MOTOROLA MC68HC908AZ60A

M68HC08M68H
C08M68HC08M
68HC08M68HC
MC68HC908AZ60A/D
REV 2.0
MC68HC908AZ60A
MC68HC908AS60A
Technical Data
HCMOS
Microcontroller Unit
MC68HC908AZ60A
MC68HC908AS60A
Technical Data — Rev 2.0
Motorola reserves the right to make changes without further notice to any products
herein. Motorola makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Motorola assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. "Typical" parameters which may be provided in Motorola data sheets and/or
specifications can and do vary in different applications and actual performance may
vary over time. All operating parameters, including "Typicals" must be validated for
each customer application by customer’s technical experts. Motorola does not convey
any license under its patent rights nor the rights of others. Motorola products are not
designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Motorola products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal
injury or death associated with such unintended or unauthorized use, even if such claim
alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
Motorola and
are registered trademarks of Motorola, Inc.
DigitalDNA is a trademark of Motorola, Inc.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
© Motorola, Inc., 2001
Technical Data
3
Technical Data
4
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data — MC68HC908AZ60A
List of Paragraphs
Section 1. General Description . . . . . . . . . . . . . . . . . . . . 31
Section 2. Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Section 3. RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Section 4. FLASH-1 Memory . . . . . . . . . . . . . . . . . . . . . . 65
Section 5. FLASH-2 Memory . . . . . . . . . . . . . . . . . . . . . . 77
Section 6. EEPROM-1 Memory. . . . . . . . . . . . . . . . . . . . . 89
Section 7. EEPROM-2 Memory. . . . . . . . . . . . . . . . . . . . 109
Section 8. Central Processor Unit (CPU) . . . . . . . . . . . 129
Section 9. System Integration Module (SIM) . . . . . . . . 147
Section 10. Clock Generator Module (CGM) . . . . . . . . . 169
Section 11. Configuration Register (CONFIG-1). . . . . . 197
Section 12. Configuration Register (CONFIG-2). . . . . . 201
Section 13. Break Module (BRK) . . . . . . . . . . . . . . . . . . 203
Section 14. Monitor ROM (MON) . . . . . . . . . . . . . . . . . . 209
Section 15. Computer Operating Properly (COP) . . . . 223
Section 16. Low Voltage Inhibit (LVI) . . . . . . . . . . . . . . 229
Section 17. External Interrupt Module (IRQ) . . . . . . . . . 235
Section 18. Serial Communications Interface (SCI) . . . 243
Section 19. Serial Peripheral Interface (SPI). . . . . . . . . 285
Section 20. Timer Interface Module B (TIMB) . . . . . . . . 317
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
List of Paragraphs
5
List of Paragraphs
Section 21. Programmable Interrupt Timer (PIT) . . . . . 343
Section 22. Input/Output Ports . . . . . . . . . . . . . . . . . . . 353
Section 23. MSCAN Controller (MSCAN08) . . . . . . . . . 379
Section 24. Keyboard Module (KBD) . . . . . . . . . . . . . . . 431
Section 25. Timer Interface Module A (TIMA) . . . . . . . . 441
Section 26. Analog-to-Digital Converter (ADC) . . . . . . 471
Section 27. Byte Data Link Controller (BDLC) . . . . . . . 483
Section 28. Electrical Specifications. . . . . . . . . . . . . . . 529
Section 29. MC68HC908AS60 and MC68HC908AZ60 . 553
Technical Data
6
MC68HC908AZ60A — Rev 2.0
List of Paragraphs
MOTOROLA
Technical Data — MC68HC908AZ60A
Table of Contents
Section 1. General Description
1.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.4
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.5
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.6
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Section 2. Memory Map
2.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.3
I/O Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.4
Additional Status and Control Registers . . . . . . . . . . . . . . . . . . 58
2.5
Vector Addresses and Priority . . . . . . . . . . . . . . . . . . . . . . . . . 61
Section 3. RAM
3.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Section 4. FLASH-1 Memory
4.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Table of Contents
7
Table of Contents
4.3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4
FLASH-1 Control and Block Protect Registers . . . . . . . . . . . . . 67
4.5
FLASH-1 Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.6
FLASH-1 Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . 71
4.7
FLASH-1 Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . 72
4.8
FLASH-1 Program Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.9
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
Section 5. FLASH-2 Memory
5.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.4
FLASH-2 Control and Block Protect Registers . . . . . . . . . . . . . 79
5.5
FLASH-2 Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.6
FLASH-2 Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . 83
5.7
FLASH-2 Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . 84
5.8
FLASH-2 Program Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.9
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
Section 6. EEPROM-1 Memory
6.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.4
EEPROM-1 Register Summary . . . . . . . . . . . . . . . . . . . . . . . . 91
6.5
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.6
EEPROM-1 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . 99
6.7
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
Technical Data
8
MC68HC908AZ60A — Rev 2.0
Table of Contents
MOTOROLA
Table of Contents
Section 7. EEPROM-2 Memory
7.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.4
EEPROM-2 Register Summary . . . . . . . . . . . . . . . . . . . . . . . 111
7.5
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.6
EEPROM-2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . 119
7.7
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127
Section 8. Central Processor Unit (CPU)
8.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8.4
CPU registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8.5
Arithmetic/logic unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
8.6
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136
8.7
CPU during break interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.8
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.9
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Section 9. System Integration Module (SIM)
9.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
9.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
9.3
SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . 150
9.4
Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . 152
9.5
SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
9.6
Program Exception Control. . . . . . . . . . . . . . . . . . . . . . . . . . . 157
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Table of Contents
9
Table of Contents
9.7
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162
9.8
SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Section 10. Clock Generator Module (CGM)
10.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
10.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
10.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
10.4
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
10.5
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
10.6
CGM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183
10.7
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189
10.8
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189
10.9
CGM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . 190
10.10 Acquisition/Lock Time Specifications . . . . . . . . . . . . . . . . . . .190
Section 11. Configuration Register (CONFIG-1)
11.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
11.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
11.3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Section 12. Configuration Register (CONFIG-2)
12.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
12.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
12.3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Section 13. Break Module (BRK)
13.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
13.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Technical Data
10
MC68HC908AZ60A — Rev 2.0
Table of Contents
MOTOROLA
Table of Contents
13.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
13.4
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
13.5
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206
13.6
Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207
Section 14. Monitor ROM (MON)
14.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
14.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
14.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
14.4
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Section 15. Computer Operating Properly (COP)
15.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
15.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
15.3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
15.4
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
15.5
COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
15.6
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
15.7
Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
15.8
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227
15.9
COP Module During Break Interrupts . . . . . . . . . . . . . . . . . . . 228
Section 16. Low Voltage Inhibit (LVI)
16.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
16.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
16.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
16.4
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Table of Contents
11
Table of Contents
16.5
LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
16.6
LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
16.7
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234
Section 17. External Interrupt Module (IRQ)
17.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
17.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
17.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
17.4
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
17.5
IRQ Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
17.6
IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . .240
17.7
IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . . 240
Section 18. Serial Communications Interface (SCI)
18.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
18.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
18.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
18.4
Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
18.5
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
18.6
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263
18.7
SCI During Break Module Interrupts. . . . . . . . . . . . . . . . . . . . 264
18.8
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
18.9
I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Section 19. Serial Peripheral Interface (SPI)
19.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
19.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
Technical Data
12
MC68HC908AZ60A — Rev 2.0
Table of Contents
MOTOROLA
Table of Contents
19.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
19.4
Pin Name and Register Name Conventions . . . . . . . . . . . . . . 287
19.5
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
19.6
Transmission Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
19.7
Error Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
19.8
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
19.9
Queuing Transmission Data . . . . . . . . . . . . . . . . . . . . . . . . . . 302
19.10 Resetting the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
19.11 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .305
19.12 SPI During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .305
19.13 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
19.14 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
Section 20. Timer Interface Module B (TIMB)
20.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
20.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
20.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
20.4
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
20.5
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
20.6
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329
20.7
TIMB During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . 329
20.8
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
20.9
I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
Section 21. Programmable Interrupt Timer (PIT)
21.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
21.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Table of Contents
13
Table of Contents
21.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
21.4
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
21.5
PIT Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
21.6
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .346
21.7
PIT During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .347
21.8
I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
Section 22. Input/Output Ports
22.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
22.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
22.3
Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
22.4
Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
22.5
Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
22.6
Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
22.7
Port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
22.8
Port F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
22.9
Port G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .373
22.10 Port H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
Section 23. MSCAN Controller (MSCAN08)
23.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
23.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
23.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
23.4
External Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
23.5
Message Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
23.6
Identifier Acceptance Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
23.7
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
Technical Data
14
MC68HC908AZ60A — Rev 2.0
Table of Contents
MOTOROLA
Table of Contents
23.8
Protocol Violation Protection. . . . . . . . . . . . . . . . . . . . . . . . . . 394
23.9
Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .394
23.10 Timer Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
23.11 Clock System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
23.12 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
23.13 Programmer’s Model of Message Storage . . . . . . . . . . . . . . .403
23.14 Programmer’s Model of Control Registers . . . . . . . . . . . . . . . 408
Section 24. Keyboard Module (KBD)
24.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
24.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
24.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
24.4
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
24.5
Keyboard Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
24.6
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .436
24.7
Keyboard Module During Break Interrupts . . . . . . . . . . . . . . .436
24.8
I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
Section 25. Timer Interface Module A (TIMA)
25.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
25.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
25.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
25.4
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
25.5
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
25.6
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .455
25.7
TIMA During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . 455
25.8
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Table of Contents
15
Table of Contents
25.9
I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
Section 26. Analog-to-Digital Converter (ADC)
26.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
26.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
26.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
26.4
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
26.5
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
26.6
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .475
26.7
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
26.8
I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
Section 27. Byte Data Link Controller (BDLC)
27.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
27.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484
27.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484
27.4
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
27.5
BDLC MUX Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
27.6
BDLC Protocol Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
27.7
BDLC CPU Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
27.8
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .527
Section 28. Electrical Specifications
28.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
28.2
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
28.3
Mechanical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
Technical Data
16
MC68HC908AZ60A — Rev 2.0
Table of Contents
MOTOROLA
Table of Contents
Section 29. MC68HC908AS60 and MC68HC908AZ60
29.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
29.2
Changes from the MC68HC908AS60 and MC68HC908AZ60
(non-A suffix devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
Revision History
Major Changes Between Revision 2.0 and Revision 1.0 . . . . 559
Major Changes Between Revision 1.0 and Revision 0.0 . . . . 559
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Table of Contents
17
Table of Contents
Technical Data
18
MC68HC908AZ60A — Rev 2.0
Table of Contents
MOTOROLA
Technical Data — MC68HC908AZ60A
List of Figures
Figure
1-1
1-2
1-3
1-4
1-5
1-6
2-1
2-2
2-3
4-1
4-2
4-3
4-4
5-1
5-2
5-3
5-4
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
Title
MCU Block Diagram for the MC68HC908AZ60A (64-Pin QFP)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
MCU Block Diagram for the MC68HC908AS60A (64-Pin QFP
and 52-pin PLCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
MC68HC908AZ60A (64-Pin QFP) . . . . . . . . . . . . . . . . . . . . . . 37
MC68HC908AS60A (64-Pin QFP) . . . . . . . . . . . . . . . . . . . . . . 38
MC68HC908AS60A (52-Pin PLCC) . . . . . . . . . . . . . . . . . . . . . 39
Power supply bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
Memory Map (Continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
I/O Data, Status and Control Registers . . . . . . . . . . . . . . . . . . 54
Additional Status and Control Registers . . . . . . . . . . . . . . . . . . 59
FLASH-1 Control Register (FL1CR) . . . . . . . . . . . . . . . . . . . . . 67
FLASH-1 Block Protect Register (FL1BPR) . . . . . . . . . . . . . . . 68
FLASH-1 Block Protect Start Address . . . . . . . . . . . . . . . . . . . 69
FLASH Programming Algorithm Flowchart. . . . . . . . . . . . . . . .75
FLASH-2 Control Register (FL2CR) . . . . . . . . . . . . . . . . . . . . . 79
FLASH-2 Block Protect Register (FL2BPR) . . . . . . . . . . . . . . . 80
FLASH-2 Block Protect Start Address . . . . . . . . . . . . . . . . . . . 81
FLASH Programming Algorithm Flowchart. . . . . . . . . . . . . . . .87
EEPROM-1 Register Summary . . . . . . . . . . . . . . . . . . . . . . . . 91
EEPROM-1 Control Register (EE1CR). . . . . . . . . . . . . . . . . . . 99
EEPROM-1 Array Configuration Register (EE1ACR). . . . . . . 101
EEPROM-1 Nonvolatile Register (EE1NVR) . . . . . . . . . . . . . 103
EE1DIV Divider High Register (EE1DIVH) . . . . . . . . . . . . . . .104
EE1DIV Divider Low Register (EE1DIVL). . . . . . . . . . . . . . . . 104
EEPROM-1 Divider Non-Volatile Register High (EE1DIVHNVR))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
EEPROM-1 Divider Non-Volatile Register Low (EE1DIVLNVR)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Page
Technical Data
List of Figures
19
List of Figures
7-1
7-2
7-3
7-4
7-5
7-6
7-7
EEPROM-2 Register Summary . . . . . . . . . . . . . . . . . . . . . . . 111
EEPROM-2 Control Register (EE2CR). . . . . . . . . . . . . . . . . . 119
EEPROM-2 Array Configuration Register (EE2ACR). . . . . . . 121
EEPROM-2 Nonvolatile Register (EE2NVR) . . . . . . . . . . . . . 123
EE2DIV Divider High Register (EE2DIVH) . . . . . . . . . . . . . . .124
EE2DIV Divider Low Register (EE2DIVL). . . . . . . . . . . . . . . . 124
EEPROM-2 Divider Non-Volatile Register High (EE2DIVHNVR))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7-8
EEPROM-2 Divider Non-Volatile Register Low (EE2DIVLNVR)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8-1
CPU registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8-2
Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8-3
Index register (H:X). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8-4
Stack pointer (SP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8-5
Program counter (PC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8-6
Condition code register (CCR) . . . . . . . . . . . . . . . . . . . . . . . . 133
9-1
SIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
9-2
SIM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . 149
9-3
CGM Clock Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
9-4
External Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
9-5
Internal Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
9-6
Sources of Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
9-7
POR Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
9-8
Interrupt Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
9-9
Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
9-10 Interrupt Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160
9-11 Interrupt Recognition Example . . . . . . . . . . . . . . . . . . . . . . . . 161
9-12 Wait Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163
9-13 Wait Recovery from Interrupt or Break . . . . . . . . . . . . . . . . . . 163
9-14 Wait Recovery from Internal Reset. . . . . . . . . . . . . . . . . . . . . 164
9-15 Stop Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165
9-16 Stop Mode Recovery from Interrupt or Break . . . . . . . . . . . . . 165
9-17 SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . . . . 166
9-18 SIM Reset Status Register (SRSR) . . . . . . . . . . . . . . . . . . . . 167
9-19 SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . . . . 168
10-1 CGM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
10-2 I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
10-3 CGM External Connections . . . . . . . . . . . . . . . . . . . . . . . . . .181
Technical Data
20
MC68HC908AZ60A — Rev 2.0
List of Figures
MOTOROLA
List of Figures
10-4
10-5
10-6
11-1
12-1
13-1
13-2
13-3
13-4
14-1
14-2
14-3
14-4
14-5
14-6
15-1
15-2
16-1
16-2
16-3
17-1
17-2
17-3
18-1
18-2
18-3
18-4
18-5
18-6
18-7
18-8
18-9
18-10
18-11
18-12
18-13
18-14
18-15
PLL Control Register (PCTL) . . . . . . . . . . . . . . . . . . . . . . . . . 183
PLL Bandwidth Control Register (PBWC) . . . . . . . . . . . . . . . 185
PLL Programming Register (PPG) . . . . . . . . . . . . . . . . . . . . . 187
Configuration Register (CONFIG-1) . . . . . . . . . . . . . . . . . . . . 198
Configuration Register (CONFIG-2) . . . . . . . . . . . . . . . . . . . . 201
Break Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 204
I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Break Status and Control Register (BSCR) . . . . . . . . . . . . . . 207
Break Address Registers (BRKH and BRKL) . . . . . . . . . . . . . 208
Monitor Mode Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Monitor Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Sample Monitor Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Read Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Break Transaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Monitor Mode Entry Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . 220
COP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
COP Control Register (COPCTL) . . . . . . . . . . . . . . . . . . . . . .227
LVI Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
LVI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
LVI Status Register (LVISR) . . . . . . . . . . . . . . . . . . . . . . . . . . 233
IRQ Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
IRQ Interrupt Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
IRQ Status and Control Register (ISCR) . . . . . . . . . . . . . . . . 240
SCI Module Block Diagram
. . . . . . . . . . . . . . . . . . . . . . . . 246
SCI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
SCI Data Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
SCI Transmitter
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
SCI Transmitter I/O Register Summary . . . . . . . . . . . . . . . . . 251
SCI Receiver Block Diagram
. . . . . . . . . . . . . . . . . . . . . . 254
SCI I/O Receiver Register Summary . . . . . . . . . . . . . . . . . . .255
Receiver Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257
Slow Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Fast Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .260
SCI Control Register 1 (SCC1). . . . . . . . . . . . . . . . . . . . . . . . 266
SCI Control Register 2 (SCC2). . . . . . . . . . . . . . . . . . . . . . . . 269
SCI Control Register 3 (SCC3). . . . . . . . . . . . . . . . . . . . . . . . 272
SCI Status Register 1 (SCS1) . . . . . . . . . . . . . . . . . . . . . . . . 274
Flag Clearing Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . .276
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
List of Figures
21
List of Figures
18-16
18-17
18-18
19-1
19-2
19-3
19-4
19-5
19-6
19-7
19-8
19-9
19-10
19-11
19-12
19-13
20-1
20-2
20-3
20-4
20-5
20-6
20-7
20-8
20-9
21-1
21-2
21-3
21-4
21-5
22-1
22-2
22-3
22-4
22-5
22-6
22-7
SCI Status Register 2 (SCS2) . . . . . . . . . . . . . . . . . . . . . . . . 278
SCI Data Register (SCDR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
SCI Baud Rate Register (SCBR) . . . . . . . . . . . . . . . . . . . . . . 279
SPI Module Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Full-Duplex Master-Slave Connections . . . . . . . . . . . . . . . . . 290
Transmission Format (CPHA = 0) . . . . . . . . . . . . . . . . . . . . . 293
Transmission Format (CPHA = 1) . . . . . . . . . . . . . . . . . . . . . 294
Transmission Start Delay (Master) . . . . . . . . . . . . . . . . . . . . . 296
Missed Read of Overflow Condition . . . . . . . . . . . . . . . . . . . . 298
Clearing SPRF When OVRF Interrupt Is Not Enabled . . . . . . 299
SPI Interrupt Request Generation . . . . . . . . . . . . . . . . . . . . . 302
SPRF/SPTE CPU Interrupt Timing . . . . . . . . . . . . . . . . . . . . . 303
CPHA/SS Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
SPI Control Register (SPCR) . . . . . . . . . . . . . . . . . . . . . . . . . 310
SPI Status and Control Register (SPSCR) . . . . . . . . . . . . . . .313
SPI Data Register (SPDR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
TIMB Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
TIMB I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 320
PWM Period and Pulse Width . . . . . . . . . . . . . . . . . . . . . . . . 325
TIMB Status and Control Register (TBSC) . . . . . . . . . . . . . . .331
TIMB Counter Registers (TBCNTH and TBCNTL) . . . . . . . . . 334
TIMB Counter Modulo Registers (TBMODH and TBMODL) . 335
TIMB Channel Status and Control Registers (TBSC0–TBSC1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
CHxMAX Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
TIMB Channel Registers (TBCH0H/L–TBCH1H/L) . . . . . . . . 341
PIT Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344
PIT I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
PIT Status and Control Register (PSC) . . . . . . . . . . . . . . . . . 348
PIT Counter Registers (PCNTH–PCNTL). . . . . . . . . . . . . . . . 350
PIT Counter Modulo Registers (PMODH–PMODL) . . . . . . . . 351
I/O Port Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . 354
Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . . .355
Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . . . 355
Port A I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . . .357
Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . . . 358
Port B I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
Technical Data
22
MC68HC908AZ60A — Rev 2.0
List of Figures
MOTOROLA
List of Figures
22-8
22-9
22-10
22-11
22-12
22-13
22-14
22-15
22-16
22-17
22-18
22-19
22-20
22-21
22-22
22-23
22-24
22-25
23-1
23-2
23-3
23-4
23-5
23-6
23-7
23-8
23-9
23-10
23-11
23-12
23-13
23-14
23-15
23-16
23-17
23-18
23-19
Port C Data Register (PTC) . . . . . . . . . . . . . . . . . . . . . . . . . .360
Data Direction Register C (DDRC) . . . . . . . . . . . . . . . . . . . . . 361
Port C I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . . . .363
Data Direction Register D (DDRD) . . . . . . . . . . . . . . . . . . . . . 364
Port D I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
Port E Data Register (PTE) . . . . . . . . . . . . . . . . . . . . . . . . . .366
Data Direction Register E (DDRE) . . . . . . . . . . . . . . . . . . . . . 368
Port E I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
Port F Data Register (PTF). . . . . . . . . . . . . . . . . . . . . . . . . . . 370
Data Direction Register F (DDRF) . . . . . . . . . . . . . . . . . . . . . 371
Port F I/O Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
Port G Data Register (PTG) . . . . . . . . . . . . . . . . . . . . . . . . . .373
Data Direction Register G (DDRG). . . . . . . . . . . . . . . . . . . . . 374
Port G I/O Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
Port H Data Register (PTH) . . . . . . . . . . . . . . . . . . . . . . . . . .376
Data Direction Register H (DDRH) . . . . . . . . . . . . . . . . . . . . . 377
Port H I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
The CAN System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
User Model for Message Buffer Organization. . . . . . . . . . . . . 386
Single 32-Bit Maskable Identifier Acceptance Filter . . . . . . . .389
Dual 16-Bit Maskable Acceptance Filters . . . . . . . . . . . . . . . . 390
Quadruple 8-Bit Maskable Acceptance Filters . . . . . . . . . . . .391
Sleep Request/Acknowledge Cycle . . . . . . . . . . . . . . . . . . . . 396
Clocking Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
Segments within the Bit Time . . . . . . . . . . . . . . . . . . . . . . . . . 401
MSCAN08 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . .402
Message Buffer Organization . . . . . . . . . . . . . . . . . . . . . . . . . 403
Receive/Transmit Message Buffer Extended Identifier (IDRn)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
Standard Identifier Mapping . . . . . . . . . . . . . . . . . . . . . . . . . .406
Transmit Buffer Priority Register (TBPR) . . . . . . . . . . . . . . . . 408
MSCAN08 Control Register Structure . . . . . . . . . . . . . . . . . . 409
Module Control Register 0 (CMCR0) . . . . . . . . . . . . . . . . . . .411
Module Control Register (CMCR1). . . . . . . . . . . . . . . . . . . . . 413
Bus Timing Register 0 (CBTR0) . . . . . . . . . . . . . . . . . . . . . . . 414
Bus Timing Register 1 (CBTR1) . . . . . . . . . . . . . . . . . . . . . . . 415
Receiver Flag Register (CRFLG) . . . . . . . . . . . . . . . . . . . . . . 417
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
List of Figures
23
List of Figures
23-20
23-21
23-22
23-23
23-24
23-25
23-26
23-27
24-1
24-2
24-3
24-4
25-1
25-2
25-3
25-4
25-5
25-6
25-7
25-8
25-9
26-1
26-2
26-3
26-4
27-1
27-2
27-3
27-4
27-5
27-6
27-7
27-8
27-9
27-10
27-11
27-12
Receiver Interrupt Enable Register (CRIER) . . . . . . . . . . . . . 420
Transmitter Flag Register (CTFLG) . . . . . . . . . . . . . . . . . . . . 421
Transmitter Control Register (CTCR) . . . . . . . . . . . . . . . . . . . 423
Identifier Acceptance Control Register (CIDAC). . . . . . . . . . . 424
Receiver Error Counter (CRXERR) . . . . . . . . . . . . . . . . . . . . 425
Transmit Error Counter (CTXERR). . . . . . . . . . . . . . . . . . . . . 426
Identifier Acceptance Registers (CIDAR0–CIDAR3) . . . . . . . 427
Identifier Mask Registers (CIDMR0–CIDMR3) . . . . . . . . . . . . 428
Keyboard Module Block Diagram . . . . . . . . . . . . . . . . . . . . 433
I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
Keyboard Status and Control Register (KBSCR) . . . . . . . . . . 437
Keyboard Interrupt Enable Register (KBIER) . . . . . . . . . . . . . 438
TIMA Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
TIMA I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 444
PWM Period and Pulse Width . . . . . . . . . . . . . . . . . . . . . . . . 450
TIMA Status and Control Register (TASC) . . . . . . . . . . . . . . .457
TIMA Counter Registers (TACNTH and TACNTL) . . . . . . . . . 460
TIMA Counter Modulo Registers (TAMODH and TAMODL) . 461
TIMA Channel Status and Control Registers (TASC0–TASC5)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
CHxMAX Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
TIMA Channel Registers (TACH0H/L–TACH5H/L) . . . . . . . . 468
ADC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
ADC Status and Control Register (ADSCR) . . . . . . . . . . . . . . 477
ADC Data Register (ADR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
ADC Input Clock Register (ADICLK) . . . . . . . . . . . . . . . . . . .480
BDLC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
BDLC Operating Modes State Diagram . . . . . . . . . . . . . . . . . 487
BDLC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
BDLC Rx Digital Filter Block Diagram . . . . . . . . . . . . . . . . . . 491
J1850 Bus Message Format (VPW) . . . . . . . . . . . . . . . . . . . . 493
J1850 VPW Symbols with Nominal Symbol Times. . . . . . . . . 498
J1850 VPW Received Passive Symbol Times . . . . . . . . . . . . 501
J1850 VPW Received Passive EOF and IFS Symbol Times .502
J1850 VPW Received Active Symbol Times . . . . . . . . . . . . . 503
J1850 VPW Received BREAK Symbol Times . . . . . . . . . . . .504
J1850 VPW Bitwise Arbitrations . . . . . . . . . . . . . . . . . . . . . . . 505
BDLC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
Technical Data
24
MC68HC908AZ60A — Rev 2.0
List of Figures
MOTOROLA
List of Figures
27-13
27-14
27-15
27-16
27-17
27-18
27-19
27-20
28-1
28-2
28-3
BDLC Protocol Handler Outline . . . . . . . . . . . . . . . . . . . . . . . 507
BDLC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
BDLC Analog and Roundtrip Delay Register (BARD) . . . . . . 513
BDLC Control Register 1 (BCR1) . . . . . . . . . . . . . . . . . . . . . .514
BDLC Control Register 2 (BCR2) . . . . . . . . . . . . . . . . . . . . . .517
Types of In-Frame Response (IFR) . . . . . . . . . . . . . . . . . . . . 520
BDLC State Vector Register (BSVR) . . . . . . . . . . . . . . . . . . .524
BDLC Data Register (BDR) . . . . . . . . . . . . . . . . . . . . . . . . . .526
SPI Master Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . .537
SPI Slave Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 538
BDLC Variable Pulse Width Modulation (VPW) Symbol Timing
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
List of Figures
25
List of Figures
Technical Data
26
MC68HC908AZ60A — Rev 2.0
List of Figures
MOTOROLA
Technical Data — MC68HC908AZ60A
List of Tables
Table
1-1
1-3
1-2
1-4
2-1
6-1
6-2
6-3
6-4
7-1
7-2
7-3
7-4
8-1
8-2
9-1
9-2
9-3
10-1
10-2
10-3
13-1
14-1
14-2
14-3
14-4
14-5
14-6
14-7
Title
External Pins Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Clock Source Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Clock Signal Naming Conventions . . . . . . . . . . . . . . . . . . . . . . 47
MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Vector Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
EEPROM-1 Array Address Blocks . . . . . . . . . . . . . . . . . . . . . . 94
Example Selective Bit Programming Description . . . . . . . . . . . 95
EEPROM-1 Program/Erase Mode Select. . . . . . . . . . . . . . . . . 99
EEPROM-1 Block Protect and Security Summary . . . . . . . . . 102
EEPROM-2 Array Address Blocks . . . . . . . . . . . . . . . . . . . . . 114
Example Selective Bit Programming Description . . . . . . . . . . 115
EEPROM-2 Program/Erase Mode Select. . . . . . . . . . . . . . . . 120
EEPROM-2 Block Protect and Security Summary . . . . . . . . . 122
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
I/O Register Address Summary . . . . . . . . . . . . . . . . . . . . . . . 150
Signal Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
PIN Bit Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152
I/O Register Address Summary . . . . . . . . . . . . . . . . . . . . . . . 173
Variable Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
VCO Frequency Multiplier (N) Selection. . . . . . . . . . . . . . . . . 188
I/O Register Address Summary . . . . . . . . . . . . . . . . . . . . . . . 205
Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212
Mode Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
READ (Read Memory) Command . . . . . . . . . . . . . . . . . . . . . 215
WRITE (Write Memory) Command. . . . . . . . . . . . . . . . . . . . . 216
IREAD (Indexed Read) Command . . . . . . . . . . . . . . . . . . . . . 216
IWRITE (Indexed Write) Command . . . . . . . . . . . . . . . . . . . . 217
READSP (Read Stack Pointer) Command . . . . . . . . . . . . . . .217
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Page
Technical Data
List of Tables
27
List of Tables
14-8
14-9
14-10
16-1
17-1
18-1
18-2
18-3
18-4
18-5
18-6
18-7
18-8
18-9
18-10
18-11
19-1
19-2
19-3
19-4
19-5
19-6
20-1
20-2
21-1
21-2
22-1
22-2
22-3
22-4
22-5
22-6
22-7
22-8
23-1
23-2
23-3
23-4
RUN (Run User Program) Command . . . . . . . . . . . . . . . . . . . 218
MC68HC908AS60A Monitor Baud Rate Selection . . . . . . . . . 218
MC68HC908AZ60A Monitor Baud Rate Selection . . . . . . . . 219
LVIOUT Bit Indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
IRQ I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
SCI I/O Register Address Summary . . . . . . . . . . . . . . . . . . . . 247
SCI Transmitter I/O Address Summary . . . . . . . . . . . . . . . . . 251
SCI Receiver I/O Address Summary . . . . . . . . . . . . . . . . . . .255
Start Bit Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Data Bit Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Stop Bit Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Character Format Selection . . . . . . . . . . . . . . . . . . . . . . . . . .268
SCI Baud Rate Prescaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
SCI Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
SCI Baud Rate Selection Examples . . . . . . . . . . . . . . . . . . . . 281
Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
I/O Register Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
SPI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
SPI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
SPI Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
SPI Master Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . 315
Prescaler Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
Mode, Edge, and Level Selection . . . . . . . . . . . . . . . . . . . . . .339
PIT I/O Register Address Summary . . . . . . . . . . . . . . . . . . . . 345
Prescaler Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
Port A Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
Port B Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
Port C Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
Port D Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
Port E Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
Port F Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
Port G Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
Port H Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
MSCAN08 Interrupt Vector Addresses . . . . . . . . . . . . . . . . . . 393
MSCAN08 vs CPU operating modes . . . . . . . . . . . . . . . . . . .395
Time segment syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
CAN Standard Compliant Bit Time Segment Settings . . . . . . 402
Technical Data
28
MC68HC908AZ60A — Rev 2.0
List of Tables
MOTOROLA
List of Tables
23-5
23-6
23-7
23-8
23-9
23-10
24-1
25-1
25-2
26-1
26-2
27-1
27-2
27-3
27-4
27-5
Data Length Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
Synchronization Jump Width . . . . . . . . . . . . . . . . . . . . . . . . . 414
Baud Rate Prescaler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
Time Segment Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
Identifier Acceptance Mode Settings . . . . . . . . . . . . . . . . . . .424
Identifier Acceptance Hit Indication . . . . . . . . . . . . . . . . . . . . 425
I/O Register Address Summary . . . . . . . . . . . . . . . . . . . . . . . 433
Prescaler Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
Mode, Edge, and Level Selection . . . . . . . . . . . . . . . . . . . . . .466
Mux Channel Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
ADC Clock Divide Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
BDLC I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . 486
BDLC J1850 Bus Error Summary. . . . . . . . . . . . . . . . . . . . . .511
BDLC Transceiver Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
BDLC Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516
BDLC Transmit In-Frame Response Control Bit Priority Encoding
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
27-6 BDLC Interrupt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
List of Tables
29
List of Tables
Technical Data
30
MC68HC908AZ60A — Rev 2.0
List of Tables
MOTOROLA
Technical Data — MC68HC908AZ60A
Section 1. General Description
1.1 Contents
1.2
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.3
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.4
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.5
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.5.1
Power Supply Pins (VDD and VSS) . . . . . . . . . . . . . . . . . . 40
1.5.2
Oscillator Pins (OSC1 and OSC2). . . . . . . . . . . . . . . . . . . 41
1.5.3
External Reset Pin (RST) . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.5.4
External Interrupt Pin (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . 41
1.5.5
Analog Power Supply Pin (VDDA) . . . . . . . . . . . . . . . . . . . 41
1.5.6
Analog Ground Pin (VSSA) . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.5.7
External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . .41
1.5.8
ADC Analog Power Supply Pin (VDDAREF) . . . . . . . . . . 42
1.5.9
ADC Analog Ground Pin (AVSS/VREFL) . . . . . . . . . . . . .42
1.5.10 ADC Reference High Voltage Pin (VREFH) . . . . . . . . . . . 42
1.5.11 Port A Input/Output (I/O) Pins (PTA7–PTA0) . . . . . . . . . . 42
1.5.12 Port B I/O Pins (PTB7/ATD7–PTB0/ATD0) . . . . . . . . . . . . 42
1.5.13 Port C I/O Pins (PTC5–PTC0) . . . . . . . . . . . . . . . . . . . . . . 42
1.5.14 Port D I/O Pins (PTD7–PTD0/ATD8) . . . . . . . . . . . . . . . . . 43
1.5.15 Port E I/O Pins (PTE7/SPSCK–PTE0/TxD) . . . . . . . . . . . . 43
1.5.16 Port F I/O Pins (PTF6–PTF0/TACH2). . . . . . . . . . . . . . . . . 43
1.5.17 Port G I/O Pins (PTG2/KBD2–PTG0/KBD0) . . . . . . . . . . . 43
1.5.18 Port H I/O Pins (PTH1/KBD4–PTH0/KBD3). . . . . . . . . . . . 44
1.5.19 CAN Transmit Pin (CANTx) . . . . . . . . . . . . . . . . . . . . . . . . 44
1.5.20 CAN Receive Pin (CANRx). . . . . . . . . . . . . . . . . . . . . . . . . 44
1.5.21 BDLC Transmit Pin (BDTxD) . . . . . . . . . . . . . . . . . . . . . . .44
1.5.22 BDLC Receive Pin (BDRxD) . . . . . . . . . . . . . . . . . . . . . . . 44
1.6
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.6.1
MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
General Description
31
General Description
1.2 Introduction
The MC68HC908AS60A and MC68HC908AZ60A are members of the
low-cost, high-performance M68HC08 Family of 8-bit microcontroller
units (MCUs). The M68HC08 Family is based on the customer-specified
integrated circuit (CSIC) design strategy. All MCUs in the family use the
enhanced M68HC08 central processor unit (CPU08) and are available
with a variety of modules, memory sizes and types, and package types.
