MAXIM MAX9424EVKIT

19-2473; Rev 0; 5/02
MAX9424 Evaluation Kit
Features
♦ Controlled 50Ω Coplanar Impedance Traces
♦ Output Trace Lengths Matched to < 1mil
(25.4 x 10-3mm)
♦ Frequency Range
2GHz (min) at Asynchronous Mode
3GHz (min) at Synchronous Mode
♦ 32-Pin TQFP 5mm x 5mm Package
♦ Surface-Mount Construction
♦ Fully Assembled and Tested
Ordering Information
PART
MAX9424EVKIT
TEMP RANGE
0°C to +70°C
IC PACKAGE
32 TQFP 5mm ✕ 5mm
Note: To evaluate the MAX9425EHJ/MAX9426EHJ/MAX9427EHJ,
request a MAX9425EHJ/MAX9426EHJ/MAX9427EHJ free sample
with the MAX9424EVKIT.
Component List
DESIGNATION
C1, C2, C3
C4–C12
C13–C21
JU1–JU4
QTY
DESCRIPTION
DESIGNATION
QTY
R1, R2, R5–R8
6
49.9Ω ±1% resistors (0402)
3
10µF ±10%, 10V tantalum capacitors
(case B)
AVX TAJB106K010R or
Kemet T494B106010AS
R3, R4
0
Not installed, resistor (0402)
R9–R36
28
100Ω ±1% resistors (1210), 1/4W
IN0–IN3,
IN0–IN3,
OUT0–OUT3,
OUT0–OUT3,
CLK, CLK
18
SMA edge-mount connectors
9
0.1µF ±10%, 16V X7R ceramic chip
capacitors (0603)
Taiyo Yuden EMK107BJ104KA or
Murata GRM39X7R104K016A or
equivalent
U1
1
MAX9424EHJ
(32-pin TQFP 5mm x 5mm)
None
4
Shunts
9
0.01µF ±10%, 16V X7R ceramic
capacitors (0402)
Taiyo Yuden EMK105BJ103KW or
Murata GRM36X7R103K016AD or
equivalent
None
1
MAX9424 PC board
None
1
MAX9424 EV kit data sheet
None
1
MAX9424 data sheet
4
3-pin headers
DESCRIPTION
Component Suppliers
SUPPLIER
AVX
PHONE
843-946-0238
FAX
843-626-3123
WEBSITE
www.avxcorp.com
Kemet
864-963-6300
864-963-6322
www.kemet.com
Murata
770-436-1300
770-436-3030
www.murata.com
Taiyo Yuden
800-348-2496
847-925-0899
www.t-yuden.com
Note: Please indicate that you are using the MAX9424/MAX9425/MAX9426/MAX9427 when contacting these component suppliers.
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
1
Evaluates: MAX9424–MAX9427
General Description
The MAX9424 evaluation kit (EV kit) is a fully assembled
and tested surface-mount printed circuit (PC) board.
The EV kit includes the MAX9424, a four-channel lowskew PECL/LVPECL-to-ECL/LVECL translator. The EV
kit accepts differential PECL/LVPECL input signals and
converts these differential ECL/LVECL signals at an
operating frequency up to 3GHz.
The MAX9424 EV kit is a four-layer PC board with 50Ω
controlled-impedance traces. It can also be used to
evaluate the MAX9425/MAX9426/MAX9427 PECL/
LVPECL-to-ECL/LVECL translators with different internal
input and output terminations (Table 3).
Evaluates: MAX9424–MAX9427
MAX9424 Evaluation Kit
Quick Start
The MAX9424 EV kit is a fully assembled and tested
surface-mount board. Follow the steps below to verify
board operation. Do not turn on the power supplies
until all connections are completed.
Recommended Equipment
• Signal generator (e.g., Agilent 8133A 3GHz pulse
generator)
• 12GHz (min) bandwidth oscilloscope with internal
50Ω termination (e.g., Tektronix11801C digital sampling oscilloscope with the SD-24 sampling head)
• Three power supplies:
a) One 2.0V ±0.001V with 1A current capability
b) One adjustable -3.50V to -0.375V with 200mA current capability
c) One adjustable 4.375V to 7.50V with 300mA current capability
• Additional power supply (for VBAIS): one adjustable
2.50V to 5.00V with 1A current capability
Asynchronous Operation
1) Verify that shunts are across jumpers JU1 (SEL)
and JU3 (EN) pins 1 and 2, and jumpers JU2 (SEL)
and JU4 (EN), pins 2 and 3.
2) Connect two matched coax cables to OUT1 and
OUT1. Connect the other end of the cables to an
oscilloscope.
3) Connect two matched coax cables to IN1 and IN1.
