MAXIM MAX4582

19-1328; Rev 5; 6/07
Low-Voltage, CMOS Analog
Multiplexers/Switches
____________________________Features
The MAX4581/MAX4582/MAX4583 are low-voltage,
CMOS analog ICs configured as an 8-channel multiplexer
(MAX4581), two 4-channel multiplexers (MAX4582), and
three single-pole/double-throw (SPDT) switches
(MAX4583).
These CMOS devices can operate continuously with
±2V to ±6V dual power supplies or a +2V to +12V single supply. Each switch can handle rail-to-rail analog
signals. The off-leakage current is only 1nA at +25°C or
5nA at +85°C.
♦ Offered in Automotive Temperature Range
(-40°C to +125°C)
♦ Guaranteed On-Resistance
80Ω with ±5V Supplies
Ω with Single +5V Supply
150Ω
♦ Guaranteed On-Resistance Match Between
Channels
♦ Guaranteed Low Off-Leakage Current
1nA at +25°C
♦ Guaranteed Low On-Leakage Current
1nA at +25°C
♦ +2V to +12V Single-Supply Operation
±2V to ±6V Dual-Supply Operation
♦ TTL/CMOS-Logic Compatible
♦ Low Distortion: < 0.02% (600Ω)
♦ Low Crosstalk: < -96dB (50Ω, MAX4582)
♦ High Off-Isolation: < -74dB (50Ω)
All digital inputs have 0.8V to 2.4V logic thresholds,
ensuring TTL/CMOS-logic compatibility when using a
single +5V or dual ±5V supplies.
________________________Applications
Battery-Operated Equipment
Audio and Video Signal Routing
Ordering Information
Low-Voltage Data-Acquisition Systems
Communications Circuits
Automotive
PINPACKAGE
PKG
CODE
0°C to +70°C
16 Plastic DIP
P16-1
0°C to +70°C
16 Narrow SO
S16-2
0°C to +70°C
16 TSSOP
U16-2
PART
TEMP RANGE
MAX4581CPE
MAX4581CSE
MAX4581CUE
Ordering Information continued at end of data sheet.
____________________________________Pin Configurations/Functional Diagrams
TOP VIEW
MAX4582
MAX4581
MAX4583
X4 1
16 VCC
Y0 1
16 VCC
Y1 1
16 VCC
X6 2
15 X2
Y2 2
15 X2
Y0 2
15 Y
X 3
14 X1
Y 3
14 X1
Z1 3
14 X
X7 4
13 X0
Y3 4
13 X
Z 4
13 X1
X5 5
12 X3
Y1 5
12 X0
Z0 5
12 X0
11 A
ENABLE 6
11 X3
ENABLE 6
11 A
10 B
VEE 7
VEE 7
10 B
ENABLE 6
VEE 7
GND 8
LOGIC
9
C
GND 8
DIP/SO/QSOP/TSSOP
LOGIC
10 A
9
DIP/SO/QSOP/TSSOP
B
GND 8
9
C
DIP/SO/QSOP/TSSOP
Pin Configurations continued at end of data sheet.
________________________________________________________________ Maxim Integrated Products
1
For pricing delivery, and ordering information please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
MAX4581/MAX4582/MAX4583
________________General Description
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
ABSOLUTE MAXIMUM RATINGS
Voltages Referenced to VEE
VCC .........................................................................-0.3V to 13V
Voltage into Any Terminal (Note 1) ...(VEE - 0.3V) to (VCC + 0.3V)
Continuous Current into Any Terminal..............................±20mA
Peak Current, X_, Y_, Z_
(pulsed at 1ms, 10% duty cycle) ...................................±40mA
ESD per Method 3015.7 ..................................................>2000V
Continuous Power Dissipation (TA = +70°C)
16-Pin Plastic DIP (derate 10.53mW/°C above +70°C)....842mW
16-Pin Narrow SO (derate 8.70mW/°C above +70°C) .....696mW
16-Pin QSOP (derate 8.3mW/°C above +70°C)...............667mW
16-Pin TSSOP (derate 6.7mW/°C above +70°C) .............457mW
16-Pin QFN (derate 18.5mW/°C above +70°C) .............1481mW
Operating Temperature Ranges
MAX458_C_ .........................................................0°C to +70°C
MAX458_E_ ......................................................-40°C to +85°C
MAX458_A_.....................................................-40°C to +125°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
Note 1: Voltages exceeding VCC or VEE on any signal terminal are clamped by internal diodes. Limit forward-diode current to maximum current rating.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS—Dual Supplies
(VCC = 4.5V to 5.5V, VEE = -4.5V to -5.5V, V_H = 2.4V, V_L = 0.8V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at
TA = +25°C.)
