turns; round all corners.
• Observe high-frequency bypassing techniques to
maintain the amplifiers’ accuracy. The bypass capacitors should include a 0.01µF to 0.1µF ceramic
capacitor between each supply pin and the ground
plane, located as close to the package as possible.
• Place a 1µF ceramic capacitor in parallel with each
0.01µF to 0.1µF capacitor as close to them as
possible.
• Place a 10µF to 15µF low-ESR tantalum at the point
of entry to the power-supply pins’ PC board. The
power-supply trace should lead directly from the
tantalum capacitor to the VCC and VEE pins.
• Keep PC traces short and use surface-mount components to minimize parasitic inductance.
Maxim’s High-Speed Evaluation Board
Figures 2 and 3 show layouts of Maxim’s high-speed
single SOT23 and SO evaluation boards. These boards
were developed using the techniques described above.
The smallest available surface-mount resistors were
used for feedback and back-termination to minimize
their distance from the part, reducing the capacitance
associated with longer lead lengths.
SMA connectors were used for best high-frequency
performance. Because distances are extremely short,
performance is unaffected by the fact that inputs and
outputs do not match a 50Ω line. However, in applications that require lead lengths greater than one-quarter
of the wavelength of the highest frequency of interest,
use constant-impedance traces.
Fully assembled evaluation boards are available for the
MAX4180ESA.
Figure 2a. SOT23 High-Speed EV Board
Component Placement Guide—
Component Side
Figure 2b. SOT23 High-Speed EV Board
Layout—Component Side
Figure 2c. High-Speed EV Board Layout—
Solder Side
Figure 3a. SO-8 High-Speed EV Board
Component Placement Guide—
Component Side
Figure 3b. SO-8 High-Speed EV Board
Layout—Component Side
Figure 3c. SO-8 High-Speed EV Board
Layout—Solder Side
16
______________________________________________________________________________________
Single/Dual/Quad, 270MHz, 1mA, SOT23,
Current-Feedback Amplifiers with Shutdown
MAX4180–MAX4187
Table 1. Recommended Component Values
MAX4180
COMPONENT/BW
AV = +2V/V
MAX4181
AV = +5V/V
AV = +10V/V
AV = +1V/V
RL = 1kΩ
RL = 150Ω
RL =
100Ω
RL =
1kΩ/150Ω
RL =
1kΩ/150Ω
RL = 1kΩ
RL =
150Ω
RL =
100Ω
RF (Ω)
1.2k
820
680
520
560
2.4k
1k
560
RG (Ω)
1.2k
820
680
130
56
—
—
—
-3dB BW (MHz)
245
190
190
120
76
270
205
200
MAX4182/MAX4183
MAX4184/MAX4185
MAX4186
MAX4187
AV = +2V/V
AV = +1V/V
AV = +2V/V
AV = +1V/V
COMPONENT/
BW
RL =
1kΩ
RL =
150Ω
RL =
100Ω
RL =
1kΩ
RL =
150Ω
RL =
100Ω
RL =
1kΩ
RL =
150Ω
RL =
100Ω
RL =
1kΩ
RL =
150Ω
RL =
100Ω
RF (Ω)
1k
680
620
1.5k
750
620
1.1k
750
680
1.6k
910
680
RG (Ω)
1k
680
620
—
—
—
1.1k
750
680
—
—
—
-3dB BW
(MHz)
245
190
160
270
205
180
245
190
175
270
205
200
Choosing Feedback and Gain Resistors
The optimum value of the external-feedback (RF) and
gain-setting (RG) resistors used with the MAX4180–
MAX4187 depends on the closed-loop gain and the
application circuit’s load. Table 1 lists the optimum
resistor values for some specific gain configurations.
One-percent resistor values are preferred to maintain
consistency over a wide range of production lots.
Figures 4a and 4b show the standard inverting and
noninverting configurations. Note: The noninverting circuit gain (Figure 4) is 1 plus the magnitude of the
inverting closed-loop gain. Otherwise, the two circuits
are identical.
• The input offset voltage (VOS) times the closed-loop
gain (1 = RF / RG).
• The positive input bias current (IB+) times the source
resistor (RS) (usually 50Ω or 75Ω), plus the negative
input bias current (IB-) times the parallel combination
of RG and RF. In current-feedback amplifiers, the
input bias currents at the IN+ and IN- terminals do
not track each other and may have opposite polarity,
so there is no benefit to matching the resistance at
both inputs.