These parts are designed to emulate the MC68HC08ASxx and
MC68HC08AZxx automotive families and may offer extra features which
are not available on those devices. It is the user’s responsibility to ensure
compatibility between the features used on the MC68HC908AS60A and
MC68HC908AZ60A and those which are available on the device which
will ultimately be used in the application.
1.3 Features
Features of the MC68HC908AS60A and MC68HC908AZ60A include:
•
High-Performance M68HC08 Architecture
•
Fully Upward-Compatible Object Code with M6805, M146805,
and M68HC05 Families
•
8.4 MHz Internal Bus Frequency
•
60 Kbytes of FLASH Electrically Erasable Read-Only Memory
(FLASH)
•
FLASH Data Security
•
1 Kbyte of On-Chip Electrically Erasable Programmable ReadOnly Memory with Security Option (EEPROM)
•
2 Kbyte of On-Chip RAM
•
Clock Generator Module (CGM)
•
Serial Peripheral Interface Module (SPI)
•
Serial Communications Interface Module (SCI)
•
8-Bit, 15-Channel Analog-to-Digital Converter (ADC-15)
Technical Data
32
MC68HC908AZ60A — Rev 2.0
General Description
MOTOROLA
General Description
Features
•
16-Bit, 6-Channel Timer Interface Module (TIMA-6)
•
Programmable Interrupt Timer (PIT)
•
System Protection Features
– Computer Operating Properly (COP) with Optional Reset
– Low-Voltage Detection with Optional Reset
– Illegal Opcode Detection with Optional Reset
– Illegal Address Detection with Optional Reset
•
Low-Power Design (Fully Static with Stop and Wait Modes)
•
Master Reset Pin and Power-On Reset
•
16-Bit, 2-Channel Timer Interface Module (TIMB) (AZ only)
•
5-Bit Keyboard Interrupt Module (64-Pin QFP only)
•
MSCAN Controller (Motorola Scalable CAN) implements CAN
2.0b Protocol as Defined in BOSCH Specification September
1991 (AZ only)
•
SAE J1850 Byte Data Link Controller Digital Module (AS only)
Features of the CPU08 include:
•
Enhanced HC05 Programming Model
•
Extensive Loop Control Functions
•
16 Addressing Modes (Eight More Than the HC05)
•
16-Bit Index Register and Stack Pointer
•
Memory-to-Memory Data Transfers
•
Fast 8 × 8 Multiply Instruction
•
Fast 16/8 Divide Instruction
•
Binary-Coded Decimal (BCD) Instructions
•
Optimization for Controller Applications
•
C Language Support
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
General Description
33
General Description
1.4 MCU Block Diagram
Figure 1-1 shows the structure of the MC68HC908AZ60A
Figure 1-2 shows the structure of the MC68HC908AS60A
Technical Data
34
MC68HC908AZ60A — Rev 2.0
General Description
MOTOROLA
General Description
ARITHMETIC/LOGIC
UNIT (ALU)
VSS
VDD
VDDA
VSSA
AVSS/VREFL
VDDAREF
PROGRAMMABLE INTERRUPT TIMER
MODULE
KEYBOARD INTERRUPT
MODULE
DDRA
CANRx
CANTx
PTH1/KBD4–PTH0/KBD3
PTG2/KBD2–PTG0/KBD0
PTF3/TACH5-PTF0/TACH2
PTF5/TBCH1–PTF4/TBCH0
PTE7/SPSCK
PTE6/MOSI
PTE5/MISO
PTE4/SS
PTE3/TACH1
PTE2/TACH0
PTE1/RxD
PTE0/TxD
PTF6
PTD3/ATD11-PTD0/ATD8
PTD7
PTD6/ATD14/TACLK
PTD5/ATD13
PTD4/ATD12/TBCLK
PTC5–PTC3
PTC2/MCLK
PTC1–PTC0
PTB7/ATD7–PTB0/ATD0
PTA7–PTA0
MSCAN MODULE
Figure 1-1. MCU Block Diagram for the MC68HC908AZ60A (64-Pin QFP)
POWER
POWER-ON RESET
MODULE
IRQ MODULE
SERIAL PERIPHERAL
INTERFACE MODULE
SYSTEM INTEGRATION
MODULE
RST
IRQ
SERIAL COMMUNICATIONS
INTERFACE MODULE
TIMER B INTERFACE
MODULE
USER FLASH VECTOR SPACE — 52 BYTES
CLOCK GENERATOR
MODULE
TIMER A 6 CHANNEL
INTERFACE MODULE
MONITOR ROM — 256 BYTES
OSC1
OSC2
CGMXFC
COMPUTER OPERATING
PROPERLY MODULE
LOW-VOLTAGE INHIBIT
MODULE
BREAK MODULE
ANALOG-TO-DIGITAL
MODULE
USER EEPROM — 1024 BYTES
USER RAM — 2048BYTES
USER FLASH — 60 kBYTES
CONTROL AND STATUS REGISTERS — 62 BYTES
CPU
REGISTERS
VREFH
PTA
PTB
PTC
DDRB
DDRC
DDRD
DDRE
DDRF
PTD
PTE
PTF
PTG
MOTOROLA
PTH
MC68HC908AZ60A — Rev 2.0
DDRH DDRG
M68HC08 CPU
General Description
MCU Block Diagram
Technical Data
35
ARITHMETIC/LOGIC
UNIT (ALU)
POWER
POWER-ON RESET
MODULE
IRQ MODULE
AVSS/VREFL
VDDAREF
BYTE DATA LINK CONTROLLER
KEYBOARD INTERRUPT
MODULE*
PTH1/KBD4–PTH0/KBD3*
PTG2/KBD2–PTG0/KBD0*
PTF3/TACH5-PTF0/TACH2
PTF5/TBCH1–PTF4/TBCH0*
PTE7/SPSCK
PTE6/MOSI
PTE5/MISO
PTE4/SS
PTE3/TACH1
PTE2/TACH0
PTE1/RxD
PTE0/TxD
PTF6*
PTD3/ATD11-PTD0/ATD8
PTD7*
PTD6/ATD14/TACLK
PTD5/ATD13
PTD4/ATD12/TBCLK
PTC5*
PTC4
PTC3
PTC2/MCLK
PTC1–PTC0
PTB7/ATD7–PTB0/ATD0
PTA7–PTA0
Figure 1-2. MCU Block Diagram for the MC68HC908AS60A (64-Pin QFP and 52-pin PLCC)
* = Feature only available on the 64-pin QFP MC68HC908AS60A
VSS
VDD
VDDA
VSSA
IRQ
SERIAL PERIPHERAL
INTERFACE MODULE
SYSTEM INTEGRATION
MODULE
RST
USER FLASH VECTOR SPACE — 52 BYTES
SERIAL COMMUNICATIONS
INTERFACE MODULE
PROGRAMMABLE INTERRUPT TIMER
MODULE
MONITOR ROM — 256 BYTES
CLOCK GENERATOR
MODULE
TIMER A 6 CHANNEL
INTERFACE MODULE
OSC1
OSC2
CGMXFC
COMPUTER OPERATING
PROPERLY MODULE
LOW-VOLTAGE INHIBIT
MODULE
BREAK MODULE
ANALOG-TO-DIGITAL
MODULE
USER EEPROM — 1024 BYTES
USER RAM — 2048BYTES
USER FLASH — 60 kBYTES
CONTROL AND STATUS REGISTERS — 62 BYTES
CPU
REGISTERS
BDRxD
DDRA
DDRB
DDRC
DDRD
DDRE
DDRF
VREFH
BDTxD
General Description
DDRH DDRG
PTA
PTB
PTC
PTD
PTE
PTF
36
PTG*
Technical Data
PTH*
M68HC08 CPU
General Description
MC68HC908AZ60A — Rev 2.0
MOTOROLA
General Description
Pin Assignments
1.5 Pin Assignments
PTC1
PTC0
OSC1
OSC2
CGMXFC
VSSA
VDDA
VREFH
PTD7
PTD6/ATD14/TACLK
PTD5/ATD13
PTD4/ATD12/TBCLK
61
60
59
58
57
56
55
54
53
52
51
50
1
PTH1/KBD4
PTC2/MCLK
62
PTC4
49
PTC3
63
64
PTC5
Figure 1-3 shows the MC68HC908AZ60A pin assignments.
48
PTH0/KBD3
CANRx
9
40
PTB6/ATD6
CANTx
10
39
PTB5/ATD5
PTF5/TBCH1
11
38
PTB4/ATD4
PTF6
12
37
PTB3/ATD3
PTE0/TxD
13
36
PTB2/ATD2
PTE1/RxD
14
35
PTB1/ATD1
PTE2/TACH0
15
34
PTB0/ATD0
33
PTA7
PTA6 32
16
PTE4/SS 17
PTE3/TACH1
31
PTB7/ATD7
PTA5
41
30
8
PTA4
PTF4/TBCH0
29
PTD0/ATD8
PTA3
42
28
7
PTA2
PTF3/TACH5
27
PTD1/ATD9
PTA1
43
26
6
PTA0
PTF2/TACH4
25
VDDAREF
PTG2/KBD2
44
24
5
PTG1/KBD1
PTF1/TACH3
23
AVSS /VREFL
PTG0/KBD0
45
22
4
VDD
PTF0/TACH2
21
PTD2/ATD10
VSS
46
20
3
PTE7/SPSCK
RST
19
PTD3/ATD11
PTE6/MOSI
47
18
2
PTE5/MISO
IRQ
Figure 1-3. MC68HC908AZ60A (64-Pin QFP)
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
General Description
37
General Description
PTC1
PTC0
OSC1
OSC2
CGMXFC
VSSA
VDDA
VREFH
PTD7
PTD6/ATD14/TACLK
PTD5/ATD13
PTD4/ATD12
61
60
59
58
57
56
55
54
53
52
51
50
PTC4
1
PTH1/KBD4
PTC2/MCLK
62
49
PTC3
63
64
PTC5
Figure 1-4 shows the MC68HC908AS60A 64-pin QFP pin assignments.
48
PTH0/KBD3
41
PTB7/ATD7
BDRxD
9
40
PTB6/ATD6
BDTxD
10
39
PTB5/ATD5
PTF5
11
38
PTB4/ATD4
PTF6
12
37
PTB3/ATD3
PTE0/TxD
13
36
PTB2/ATD2
PTE1/RxD
14
35
PTB1/ATD1
PTE2/TACH0
15
34
PTB0/ATD0
33
PTA7
PTA6 32
31
PTA5
16
PTE4/SS 17
PTE3/TACH1
30
8
PTA4
PTF4
29
PTD0/ATD8
PTA3
42
28
7
PTA2
PTF3/TACH5
27
PTD1/ATD9
PTA1
43
26
6
PTA0
PTF2/TACH4
25
VDDAREF
PTG2/KBD2
44
24
5
PTG1/KBD1
PTF1/TACH3
23
AVSS /VREFL
PTG0/KBD0
45
22
4
VDD
PTF0/TACH2
21
PTD2/ATD10
VSS
46
20
3
PTE7/SPSCK
RST
19
PTD3/ATD11
PTE6/MOSI
47
18
2
PTE5/MISO
IRQ
Figure 1-4. MC68HC908AS60A (64-Pin QFP)
Technical Data
38
MC68HC908AZ60A — Rev 2.0
General Description
MOTOROLA
General Description
Pin Assignments
PTD6/ATD14/TACLK
PTD5/ATD13
49
48
PTC4
PTD4/ATD12
VREFH
50
47
VDDA/VDDAREF
OSC2
2
51
OSC1
3
VSSA/VREFL
PTC0
4
52
PTC1
5
CGMXFC
PTC2/MCLK
6
1
PTC3
7
Figure 1-5 shows MC68HC908AS60A 52-pin PLCC pin assignments.
8
46
PTD3/ATD11
IRQ
9
45
PTD2/ATD10
RST
10
44
PTD1/ATD9
PTF0/TACH2
11
43
PTD0/ATD8
PTF1/TACH3
12
42
PTB7/ATD7
PTF2/TACH4
13
41
PTB6/ATD6
PTF3/TACH5
14
40
PTB5/ATD5
BDRxD
15
39
PTB4/ATD4
BDTxD
16
38
PTB3/ATD3
PTE0/TxD
17
37
PTB2/ATD2
PTE1/RxD
18
36
PTB1/ATD1
PTE2/TACH0
19
35
PTB0/ATD0
20
21
22
23
24
25
26
27
28
29
30
31
32
33
PTE5/MISO
PTE6/MOSI
PTE7/SPSCK
VSS
VDD
PTA0
PTA1
PTA2
PTA3
PTA4
PTA5
PTA6
34
PTE4/SS
PTE3/TACH1
PTA7
Figure 1-5. MC68HC908AS60A (52-Pin PLCC)
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
General Description
39
General Description
NOTE:
The following pin descriptions are just a quick reference. For a more
detailed representation, see Input/Output Ports on page 353.
1.5.1 Power Supply Pins (VDD and VSS)
VDD and VSS are the power supply and ground pins. The MCU operates
from a single power supply.
Fast signal transitions on MCU pins place high, short-duration current
demands on the power supply. To prevent noise problems, take special
care to provide power supply bypassing at the MCU as shown in Figure
1-6. Place the C1 bypass capacitor as close to the MCU as possible. Use
a high-frequency response ceramic capacitor for C1. C2 is an optional
bulk current bypass capacitor for use in applications that require the port
pins to source high current levels.
MCU
VDD
VSS
C1
0.1 µF
+
C2
VDD
NOTE: Component values shown represent typical applications.
Figure 1-6. Power supply bypassing
VSS is also the ground for the port output buffers and the ground return
for the serial clock in the Serial Peripheral Interface module (SPI). See
Serial Peripheral Interface (SPI) on page 285.
NOTE:
VSS must be grounded for proper MCU operation.
Technical Data
40
MC68HC908AZ60A — Rev 2.0
General Description
MOTOROLA
General Description
Pin Assignments
1.5.2 Oscillator Pins (OSC1 and OSC2)
The OSC1 and OSC2 pins are the connections for the on-chip oscillator
circuit. See Clock Generator Module (CGM) on page 169.
1.5.3 External Reset Pin (RST)
A logic 0 on the RST pin forces the MCU to a known startup state. RST
is bidirectional, allowing a reset of the entire system. It is driven low when
any internal reset source is asserted. See System Integration Module
(SIM) on page 147 for more information.
1.5.4 External Interrupt Pin (IRQ)
IRQ is an asynchronous external interrupt pin. See External Interrupt
Module (IRQ) on page 235.
1.5.5 Analog Power Supply Pin (VDDA)
VDDA is the power supply pin for the analog portion of the Clock
Generator Module (CGM). See Clock Generator Module (CGM) on
page 169.
1.5.6 Analog Ground Pin (VSSA)
VSSA is the ground connection for the analog portion of the Clock
Generator Module (CGM). See Clock Generator Module (CGM) on
page 169.
1.5.7 External Filter Capacitor Pin (CGMXFC)
CGMXFC is an external filter capacitor connection for the Clock
Generator Module (CGM). See Clock Generator Module (CGM) on
page 169.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
General Description
41
General Description
1.5.8 ADC Analog Power Supply Pin (VDDAREF)
VDDAREF is the power supply pin for the analog portion of the Analog-toDigital Converter (ADC). See Analog-to-Digital Converter (ADC) on
page 471.
1.5.9 ADC Analog Ground Pin (AVSS/VREFL)
The AVSS/VREFL pin provides both the analog ground connection and
the reference low voltage for the Analog-to-Digital Converter (ADC). See
Analog-to-Digital Converter (ADC) on page 471.
1.5.10 ADC Reference High Voltage Pin (VREFH)
VREFH provides the reference high voltage for the Analog-to-Digital
Converter (ADC). See Analog-to-Digital Converter (ADC) on page
471.
1.5.11 Port A Input/Output (I/O) Pins (PTA7–PTA0)
PTA7–PTA0 are general-purpose bidirectional I/O port pins. See
Input/Output Ports on page 353.
1.5.12 Port B I/O Pins (PTB7/ATD7–PTB0/ATD0)
Port B is an 8-bit special function port that shares all eight pins with the
Analog-to-Digital Converter (ADC). See Analog-to-Digital Converter
(ADC) on page 471 and Input/Output Ports on page 353.
1.5.13 Port C I/O Pins (PTC5–PTC0)
PTC5–PTC3 and PTC1–PTC0 are general-purpose bidirectional I/O
port pins. PTC2/MCLK is a special function port that shares its pin with
the system clock which has a frequency equivalent to the system clock.
See Input/Output Ports on page 353.
Technical Data
42
MC68HC908AZ60A — Rev 2.0
General Description
MOTOROLA
General Description
Pin Assignments
1.5.14 Port D I/O Pins (PTD7–PTD0/ATD8)
Port D is an 8-bit special-function port that shares seven of its pins with
the Analog-to-Digital Converter module (ADC-15), one of its pins with
the Timer Interface Module A (TIMA), and one more of its pins with the
Timer Interface Module B (TIMB). See Timer Interface Module A
(TIMA) on page 441, Timer Interface Module B (TIMB) on page 317,
Analog-to-Digital Converter (ADC) on page 471 and Input/Output
Ports on page 353.
1.5.15 Port E I/O Pins (PTE7/SPSCK–PTE0/TxD)
Port E is an 8-bit special function port that shares two of its pins with the
Timer Interface Module A (TIMA), four of its pins with the Serial
Peripheral Interface module (SPI), and two of its pins with the Serial
Communication Interface module (SCI). See Serial Communications
Interface (SCI) on page 243, Serial Peripheral Interface (SPI) on page
285, Timer Interface Module A (TIMA) on page 441, and Input/Output
Ports on page 353.
1.5.16 Port F I/O Pins (PTF6–PTF0/TACH2)
Port F is a 7-bit special function port that shares its pins with the Timer
Interface Module B (TIMB). Six of its pins are shared with the Timer
Interface Module A (TIMA-6). See Timer Interface Module A (TIMA) on
page 441, Timer Interface Module B (TIMB) on page 317, and
Input/Output Ports on page 353.
1.5.17 Port G I/O Pins (PTG2/KBD2–PTG0/KBD0)
Port G is a 3-bit special function port that shares all of its pins with the
Keyboard Module (KBD). See Keyboard Module (KBD) on page 431
and Input/Output Ports on page 353.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
General Description
43
General Description
1.5.18 Port H I/O Pins (PTH1/KBD4–PTH0/KBD3)
Port H is a 2-bit special-function port that shares all of its pins with the
Keyboard Module (KBD). See Keyboard Module (KBD) on page 431
and Input/Output Ports on page 353.
1.5.19 CAN Transmit Pin (CANTx)
This pin is the digital output from the CAN module (CANTx). See
MSCAN Controller (MSCAN08) on page 379.
1.5.20 CAN Receive Pin (CANRx)
This pin is the digital input to the CAN module (CANRx). See MSCAN
Controller (MSCAN08) on page 379.
1.5.21 BDLC Transmit Pin (BDTxD)
This pin is the digital output from the BDLC module (BDTxD). See Byte
Data Link Controller (BDLC) on page 483.
1.5.22 BDLC Receive Pin (BDRxD)
This pin is the digital input to the CAN module (BDRxD). See Byte Data
Link Controller (BDLC) on page 483.
Table 1-1. External Pins Summary
Pin Name
Function
Driver
Type
Hysteresis
(1)
Reset State
PTA7–PTA0
General-Purpose I/O
Dual State
No
Input Hi-Z
PTB7/ATD7–PTB0/ATD0
General-Purpose I/O
ADC Channel
Dual State
No
Input Hi-Z
PTC5–PTC0
General-Purpose I/O
Dual State
No
Input Hi-Z
PTD7
General Purpose I/O
Dual State
No
Input Hi-Z
Technical Data
44
MC68HC908AZ60A — Rev 2.0
General Description
MOTOROLA
General Description
Pin Assignments
Table 1-1. External Pins Summary (Continued)
Pin Name
Function
Driver
Type
Hysteresis
(1)
Reset State
PTD6/ATD14/TACLK ADC Channel
General-Purpose I/O
ADC Channel/Timer
External Input Clock
Dual State
No
Input Hi-Z
PTD5/ATD13 ADC Channel
General-Purpose I/O
ADC Channel
Dual State
No
Input Hi-Z
PTD4/ATD12/TBCLK ADC Channel
General-Purpose I/O
ADC Channel/Timer
External Input Clock
Dual State
No
Input Hi-Z
PTD3/ATD11–PTD0/ATD8 ADC Channels
General-Purpose I/O
ADC Channel
Dual State
No
Input Hi-Z
PTE7/SPSCK
General-Purpose I/O
SPI Clock
Dual State
Open Drain
Yes
Input Hi-Z
PTE6/MOSI
General-Purpose I/O
SPI Data Path
Dual State
Open Drain
Yes
Input Hi-Z
PTE5/MISO
General-Purpose I/O
SPI Data Path
Dual State
Open Drain
Yes
Input Hi-Z
PTE4/SS
General-Purpose I/O
SPI Slave Select
Dual State
Yes
Input Hi-Z
PTE3/TACH1
General-Purpose I/O
Timer A Channel 1
Dual State
Yes
Input Hi-Z
PTE2/TACH0
General-Purpose I/O
Timer A Channel 0
Dual State
Yes
Input Hi-Z
PTE1/RxD
General-Purpose I/O
SCI Receive Data
Dual State
Yes
Input Hi-Z
PTE0/TxD
General-Purpose I/O
SCI Transmit Data
Dual State
No
Input Hi-Z
PTF6
General-Purpose I/O
Dual State
No
Input Hi-Z
PTF5/TBCH1–PTF4/TBCH0
General-Purpose
I/O/Timer B Channel
Dual State
Yes
Input Hi-Z
PTF3/TACH5
General-Purpose I/O
Timer A Channel 5
Dual State
Yes
Input Hi-Z
PTF2/TACH4
General-Purpose I/O
Timer A Channel 4
Dual State
Yes
Input Hi-Z
PTF1/TACH3
General-Purpose I/O
Timer A Channel 3
Dual State
Yes
Input Hi-Z
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
General Description
45
General Description
Table 1-1. External Pins Summary (Continued)
Pin Name
Function
Driver
Type
Hysteresis
(1)
Reset State
PTF0/TACH2
General-Purpose I/O
Timer A Channel 2
Dual State
Yes
Input Hi-Z
PTG2/KBD2–PTG0/KBD0
General-Purpose I/O/
Keyboard Wakeup
Pin
Dual State
Yes
Input Hi-Z
PTH1/KBD4 –PTH0/KBD3
General-Purpose I/O/
Keyboard Wakeup
Pin
Dual State
Yes
Input Hi-Z
VDD
Chip Power Supply
N/A
N/A
N/A
VSS
Chip Ground
N/A
N/A
N/A
VDDA
CGM Analog Power
Supply
VSSA
CGM Analog Ground
VDDAREF
ADC Power Supply
N/A
N/A
N/A
AVSS/VREFL
ADC Ground/ADC
Reference Low
Voltage
N/A
N/A
N/A
VREFH
A/D Reference High
Voltage
N/A
N/A
N/A
OSC1
External Clock In
N/A
N/A
Input Hi-Z
OSC2
External Clock Out
N/A
N/A
Output
CGMXFC
PLL Loop Filter Cap
N/A
N/A
N/A
IRQ
External Interrupt
Request
N/A
N/A
Input Hi-Z
RST
Reset
N/A
N/A
Output Low
CANRx
CAN Serial Input
N/A
Yes
Input Hi-Z
CANTx
CAN Serial Output
Output
No
Output
BDRxD
BDLC Serial Input
N/A
Yes
Input Hi-Z
BDTxD
BDLC Serial Output
Output
No
Output
1. Hysteresis is not 100% tested but is typically a minimum of 300mV.
Technical Data
46
MC68HC908AZ60A — Rev 2.0
General Description
MOTOROLA
General Description
Pin Assignments
Table 1-2. Clock Signal Naming Conventions
Clock Signal Name
Description
CGMXCLK
Buffered version of OSC1 from
Clock Generation Module (CGM)
CGMOUT
PLL-based or OSC1-based clock output from
Clock Generator Module (CGM)
Bus Clock
CGMOUT divided by two
SPSCK
SPI serial clock
TACLK
External clock input for TIMA
TBCLK
External clock input for TIMB
Table 1-3. Clock Source Summary
Module
Clock Source
ADC
CGMXCLK or Bus Clock
CAN
CGMXCLK or CGMOUT
COP
CGMXCLK
CPU
Bus Clock
FLASH
Bus Clock
EEPROM
CGMXCLK or Bus Clock
RAM
Bus Clock
SPI
Bus Clock/SPSCK
SCI
CGMXCLK
TIMA
Bus Clock or PTD6/ATD14/TACLK
TIMB
Bus Clock or PTD4/TBCLK
PIT
Bus Clock
SIM
CGMOUT and CGMXCLK
IRQ
Bus Clock
BRK
Bus Clock
LVI
Bus Clock
CGM
OSC1 and OSC2
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
General Description
47
General Description
1.6 Ordering Information
This section contains instructions for ordering the MC68HC908AZ60A /
MC68HC908AS60A.
1.6.1 MC Order Numbers
Table 1-4. MC Order Numbers
MC Order Number
MC68HC908AS60ACFU (64-Pin QFP)
–40°C to + 85°C
MC68HC908AS60AVFU (64-Pin QFP)
–40°C to + 105°C
MC68HC908AS60AMFU (64-Pin QFP)
–40°C to + 125°C
MC68HC908AS60ACFN (52-Pin PLCC)
–40°C to + 85°C
MC68HC908AS60AVFN (52-Pin PLCC)
–40°C to + 105°C
MC68HC908AS60AMFN (52-Pin PLCC)
–40°C to + 125°C
MC68HC908AZ60ACFU (64-Pin QFP)
–40°C to + 85°C
MC68HC908AZ60AVFU (64-Pin QFP)
–40°C to + 105°C
MC68HC908AZ60AMFU (64-Pin QFP)
–40°C to + 125°C
Technical Data
48
Operating
Temperature Range
MC68HC908AZ60A — Rev 2.0
General Description
MOTOROLA
Technical Data — MC68HC908AZ60A
Section 2. Memory Map
2.1 Contents
2.2
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.3
I/O Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.4
Additional Status and Control Registers . . . . . . . . . . . . . . . 58
2.5
Vector Addresses and Priority . . . . . . . . . . . . . . . . . . . . . . . 61
2.2 Introduction
The CPU08 can address 64K bytes of memory space. The memory
map, shown in Figure 2-1, includes:
•
60K Bytes of FLASH EEPROM
•
2048 Bytes of RAM
•
1024 Bytes of EEPROM with Protect Option
•
52 Bytes of User-Defined Vectors
•
256 Bytes of Monitor ROM
The following definitions apply to the memory map representation of
reserved and unimplemented locations.
•
Reserved — Accessing a reserved location can have
unpredictable effects on MCU operation.
•
Unused — These locations are reserved in the memory map for
future use, accessing an unused location can have unpredictable
effects on MCU operation.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Memory Map
49
Memory Map
•
Unimplemented — Accessing an unimplemented location can
cause an illegal address reset (within the constraints as outlined
in the System Integration Module (SIM)).
MC68HC908AZ60A
MC68HC908AS60A
$0000
$0000
↓
↓
I/O REGISTERS (64 BYTES)
$003F
$003F
$0040
$0040
↓
UNIMPLEMENTED , 11 BYTES
↓
I/O REGISTERS, 16 BYTES
$004A
$004B
I/O REGISTERS, 5 BYTES
$004F
$004F
$0050
$0050
↓
↓
RAM-1, 1024 BYTES
$044F
$044F
$0450
$0450
↓
FLASH-2, 176 BYTES
$04FF
$0500
↓
CAN CONTROL AND MESSAGE
BUFFERS, 128 BYTES
FLASH-2, 432 BYTES
↓
$057F
$0580
↓
FLASH-2, 128 BYTES
$05FF
$05FF
$0600
$0600
↓
EEPROM-2, 512 BYTES
$07FF
$07FF
Technical Data
50
↓
MC68HC908AZ60A — Rev 2.0
Memory Map
MOTOROLA
Memory Map
Introduction
MC68HC908AZ60A
MC68HC908AS60A
$0800
$0800
↓
EEPROM-1, 512 BYTES
↓
$09FF
$09FF
$0A00
$0A00
↓
RAM-2 , 1024 BYTES
↓
$0DFF
$0DFF
$0E00
$0E00
↓
FLASH-2, 29,184 BYTES
↓
$7FFF
$7FFF
$8000
$8000
↓
FLASH-1, 32,256BYTES
$FDFF
↓
$FDFF
$FE00
SIM BREAK STATUS REGISTER (SBSR)
$FE00
$FE01
SIM RESET STATUS REGISTER (SRSR)
$FE01
$FE02
RESERVED
$FE02
$FE03
SIM BREAK FLAG CONTROL REGISTER (SBFCR)
$FE03
$FE04
RESERVED
$FE04
$FE05
RESERVED
$FE05
$FE06
RESERVED
$FE06
$FE07
RESERVED
$FE07
$FE08
FLASH-2 CONTROL REGISTER (FL2CR)
$FE08
$FE09
CONFIGURATION WRITE-ONCE REGISER (CONFIG-2)
$FE09
$FE0A
RESERVED
$FE0A
$FE0B
RESERVED
$FE0B
$FE0C
BREAK ADDRESS REGISTER HIGH (BRKH)
$FE0C
$FE0D
BREAK ADDRESS REGISTER LOW (BRKL)
$FE0D
$FE0E
BREAK STATUS AND CONTROL REGISTER (BSCR)
$FE0E
$FE0F
LVI STATUS REGISTER (LVISR)
$FE0F
$FE10
EEPROM-1EEDIVH NON-VOLATILE REGISTER(EE1DIVHNVR)
$FE10
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Memory Map
51
Memory Map
MC68HC908AZ60A
MC68HC908AS60A
$FE11
EEPROM-1EEDIVL NON-VOLATILE REGISTER(EE1DIVLNVR)
$FE11
$FE12
RESERVED
$FE12
$FE13
RESERVED
$FE13
$FE14
RESERVED
$FE14
$FE15
RESERVED
$FE15
$FE16
RESERVED
$FE16
$FE17
RESERVED
$FE17
$FE18
RESERVED
$FE18
$FE19
RESERVED
$FE19
$FE1A
EEPROM-1 EE DIVIDER HIGH REGISTER(EE1DIVH)
$FE1A
$FE1B
EEPROM-1 EE DIVIDER LOW REGISTER(EE1DIVL)
$FE1B
$FE1C
EEPROM-1 EEPROM NON-VOLATILE REGISTER (EE1NVR)
$FE1C
$FE1D
EEPROM-1 EEPROM CONTROL REGISTER (EE1CR)
$FE1D
$FE1E
RESERVED
$FE1E
$FE1F
EEPROM-1 EEPROM ARRAY CONFIGURATION REGISTER (EE1ACR)
$FE1F
$FE20
↓
$FE20
↓
MONITOR ROM (256BYTES)
$FF1F
$FF1F
$FF20
↓
$FF6F
UNIMPLEMENTED (80 BYTES)
$FF20
↓
$FF6F
$FF70
EEPROM-2 EEDIVH NON-VOLATILE REGISTER (EE2DIVHNVR)
$FF70
$FF71
EEPROM-2 EEDIVL NON-VOLATILE REGISTER (EE2DIVLNVR)
$FF71
$FF72
RESERVED
$FF72
$FF73
RESERVED
$FF73
$FF74
RESERVED
$FF74
$FF75
RESERVED
$FF75
$FF76
RESERVED
$FF76
$FF77
RESERVED
$FF77
$FF78
RESERVED
$FF78
$FF79
RESERVED
$FF79
Technical Data
52
MC68HC908AZ60A — Rev 2.0
Memory Map
MOTOROLA
Memory Map
Introduction
MC68HC908AZ60A
MC68HC908AS60A
$FF7A
EEPROM-2 EE DIVIDER HIGH REGISTER (EE2DIVH)
$FF7A
$FF7B
EEPROM-2 EE DIVIDER LOW REGISTER (EE2DIVL)
$FF7B
$FF7C
EEPROM-2 EEPROM NON-VOLATILE REGISTER (EE2NVR)
$FF7C
$FF7D
EEPROM-2 EEPROM CONTROL REGISTER (EE2CR)
$FF7D
$FF7E
RESERVED
$FF7E
$FF7F
EEPROM-2 EEPROM ARRAY CONFIGURATION REGISTER (EE2ACR)
$FF7F
$FF80
FLASH-1 BLOCK PROTECT REGISTER (FL1BPR)
$FF80
$FF81
FLASH-2 BLOCK PROTECT REGISTER (FL2BPR)
$FF81
$FF82
↓
$FF82
RESERVED (6 BYTES)
$FF87
↓
$FF87
$FF88
FLASH-1 CONTROL REGISTER (FL1CR)
$FF88
$FF89
RESERVED
$FF89
$FF8A
RESERVED
$FF8A
$FF8B
↓
$FF8B
RESERVED (64 BYTES)
↓
$FFCB
$FFCB
$FFCC
$FFCC
↓
VECTORS (52BYTES)
See Table 2-1 on page 61
$FFFF
↓
$FFFF
Figure 2-1. Memory Map (Continued)
Note 1: Registers appearing in italics are for Motorola test purpose only and only appear in the Memory Map for reference.
Note2: While some differences between MC68HC908AS60A and MC68HC908AZ60A are highlighted, some registers remain available
on both parts. Refer to individual modules for details whether these registers are active or inactive.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Memory Map
53
Memory Map
2.3 I/O Section
Addresses $0000–$004F, shown in Figure 2-2, contain the I/O Data,
Status and Control Registers.
Addr.