PARAMETER
SYMBOL
CONDITIONS
TEMP
MIN
TYP
MAX
UNITS
(Note 2)
ANALOG SWITCH
Analog-Signal Range
VX, VY, VZ
C, E, A
VEE
VCC
Switch On-Resistance
RON
VCC = 4.5V; VEE = -4.5V;
IX, IY, IZ = 1mA; VX, VY, VZ = 3.5V
+25°C
Switch On-Resistance
Match Between
Channels (Note 3)
∆RON
VCC = 4.5V; VEE = -4.5V;
IX, IY, IZ = 1mA; VX, VY, VZ = 3.5V
+25°C
Switch On-Resistance
Flatness (Note 4)
RFLAT(ON)
VCC = 5V; VEE = -5V; IX, IY, IZ = 1mA;
VX, VY, VZ = 3V, 0V, -3V
+25°C
X_, Y_, Z_ Off-Leakage
(Note 5)
IX_(OFF),
IY_(OFF),
IZ_(OFF)
VCC = 5.5V; VEE = -5.5V;
±
VX_, VY_, VZ_ = ±4.5V; VX, VY, VZ = 4.5V
+25°C
-1
+1
C, E, A
-10
+10
+25°C
-2
+2
X, Y, Z Off-Leakage
(Note 5)
IX(OFF),
IY(OFF),
IZ(OFF)
VCC = 5.5V; VEE = -5.5V;
VX_, VY_, VZ_ = ±4.5V;
±
VX, VY, VZ = 4.5V
C, E, A
-100
+100
+25°C
-1
+1
C, E, A
-50
+50
+25°C
-2
+2
C, E, A
-100
+100
+25°C
-1
+1
C, E, A
-50
+50
X, Y, Z On-Leakage
(Note 5)
IX(ON),
IY(ON),
IZ(ON)
C, E, A
MAX4581
MAX4582
MAX4583
MAX4582
MAX4583
80
100
1
C, E, A
MAX4581
VCC = 5.5V; VEE = -5.5V;
VX, VY, VZ = ±4.5V
50
4
6
4
C, E, A
10
12
V
Ω
Ω
Ω
nA
nA
nA
DIGITAL I/O
Logic Input Logic
Threshold High
VAH, VBH,
VCH
C, E, A
Logic Input Logic
Threshold Low
VAL, VBL,
VCL
C, E, A
2
1.5
0.8
1.5
_______________________________________________________________________________________
2.4
V
V
Low-Voltage, CMOS Analog
Multiplexers/Switches
(VCC = 4.5V to 5.5V, VEE = -4.5V to -5.5V, V_H = 2.4V, V_L = 0.8V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at
TA = +25°C.)
CONDITIONS
TEMP
MIN
TYP
MAX
UNITS
(Note 2)
PARAMETER
SYMBOL
Input-Current High
IAH, IBH,
ICH
VA, VB, VC = 2.4V
C, E, A
-1
+1
µA
Input-Current Low
IAL, IBL,
ICL
VA, VB, VC = 0.8V
C, E, A
-1
+1
µA
SWITCH DYNAMIC CHARACTERISTICS
Inhibit Turn-On Time
t(ON)
VX_, VY_, VZ_ = 3V; RL = 300Ω; CL = 35pF;
Figure 3
TA = +25°C
Inhibit Turn-Off Time
t(OFF)
VX_, VY_, VZ_ = 3V; RL = 300Ω; CL = 35pF;
Figure 3
TA = +25°C
Address Transition Time
tTRANS
VX_, VY_, VZ_ = ±3V; RL = 300Ω; CL = 35pF;
Figure 2
TA = +25°C
Break-Before-Make Time
tBBM
Charge Injection (Note 6)
Q
4
CX(ON),
CY(ON),
CZ(ON)
VX_, VY_, VZ_ = 0V; f = 1MHz;
Figure 7
Off-Isolation
VISO
RL = 50Ω, f = 1MHz, Figure 6
Channel-to-Channel
Crosstalk
VCT
RL = 50Ω, f = 1MHz, Figure 6
VCC, VEE
Power-Supply Current
ICC, IEE
4
MAX4581
MAX4582
ns
5
pC
pF
pF
6
25
TA = +25°C
17
MAX4583
pF
12.5
TA = +25°C
-74
dB
MAX4581
TA = +25°C
-78
MAX4582
TA = +25°C
-96
MAX4583
TA = +25°C
-73
pF
TA = +25°C
0.02
%
C, E, A
VCC = 5.5V, VEE = -5.5V,
VA, VB, VC, VEnable = V+ or 0
ns
ns
10
MAX4581
RL = 600Ω, 5Vp-p, f = 20Hz to 20kHz
20
ns
18
TA = +25°C
MAX4583
MAX4582
200
200
TA = +25°C
VX_, VY_, VZ_ = 0V; f = 1MHz;
Figure 7
POWER SUPPLY
Power-Supply Range
90
C, E, A
0.5
CX(OFF),
CY(OFF),
CZ(OFF)
100
150
TA = +25°C
Output Off-Capacitance
THD
C, E, A
C = 1nF, RS = 0Ω, VS = 0V
VX_, VY_, VZ_ = 0V; f = 1MHz; Figure 7
Total Harmonic
Distortion
40
TA = +25°C
CX_(OFF),
CY_(OFF),
CZ_(OFF)
200
200
VX_, VY_, VZ_ = 3V; RL = 300Ω; CL = 35pF;
Figure 4
Input Off-Capacitance
Output On-Capacitance
100
C, E, A
±2
dB
±6
TA = +25°C
-1
+1
C, E, A
-10
+10
V
µA
_______________________________________________________________________________________
3
MAX4581/MAX4582/MAX4583
ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
ELECTRICAL CHARACTERISTICS—Single +5V Supply
(VCC = 4.5V to 5.5V, VEE = 0V, V_H = 2.4V, V_L = 0.8V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)
PARAMETER
SYMBOL
CONDITIONS
TEMP
MIN
TYP
MAX
UNITS
(Note 2)
ANALOG SWITCH
Analog-Signal Range
VX_, VY_, VZ_,
VX, VY, VZ
Switch On-Resistance
RON
VCC = 4.5V; IX, IY, IZ = 1mA;
VX, VY, VZ = 3.5V
TA = +25°C
C, E, A
Switch On-Resistance
Match Between
Channels (Note 3)
∆RON
VCC = 4.5V; IX, IY, IZ = 1mA;
VX, VY, VZ = 3.5V
TA = +25°C