The equation for the total DC error at the output is:
DC and Noise Errors
Several major error sources must be considered in any
op amp. These apply equally to the MAX4180–
MAX4187. Offset-error terms are given by the equation
below. Voltage and current-noise errors are root-square
summed and are therefore computed separately. In
Figure 5, the total output offset voltage is determined by
the following factors:
VOUT =
[(I
)
( )(
)
] 
B+ RS + IB− RF || RG + VOS 1 +
RF 
RG 
The total output-referred noise voltage is:
 R 
= 1+ F 
n(OUT)  R 

G
e
( )
( )
( )
2
2
 i R  +  i R || R  + e 2
 n− F G 
n
 n+ S 
______________________________________________________________________________________
17
MAX4180–MAX4187
Single/Dual/Quad, 270MHz, 1mA, SOT23,
Current-Feedback Amplifiers with Shutdown
The MAX4180–MAX4187 have a very low, 2nV/√Hz
noise voltage. The current noise at the positive input
(in+) is 4pA/√Hz, and the current noise at the inverting
input is 5pA/√Hz.
An example of the DC error calculations, using the
MAX4180 typical data and typical operating circuit
where R F = R G = 1.2kΩ (R F || R G = 600Ω) and
RS = 37.5Ω, gives the following:
VOUT =  1x10 −6  x37.5 +  2x10 −6  x 600 + 1.5x10 −3 x 1+ 1


VOUT = 4.1mV
(
)
( )
Calculating the total output noise in a similar manner
yields:
2
( )
en(OUT) = 1+ 1
 4 x 10−12 x 37.5 +  5 x 10−12 x 255




+  2 x 10−9 
2
2
Video Line Driver
The MAX4180–MAX4187 are well suited to drive coaxial transmission lines when the cable is terminated at
both ends, as shown in Figure 6. Cable-frequency
response can cause variations in the signal’s flatness.
See Table 1 for optimum RF and RG values.
Driving Capacitive Loads
The MAX4180–MAX4187 are optimized for AC performance. They are not designed to drive highly capacitive loads. Reactive loads decrease phase margin and
may produce excessive ringing and oscillation. Figure
7a shows a circuit that eliminates this problem. Placing
the small (usually 5Ω to 22Ω) isolation resistor, RS,
before the reactive load prevents ringing and
oscillation. At higher capacitive loads, the interaction of
the load capacitance and isolation resistor controls AC
performance. Figures 7b and 7c show the MAX4180
and MAX4181 frequency response with a 47pF capaci-
en(OUT) = 4.8nV/ Hz
RF
RG
IB-
With a 200MHz system bandwidth, this calculates to
102µVRMS (approximately 612µVp-p, choosing the sixsigma value).
VOUT
IB+
MAX4180–MAX4187
RS
VIN
RS
RT
RF
RG
Figure 5. Output Offset Voltage
VOUT
RO
RG
820Ω
RF
820Ω
MAX4180–MAX4187
+5V
VOUT = -(RF / RG) x VIN
0.1µF
Figure 4a. Inverting Gain Configuration
75Ω
VIN
RS
RT
RG
RF
MAX4180
75Ω CABLE
VOUT
RO
MAX4180–MAX4187
VIDEO
IN
75Ω
75Ω
0.1µF
0.1µF
-5V
VIDEO LINE DRIVER
VOUT = [1+ (RF / RG) VIN
Figure 4b. Noninverting Gain Configuration
18
75Ω CABLE
Figure 6. Video Line Driver
______________________________________________________________________________________
VIDEO
OUT
Single/Dual/Quad, 270MHz, 1mA, SOT23,
Current-Feedback Amplifiers with Shutdown
RF
AC Testing/Performance
RS
VIN
CL
RL
Figure 7a. Using an Isolation Resistor (RS) for High-Capacitive
Loads
6
MAX4180
VIN = 20mVp-p
AV = +2V/V
RF = RG = 1.2kΩ
RL = 1kΩ || 47pF
5
NORMALIZED GAIN (dB)
4
3
RS = 0
2
1
0
RS = 20Ω
-1
-2
AC specifications on high-speed amplifiers are usually
guaranteed without 100% production testing. Since
these high-speed devices are sensitive to external parasitics introduced when automatic handling equipment is
used, it is impractical to guarantee AC parameters
through volume production testing. These parasitics are
greatly reduced when using the recommended PC
board layout (like the Maxim EV kit). Characterizing the
part in this way more accurately represents the amplifier’s true AC performance. Some manufacturers guarantee AC specifications without clearly stating how this
guarantee is made. The AC specifications of the
MAX4180–MAX4187 are derived through worst-case
design simulations combined with a sample characterization of 100 units. The AC performance distributions
along with the worst-case simulation results for
MAX4180 and MAX4181 are shown in Figures 8–11.