Register Name
$0000
Port A Data Register (PTA)
$0001
Port B Data Register (PTB)
$0002
Port C Data Register (PTC)
$0003
Port D Data Register (PTD)
Bit 7
6
5
4
3
2
1
Bit 0
PTA7
PTA6
PTA5
PTA4
PTA3
PTA2
PTA1
PTA0
PTB7
PTB6
PTB5
PTB4
PTB3
PTB2
PTB1
PTB0
Read:
0
0
Write:
R
R
PTC5
PTC4
PTC3
PTC2
PTC1
PTC0
PTD7
PTD6
PTD5
PTD4
PTD3
PTD2
PTD1
PTD0
Read:
Write:
Read:
Write:
Read:
Write:
$0004
Data Direction Register A Read:
DDRA7
(DDRA) Write:
DDRA6
DDRA5
DDRA4
DDRA3
DDRA2
DDRA1
DDRA0
$0005
Data Direction Register B Read:
DDRB7
(DDRB) Write:
DDRB6
DDRB5
DDRB4
DDRB3
DDRB2
DDRB1
DDRB0
$0006
Data Direction Register C Read: MCLKE
(DDRC) Write:
N
DDRC5
DDRC4
DDRC3
DDRC2
DDRC1
DDRC0
$0007
Data Direction Register D Read:
DDRD7
(DDRD) Write:
DDRD6
DDRD5
DDRD4
DDRD3
DDR2
DDRD1
DDRD0
PTE6
PTE5
PTE4
PTE3
PTE2
PTE1
PTE0
PTF6
PTF5
PTF4
PTF3
PTF2
PTF1
PTF0
PTG2
PTG1
PTG0
PTH1
PTH0
$0008
Port E Data Register (PTE)
$0009
Port F Data Register (PTF)
$000A
Port G Data Register (PTG)
$000B
Port H Data Register (PTH)
Read:
Write:
PTE7
0
R
Read:
0
Write:
R
Read:
0
0
0
0
0
Write:
R
R
R
R
R
Read:
0
0
0
0
0
0
Write:
R
R
R
R
R
R
$000C
Data Direction Register E Read:
DDRE7
(DDRE) Write:
DDRE6
DDRE5
DDRE4
DDRE3
DDRE2
DDRE1
DDRE0
$000D
Data Direction Register F Read:
(DDRF) Write:
DDRF6
DDRF5
DDRF4
DDRF3
DDRF2
DDRF1
DDRF0
$000E
Data Direction Register G Read:
(DDRG) Write:
0
0
0
0
0
R
R
R
R
R
DDRG2
DDRG1
DDRG0
0
R
Figure 2-2. I/O Data, Status and Control Registers (Sheet 1 of 5)
Technical Data
54
MC68HC908AZ60A — Rev 2.0
Memory Map
MOTOROLA
Memory Map
I/O Section
Addr.
Register Name
Data Direction Register H Read:
(DDRH) Write:
$000F
$0010
SPI Control Register (SPCR)
Read:
Write:
SPI Status and Control Read:
Register (SPSCR) Write:
$0011
$0012
SPI Data Register (SPDR)
$0013
SCI Control Register 1 (SCC1)
$0014
SCI Control Register 2 (SCC2)
$0015
SCI Control Register 3 (SCC3)
$0016
SCI Status Register 1 (SCS1)
$0017
SCI Status Register 2 (SCS2)
$0018
SCI Data Register (SCDR)
$0019
SCI Baud Rate Register (SCBR)
Bit 7
6
5
4
3
2
0
0
0
0
0
0
R
R
R
R
R
R
SPRIE
R
SPMSTR
CPOL
CPHA
OVRF
MODF
SPRF
DDRH1
DDRH0
SPWOM
SPE
SPTIE
SPTE
MODFE
N
SPR1
SPR0
R7
R6
R5
R4
R3
R2
R1
R0
Write:
T7
T6
T5
T4
T3
T2
T1
T0
LOOPS
ENSCI
TXINV
M
WAKE
ILTY
PEN
PTY
SCTIE
TCIE
SCRIE
ILIE
TE
RE
RWU
SBK
T8
R
R
ORIE
NEIE
FEIE
PEIE
SCTE
TC
SCRF
IDLE
OR
NF
FE
PE
0
0
0
0
0
0
BKF
RPF
Read:
R7
R6
R5
R4
R3
R2
R1
R0
Write:
T7
T6
T5
T4
T3
T2
T1
T0
Read:
0
0
SCP1
SCP0
R
SCR2
SCR1
SCR0
0
0
0
0
IRQF
0
R
R
R
R
R
ACK
IMASK
MODE
0
0
0
0
KEYF
0
Read:
Write:
Read:
Write:
Read:
R8
Write:
Read:
Write:
Read:
Write:
Write:
IRQ Status and Control Read:
Register (ISCR) Write:
$001B
Keyboard Status and Control Read:
Register (KBSCR) Write:
$001C
PLL Control Register (PCTL)
Read:
Write:
ACKK
PLLIE
$001D
PLL Bandwidth Control Read:
Register (PBWC) Write:
AUTO
$001E
PLL Programming Register Read:
(PPG) Write:
MUL7
$0020
Bit 0
Read:
$001A
Configuration Write-Once Read: LVISTO
Register (CONFIG-1) Write:
P
$001F
ERRIE
1
Timer A Status and Control Read:
Register (TASC) Write:
TOF
0
PLLF
PLLON
BCS
ACQ
XLD
MUL6
MUL5
MUL4
R
LVIRST
TOIE
TSTOP
LOCK
IMASKK MODEK
1
1
1
1
0
0
0
0
VRS7
VRS6
VRS5
VRS4
COPL
STOP
COPD
PS2
PS1
PS0
LVIPWR SSREC
0
0
TRST
R
Figure 2-2. I/O Data, Status and Control Registers (Sheet 2 of 5)
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Memory Map
55
Memory Map
Addr.
Register Name
Bit 7
6
5
4
3
2
1
Bit 0
$0021
Keyboard Interrupt Enable Read:
Register (KBIER) Write:
0
0
0
KBIE4
KBIE3
KBIE2
KBIE1
KBIE0
$0022
Timer A Counter Register Read:
High (TACNTH) Write:
Bit 15
14
13
12
11
10
9
Bit 8
R
R
R
R
R
R
R
R
$0023
Timer A Counter Register Read:
Low (TACNTL) Write:
Bit 7
6
5
4
3
2
1
Bit 0
R
R
R
R
R
R
R
R
$0024
Timer A Modulo Register Read:
High (TAMODH) Write:
Bit 15
14
13
12
11
10
9
Bit 8
$0025
Timer A Modulo Register Read:
Low (TAMODL) Write:
Bit 7
6
5
4
3
2
1
Bit 0
$0026
Timer A Channel 0 Status and Read:
Control Register (TASC0) Write:
CH0IE
MS0B
MS0A
ELS0B
ELS0A
TOV0
CH0MAX
$0027
Timer A Channel 0 Register Read:
High (TACH0H) Write:
Bit 15
14
13
12
11
10
9
Bit 8
$0028
Timer A Channel 0 Register Read:
Low (TACH0L) Write:
Bit 7
6
5
4
3
2
1
Bit 0
$0029
Timer A Channel 1 Status and Read:
Control Register (TASC1) Write:
MS1A
ELS1B
ELS1A
TOV1
CH1MAX
$002A
Timer A Channel 1 Register Read:
High (TACH1H) Write:
Bit 15
14
13
12
11
10
9
Bit 8
$002B
Timer A Channel 1 Register Read:
Low (TACH1L) Write:
Bit 7
6
5
4
3
2
1
Bit 0
$002C
Timer A Channel 2 Status and Read:
Control Register (TASC2) Write:
CH2IE
MS2B
MS2A
ELS2B
ELS2A
TOV2
CH2MAX
$002D
Timer A Channel 2 Register Read:
High (TACH2H) Write:
Bit 15
14
13
12
11
10
9
Bit 8
$002E
Timer A Channel 2 Register Read:
Low (TACH2L) Write:
Bit 7
6
5
4
3
2
1
Bit 0
$002F
Timer A Channel 3 Status and Read:
Control Register (TASC3) Write:
MS3A
ELS3B
ELS3A
TOV3
CH3MAX
$0030
Timer A Channel 3 Register Read:
High (TACH3H) Write:
Bit 15
14
13
12
11
10
9
Bit 8
$0031
Timer A Channel 3 Register Read:
Low (TACH3L) Write:
Bit 7
6
5
4
3
2
1
Bit 0
$0032
Timer A Channel 4 Status and Read:
Control Register (TASC4) Write:
CH4IE
MS4B
MS4A
ELS4B
ELS4A
TOV4
CH4MAX
CH0F
0
CH1F
0
CH2F
0
CH3F
0
CH4F
0
0
CH1IE
R
0
CH3IE
R
Figure 2-2. I/O Data, Status and Control Registers (Sheet 3 of 5)
Technical Data
56
MC68HC908AZ60A — Rev 2.0
Memory Map
MOTOROLA
Memory Map
I/O Section
Addr.
Register Name
Bit 7
6
5
4
3
2
1
Bit 0
$0033
Timer A Channel 4 Register High Read:
(TACH4H) Write:
Bit 15
14
13
12
11
10
9
Bit 8
$0034
Timer A Channel 4 Register Low Read:
(TACH4L) Write:
Bit 7
6
5
4
3
2
1
Bit 0
$0035
Timer A Channel 5 Status and Read:
Control Register (TASC5) Write:
MS5A
ELS5B
ELS5A
TOV5
CH5MAX
$0036
Timer A Channel 5 Register Read:
High (TACH5H) Write:
Bit 15
14
13
12
11
10
9
Bit 8
$0037
Timer A Channel 5 Register Read:
Low (TACH5L) Write:
Bit 7
6
5
4
3
2
1
Bit 0
$0038
Analog-to-Digital Status and Read:
Control Register (ADSCR) Write:
AIEN
ADCO
ADCH4
ADCH3
ADCH2
ADCH1
ADCH0
$0039
Analog-to-Digital Data Register Read:
(ADR) Write:
AD7
AD6
AD5
AD4
AD3
AD2
AD1
AD0
R
R
R
R
R
R
R
R
$003A
Analog-to-Digital Input Clock Read:
Register (ADICLK) Write:
ADIV2
ADIV1
ADIV0
ADICLK
0
0
0
0
R
R
R
R
$003B
BDLC Analog and Roundtrip Delay Read:
Register (BARD) Write:
ATE
RXPOL
0
0
R
R
BO3
BO2
BO1
BO0
IMSG
CLKS
R1
R0
0
0
R
R
IE
WCM
ALOOP
DLOOP
RX4XE
NBFS
TEOD
TSIFR
TMIFR1
TMIFR0
0
0
I3
I2
I1
I0
0
0
R
R
R
R
R
R
R
R
BD7
BD6
BD5
BD4
BD3
BD2
BD1
BD0
TOIE
TSTOP
0
0
TRST
R
PS2
PS1
PS0
$003C
BDLC Control Register 1 (BCR1)
$003D
BDLC Control Register 2 (BCR2)
Read:
Write:
Read:
Write:
CH5F
0
COCO
R
0
CH5IE
R
$003E
BDLC State Vector Register Read:
(BSVR) Write:
$003F
BDLC Data Register (BDR)
$0040
Timer B Status and Control Read:
Register (TBSCR) Write:
TOF
$0041
Timer B Counter Register High Read:
(TBCNTH) Write:
Bit 15
14
13
12
11
10
9
Bit 8
R
R
R
R
R
R
R
R
$0042
Timer B Counter Register Low Read:
(TBCNTL) Write:
Bit 7
6
5
4
3
2
1
Bit 0
R
R
R
R
R
R
R
R
$0043
Timer B Modulo Register High Read:
(TBMODH) Write:
Bit 15
14
13
12
11
10
9
Bit 8
$0044
Timer B Modulo Register Low Read:
(TBMODL) Write:
Bit 7
6
5
4
3
2
1
Bit 0
Read:
Write:
0
Figure 2-2. I/O Data, Status and Control Registers (Sheet 4 of 5)
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Memory Map
57
Memory Map
Addr.
Register Name
Bit 7
5
4
3
2
1
Bit 0
CH0IE
MS0B
MS0A
ELS0B
ELS0A
TOV0
CH0MAX
$0045
Timer B CH0 Status and Control Read:
Register (TBSC0) Write:
$0046
Timer B CH0 Register High Read:
(TBCH0H) Write:
Bit 15
14
13
12
11
10
9
Bit 8
$0047
Timer B CH0 Register Low Read:
(TBCH0L) Write:
Bit 7
6
5
4
3
2
1
Bit 0
MS1A
ELS1B
ELS1A
TOV1
CH1MAX
$0048
Timer B CH1 Status and Control Read:
Register (TBSC1) Write:
CH0F
6
0
CH1F
0
0
CH1IE
R
$0049
Timer B CH1 Register High Read:
(TBCH1H) Write:
Bit 15
14
13
12
11
10
9
Bit 8
$004A
Timer B CH1 Register Low Read:
(TBCH1L) Write:
Bit 7
6
5
4
3
2
1
Bit 0
$004B
PIT Status and Control Register Read:
(PSC) Write:
POF
POIE
PSTOP
0
0
PPS2
PPS1
PPS0
$004C
PIT Counter Register High Read:
(PCNTH) Write:
Bit 15
14
13
12
11
10
9
Bit 8
$004D
PIT Counter Register Low Read:
(PCNTL) Write:
Bit 7
6
5
4
3
2
1
Bit 0
$004E
PIT Modulo Register High Read:
(PMODH) Write:
Bit 15
14
13
12
11
10
9
Bit 8
$004F
PIT Modulo Register Low Read:
(PMODL) Write:
Bit 7
6
5
4
3
2
1
Bit 0
0
= Unimplemented
PRST
R
= Reserved
Figure 2-2. I/O Data, Status and Control Registers (Sheet 5 of 5)
All registers are shown for both MC68HC908AS60A and
MC68HC908AZ60A. Refer to individual module sections to determine if
the module is available and the register active or not.
2.4 Additional Status and Control Registers
Selected addresses in the range $FE00 to $FFCB contain additional
Status and Control registers as shown inFigure 2-3. A noted exception
is the COP Control Register (COPCTL) at address $FFFF.
Technical Data
58
MC68HC908AZ60A — Rev 2.0
Memory Map
MOTOROLA
Memory Map
Additional Status and Control Registers
Addr.
Register Name
$FE00
SIM Break Status Register Read:
(SBSR) Write:
$FE01 SIM Reset Status Register (SRSR)
Read:
6
5
4
3
2
1
R
R
R
R
R
R
POR
PIN
COP
ILOP
ILAD
0
LVI
0
BCFE
R
R
R
R
R
R
R
0
0
0
0
HVEN
VERF
ERASE
PGM
R
R
MSCAN
D
AT60A
R
R
AZxx
BW
0
Bit 0
R
Write:
$FE03
SIM Break Flag Control Register Read:
(SBFCR) Write:
$FE08
FLASH-2 Control Register Read:
(FL2CR) Write:
$FE09
Bit 7
Configuration Write-Once Register Read:
EEDIVCLK
(CONFIG-2) Write:
R
$FE0C
Break Address Register High Read:
(BRKH) Write:
Bit 15
14
13
12
11
10
9
Bit 8
$FE0D
Break Address Register Low Read:
(BRKL) Write:
Bit 7
6
5
4
3
2
1
Bit 0
$FE0E
Break Status and Control Read:
Register (BRKSCR) Write:
BRKE
BRKA
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
EEDIV1
0
EEDIV9
EEDIV8
EEDIV6
EEDIV5
EEDIV4
EEDIV3
EEDIV2
EEDIV1
EEDIV0
0
0
0
0
EEDIV1
0
EEDIV9
EEDIV8
$FE0F
LVI Status Register (LVISR)
Read: LVIOUT
Write:
$FE10
EE1DIV Hi Non-volatile Register Read:
EEDIVSECD
(EE1DIVHNVR) Write:
$FE11
EE1DIV Lo Non-volatile Register Read:
EEDIV7
(EE1DIVLNVR) Write:
$FE1A
EE1DIV Divider High Register Read:
EEDIVSECD
(EE1DIVH) Write:
$FE1B
EE1DIV Divider Low Register Read:
EEDIV7
(EE1DIVL) Write:
EEDIV6
EEDIV5
EEDIV4
EEDIV3
EEDIV2
EEDIV1
EEDIV0
$FE1C
EEPROM-1 Nonvolatile Register Read: UNUSE
(EE1NVR) Write:
D
UNUSE
D
UNUSE
D
EEPRTC
T
EEBP3
EEBP2
EEBP1
EEBP0
$FE1D
EEPROM-1 Control Register Read: UNUSE
(EE1CR) Write:
D
EEOFF EERAS1 EERAS0
EELAT
AUTO
EEPGM
UNUSE
D
UNUSE
D
EEPRTC
T
EEBP3
EEBP2
EEBP1
EEBP0
R
R
R
R
EEDIV1
0
EEDIV9
EEDIV8
$FE1F
$FF70
EEPROM-1 Array Configuration Read:
Register (EE1ACR)
Write:
0
UNUSE
D
EE2DIV Hi Non-volatile Register Read:
EEDIVSECD
(EE2DIVHNVR)
Figure 2-3. Additional Status and Control Registers (Sheet 1 of 2)
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Memory Map
59
Memory Map
Addr.
Bit 7
6
5
4
3
2
1
Bit 0
EEDIV7
EEDIV6
EEDIV5
EEDIV4
EEDIV3
EEDIV2
EEDIV1
EEDIV0
0
0
0
0
EEDIV1
0
EEDIV9
EEDIV8
EEDIV7
EEDIV6
EEDIV5
EEDIV4
EEDIV3
EEDIV2
EEDIV1
EEDIV0
$FE7C
EEPROM-2 Nonvolatile Register Read: UNUSE
(EE2NVR) Write:
D
UNUSE
D
UNUSE
D
EEPRTC
T
EEBP3
EEBP2
EEBP1
EEBP0
$FE7D
EEPROM-2 Control Register Read: UNUSE
(EE2CR) Write:
D
EEOFF EERAS1 EERAS0
EELAT
AUTO
EEPGM
$FF71
Register Name
EE2DIV Lo Non-volatile Register Read:
(EE2DIVLNVR)
$FF7A
EE2DIV Divider High Register Read:
(EE2DIVH)
$FF7B
EE2DIV Divider Low Register Read:
(EE2DIVL)
EEDIVSECD
0
UNUSE
D
UNUSE
D
UNUSE
D
EEPRTC
T
EEBP3
EEBP2
EEBP1
EEBP0
FLASH-1 Block Protect Register Read:
(FL1BPR) Write:
BPR7
BPR6
BPR5
BPR4
BPR3
BPR2
BPR1
BPR0
$FF81
FLASH-2 Block Protect Register Read:
(FL2BPR) Write:
BPR7
BPR6
BPR5
BPR4
BPR3
BPR2
BPR1
BPR0
$FF88
FLASH-1 Control Register Read:
(FL1CR) Write:
0
0
0
0
HVEN
VERF
ERASE
PGM
$FE7F
EEPROM-2 Array Configuration Read:
Register (EE2ACR)
Write:
$FF80
$FFFF
COP Control Register (COPCTL)
Read:
LOW BYTE OF RESET VECTOR
Write:
WRITING TO $FFFF CLEARS COP COUNTER
= Unimplemented
R
= Reserved
Figure 2-3. Additional Status and Control Registers (Sheet 2 of 2)
Technical Data
60
MC68HC908AZ60A — Rev 2.0
Memory Map
MOTOROLA
Memory Map
Vector Addresses and Priority
2.5 Vector Addresses and Priority
Addresses in the range $FFCC to $FFFF contain the user-specified
vector locations. The vector addresses are shown inTable 2-1. Please
note that certain vector addresses differ between the
MC68HC908AS60A and the MC68HC908AZ60A as shown in the table.
It is recommended that all vector addresses are defined.
Table 2-1. Vector Addresses
Vector
Lowest Priority
Address
MC68HC908AZ60A
$FFCC
TIMA Channel 5 Vector (High)
Reserved
$FFCD
TIMA Channel 5 Vector (Low)
Reserved
$FFCE
TIMA Channel 4 Vector (High)
Reserved
$FFCF
TIMA Channel 4 Vector (Low)
Reserved
$FFD0
ADC Vector (High)
Reserved
$FFD1
ADC Vector (Low)
Reserved
$FFD2
Keyboard Vector (High)
$FFD3
Keyboard Vector (Low)
$FFD4
SCI Transmit Vector (High)
Reserved
$FFD5
SCI Transmit Vector (Low)
Reserved
$FFD6
SCI Receive Vector (High)
Reserved
$FFD7
SCI Receive Vector (Low)
Reserved
$FFD8
SCI Error Vector (High)
Reserved
$FFD9
SCI Error Vector (Low)
Reserved
$FFDA
CAN Transmit Vector (High)
PIT Vector (High)
$FFDB
CAN Transmit Vector (Low)
PIT Vector (Low)
$FFDC
CAN Receive Vector (High)
BDLC Vector (High)
$FFDD
CAN Receive Vector (Low)
BDLC Vector (Low)
$FFDE
CAN Error Vector (High)
ADC Vector (High)
$FFDF
CAN Error Vector (Low)
ADC Vector (Low)
$FFE0
CAN Wakeup Vector (High)
SCI Transmit Vector (High)
$FFE1
CAN Wakeup Vector (Low)
SCI Transmit Vector (Low)
$FFE2
SPI Transmit Vector (High)
SCI Receive Vector (High)
$FFE3
SPI Transmit Vector (Low)
SCI Receive Vector (Low)
MC68HC908AZ60A — Rev 2.0
MOTOROLA
MC68HC908AS60A
Technical Data
Memory Map
61
Memory Map
Table 2-1. Vector Addresses
Vector
Highest Priority
Address
MC68HC908AZ60A
MC68HC908AS60A
$FFE4
SPI Receive Vector (High)
SCI Error Vector (High)
$FFE5
SPI Receive Vector (Low)
SCI Error Vector (Low)
$FFE6
TIMB Overflow Vector (High)
SPI Transmit Vector (High)
$FFE7
TIMB Overflow Vector (Low)
SPI Transmit Vector (Low)
$FFE8
TIMB CH1 Vector (High)
SPI Receive Vector (High)
$FFE9
TIMB CH1 Vector (Low)
SPI Receive Vector (Low)
$FFEA
TIMB CH0 Vector (High)
TIMA Overflow Vector (High)
$FFEB
TIMB CH0 Vector (Low)
TIMA Overflow Vector (Low)
$FFEC
TIMA Overflow Vector (High)
TIMA Channel 5 Vector (High)
$FFED
TIMA Overflow Vector (Low)
TIMA Channel 5 Vector (Low)
$FFEE
TIMA CH3 Vector (High)
TIMA Channel 4 Vector (High)
$FFEF
TIMA CH3 Vector (Low)
TIMA Channel 4 Vector (Low)
$FFF0
TIMA CH2 Vector (High)
TIMA Channel 3 Vector (High)
$FFF1
TIMA CH2 Vector (Low)
TIMA Channel 3 Vector (Low)
$FFF2
TIMA CH1 Vector (High)
TIMA Channel 2 Vector (High)
$FFF3
TIMA CH1 Vector (Low)
TIMA Channel 2 Vector (Low)
$FFF4
TIMA CH0 Vector (High)
TIMA Channel 1 Vector (High)
$FFF5
TIMA CH0 Vector (Low)
TIMA Channel 1 Vector (Low)
$FFF6
PIT Vector (High)
TIMA Channel 0 Vector (High)
$FFF7
PIT Vector (Low)
TIMA Channel 0 Vector (Low)
$FFF8
PLL Vector (High)
$FFF9
PLL Vector (Low)
$FFFA
IRQ1 Vector (High)
$FFFB
IRQ1 Vector (Low)
$FFFC
SWI Vector (High)
$FFFD
SWI Vector (Low)
$FFFE
Reset Vector (High)
$FFFF
Reset Vector (Low)
Technical Data
62
MC68HC908AZ60A — Rev 2.0
Memory Map
MOTOROLA
Technical Data — MC68HC908AZ60A
Section 3. RAM
3.1 Contents
3.2
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3
Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
3.2 Introduction
This section describes the 2048 bytes of random-access memory
(RAM).
3.3 Functional Description
Addresses $0050 through $044F and $0A00 through $0DFF are RAM
locations. The location of the stack RAM is programmable with the reset
stack pointer instruction (RSP). The 16-bit stack pointer allows the stack
RAM to be anywhere in the 64K-byte memory space.
NOTE:
For correct operation, the stack pointer must point only to RAM
locations.
Within page zero are 176 bytes of RAM. Because the location of the
stack RAM is programmable, all page zero RAM locations can be used
for input/output (I/O) control and user data or code. When the stack
pointer is moved from its reset location at $00FF, direct addressing
mode instructions can access all page zero RAM locations efficiently.
Page zero RAM, therefore, provides ideal locations for frequently
accessed global variables.
Before processing an interrupt, the CPU uses five bytes of the stack to
save the contents of the CPU registers.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
RAM
63
RAM
NOTE:
For M68HC05, M6805, and M146805 compatibility, the H register is not
stacked.
During a subroutine call, the CPU uses two bytes of the stack to store
the return address. The stack pointer decrements during pushes and
increments during pulls.
NOTE:
Be careful when using nested subroutines. The CPU could overwrite
data in the RAM during a subroutine or during the interrupt stacking
operation.
Technical Data
64
MC68HC908AZ60A — Rev 2.0
RAM
MOTOROLA
Technical Data — MC68HC908AZ60A
Section 4. FLASH-1 Memory
4.1 Contents
4.2
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3
Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
4.4
FLASH-1 Control and Block Protect Registers . . . . . . . . . . 67
4.4.1
FLASH-1 Control Register . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4.2
FLASH-1 Block Protect Register. . . . . . . . . . . . . . . . . . . . 68
4.5
FLASH-1 Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.6
FLASH-1 Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . 71
4.7
FLASH-1 Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . 72
4.8
FLASH-1 Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . 73
4.9
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.9.1
WAIT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.9.2
STOP Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
4.2 Introduction
This section describes the operation of the embedded FLASH-1
memory. This memory can be read, programmed and erased from a
single external supply. The program and erase operations are enabled
through the use of an internal charge pump.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
FLASH-1 Memory
65
FLASH-1 Memory
4.3 Functional Description
The FLASH-1 memory is an array of 32,256 bytes with two bytes of block
protection (one byte for protecting areas within FLASH-1 array and one
byte for protecting areas within FLASH-2 array) and an additional 40
bytes of user vectors on the MC68HC908AS60A and 52 bytes of user
vectors on the MC68HC908AZ60A. An erased bit reads as a logic 1 and
a programmed bit reads as a logic 0.
Memory in the FLASH-1 array is organized into rows within pages. There
are two rows of memory per page with 64 bytes per row. The minimum
erase block size is a single page,128 bytes. Programming is performed
on a per-row basis, 64 bytes at a time. Program and erase operations
are facilitated through control bits in the FLASH-1 Control Register
(FL1CR). Details for these operations appear later in this section.
The FLASH-1 memory map consists of:
•
$8000–$FDFF: User Memory (32,256 bytes)
•
$FF80: FLASH-1 Block Protect Register (FL1BPR)
•
$FF81: FLASH-2 Block Protect Register (FL2BPR)
•
$FF88: FLASH-1 Control Register (FL1CR)
•
$FFCC–$FFFF: these locations are reserved for user-defined
interrupt and reset vectors (Please see Vector Addresses and
Priority on page 61 for details)
Programming tools are available from Motorola. Contact your local
Motorola representative for more information.
NOTE:
A security feature prevents viewing of the FLASH contents.(1)
1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or
copying the FLASH difficult for unauthorized users.
Technical Data
66
MC68HC908AZ60A — Rev 2.0
FLASH-1 Memory
MOTOROLA
FLASH-1 Memory
FLASH-1 Control and Block Protect Registers
4.4 FLASH-1 Control and Block Protect Registers
The FLASH-1 array has two registers that control its operation, the
FLASH-1 Control Register (FL1CR) and the FLASH-1 Block Protect
Register (FL1BPR).
4.4.1 FLASH-1 Control Register
The FLASH-1 Control Register (FL1CR) controls FLASH-1 program and
erase operations.
Address:
Read:
$FF88
Bit 7
6
5
4
0
0
0
0
3
2
1
Bit 0
HVEN
MASS
ERASE
PGM
0
0
0
0
Write:
Reset:
0
0
0
0
Figure 4-1. FLASH-1 Control Register (FL1CR)
HVEN — High-Voltage Enable Bit
This read/write bit enables the charge pump to drive high voltages for
program and erase operations in the array. HVEN can only be set if
either PGM = 1 or ERASE = 1 and the proper sequence for program
or erase is followed.
1 = High voltage enabled to array and charge pump on
0 = High voltage disabled to array and charge pump off
MASS — Mass Erase Control Bit
Setting this read/write bit configures the FLASH-1 array for mass or
page erase operation.
1 = Mass erase operation selected
0 = Page erase operation selected
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
FLASH-1 Memory
67
FLASH-1 Memory
ERASE — Erase Control Bit
This read/write bit configures the memory for erase operation.
ERASE is interlocked with the PGM bit such that both bits cannot be
set at the same time.
1 = Erase operation selected
0 = Erase operation unselected
PGM — Program Control Bit
This read/write bit configures the memory for program operation.
PGM is interlocked with the ERASE bit such that both bits cannot be
equal to 1 or set to 1 at the same time.
1 = Program operation selected
0 = Program operation unselected
4.4.2 FLASH-1 Block Protect Register
The FLASH-1 Block Protect Register (FL1BPR) is implemented as a
byte within the FLASH-1 memory and therefore can only be written
during a FLASH programming sequence. The value in this register
determines the starting location of the protected range within the
FLASH-1 memory.
Address:
$FF80
Bit 7
6
5
4
3
2
1
Bit 0
BPR7
BPR6
BPR5
BPR4
BPR3
BPR2
BPR1
BPR0
Read:
Write:
Figure 4-2. FLASH-1 Block Protect Register (FL1BPR)
FL1BPR[7:0] — Block Protect Register Bit7 to Bit0
These eight bits represent bits [14:7] of a 16-bit memory address. Bit15 is logic 1 and bits [6:0] are logic 0s.
Technical Data
68
MC68HC908AZ60A — Rev 2.0
FLASH-1 Memory
MOTOROLA
FLASH-1 Memory
FLASH-1 Control and Block Protect Registers
The resultant 16-bit address is used for specifying the start address
of the FLASH-1 memory for block protection. FLASH-1 is protected
from this start address to the end of FLASH-1 memory at $FFFF. With
this mechanism, the protect start address can be $XX00 and $XX80
(128 byte page boundaries) within the FLASH-1 array.
16-bit memory address
Start address of FLASH block protect
1
FLBPR value
0
0
0
0
0
0
0
Figure 4-3. FLASH-1 Block Protect Start Address
FLASH-1 Protected Ranges:
FL1BPR[7:0]
Protected Range
$FF
No Protection
$FE
$FF00 – $FFFF
$FD
$FE80 – $FFFF
$0B
$8580 – $FFFF
$0A
$8500 – $FFFF
$09
$8480 – $FFFF
$08
$8400 – $FFFF
$04
$8200 – $FFFF
$03
$8180 – $FFFF
$02
$8100 – $FFFF
$01
$8080 – $FFFF
$00
$8000 – $FFFF
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
FLASH-1 Memory
69
FLASH-1 Memory
Decreasing the value in FL1BPR by one increases the protected range
by one page (128 bytes). However, programming the block protect
register with $FE protects a range twice that size, 256 bytes, in the
corresponding array. $FE means that locations $FF00–$FFFF are
protected in FLASH-1.
The FLASH memory does not exist at some locations. The block
protection range configuration is unaffected if FLASH memory does not
exist in that range. Refer to the memory map and make sure that the
desired locations are protected.
4.5 FLASH-1 Block Protection
Due to the ability of the on-board charge pump to erase and program the
FLASH memory in the target application, provision is made for protecting
blocks of memory from unintentional erase or program operations due to
system malfunction. This protection is done by using the FLASH-1 Block
Protection Register (FL1BPR). FL1BPR determines the range of the
FLASH-1 memory which is to be protected. The range of the protected
area starts from a location defined by FL1BPR and ends at the bottom
of the FLASH-1 memory ($FFFF). When the memory is protected, the
HVEN bit can not be set in either ERASE or PROGRAM operations.
NOTE:
In performing a program or erase operation, the FLASH-1 Block Protect
Register must be read after setting the PGM or ERASE bit and before
asserting the HVEN bit.
When the FLASH-1 Block Protect Register is programmed with all 0’s,
the entire memory is protected from being programmed and erased.
When all the bits are erased (all 1’s), the entire memory is accessible for
program and erase.
When bits within FL1BPR are programmed (logic 0), they lock a block of
memory address ranges as shown in FLASH-1 Block Protect Register
on page 68. If FL1BPR is programmed with any value other than $FF,
the protected block of FLASH memory can not be erased or
programmed.
Technical Data
70
MC68HC908AZ60A — Rev 2.0
FLASH-1 Memory
MOTOROLA
FLASH-1 Memory
FLASH-1 Mass Erase Operation
NOTE:
The vector locations and the FLASH Block Protect Registers are located
in the same page. FL1BPR and FL2BPR are not protected with special
hardware or software; therefore, if this page is not protected by FL1BPR
and the vector locations are erased by either a page or a mass erase
operation, both FL1BPR and FL2BPR will also get erased.
4.6 FLASH-1 Mass Erase Operation
Use this step-by-step procedure to erase the entire FLASH-1 memory to
read as logic 1:
1. Set both the ERASE bit and the MASS bit in the FLASH-1 Control
Register (FL1CR).
2. Read the FLASH-1 Block Protect Register (FL1BPR).
3. Write to any FLASH-1 address within the FLASH-1 array with any
data.
NOTE:
If the address written to in Step 3 is within address space protected by
the FLASH-1 Block Protect Register (FL1BPR), no erase will occur.
4. Wait for a time, tNVS.
5. Set the HVEN bit.
6. Wait for a time, tMERASE.
7. Clear the ERASE bit.
8. Wait for a time, t NVHL.
9. Clear the HVEN bit.
10. Wait for a time, tRCV, after which the memory can be accessed in
normal read mode.
NOTE:
A. Programming and erasing of FLASH locations can not be performed
by code being executed from the same FLASH array.
B. While these operations must be performed in the order shown, other
unrelated operations may occur between the steps. Care must be taken
however to ensure that these operations do not access any address
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
FLASH-1 Memory
71
FLASH-1 Memory
within the FLASH array memory space such as the COP Control
Register (COPCTL) at $FFFF.
C. It is highly recommended that interrupts be disabled during
program/erase operations.
4.7 FLASH-1 Page Erase Operation
Use this step-by-step procedure to erase a page (128 bytes) of FLASH1 memory to read as logic 1:
1. Set the ERASE bit and clear the MASS bit in the FLASH-1 Control
Register (FL1CR).
2. Read the FLASH-1 Block Protect Register (FL1BPR).
3. Write any data to any FLASH-1 address within the address range
of the page (128 byte block) to be erased.
4. Wait for time, tNVS.
5. Set the HVEN bit.
6. Wait for time, tERASE.
7. Clear the ERASE bit.
8. Wait for time, t NVH.
9. Clear the HVEN bit.
10. Wait for a time, tRCV, after which the memory can be accessed in
normal read mode.
NOTE:
A. Programming and erasing of FLASH locations can not be performed
by code being executed from the same FLASH array.