X_, Y_, Z Off-Leakage
(Note 5)
IX_(OFF),
IY_(OFF),
IZ_(OFF)
VCC = 5.5V; VX_, VY_, VZ_ = 1V, 4.5V;
VX, VY, VZ = 4.5V, 1V
TA = +25°C
-1
+1
C, E, A
-10
+10
X, Y, Z Off-Leakage
(Note 5)
IX(OFF),
IY(OFF),
IZ(OFF)
VCC = 5.5V;
VX_, VY_, VZ_ = 1V, 4.5V;
VX, VY, VZ = 4.5V, 1V
X, Y, Z On-Leakage
(Note 5)
IX(ON),
IY(ON),
IZ(ON)
VCC = 5.5V;
VX, VY, VZ = 4.5V, 1V
TA = +25°C
C, E, A
TA = +25°C
C, E, A
TA = +25°C
C, E, A
TA = +25°C
C, E, A
-2
-100
-1
-50
-2
-100
-1
-50
+2
+100
+1
+50
+2
+100
+1
+50
C, E, A
VEE
VCC
V
90
150
200
Ω
2
8
C, E, A
MAX4581
MAX4582
MAX4583
MAX4581
MAX4582
MAX4583
10
Ω
nA
nA
nA
DIGITAL I/O
Logic Input Logic
Threshold High
VAH, VBH, VCH,
VENABLEH
C, E, A
Logic Input Logic
Threshold Low
VAL, VBL, VCL,
VENABLEL
C, E, A
0.8
Input-Current High
IAH, IBH, ICH,
IENABLEH
VAL, VBL, VCL, VEnableL = 2.4V
C, E, A
-1
+1
µA
Input-Current Low
IAL, IBL, ICL,
IENABLEL
VAL, VBL, VCL, VEnableL = 0.8V
C, E, A
-1
+1
µA
5
200
250
100
150
200
250
pC
SWITCH DYNAMIC CHARACTERISTICS
C = 1nF, RS = 0Ω, VS = 2.5V
Charge Injection (Note 6)
Q
1.5
Enable Turn-On Time
t(ON)
VX_, VY_, VZ_ = 3V, RL = 300Ω, CL = 35pF,
Figure 3
Enable Turn-Off Time
t(OFF)
VX_, VY_, VZ_ = 3V, RL = 300Ω, CL = 35pF,
Figure 3
Address Transition
Time
tTRANS
VX_, VY_, VZ_ = 3V/0V, RL = 300Ω,
CL = 35pF, Figure 2
TA = +25°C
TA = +25°C
C, E, A
TA = +25°C
C, E, A
TA = +25°C
C, E, A
VX_, VY_, VZ_ = 3V, RL = 300Ω, CL = 35pF,
Figure 4
TA = +25°C
10
C, E, A
TA = +25°C
C, E, A
2
-1
-10
Break-Before-Make
Time
POWER SUPPLY
Power-Supply Range
Power-Supply Current
4
tBBM
VCC, VEE
ICC, IEE
VCC = 3.6V;
VA, VB, VC, VEnable = V+ or 0
2.4
1.5
0.8
100
40
80
V
30
_______________________________________________________________________________________
V
ns
ns
ns
ns
12
+1
+10
V
µA
Low-Voltage, CMOS Analog
Multiplexers/Switches
(VCC = 2.7V to 3.6V, VEE = 0V, V_H = 2.0V, V_L = 0.5V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)
PARAMETER
SYMBOL
CONDITIONS
TEMP
MIN
TYP
MAX
UNITS
(Note 2)
ANALOG SWITCH
Analog-Signal Range
VX_, VY_, VZ_,
VX, VY, VZ
Switch On-Resistance
RON
X_, Y_, Z_ Off-Leakage
(Note 5)
C, E, A
VEE
V
450
550
Ω
VCC = 2.7V; IX, IY, IZ = 0.1mA;
VX, VY, VZ = 1.5V
TA = +25°C
C, E, A
IX_(OFF),
IY_(OFF),
IZ_(OFF)
VCC = 3.6V; VX_, VY_, VZ_ = 1V, 3V;
VX, VY, VZ = 3V, 1V
TA = +25°C
-1
+1
C, E, A
-10
+10
X, Y, Z Off-Leakage
(Note 6)
IX(OFF),
IY(OFF),
IZ(OFF)
VCC = 3.6V;
VX_, VY_, VZ_ = 1V, 3.0V;
VX, VY, VZ = 3.0V, 1V
X, Y, Z On-Leakage
(Note 6)
IX(ON),
IY(ON),
IZ(ON)
VCC = 3.6V;
VX, VY, VZ = 3.0V, 1V
TA = +25°C
C, E, A
TA = +25°C
C, E, A
TA = +25°C
C, E, A
TA = +25°C
C, E, A
-2
-100
-1
-50
-2
-100
-1
-50
+2
+100
+1
+50
+2
+100
+1
+50
MAX4581
MAX4582
MAX4583
MAX4581
MAX4582
MAX4583
190
VCC
nA
nA
nA
DIGITAL I/O
Logic Input Logic
Threshold High
VAH, VBH, VCH,
VENABLEH
C, E, A
Logic Input Logic
Threshold Low
VAL, VBL, VCL,
VENABLEL
C, E, A
0.5
Input-Current High
IAH, IBH, ICH,
IENABLEH
VA, VB, VC = VEnable = 2.0V
C, E, A
-1
+1
µA
Input-Current Low
IAL, IBL, ICL,
IENABLEL
VA, VB, VC = VEnable = 0.5V
C, E, A
-1
+1
µA
1.0
SWITCH DYNAMIC CHARACTERISTICS (Note 6)
SWITCH DYNAMIC CHARACTERISTICS
VX_, VY_, VZ_ = 1.5V; RL = 300Ω;
Enable Turn-On Time
t(ON)
CL = 35pF; Figure 3
Enable Turn-Off Time
t(OFF)
Address Transition
Time
tTRANS
Break-Before-Make Time
tBBM
TA = +25°C
C, E, A
TA = +25°C
VX_, VY_, VZ_ = 1.5V; RL = 300Ω;
CL = 35pF; Figure 3
C, E, A
TA = +25°C
VX_, VY_, VZ_ = 1.5V/0V; RL = 300Ω;
CL = 35pF; Figure 2
C, E, A
VX_, VY_, VZ_ = 1.5V; RL = 300Ω; CL = 35pF TA = +25°C
15
TA = +25°C
C, E, A
-1
-10
2.0
1.0
170
50
130
V
V
300
400
200
300
300
400
40
ns
ns
ns
ns
POWER SUPPLY
Power-Supply Current
ICC, IEE
VCC = 3.6V,
VA, VB, VC, VEnable = V+ or 0
+1
+10
µA
Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.