These distributions are repeatable provided that the
proper board layout and power-supply bypassing are
used (see Layout and Power-Supply Bypassing section).
-3
-4
1
10
100
1000
FREQUENCY (MHz)
Figure 7b. Frequency Response with Capacitive Load (With
and Without Isolation Resistor)
6
MAX4181
VIN = 20mVp-p
AV = +1V/V
RF = 2.4kΩ
RL = 1kΩ || 47pF
5
4
GAIN (dB)
3
RS = 0
2
1
0
RS = 20Ω
-1
-2
-3
-4
1
10
100
1000
FREQUENCY (MHz)
Figure 7c. Frequency Response with Capacitive Load (With
and Without Isolation Resistor)
______________________________________________________________________________________
19
MAX4180–MAX4187
RG
tive load. Note that in each case, gain peaking is
substantially reduced when the 20Ω resistor is used to
isolate the capacitive load from the amplifier output.
40
30
20
100 UNITS
20
15
100 UNITS
10
5
10
0
100 115 130 145 160 175 190 205 220 235 250 265 280 295 310 315 330 345
0
10
20
30
40
SIMULATION
LOWER LIMIT
NUMBER OF UNITS
50
40
30
70
80
90
100 110 120 130 140
60
100 UNITS
VS = ±5V
VOUT = 2V STEP
AV = +2V/V
RL = 1kΩ
50
40
100 UNITS
SIMULATION
LOWER LIMIT
VS = ±5V
VOUT = 2V STEP
AV = +2V/V
RL = 1kΩ
NUMBER OF UNITS
80
60
60
Figure 8b. MAX4180 ±0.1dB Bandwidth Distribution (Dual
Supplies)
MAX4180 FIG.8c
Figure 8a. MAX4180 -3dB Bandwidth Distribution (Dual Supplies)
70
50
±0.1dB BANDWIDTH (MHz)
-3dB BANDWIDTH (MHz)
30
20
MAX4180 FIG.8d
0
VS = ±5V
VIN = 20mVp-p
AV = +2V/V
RL = 1kΩ
SIMULATION
LOWER LIMIT
SIMULATION
LOWER LIMIT
NUMBER OF UNITS
50
25
NUMBER OF UNITS
VS = ±5V
VIN = 20mVp-p
AV = +2V/V
RL = 1kΩ
MAX4180 FIG.8a
60
MAX4180 FIG.8b
Single/Dual/Quad, 270MHz, 1mA, SOT23,
Current-Feedback Amplifiers with Shutdown
20
10
10
0
300 310 320 330 340 350 360 370 380 390 400 410 420 430 440
250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400
RISING-EDGE SLEW RATE (V/µs)
FALLING-EDGE SLEW RATE (V/µs)
50
40
SIMULATION
LOWER LIMIT
NUMBER OF UNITS
60
100 UNITS
30
30
25
20
15
10
10
5
0
100 115 130 145 160 175 190 205 220 235 250 265 280 295 310 315 330 345
-3dB BANDWIDTH (MHz)
Figure 9a. MAX4180 -3dB Bandwidth Distribution (Single
Supply)
VS = +5V
VIN = 20mVp-p
AV = +2V/V
RL = 1kΩ
35
20
0
20
40
SIMULATION
LOWER LIMIT
VS = +5V
VIN = 20mVp-p
AV = +2V/V
RL = 1kΩ
70
NUMBER OF UNITS
80
Figure 8d. MAX4180 Falling-Edge Slew-Rate Distribution (Dual
Supplies)
MAX4180 FIG.9a
Figure 8c. MAX4180 Rising-Edge Slew-Rate Distribution (Dual
Supplies)
0
10
20
30
100 UNITS
40
50
60
70
80
90
100 110 120 130 140
±0.1dB BANDWIDTH (MHz)
Figure 9b. MAX4180 ±0.1dB Bandwidth Distribution (Single
Supply)