B. While these operations must be performed in the order shown, other
unrelated operations may occur between the steps. Care must be taken
however to ensure that these operations do not access any address
within the FLASH array memory space such as the COP Control
Register (COPCTL) at $FFFF.
C. It is highly recommended that interrupts be disabled during
program/erase operations.
Technical Data
72
MC68HC908AZ60A — Rev 2.0
FLASH-1 Memory
MOTOROLA
FLASH-1 Memory
FLASH-1 Program Operation
4.8 FLASH-1 Program Operation
Programming of the FLASH memory is done on a row basis. A row
consists of 64 consecutive bytes with address ranges as follows:
•
$XX00 to $XX3F
•
$XX40 to $XX7F
•
$XX80 to $XXBF
•
$XXC0 to $XXFF
During the programming cycle, make sure that all addresses being
written to fit within one of the ranges specified above. Attempts to
program addresses in different row ranges in one programming cycle will
fail. Use this step-by-step procedure to program a row of FLASH-1
memory.
NOTE:
In order to avoid program disturbs, the row must be erased before any
byte on that row is programmed.
1. Set the PGM bit in the FLASH-1 Control Register (FL1CR). This
configures the memory for program operation and enables the
latching of address and data programming.
2. Read the FLASH-1 Block Protect Register (FL1BPR).
3. Write to any FLASH-1 address within the row address range
desired with any data.
4. Wait for time, tNVS.
5. Set the HVEN bit.
6. Wait for time, tPGS.
7. Write data byte to the FLASH-1 address to be programmed.
8. Wait for time, t PROG.
9. Repeat step 7 and 8 until all the bytes within the row are
programmed.
10. Clear the PGM bit.
11. Wait for time, tNVH.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
FLASH-1 Memory
73
FLASH-1 Memory
12. Clear the HVEN bit.
13. Wait for a time, tRCV, after which the memory can be accessed in
normal read mode.
The FLASH Programming Algorithm Flowchart is shown in Figure 4-4.
NOTE:
A. Programming and erasing of FLASH locations can not be performed
by code being executed from the same FLASH array.
B. While these operations must be performed in the order shown, other
unrelated operations may occur between the steps. Care must be taken
however to ensure that these operations do not access any address
within the FLASH array memory space such as the COP Control
Register (COPCTL) at $FFFF.
C. It is highly recommended that interrupts be disabled during
program/erase operations.
D. Do not exceed t PROG maximum or tHV maximum. tHV is defined as the
cumulative high voltage programming time to the same row before next
erase. tHV must satisfy this condition: tNVS+ tNVH + tPGS + (tPROGX 64) ð tHV
max. Please also see FLASH Memory Characteristics on page 543.
E. The time between each FLASH address change (step 7 to step 7), or
the time between the last FLASH address programmed to clearing the
PGM bit (step 7 to step 10) must not exceed the maximum programming
time, tPROG max.
F. Be cautious when programming the FLASH-1 array to ensure that
non-FLASH locations are not used as the address that is written to when
selecting either the desired row address range in step 3 of the algorithm
or the byte to be programmed in step 7 of the algorithm. This applies
particularly to:
•
$FFD2-$FFD3 and $FFDA-$FFFF: Vector area on
MC68HC908AS60A (40 bytes)
•
$FFCC-$FFFF: Vector area on MC68HC908AZ60A (52 bytes)
Technical Data
74
MC68HC908AZ60A — Rev 2.0
FLASH-1 Memory
MOTOROLA
FLASH-1 Memory
FLASH-1 Program Operation
1
Algorithm for programming
a row (64 bytes) of FLASH memory
2
3
Set PGM bit
Read the FLASH block protect register
Write any data to any FLASH address
within the row address range desired
4
Wait for a time, tnvs
5
Set HVEN bit
6
Wait for a time, tpgs
7
8
Write data to the FLASH address
to be programmed
Wait for a time, tPROG
Completed
programming
this row?
Y
N
NOTE:
The time between each FLASH address change (step 7 to step 7), or
the time between the last FLASH address programmed
to clearing PGM bit (step 7 to step 10)
must not exceed the maximum programming
time, tPROG max.
10
Clear PGM bit
11
Wait for a time, tnvh
12
Clear HVEN bit
13
Wait for a time, trcv
This row program algorithm assumes the row/s
to be programmed are initially erased.
End of programming
Figure 4-4. FLASH Programming Algorithm Flowchart
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
FLASH-1 Memory
75
FLASH-1 Memory
4.9 Low-Power Modes
The WAIT and STOP instructions will place the MCU in low power
consumption standby modes.
4.9.1 WAIT Mode
Putting the MCU into wait mode while the FLASH is in read mode does
not affect the operation of the FLASH memory directly; however, no
memory activity will take place since the CPU is inactive.
The WAIT instruction should not be executed while performing a
program or erase operation on the FLASH. Wait mode will suspend any
FLASH program/erase operations and leave the memory in a Standby
Mode.
4.9.2 STOP Mode
Putting the MCU into stop mode while the FLASH is in read mode does
not affect the operation of the FLASH memory directly; however, no
memory activity will take place since the CPU is inactive.
The STOP instruction should not be executed while performing a
program or erase operation on the FLASH. Stop mode will suspend any
FLASH program/erase operations and leave the memory in a Standby
Mode.
NOTE:
Standby Mode is the power saving mode of the FLASH module, in which
all internal control signals to the FLASH are inactive and the current
consumption of the FLASH is minimum.
Technical Data
76
MC68HC908AZ60A — Rev 2.0
FLASH-1 Memory
MOTOROLA
Technical Data — MC68HC908AZ60A
Section 5. FLASH-2 Memory
5.1 Contents
5.2
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3
Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
5.4
FLASH-2 Control and Block Protect Registers . . . . . . . . . . 79
5.4.1
FLASH-2 Control Register . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.4.2
FLASH-2 Block Protect Register. . . . . . . . . . . . . . . . . . . . 80
5.5
FLASH-2 Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.6
FLASH-2 Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . 83
5.7
FLASH-2 Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . 84
5.8
FLASH-2 Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . 85
5.9
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.9.1
WAIT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.9.2
STOP Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
5.2 Introduction
This section describes the operation of the embedded FLASH-2
memory. This memory can be read, programmed and erased from a
single external supply. The program and erase operations are enabled
through the use of an internal charge pump.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
FLASH-2 Memory
77
FLASH-2 Memory
5.3 Functional Description
The FLASH-2 memory is a non-continuos array consisting of a total of
29,616 bytes on the MC68HC908AS60A and 29,488 bytes on the
MC68HC908AZ60A. An erased bit reads as a logic 1 and a programmed
bit reads as a logic 0.
Memory in the FLASH-2 array is organized into rows within pages. There
are two rows of memory per page with 64 bytes per row. The minimum
erase block size is a single page,128 bytes. Programming is performed
on a per-row basis, 64 bytes at a time. Program and erase operations
are facilitated through control bits in the FLASH-2 Control Register
(FL2CR). Details for these operations appear later in this section.
The FLASH-2 memory map consists of:
•
$0450–$05FF: User Memory on MC68HC908AS60A (432 bytes)
•
$0450–$04FF: User Memory on MC68HC908AZ60A (176 bytes)
•
$0580–$05FF: User Memory on MC68HC908AZ60A (128 bytes)
•
$0E00–$7FFF: User Memory (29,616 bytes)
•
$FF81: FLASH-2 Block Protect Register (FL2BPR)
– Note that FL2BPR physically resides within FLASH-1 memory
addressing space
•
$FE08: FLASH-2 Control Register (FL2CR)
Programming tools are available from Motorola. Contact your local
Motorola representative for more information.
NOTE:
A security feature prevents viewing of the FLASH contents.(1)
1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or
copying the FLASH difficult for unauthorized users.
Technical Data
78
MC68HC908AZ60A — Rev 2.0
FLASH-2 Memory
MOTOROLA
FLASH-2 Memory
FLASH-2 Control and Block Protect Registers
5.4 FLASH-2 Control and Block Protect Registers
The FLASH-2 array has two registers that control its operation, the
FLASH-2 Control Register (FL2CR) and the FLASH-2 Block Protect
Register (FL2BPR).
5.4.1 FLASH-2 Control Register
The FLASH-2 Control Register (FL2CR) controls FLASH-2 program and
erase operations.
Address:
Read:
$FE08
Bit 7
6
5
4
0
0
0
0
3
2
1
Bit 0
HVEN
MASS
ERASE
PGM
0
0
0
0
Write:
Reset:
0
0
0
0
Figure 5-1. FLASH-2 Control Register (FL2CR)
HVEN — High-Voltage Enable Bit
This read/write bit enables the charge pump to drive high voltages for
program and erase operations in the array. HVEN can only be set if
either PGM = 1 or ERASE = 1 and the proper sequence for program
or erase is followed.
1 = High voltage enabled to array and charge pump on
0 = High voltage disabled to array and charge pump off
MASS — Mass Erase Control Bit
Setting this read/write bit configures the FLASH-2 array for mass or
page erase operation.
1 = Mass erase operation selected
0 = Page erase operation selected
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
FLASH-2 Memory
79
FLASH-2 Memory
ERASE — Erase Control Bit
This read/write bit configures the memory for erase operation.
ERASE is interlocked with the PGM bit such that both bits cannot be
set at the same time.
1 = Erase operation selected
0 = Erase operation unselected
PGM — Program Control Bit
This read/write bit configures the memory for program operation.
PGM is interlocked with the ERASE bit such that both bits cannot be
equal to 1 or set to 1 at the same time.
1 = Program operation selected
0 = Program operation unselected
5.4.2 FLASH-2 Block Protect Register
The FLASH-2 Block Protect Register (FL2BPR) is implemented as a
byte within the FLASH-1 memory and therefore can only be written
during a FLASH programming sequence. The value in this register
determines the starting location of the protected range within the
FLASH-2 memory.
Address:
$FF81
Bit 7
6
5
4
3
2
1
Bit 0
BPR7
BPR6
BPR5
BPR4
BPR3
BPR2
BPR1
BPR0
Read:
Write:
Figure 5-2. FLASH-2 Block Protect Register (FL2BPR)
NOTE:
The FLASH-2 Block Protect Register (FL2BPR) controls the block
protection for the FLASH-2 array. However, FL2BPR is implemented
within the FLASH-1 memory array and therefore, the FLASH-1 Control
Register (FL1CR) must be used to program/erase FL2BPR.
FL2BPR[7:0] — Block Protect Register Bit7 to Bit0
These eight bits represent bits [14:7] of a 16-bit memory address. Bit15 is logic 1 and bits [6:0] are logic 0s.
Technical Data
80
MC68HC908AZ60A — Rev 2.0
FLASH-2 Memory
MOTOROLA
FLASH-2 Memory
FLASH-2 Control and Block Protect Registers
The resultant 16-bit address is used for specifying the start address
of the FLASH-2 memory for block protection. FLASH-2 is protected
from this start address to the end of FLASH-2 memory at $7FFF. With
this mechanism, the protect start address can be $XX00 and $XX80
(128 byte page boundaries) within the FLASH-2 array.
16-bit memory address
Start address of FLASH block protect
1
FLBPR value
0
0
0
0
0
0
0
Figure 5-3. FLASH-2 Block Protect Start Address
FLASH-2 Protected Ranges:
FL2BPR[7:0]
Protected Range
$FF
No Protection
$FE
$7F00 – $7FFF
$FD
$7E80 – $7FFF
$0B
$0580 – $7FFF
$0A
$0500 – $7FFF
$09
$0480 – $7FFF
$08
$0450 – $7FFF
$04
$0450 – $7FFF
$03
$0450 – $7FFF
$02
$0450 – $7FFF
$01
$0450 – $7FFF
$00
$0450 – $7FFF
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
FLASH-2 Memory
81
FLASH-2 Memory
Decreasing the value in FL2BPR by one increases the protected range
by one page (128 bytes). However, programming the block protect
register with $FE protects a range twice that size, 256 bytes, in the
corresponding array. $FE means that locations $7F00–$7FFF are
protected in FLASH-2.
The FLASH memory does not exist at some locations. The block
protection range configuration is unaffected if FLASH memory does not
exist in that range. Refer to the memory map and make sure that the
desired locations are protected.
5.5 FLASH-2 Block Protection
Due to the ability of the on-board charge pump to erase and program the
FLASH memory in the target application, provision is made for protecting
blocks of memory from unintentional erase or program operations due to
system malfunction. This protection is done by using the FLASH-2 Block
Protection Register (FL2BPR). FL2BPR determines the range of the
FLASH-2 memory which is to be protected. The range of the protected
area starts from a location defined by FL2BPR and ends at the bottom
of the FLASH-2 memory ($7FFF). When the memory is protected, the
HVEN bit can not be set in either ERASE or PROGRAM operations.
NOTE:
In performing a program or erase operation, the FLASH-2 Block Protect
Register must be read after setting the PGM or ERASE bit and before
asserting the HVEN bit.
When the FLASH-2 Block Protect Register is programmed with all 0’s,
the entire memory is protected from being programmed and erased.
When all the bits are erased (all 1’s), the entire memory is accessible for
program and erase.
When bits within FL2BPR are programmed (logic 0), they lock a block of
memory address ranges as shown in FLASH-2 Block Protect Register
on page 80. If FL2BPR is programmed with any value other than $FF,
the protected block of FLASH memory can not be erased or
programmed.
Technical Data
82
MC68HC908AZ60A — Rev 2.0
FLASH-2 Memory
MOTOROLA
FLASH-2 Memory
FLASH-2 Mass Erase Operation
NOTE:
The vector locations and the FLASH Block Protect Registers are located
in the same page. FL1BPR and FL2BPR are not protected with special
hardware or software; therefore, if this page is not protected by FL1BPR
and the vector locations are erased by either a page or a mass erase
operation, both FL1BPR and FL2BPR will also get erased.
5.6 FLASH-2 Mass Erase Operation
Use this step-by-step procedure to erase the entire FLASH-2 memory to
read as logic 1:
1. Set both the ERASE bit and the MASS bit in the FLASH-2 Control
Register (FL2CR).
2. Read the FLASH-2 Block Protect Register (FL2BPR).
3. Write to any FLASH-2 address within the FLASH-2 array with any
data.
NOTE:
If the address written to in Step 3 is within address space protected by
the FLASH-2 Block Protect Register (FL2BPR), no erase will occur.
4. Wait for a time, tNVS.
5. Set the HVEN bit.
6. Wait for a time, tMERASE.
7. Clear the ERASE bit.
8. Wait for a time, t NVHL.
9. Clear the HVEN bit.
10. Wait for a time, tRCV, after which the memory can be accessed in
normal read mode.
NOTE:
A. Programming and erasing of FLASH locations can not be performed
by code being executed from the same FLASH array.
B. While these operations must be performed in the order shown, other
unrelated operations may occur between the steps. Care must be taken
however to ensure that these operations do not access any address
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
FLASH-2 Memory
83
FLASH-2 Memory
within the FLASH array memory space such as the COP Control
Register (COPCTL) at $FFFF.
C. It is highly recommended that interrupts be disabled during
program/erase operations.
5.7 FLASH-2 Page Erase Operation
Use this step-by-step procedure to erase a page (128 bytes) of FLASH2 memory to read as logic 1:
1. Set the ERASE bit and clear the MASS bit in the FLASH-2 Control
Register (FL2CR).
2. Read the FLASH-2 Block Protect Register (FL2BPR).
3. Write any data to any FLASH-2 address within the address range
of the page (128 byte block) to be erased.
4. Wait for time, tNVS.
5. Set the HVEN bit.
6. Wait for time, tERASE.
7. Clear the ERASE bit.
8. Wait for time, t NVH.
9. Clear the HVEN bit.
10. Wait for a time, tRCV, after which the memory can be accessed in
normal read mode.
NOTE:
A. Programming and erasing of FLASH locations can not be performed
by code being executed from the same FLASH array.
B. While these operations must be performed in the order shown, other
unrelated operations may occur between the steps. Care must be taken
however to ensure that these operations do not access any address
within the FLASH array memory space such as the COP Control
Register (COPCTL) at $FFFF.
C. It is highly recommended that interrupts be disabled during
program/erase operations.
Technical Data
84
MC68HC908AZ60A — Rev 2.0
FLASH-2 Memory
MOTOROLA
FLASH-2 Memory
FLASH-2 Program Operation
5.8 FLASH-2 Program Operation
Programming of the FLASH memory is done on a row basis. A row
consists of 64 consecutive bytes with address ranges as follows:
•
$XX00 to $XX3F
•
$XX40 to $XX7F
•
$XX80 to $XXBF
•
$XXC0 to $XXFF
During the programming cycle, make sure that all addresses being
written to fit within one of the ranges specified above. Attempts to
program addresses in different row ranges in one programming cycle will
fail. Use this step-by-step procedure to program a row of FLASH-2
memory.
NOTE:
In order to avoid program disturbs, the row must be erased before any
byte on that row is programmed.
1. Set the PGM bit in the FLASH-2 Control Register (FL2CR). This
configures the memory for program operation and enables the
latching of address and data programming.
2. Read the FLASH-2 Block Protect Register (FL2BPR).
3. Write to any FLASH-2 address within the row address range
desired with any data.
4. Wait for time, tNVS.
5. Set the HVEN bit.
6. Wait for time, tPGS.
7. Write data byte to the FLASH-2 address to be programmed.
8. Wait for time, t PROG.
9. Repeat step 7 and 8 until all the bytes within the row are
programmed.
10. Clear the PGM bit.
11. Wait for time, tNVH.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
FLASH-2 Memory
85
FLASH-2 Memory
12. Clear the HVEN bit.
13. Wait for a time, tRCV, after which the memory can be accessed in
normal read mode.
The FLASH Programming Algorithm Flowchart is shown in Figure 5-4.
NOTE:
A. Programming and erasing of FLASH locations can not be performed
by code being executed from the same FLASH array.
B. While these operations must be performed in the order shown, other
unrelated operations may occur between the steps. Care must be taken
however to ensure that these operations do not access any address
within the FLASH array memory space such as the COP Control
Register (COPCTL) at $FFFF.
C. It is highly recommended that interrupts be disabled during
program/erase operations.
D. Do not exceed t PROG maximum or tHV maximum. tHV is defined as the
cumulative high voltage programming time to the same row before next
erase. tHV must satisfy this condition: tNVS+ tNVH + tPGS + (tPROGX 64) ð tHV
max. Please also see FLASH Memory Characteristics on page 543.
E. The time between each FLASH address change (step 7 to step 7), or
the time between the last FLASH address programmed to clearing the
PGM bit (step 7 to step 10) must not exceed the maximum programming
time, tPROG max.
F. Be cautious when programming the FLASH-2 array to ensure that
non-FLASH locations are not used as the address that is written to when
selecting either the desired row address range in step 3 of the algorithm
or the byte to be programmed in step 7 of the algorithm. This applies
particularly to:
•
$0450-$047F: First row of FLASH-2 (48 bytes)
Technical Data
86
MC68HC908AZ60A — Rev 2.0
FLASH-2 Memory
MOTOROLA
FLASH-2 Memory
FLASH-2 Program Operation
1
Algorithm for programming
a row (64 bytes) of FLASH memory
2
3
Set PGM bit
Read the FLASH block protect register
Write any data to any FLASH address
within the row address range desired
4
Wait for a time, tnvs
5
Set HVEN bit
6
Wait for a time, tpgs
7
8
Write data to the FLASH address
to be programmed
Wait for a time, tPROG
Completed
programming
this row?
Y
N
NOTE:
The time between each FLASH address change (step 7 to step 7), or
the time between the last FLASH address programmed
to clearing PGM bit (step 7 to step 10)
must not exceed the maximum programming
time, tPROG max.
10
Clear PGM bit
11
Wait for a time, tnvh
12
Clear HVEN bit
13
Wait for a time, trcv
This row program algorithm assumes the row/s
to be programmed are initially erased.
End of programming
Figure 5-4. FLASH Programming Algorithm Flowchart
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
FLASH-2 Memory
87
FLASH-2 Memory
5.9 Low-Power Modes
The WAIT and STOP instructions will place the MCU in low power
consumption standby modes.
5.9.1 WAIT Mode
Putting the MCU into wait mode while the FLASH is in read mode does
not affect the operation of the FLASH memory directly; however, no
memory activity will take place since the CPU is inactive.
The WAIT instruction should not be executed while performing a
program or erase operation on the FLASH. Wait mode will suspend any
FLASH program/erase operations and leave the memory in a Standby
Mode.
5.9.2 STOP Mode
Putting the MCU into stop mode while the FLASH is in read mode does
not affect the operation of the FLASH memory directly; however, no
memory activity will take place since the CPU is inactive.
The STOP instruction should not be executed while performing a
program or erase operation on the FLASH. Stop mode will suspend any
FLASH program/erase operations and leave the memory in a Standby
Mode.
NOTE:
Standby Mode is the power saving mode of the FLASH module, in which
all internal control signals to the FLASH are inactive and the current
consumption of the FLASH is minimum.
Technical Data
88
MC68HC908AZ60A — Rev 2.0
FLASH-2 Memory
MOTOROLA
Technical Data — MC68HC908AZ60A
Section 6. EEPROM-1 Memory
6.1 Contents
6.2
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.4
EEPROM-1 Register Summary . . . . . . . . . . . . . . . . . . . . . . . 91
6.5
Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
6.5.1
EEPROM-1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.5.2
EEPROM-1 Timebase Requirements . . . . . . . . . . . . . . . . 93
6.5.3
EEPROM-1 Program/Erase Protection . . . . . . . . . . . . . . . 93
6.5.4
EEPROM-1 Block Protection . . . . . . . . . . . . . . . . . . . . . . .94
6.5.5
EEPROM-1 Programming and Erasing. . . . . . . . . . . . . . . 95
6.6
EEPROM-1 Register Descriptions. . . . . . . . . . . . . . . . . . . . . 99
6.6.1
EEPROM-1 Control Register . . . . . . . . . . . . . . . . . . . . . . .99
6.6.2
EEPROM-1 Array Configuration Register . . . . . . . . . . . 101
6.6.3
EEPROM-1 Nonvolatile Register. . . . . . . . . . . . . . . . . . . 103
6.6.4
EEPROM-1 Timebase Divider Register . . . . . . . . . . . . . 104
6.6.5
EEPROM-1 Timebase Divider Non-Volatile Register . . 106
6.7
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.7.1
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.7.2
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
EEPROM-1 Memory
89
EEPROM-1 Memory
6.2 Introduction
This section describes the 512 bytes of electrically erasable
programmable read-only memory (EEPROM) residing at address range
$0800 to $09FF. There are 1024 bytes of EEPROM available on the
MC68HC908AS60A and MC68HC908AZ60A which are physically
located in two 512 byte arrays. For information relating to the array
covering address range $0600 to $07FF please see EEPROM-2
Memory on page 109.
6.3 Features
Features of the EEPROM-1 include the following:
•
512 bytes Non-Volatile Memory
•
Byte, Block, or Bulk Erasable
•
Non-Volatile EEPROM Configuration and Block Protection
Options
•
On-chip Charge Pump for Programming/Erasing
•
Security Option
•
AUTO Bit Driven Programming/Erasing Time Feature
Technical Data
90
MC68HC908AZ60A — Rev 2.0
EEPROM-1 Memory
MOTOROLA
EEPROM-1 Memory
EEPROM-1 Register Summary
6.4 EEPROM-1 Register Summary
The EEPROM-1 Register Summary is shown in Figure 6-1.
Addr.
$FE10
$FE11
Register Name
Bit 7
Read:
EE1DIV Non-volatile
EEDIVSECD
Register High Write:
(EE1DIVHNVR)*
Reset:
Read:
EE1DIV Non-volatile
EEDIV7
Register Low Write:
(EE1DIVLNVR)*
Reset:
Read:
EEDIVSECD
EE1 Divider Register High
$FE1A
Write:
(EE1DIVH)
Reset:
Read:
EEDIV7
EE1 Divider Register Low
$FE1B
Write:
(EE1DIVL)
Reset:
$FE1C
5
4
3
2
1
Bit 0
R
R
R
R
EEDIV10
EEDIV9
EEDIV8
EEDIV1
EEDIV0
EEDIV9
EEDIV8
EEDIV1
EEDIV0
Unaffected by reset; $FF when blank
EEDIV6
EEDIV5
EEDIV4
EEDIV3
EEDIV2
Unaffected by reset; $FF when blank
0
0
0
0
EEDIV10
Contents of EE1DIVHNVR ($FE10), Bits [6:3] = 0
EEDIV6
EEDIV5
EEDIV4
EEDIV3
EEDIV2
Contents of EE1DIVLNVR ($FE11)
Read:
EEPROM-1 Non-volatile
UNUSED UNUSED UNUSED EEPRTCT EEBP3
EEBP2
EEBP1
Register Write:
(EE1NVR)*
Reset:
Unaffected by reset; $FF when blank; factory programmed $F0
Read:
EEPROM-1 Control
UNUSED
Register Write:
(EE1CR)
Reset:
0
$FE1D
$FE1F
6
EEBP0
0
0
EEOFF
EERAS1
EERAS0
EELAT
AUTO
EEPGM
0
0
0
0
0
0
EEBP1
EEBP0
Read: UNUSED UNUSED UNUSED EEPRTCT EEBP3
EEBP2
EEPROM-1 Array
Configuration Register Write:
(EE1ACR)
Reset:
Contents of EE1NVR ($FE1C)
* Non-volatile EEPROM register; write by programming.
= Unimplemented
R
= Reserved
UNUSED = Unused
Figure 6-1. EEPROM-1 Register Summary
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
EEPROM-1 Memory
91
EEPROM-1 Memory
6.5 Functional Description
The 512 bytes of EEPROM-1 are located at $0800-$09FF and can be
programmed or erased without an additional external high voltage
supply. The program and erase operations are enabled through the use
of an internal charge pump. For each byte of EEPROM, the write/erase
endurance is 10,000 cycles.
6.5.1 EEPROM-1 Configuration
The 8-bit EEPROM-1 Non-Volatile Register (EE1NVR) and the 16-bit
EEPROM-1 Timebase Divider Non-Volatile Register (EE1DIVNVR)
contain the default settings for the following EEPROM configurations:
•
EEPROM-1 Timebase Reference
•
EEPROM-1 Security Option
•
EEPROM-1 Block Protection
EE1NVR and EE1DIVNVR are non-volatile EEPROM registers. They
are programmed and erased in the same way as EEPROM bytes. The
contents of these registers are loaded into their respective volatile
registers during a MCU reset. The values in these read/write volatile
registers define the EEPROM-1 configurations.
For EE1NVR, the corresponding volatile register is the EEPROM-1
Array Configuration Register (EE1ACR). For the EE1DIVNCR (two 8-bit
registers: EE1DIVHNVR and EE1DIVLNVR), the corresponding volatile
register is the EEPROM-1 Divider Register (EE1DIV: EE1DIVH and EE1
DIVL).
Technical Data
92
MC68HC908AZ60A — Rev 2.0
EEPROM-1 Memory
MOTOROLA
EEPROM-1 Memory
Functional Description
6.5.2 EEPROM-1 Timebase Requirements
A 35µs timebase is required by the EEPROM-1 control circuit for
program and erase of EEPROM content. This timebase is derived from
dividing the CGMXCLK or bus clock (selected by EEDIVCLK bit in
CONFIG-2 Register) using a timebase divider circuit controlled by the
16-bit EEPROM-1 Timebase Divider EE1DIV Register (EE1DIVH and
EE1DIVL).
As the CGMXCLK or bus clock is user selected, the EEPROM-1
Timebase Divider Register must be configured with the appropriate
value to obtain the 35 µs. The timebase divider value is calculated by
using the following formula:
EE1DIV= INT[Reference Frequency(Hz) x 35 x10-6 +0.5]
This value is written to the EEPROM-1 Timebase Divider Register
(EE1DIVH and EE1DIVL) or programmed into the EEPROM-1
Timebase Divider Non-Volatile Register prior to any EEPROM program
or erase operations(see EEPROM-1 Configuration on page 92 and
EEPROM-1 Timebase Requirements on page 93).
6.5.3 EEPROM-1 Program/Erase Protection
The EEPROM has a special feature that designates the 16 bytes of
addresses from $08F0 to $08FF to be permanently secured. This
program/erase protect option is enabled by programming the EEPRTCT
bit in the EEPROM-1 Non-Volatile Register (EE1NVR) to a logic zero.
Once the EEPRTCT bit is programmed to 0 for the first time:
•
Programming and erasing of secured locations $08F0 to $08FF is
permanently disabled.
•
Secured locations $08F0 to $08FF can be read as normal.
•
Programming and erasing of EE1NVR is permanently disabled.
•
Bulk and Block Erase operations are disabled for the unprotected
locations $0800-$08EF, $0900-$09FF.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
EEPROM-1 Memory
93
EEPROM-1 Memory
•
NOTE:
Single byte program and erase operations are still available for
locations $0800-$08EF and $0900-$09FF for all bytes that are not
protected by the EEPROM-1 Block Protect EEBPx bits (see
EEPROM-1 Block Protection on page 94 and EEPROM-1 Array
Configuration Register on page 101)
Once armed, the protect option is permanently enabled. As a
consequence, all functions in the EE1NVR will remain in the state they
were in immediately before the security was enabled.
6.5.4 EEPROM-1 Block Protection
The 512 bytes of EEPROM-1 are divided into four 128-byte blocks. Each
of these blocks can be protected from erase/program operations by
setting the EEBPx bit in the EE1NVR. Table 6-1 shows the address
ranges for the blocks.
Table 6-1. EEPROM-1 Array Address Blocks
Block Number (EEBPx)
Address Range
EEBP0
$0800–$087F
EEBP1
$0880–$08FF
EEBP2
$0900–$097F
EEBP3
$0980–$09FF
These bits are effective after a reset or a upon read of the EE1NVR
register. The block protect configuration can be modified by
erasing/programming the corresponding bits in the EE1NVR register
and then reading the EE1NVR register. Please see EEPROM-1 Array
Configuration Register on page 101 for more information.
NOTE:
Once EEDIVSECD in the EE1DIVHNVR is programmed to 0 and after a
system reset, the EE1DIV security feature is permanently enabled
because the EEDIVSECD bit in the EE1DIVH is always loaded with 0
thereafter. Once this security feature is armed, erase and program mode
are disabled for EE1DIVHNVR and EE1DIVLNVR. Modifications to the
EE1DIVH and EE1DIVL registers are also disabled. Therefore, be
cautious on programming a value into the EE1DIVHNVR.
Technical Data
94
MC68HC908AZ60A — Rev 2.0
EEPROM-1 Memory
MOTOROLA
EEPROM-1 Memory
Functional Description
6.5.5 EEPROM-1 Programming and Erasing
The unprogrammed or erase state of an EEPROM bit is a logic 1. The
factory default for all bytes within the EEPROM-1 array is $FF.
The programming operation changes an EEPROM bit from logic 1 to
logic 0 (programming cannot change a bit from logic 0 to a logic 1). In a
single programming operation, the minimum EEPROM programming
size is one bit; the maximum is eight bits (one byte).
The erase operation changes an EEPROM bit from logic 0 to logic 1. In
a single erase operation, the minimum EEPROM erase size is one byte;
the maximum is the entire EEPROM-1 array.
The EEPROM can be programmed such that one or multiple bits are
programmed (written to a logic 0) at a time. However, the user may never
program the same bit location more than once before erasing the entire
byte. In other words, the user is not allowed to program a logic 0 to a bit
that is already programmed (bit state is already logic 0).
For some applications it might be advantageous to track more than 10K
events with a single byte of EEPROM by programming one bit at a time.
For that purpose, a special selective bit programming technique is
available. An example of this technique is illustrated in Table 6-2.
Table 6-2. Example Selective Bit Programming Description
Program Data
in Binary
Result
in Binary
n/a
1111:1111
First event is recorded by programming bit position 0
1111:1110
1111:1110
Second event is recorded by programming bit position 1
1111:1101
1111:1100
Third event is recorded by programming bit position 2
1111:1011
1111:1000
Fourth event is recorded by programming bit position 3
1111:0111
1111:0000
Description
Original state of byte (erased)
Events five through eight are recorded in a similar fashion
Note that none of the bit locations are actually programmed more than
once although the byte was programmed eight times.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
EEPROM-1 Memory
95
EEPROM-1 Memory
When this technique is utilized, a program/erase cycle is defined as
multiple program sequences (up to eight) to a unique location followed
by a single erase operation.
Program/Erase
Using AUTO Bit
An additional feature available for EEPROM-1 program and erase
operations is the AUTO mode. When enabled, AUTO mode will activate
an internal timer that will automatically terminate the program/erase
cycle and clear the EEPGM bit. Please see EEPROM-1 Programming
on page 96, EEPROM-1 Erasing on page 97 and EEPROM-1 Control
Register on page 99 for more information.
EEPROM-1
Programming
The unprogrammed or erase state of an EEPROM bit is a logic 1.
Programming changes the state to a logic 0. Only EEPROM bytes in the
non-protected blocks and the EE1NVR register can be programmed.
Use the following procedure to program a byte of EEPROM:
1. Clear EERAS1 and EERAS0 and set EELAT in the EE1CR.(A)
NOTE:
If using the AUTO mode, also set the AUTO bit during Step 1.
2. Write the desired data to the desired EEPROM address.(B)
3. Set the EEPGM bit.(C) Go to Step 7 if AUTO is set.
4. Wait for time, tEEPGM, to program the byte.
5. Clear EEPGM bit.
6. Wait for time, tEEFPV, for the programming voltage to fall. Go to
Step 8.
7. Poll the EEPGM bit until it is cleared by the internal timer.(D)
8. Clear EELAT bits.(E)
NOTE:
A. EERAS1 and EERAS0 must be cleared for programming. Setting the
EELAT bit configures the address and data buses to latch data for
programming the array. Only data with a valid EEPROM-1 address will
be latched. If EELAT is set, other writes to the EE1CR will be allowed
after a valid EEPROM-1 write.
Technical Data
96
MC68HC908AZ60A — Rev 2.0
EEPROM-1 Memory
MOTOROLA
EEPROM-1 Memory
Functional Description
B. If more than one valid EEPROM write occurs, the last address and
data will be latched overriding the previous address and data. Once data
is written to the desired address, do not read EEPROM-1 locations other
than the written location. (Reading an EEPROM location returns the
latched data and causes the read address to be latched).
C. The EEPGM bit cannot be set if the EELAT bit is cleared or a nonvalid EEPROM address is latched. This is to ensure proper
programming sequence. Once EEPGM is set, do not read any
EEPROM-1 locations; otherwise, the current program cycle will be
unsuccessful. When EEPGM is set, the on-board programming
sequence will be activated.
D. The delay time for the EEPGM bit to be cleared in AUTO mode is less
than tEEPGM. However, on other MCUs, this delay time may be different.
For forward compatibility, software should not make any dependency on
this delay time.
E. Any attempt to clear both EEPGM and EELAT bits with a single
instruction will only clear EEPGM. This is to allow time for removal of
high voltage from the EEPROM-1 array.
