19-2473; Rev 0; 5/02 MAX9424 Evaluation Kit Features ♦ Controlled 50Ω Coplanar Impedance Traces ♦ Output Trace Lengths Matched to < 1mil (25.4 x 10-3mm) ♦ Frequency Range 2GHz (min) at Asynchronous Mode 3GHz (min) at Synchronous Mode ♦ 32-Pin TQFP 5mm x 5mm Package ♦ Surface-Mount Construction ♦ Fully Assembled and Tested Ordering Information PART MAX9424EVKIT TEMP RANGE 0°C to +70°C IC PACKAGE 32 TQFP 5mm ✕ 5mm Note: To evaluate the MAX9425EHJ/MAX9426EHJ/MAX9427EHJ, request a MAX9425EHJ/MAX9426EHJ/MAX9427EHJ free sample with the MAX9424EVKIT. Component List DESIGNATION C1, C2, C3 C4–C12 C13–C21 JU1–JU4 QTY DESCRIPTION DESIGNATION QTY R1, R2, R5–R8 6 49.9Ω ±1% resistors (0402) 3 10µF ±10%, 10V tantalum capacitors (case B) AVX TAJB106K010R or Kemet T494B106010AS R3, R4 0 Not installed, resistor (0402) R9–R36 28 100Ω ±1% resistors (1210), 1/4W IN0–IN3, IN0–IN3, OUT0–OUT3, OUT0–OUT3, CLK, CLK 18 SMA edge-mount connectors 9 0.1µF ±10%, 16V X7R ceramic chip capacitors (0603) Taiyo Yuden EMK107BJ104KA or Murata GRM39X7R104K016A or equivalent U1 1 MAX9424EHJ (32-pin TQFP 5mm x 5mm) None 4 Shunts 9 0.01µF ±10%, 16V X7R ceramic capacitors (0402) Taiyo Yuden EMK105BJ103KW or Murata GRM36X7R103K016AD or equivalent None 1 MAX9424 PC board None 1 MAX9424 EV kit data sheet None 1 MAX9424 data sheet 4 3-pin headers DESCRIPTION Component Suppliers SUPPLIER AVX PHONE 843-946-0238 FAX 843-626-3123 WEBSITE www.avxcorp.com Kemet 864-963-6300 864-963-6322 www.kemet.com Murata 770-436-1300 770-436-3030 www.murata.com Taiyo Yuden 800-348-2496 847-925-0899 www.t-yuden.com Note: Please indicate that you are using the MAX9424/MAX9425/MAX9426/MAX9427 when contacting these component suppliers. ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. 1 Evaluates: MAX9424–MAX9427 General Description The MAX9424 evaluation kit (EV kit) is a fully assembled and tested surface-mount printed circuit (PC) board. The EV kit includes the MAX9424, a four-channel lowskew PECL/LVPECL-to-ECL/LVECL translator. The EV kit accepts differential PECL/LVPECL input signals and converts these differential ECL/LVECL signals at an operating frequency up to 3GHz. The MAX9424 EV kit is a four-layer PC board with 50Ω controlled-impedance traces. It can also be used to evaluate the MAX9425/MAX9426/MAX9427 PECL/ LVPECL-to-ECL/LVECL translators with different internal input and output terminations (Table 3). Evaluates: MAX9424–MAX9427 MAX9424 Evaluation Kit Quick Start The MAX9424 EV kit is a fully assembled and tested surface-mount board. Follow the steps below to verify board operation. Do not turn on the power supplies until all connections are completed. Recommended Equipment • Signal generator (e.g., Agilent 8133A 3GHz pulse generator) • 12GHz (min) bandwidth oscilloscope with internal 50Ω termination (e.g., Tektronix11801C digital sampling oscilloscope with the SD-24 sampling head) • Three power supplies: a) One 2.0V ±0.001V with 1A current capability b) One adjustable -3.50V to -0.375V with 200mA current capability c) One adjustable 4.375V to 7.50V with 300mA current capability • Additional power supply (for VBAIS): one adjustable 2.50V to 5.00V with 1A current capability Asynchronous Operation 1) Verify that shunts are across jumpers JU1 (SEL) and JU3 (EN) pins 1 and 2, and jumpers JU2 (SEL) and JU4 (EN), pins 2 and 3. 2) Connect two matched coax cables to OUT1 and OUT1. Connect the other end of the cables to an oscilloscope. 3) Connect two matched coax cables to IN1 and IN1. Connect the other end of the cables to a signal generator that provides differential square waves with the following settings: a) Frequency = 2GHz b) VIH = 3.4V, VIL = 3.2V c) Duty cycle = 50% 4) Connect one coax cable to the trigger output of the signal generator. Connect the other end to the trigger input of the oscilloscope. 