______________________________________________________________________________________
MAX4180 FIG.9b
0
Single/Dual/Quad, 270MHz, 1mA, SOT23,
Current-Feedback Amplifiers with Shutdown
30
100 UNITS
20
30
20
0
240 250 260 270 340 350 360 370 380 390 400 410 420 430 440
250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400
RISING-EDGE SLEW RATE (V/µs)
FALLING-EDGE SLEW RATE (V/µs)
SIMULATION
LOWER LIMIT
25
20
15
100 UNITS
14
10
12
10
8
6
MAX4180 FIG 10a
VS = ±5V
VIN = 20mVp-p
AV = +1V/V
RL = 1kΩ
16
NUMBER OF UNITS
VS = ±5V
VIN = 20mVp-p
AV = +1V/V
RL = 1kΩ
30
18
MAX4180 FIG 10a
35
Figure 9d. MAX4180 Falling-Edge Slew-Rate Distribution
(Single Supply)
100 UNITS
SIMULATION
LOWER LIMIT
Figure 9c. MAX4180 Rising-Edge Slew-Rate Distribution (Single
Supply)
NUMBER OF UNITS
MAX4180 FIG.9d
100 UNITS
10
10
0
40
SIMULATION
LOWER LIMIT
40
VS = +5V
VOUT = 2V STEP
AV = +2V/V
RL = 1kΩ
50
NUMBER OF UNITS
SIMULATION
LOWER LIMIT
NUMBER OF UNITS
50
60
MAX4180 FIG 9c
VS = +5V
VOUT = 2V STEP
AV = +2V/V
RL = 1kΩ
60
4
5
2
160
170
180
190
200
210
220
230
240
250
260
270
0
280
0
10
20
30
-3dB BANDWIDTH (MHz)
SIMULATION
LOWER LIMIT
NUMBER OF UNITS
90
100
110
120
VS = ±5V
VIN = 2V STEP
AV = +1V/V
RL = 1kΩ
40
100 UNITS
SIMULATION
LOWER LIMIT
100 UNITS
30
20
10
10
0
80
50
NUMBER OF UNITS
50
20
70
60
MAX4180 FIG 10c
60
VS = ±5V
VIN = 2V STEP
AV = +1V/V
RL = 1kΩ
30
60
Figure 10b. MAX4181 ±0.1dB Bandwidth Distribution (Dual
Supplies)
80
40
50
±0.1dB BANDWIDTH (MHz)
Figure 10a. MAX4181 -3dB Bandwidth Distribution (Dual
Supplies)
70
40
MAX4180 FIG 10d
0
0
180
190
200
210
220
230
240
250
260
270
280
290
300
RISING-EDGE SLEW RATE (V/µs)
Figure 10c. MAX4181 Rising-Edge Slew-Rate Distribution
(Dual Supplies)
310
140
150
160
170
180
190
200
210
220
230
240
250
260
270
FALLING-EDGE SLEW RATE (V/µs)
Figure 10d. MAX4181 Falling-Edge Slew-Rate Distribution
(Dual Supplies)
______________________________________________________________________________________
21
MAX4180–MAX4187
70
20
10
10
5
160
170
180
190
200
210
220
230
240
250
260
270
0
280
0
10
20
30
-3dB BANDWIDTH (MHz)
60
70
80
90
100
110
120
SIMULATION
LOWER LIMIT
100 UNITS
20
80
70
SIMULATION
LOWER LIMIT
50
VS = +5V
VIN = 2V STEP
AV = +1V/V
RL = 1kΩ
90
NUMBER OF UNITS
60
100
MAX4180 FIG 11c
VS = +5V
VIN = 2V STEP
AV = +1V/V
RL = 1kΩ
70
30
50
Figure 11b. MAX4181 ±0.1dB Bandwidth Distribution (Single
Supply)
80
40
40
±0.1dB BANDWIDTH (MHz)
Figure 11a. MAX4181 -3dB Bandwidth Distribution (Single
Supply)
60
50
40
100 UNITS
30
20
10
0
10
180
190
200
210
220
230
240
250
260
270
280
290
300
RISING-EDGE SLEW RATE (V/µs)
Figure 11c. MAX4181 Rising-Edge Slew-Rate Distribution