Note 3: ∆RON = RON(MAX) - RON(MIN).
Note 4: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified
analog signal ranges; i.e., VX_, VY_, VZ_ = 3V to 0 and 0 to -3V.
Note 5: Leakage parameters are 100% tested at maximum-rated hot operating temperature, and guaranteed by correlation at TA = +25°C.
Note 6: Guaranteed by design, not production tested.
_______________________________________________________________________________________
5
MAX4581/MAX4582/MAX4583
ELECTRICAL CHARACTERISTICS—Single +3V Supply
Typical Operating Characteristics
(VCC = 5V, VEE = -5V, GND = 0V, TA = +25°C, unless otherwise noted.)
ON-RESISTANCE
vs. VX, VY, VZ AND TEMPERATURE
(DUAL SUPPLIES)
TA = +85°C
55
VCC = 2.7V,
VEE = -2.7V
VCC = 1.2V
TA = +70°C
VCC = 2V
1000
VCC = 2.7V
RON (Ω)
45
RON (Ω)
VCC = 2V,
VEE = -2V
10,000
MAX4581toc02
VCC = 1.2V,
VEE = -1.2V
100
65
MAX4581/2/3 toc01
1000
ON-RESISTANCE vs. VX, VY, VZ
(SINGLE SUPPLY)
MAX4581 toc03
ON-RESISTANCE vs. VX, VY, VZ
(DUAL SUPPLIES)
RON (Ω)
35
VCC = 3.3V
VCC = 5V
TA = +25°C
100
25
VCC = 3.3V,
VEE = -3.3V
VCC = 5V,
VEE = -5V
15
VCC = 10V
10
10
-4
-3 -2
-1
0
1
2
3
4
-5
5
-4
-3
-2
-1
0
1
2
3
4
0
5
1
2
3
4
ON-RESISTANCE
vs. VX, VY, VZ AND TEMPERATURE
(SINGLE SUPPLY)
TA = +85°C
TA = +70°C
110
6
7
OFF-LEAKAGE
vs. TEMPERATURE
100
MAX4581toc04
130
5
VX, VY, VZ (V)
VX, VY, VZ (V)
VX, VY, VZ (V)
MAX4581/2/3-05
-5
VCC = 7.5V
TA = 0°C
TA = -40°C
5
VCC = 5.5V
VEE = -5.5V
10
RON (Ω)
OFF LEAKAGE (nA)
TA = +25°C
90
70
50
TA = -40°C
TA = 0°C
1
I X, I Y, I Z
0.1
30
IX_, IY_, IZ_
0.01
10
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
-50
-25
VX, VY, VZ (V)
ON-LEAKAGE
vs. TEMPERATURE
0
25
50
75
TEMPERATURE (°C)
100
125
CHARGE INJECTION vs. VX, VY, VZ
VCC = 5.5V
VEE = -5.5V
10,000
MAX4581-07
1.5
MAX4581/2/3-toc-6
100,000
1.0
0.5
0
1000
Q (pC)
ON LEAKAGE (pA)
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
100
-0.5
VCC = 5V
VEE = 0V
-1.0
VCC = 5V
VEE = -5V
-1.5
10
-2.0
1
-2.5
-50
6
-25
0
25
50
75
TEMPERATURE (°C)
100
125
-5
-4
-3
-2
-1
0
1
2
3
VX, VY, VZ (V)
_______________________________________________________________________________________
4
5
8
9
10
Low-Voltage, CMOS Analog
Multiplexers/Switches
SUPPLY CURRENT
vs. TEMPERATURE
FREQUENCY RESPONSE
VCC = 5V
VEE = -5V
VA, VB,VC,VENABLE = 0V, 5V
LOSS (dB)
ICC, IEE (nA)
0.1
0.01
0
25
50
75
TEMPERATURE (°C)
100
-70
-80
-20
-40
ON-PHASE
-90
-100
-60
-80
-110
-120
-110
-120
125
0.1
1
10
100
FREQUENCY (MHz)
TOTAL HARMONIC DISTORTION
vs. FREQUENCY
VCC CURRENT vs. LOGIC LEVEL
(VA, VB, VC, VENABLE)
600Ω IN AND OUT
MAX4581-11
1
MAX4581-10
100
10-1
10-2
10
10-3
VCC = 12V
ICC (A)
10-4
1
10-5
10-6
VCC = 5V
10-7
10-8
0.1
10-9
10-10
10-11
0.01
100
1k
10k
100k
0
FREQUENCY (Hz)
1
2
3
4
5
6
7
8
9 10 11 12
VA, VB, VC, VENABLE
LOGIC-LEVEL THRESHOLD vs. VCC
3.0
MAX4581toc12
10
2.5
VA, VB, VC, VENABLE (V)
THD (%)
60
40
20
0
OFF-LOSS
PHASE (DEGREES)
IEE
1
80
-30
-40
-50
-60
ICC
-25
120
100
ON-LOSS
-20
10
-50
MAX4581-09
0
-10
MAX4581/2/3-08
100
2.0
1.5
1.0
0.5
0
0
1
2
3
4
5
6
7
8
9 10 11 12
VCC (V)
_______________________________________________________________________________________
7
MAX4581/MAX4582/MAX4583
Typical Operating Characteristics (continued)
(VCC = 5V, VEE = -5V, GND = 0V, TA = +25°C, unless otherwise noted.)