5) Connect a 2.000V power supply to the VGG pad. Connect the supply ground to the GND pad closest to VGG. 6) Connect a 5.30V power supply to the VCC pad. Connect the supply ground to the GND pad closest to VCC. 7) Connect a -1.30V power supply to the VEE pad. Connect the supply ground to the GND pad closest to VEE. 2 8) Connect a 3.40V power supply to the VBIAS pad. Connect the supply ground to the GND pad closest to VBAIS. 9) Connect CLK and all unused positive inputs (IN0, IN2, IN3) to the VBIAS pad. 10) Connect CLK and all unused negative inputs (IN0, IN2, IN3) to VGG. 11) Turn on the power supplies in the following order: VCC, VGG, VEE, then VBIAS. 12) Enable the pulse generator and verify the differential output signal: a) Frequency = 2GHz b) VOD ≥ 400mV c) Duty cycle = 50% Note: To evaluate other channels, make sure corresponding output termination resistors on the EV kit board are removed, and the unused outputs are terminated with a 50Ω termination resistor. To eliminate signal distortion, use matched cables of the same type and length for both the inputs and outputs. All unused inputs should be biased. Detailed Description The MAX9424 EV kit contains an extremely fast, lowskew quad PECL/LVPECL-to-ECL/LVECL translator. The EV kit demonstrates ultra-low propagation delay and channel-to-channel skew, and can be operated synchronously with an external clock, or in asynchronous mode, depending on the state of the SEL input. Power Supply MAX9424–MAX9427 are specified with outputs terminated with 50Ω to VCC - 2V. In order to terminate the outputs with 50Ω to VCC - 2V using the 50Ω oscilloscope input termination, VGG is set to 2.000V. An additional 2.50V to 5.00V power supply is required to bias all unused positive inputs to a known state. All unused negative inputs should be connected to VGG. To avoid damaging the IC, turn on the power supply in the following sequence: VCC, VGG, VEE, then VBIAS. In an actual application, VCC, VGG, and VEE can have different supplies (refer to the MAX9424–MAX9427 data sheet), and VBIAS can be eliminated. Enable and Select The MAX9424 provides pins EN and EN to enable the outputs, and pins SEL and SEL to select asynchronous or synchronous operation. The MAX9424 EV kit incorporates jumpers JU1–JU4 to drive these pins to either VBIAS or VGG (see Tables 1 and 2). _______________________________________________________________________________________ MAX9424 Evaluation Kit JU1 SHUNT LOCATION JU2 SHUNT LOCATION MAX9424 SEL PIN MAX9424 SEL PIN 1 and 2 Connected to VBIAS 2 and 3 Connected to VGG 2 and 3 Connected to VGG 1 and 2 Connected to VBIAS All other combinations (not driven externally) MAX9424 OPERATING MODE Asynchronous mode Synchronous mode Undefined Table 2. Jumpers JU3 and JU4 Functions JU3 SHUNT LOCATION JU4 SHUNT LOCATION MAX9424 EN PIN MAX9424 EN PIN 1 and 2 Connected to VBIAS 2 and 3 Connected to VGG 2 and 3 Connected to VGG 1 and 2 Connected to VBIAS All other combinations (not driven externally) An external signal can be used to drive any of the EN, EN, SEL, and SEL control pins by removing the shunt completely from the appropriate jumpers and connecting the external signal to the appropriate SMA connector. The MAX9424 EV kit does not provide SMA connectors for EN, EN, SEL, and SEL. Before connecting external signals to the EN, EN, SEL, and SEL pins, verify there are no shunts across jumpers JU1–JU4, and add SMA connectors to the appropriate