EEPROM-1 Erasing
The programmed state of an EEPROM bit is logic 0. Erasing changes
the state to a logic 1. Only EEPROM-1 bytes in the non-protected blocks
and the EE1NVR register can be erased.
Use the following procedure to erase a byte, block or the entire
EEPROM-1 array:
1. Configure EERAS1 and EERAS0 for byte, block or bulk erase; set
EELAT in EE1CR.(A)
NOTE:
If using the AUTO mode, also set the AUTO bit in Step 1.
2. Byte erase: write any data to the desired address.(B)
Block erase: write any data to an address within the desired
block.(B)
Bulk erase: write any data to an address within the array.(B)
3. Set the EEPGM bit.(C) Go to Step 7 if AUTO is set.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
EEPROM-1 Memory
97
EEPROM-1 Memory
4. Wait for a time: tEEBYTE for byte erase; tEEBLOCK for block erase;
tEEBULK. for bulk erase.
5. Clear EEPGM bit.
6. Wait for a time, tEEFPV, for the erasing voltage to fall. Go to Step 8.
7. Poll the EEPGM bit until it is cleared by the internal timer.(D)
8. Clear EELAT bits.(E)
NOTE:
A. Setting the EELAT bit configures the address and data buses to latch
data for erasing the array. Only valid EEPROM-1 addresses will be
latched. If EELAT is set, other writes to the EE1CR will be allowed after
a valid EEPROM-1 write.
B. If more than one valid EEPROM write occurs, the last address and
data will be latched overriding the previous address and data. Once data
is written to the desired address, do not read EEPROM-1 locations other
than the written location. (Reading an EEPROM location returns the
latched data and causes the read address to be latched).
C. The EEPGM bit cannot be set if the EELAT bit is cleared or a nonvalid EEPROM address is latched. This is to ensure proper
programming sequence. Once EEPGM is set, do not read any
EEPROM-1 locations; otherwise, the current program cycle will be
unsuccessful. When EEPGM is set, the on-board programming
sequence will be activated.
D. The delay time for the EEPGM bit to be cleared in AUTO mode is less
than tEEBYTE /tEEBLOCK/tEEBULK. However, on other MCUs, this delay
time may be different. For forward compatibility, software should not
make any dependency on this delay time.
E. Any attempt to clear both EEPGM and EELAT bits with a single
instruction will only clear EEPGM. This is to allow time for removal of
high voltage from the EEPROM-1 array.
Technical Data
98
MC68HC908AZ60A — Rev 2.0
EEPROM-1 Memory
MOTOROLA
EEPROM-1 Memory
EEPROM-1 Register Descriptions
6.6 EEPROM-1 Register Descriptions
Four I/O registers and three non-volatile registers control program, erase
and options of the EEPROM-1 array.
6.6.1 EEPROM-1 Control Register
This read/write register controls programming/erasing of the array.
Address:
$FE1D
Bit 7
6
Read:
5
4
3
2
1
Bit 0
EEOFF
EERAS1
EERAS0
EELAT
AUTO
EEPGM
0
0
0
0
0
0
0
UNUSED
Write:
Reset:
0
0
= Unimplemented
Figure 6-2. EEPROM-1 Control Register (EE1CR)
Bit 7— Unused bit
This read/write bit is software programmable but has no functionality.
EEOFF — EEPROM-1 power down
This read/write bit disables the EEPROM-1 module for lower power
consumption. Any attempts to access the array will give unpredictable
results. Reset clears this bit.
1 = Disable EEPROM-1 array
0 = Enable EEPROM-1 array
EERAS1 and EERAS0 — Erase/Program Mode Select Bits
These read/write bits set the erase modes. Reset clears these bits.
Table 6-3. EEPROM-1 Program/Erase Mode Select
EEBPx
EERAS1
EERAS0
MODE
0
0
0
Byte Program
0
0
1
Byte Erase
0
1
0
Block Erase
0
1
1
Bulk Erase
1
X
X
No Erase/Program
X = don’t care
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
EEPROM-1 Memory
99
EEPROM-1 Memory
EELAT — EEPROM-1 Latch Control
This read/write bit latches the address and data buses for
programming the EEPROM-1 array. EELAT cannot be cleared if
EEPGM is still set. Reset clears this bit.
1 = Buses configured for EEPROM-1 programming or erase
operation
0 = Buses configured for normal operation
AUTO — Automatic termination of program/erase cycle
When AUTO is set, EEPGM is cleared automatically after the
program/erase cycle is terminated by the internal timer.
(See note D for EEPROM-1 Programming on page 96, EEPROM-1
Erasing on page 97 and EEPROM Memory Characteristics on
page 542)
1 = Automatic clear of EEPGM is enabled
0 = Automatic clear of EEPGM is disabled
EEPGM — EEPROM-1 Program/Erase Enable
This read/write bit enables the internal charge pump and applies the
programming/erasing voltage to the EEPROM-1 array if the EELAT
bit is set and a write to a valid EEPROM-1 location has occurred.
Reset clears the EEPGM bit.
1 = EEPROM-1 programming/erasing power switched on
0 = EEPROM-1 programming/erasing power switched off
NOTE:
Writing logic 0s to both the EELAT and EEPGM bits with a single
instruction will clear EEPGM only to allow time for the removal of high
voltage.
Technical Data
100
MC68HC908AZ60A — Rev 2.0
EEPROM-1 Memory
MOTOROLA
EEPROM-1 Memory
EEPROM-1 Register Descriptions
6.6.2 EEPROM-1 Array Configuration Register
The EEPROM-1 array configuration register configures EEPROM-1
security and EEPROM-1 block protection.
This read-only register is loaded with the contents of the EEPROM-1
non-volatile register (EE1NVR) after a reset.
Address:
$FE1F
Bit 7
6
5
4
Read: UNUSED UNUSED UNUSED EEPRTCT
3
2
1
Bit 0
EEBP3
EEBP2
EEBP1
EEBP0
Write:
Reset:
Contents of EE1NVR ($FE1C)
Figure 6-3. EEPROM-1 Array Configuration Register (EE1ACR)
Bit 7:5 — Unused Bits
These read/write bits are software programmable but have no
functionality.
EEPRTCT — EEPROM-1 Protection Bit
The EEPRTCT bit is used to enable the security feature in the
EEPROM (see EEPROM-1 Program/Erase Protection).
1 = EEPROM-1 security disabled
0 = EEPROM-1 security enabled
This feature is a write-once feature. Once the protection is enabled it
may not be disabled.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
EEPROM-1 Memory
101
EEPROM-1 Memory
EEBP[3:0] — EEPROM-1 Block Protection Bits
These bits prevent blocks of EEPROM-1 array from being
programmed or erased.
1 = EEPROM-1 array block is protected
0 = EEPROM-1 array block is unprotected
Block Number (EEBPx)
Address Range
EEBP0
$0800–$087F
EEBP1
$0880–$08FF
EEBP2
$0900–$097F
EEBP3
$0980–$09FF
Table 6-4. EEPROM-1 Block Protect and Security Summary
Address Range
$0800 - $087F
$0880 - $08EF
$08F0 - $08FF
$0900 - $097F
$0980 - $09FF
EEBPx
EEPRTCT = 1
EEPRTCT = 0
EEBP0 = 0
Byte Programming
Available
Bulk, Block and Byte
Erasing Available
Byte Programming
Available
Only Byte Erasing
Available
EEBP0 = 1
Protected
Protected
EEBP1 = 0
Byte Programming
Available
Bulk, Block and Byte
Erasing Available
Byte Programming
Available
Only Byte Erasing
Available
EEBP1 = 1
Protected
Protected
EEBP1 = 0
Byte Programming
Available
Bulk, Block and Byte
Erasing Available
Secured
(No Programming
or Erasing)
EEBP1 = 1
Protected
EEBP2 = 0
Byte Programming
Available
Bulk, Block and Byte
Erasing Available
Byte Programming
Available
Only Byte Erasing
Available
EEBP2 = 1
Protected
Protected
EEBP3 = 0
Byte Programming
Available
Bulk, Block and Byte
Available
Byte Programming
Available
Only Byte Erasing
Available
EEBP3 = 1
Protected
Protected
Technical Data
102
MC68HC908AZ60A — Rev 2.0
EEPROM-1 Memory
MOTOROLA
EEPROM-1 Memory
EEPROM-1 Register Descriptions
6.6.3 EEPROM-1 Nonvolatile Register
The contents of this register is loaded into the EEPROM-1 array
configuration register (EE1ACR) after a reset.
This register is erased and programmed in the same way as an
EEPROM byte. (See EEPROM-1 Control Register on page 99 for
individual bit descriptions).
Address:
$FE1C
Bit 7
6
5
4
3
2
1
Bit 0
EEBP3
EEBP2
EEBP1
EEBP0
Read:
UNUSED UNUSED UNUSED EEPRTCT
Write:
Reset:
PV
= Unimplemented
PV = Programmed value or 1 in the erased state.
Figure 6-4. EEPROM-1 Nonvolatile Register (EE1NVR)
NOTE:
The EE1NVR will leave the factory programmed with $F0 such that the
full array is available and unprotected.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
EEPROM-1 Memory
103
EEPROM-1 Memory
6.6.4 EEPROM-1 Timebase Divider Register
The 16-bit EEPROM-1 timebase divider register consists of two 8-bit
registers: EE1DIVH and EE1DIVL. The 11-bit value in this register is
used to configure the timebase divider circuit to obtain the 35 µs
timebase for EEPROM-1 control.
These two read/write registers are respectively loaded with the contents
of the EEPROM-1 timebase divider on-volatile registers (EE1DIVHNVR
and EE1DIVLNVR) after a reset.
Address:
$FE1A
Bit 7
Read:
6
5
4
3
0
0
0
0
EEDIVSECD
2
1
Bit 0
EEDIV10
EEDIV9
EEDIV8
Write:
Reset:
Contents of EE1DIVHNVR ($FE10), Bits [6:3] = 0
= Unimplemented
Figure 6-5. EE1DIV Divider High Register (EE1DIVH)
Address:
$FE1B
Bit 7
6
5
4
3
2
1
Bit 0
EEDIV7
EEDIV6
EEDIV5
EEDIV4
EEDIV3
EEDIV2
EEDIV1
EEDIV0
Read:
Write:
Reset:
Contents of EE1DIVLNVR ($FE11)
Figure 6-6. EE1DIV Divider Low Register (EE1DIVL)
Technical Data
104
MC68HC908AZ60A — Rev 2.0
EEPROM-1 Memory
MOTOROLA
EEPROM-1 Memory
EEPROM-1 Register Descriptions
EEDIVSECD — EEPROM-1 Divider Security Disable
This bit enables/disables the security feature of the EE1DIV registers.
When EE1DIV security feature is enabled, the state of the registers
EE1DIVH and EE1DIVL are locked (including EEDIVSECD bit). The
EE1DIVHNVR and EE1DIVLNVR non-volatile memory registers are
also protected from being erased/programmed.
1 = EE1DIV security feature disabled
0 = EE1DIV security feature enabled
EEDIV[10:0] — EEPROM-1 timebase prescaler
These prescaler bits store the value of EE1DIV which is used as the
divisor to derive a timebase of 35µs from the selected reference clock
source (CGMXCLK or bus block in the CONFIG-2 register) for the
EEPROM-1 related internal timer and circuits. EEDIV[10:0] bits are
readable at any time. They are writable when EELAT = 0 and
EEDIVSECD = 1.
The EE1DIV value is calculated by the following formula:
EE1DIV= INT[Reference Frequency(Hz) x 35 x10-6 +0.5]
Where the result inside the bracket is rounded down to the nearest
integer value
For example, if the reference frequency is 4.9152MHz, the EE1DIV
value is 172
NOTE:
Programming/erasing the EEPROM with an improper EE1DIV value
may result in data lost and reduce endurance of the EEPROM device.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
EEPROM-1 Memory
105
EEPROM-1 Memory
6.6.5 EEPROM-1 Timebase Divider Non-Volatile Register
The 16-bit EEPROM-1 timebase divider non-volatile register consists of
two 8-bit registers: EE1DIVHNVR and EE1DIVLNVR. The contents of
these two registers are respectively loaded into the EEPROM-1
timebase divider registers, EE1DIVH and EE1DIVL, after a reset.
These two registers are erased and programmed in the same way as an
EEPROM-1 byte.
Address:
$FE10
Bit 7
6
5
4
3
2
1
Bit 0
EEDIVSECD
R
R
R
R
EEDIV10
EEDIV9
EEDIV8
Read:
Write:
Reset:
Unaffected by reset; $FF when blank
R
= Reserved
Figure 6-7. EEPROM-1 Divider Non-Volatile Register High
(EE1DIVHNVR))
Address:
$FE11
Bit 7
6
5
4
3
2
1
Bit 0
EEDIV7
EEDIV6
EEDIV5
EEDIV4
EEDIV3
EEDIV2
EEDIV1
EEDIV0
Read:
Write:
Reset:
Unaffected by reset; $FF when blank
Figure 6-8. EEPROM-1 Divider Non-Volatile Register Low
(EE1DIVLNVR)
These two registers are protected from erase and program operations if
the EEDIVSECD is set to logic 1 in the EE1DIVH (see EEPROM-1
Timebase Divider Register) or programmed to a logic 1 in the
EE1DIVHNVR.
Technical Data
106
MC68HC908AZ60A — Rev 2.0
EEPROM-1 Memory
MOTOROLA
EEPROM-1 Memory
Low-Power Modes
NOTE:
Once EEDIVSECD in the EE1DIVHNVR is programmed to 0 and after a
system reset, the EE1DIV security feature is permanently enabled
because the EEDIVSECD bit in the EE1DIVH is always loaded with 0
thereafter. Once this security feature is armed, erase and program mode
are disabled for EE1DIVHNVR and EE1DIVLNVR. Modifications to the
EE1DIVH and EE1DIVL registers are also disabled. Therefore, care
should be taken before programming a value into the EE1DIVHNVR.
6.7 Low-Power Modes
The WAIT and STOP instructions can put the MCU in low powerconsumption standby modes.
6.7.1 Wait Mode
The WAIT instruction does not affect the EEPROM. It is possible to start
the program or erase sequence on the EEPROM and put the MCU in
wait mode.
6.7.2 Stop Mode
The STOP instruction reduces the EEPROM power consumption to a
minimum. The STOP instruction should not be executed while a
programming or erasing sequence is in progress.
If stop mode is entered while EELAT and EEPGM are set, the
programming sequence will be stopped and the programming voltage to
the EEPROM array removed. The programming sequence will be
restarted after leaving stop mode; access to the EEPROM is only
possible after the programming sequence has completed.
If stop mode is entered while EELAT and EEPGM is cleared, the
programming sequence will be terminated abruptly.
In either case, the data integrity of the EEPROM is not guaranteed.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
EEPROM-1 Memory
107
EEPROM-1 Memory
Technical Data
108
MC68HC908AZ60A — Rev 2.0
EEPROM-1 Memory
MOTOROLA
Technical Data — MC68HC908AZ60A
Section 7. EEPROM-2 Memory
7.1 Contents
7.2
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.3
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.4
EEPROM-2 Register Summary . . . . . . . . . . . . . . . . . . . . . . 111
7.5
Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
7.5.1
EEPROM-2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . 112
7.5.2
EEPROM-2 Timebase Requirements . . . . . . . . . . . . . . . 112
7.5.3
EEPROM-2 Program/Erase Protection . . . . . . . . . . . . . . 113
7.5.4
EEPROM-2 Block Protection . . . . . . . . . . . . . . . . . . . . . .114
7.5.5
EEPROM-2 Programming and Erasing. . . . . . . . . . . . . . 114
7.6
EEPROM-2 Register Descriptions. . . . . . . . . . . . . . . . . . . . 119
7.6.1
EEPROM-2 Control Register . . . . . . . . . . . . . . . . . . . . . .119
7.6.2
EEPROM-2 Array Configuration Register . . . . . . . . . . . 121
7.6.3
EEPROM-2 Nonvolatile Register. . . . . . . . . . . . . . . . . . . 123
7.6.4
EEPROM-2 Timebase Divider Register . . . . . . . . . . . . . 126
7.6.5
EEPROM-2 Timebase Divider Non-Volatile Register . . 126
7.7
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.7.1
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.7.2
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
EEPROM-2 Memory
109
EEPROM-2 Memory
7.2 Introduction
This section describes the 512 bytes of electrically erasable
programmable read-only memory (EEPROM) residing at address range
$0600 to $07FF. There are 1024 bytes of EEPROM available on the
MC68HC908AS60A and MC68HC908AZ60A which are physically
located in two 512 byte arrays. For information relating to the array
covering address range $0800 to $09FF please see EEPROM-1
Memory on page 89.
7.3 Features
Features of the EEPROM-2 include the following:
•
512 bytes Non-Volatile Memory
•
Byte, Block, or Bulk Erasable
•
Non-Volatile EEPROM Configuration and Block Protection
Options
•
On-chip Charge Pump for Programming/Erasing
•
Security Option
•
AUTO Bit Driven Programming/Erasing Time Feature
Technical Data
110
MC68HC908AZ60A — Rev 2.0
EEPROM-2 Memory
MOTOROLA
EEPROM-2 Memory
EEPROM-2 Register Summary
7.4 EEPROM-2 Register Summary
The EEPROM-2 Register Summary is shown in Figure 7-1.
Addr.
$FF70
$FF71
Register Name
Bit 7
Read:
EE2DIV Non-volatile
EEDIVSECD
Register High Write:
(EE2DIVHNVR)*
Reset:
Read:
EE2DIV Non-volatile
EEDIV7
Register Low Write:
(EE2DIVLNVR)*
Reset:
Read:
EEDIVSECD
EE2 Divider Register High
$FF7A
Write:
(EE2DIVH)
Reset:
Read:
EEDIV7
EE2 Divider Register Low
$FF7B
Write:
(EE2DIVL)
Reset:
$FF7C
5
4
3
2
1
Bit 0
R
R
R
R
EEDIV10
EEDIV9
EEDIV8
EEDIV1
EEDIV0
EEDIV9
EEDIV8
EEDIV1
EEDIV0
Unaffected by reset; $FF when blank
EEDIV6
EEDIV5
EEDIV4
EEDIV3
EEDIV2
Unaffected by reset; $FF when blank
0
0
0
0
EEDIV10
Contents of EE2DIVHNVR ($FF70); Bits[6:3] = 0
EEDIV6
EEDIV5
EEDIV4
EEDIV3
EEDIV2
Contents of EE2DIVLNVR ($FF71)
Read:
EEPROM-2 Non-volatile
UNUSED UNUSED UNUSED EEPRTCT EEBP3
EEBP2
EEBP1
Register Write:
(EE2NVR)*
Reset:
Unaffected by reset; $FF when blank; factory programmed $F0
Read:
EEPROM-2 Control
UNUSED
Register Write:
(EE2CR)
Reset:
0
$FF7D
$FF7F
6
EEBP0
0
0
EEOFF
EERAS1
EERAS0
EELAT
AUTO
EEPGM
0
0
0
0
0
0
EEBP1
EEBP0
Read: UNUSED UNUSED UNUSED EEPRTCT EEBP3
EEBP2
EEPROM-2 Array
Configuration Register Write:
(EE2ACR)
Reset:
Contents of EE2NVR ($FF7C)
* Non-volatile EEPROM register; write by programming.
= Unimplemented
R
= Reserved
UNUSED = Unused
Figure 7-1. EEPROM-2 Register Summary
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
EEPROM-2 Memory
111
EEPROM-2 Memory
7.5 Functional Description
The 512 bytes of EEPROM-2 are located at $0600-$07FF and can be
programmed or erased without an additional external high voltage
supply. The program and erase operations are enabled through the use
of an internal charge pump. For each byte of EEPROM, the write/erase
endurance is 10,000 cycles.
7.5.1 EEPROM-2 Configuration
The 8-bit EEPROM-2 Non-Volatile Register (EE2NVR) and the 16-bit
EEPROM-2 Timebase Divider Non-Volatile Register (EE2DIVNVR)
contain the default settings for the following EEPROM configurations:
•
EEPROM-2 Timebase Reference
•
EEPROM-2 Security Option
•
EEPROM-2 Block Protection
EE2NVR and EE2DIVNVR are non-volatile EEPROM registers. They
are programmed and erased in the same way as EEPROM bytes. The
contents of these registers are loaded into their respective volatile
registers during a MCU reset. The values in these read/write volatile
registers define the EEPROM-2 configurations.
For EE2NVR, the corresponding volatile register is the EEPROM-2
Array Configuration Register (EE2ACR). For the EE2DIVNCR (two 8-bit
registers: EE2DIVHNVR and EE2DIVLNVR), the corresponding volatile
register is the EEPROM-2 Divider Register (EE2DIV: EE2DIVH and EE2
DIVL).
7.5.2 EEPROM-2 Timebase Requirements
A 35µs timebase is required by the EEPROM-2 control circuit for
program and erase of EEPROM content. This timebase is derived from
dividing the CGMXCLK or bus clock (selected by EEDIVCLK bit in
CONFIG-2 Register) using a timebase divider circuit controlled by the
16-bit EEPROM-2 Timebase Divider EE2DIV Register (EE2DIVH and
EE2DIVL).
Technical Data
112
MC68HC908AZ60A — Rev 2.0
EEPROM-2 Memory
MOTOROLA
EEPROM-2 Memory
Functional Description
As the CGMXCLK or bus clock is user selected, the EEPROM-2
Timebase Divider Register must be configured with the appropriate
value to obtain the 35 µs. The timebase divider value is calculated by
using the following formula:
EE2DIV= INT[Reference Frequency(Hz) x 35 x10-6 +0.5]
This value is written to the EEPROM-2 Timebase Divider Register
(EE2DIVH and EE2DIVL) or programmed into the EEPROM-2
Timebase Divider Non-Volatile Register prior to any EEPROM program
or erase operations(see EEPROM-2 Configuration on page 112 and
EEPROM-2 Timebase Requirements on page 112).
7.5.3 EEPROM-2 Program/Erase Protection
The EEPROM has a special feature that designates the 16 bytes of
addresses from $06F0 to $06FF to be permanently secured. This
program/erase protect option is enabled by programming the EEPRTCT
bit in the EEPROM-2 Non-Volatile Register (EE2NVR) to a logic zero.
Once the EEPRTCT bit is programmed to 0 for the first time:
NOTE:
•
Programming and erasing of secured locations $06F0 to $06FF is
permanently disabled.
•
Secured locations $06F0 to $06FF can be read as normal.
•
Programming and erasing of EE2NVR is permanently disabled.
•
Bulk and Block Erase operations are disabled for the unprotected
locations $0600-$06EF, $0700-$07FF.
•
Single byte program and erase operations are still available for
locations $0600-$06EF and $0700-$07FF for all bytes that are not
protected by the EEPROM-2 Block Protect EEBPx bits (see
EEPROM-2 Block Protection on page 114 and EEPROM-2
Array Configuration Register on page 121)
Once armed, the protect option is permanently enabled. As a
consequence, all functions in the EE2NVR will remain in the state they
were in immediately before the security was enabled.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
EEPROM-2 Memory
113
EEPROM-2 Memory
7.5.4 EEPROM-2 Block Protection
The 512 bytes of EEPROM-2 are divided into four 128-byte blocks. Each
of these blocks can be protected from erase/program operations by
setting the EEBPx bit in the EE2NVR. Table 7-1 shows the address
ranges for the blocks.
Table 7-1. EEPROM-2 Array Address Blocks
Block Number (EEBPx)
Address Range
EEBP0
$0600–$067F
EEBP1
$0680–$06FF
EEBP2
$0700–$077F
EEBP3
$0780–$07FF
These bits are effective after a reset or a upon read of the EE2NVR
register. The block protect configuration can be modified by
erasing/programming the corresponding bits in the EE2NVR register
and then reading the EE2NVR register. Please see EEPROM-2 Array
Configuration Register on page 121 for more information.
NOTE:
Once EEDIVSECD in the EE2DIVHNVR is programmed to 0 and after a
system reset, the EE2DIV security feature is permanently enabled
because the EEDIVSECD bit in the EE2DIVH is always loaded with 0
thereafter. Once this security feature is armed, erase and program mode
are disabled for EE2DIVHNVR and EE2DIVLNVR. Modifications to the
EE2DIVH and EE2DIVL registers are also disabled. Therefore, be
cautious on programming a value into the EE2DIVHNVR.
7.5.5 EEPROM-2 Programming and Erasing
The unprogrammed or erase state of an EEPROM bit is a logic 1. The
factory default for all bytes within the EEPROM-2 array is $FF.
The programming operation changes an EEPROM bit from logic 1 to
logic 0 (programming cannot change a bit from logic 0 to a logic 1). In a
single programming operation, the minimum EEPROM programming
size is one bit; the maximum is eight bits (one byte).
Technical Data
114
MC68HC908AZ60A — Rev 2.0
EEPROM-2 Memory
MOTOROLA
EEPROM-2 Memory
Functional Description
The erase operation changes an EEPROM bit from logic 0 to logic 1. In
a single erase operation, the minimum EEPROM erase size is one byte;
the maximum is the entire EEPROM-2 array.
The EEPROM can be programmed such that one or multiple bits are
programmed (written to a logic 0) at a time. However, the user may never
program the same bit location more than once before erasing the entire
byte. In other words, the user is not allowed to program a logic 0 to a bit
that is already programmed (bit state is already logic 0).
For some applications it might be advantageous to track more than 10K
events with a single byte of EEPROM by programming one bit at a time.
For that purpose, a special selective bit programming technique is
available. An example of this technique is illustrated in Table 7-2.
Table 7-2. Example Selective Bit Programming Description
Program Data
in Binary
Result
in Binary
n/a
1111:1111
First event is recorded by programming bit position 0
1111:1110
1111:1110
Second event is recorded by programming bit position 1
1111:1101
1111:1100
Third event is recorded by programming bit position 2
1111:1011
1111:1000
Fourth event is recorded by programming bit position 3
1111:0111
1111:0000
Description
Original state of byte (erased)
Events five through eight are recorded in a similar fashion
Note that none of the bit locations are actually programmed more than
once although the byte was programmed eight times.
When this technique is utilized, a program/erase cycle is defined as
multiple program sequences (up to eight) to a unique location followed
by a single erase operation.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
EEPROM-2 Memory
115
EEPROM-2 Memory
Program/Erase
Using AUTO Bit
An additional feature available for EEPROM-2 program and erase
operations is the AUTO mode. When enabled, AUTO mode will activate
an internal timer that will automatically terminate the program/erase
cycle and clear the EEPGM bit. Please see EEPROM-2 Programming
on page 116, EEPROM-2 Erasing on page 117 and EEPROM-2
Control Register on page 119 for more information.
EEPROM-2
Programming
The unprogrammed or erase state of an EEPROM bit is a logic 1.
Programming changes the state to a logic 0. Only EEPROM bytes in the
non-protected blocks and the EE2NVR register can be programmed.
Use the following procedure to program a byte of EEPROM:
1. Clear EERAS1 and EERAS0 and set EELAT in the EE2CR.(A)
NOTE:
If using the AUTO mode, also set the AUTO bit during Step 1.
2. Write the desired data to the desired EEPROM address.(B)
3. Set the EEPGM bit.(C) Go to Step 7 if AUTO is set.
4. Wait for time, tEEPGM, to program the byte.
5. Clear EEPGM bit.
6. Wait for time, tEEFPV, for the programming voltage to fall. Go to
Step 8.
7. Poll the EEPGM bit until it is cleared by the internal timer.(D)
8. Clear EELAT bits.(E)
NOTE:
A. EERAS1 and EERAS0 must be cleared for programming. Setting the
EELAT bit configures the address and data buses to latch data for
programming the array. Only data with a valid EEPROM-2 address will
be latched. If EELAT is set, other writes to the EE2CR will be allowed
after a valid EEPROM-2 write.
B. If more than one valid EEPROM write occurs, the last address and
data will be latched overriding the previous address and data. Once data
is written to the desired address, do not read EEPROM-2 locations other
than the written location. (Reading an EEPROM location returns the
latched data and causes the read address to be latched).
Technical Data
116
MC68HC908AZ60A — Rev 2.0
EEPROM-2 Memory
MOTOROLA
EEPROM-2 Memory
Functional Description
C. The EEPGM bit cannot be set if the EELAT bit is cleared or a nonvalid EEPROM address is latched. This is to ensure proper
programming sequence. Once EEPGM is set, do not read any
EEPROM-2 locations; otherwise, the current program cycle will be
unsuccessful. When EEPGM is set, the on-board programming
sequence will be activated.
D. The delay time for the EEPGM bit to be cleared in AUTO mode is less
than tEEPGM. However, on other MCUs, this delay time may be different.
For forward compatibility, software should not make any dependency on
this delay time.
E. Any attempt to clear both EEPGM and EELAT bits with a single
instruction will only clear EEPGM. This is to allow time for removal of
high voltage from the EEPROM-2 array.
EEPROM-2 Erasing
The programmed state of an EEPROM bit is logic 0. Erasing changes
the state to a logic 1. Only EEPROM-2 bytes in the non-protected blocks
and the EE2NVR register can be erased.
Use the following procedure to erase a byte, block or the entire
EEPROM-2 array:
1. Configure EERAS1 and EERAS0 for byte, block or bulk erase; set
EELAT in EE2CR.(A)
NOTE:
If using the AUTO mode, also set the AUTO bit in Step 1.
2. Byte erase: write any data to the desired address.(B)
Block erase: write any data to an address within the desired
block.(B)
Bulk erase: write any data to an address within the array.(B)
3. Set the EEPGM bit.(C) Go to Step 7 if AUTO is set.
4. Wait for a time: tEEBYTE for byte erase; tEEBLOCK for block erase;
tEEBULK. for bulk erase.
5. Clear EEPGM bit.
6. Wait for a time, tEEFPV, for the erasing voltage to fall. Go to Step 8.
7. Poll the EEPGM bit until it is cleared by the internal timer.(D)
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
EEPROM-2 Memory
117
EEPROM-2 Memory
8. Clear EELAT bits.(E)
NOTE:
A. Setting the EELAT bit configures the address and data buses to latch
data for erasing the array. Only valid EEPROM-2 addresses will be
latched. If EELAT is set, other writes to the EE2CR will be allowed after
a valid EEPROM-2 write.
B. If more than one valid EEPROM write occurs, the last address and
data will be latched overriding the previous address and data. Once data
is written to the desired address, do not read EEPROM-2 locations other
than the written location. (Reading an EEPROM location returns the
latched data and causes the read address to be latched).
C. The EEPGM bit cannot be set if the EELAT bit is cleared or a nonvalid EEPROM address is latched. This is to ensure proper
programming sequence. Once EEPGM is set, do not read any
EEPROM-2 locations; otherwise, the current program cycle will be
unsuccessful. When EEPGM is set, the on-board programming
sequence will be activated.
D. The delay time for the EEPGM bit to be cleared in AUTO mode is less
than tEEBYTE /tEEBLOCK/tEEBULK. However, on other MCUs, this delay
time may be different. For forward compatibility, software should not
make any dependency on this delay time.
E. Any attempt to clear both EEPGM and EELAT bits with a single
instruction will only clear EEPGM. This is to allow time for removal of
high voltage from the EEPROM-2 array.
Technical Data
118
MC68HC908AZ60A — Rev 2.0
EEPROM-2 Memory
MOTOROLA
EEPROM-2 Memory
EEPROM-2 Register Descriptions
7.6 EEPROM-2 Register Descriptions
Four I/O registers and three non-volatile registers control program, erase
and options of the EEPROM-2 array.
7.6.1 EEPROM-2 Control Register
This read/write register controls programming/erasing of the array.
Address:
$FF7D
Bit 7
Read:
6
5
4
3
2
1
Bit 0
EEOFF
EERAS1
EERAS0
EELAT
AUTO
EEPGM
0
0
0
0
0
0
0
UNUSED
Write:
Reset:
0
0
= Unimplemented
Figure 7-2. EEPROM-2 Control Register (EE2CR)
Bit 7— Unused bit
This read/write bit is software programmable but has no functionality.
EEOFF — EEPROM-2 power down
This read/write bit disables the EEPROM-2 module for lower power
consumption. Any attempts to access the array will give unpredictable
results. Reset clears this bit.
1 = Disable EEPROM-2 array
0 = Enable EEPROM-2 array
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
EEPROM-2 Memory
119
EEPROM-2 Memory
EERAS1 and EERAS0 — Erase/Program Mode Select Bits
These read/write bits set the erase modes. Reset clears these bits.
Table 7-3. EEPROM-2 Program/Erase Mode Select
EEBPx
EERAS1
EERAS0
MODE
0
0
0
Byte Program
0
0
1
Byte Erase
0
1
0
Block Erase
0
1
1
Bulk Erase
1
X
X
No Erase/Program
X = don’t care
EELAT — EEPROM-2 Latch Control
This read/write bit latches the address and data buses for
programming the EEPROM-2 array. EELAT cannot be cleared if
EEPGM is still set. Reset clears this bit.
1 = Buses configured for EEPROM-2 programming or erase
operation
0 = Buses configured for normal operation
AUTO — Automatic termination of program/erase cycle
When AUTO is set, EEPGM is cleared automatically after the
program/erase cycle is terminated by the internal timer.
(See note D for EEPROM-2 Programming on page 116, EEPROM2 Erasing on page 117 and EEPROM Memory Characteristics on
page 542)
1 = Automatic clear of EEPGM is enabled
0 = Automatic clear of EEPGM is disabled
EEPGM — EEPROM-2 Program/Erase Enable
This read/write bit enables the internal charge pump and applies the
programming/erasing voltage to the EEPROM-2 array if the EELAT
bit is set and a write to a valid EEPROM-2 location has occurred.
Reset clears the EEPGM bit.
1 = EEPROM-2 programming/erasing power switched on
0 = EEPROM-2 programming/erasing power switched off
Technical Data
120
MC68HC908AZ60A — Rev 2.0
EEPROM-2 Memory
MOTOROLA
EEPROM-2 Memory
EEPROM-2 Register Descriptions
NOTE:
Writing logic 0s to both the EELAT and EEPGM bits with a single
instruction will clear EEPGM only to allow time for the removal of high
voltage.
7.6.2 EEPROM-2 Array Configuration Register
The EEPROM-2 array configuration register configures EEPROM-2
security and EEPROM-2 block protection.
This read-only register is loaded with the contents of the EEPROM-2
non-volatile register (EE2NVR) after a reset.
Address:
$FF7F
Bit 7
6
5
4
Read: UNUSED UNUSED UNUSED EEPRTCT
3
2
1
Bit 0
EEBP3
EEBP2
EEBP1
EEBP0
Write:
Reset:
Contents of EE2NVR ($FF7C)
Figure 7-3. EEPROM-2 Array Configuration Register (EE2ACR)
Bit 7:5 — Unused Bits
These read/write bits are software programmable but have no
functionality.