Low-Voltage, CMOS Analog
Multiplexers/Switches
MAX4581/MAX4582/MAX4583
Pin Description
PIN
MAX4581
MAX4582
MAX4583
NAME
DIP, SO,
TSSOP
QFN
DIP, SO,
TSSOP
QFN
DIP, SO,
TSSOP
QFN
13, 14,
15, 12,
1, 5, 2, 4
11, 12,
13, 10,
15, 3,
16, 2
—
—
—
—
3
1
13
11
14
—
—
12, 14,
15, 11
10, 12,
13, 9
—
—
1, 5, 2,
4
—
—
—
—
—
—
—
—
—
FUNCTION
X0–X7
Analog Switch Inputs 0–7
12
X
Analog Switch “X” Output
—
—
X0, X1,
X2, X3
Analog Switch “X” Inputs 0–3
15, 3,
16, 2
—
—
Y0, Y1,
Y2, Y3
Analog Switch “Y” Inputs 0–3
3
1
15
13
Y
Analog Switch “Y” Output
—
—
13
11
X1
Analog Switch “X” Normally Open Input
—
—
12
10
X0
Analog Switch “X” Normally Closed Input
—
—
1
15
Y1
Analog Switch “Y” Normally Open Input
—
—
—
2
16
Y0
Analog Switch “Y” Normally Open Input
—
—
—
—
3
1
Z1
Analog Switch “Z” Normally Open Input
—
—
—
—
5
3
Z0
Analog Switch “Z” Normally Open Input
—
—
—
—
4
2
Z
Analog Switch “Z” Output
16
14
16
14
16
14
VCC
11
9
10
8
11
9
A
Digital Address “A” Input
10
8
9
7
10
8
B
Digital Address “B” Input
9
7
—
—
9
7
C
Digital Address “C” Input
8
6
8
6
8
6
GND
Ground. Connect to digital ground. (Analog
signals have no ground reference; they are
limited to VCC and VEE.)
7
5
7
5
7
5
VEE
Negative Analog Supply-Voltage Input.
Connect to GND for
single-supply operation.
6
4
6
4
6
4
ENABLE
—
EP
—
EP
—
EP
EP
Positive Analog and Digital Supply-Voltage
Input
Digital Enable Input. Normally connected to
GND.
Exposed Pad. Connect EP to VCC.
Note: Input and output pins are identical and interchangeable. Any may be considered an input or output; signals pass equally well
in both directions.
__________Applications Information
Power-Supply Considerations
Overview
The MAX4581/MAX4582/MAX4583 construction is typical of most CMOS analog switches. They have three
8
supply pins: VCC, VEE, and GND. VCC and VEE are used
to drive the internal CMOS switches and set the limits of
the analog voltage on any switch. Reverse ESDprotection diodes are internally connected between
each analog-signal pin and both VCC and VEE. If any
analog signal exceeds VCC or VEE, one of these diodes
_______________________________________________________________________________________
Low-Voltage, CMOS Analog
Multiplexers/Switches
MAX4581/MAX4582/MAX4583
Table 1. Truth Table/Switch Programming
SELECT INPUTS
ON SWITCHES
ENABLE
INPUT
C*
B
A
MAX4581
MAX4582
MAX4583
H
X
X
X
All switches open
All switches open
All switches open
L
L
L
L
X–X0
X–X0,
Y–Y0
X–X0,
Y–Y0,
Z–Z0
L
L
L
H
X–X1
X–X1,
Y–Y1
X–X1,
Y–Y0,
Z–Z0
L
L
H
L
X–X2
X–X2,
Y–Y2
X–X0,
Y–Y1,
Z–Z0
L
L
H
H
X–X3
X–X3,
Y–Y3
X–X1,
Y–Y1,
Z–Z0
L
H
L
L
X–X4
X–X0,
Y–Y0
X–X0,
Y–Y0,
Z–Z1
L
H
L
H
X–X5
X–X1,
Y–Y1
X–X1,
Y–Y0,
Z–Z1
L
H
H
L
X–X6
X–X2,
Y–Y2
X–X0,
Y–Y1,
Z–Z1
L
H
H
H
X–X7
X–X3,
Y–Y3
X–X1,
Y–Y1,
Z–Z1
X = Don’t care
*C not present on MAX4582.