pads. Evaluating the MAX9425/MAX9426/MAX9427 The MAX9424 EV kit is a four-layer PC board with 50Ω controlled-impedance input traces with 50Ω termination (two parallel 100Ω resistors). All output signal traces are also 50Ω controlled-impedance traces with 49.9Ω termination resistors. The MAX9424 EV kit can be used to evaluate the MAX9425/MAX9426/MAX9427 after some modifications. Table 3 shows the on-chip input and output termination resistor arrangement for each part. MAX9424 OUTPUTS Enabled Disabled Undefined • To evaluate the MAX9425, replace the MAX9424EHJ with a MAX9425EHJ and remove all output termination resistors R1 to R8. The output is half-amplitude compared to an open output because of the voltagedivider formed by the on-chip series 50Ω and the 50Ω oscilloscope input. • To evaluate the MAX9426, replace the MAX9424EHJ with a MAX9426EHJ and remove all input termination resistors R9 to R24. • To evaluate the MAX9427, replace the MAX9424EHJ with a MAX9427EHJ and remove all input and output termination resistors R1 to R24. The output is halfamplitude compared to an open output because of the voltage-divider formed by the on-chip series 50Ω and the 50Ω oscilloscope input. Table 3. On-Chip Input and Output Termination PART MAX9424 MAX9425 MAX9426 MAX9427 INPUT TERMINATION RESISTOR Open Open 100Ω 100Ω OUTPUT TERMINATION RESISTOR Open 50Ω Open 50Ω _______________________________________________________________________________________ 3 Evaluates: MAX9424–MAX9427 Table 1. Jumpers JU1 and JU2 Functions Evaluates: MAX9424–MAX9427 MAX9424 Evaluation Kit OUT0 OUT0 SMA SMA R1 49.9Ω 1% R2 49.9Ω 1% IN0 IN1 SMA SMA VEE R12 100Ω 1% R11 100Ω 1% R10 100Ω 1% R9 100Ω 1% VGG C12 0.1µF C11 0.1µF C21 0.01µF C20 0.01µF R13 100Ω 1% R14 100Ω 1% IN0 IN1 SMA VBIAS VBIAS SMA R15 100Ω 1% GND 32 VCC GND 1 C1 10µF 10V C4 0.1µF C13 0.01µF 31 30 IN0 IN0 VCC VGG 29 28 OUT0 OUT0 26 VEE VGG 25 IN1 IN1 24 VGG C19 0.01µF C10 0.1µF VBIAS SEL 1 2 3 SMA JU1 VBIAS VGG SEL SMA 1 2 3 2 R35 100Ω 1% R36 100Ω 1% R33 100Ω 1% R34 100Ω 1% R31 100Ω 1% R32 100Ω 1% R29 100Ω 1% R30 100Ω 1% R27 100Ω 1% R28 100Ω 1% R25 100Ω 1% R26 100Ω 1% JU2 CLK OUT1 SEL OUT1 CLK 5 VBIAS EN 1 2 3 SMA JU3 VBIAS VGG EN 1 2 3 6 JU4 21 VEE C18 0.01µF MAX9424 CLK VEE EN OUT2 EN OUT2 VCC IN3 IN3 9 C5 0.1µF OUT1 SMA 22 VGG 10 11 C14 0.01µF IN3 VGG SMA R23 100Ω 1% R24 100Ω 1% C15 0.01µF OUT3 OUT3 12 13 C6 0.1µF R22 100Ω 1% C16 0.01µF VGG IN2 IN2 14 15 20 C3 10µF 10V GND OUT2 SMA 19 OUT2 SMA 18 R8 49.9Ω 1% R7 49.9Ω 1% VGG 17 C17 0.01µF 16 C8 0.1µF C2 10µF 10V IN2 VEE SMA R17 100Ω 1% OUT3 SMA SMA R21 100Ω 1% VEE C7 0.1µF OUT3 IN3 SMA R18 100Ω 1% IN2 SMA R19 100Ω 1% R20 100Ω 1% Figure 1. MAX9424 EV Kit Schematic 4 C9 0.1µF R6 49.9Ω 1% 8 VCC SMA R5 49.9Ω 1% 7 VGG VEE U1 CLK SMA OUT1 23 R4 OPEN 4 SMA SEL R3 OPEN 3 VGG SMA 27 R16 100Ω 1% _______________________________________________________________________________________ GND MAX9424 Evaluation Kit Figure 3. MAX9424 EV Kit PC Board Layout—Component Side Figure 4. MAX9424 EV Kit PC Board Layout—Inner Layer 2 (GND Layer) _______________________________________________________________________________________ 5 Evaluates: MAX9424–MAX9427 Figure 2. MAX9424 EV Kit Component Placement Guide— Component Side Evaluates: MAX9424–MAX9427 MAX9424 Evaluation Kit Figure 5. MAX9424 EV Kit PC Board Layout—Inner Layer 3 (VCC Layer) Figure 6. MAX9424 EV Kit PC Board Layout—Solder Side Figure 7. MAX9424 EV Kit Component Placement Guide— Solder Side Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 6 _____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2002 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.