EEPRTCT — EEPROM-2 Protection Bit
The EEPRTCT bit is used to enable the security feature in the
EEPROM (see EEPROM-2 Program/Erase Protection).
1 = EEPROM-2 security disabled
0 = EEPROM-2 security enabled
This feature is a write-once feature. Once the protection is enabled it
may not be disabled.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
EEPROM-2 Memory
121
EEPROM-2 Memory
EEBP[3:0] — EEPROM-2 Block Protection Bits
These bits prevent blocks of EEPROM-2 array from being
programmed or erased.
1 = EEPROM-2 array block is protected
0 = EEPROM-2 array block is unprotected
Block Number (EEBPx)
Address Range
EEBP0
$0600–$067F
EEBP1
$0680–$06FF
EEBP2
$0700–$077F
EEBP3
$0780–$07FF
Table 7-4. EEPROM-2 Block Protect and Security Summary
Address Range
$0600 - $067F
$0680 - $06EF
$06F0 - $06FF
$0700 - $077F
$0780 - $07FF
EEBPx
EEPRTCT = 1
EEPRTCT = 0
EEBP0 = 0
Byte Programming
Available
Bulk, Block and Byte
Erasing Available
Byte Programming
Available
Only Byte Erasing
Available
EEBP0 = 1
Protected
Protected
EEBP1 = 0
Byte Programming
Available
Bulk, Block and Byte
Erasing Available
Byte Programming
Available
Only Byte Erasing
Available
EEBP1 = 1
Protected
Protected
EEBP1 = 0
Byte Programming
Available
Bulk, Block and Byte
Erasing Available
Secured
(No Programming
or Erasing)
EEBP1 = 1
Protected
EEBP2 = 0
Byte Programming
Available
Bulk, Block and Byte
Erasing Available
Byte Programming
Available
Only Byte Erasing
Available
EEBP2 = 1
Protected
Protected
EEBP3 = 0
Byte Programming
Available
Bulk, Block and Byte
Available
Byte Programming
Available
Only Byte Erasing
Available
EEBP3 = 1
Protected
Protected
Technical Data
122
MC68HC908AZ60A — Rev 2.0
EEPROM-2 Memory
MOTOROLA
EEPROM-2 Memory
EEPROM-2 Register Descriptions
7.6.3 EEPROM-2 Nonvolatile Register
The contents of this register is loaded into the EEPROM-2 array
configuration register (EE2ACR) after a reset.
This register is erased and programmed in the same way as an
EEPROM byte. (See EEPROM-2 Control Register on page 119 for
individual bit descriptions).
Address:
$FF7C
Bit 7
6
5
4
3
2
1
Bit 0
EEBP3
EEBP2
EEBP1
EEBP0
Read:
UNUSED UNUSED UNUSED EEPRTCT
Write:
Reset:
PV
= Unimplemented
PV = Programmed value or 1 in the erased state.
Figure 7-4. EEPROM-2 Nonvolatile Register (EE2NVR)
NOTE:
The EE2NVR will leave the factory programmed with $F0 such that the
full array is available and unprotected.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
EEPROM-2 Memory
123
EEPROM-2 Memory
7.6.4 EEPROM-2 Timebase Divider Register
The 16-bit EEPROM-2 timebase divider register consists of two 8-bit
registers: EE2DIVH and EE2DIVL. The 11-bit value in this register is
used to configure the timebase divider circuit to obtain the 35 µs
timebase for EEPROM-2 control.
These two read/write registers are respectively loaded with the contents
of the EEPROM-2 timebase divider on-volatile registers (EE2DIVHNVR
and EE2DIVLNVR) after a reset.
Address:
$FF7A
Bit 7
Read:
6
5
4
3
0
0
0
0
EEDIVSECD
2
1
Bit 0
EEDIV10
EEDIV9
EEDIV8
Write:
Reset:
Contents of EE2DIVHNVR ($FF70); Bits[6:3] = 0
= Unimplemented
Figure 7-5. EE2DIV Divider High Register (EE2DIVH)
Address:
$FF7B
Bit 7
6
5
4
3
2
1
Bit 0
EEDIV7
EEDIV6
EEDIV5
EEDIV4
EEDIV3
EEDIV2
EEDIV1
EEDIV0
Read:
Write:
Reset:
Contents of EE2DIVLNVR ($FF71)
Figure 7-6. EE2DIV Divider Low Register (EE2DIVL)
Technical Data
124
MC68HC908AZ60A — Rev 2.0
EEPROM-2 Memory
MOTOROLA
EEPROM-2 Memory
EEPROM-2 Register Descriptions
EEDIVSECD — EEPROM-2 Divider Security Disable
This bit enables/disables the security feature of the EE2DIV registers.
When EE2DIV security feature is enabled, the state of the registers
EE2DIVH and EE2DIVL are locked (including EEDIVSECD bit). The
EE2DIVHNVR and EE2DIVLNVR non-volatile memory registers are
also protected from being erased/programmed.
1 = EE2DIV security feature disabled
0 = EE2DIV security feature enabled
EEDIV[10:0] — EEPROM-2 timebase prescaler
These prescaler bits store the value of EE2DIV which is used as the
divisor to derive a timebase of 35µs from the selected reference clock
source (CGMXCLK or bus block in the CONFIG-2 register) for the
EEPROM-2 related internal timer and circuits. EEDIV[10:0] bits are
readable at any time. They are writable when EELAT = 0 and
EEDIVSECD = 1.
The EE2DIV value is calculated by the following formula:
EE2DIV= INT[Reference Frequency(Hz) x 35 x10-6 +0.5]
Where the result inside the bracket is rounded down to the nearest
integer value
For example, if the reference frequency is 4.9152MHz, the EE2DIV
value is 172
NOTE:
Programming/erasing the EEPROM with an improper EE2DIV value
may result in data lost and reduce endurance of the EEPROM device.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
EEPROM-2 Memory
125
EEPROM-2 Memory
7.6.5 EEPROM-2 Timebase Divider Non-Volatile Register
The 16-bit EEPROM-2 timebase divider non-volatile register consists of
two 8-bit registers: EE2DIVHNVR and EE2DIVLNVR. The contents of
these two registers are respectively loaded into the EEPROM-2
timebase divider registers, EE2DIVH and EE2DIVL, after a reset.
These two registers are erased and programmed in the same way as an
EEPROM-2 byte.
Address:
$FF70
Bit 7
6
5
4
3
2
1
Bit 0
EEDIVSECD
R
R
R
R
EEDIV10
EEDIV9
EEDIV8
Read:
Write:
Reset:
Unaffected by reset; $FF when blank
R
= Reserved
Figure 7-7. EEPROM-2 Divider Non-Volatile Register High
(EE2DIVHNVR))
Address:
$FF71
Bit 7
6
5
4
3
2
1
Bit 0
EEDIV7
EEDIV6
EEDIV5
EEDIV4
EEDIV3
EEDIV2
EEDIV1
EEDIV0
Read:
Write:
Reset:
Unaffected by reset; $FF when blank
Figure 7-8. EEPROM-2 Divider Non-Volatile Register Low
(EE2DIVLNVR)
These two registers are protected from erase and program operations if
the EEDIVSECD is set to logic 1 in the EE2DIVH (see ) or programmed
to a logic 1 in the EE2DIVHNVR.
NOTE:
Once EEDIVSECD in the EE2DIVHNVR is programmed to 0 and after a
system reset, the EE2DIV security feature is permanently enabled
because the EEDIVSECD bit in the EE2DIVH is always loaded with 0
Technical Data
126
MC68HC908AZ60A — Rev 2.0
EEPROM-2 Memory
MOTOROLA
EEPROM-2 Memory
Low-Power Modes
thereafter. Once this security feature is armed, erase and program mode
are disabled for EE2DIVHNVR and EE2DIVLNVR. Modifications to the
EE2DIVH and EE2DIVL registers are also disabled. Therefore, care
should be taken before programming a value into the EE2DIVHNVR.
7.7 Low-Power Modes
The WAIT and STOP instructions can put the MCU in low powerconsumption standby modes.
7.7.1 Wait Mode
The WAIT instruction does not affect the EEPROM. It is possible to start
the program or erase sequence on the EEPROM and put the MCU in
wait mode.
7.7.2 Stop Mode
The STOP instruction reduces the EEPROM power consumption to a
minimum. The STOP instruction should not be executed while a
programming or erasing sequence is in progress.
If stop mode is entered while EELAT and EEPGM are set, the
programming sequence will be stopped and the programming voltage to
the EEPROM array removed. The programming sequence will be
restarted after leaving stop mode; access to the EEPROM is only
possible after the programming sequence has completed.
If stop mode is entered while EELAT and EEPGM is cleared, the
programming sequence will be terminated abruptly.
In either case, the data integrity of the EEPROM is not guaranteed.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
EEPROM-2 Memory
127
EEPROM-2 Memory
Technical Data
128
MC68HC908AZ60A — Rev 2.0
EEPROM-2 Memory
MOTOROLA
Technical Data — MC68HC908AZ60A
Section 8. Central Processor Unit (CPU)
8.1 Contents
8.2
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.3
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8.4
CPU registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8.4.1
Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.4.2
Index register (H:X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.4.3
Stack pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.4.4
Program counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.4.5
Condition code register (CCR) . . . . . . . . . . . . . . . . . . . . 133
8.5
Arithmetic/logic unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . 135
8.6
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.6.1
WAIT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.6.2
STOP mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136
8.7
CPU during break interrupts . . . . . . . . . . . . . . . . . . . . . . . . 136
8.8
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.9
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.2 Introduction
This section describes the central processor unit (CPU8). The M68HC08
CPU is an enhanced and fully object-code-compatible version of the
M68HC05 CPU. The CPU08 Reference Manual (Motorola document
number CPU08RM/AD) contains a description of the CPU instruction
set, addressing modes, and architecture.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Central Processor Unit (CPU)
129
Central Processor Unit (CPU)
8.3 Features
Features of the CPU include the following:
•
Full upward, object-code compatibility with M68HC05 family
•
16-bit stack pointer with stack manipulation instructions
•
16-bit index register with X-register manipulation instructions
•
8.4MHz CPU internal bus frequency
•
64K byte program/data memory space
•
16 addressing modes
•
Memory-to-memory data moves without using accumulator
•
Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions
•
Enhanced binary-coded decimal (BCD) data handling
•
Low-power STOP and WAIT Modes
8.4 CPU registers
Figure 8-1 shows the five CPU registers. CPU registers are not part of
the memory map.
7
0
ACCUMULATOR (A)
0
15
H
X
INDEX REGISTER (H:X)
0
15
STACK POINTER (SP)
0
15
PROGRAM COUNTER (PC)
7
0
V 1 1 H I N Z C
CONDITION CODE REGISTER (CCR)
CARRY/BORROW FLAG
ZERO FLAG
NEGATIVE FLAG
INTERRUPT MASK
HALF-CARRY FLAG
TWO’S COMPLEMENT OVERFLOW FLAG
Figure 8-1. CPU registers
Technical Data
130
MC68HC908AZ60A — Rev 2.0
Central Processor Unit (CPU)
MOTOROLA
Central Processor Unit (CPU)
CPU registers
8.4.1 Accumulator (A)
The accumulator is a general-purpose 8-bit register. The CPU uses the
accumulator to hold operands and the results of arithmetic/logic
operations.
Bit 7
6
5
4
3
2
1
Bit 0
Read:
A
Write:
Reset:
Unaffected by reset
Figure 8-2. Accumulator (A)
8.4.2 Index register (H:X)
The 16-bit index register allows indexed addressing of a 64K byte
memory space. H is the upper byte of the index register and X is the
lower byte. H:X is the concatenated 16-bit index register.
In the indexed addressing modes, the CPU uses the contents of the
index register to determine the conditional address of the operand.
Bit
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
Bit
0
0
0
0
0
0
0
0
0
X
X
X
X
X
X
X
X
Read:
H:X
Write:
Reset:
X = Indeterminate
Figure 8-3. Index register (H:X)
The index register can also be used as a temporary data storage
location.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Central Processor Unit (CPU)
131
Central Processor Unit (CPU)
8.4.3 Stack pointer (SP)
The stack pointer is a 16-bit register that contains the address of the next
location on the stack. During a reset, the stack pointer is preset to
$00FF. The reset stack pointer (RSP) instruction sets the least
significant byte to $FF and does not affect the most significant byte. The
stack pointer decrements as data is pushed onto the stack and
increments as data is pulled from the stack.
In the stack pointer 8-bit offset and 16-bit offset addressing modes, the
stack pointer can function as an index register to access data on the
stack. The CPU uses the contents of the stack pointer to determine the
conditional address of the operand.
Bit
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
Bit
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Read:
SP
Write:
Reset:
Figure 8-4. Stack pointer (SP)
NOTE:
The location of the stack is arbitrary and may be relocated anywhere in
RAM. Moving the SP out of page zero ($0000 to $00FF) frees direct
address (page zero) space. For correct operation, the stack pointer must
point only to RAM locations.
8.4.4 Program counter (PC)
The program counter is a 16-bit register that contains the address of the
next instruction or operand to be fetched.
Normally, the program counter automatically increments to the next
sequential memory location every time an instruction or operand is
fetched. Jump, branch, and interrupt operations load the program
counter with an address other than that of the next sequential location.
Technical Data
132
MC68HC908AZ60A — Rev 2.0
Central Processor Unit (CPU)
MOTOROLA
Central Processor Unit (CPU)
CPU registers
During reset, the program counter is loaded with the reset vector
address located at $FFFE and $FFFF. The vector address is the
address of the first instruction to be executed after exiting the reset state.
Bit
15
14
13
12
11
10
9
8
7
6
5
4
3
2
Bit
0
1
Read:
PC
Write:
Reset:
Loaded with vector from $FFFE and $FFFF
Figure 8-5. Program counter (PC)
8.4.5 Condition code register (CCR)
The 8-bit condition code register contains the interrupt mask and five
flags that indicate the results of the instruction just executed. Bits 6 and
5 are set permanently to ‘1’. The following paragraphs describe the
functions of the condition code register.
Bit 7
6
5
4
3
2
1
Bit 0
V
1
1
H
I
N
Z
C
X
1
1
X
1
X
X
X
Read:
CCR
Write:
Reset:
X = Indeterminate
Figure 8-6. Condition code register (CCR)
V — Overflow flag
The CPU sets the overflow flag when a two's complement overflow
occurs. The signed branch instructions BGT, BGE, BLE, and BLT use
the overflow flag.
1 = Overflow
0 = No overflow
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Central Processor Unit (CPU)
133
Central Processor Unit (CPU)
H — Half-carry flag
The CPU sets the half-carry flag when a carry occurs between
accumulator bits 3 and 4 during an ADD or ADC operation. The halfcarry flag is required for binary-coded decimal (BCD) arithmetic
operations. The DAA instruction uses the states of the H and C flags
to determine the appropriate correction factor.
1 = Carry between bits 3 and 4
0 = No carry between bits 3 and 4
I — Interrupt mask
When the interrupt mask is set, all maskable CPU interrupts are
disabled. CPU interrupts are enabled when the interrupt mask is
cleared. When a CPU interrupt occurs, the interrupt mask is set
automatically after the CPU registers are saved on the stack, but
before the interrupt vector is fetched.
1 = Interrupts disabled
0 = Interrupts enabled
NOTE:
To maintain M6805 compatibility, the upper byte of the index register (H)
is not stacked automatically. If the interrupt service routine modifies H,
then the user must stack and unstack H using the PSHH and PULH
instructions.
After the I bit is cleared, the highest-priority interrupt request is
serviced first.
A return from interrupt (RTI) instruction pulls the CPU registers from the
stack and restores the interrupt mask from the stack. After any reset, the
interrupt mask is set and can only be cleared by the clear interrupt mask
software instruction (CLI).
Technical Data
134
MC68HC908AZ60A — Rev 2.0
Central Processor Unit (CPU)
MOTOROLA
Central Processor Unit (CPU)
Arithmetic/logic unit (ALU)
N — Negative flag
The CPU sets the negative flag when an arithmetic operation, logic
operation, or data manipulation produces a negative result, setting bit
7 of the result.
1 = Negative result
0 = Non-negative result
Z — Zero flag
The CPU sets the zero flag when an arithmetic operation, logic
operation, or data manipulation produces a result of $00.
1 = Zero result
0 = Non-zero result
C — Carry/borrow flag
The CPU sets the carry/borrow flag when an addition operation
produces a carry out of bit 7 of the accumulator or when a subtraction
operation requires a borrow. Some instructions - such as bit test and
branch, shift, and rotate - also clear or set the carry/borrow flag.
1 = Carry out of bit 7
0 = No carry out of bit 7
8.5 Arithmetic/logic unit (ALU)
The ALU performs the arithmetic and logic operations defined by the
instruction set.
Refer to the CPU08 Reference Manual (Motorola document number
CPU08RM/AD) for a description of the instructions and addressing
modes and more detail about CPU architecture.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Central Processor Unit (CPU)
135
Central Processor Unit (CPU)
8.6 Low-power modes
The WAIT and STOP instructions put the MCU in low--power
consumption standby modes.
8.6.1 WAIT mode
The WAIT instruction:
•
clears the interrupt mask (I bit) in the condition code register,
enabling interrupts. After exit from WAIT mode by interrupt, the I
bit remains clear. After exit by reset, the I bit is set.
•
Disables the CPU clock
8.6.2 STOP mode
The STOP instruction:
•
clears the interrupt mask (I bit) in the condition code register,
enabling external interrupts. After exit from STOP mode by
external interrupt, the I bit remains clear. After exit by reset, the I
bit is set.
•
Disables the CPU clock
After exiting STOP mode, the CPU clock begins running after the
oscillator stabilization delay.
8.7 CPU during break interrupts
If the break module is enabled, a break interrupt causes the CPU to
execute the software interrupt instruction (SWI) at the completion of the
current CPU instruction. See Break Module (BRK). The program
counter vectors to $FFFC–$FFFD ($FEFC–$FEFD in monitor mode).
A return-from-interrupt instruction (RTI) in the break routine ends the
break interrupt and returns the MCU to normal operation if the break
interrupt has been deasserted.
Technical Data
136
MC68HC908AZ60A — Rev 2.0
Central Processor Unit (CPU)
MOTOROLA
Central Processor Unit (CPU)
Instruction Set Summary
8.8 Instruction Set Summary
Table 8-1 provides a summary of the M68HC08 instruction set.
ADC #opr
ADC opr
ADC opr
ADC opr,X
ADC opr,X
ADC ,X
ADC opr,SP
ADC opr,SP
V HI NZ C
A ← (A) + (M) + (C)
Add with Carry
IMM
DIR
EXT
IX2
↕ ↕ – ↕ ↕ ↕ IX1
IX
SP1
SP2
A9
B9
C9
D9
E9
F9
9E
E9
9E
D9
IMM
DIR
EXT
IX2
↕ ↕ – ↕ ↕ ↕ IX1
IX
SP1
SP2
AB
BB
CB
DB
EB
FB
9E
EB
9E
DB
ii
dd
hh
ll
ee
ff
ff
ff
ee
ff
ii
dd
hh
ll
ee
ff
ff
Cycles
Description
Operand
Operation
Effect on
CCR
Opcode
Source
Form
Address
Mode
Table 8-1. Instruction Set Summary
2
3
4
4
3
2
4
5
2
3
4
4
3
2
4
5
ADD #opr
ADD opr
ADD opr
ADD opr,X
ADD opr,X
ADD ,X
ADD opr,SP
ADD opr,SP
Add without Carry
AIS #opr
Add Immediate Value (Signed) to
SP
SP ← (SP) + (16 « M)
– – – – – – IMM
A7
ii
2
AIX #opr
Add Immediate Value (Signed) to
H:X
H:X ← (H:X) + (16 « M)
– – – – – – IMM
AF
ii
2
A ← (A) & (M)
IMM
DIR
EXT
IX2
0 – – ↕ ↕ – IX1
IX
SP1
SP2
A4
B4
C4
D4
E4
F4
9E
E4
9E
D4
DIR
INH
↕ – – ↕ ↕ ↕ INH
IX1
IX
SP1
38
48
58
68
78
9E
68
DIR
INH
INH
↕ – – ↕ ↕ ↕ IX1
IX
SP1
37
47
57
67
77
9E
67
AND #opr
AND opr
AND opr
AND opr,X
AND opr,X
AND ,X
AND opr,SP
AND opr,SP
ASL opr
ASLA
ASLX
ASL opr,X
ASL ,X
ASL opr,SP
ASR opr
ASRA
ASRX
ASR opr,X
ASR opr,X
ASR opr,SP
A ← (A) + (M)
Logical AND
Arithmetic Shift Left
(Same as LSL)
C
0
b7
b0
C
Arithmetic Shift Right
b7
b0
MC68HC908AZ60A — Rev 2.0
MOTOROLA
ff
ee
ff
ii
dd
hh
ll
ee
ff
ff
ff
ee
ff
dd
ff
ff
dd
ff
ff
2
3
4
4
3
2
4
5
4
1
1
4
3
5
4
1
1
4
3
5
Technical Data
Central Processor Unit (CPU)
137
Central Processor Unit (CPU)
Table 8-1. Instruction Set Summary (Continued)
Opcode
Operand
Cycles
BCC rel
Operation
Effect on
CCR
PC ← (PC) + 2 + rel ? (C) = 0
– – – – – – REL
24
rr
3
Mn ← 0
DIR
(b0)
DIR
(b1)
DIR
(b2)
DIR
– – – – – – (b3)
DIR
(b4)
DIR
(b5)
DIR
(b6)
DIR
(b7)
11
13
15
17
19
1B
1D
1F
dd
dd
dd
dd
dd
dd
dd
dd
4
4
4
4
4
4
4
4
Description
V HI NZ C
Branch if Carry Bit Clear
Address
Mode
Source
Form
BCLR n, opr
Clear Bit n in M
BCS rel
Branch if Carry Bit Set (Same as
BLO)
PC ← (PC) + 2 + rel ? (C) = 1
– – – – – – REL
25
rr
3
BEQ rel
Branch if Equal
PC ← (PC) + 2 + rel ? (Z) = 1
– – – – – – REL
27
rr
3
BGE opr
Branch if Greater Than or Equal
To (Signed Operands)
PC ← (PC) + 2 + rel ? (N ⊕ V) = 0
– – – – – – REL
90
rr
3
BGT opr
Branch if Greater Than (Signed
Operands)
PC ← (PC) + 2 + rel ? (Z) | (N ⊕ V) =
0
– – – – – – REL
92
rr
3
BHCC rel
Branch if Half Carry Bit Clear
PC ← (PC) + 2 + rel ? (H) = 0
– – – – – – REL
28
rr
3
BHCS rel
Branch if Half Carry Bit Set
PC ← (PC) + 2 + rel ? (H) = 1
– – – – – – REL
29
rr
3
BHI rel
Branch if Higher
PC ← (PC) + 2 + rel ? (C) | (Z) = 0
– – – – – – REL
22
rr
3
BHS rel
Branch if Higher or Same
(Same as BCC)
PC ← (PC) + 2 + rel ? (C) = 0
– – – – – – REL
24
rr
3
BIH rel
Branch if IRQ Pin High
PC ← (PC) + 2 + rel ? IRQ = 1
– – – – – – REL
2F
rr
3
BIL rel
Branch if IRQ Pin Low
PC ← (PC) + 2 + rel ? IRQ = 0
– – – – – – REL
2E
rr
3
(A) & (M)
IMM
DIR
EXT
IX2
0 – – ↕ ↕ – IX1
IX
SP1
SP2
A5
B5
C5
D5
E5
F5
9E
E5
9E
D5
ii
dd
hh
ll
ee
ff
ff
BIT #opr
BIT opr
BIT opr
BIT opr,X
BIT opr,X
BIT ,X
BIT opr,SP
BIT opr,SP
Bit Test
BLE opr
Branch if Less Than or Equal To
(Signed Operands)
PC ← (PC) + 2 + rel ? (Z) | (N ⊕ V) =
1
– – – – – – REL
93
rr
3
BLO rel
Branch if Lower (Same as BCS)
PC ← (PC) + 2 + rel ? (C) = 1
– – – – – – REL
25
rr
3
BLS rel
Branch if Lower or Same
PC ← (PC) + 2 + rel ? (C) | (Z) = 1
– – – – – – REL
23
rr
3
BLT opr
Branch if Less Than (Signed
Operands)
PC ← (PC) + 2 + rel ? (N ⊕ V) =1
– – – – – – REL
91
rr
3
Technical Data
138
ff
ee
ff
2
3
4
4
3
2
4
5
MC68HC908AZ60A — Rev 2.0
Central Processor Unit (CPU)
MOTOROLA
Central Processor Unit (CPU)
Instruction Set Summary
Table 8-1. Instruction Set Summary (Continued)
Operand
Cycles
Branch if Interrupt Mask Clear
PC ← (PC) + 2 + rel ? (I) = 0
– – – – – – REL
2C
rr
3
BMI rel
Branch if Minus
PC ← (PC) + 2 + rel ? (N) = 1
– – – – – – REL
2B
rr
3
BMS rel
Branch if Interrupt Mask Set
PC ← (PC) + 2 + rel ? (I) = 1
– – – – – – REL
2D
rr
3
BNE rel
Branch if Not Equal
PC ← (PC) + 2 + rel ? (Z) = 0
– – – – – – REL
26
rr
3
BPL rel
Branch if Plus
PC ← (PC) + 2 + rel ? (N) = 0
– – – – – – REL
2A
rr
3
BRA rel
Branch Always
PC ← (PC) + 2 + rel
– – – – – – REL
20
rr
3
PC ← (PC) + 3 + rel ? (Mn) = 0
DIR
(b0)
DIR
(b1)
DIR
(b2)
DIR
– – – – – ↕ (b3)
DIR
(b4)
DIR
(b5)
DIR
(b6)
DIR
(b7)
01
03
05
07
09
0B
0D
0F
dd
rr
dd
rr
dd
rr
dd
rr
dd
rr
dd
rr
dd
rr
dd
rr
5
5
5
5
5
5
5
5
PC ← (PC) + 2
– – – – – – REL
21
rr
3
PC ← (PC) + 3 + rel ? (Mn) = 1
DIR
(b0)
DIR
(b1)
DIR
(b2)
DIR
(b3)
– – – – – ↕
DIR
(b4)
DIR
(b5)
DIR
(b6)
DIR
(b7)
00
02
04
06
08
0A
0C
0E
dd
rr
dd
rr
dd
rr
dd
rr
dd
rr
dd
rr
dd
rr
dd
rr
5
5
5
5
5
5
5
5
Mn ← 1
DIR
(b0)
DIR
(b1)
DIR
(b2)
DIR
– – – – – – (b3)
DIR
(b4)
DIR
(b5)
DIR
(b6)
DIR
(b7)
10
12
14
16
18
1A
1C
1E
dd
dd
dd
dd
dd
dd
dd
dd
4
4
4
4
4
4
4
4
Operation
V HI NZ C
BRCLR
n,opr,rel
Branch if Bit n in M Clear
BRN rel
Branch Never
BRSET
n,opr,rel
BSET n,opr
Description
Branch if Bit n in M Set
Set Bit n in M
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Address
Mode
Opcode
Effect on
CCR
BMC rel
Source
Form
Technical Data
Central Processor Unit (CPU)
139
Central Processor Unit (CPU)
Table 8-1. Instruction Set Summary (Continued)
Opcode
Operand
Cycles
BSR rel
Operation
Effect on
CCR
PC ← (PC) + 2; push (PCL)
SP ← (SP) – 1; push (PCH)
SP ← (SP) – 1
PC ← (PC) + rel
– – – – – – REL
AD
rr
4
PC ← (PC) + 3 + rel ? (A) – (M) = $00
PC ← (PC) + 3 + rel ? (A) – (M) = $00
PC ← (PC) + 3 + rel ? (X) – (M) = $00
PC ← (PC) + 3 + rel ? (A) – (M) = $00
PC ← (PC) + 2 + rel ? (A) – (M) = $00
PC ← (PC) + 4 + rel ? (A) – (M) = $00
DIR
IMM
– – – – – – IMM
IX1+
IX+
SP1
31
41
51
61
71
9E
61
dd
rr
ii rr
ii rr
ff rr
rr
ff rr
5
4
4
5
4
6
Description
V HI NZ C
Branch to Subroutine
Address
Mode
Source
Form
CBEQ opr,rel
CBEQA
#opr,rel
CBEQX
#opr,rel
CBEQ
opr,X+,rel
CBEQ X+,rel
CBEQ
opr,SP,rel
Compare and Branch if Equal
CLC
Clear Carry Bit
C←0
– – – – – 0 INH
98
1
CLI
Clear Interrupt Mask
I←0
– – 0 – – – INH
9A
2
M ← $00
A ← $00
X ← $00
H ← $00
M ← $00
M ← $00
M ← $00
DIR
INH
INH
0 – – 0 1 – INH
IX1
IX
SP1
3F
4F
5F
8C
6F
7F
9E
6F
(A) – (M)
IMM
DIR
EXT
IX2
↕ – – ↕ ↕ ↕ IX1
IX
SP1
SP2
A1
B1
C1
D1
E1
F1
9E
E1
9E
D1
DIR
INH
INH
0 – – ↕ ↕ 1
IX1
IX
SP1
33
43
53
63
73
9E
63
(H:X) – (M:M + 1)
↕ – – ↕ ↕ ↕ IMM
DIR
65
75
(X) – (M)
IMM
DIR
EXT
IX2
↕ – – ↕ ↕ ↕
IX1
IX
SP1
SP2
A3
B3
C3
D3
E3
F3
9E
E3
9E
D3
CLR opr
CLRA
CLRX
CLRH
CLR opr,X
CLR ,X
CLR opr,SP
CMP #opr
CMP opr
CMP opr
CMP opr,X
CMP opr,X
CMP ,X
CMP opr,SP
CMP opr,SP
Clear
Compare A with M
COM opr
COMA
COMX
COM opr,X
COM ,X
COM opr,SP
Complement (One’s
Complement)
CPHX #opr
CPHX opr
Compare H:X with M
CPX #opr
CPX opr
CPX opr
CPX ,X
CPX opr,X
CPX opr,X
CPX opr,SP
CPX opr,SP
Compare X with M
M←
A←
X←
M←
M←
M←
(M) = $FF – (M)
(A) = $FF – (M)
(X) = $FF – (M)
(M) = $FF – (M)
(M) = $FF – (M)
(M) = $FF – (M)
Technical Data
140
dd
ff
ff
ii
dd
hh
ll
ee
ff
ff
ff
ee
ff
dd
3
1
1
1
3
2
4
2
3
4
4
3
2
4
5
ff
4
1
1
4
3
5
ii
ii+1
dd
3
4
ff
ii
dd
hh
ll
ee
ff
ff
ff
ee
ff
2
3
4
4
3
2
4
5
MC68HC908AZ60A — Rev 2.0
Central Processor Unit (CPU)
MOTOROLA
Central Processor Unit (CPU)
Instruction Set Summary
DAA
DBNZ opr,rel
DBNZA rel
DBNZX rel
DBNZ
opr,X,rel
DBNZ X,rel
DBNZ
opr,SP,rel
Decimal Adjust A
Decrement and Branch if Not
Zero
Decrement
DIV
Divide
INC opr
INCA
INCX
INC opr,X
INC ,X
INC opr,SP
JMP opr
JMP opr
JMP opr,X
JMP opr,X
JMP ,X
JSR opr
JSR opr
JSR opr,X
JSR opr,X
JSR ,X
Exclusive OR M with A
Increment
Jump
Jump to Subroutine
U – – ↕ ↕ ↕ INH
72
DIR
INH
– – – – – – INH
IX1
IX
SP1
3B
4B
5B
6B
7B
9E
6B
M ← (M) – 1
A ← (A) – 1
X ← (X) – 1
M ← (M) – 1
M ← (M) – 1
M ← (M) – 1
DIR
INH
INH
↕ – – ↕ ↕ –
IX1
IX
SP1
3A
4A
5A
6A
7A
9E
6A
A ← (H:A)/(X)
H ← Remainder
– – – – ↕ ↕ INH
52
A ← (A ⊕ M)
IMM
DIR
EXT
IX2
0 – – ↕ ↕ –
IX1
IX
SP1
SP2
A8
B8
C8
D8
E8
F8
9E
E8
9E
D8
M ← (M) + 1
A ← (A) + 1
X ← (X) + 1
M ← (M) + 1
M ← (M) + 1
M ← (M) + 1
DIR
INH
INH
↕ – – ↕ ↕ – IX1
IX
SP1
3C
4C
5C
6C
7C
9E
6C
PC ← Jump Address
DIR
EXT
– – – – – – IX2
IX1
IX
PC ← (PC) + n (n = 1, 2, or 3)
Push (PCL); SP ← (SP) – 1
Push (PCH); SP ← (SP) – 1
PC ← Unconditional Address
DIR
EXT
– – – – – – IX2
IX1
IX
(A)10
A ← (A) – 1 or M ← (M) – 1 or X ← (X) –
1
PC ← (PC) + 3 + rel ? (result) ≠ 0
PC ← (PC) + 2 + rel ? (result) ≠ 0
PC ← (PC) + 2 + rel ? (result) ≠ 0
PC ← (PC) + 3 + rel ? (result) ≠ 0
PC ← (PC) + 2 + rel ? (result) ≠ 0
PC ← (PC) + 4 + rel ? (result) ≠ 0
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Cycles
V HI NZ C
DEC opr