Note: Input and output pins are identical and interchangeable. Either may be considered an input or output; signals pass equally
well in either direction.
will conduct. During normal operation, these and other
reverse-biased ESD diodes leak, forming the only current drawn from VCC or VEE.
Virtually all the analog leakage current comes from the
ESD diodes. Although the ESD diodes on a given signal pin are identical and therefore fairly well balanced,
they are reverse biased differently. Each is biased by
either VCC or VEE and the analog signal. This means
their leakages will vary as the signal varies. The difference in the two diode leakages to the VCC and VEE
pins constitutes the analog-signal-path leakage current.
All analog leakage current flows between each pin and
one of the supply terminals, not to the other switch terminal. This is why both sides of a given switch can
show leakage currents of either the same or opposite
polarity.
There is no connection between the analog-signal
paths and GND.
VCC and GND power the internal logic and logic-level
translators, and set the input logic limits. The logic-level
translators convert the logic levels into switched V CC
and VEE signals to drive the gates of the analog signals. This drive signal is the only connection between
the logic supplies and signals and the analog supplies.
VCC and VEE have ESD-protection diodes to GND.
The logic-level thresholds are TTL/CMOS compatible
when VCC is +5V. As VCC rises, the threshold increases
_______________________________________________________________________________________
9
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
slightly, so when VCC reaches +12V the threshold is
about 3.1V (above the TTL-guaranteed high-level minimum of 2.8V, but still compatible with CMOS outputs).
VCC
D1
EXTERNAL
BLOCKING DIODE
Bipolar Supplies
These devices operate with bipolar supplies between
±2V and ±5V. The VCC and VEE supplies need not be
symmetrical, but their sum cannot exceed the +13V
absolute maximum rating
Single Supply
These devices operate from a single supply between
+2V and +12V when VEE is connected to GND. All of
the bipolar precautions must be observed. At room
temperature, they actually “work” with a single supply
near or below +1.7V, although as supply voltage
decreases, switch on-resistance and switching times
become very high.
Overvoltage Protection
Proper power-supply sequencing is recommended for
all CMOS devices. Do not exceed the absolute maximum ratings because stresses beyond the listed ratings can cause permanent damage to the devices.
Always sequence VCC on first, then VEE, followed by
the logic inputs and analog signals. If power-supply
sequencing is not possible, add two small signal diodes
(D1, D2) in series with the supply pins for overvoltage
protection (Figure 1).
Adding diodes reduces the analog-signal range to one
diode drop below VCC and one diode drop above VEE,
but does not affect the devices’ low switch resistance
and low leakage characteristics. Device operation is
unchanged, and the difference between VCC and VEE
should not exceed 13V. These protection diodes are
not recommended when using a single supply if signal
levels must extend to ground.
High-Frequency Performance
In 50Ω systems, signal response is reasonably flat up
to 50MHz (see Typical Operating Characteristics).
Above 20MHz, the on response has several minor
peaks which are highly layout dependent. The problem
is not turning the switch on, but turning it off. The offstate switch acts like a capacitor and passes higher
frequencies with less attenuation. At 10MHz, off isolation is about -50dB in 50Ω systems, becoming worse
(approximately 20dB per decade) as frequency increases. Higher circuit impedances also degrade off
isolation. Adjacent channel attenuation is about 3dB
above that of a bare IC socket and is entirely due to
capacitive coupling.
10
MAX4581
MAX4582
MAX4583
VCC
*
*
X, Y, Z
X_, Y_, Z_
*
*
VEE
D2
EXTERNAL
BLOCKING DIODE
VEE
*INTERNAL PROTECTION DIODES
Figure 1. Overvoltage Protection Using External Blocking
Diodes
Pin Nomenclature
The MAX4581/MAX4582/MAX4583 are pin-compatible
with the industry-standard 74HC4051/74HC4052/
74HC4053 and the MAX4051/MAX4052/MAX4053.
They function identically and have identical logic diagrams, although these parts differ electrically.
The pin designations and logic diagrams in this data
sheet conform to the original 1972 specifications published by RCA for the CD4051/CD4052/CD4053. These
designations differ from the standard Maxim switch and
mux designations as found all other Maxim data sheets
(including the MAX4051/MAX4052/MAX4053) and may
cause confusion. Designers who feel more comfortable
with Maxim’s standard designations are advised that
the pin designations and logic diagrams on the
MAX4051/MAX4052/MAX4053 data sheet may be freely
applied to the MAX4581/MAX4582/MAX4583.
______________________________________________________________________________________
Low-Voltage, CMOS Analog
Multiplexers/Switches
VCC
VA, VB, VC
A
50Ω
VA, VB, VC
VCC
X0
B
VCC
X1–X6
VX0
X7
ENABLE
90%
VEE
VOUT
X
GND
50%
0V
C
MAX4581
VCC
VEE
0V
VOUT
35pF
90%
VX7
300Ω
VEE
tTRANS
tTRANS
VCC
VA, VB
VA, VB
VCC
A
B
X0, Y0
VCC
VX0,
VY0
MAX4582 X3, Y3
ENABLE
90%
VEE
X, Y
GND
50%
0V
X1, X2, Y1, Y2
50Ω
VCC
VOUT
VEE
35pF
0V
VOUT
90%
VX3,
VY3
300Ω
VEE
tTRANS
tTRANS
VCC
VA, VB, VC
VCC
VA, VB, VC
X1, Y1, Z1
A, B, C
VEE
0V
MAX4583
ENABLE
GND
VCC
X, Y, Z
VEE
35pF
VEE
90%
0V
VOUT
300Ω
50%
VX0,
VY0,
VZ0
50Ω
X2, Y2, Z2
VCC
VOUT
90%
VX1,
VY1,
VZ1
tTRANS
tTRANS
VEE = 0V FOR SINGLE-SUPPLY OPERATION.