Connect the other end of the cables to a signal
generator that provides differential square waves
with the following settings:
a) Frequency = 2GHz
b) VIH = 3.4V, VIL = 3.2V
c) Duty cycle = 50%
4) Connect one coax cable to the trigger output of the
signal generator. Connect the other end to the trigger input of the oscilloscope.
5) Connect a 2.000V power supply to the VGG pad.
Connect the supply ground to the GND pad closest
to VGG.
6) Connect a 5.30V power supply to the VCC pad.
Connect the supply ground to the GND pad closest
to VCC.
7) Connect a -1.30V power supply to the VEE pad.
Connect the supply ground to the GND pad closest
to VEE.
2
8) Connect a 3.40V power supply to the VBIAS pad.
Connect the supply ground to the GND pad closest
to VBAIS.
9) Connect CLK and all unused positive inputs (IN0,
IN2, IN3) to the VBIAS pad.
10) Connect CLK and all unused negative inputs (IN0,
IN2, IN3) to VGG.
11) Turn on the power supplies in the following order:
VCC, VGG, VEE, then VBIAS.
12) Enable the pulse generator and verify the differential output signal:
a) Frequency = 2GHz
b) VOD ≥ 400mV
c) Duty cycle = 50%
Note: To evaluate other channels, make sure corresponding output termination resistors on the EV kit
board are removed, and the unused outputs are terminated with a 50Ω termination resistor. To eliminate signal distortion, use matched cables of the same type
and length for both the inputs and outputs. All unused
inputs should be biased.
Detailed Description
The MAX9424 EV kit contains an extremely fast, lowskew quad PECL/LVPECL-to-ECL/LVECL translator.
The EV kit demonstrates ultra-low propagation delay
and channel-to-channel skew, and can be operated
synchronously with an external clock, or in asynchronous mode, depending on the state of the SEL input.
Power Supply
MAX9424–MAX9427 are specified with outputs terminated with 50Ω to VCC - 2V. In order to terminate the
outputs with 50Ω to VCC - 2V using the 50Ω oscilloscope input termination, VGG is set to 2.000V. An additional 2.50V to 5.00V power supply is required to bias
all unused positive inputs to a known state. All unused
negative inputs should be connected to VGG. To avoid
damaging the IC, turn on the power supply in the following sequence: VCC, VGG, VEE, then VBIAS. In an
actual application, VCC, VGG, and VEE can have different supplies (refer to the MAX9424–MAX9427 data
sheet), and VBIAS can be eliminated.
Enable and Select
The MAX9424 provides pins EN and EN to enable the
outputs, and pins SEL and SEL to select asynchronous
or synchronous operation. The MAX9424 EV kit incorporates jumpers JU1–JU4 to drive these pins to either
VBIAS or VGG (see Tables 1 and 2).
_______________________________________________________________________________________
MAX9424 Evaluation Kit
JU1
SHUNT
LOCATION
JU2
SHUNT
LOCATION
MAX9424
SEL PIN
MAX9424
SEL PIN
1 and 2
Connected to VBIAS
2 and 3
Connected to VGG
2 and 3
Connected to VGG
1 and 2
Connected to VBIAS
All other combinations (not driven externally)
MAX9424
OPERATING
MODE
Asynchronous mode
Synchronous mode
Undefined
Table 2. Jumpers JU3 and JU4 Functions
JU3
SHUNT
LOCATION
JU4
SHUNT
LOCATION
MAX9424
EN PIN
MAX9424
EN PIN
1 and 2
Connected to VBIAS
2 and 3
Connected to VGG
2 and 3
Connected to VGG
1 and 2
Connected to VBIAS
All other combinations (not driven externally)
An external signal can be used to drive any of the EN,
EN, SEL, and SEL control pins by removing the shunt
completely from the appropriate jumpers and connecting the external signal to the appropriate SMA connector. The MAX9424 EV kit does not provide SMA
connectors for EN, EN, SEL, and SEL. Before connecting external signals to the EN, EN, SEL, and SEL pins,
verify there are no shunts across jumpers JU1–JU4,
and add SMA connectors to the appropriate pads.
Evaluating the
MAX9425/MAX9426/MAX9427
The MAX9424 EV kit is a four-layer PC board with 50Ω
controlled-impedance input traces with 50Ω termination
(two parallel 100Ω resistors). All output signal traces
are also 50Ω controlled-impedance traces with 49.9Ω
termination resistors.
The MAX9424 EV kit can be used to evaluate the
MAX9425/MAX9426/MAX9427 after some modifications.
Table 3 shows the on-chip input and output termination
resistor arrangement for each part.
MAX9424
OUTPUTS
Enabled
Disabled
Undefined
• To evaluate the MAX9425, replace the MAX9424EHJ
with a MAX9425EHJ and remove all output termination
resistors R1 to R8. The output is half-amplitude compared to an open output because of the voltagedivider formed by the on-chip series 50Ω and the 50Ω
oscilloscope input.