(Single Supply)
22
MAX4180 FIG 11b
100 UNITS
15
310
0
140
150
160
170
180
190
200
210
220
230
240
250
260
FALLING-EDGE SLEW RATE (V/µs)
Figure 11d. MAX4181 Falling-Edge Slew-Rate Distribution
(Single Supply)
______________________________________________________________________________________
270
MAX4180 FIG 11d
0
20
SIMULATION
LOWER LIMIT
100 UNITS
VS = +5V
VIN = 20mVp-p
AV = +1V/V
RL = 1kΩ
25
NUMBER OF UNITS
30
30
MAX4180 FIG 11a
40
VS = +5V
VIN = 20mVp-p
AV = +1V/V
RL = 1kΩ
SIMULATION
LOWER LIMIT
NUMBER OF UNITS
50
NUMBER OF UNITS
MAX4180–MAX4187
Single/Dual/Quad, 270MHz, 1mA, SOT23,
Current-Feedback Amplifiers with Shutdown
Single/Dual/Quad, 270MHz, 1mA, SOT23,
Current-Feedback Amplifiers with Shutdown
TOP VIEW
DUAL
SINGLE
N.C. 1
IN- 2
IN+ 3
MAX4180
MAX4181
VEE 4
8
SHDN
OUTA 1
7
VCC
INA- 2
6
OUT
INA+ 3
5
N.C.
VEE 4
SO
SO
DUAL
QUAD
OUTA 1
14 VCC
OUTB
6
INB-
5
INB+
13 IND-
13 OUTB
INA- 2
12 INB-
INA+ 3
11 INB+
VCC 4
N.C. 5
7
14 OUTD
INA- 2
MAX4183
MAX4185
VCC
OUTA 1
INA+ 3
VEE 4
MAX4182
MAX4184
8
MAX4186
MAX4187
12 IND+
11 VEE
10 N.C.
INB+ 5
10 INC+
SHDNA 6
9
SHDNB
INB- 6
9
INC-
N.C. 7
8
N.C.
OUTB 7
8
OUTC
SO
SO
DUAL
QUAD
10 VCC
OUTA 1
INAINA+
2
3
9
MAX4183
MAX4185
8
OUTB
OUTA 1
16 OUTD
INA- 2
15 IND-
MAX4186
MAX4187
14 IND+
INB-
INA+ 3
13 VEE
VEE
4
7
INB+
VCC 4
SHDNA
5
6
SHDNB
INB+ 5
12 INC+
INB- 6
11 INC-
OUTB 7
10 OUTC
µMAX
9
N.C. 8
N.C.
QSOP
______________________________________________________________________________________
23
MAX4180–MAX4187
Pin Configurations (continued)
Ordering Information (continued)
Chip Information
PART
TEMP
RANGE
PINPACKAGE
TOP
MARK
MAX4180/MAX4181 TRANSISTOR COUNT: 83
SUBSTRATE CONNECTED TO VEE
MAX4181EUT-T
-40°C to +85°C
6 SOT23-6
AAAC
MAX4181ESA
-40°C to +85°C
8 SO
—
MAX4182–MAX4185 TRANSISTOR COUNT: 166
SUBSTRATE CONNECTED TO VEE
MAX4182ESA
-40°C to +85°C
8 SO
—
MAX4183EUB
-40°C to +85°C
10 µMAX*
—
MAX4183ESD
-40°C to +85°C
14 SO
—
MAX4184ESA
-40°C to +85°C
8 SO
—
MAX4185EUB
-40°C to +85°C
10 µMAX*
—
MAX4185ESD
-40°C to +85°C
14 SO
—
MAX4186ESD
-40°C to +85°C
14 SO
—
MAX4186EEE
-40°C to +85°C
16 QSOP
—
MAX4187ESD
-40°C to +85°C
14 SO
—
MAX4187EEE
-40°C to +85°C
16 QSOP
—
MAX4186/MAX4187 TRANSISTOR COUNT: 235
SUBSTRATE CONNECTED TO VEE
*Contact factory for availability.
Package Information
6LSOT.EPS
MAX4180–MAX4187
Single/Dual/Quad, 270MHz, 1mA, SOT23,
Current-Feedback Amplifiers with Shutdown
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
24 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2001 Maxim Integrated Products
Printed USA
is a registered trademark of Maxim Integrated Products.