DECA
DECX
DEC opr,X
DEC ,X
DEC opr,SP
EOR #opr
EOR opr
EOR opr
EOR opr,X
EOR opr,X
EOR ,X
EOR opr,SP
EOR opr,SP
Description
Operand
Operation
Effect on
CCR
Opcode
Source
Form
Address
Mode
Table 8-1. Instruction Set Summary (Continued)
2
dd
rr
rr
rr
ff rr
rr
ff rr
5
3
3
5
4
6
dd
4
1
1
4
3
5
ff
ff
7
ii
dd
hh
ll
ee
ff
ff
ff
ee
ff
dd
2
3
4
4
3
2
4
5
ff
4
1
1
4
3
5
BC
CC
DC
EC
FC
dd
hh
ll
ee
ff
ff
2
3
4
3
2
BD
CD
DD
ED
FD
dd
hh
ll
ee
ff
ff
4
5
6
5
4
ff
Technical Data
Central Processor Unit (CPU)
141
Central Processor Unit (CPU)
Table 8-1. Instruction Set Summary (Continued)
opr,opr
opr,X+
#opr,opr
X+,opr
MUL
ii
dd
hh
ll
ee
ff
ff
H:X ← (M:M + 1)
0 – – ↕ ↕ – IMM
DIR
45
55
ii jj
dd
X ← (M)
IMM
DIR
EXT
0 – – ↕ ↕ – IX2
IX1
IX
SP1
SP2
AE
BE
CE
DE
EE
FE
9E
EE
9E
DE
DIR
INH
INH
↕ – – ↕ ↕ ↕ IX1
IX
SP1
38
48
58
68
78
9E
68
DIR
INH
↕ – – 0 ↕ ↕ INH
IX1
IX
SP1
34
44
54
64
74
9E
64
H:X ← (H:X) + 1 (IX+D, DIX+)
DD
0 – – ↕ ↕ – DIX+
IMD
IX+D
4E
5E
6E
7E
X:A ← (X) × (A)
– 0 – – – 0 INH
42
M ← –(M) = $00 – (M)
A ← –(A) = $00 – (A)
X ← –(X) = $00 – (X)
M ← –(M) = $00 – (M)
M ← –(M) = $00 – (M)
DIR
INH
INH
↕ – – ↕ ↕ ↕ IX1
IX
SP1
30
40
50
60
70
9E
60
None
– – – – – – INH
9D
1
A ← (A[3:0]:A[7:4])
– – – – – – INH
62
3
A ← (M)
Load X from M
Logical Shift Left
(Same as ASL)
Logical Shift Right
C
0
b7
b0
0
C
b7
Move
Unsigned multiply
NEG opr
NEGA
NEGX
NEG opr,X
NEG ,X
NEG opr,SP
Negate (Two’s Complement)
NOP
No Operation
NSA
Nibble Swap A
b0
(M)Destination ← (M)Source
Technical Data
142
ff
ee
ff
ii
dd
hh
ll
ee
ff
ff
ff
ee
ff
dd
ff
ff
dd
ff
ff
dd
dd
dd
ii
dd
dd
Cycles
Operand
Load H:X from M
MOV
MOV
MOV
MOV
Opcode
LDHX #opr
LDHX opr
LSR opr
LSRA
LSRX
LSR opr,X
LSR ,X
LSR opr,SP
A6
B6
C6
D6
E6
F6
9E
E6
9E
D6
Description
V HI NZ C
Load A from M
LSL opr
LSLA
LSLX
LSL opr,X
LSL ,X
LSL opr,SP
IMM
DIR
EXT
0 – – ↕ ↕ – IX2
IX1
IX
SP1
SP2
Operation
LDA #opr
LDA opr
LDA opr
LDA opr,X
LDA opr,X
LDA ,X
LDA opr,SP
LDA opr,SP
LDX #opr
LDX opr
LDX opr
LDX opr,X
LDX opr,X
LDX ,X
LDX opr,SP
LDX opr,SP
Effect on
CCR
Address
Mode
Source
Form
2
3
4
4
3
2
4
5
3
4
2
3
4
4
3
2
4
5
4
1
1
4
3
5
4
1
1
4
3
5
5
4
4
4
5
dd
ff
ff
4
1
1
4
3
5
MC68HC908AZ60A — Rev 2.0
Central Processor Unit (CPU)
MOTOROLA
Central Processor Unit (CPU)
Instruction Set Summary
Table 8-1. Instruction Set Summary (Continued)
ii
dd
hh
ll
ee
ff
ff
Push (A); SP ← (SP) – 1
– – – – – – INH
87
2
Push H onto Stack
Push (H); SP ← (SP) – 1
– – – – – – INH
8B
2
PSHX
Push X onto Stack
Push (X); SP ← (SP) – 1
– – – – – – INH
89
2
PULA
Pull A from Stack
SP ← (SP + 1); Pull (A)
– – – – – – INH
86
2
PULH
Pull H from Stack
SP ← (SP + 1); Pull (H)
– – – – – – INH
8A
2
PULX
Pull X from Stack
SP ← (SP + 1); Pull (X)
– – – – – – INH
88
2
C
DIR
INH
INH
↕ – – ↕ ↕ ↕ IX1
IX
SP1
39
49
59
69
79
9E
69
DIR
INH
INH
↕ – – ↕ ↕ ↕
IX1
IX
SP1
36
46
56
66
76
9E
66
V HI NZ C
ORA #opr
ORA opr
ORA opr
ORA opr,X
ORA opr,X
ORA ,X
ORA opr,SP
ORA opr,SP
Inclusive OR A and M
PSHA
Push A onto Stack
PSHH
ROL opr
ROLA
ROLX
ROL opr,X
ROL ,X
ROL opr,SP
Description
Rotate Left through Carry
A ← (A) | (M)
b7
b0
ff
ee
ff
dd
ff
ff
Cycles
Operand
AA
BA
CA
DA
EA
FA
9E
EA
9E
DA
Operation
Address
Mode
Opcode
Effect on
CCR
IMM
DIR
EXT
0 – – ↕ ↕ – IX2
IX1
IX
SP1
SP2
Source
Form
2
3
4
4
3
2
4
5
4
1
1
4
3
5
ROR opr
RORA
RORX
ROR opr,X
ROR ,X
ROR opr,SP
Rotate Right through Carry
RSP
Reset Stack Pointer
SP ← $FF
– – – – – – INH
9C
1
RTI
Return from Interrupt
SP ← (SP) + 1; Pull (CCR)
SP ← (SP) + 1; Pull (A)
SP ← (SP) + 1; Pull (X)
SP ← (SP) + 1; Pull (PCH)
SP ← (SP) + 1; Pull (PCL)
↕ ↕ ↕ ↕ ↕ ↕ INH
80
7
RTS
Return from Subroutine
SP ← SP + 1; Pull (PCH)
SP ← SP + 1; Pull (PCL)
– – – – – – INH
81
4
A ← (A) – (M) – (C)
IMM
DIR
EXT
IX2
↕ – – ↕ ↕ ↕ IX1
IX
SP1
SP2
A2
B2
C2
D2
E2
F2
9E
E2
9E
D2
– – – – – 1 INH
99
C
b7
SBC #opr
SBC opr
SBC opr
SBC opr,X
SBC opr,X
SBC ,X
SBC opr,SP
SBC opr,SP
Subtract with Carry
SEC
Set Carry Bit
b0
C←1
MC68HC908AZ60A — Rev 2.0
MOTOROLA
dd
ff
ff
ii
dd
hh
ll
ee
ff
ff
ff
ee
ff
4
1
1
4
3
5
2
3
4
4
3
2
4
5
1
Technical Data
Central Processor Unit (CPU)
143
Central Processor Unit (CPU)
SEI
Set Interrupt Mask
Store A in M
STHX opr
Store H:X in M
STOP
Enable IRQ Pin; Stop Oscillator
SUB #opr
SUB opr
SUB opr
SUB opr,X
SUB opr,X
SUB ,X
SUB opr,SP
SUB opr,SP
Store X in M
Subtract
Cycles
V HI NZ C
STA opr
STA opr
STA opr,X
STA opr,X
STA ,X
STA opr,SP
STA opr,SP
STX opr
STX opr
STX opr,X
STX opr,X
STX ,X
STX opr,SP
STX opr,SP
Description
Operand
Operation
Effect on
CCR
Opcode
Source
Form
Address
Mode
Table 8-1. Instruction Set Summary (Continued)
I←1
– – 1 – – – INH
9B
M ← (A)
DIR
EXT
IX2
0 – – ↕ ↕ – IX1
IX
SP1
SP2
B7
C7
D7
E7
F7
9E
E7
9E
D7
(M:M + 1) ← (H:X)
0 – – ↕ ↕ – DIR
35
I ← 0; Stop Oscillator
– – 0 – – – INH
8E
M ← (X)
DIR
EXT
IX2
0 – – ↕ ↕ – IX1
IX
SP1
SP2
BF
CF
DF
EF
FF
9E
EF
9E
DF
IMM
DIR
EXT
↕ – – ↕ ↕ ↕ IX2
IX1
IX
SP1
SP2
A0
B0
C0
D0
E0
F0
9E
E0
9E
D0
– – 1 – – – INH
83
9
A ← (A) – (M)
2
dd
hh
ll
ee
ff
ff
ff
ee
ff
dd
3
4
4
3
2
4
5
4
1
dd
hh
ll
ee
ff
ff
ff
ee
ff
ii
dd
hh
ll
ee
ff
ff
ff
ee
ff
3
4
4
3
2
4
5
2
3
4
4
3
2
4
5
SWI
Software Interrupt
PC ← (PC) + 1; Push (PCL)
SP ← (SP) – 1; Push (PCH)
SP ← (SP) – 1; Push (X)
SP ← (SP) – 1; Push (A)
SP ← (SP) – 1; Push (CCR)
SP ← (SP) – 1; I ← 1
PCH ← Interrupt Vector High Byte
PCL ← Interrupt Vector Low Byte
TAP
Transfer A to CCR
CCR ← (A)
↕ ↕ ↕ ↕ ↕ ↕ INH
84
2
TAX
Transfer A to X
X ← (A)
– – – – – – INH
97
1
TPA
Transfer CCR to A
A ← (CCR)
– – – – – – INH
85
1
(A) – $00 or (X) – $00 or (M) – $00
DIR
INH
INH
0 – – ↕ ↕ – IX1
IX
SP1
3D
4D
5D
6D
7D
9E
6D
– – – – – – INH
95
TST opr
TSTA
TSTX
TST opr,X
TST ,X
TST opr,SP
Test for Negative or Zero
TSX
Transfer SP to H:X
H:X ← (SP) + 1
Technical Data
144
dd
ff
ff
3
1
1
3
2
4
2
MC68HC908AZ60A — Rev 2.0
Central Processor Unit (CPU)
MOTOROLA
Central Processor Unit (CPU)
Opcode Map
V HI NZ C
TXA
Transfer X to A
TXS
Transfer H:X to SP
Cycles
Description
Operand
Operation
Effect on
CCR
Opcode
Source
Form
Address
Mode
Table 8-1. Instruction Set Summary (Continued)
A ← (X)
– – – – – – INH
9F
1
(SP) ← (H:X) – 1
– – – – – – INH
94
2
A Accumulatorn
C Carry/borrow bitopr
CCRCondition code registerPC
ddDirect address of operandPCH
dd rrDirect address of operand and relative offset of branch instructionPCL
DDDirect to direct addressing modeREL
DIRDirect addressing moderel
DIX+Direct to indexed with post increment addressing moderr
ee ffHigh and low bytes of offset in indexed, 16-bit offset addressingSP1
EXTExtended addressing modeSP2
ff Offset byte in indexed, 8-bit offset addressingSP
H Half-carry bitU
H Index register high byteV
hh llHigh and low bytes of operand address in extended addressingX
I Interrupt maskZ
ii Immediate operand byte&
IMDImmediate source to direct destination addressing mode|
IMMImmediate addressing mode⊕
INHInherent addressing mode( )
IXIndexed, no offset addressing mode–( )
IX+Indexed, no offset, post increment addressing mode#
IX+DIndexed with post increment to direct addressing mode«
IX1Indexed, 8-bit offset addressing mode←
IX1+Indexed, 8-bit offset, post increment addressing mode?
IX2Indexed, 16-bit offset addressing mode:
MMemory location↕
N Negative bit—
Any bit
Operand (one or two bytes)
Program counter
Program counter high byte
Program counter low byte
Relative addressing mode
Relative program counter offset byte
Relative program counter offset byte
Stack pointer, 8-bit offset addressing mode
Stack pointer 16-bit offset addressing mode
Stack pointer
Undefined
Overflow bit
Index register low byte
Zero bit
Logical AND
Logical OR
Logical EXCLUSIVE OR
Contents of
Negation (two’s complement)
Immediate value
Sign extend
Loaded with
If
Concatenated with
Set or cleared
Not affected
8.9 Opcode Map
The opcode map is provided in Table 8-2.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Central Processor Unit (CPU)
145
146
Technical Data
Central Processor Unit (CPU)
4
BSET0
2 DIR
4
BCLR0
2 DIR
4
BSET1
2 DIR
4
BCLR1
2 DIR
4
BSET2
2 DIR
4
BCLR2
2 DIR
4
BSET3
2 DIR
4
BCLR3
2 DIR
4
BSET4
2 DIR
4
BCLR4
2 DIR
4
BSET5
2 DIR
4
BCLR5
2 DIR
4
BSET6
2 DIR
4
BCLR6
2 DIR
4
BSET7
2 DIR
4
BCLR7
2 DIR
1
3
BRA
REL
3
BRN
2 REL
3
BHI
2 REL
3
BLS
2 REL
3
BCC
2 REL
3
BCS
2 REL
3
BNE
2 REL
3
BEQ
2 REL
3
BHCC
2 REL
3
BHCS
2 REL
3
BPL
2 REL
3
BMI
2 REL
3
BMC
2 REL
3
BMS
2 REL
3
BIL
2 REL
3
BIH
2 REL
2
2
Branch
REL
4
INH
1
NEGX
1 INH
4
CBEQX
3 IMM
7
DIV
1 INH
1
COMX
1 INH
1
LSRX
1 INH
4
LDHX
2 DIR
1
RORX
1 INH
1
ASRX
1 INH
1
LSLX
1 INH
1
ROLX
1 INH
1
DECX
1 INH
3
DBNZX
2 INH
1
INCX
1 INH
1
TSTX
1 INH
4
MOV
2 DIX+
1
CLRX
1 INH
5
4
NEG
IX1
5
CBEQ
3 IX1+
3
NSA
1 INH
4
COM
2 IX1
4
LSR
2 IX1
3
CPHX
3 IMM
4
ROR
2 IX1
4
ASR
2 IX1
4
LSL
2 IX1
4
ROL
2 IX1
4
DEC
2 IX1
5
DBNZ
3 IX1
4
INC
2 IX1
3
TST
2 IX1
4
MOV
3 IMD
3
CLR
2 IX1
2
6
7
IX
9
7
3
RTI
BGE
INH 2 REL
4
3
RTS
BLT
1 INH 2 REL
3
BGT
2 REL
9
3
SWI
BLE
1 INH 2 REL
2
2
TAP
TXS
1 INH 1 INH
1
2
TPA
TSX
1 INH 1 INH
2
PULA
1 INH
2
1
PSHA
TAX
1 INH 1 INH
2
1
PULX
CLC
1 INH 1 INH
2
1
PSHX
SEC
1 INH 1 INH
2
2
PULH
CLI
1 INH 1 INH
2
2
PSHH
SEI
1 INH 1 INH
1
1
CLRH
RSP
1 INH 1 INH
1
NOP
1 INH
1
STOP
*
1 INH
1
1
WAIT
TXA
1 INH 1 INH
1
8
Control
INH
INH
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
B
DIR
0
LSB
MSB
3
SUB
DIR
3
CMP
2 DIR
3
SBC
2 DIR
3
CPX
2 DIR
3
AND
2 DIR
3
BIT
2 DIR
3
LDA
2 DIR
3
STA
2 DIR
3
EOR
2 DIR
3
ADC
2 DIR
3
ORA
2 DIR
3
ADD
2 DIR
2
JMP
2 DIR
4
4
BSR
JSR
REL 2 DIR
2
3
LDX
LDX
IMM 2 DIR
2
3
AIX
STX
IMM 2 DIR
2
SUB
IMM
2
CMP
IMM
2
SBC
IMM
2
CPX
IMM
2
AND
IMM
2
BIT
IMM
2
LDA
IMM
2
AIS
IMM
2
EOR
IMM
2
ADC
IMM
2
ORA
IMM
2
ADD
IMM
A
IMM
Low Byte of Opcode in Hexadecimal
5
3
NEG
NEG
SP1 1 IX
6
4
CBEQ
CBEQ
4 SP1 2 IX+
2
DAA
1 INH
5
3
COM
COM
3 SP1 1 IX
5
3
LSR
LSR
3 SP1 1 IX
4
CPHX
2 DIR
5
3
ROR
ROR
3 SP1 1 IX
5
3
ASR
ASR
3 SP1 1 IX
5
3
LSL
LSL
3 SP1 1 IX
5
3
ROL
ROL
3 SP1 1 IX
5
3
DEC
DEC
3 SP1 1 IX
6
4
DBNZ
DBNZ
4 SP1 2 IX
5
3
INC
INC
3 SP1 1 IX
4
2
TST
TST
3 SP1 1 IX
4
MOV
2 IX+D
4
2
CLR
CLR
3 SP1 1 IX
3
9E6
SP1
Table 8-2. Opcode Map
Read-Modify-Write
INH
IX1
SP1 Stack Pointer, 8-Bit Offset
SP2 Stack Pointer, 16-Bit Offset
IX+ Indexed, No Offset with
Post Increment
IX1+ Indexed, 1-Byte Offset with
Post Increment
4
1
NEG
NEGA
DIR 1 INH
5
4
CBEQ CBEQA
3 DIR 3 IMM
5
MUL
1 INH
4
1
COM
COMA
2 DIR 1 INH
4
1
LSR
LSRA
2 DIR 1 INH
4
3
STHX
LDHX
2 DIR 3 IMM
4
1
ROR
RORA
2 DIR 1 INH
4
1
ASR
ASRA
2 DIR 1 INH
4
1
LSL
LSLA
2 DIR 1 INH
4
1
ROL
ROLA
2 DIR 1 INH
4
1
DEC
DECA
2 DIR 1 INH
5
3
DBNZ DBNZA
3 DIR 2 INH
4
1
INC
INCA
2 DIR 1 INH
3
1
TST
TSTA
2 DIR 1 INH
5
MOV
3 DD
3
1
CLR
CLRA
2 DIR 1 INH
2
3
DIR
INH Inherent
REL Relative
IMM Immediate
IX
Indexed, No Offset
DIR Direct
IX1 Indexed, 8-Bit Offset
EXT Extended
IX2 Indexed, 16-Bit Offset
DD Direct-Direct
IMD Immediate-Direct
IX+D Indexed-Direct DIX+ Direct-Indexed
*Pre-byte for stack pointer indexed instructions
5
BRSET0
3 DIR
5
BRCLR0
3 DIR
5
BRSET1
3 DIR
5
BRCLR1
3 DIR
5
BRSET2
MSB
3 DIR
LSB
5
0
BRCLR2
1
3 DIR
2
5
3
BRSET3
4
3 DIR
5
5
6
BRCLR3
7
3 DIR
8
5
9
BRSET4
A
3
DIR
B
C
5
D
BRCLR4
E
3 DIR
F
5
BRSET5
3 DIR
5
BRCLR5
3 DIR
5
BRSET6
3 DIR
5
BRCLR6
3 DIR
5
BRSET7
3 DIR
5
BRCLR7
3 DIR
0
Bit Manipulation
DIR
DIR
2
2
2
2
2
2
2
2
2
2
2
2
2
2
5
LDX
4 SP2 2
5
STX
4 SP2 2
5
SUB
SP2
5
CMP
4 SP2
5
SBC
4 SP2
5
CPX
4 SP2
5
AND
4 SP2
5
BIT
4 SP2
5
LDA
4 SP2
5
STA
4 SP2
5
EOR
4 SP2
5
ADC
4 SP2
5
ORA
4 SP2
5
ADD
4 SP2
4
9ED
3
SUB
IX1
3
CMP
IX1
3
SBC
IX1
3
CPX
IX1
3
AND
IX1
3
BIT
IX1
3
LDA
IX1
3
STA
IX1
3
EOR
IX1
3
ADC
IX1
3
ORA
IX1
3
ADD
IX1
3
JMP
IX1
5
JSR
IX1
3
LDX
IX1
3
STX
IX1
E
IX1
3
3
3
3
3
3
3
3
3
3
3
3
3
3
1
F
IX
2
SUB
IX
2
CMP
1 IX
2
SBC
1 IX
2
CPX
1 IX
2
AND
1 IX
2
BIT
1 IX
2
LDA
1 IX
2
STA
1 IX
2
EOR
1 IX
2
ADC
1 IX
2
ORA
1 IX
2
ADD
1 IX
2
JMP
1 IX
4
JSR
1 IX
4
2
LDX
LDX
SP1 1 IX
4
2
STX
STX
SP1 1 IX
4
SUB
SP1
4
CMP
SP1
4
SBC
SP1
4
CPX
SP1
4
AND
SP1
4
BIT
SP1
4
LDA
SP1
4
STA
SP1
4
EOR
SP1
4
ADC
SP1
4
ORA
SP1
4
ADD
SP1
9EE
SP1
High Byte of Opcode in Hexadecimal
4
SUB
IX2
4
CMP
3 IX2
4
SBC
3 IX2
4
CPX
3 IX2
4
AND
3 IX2
4
BIT
3 IX2
4
LDA
3 IX2
4
STA
3 IX2
4
EOR
3 IX2
4
ADC
3 IX2
4
ORA
3 IX2
4
ADD
3 IX2
4
JMP
3 IX2
6
JSR
3 IX2
4
LDX
3 IX2
4
STX
3 IX2
3
D
Register/Memory
IX2
SP2
5
Cycles
BRSET0 Opcode Mnemonic
3 DIR Number of Bytes / Addressing Mode
0
4
SUB
EXT
4
CMP
3 EXT
4
SBC
3 EXT
4
CPX
3 EXT
4
AND
3 EXT
4
BIT
3 EXT
4
LDA
3 EXT
4
STA
3 EXT
4
EOR
3 EXT
4
ADC
3 EXT
4
ORA
3 EXT
4
ADD
3 EXT
3
JMP
3 EXT
5
JSR
3 EXT
4
LDX
3 EXT
4
STX
3 EXT
3
C
EXT
Central Processor Unit (CPU)
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data — MC68HC908AZ60A
Section 9. System Integration Module (SIM)
9.1 Contents
9.2
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
9.3
SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . 150
9.3.1
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
9.3.2
Clock Startup from POR or LVI Reset . . . . . . . . . . . . . . 151
9.3.3
Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . 151
9.4
Reset and System Initialization . . . . . . . . . . . . . . . . . . . . . .152
9.4.1
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
9.4.2
Active Resets from Internal Sources . . . . . . . . . . . . . . . 153
9.4.2.1
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
9.4.2.2
Computer Operating Properly (COP) Reset. . . . . . . .155
9.4.2.3
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . .155
9.4.2.4
Illegal Address Reset. . . . . . . . . . . . . . . . . . . . . . . . . . 155
9.4.2.5
Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . 156
9.5
SIM Counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
9.5.1
SIM Counter During Power-On Reset. . . . . . . . . . . . . . .156
9.5.2
SIM Counter During Stop Mode Recovery . . . . . . . . . . . 157
9.5.3
SIM Counter and Reset States . . . . . . . . . . . . . . . . . . . . 157
9.6
Program Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . 157
9.6.1
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
9.6.2
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
9.6.3
Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162
9.6.4
Status Flag Protection in Break Mode . . . . . . . . . . . . . . 162
9.7
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
9.7.1
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
9.7.2
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
9.8
SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
9.8.1
SIM Break Status Register. . . . . . . . . . . . . . . . . . . . . . . . 166
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
System Integration Module (SIM)
147
System Integration Module (SIM)
9.8.2
9.8.3
SIM Reset Status Register. . . . . . . . . . . . . . . . . . . . . . . . 167
SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . 168
9.2 Introduction
This section describes the system integration module (SIM), which
supports up to 32 external and/or internal interrupts. Together with the
central processor unit (CPU), the SIM controls all MCU activities. A block
diagram of the SIM is shown in Figure 9-1. Figure 9-2 is a summary of
the SIM input/output (I/O) registers. The SIM is a system state controller
that coordinates CPU and exception timing. The SIM is responsible for:
•
Bus clock generation and control for CPU and peripherals
– Stop/wait/reset/break entry and recovery
– Internal clock control
•
Master reset control, including power-on reset (POR) and
computer operating properly (COP) timeout
•
Interrupt control:
– Acknowledge timing
– Arbitration control timing
– Vector address generation
•
CPU enable/disable timing
Technical Data
148
MC68HC908AZ60A — Rev 2.0
System Integration Module (SIM)
MOTOROLA
System Integration Module (SIM)
Introduction
MODULE STOP
MODULE WAIT
CPU STOP (FROM CPU)
CPU WAIT (FROM CPU)
STOP/WAIT
CONTROL
SIMOSCEN (TO CGM)
SIM
COUNTER
COP CLOCK
CGMXCLK (FROM CGM)
CGMOUT (FROM CGM)
÷2
CLOCK
CONTROL
RESET
PIN LOGIC
INTERNAL CLOCKS
CLOCK GENERATORS
LVI (FROM LVI MODULE)
POR CONTROL
MASTER
RESET
CONTROL
RESET PIN CONTROL
ILLEGAL OPCODE (FROM CPU)
ILLEGAL ADDRESS (FROM ADDRESS
MAP DECODERS)
COP (FROM COP MODULE)
SIM RESET STATUS REGISTER
RESET
INTERRUPT SOURCES
INTERRUPT CONTROL
AND PRIORITY DECODE
CPU INTERFACE
Figure 9-1. SIM Block Diagram
Register Name
Bit 7
6
5
4
3
2
1
Bit 0
SIM Break Status Register (SBSR)
R
R
R
R
R
R
BW
R
SIM Reset Status Register (SRSR)
POR
PIN
COP
ILOP
ILAD
0
LVI
0
SIM Break Flag Control Register (SBFCR)
BCFE
R
R
R
R
R
R
R
R
= Reserved
Figure 9-2. SIM I/O Register Summary
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
System Integration Module (SIM)
149
System Integration Module (SIM)
Table 9-1. I/O Register Address Summary
Register
SBSR
SRSR
SBFCR
Address
$FE00
$FE01
$FE03
Table 9-2 shows the internal signal names used in this section.
Table 9-2. Signal Name Conventions
Signal Name
Description
CGMXCLK
Buffered Version of OSC1 from Clock Generator Module
(CGM)
CGMVCLK
PLL Output
CGMOUT
PLL-Based or OSC1-Based Clock Output from CGM Module
(Bus Clock = CGMOUT Divided by Two)
IAB
Internal Address Bus
IDB
Internal Data Bus
PORRST
Signal from the Power-On Reset Module to the SIM
IRST
Internal Reset Signal
R/W
Read/Write Signal
9.3 SIM Bus Clock Control and Generation
The bus clock generator provides system clock signals for the CPU and
peripherals on the MCU. The system clocks are generated from an
incoming clock, CGMOUT, as shown in Figure 9-3. This clock can come
from either an external oscillator or from the on-chip PLL. (See Clock
Generator Module (CGM) on page 169).
9.3.1 Bus Timing
In user mode, the internal bus frequency is either the crystal oscillator
output (CGMXCLK) divided by four or the PLL output (CGMVCLK)
divided by four. (See Clock Generator Module (CGM) on page 169).
Technical Data
150
MC68HC908AZ60A — Rev 2.0
System Integration Module (SIM)
MOTOROLA
System Integration Module (SIM)
SIM Bus Clock Control and Generation
9.3.2 Clock Startup from POR or LVI Reset
When the power-on reset module or the low-voltage inhibit module
generates a reset, the clocks to the CPU and peripherals are inactive
and held in an inactive phase until after 4096 CGMXCLK cycles. The
RST pin is driven low by the SIM during this entire period. The bus clocks
start upon completion of the timeout.
CGMXCLK
OSC1
CLOCK
SELECT
CIRCUIT
CGMVCLK
÷2
A
CGMOUT
B S*
*When S = 1,
CGMOUT = B
÷2
BUS CLOCK
GENERATORS
SIM
BCS
PLL
SIM COUNTER
PTC3
MONITOR MODE
USER MODE
CGM
Figure 9-3. CGM Clock Signals
9.3.3 Clocks in Stop Mode and Wait Mode
Upon exit from stop mode by an interrupt, break, or reset, the SIM allows
CGMXCLK to clock the SIM counter. The CPU and peripheral clocks do
not become active until after the stop delay timeout. This timeout is
selectable as 4096 or 32 CGMXCLK cycles. See Stop Mode on page
164.
In wait mode, the CPU clocks are inactive. Refer to the wait mode
subsection of each module to see if the module is active or inactive in
wait mode. Some modules can be programmed to be active in wait
mode.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
System Integration Module (SIM)
151
System Integration Module (SIM)
9.4 Reset and System Initialization
The MCU has these reset sources:
•
Power-on reset module (POR)
•
External reset pin (RST)
•
Computer operating properly module (COP)
•
Low-voltage inhibit module (LVI)
•
Illegal opcode
•
Illegal address
All of these resets produce the vector $FFFE–FFFF ($FEFE–FEFF in
monitor mode) and assert the internal reset signal (IRST). IRST causes
all registers to be returned to their default values and all modules to be
returned to their reset states.
An internal reset clears the SIM counter (see SIM Counter on page
156), but an external reset does not. Each of the resets sets a
corresponding bit in the SIM reset status register (SRSR) (see SIM
Registers on page 165).
9.4.1 External Pin Reset
Pulling the asynchronous RST pin low halts all processing. The PIN bit
of the SIM reset status register (SRSR) is set as long as RST is held low
for a minimum of 67 CGMXCLK cycles, assuming that neither the POR
nor the LVI was the source of the reset. See Table 9-3 for details. Figure
9-4 shows the relative timing.
Table 9-3. PIN Bit Set Timing
Reset Type
Number of Cycles Required to Set PIN
POR/LVI
4163 (4096 + 64 + 3)
All others
67 (64 + 3)
Technical Data
152
MC68HC908AZ60A — Rev 2.0
System Integration Module (SIM)
MOTOROLA
System Integration Module (SIM)
Reset and System Initialization
CGMOUT
RST
IAB
VECT H
PC
VECT L
Figure 9-4. External Reset Timing
9.4.2 Active Resets from Internal Sources
All internal reset sources actively pull the RST pin low for 32 CGMXCLK
cycles to allow resetting of external peripherals. The internal reset signal
IRST continues to be asserted for an additional 32 cycles (see Figure 95). An internal reset can be caused by an illegal address, illegal opcode,
COP timeout, LVI, or POR (see Figure 9-6). Note that for LVI or POR
resets, the SIM cycles through 4096 CGMXCLK cycles during which the
SIM forces the RST pin low. The internal reset signal then follows the
sequence from the falling edge of RST shown in Figure 9-5.
The COP reset is asynchronous to the bus clock.
The active reset feature allows the part to issue a reset to peripherals
and other chips within a system built around the MCU.
IRST
RST
RST PULLED LOW BY MCU
32 CYCLES
32 CYCLES
CGMXCLK
IAB
VECTOR HIGH
Figure 9-5. Internal Reset Timing
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
System Integration Module (SIM)
153
System Integration Module (SIM)
ILLEGAL ADDRESS RST
ILLEGAL OPCODE RST
COPRST
LVI
POR
INTERNAL RESET
Figure 9-6. Sources of Internal Reset
9.4.2.1 Power-On Reset
When power is first applied to the MCU, the power-on reset module
(POR) generates a pulse to indicate that power-on has occurred. The
external reset pin (RST) is held low while the SIM counter counts out
4096 CGMXCLK cycles. Another sixty-four CGMXCLK cycles later, the
CPU and memories are released from reset to allow the reset vector
sequence to occur.
At power-on, the following events occur:
•
A POR pulse is generated.
•
The internal reset signal is asserted.
•
The SIM enables CGMOUT.
•
Internal clocks to the CPU and modules are held inactive for 4096
CGMXCLK cycles to allow stabilization of the oscillator.
•
The RST pin is driven low during the oscillator stabilization time.
•
The POR bit of the SIM reset status register (SRSR) is set and all
other bits in the register are cleared.
Technical Data
154
MC68HC908AZ60A — Rev 2.0
System Integration Module (SIM)
MOTOROLA
System Integration Module (SIM)
Reset and System Initialization
OSC1
PORRST
4096
CYCLES
32
CYCLES
32
CYCLES
CGMXCLK
CGMOUT
RST
$FFFE
IAB
$FFFF
Figure 9-7. POR Recovery
9.4.2.2 Computer Operating Properly (COP) Reset
The overflow of the COP counter causes an internal reset and sets the
COP bit in the SIM reset status register (SRSR) if the COPD bit in the
CONFIG-1 register is at logic zero.
See Computer Operating Properly (COP) on page 223.
9.4.2.3 Illegal Opcode Reset
The SIM decodes signals from the CPU to detect illegal instructions. An
illegal instruction sets the ILOP bit in the SIM reset status register
(SRSR) and causes a reset.
If the stop enable bit, STOP, in the CONFIG-1 register is logic zero, the
SIM treats the STOP instruction as an illegal opcode and causes an
illegal opcode reset.
9.4.2.4 Illegal Address Reset
An opcode fetch from an unmapped address generates an illegal
address reset. The SIM verifies that the CPU is fetching an opcode prior
to asserting the ILAD bit in the SIM reset status register SRSR) and
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
System Integration Module (SIM)
155
System Integration Module (SIM)
resetting the MCU. A data fetch from an unmapped address does not
generate a reset. The SIM actively pulls down the RST pin for all internal
reset sources.
NOTE:
Extra care should be exercised if code in this part has been
migrated from older HC08 devices since the illegal address reset
specification may be different. Also, extra care should be exercised
when using this emulation part for development of code to be run
in ROM AZ, AB or AS family parts with a smaller memory size since
some legal addresses will become illegal addresses on the smaller
ROM memory map device and may as a result generate unwanted
resets.
9.4.2.5 Low-Voltage Inhibit (LVI) Reset
The low-voltage inhibit module (LVI) asserts its output to the SIM when
the VDD voltage falls to the VLVII voltage. The LVI bit in the SIM reset
status register (SRSR) is set and a chip reset is asserted if the LVIPWRD
and LVIRSTD bits in the CONFIG-1 register are at logic zero. The RST
pin will be held low until the SIM counts 4096 CGMXCLK cycles after
VDD rises above VLVIR. Another sixty-four CGMXCLK cycles later, the
CPU is released from reset to allow the reset vector sequence to occur.
See Low Voltage Inhibit (LVI) on page 229.
9.5 SIM Counter
The SIM counter is used by the power-on reset module (POR) and in
stop mode recovery to allow the oscillator time to stabilize before
enabling the internal bus (IBUS) clocks. The SIM counter also serves as
a prescaler for the computer operating properly module (COP). The SIM
counter overflow supplies the clock for the COP module. The SIM
counter is 12 bits long and is clocked by the falling edge of CGMXCLK.
9.5.1 SIM Counter During Power-On Reset
The power-on reset module (POR) detects power applied to the MCU.
At power-on, the POR circuit asserts the signal PORRST. Once the SIM
Technical Data
156
MC68HC908AZ60A — Rev 2.0
System Integration Module (SIM)
MOTOROLA
System Integration Module (SIM)
Program Exception Control
is initialized, it enables the clock generation module (CGM) to drive the
bus clock state machine.
9.5.2 SIM Counter During Stop Mode Recovery
The SIM counter also is used for stop mode recovery. The STOP
instruction clears the SIM counter. After an interrupt or reset, the SIM
senses the state of the short stop recovery bit, SSREC, in the CONFIG1 register. If the SSREC bit is a logic one, then the stop recovery is
reduced from the normal delay of 4096 CGMXCLK cycles down to 32
CGMXCLK cycles. This is ideal for applications using canned oscillators
that do not require long start-up times from stop mode. External crystal
applications should use the full stop recovery time, that is, with SSREC
cleared.