TEST EACH SECTION INDIVIDUALLY.
Figure 2. Address Transition Times
______________________________________________________________________________________
11
MAX4581/MAX4582/MAX4583
______________________________________________Test Circuits/Timing Diagrams
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
_________________________________Test Circuits/Timing Diagrams (continued)
VCC
A
VEnable
VCC
X0
B
VCC
VCC
50%
0V
X1–X7
VX0
C
90%
MAX4581
VENABLE
ENABLE
VOUT
X
GND
VEE
50Ω
VOUT
90%
35pF
0V
300Ω
VEE
tOFF
tON
VCC
A
B
VEnable
VCC
X0, Y0
VCC
VCC
50%
0V
X1–X3, Y1–Y3
VX0,
VY0
90%
MAX4582
VENABLE
ENABLE
X, Y
GND
VOUT
VEE
50Ω
35pF
VOUT
90%
0V
300Ω
VEE
tOFF
tON
VCC
A
B
C
VCC
VEnable
X1, Y1, Z1
X0, Y0, Z0
ENABLE
0V
VEE
VX0,
VY0,
VZ0
X, Y, Z
GND
VOUT
VEE
50Ω
35pF
300Ω
VEE
50%
VCC
MAX4583
VENABLE
VCC
90%
VOUT
90%
VX1,
VY1,
VZ1
tON
VEE = 0V FOR SINGLE-SUPPLY OPERATION.
TEST EACH SECTION INDIVIDUALLY.
Figure 3. Inhibit Switching Times
12
______________________________________________________________________________________
tOFF
Low-Voltage, CMOS Analog
Multiplexers/Switches
VCC
VCC
VA, VB, VC
VA, VB
VCC
A
X0–X7
B
50Ω
VCC
A
VCC
50Ω
X0–X3,
Y0–Y3
B
VCC
C
MAX4582
MAX4581
ENABLE
VOUT
X
GND
VEE
ENABLE
X, Y
GND
35pF
VOUT
VEE
35pF
300Ω
300Ω
VEE
VEE
VCC
VA, VB, VC
VCC
X0, X1, Y0,
Y1, Z0, Z1
A, B, C
tR < 20ns
tF < 20ns
V+
VA, VB, VC
VCC
50%
0V
50Ω
VX, VY, VZ
MAX4583
ENABLE
80%
X, Y, Z
GND
VOUT
VEE
35pF
300Ω
VEE
VOUT
0V
VEE = 0V FOR SINGLE-SUPPLY OPERATION.
TEST EACH SECTION INDIVIDUALLY.
tBBM
Figure 4. Break-Before-Make Interval
VCC
VCC
VCC
X_, Y_, Z_
A
CHANNEL
SELECT
VEnable
0V
B
C
VENABLE
MAX4581
MAX4582
MAX4583
ENABLE
GND
50Ω
X, Y, Z
VEE
VEE
VEE = 0V FOR SINGLE-SUPPLY OPERATION.
TEST EACH SECTION INDIVIDUALLY.
VOUT
∆ VOUT
VOUT
CL = 1000pF
∆ VOUT IS THE MEASURED VOLTAGE DUE TO CHARGE
TRANSFER ERROR Q WHEN THE CHANNEL TURNS OFF.
Q = ∆ VOUT X CL
Figure 5. Charge Injection
______________________________________________________________________________________
13
MAX4581/MAX4582/MAX4583
_________________________________Test Circuits/Timing Diagrams (continued)
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
_________________________________Test Circuits/Timing Diagrams (continued)
VCC 10nF
VCC
A
CHANNEL
SELECT
VIN
NETWORK
ANALYZER
50Ω
50Ω
X_, Y_, Z_
OFF-ISOLATION = 20log
VIN
B
C
MAX4581
MAX4582
MAX4583
ENABLE
GND
ON-LOSS = 20log
VOUT
X, Y, Z
VEE
MEAS.
REF.
CROSSTALK = 20log
50Ω
50Ω
10nF
VEE
MEASUREMENTS ARE STANDARDIZED AGAINST SHORT AT SOCKET TERMINALS.
OFF-ISOLATION IS MEASURED BETWEEN COM AND "OFF" NO TERMINAL ON EACH SWITCH.
ON-LOSS IS MEASURED BETWEEN COM AND "ON" NO TERMINAL ON EACH SWITCH.
CROSSTALK (MAX4582/MAX4583) IS MEASURED FROM ONE CHANNEL (A, B, C) TO ALL OTHER CHANNELS.
SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.