• To evaluate the MAX9426, replace the MAX9424EHJ
with a MAX9426EHJ and remove all input termination
resistors R9 to R24.
• To evaluate the MAX9427, replace the MAX9424EHJ
with a MAX9427EHJ and remove all input and output
termination resistors R1 to R24. The output is halfamplitude compared to an open output because of
the voltage-divider formed by the on-chip series 50Ω
and the 50Ω oscilloscope input.
Table 3. On-Chip Input and Output
Termination
PART
MAX9424
MAX9425
MAX9426
MAX9427
INPUT
TERMINATION
RESISTOR
Open
Open
100Ω
100Ω
OUTPUT
TERMINATION
RESISTOR
Open
50Ω
Open
50Ω
_______________________________________________________________________________________
3
Evaluates: MAX9424–MAX9427
Table 1. Jumpers JU1 and JU2 Functions
Evaluates: MAX9424–MAX9427
MAX9424 Evaluation Kit
OUT0
OUT0
SMA
SMA
R1
49.9Ω
1%
R2
49.9Ω
1%
IN0
IN1
SMA
SMA
VEE
R12
100Ω
1%
R11
100Ω
1%
R10
100Ω
1%
R9
100Ω
1%
VGG
C12
0.1µF
C11
0.1µF
C21
0.01µF
C20
0.01µF
R13
100Ω
1%
R14
100Ω
1%
IN0
IN1
SMA
VBIAS
VBIAS
SMA
R15
100Ω
1%
GND
32
VCC
GND
1
C1
10µF
10V
C4
0.1µF
C13
0.01µF
31
30
IN0
IN0
VCC
VGG
29
28
OUT0
OUT0
26
VEE
VGG
25
IN1
IN1
24
VGG
C19
0.01µF
C10
0.1µF
VBIAS
SEL
1
2
3
SMA
JU1
VBIAS VGG
SEL
SMA
1
2
3
2
R35
100Ω
1%
R36
100Ω
1%
R33
100Ω
1%
R34
100Ω
1%
R31
100Ω
1%
R32
100Ω
1%
R29
100Ω
1%
R30
100Ω
1%
R27
100Ω
1%
R28
100Ω
1%
R25
100Ω
1%
R26
100Ω
1%
JU2
CLK
OUT1
SEL
OUT1
CLK
5
VBIAS
EN
1
2
3
SMA
JU3
VBIAS VGG
EN
1
2
3
6
JU4
21
VEE
C18
0.01µF
MAX9424
CLK
VEE
EN
OUT2
EN
OUT2
VCC
IN3
IN3
9
C5
0.1µF
OUT1
SMA
22
VGG
10
11
C14
0.01µF
IN3
VGG
SMA
R23
100Ω
1%
R24
100Ω
1%
C15
0.01µF
OUT3
OUT3
12
13
C6
0.1µF
R22
100Ω
1%
C16
0.01µF
VGG
IN2
IN2
14
15
20
C3
10µF
10V
GND
OUT2
SMA
19
OUT2
SMA
18
R8
49.9Ω
1%
R7
49.9Ω
1%
VGG
17
C17
0.01µF
16
C8
0.1µF
C2
10µF
10V
IN2
VEE
SMA
R17
100Ω
1%
OUT3
SMA
SMA
R21
100Ω
1%
VEE
C7
0.1µF
OUT3
IN3
SMA
R18
100Ω
1%
IN2
SMA
R19
100Ω
1%
R20
100Ω
1%
Figure 1. MAX9424 EV Kit Schematic
4
C9
0.1µF
R6
49.9Ω
1%
8
VCC
SMA
R5
49.9Ω
1%
7
VGG
VEE
U1
CLK
SMA
OUT1
23
R4
OPEN
4
SMA
SEL
R3
OPEN
3
VGG
SMA
27
R16
100Ω
1%
_______________________________________________________________________________________
GND
MAX9424 Evaluation Kit
Figure 3. MAX9424 EV Kit PC Board Layout—Component Side
Figure 4. MAX9424 EV Kit PC Board Layout—Inner Layer 2
(GND Layer)
_______________________________________________________________________________________
5
Evaluates: MAX9424–MAX9427
Figure 2. MAX9424 EV Kit Component Placement Guide—
Component Side
Evaluates: MAX9424–MAX9427
MAX9424 Evaluation Kit
Figure 5. MAX9424 EV Kit PC Board Layout—Inner Layer 3
(VCC Layer)
Figure 6. MAX9424 EV Kit PC Board Layout—Solder Side
Figure 7. MAX9424 EV Kit Component Placement Guide—
Solder Side
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
6 _____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2002 Maxim Integrated Products
Printed USA
is a registered trademark of Maxim Integrated Products.