Figure 6. Off Isolation, On Loss, and Crosstalk
VCC
A
CHANNEL
SELECT
VCC
X_, Y_, Z_
B
C
ENABLE
MAX4581
MAX4582
MAX4583
GND
X, Y, Z
VEE
1MHz
CAPACITANCE
ANALYZER
VEE
Figure 7. Capacitance
14
VOUT
______________________________________________________________________________________
VOUT
VIN
VOUT
VIN
Low-Voltage, CMOS Analog
Multiplexers/Switches
BOTTOM VIEW
X2
13
VCC
14
X1
X0
X3
A
X1
X
X0
X3
X
X1
X0
A
12
11
10
9
12
11
10
9
12
11
10
9
8
B
X2
13
7
C
VCC
14
MAX4581
X4
15
X6
16
8
A
Y
13
7
B
VCC
14
MAX4582
*EP
6
GND
Y0
15
5
VEE
Y2
16
8
B
7
C
6
GND
5
VEE
MAX4583
*EP
6
GND
Y1
15
5
VEE
Y0
16
*EP
1
2
3
4
1
2
3
4
1
2
3
4
X
X7
X5
EN
Y
Y3
Y1
EN
Z1
Z
Z0
EN
*CONNECT EXPOSED PAD TO V+
Ordering Information (continued)
PINPACKAGE
PKG
CODE
PART
TEMP RANGE
PINPACKAGE
PKG
CODE
0°C to +70°C
16 QSOP
E16-4
MAX4582EEE
-40°C to +85°
16 QSOP
E16-4
0°C to +70°C
Dice*
—
MAX4582EGE
-40°C to +85°
16 QFN – EP**
16 Plastic DIP
P16-1
MAX4582ASE
0°C to +70°C
16 Narrow SO
S16-2
-40°C to +85°C
16 Narrow SO
S16-2
MAX4582AUE
0°C to +70°C
16 TSSOP
U16-2
MAX4581EUE
-40°C to +85°C
16 TSSOP
U16-2
MAX4583CPE
0°C to +70°C
16 Plastic DIP
P16-1
MAX4581EEE
-40°C to +85°C
16 QSOP
E16-4
MAX4583CSE
0°C to +70°C
16 Narrow SO
S16-2
MAX4581EGE
-40°C to +85°C
16 QFN – EP**
G1644-1
MAX4583CUE
0°C to +70°C
16 TSSOP
U16-2
MAX4581ASE
0°C to +70°C
16 Narrow SO
S16-2
MAX4583CEE
0°C to +70°C
16 QSOP
E16-4
MAX4581AUE
0°C to +70°C
16 TSSOP
U16-2
MAX4583C/D
0°C to +70°C
Dice*
MAX4582CPE
0°C to +70°C
16 Plastic DIP
P16-1
MAX4583EPE
-40°C to +85°
16 Plastic DIP
MAX4582CSE
0°C to +70°C
16 Narrow SO
S16-2
MAX4583ESE
-40°C to +85°
16 Narrow SO
S16-2
MAX4582CUE
0°C to +70°C
16 TSSOP
U16-2
MAX4583EUE
-40°C to +85°
16 TSSOP
U16-2
MAX4582CEE
-40°C to +85°
16 QSOP
E16-4
MAX4583EEE
-40°C to +85°
16 QSOP
E16-4
MAX4582C/D
-40°C to +85°
Dice*
—
MAX4583EGE
-40°C to +85°
16 QFN – EP**
MAX4582EPE
-40°C to +85°
16 Plastic DIP
P16-1
MAX4583ASE
-40°C to +125°
16 Narrow SO
S16-2
MAX4582ESE
-40°C to +85°
16 Narrow SO
S16-2
MAX4583AUE
-40°C to +125°
16 TSSOP
U16-2
MAX4582EUE
-40°C to +85°
16 TSSOP
U16-2
PART
TEMP RANGE
MAX4581CEE
MAX4581C/D
MAX4581EPE
-40°C to +85°C
MAX4581ESE
G1644-1
—
P16-1
G1644-1
*Contact factory for availability.
**EP = Exposed pad.
______________________________________________________________________________________
15
MAX4581/MAX4582/MAX4583
Pin Configurations/Functional Diagrams (continued)
____Chip Topographies (continued)
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
__________________________________________________________Chip Topographies
MAX4581
X6
X4
VCC
MAX4582
X2
Y2
Y0
VCC
X2
X1
X
X1
Y
N.C.
X7
X
Y3
X0
X5
X0
Y1
X3
X3
0.069"
(1.75mm)
0.069"
(1.75mm)
A
A
Enable
Enable
VEE
GND
C
0.053"
(1.35mm)
VEE
B
GND B
0.053"
(1.35mm)
N.C.
N.C. = NO CONNECTION
TRANSISTOR COUNT: 219
SUBSTRATE CONNECTED TO V+.
TRANSISTOR COUNT: 219
SUBSTRATE CONNECTED TO V+.
MAX4583
Y0
Y1
VCC
Y
X
Z1
N.C.
Z
X1
Z0
X0
0.069"
(1.75mm)
A
Enable
VEE
GND C
0.053"
(1.35mm)
B
N.C. = NO CONNECTION
TRANSISTOR COUNT: 219
SUBSTRATE CONNECTED TO V+.
16
______________________________________________________________________________________
Low-Voltage, CMOS Analog
Multiplexers/Switches
32L QFN.EPS
______________________________________________________________________________________
17
MAX4581/MAX4582/MAX4583
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)
MAX4581/MAX4582/MAX4583
Low-Voltage, CMOS Analog
Multiplexers/Switches
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)
Revision History
Pages changed at Rev 5: 1, 8, 15, 16, 18
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
18 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2007 Maxim Integrated Products
is a registered trademark of Maxim Integrated Products, Inc.