9.5.3 SIM Counter and Reset States
External reset has no effect on the SIM counter. See Stop Mode on
page 164 for details. The SIM counter is free-running after all reset
states. See Active Resets from Internal Sources on page 153 for
counter control and internal reset recovery sequences.
9.6 Program Exception Control
Normal, sequential program execution can be changed in three different
ways:
•
Interrupts
– Maskable hardware CPU interrupts
– Non-maskable software interrupt instruction (SWI)
•
Reset
•
Break interrupts
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
System Integration Module (SIM)
157
System Integration Module (SIM)
9.6.1 Interrupts
At the beginning of an interrupt, the CPU saves the CPU register
contents on the stack and sets the interrupt mask (I bit) to prevent
additional interrupts. At the end of an interrupt, the RTI instruction
recovers the CPU register contents from the stack so that normal
processing can resume. Figure 9-8 shows interrupt entry timing. Figure
9-10 shows interrupt recovery timing.
Interrupts are latched, and arbitration is performed in the SIM at the start
of interrupt processing. The arbitration result is a constant that the CPU
uses to determine which vector to fetch. Once an interrupt is latched by
the SIM, no other interrupt can take precedence, regardless of priority,
until the latched interrupt is serviced (or the I bit is cleared), see Figure
9-9.
MODULE
INTERRUPT
I BIT
IAB
IDB
DUMMY
DUMMY
SP
SP – 1
PC – 1[7:0]
SP – 2
PC–1[15:8]
SP – 3
X
SP – 4
A
VECT H
CCR
VECT L
V DATA H
START ADDR
V DATA L
OPCODE
R/W
Figure 9-8. Interrupt Entry
Technical Data
158
MC68HC908AZ60A — Rev 2.0
System Integration Module (SIM)
MOTOROLA
System Integration Module (SIM)
Program Exception Control
FROM RESET
YES
BREAK
INTERRUPT?
I BIT
SET?
NO
YES
I BIT SET?
NO
IRQ1
INTERRUPT?
YES
NO
STACK CPU REGISTERS.
SET I BIT.
LOAD PC WITH INTERRUPT VECTOR.
(AS MANY INTERRUPTS
AS EXIST ON CHIP)
FETCH NEXT
INSTRUCTION.
SWI
INSTRUCTION?
YES
NO
RTI
INSTRUCTION?
YES
UNSTACK CPU REGISTERS.
NO
EXECUTE INSTRUCTION.
Figure 9-9. Interrupt Processing
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
System Integration Module (SIM)
159
System Integration Module (SIM)
MODULE
INTERRUPT
I BIT
IAB
SP – 4
IDB
SP – 3
CCR
SP – 2
A
SP – 1
X
PC – 1 [7:0]
SP
PC
PC–1[15:8]
PC + 1
OPCODE
OPERAND
R/W
Figure 9-10. Interrupt Recovery
Hardware Interrupts
A hardware interrupt does not stop the current instruction. Processing
of a hardware interrupt begins after completion of the current
instruction. When the current instruction is complete, the SIM checks
all pending hardware interrupts. If interrupts are not masked (I bit
clear in the condition code register), and if the corresponding interrupt
enable bit is set, the SIM proceeds with interrupt processing;
otherwise, the next instruction is fetched and executed.
If more than one interrupt is pending at the end of an instruction
execution, the highest priority interrupt is serviced first. Figure 9-11
demonstrates what happens when two interrupts are pending. If an
interrupt is pending upon exit from the original interrupt service
routine, the pending interrupt is serviced before the LDA instruction is
executed.
The LDA opcode is prefetched by both the INT1 and INT2 RTI
instructions. However, in the case of the INT1 RTI prefetch, this is a
redundant operation.
NOTE:
To maintain compatibility with the M68HC05, M6805 and M146805
Families the H register is not pushed on the stack during interrupt entry.
If the interrupt service routine modifies the H register or uses the indexed
addressing mode, software should save the H register and then restore
it prior to exiting the routine.
Technical Data
160
MC68HC908AZ60A — Rev 2.0
System Integration Module (SIM)
MOTOROLA
System Integration Module (SIM)
Program Exception Control
CLI
BACKGROUND
ROUTINE
LDA #$FF
INT1
PSHH
INT1 INTERRUPT SERVICE ROUTINE
PULH
RTI
INT2
PSHH
INT2 INTERRUPT SERVICE ROUTINE
PULH
RTI
Figure 9-11. Interrupt Recognition Example
SWI Instruction
The SWI instruction is a non-maskable instruction that causes an
interrupt regardless of the state of the interrupt mask (I bit) in the
condition code register.
NOTE:
A software interrupt pushes PC onto the stack. A software interrupt does
not push PC – 1, as a hardware interrupt does.
9.6.2 Reset
All reset sources always have higher priority than interrupts and cannot
be arbitrated.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
System Integration Module (SIM)
161
System Integration Module (SIM)
9.6.3 Break Interrupts
The break module can stop normal program flow at a softwareprogrammable break point by asserting its break interrupt output. See
Break Module (BRK) on page 203. The SIM puts the CPU into the break
state by forcing it to the SWI vector location. Refer to the break interrupt
subsection of each module to see how each module is affected by the
break state.
9.6.4 Status Flag Protection in Break Mode
The SIM controls whether status flags contained in other modules can
be cleared during break mode. The user can select whether flags are
protected from being cleared by properly initializing the break clear flag
enable bit (BCFE) in the SIM break flag control register (SBFCR).
Protecting flags in break mode ensures that set flags will not be cleared
while in break mode. This protection allows registers to be freely read
and written during break mode without losing status flag information.
Setting the BCFE bit enables the clearing mechanisms. Once cleared in
break mode, a flag remains cleared even when break mode is exited.
Status flags with a two-step clearing mechanism — for example, a read
of one register followed by the read or write of another — are protected,
even when the first step is accomplished prior to entering break mode.
Upon leaving break mode, execution of the second step will clear the flag
as normal.
9.7 Low-Power Modes
Executing the WAIT or STOP instruction puts the MCU in a low powerconsumption mode for standby situations. The SIM holds the CPU in a
non-clocked state. The operation of each of these modes is described
below. Both STOP and WAIT clear the interrupt mask (I) in the condition
code register, allowing interrupts to occur.
Technical Data
162
MC68HC908AZ60A — Rev 2.0
System Integration Module (SIM)
MOTOROLA
System Integration Module (SIM)
Low-Power Modes
9.7.1 Wait Mode
In wait mode, the CPU clocks are inactive while one set of peripheral
clocks continue to run. Figure 9-12 shows the timing for wait mode entry.
A module that is active during wait mode can wake up the CPU with an
interrupt if the interrupt is enabled. Stacking for the interrupt begins one
cycle after the WAIT instruction during which the interrupt occurred.
Refer to the wait mode subsection of each module to see if the module
is active or inactive in wait mode. Some modules can be programmed to
be active in wait mode.
Wait mode can also be exited by a reset or break. A break interrupt
during wait mode sets the SIM break wait bit, BW, in the SIM break
status register (SBSR). If the COP disable bit, COPD, in the
configuration register is logic 0, then the computer operating properly
module (COP) is enabled and remains active in wait mode.
IAB
WAIT ADDR
WAIT ADDR + 1
PREVIOUS DATA
IDB
SAME
SAME
NEXT OPCODE
SAME
SAME
R/W
NOTE: Previous data can be operand data or the WAIT opcode, depending on the last instruction.
Figure 9-12. Wait Mode Entry Timing
IAB
IDB
$6E0B
$A6
$A6
$6E0C
$A6
$01
$00FF
$0B
$00FE
$00FD
$00FC
$6E
EXITSTOPWAIT
NOTE: EXITSTOPWAIT = RST pin OR CPU interrupt OR break interrupt
Figure 9-13. Wait Recovery from Interrupt or Break
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
System Integration Module (SIM)
163
System Integration Module (SIM)
32
Cycles
IAB
IDB
$6E0B
$A6
$A6
32
Cycles
RST VCTH
RSTVCTL
$A6
RST
CGMXCLK
Figure 9-14. Wait Recovery from Internal Reset
9.7.2 Stop Mode
In stop mode, the SIM counter is reset and the system clocks are
disabled. An interrupt request from a module can cause an exit from stop
mode. Stacking for interrupts begins after the selected stop recovery
time has elapsed. Reset also causes an exit from stop mode.
The SIM disables the clock generator module outputs (CGMOUT and
CGMXCLK) in stop mode, stopping the CPU and peripherals. Stop
recovery time is selectable using the SSREC bit in the configuration
register (CONFIG-1). If SSREC is set, stop recovery is reduced from the
normal delay of 4096 CGMXCLK cycles down to 32. This is ideal for
applications using canned oscillators that do not require long startup
times from stop mode.
NOTE:
External crystal applications should use the full stop recovery time by
clearing the SSREC bit.
The break module is inactive in Stop mode. The STOP instruction does
not affect break module register states.
The SIM counter is held in reset from the execution of the STOP
instruction until the beginning of stop recovery. It is then used to time the
recovery period. Figure 9-15 shows stop mode entry timing.
Technical Data
164
MC68HC908AZ60A — Rev 2.0
System Integration Module (SIM)
MOTOROLA
System Integration Module (SIM)
SIM Registers
CPUSTOP
IAB
IDB
STOP ADDR
STOP ADDR + 1
PREVIOUS DATA
SAME
NEXT OPCODE
SAME
SAME
SAME
R/W
NOTE: Previous data can be operand data or the STOP opcode, depending on the last
instruction.
Figure 9-15. Stop Mode Entry Timing
STOP RECOVERY PERIOD
CGMXCLK
INT/BREAK
IAB
STOP +1
STOP + 2
STOP + 2
SP
SP – 1
SP – 2
SP – 3
Figure 9-16. Stop Mode Recovery from Interrupt or Break
9.8 SIM Registers
The SIM has three memory mapped registers.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
System Integration Module (SIM)
165
System Integration Module (SIM)
9.8.1 SIM Break Status Register
The SIM break status register contains a flag to indicate that a break
caused an exit from wait mode.
Address:
Read:
Write:
$FE00
Bit 7
6
5
4
3
2
R
R
R
R
R
R
1
Bit 0
BW
See Note
Reset:
R
0
R
= Reserved
NOTE: Writing a logic 0 clears BW
Figure 9-17. SIM Break Status Register (SBSR)
BW — SIM Break Wait
This status bit is useful in applications requiring a return to wait mode
after exiting from a break interrupt. Clear BW by writing a logic 0 to it.
Reset clears BW.
1 = Wait mode was exited by break interrupt
0 = Wait mode was not exited by break interrupt
BW can be read within the break state SWI routine. The user can modify
the return address on the stack by subtracting one from it. The following
code is an example of this. Writing zero to the BW bit clears it.
; This code works if the H register has been pushed onto the stack in the break
; service routine software. This code should be executed at the end of the
; break service routine software.
HIBYTE
EQU
5
LOBYTE
EQU
6
;
If not BW, do RTI
BRCLR
BW,SBSR, RETURN
; See if wait mode was exited by break.
;
TST
LOBYTE,SP
; If RETURNLO is not zero,
BNE
DOLO
; then just decrement low byte.
DEC
HIBYTE,SP
; Else deal with high byte, too.
DOLO
DEC
LOBYTE,SP
; Point to WAIT/STOP opcode.
RETURN
PULH
RTI
; Restore H register.
Technical Data
166
MC68HC908AZ60A — Rev 2.0
System Integration Module (SIM)
MOTOROLA
System Integration Module (SIM)
SIM Registers
9.8.2 SIM Reset Status Register
This register contains six flags that show the source of the last reset. The
status register will automatically clear after reading it. A power-on reset
sets the POR bit and clears all other bits in the register.
Address:
Read:
$FE01
Bit 7
6
5
4
3
2
1
Bit 0
POR
PIN
COP
ILOP
ILAD
0
LVI
0
1
0
0
0
0
0
0
0
Write:
POR:
= Unimplemented
Figure 9-18. SIM Reset Status Register (SRSR)
POR — Power-On Reset Bit
1 = Last reset caused by POR circuit
0 = Read of SRSR
PIN — External Reset Bit
1 = Last reset caused by external reset pin (RST)
0 = POR or read of SRSR
COP — Computer Operating Properly Reset Bit
1 = Last reset caused by COP counter
0 = POR or read of SRSR
ILOP — Illegal Opcode Reset Bit
1 = Last reset caused by an illegal opcode
0 = POR or read of SRSR
ILAD — Illegal Address Reset Bit (opcode fetches only)
1 = Last reset caused by an opcode fetch from an illegal address
0 = POR or read of SRSR
LVI — Low-Voltage Inhibit Reset Bit
1 = Last reset was caused by the LVI circuit
0 = POR or read of SRSR
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
System Integration Module (SIM)
167
System Integration Module (SIM)
9.8.3 SIM Break Flag Control Register
The SIM break control register contains a bit that enables software to
clear status bits while the MCU is in a break state.
Address:
Read:
Write:
Reset:
$FE03
Bit 7
6
5
4
3
2
1
Bit 0
BCFE
R
R
R
R
R
R
R
0
R
0
= Reserved
Figure 9-19. SIM Break Flag Control Register (SBFCR)
BCFE — Break Clear Flag Enable Bit
This read/write bit enables software to clear status bits by accessing
status registers while the MCU is in a break state. To clear status bits
during the break state, the BCFE bit must be set.
1 = Status bits clearable during break
0 = Status bits not clearable during break
Technical Data
168
MC68HC908AZ60A — Rev 2.0
System Integration Module (SIM)
MOTOROLA
Technical Data — MC68HC908AZ60A
Section 10. Clock Generator Module (CGM)
10.1 Contents
10.2
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
10.3
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
10.4 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . .171
10.4.1 Crystal Oscillator Circuit . . . . . . . . . . . . . . . . . . . . . . . . . 171
10.4.2 Phase-Locked Loop Circuit (PLL). . . . . . . . . . . . . . . . . . 173
10.4.2.1
Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
10.4.2.2
Acquisition and Tracking Modes . . . . . . . . . . . . . . . . 175
10.4.2.3
Manual and Automatic PLL Bandwidth Modes . . . . . 175
10.4.2.4
Programming the PLL . . . . . . . . . . . . . . . . . . . . . . . . . 177
10.4.2.5
Special Programming Exceptions . . . . . . . . . . . . . . . 179
10.4.3 Base Clock Selector Circuit . . . . . . . . . . . . . . . . . . . . . . 179
10.4.4 CGM External Connections . . . . . . . . . . . . . . . . . . . . . . . 180
10.5 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
10.5.1 Crystal Amplifier Input Pin (OSC1) . . . . . . . . . . . . . . . . . 181
10.5.2 Crystal Amplifier Output Pin (OSC2) . . . . . . . . . . . . . . . 181
10.5.3 External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . .181
10.5.4 Analog Power Pin (VDDA). . . . . . . . . . . . . . . . . . . . . . . . . 182
10.5.5 Oscillator Enable Signal (SIMOSCEN) . . . . . . . . . . . . . . 182
10.5.6 Crystal Output Frequency Signal (CGMXCLK) . . . . . . . 182
10.5.7 CGM Base Clock Output (CGMOUT) . . . . . . . . . . . . . . . 182
10.5.8 CGM CPU Interrupt (CGMINT) . . . . . . . . . . . . . . . . . . . . . 182
10.6 CGM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
10.6.1 PLL Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
10.6.2 PLL Bandwidth Control Register . . . . . . . . . . . . . . . . . . 185
10.6.3 PLL Programming Register. . . . . . . . . . . . . . . . . . . . . . . 187
10.7
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
10.8
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Clock Generator Module (CGM)
169
Clock Generator Module (CGM)
10.8.1
10.8.2
10.9
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
CGM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . 190
10.10 Acquisition/Lock Time Specifications . . . . . . . . . . . . . . . . 190
10.10.1 Acquisition/Lock Time Definitions . . . . . . . . . . . . . . . . . 190
10.10.2 Parametric Influences on Reaction Time . . . . . . . . . . . .192
10.10.3 Choosing a Filter Capacitor . . . . . . . . . . . . . . . . . . . . . . 193
10.10.4 Reaction Time Calculation . . . . . . . . . . . . . . . . . . . . . . . 193
10.2 Introduction
The CGM generates the crystal clock signal, CGMXCLK, which operates
at the frequency of the crystal. The CGM also generates the base clock
signal, CGMOUT, from which the system clocks are derived. CGMOUT
is based on either the crystal clock divided by two or the phase-locked
loop (PLL) clock, CGMVCLK, divided by two. The PLL is a frequency
generator designed for use with 1-MHz to 8-MHz crystals or ceramic
resonators. The PLL can generate an 8-MHz bus frequency without
using high frequency crystals.
10.3 Features
Features of the CGM include:
•
Phase-Locked Loop with Output Frequency in Integer Multiples of
the Crystal Reference
•
Programmable Hardware Voltage-Controlled Oscillator (VCO) for
Low-Jitter Operation
•
Automatic Bandwidth Control Mode for Low-Jitter Operation
•
Automatic Frequency Lock Detector
•
CPU Interrupt on Entry or Exit from Locked Condition
Technical Data
170
MC68HC908AZ60A — Rev 2.0
Clock Generator Module (CGM)
MOTOROLA
Clock Generator Module (CGM)
Functional Description
10.4 Functional Description
The CGM consists of three major submodules:
•
Crystal oscillator circuit — The crystal oscillator circuit generates
the constant crystal frequency clock, CGMXCLK.
•
Phase-locked loop (PLL) — The PLL generates the
programmable VCO frequency clock CGMVCLK.
•
Base clock selector circuit — This software-controlled circuit
selects either CGMXCLK divided by two or the VCO clock,
CGMVCLK, divided by two as the base clock, CGMOUT. The
system clocks are derived from CGMOUT.
Figure 10-1 shows the structure of the CGM.
10.4.1 Crystal Oscillator Circuit
The crystal oscillator circuit consists of an inverting amplifier and an
external crystal. The OSC1 pin is the input to the amplifier and the OSC2
pin is the output. The SIMOSCEN signal enables the crystal oscillator
circuit.
The CGMXCLK signal is the output of the crystal oscillator circuit and
runs at a rate equal to the crystal frequency. CGMXCLK is then buffered
to produce CGMRCLK, the PLL reference clock.
CGMXCLK can be used by other modules which require precise timing
for operation. The duty cycle of CGMXCLK is not guaranteed to be 50%
and depends on external factors, including the crystal and related
external components.
An externally generated clock also can feed the OSC1 pin of the crystal
oscillator circuit. Connect the external clock to the OSC1 pin and let the
OSC2 pin float.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Clock Generator Module (CGM)
171
Clock Generator Module (CGM)
CGMXCLK
OSC1
CLOCK
SELECT
CIRCUIT
CGMRDV
÷2
CGMRCLK
A
CGMOUT
B S*
*When S = 1,
CGMOUT = B
BCS
PTC3
VDDA
CGMXFC
VSS
MONITOR MODE
VRS7–VRS4
USER MODE
PHASE
DETECTOR
VOLTAGE
CONTROLLED
OSCILLATOR
LOOP
FILTER
PLL ANALOG
LOCK
DETECTOR
LOCK
BANDWIDTH
CONTROL
AUTO
ACQ
INTERRUPT
CONTROL
PLLIE
CGMINT
PLLF
MUL7–MUL4
CGMVDV
FREQUENCY
DIVIDER
CGMVCLK
Figure 10-1. CGM Block Diagram
Technical Data
172
MC68HC908AZ60A — Rev 2.0
Clock Generator Module (CGM)
MOTOROLA
Clock Generator Module (CGM)
Functional Description
Register Name
Bit 7
Read:
PLL Control Register (PCTL) Write:
Reset:
Read:
PLL Bandwidth Control Register
Write:
(PBWC)
Reset:
Read:
PLL Programming Register (PPG) Write:
Reset:
PLLIE
0
AUTO
6
PLLF
0
LOCK
5
4
PLLON
BCS
1
0
ACQ
XLD
3
2
1
Bit 0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
MUL7
MUL6
MUL5
MUL4
VRS7
VRS6
VRS5
VRS4
0
1
1
0
0
1
1
0
= Unimplemented
Figure 10-2. I/O Register Summary
Table 10-1. I/O Register Address Summary
Register
PCTL
PBWC
PPG
Address
$001C
$001D
$001E
10.4.2 Phase-Locked Loop Circuit (PLL)
The PLL is a frequency generator that can operate in either acquisition
mode or tracking mode, depending on the accuracy of the output
frequency. The PLL can change between acquisition and tracking
modes either automatically or manually.
10.4.2.1 Circuits
The PLL consists of these circuits:
•
Voltage-controlled oscillator (VCO)
•
Modulo VCO frequency divider
•
Phase detector
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Clock Generator Module (CGM)
173
Clock Generator Module (CGM)
•
Loop filter
•
Lock detector
The operating range of the VCO is programmable for a wide range of
frequencies and for maximum immunity to external noise, including
supply and CGMXFC noise. The VCO frequency is bound to a range
from roughly one-half to twice the center-of-range frequency, fCGMVRS.
Modulating the voltage on the CGMXFC pin changes the frequency
within this range. By design, fCGMVRS is equal to the nominal center-ofrange frequency, fNOM, (4.9152 MHz) times a linear factor L or (L)fNOM.
CGMRCLK is the PLL reference clock, a buffered version of CGMXCLK.
CGMRCLK runs at a frequency, fCGMRCLK, and is fed to the PLL through
a buffer. The buffer output is the final reference clock, CGMRDV,
running at a frequency fCGMRDV = fCGMRCLK.
The VCO’s output clock, CGMVCLK, running at a frequency fCGMVCLK,
is fed back through a programmable modulo divider. The modulo divider
reduces the VCO clock by a factor, N. The divider’s output is the VCO
feedback clock, CGMVDV, running at a frequency
fCGMVDV = fCGMVCLK/N. See Programming the PLL for more
information.
The phase detector then compares the VCO feedback clock, CGMVDV,
with the final reference clock, CGMRDV. A correction pulse is generated
based on the phase difference between the two signals. The loop filter
then slightly alters the dc voltage on the external capacitor connected to
CGMXFC based on the width and direction of the correction pulse. The
filter can make fast or slow corrections depending on its mode, as
described in Acquisition and Tracking Modes on page 175. The value
of the external capacitor and the reference frequency determines the
speed of the corrections and the stability of the PLL.
The lock detector compares the frequencies of the VCO feedback clock,
CGMVDV, and the final reference clock, CGMRDV. Therefore, the
speed of the lock detector is directly proportional to the final reference
frequency, fCGMRDV. The circuit determines the mode of the PLL and the
lock condition based on this comparison.
Technical Data
174
MC68HC908AZ60A — Rev 2.0
Clock Generator Module (CGM)
MOTOROLA
Clock Generator Module (CGM)
Functional Description
10.4.2.2 Acquisition and Tracking Modes
The PLL filter is manually or automatically configurable into one of two
operating modes:
•
Acquisition mode — In acquisition mode, the filter can make large
frequency corrections to the VCO. This mode is used at PLL
startup or when the PLL has suffered a severe noise hit and the
VCO frequency is far off the desired frequency. When in
acquisition mode, the ACQ bit is clear in the PLL bandwidth control
register. See PLL Bandwidth Control Register on page 185.
•
Tracking mode — In tracking mode, the filter makes only small
corrections to the frequency of the VCO. PLL jitter is much lower
in tracking mode, but the response to noise is also slower. The
PLL enters tracking mode when the VCO frequency is nearly
correct, such as when the PLL is selected as the base clock
source. See Base Clock Selector Circuit on page 179. The PLL
is automatically in tracking mode when it’s not in acquisition mode
or when the ACQ bit is set.
10.4.2.3 Manual and Automatic PLL Bandwidth Modes
The PLL can change the bandwidth or operational mode of the loop filter
manually or automatically.
In automatic bandwidth control mode (AUTO = 1), the lock detector
automatically switches between acquisition and tracking modes.
Automatic bandwidth control mode also is used to determine when the
VCO clock, CGMVCLK, is safe to use as the source for the base clock,
CGMOUT. See PLL Bandwidth Control Register on page 185. If PLL
CPU interrupt requests are enabled, the software can wait for a PLL
CPU interrupt request and then check the LOCK bit. If CPU interrupts
are disabled, software can poll the LOCK bit continuously (during PLL
startup, usually) or at periodic intervals. In either case, when the LOCK
bit is set, the VCO clock is safe to use as the source for the base clock.
See Base Clock Selector Circuit on page 179. If the VCO is selected
as the source for the base clock and the LOCK bit is clear, the PLL has
suffered a severe noise hit and the software must take appropriate
action, depending on the application. See Interrupts on page 189.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Clock Generator Module (CGM)
175
Clock Generator Module (CGM)
These conditions apply when the PLL is in automatic bandwidth control
mode:
•
The ACQ bit (See 10.6.2 PLL Bandwidth Control Register.) is a
read-only indicator of the mode of the filter. See Acquisition and
Tracking Modes on page 175.
•
The ACQ bit is set when the VCO frequency is within a certain
tolerance, ∆trk, and is cleared when the VCO frequency is out of a
certain tolerance, ∆unt. See Electrical Specifications on page
530.
•
The LOCK bit is a read-only indicator of the locked state of the PLL.
•
The LOCK bit is set when the VCO frequency is within a certain
tolerance, ∆Lock, and is cleared when the VCO frequency is out of a
certain tolerance, ∆unl. See Electrical Specifications on page 530.
•
CPU interrupts can occur if enabled (PLLIE = 1) when the PLL’s
lock condition changes, toggling the LOCK bit. See PLL Control
Register on page 183.
The PLL also can operate in manual mode (AUTO = 0). Manual mode is
used by systems that do not require an indicator of the lock condition for
proper operation. Such systems typically operate well below fbusmax and
require fast startup. The following conditions apply when in manual
mode:
•
ACQ is a writable control bit that controls the mode of the filter.
Before turning on the PLL in manual mode, the ACQ bit must be
clear.
•
Before entering tracking mode (ACQ = 1), software must wait a
given time, tacq (see Electrical Specifications on page 530), after
turning on the PLL by setting PLLON in the PLL control register
(PCTL).
•
Software must wait a given time, tal, after entering tracking mode
before selecting the PLL as the clock source to CGMOUT
(BCS = 1).
•
The LOCK bit is disabled.
•
CPU interrupts from the CGM are disabled.
Technical Data
176
MC68HC908AZ60A — Rev 2.0
Clock Generator Module (CGM)
MOTOROLA
Clock Generator Module (CGM)
Functional Description
10.4.2.4 Programming the PLL
Use this 9-step procedure to program the PLL. The table below lists the
variables used and their meaning (Please also reference Figure 10-1 on
page 172).
Table 10-2. Variable Definitions
Variable
Definition
fBUSDES
Desired Bus Clock Frequency
fVCLKDES
Desired VCO Clock Frequency
fCGMRCLK
Chosen Reference Crystal Frequency
fCGMVCLK
Calculated VCO Clock Frequency
fBUS
Calculated Bus Clock Frequency
fNOM
Nominal VCO Center Frequency
fCGMVRS
Shifted VCO Center Frequency
1. Choose the desired bus frequency, fBUSDES.
Example: fBUSDES = 8 MHz
2. Calculate the desired VCO frequency, fVCLKDES.
fVCLKDES = 4 × fBUSDES
Example: fVCLKDES = 4 × 8 MHz = 32 MHz
3. Using a reference frequency, fRCLK, equal to the crystal frequency,
calculate the VCO frequency multiplier, N. Round the result to the
nearest integer.
f VCLKDES
N = ------------------------fCGMRCLK
32 MHz
Example: N = -------------------- = 8
4 MHz
4. Calculate the VCO frequency, fCGMVCLK.
f CGMVCLK = N × f CGMRCLK
Example: fCGMVCLK = 8 × 4 MHz = 32 MHz
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Clock Generator Module (CGM)
177
Clock Generator Module (CGM)
5. Calculate the bus frequency, fBUS, and compare fBUS with
fBUSDES.
f CGMVCLK
f BUS = -----------------------4
32 MHz
Example: f BUS = -------------------- = 8 MHz
4
6. If the calculated fbus is not within the tolerance limits of your
application, select another fBUSDES or another fRCLK.
7. Using the value 4.9152 MHz for fNOM, calculate the VCO linear
range multiplier, L. The linear range multiplier controls the
frequency range of the PLL.
f CGMVCLK
L = round  ------------------------
 f NOM 
Example: L
=
32 MHz
-------------------------------- = 7
4.9152 MHz
8. Calculate the VCO center-of-range frequency, fCGMVRS. The
center-of-range frequency is the midpoint between the minimum
and maximum frequencies attainable by the PLL.
fCGMVRS = L × fNOM
Example: fCGMVRS = 7 × 4.9152 MHz = 34.4 MHz
NOTE:
f NOM
For proper operation, f CGMVRS – f CGMVCLK ≤ --------------.
2
Exceeding the recommended maximum bus frequency or VCO
frequency can crash the MCU.
9. Program the PLL registers accordingly:
a. In the upper four bits of the PLL programming register (PPG),
program the binary equivalent of N.
b. In the lower four bits of the PLL programming register (PPG),
program the binary equivalent of L.
Technical Data
178
MC68HC908AZ60A — Rev 2.0
Clock Generator Module (CGM)
MOTOROLA
Clock Generator Module (CGM)
Functional Description
10.4.2.5 Special Programming Exceptions
The programming method described in Programming the PLL on page
177, does not account for two possible exceptions. A value of 0 for N or
L is meaningless when used in the equations given. To account for these
exceptions:
•
A 0 value for N is interpreted the same as a value of 1.
•
A 0 value for L disables the PLL and prevents its selection as the
source for the base clock. See Base Clock Selector Circuit on
page 179.
10.4.3 Base Clock Selector Circuit
This circuit is used to select either the crystal clock, CGMXCLK, or the
VCO clock, CGMVCLK, as the source of the base clock, CGMOUT. The
two input clocks go through a transition control circuit that waits up to
three CGMXCLK cycles and three CGMVCLK cycles to change from
one clock source to the other. During this time, CGMOUT is held in
stasis. The output of the transition control circuit is then divided by two
to correct the duty cycle. Therefore, the bus clock frequency, which is
one-half of the base clock frequency, is one-fourth the frequency of the
selected clock (CGMXCLK or CGMVCLK).
The BCS bit in the PLL control register (PCTL) selects which clock drives
CGMOUT. The VCO clock cannot be selected as the base clock source
if the PLL is not turned on. The PLL cannot be turned off if the VCO clock
is selected. The PLL cannot be turned on or off simultaneously with the
selection or deselection of the VCO clock. The VCO clock also cannot
be selected as the base clock source if the factor L is programmed to a
0. This value would set up a condition inconsistent with the operation of
the PLL, so that the PLL would be disabled and the crystal clock would
be forced as the source of the base clock.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Clock Generator Module (CGM)
179
Clock Generator Module (CGM)
10.4.4 CGM External Connections
In its typical configuration, the CGM requires seven external
components. Five of these are for the crystal oscillator and two are for
the PLL.
The crystal oscillator is normally connected in a Pierce oscillator
configuration, as shown in Figure 10-3. Figure 10-3 shows only the
logical representation of the internal components and may not represent
actual circuitry. The oscillator configuration uses five components:
•
Crystal, X1
•
Fixed capacitor, C1
•
Tuning capacitor, C2 (can also be a fixed capacitor)
•
Feedback resistor, RB
•
Series resistor, RS (optional)
The series resistor (RS) may not be required for all ranges of operation,
especially with high-frequency crystals. Refer to the crystal
manufacturer’s data for more information.
Figure 10-3 also shows the external components for the PLL:
•
Bypass capacitor, CBYP
•
Filter capacitor, CF
Routing should be done with great care to minimize signal cross talk and
noise. (See Acquisition/Lock Time Specifications on page 190 for
routing information and more information on the filter capacitor’s value
and its effects on PLL performance).
Technical Data
180
MC68HC908AZ60A — Rev 2.0
Clock Generator Module (CGM)
MOTOROLA
Clock Generator Module (CGM)
I/O Signals
SIMOSCEN
RS*
VDDA
CGMXFC
VSS
OSC2
OSC1
CGMXCLK
VDD
CF
CBYP
RB
X1
C1
C2
*RS can be 0 (shorted) when used with higher-frequency crystals. Refer to manufacturer’s data.
Figure 10-3. CGM External Connections
10.5 I/O Signals
The following paragraphs describe the CGM input/output (I/O) signals.
10.5.1 Crystal Amplifier Input Pin (OSC1)
The OSC1 pin is an input to the crystal oscillator amplifier.
10.5.2 Crystal Amplifier Output Pin (OSC2)
The OSC2 pin is the output of the crystal oscillator inverting amplifier.
10.5.3 External Filter Capacitor Pin (CGMXFC)
The CGMXFC pin is required by the loop filter to filter out phase
corrections. A small external capacitor is connected to this pin.
NOTE:
To prevent noise problems, CF should be placed as close to the
CGMXFC pin as possible with minimum routing distances and no routing
of other signals across the CF connection.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Clock Generator Module (CGM)
181
Clock Generator Module (CGM)
10.5.4 Analog Power Pin (VDDA)
VDDA is a power pin used by the analog portions of the PLL. Connect the
VDDA pin to the same voltage potential as the VDD pin.
NOTE:
Route VDDA carefully for maximum noise immunity and place bypass
capacitors as close as possible to the package.
10.5.5 Oscillator Enable Signal (SIMOSCEN)
The SIMOSCEN signal enables the oscillator and PLL.
10.5.6 Crystal Output Frequency Signal (CGMXCLK)
CGMXCLK is the crystal oscillator output signal. It runs at the full speed
of the crystal (fCGMXCLK) and comes directly from the crystal oscillator
circuit. Figure 10-3 shows only the logical relation of CGMXCLK to
OSC1 and OSC2 and may not represent the actual circuitry. The duty
cycle of CGMXCLK is unknown and may depend on the crystal and other
external factors. Also, the frequency and amplitude of CGMXCLK can be
unstable at startup.
10.5.7 CGM Base Clock Output (CGMOUT)
CGMOUT is the clock output of the CGM. This signal is used to generate
the MCU clocks. CGMOUT is a 50% duty cycle clock running at twice the
bus frequency. CGMOUT is software programmable to be either the
oscillator output, CGMXCLK, divided by two or the VCO clock,
CGMVCLK, divided by two.
10.5.8 CGM CPU Interrupt (CGMINT)
CGMINT is the CPU interrupt signal generated by the PLL lock detector.
Technical Data
182
MC68HC908AZ60A — Rev 2.0
Clock Generator Module (CGM)
MOTOROLA
Clock Generator Module (CGM)
CGM Registers
10.6 CGM Registers
Three registers control and monitor operation of the CGM:
•
PLL control register (PCTL)
•
PLL bandwidth control register (PBWC)
•
PLL programming register (PPG)
10.6.1 PLL Control Register
The PLL control register contains the interrupt enable and flag bits, the
on/off switch, and the base clock selector bit.
Address:
$001C
Bit 7
Read:
6
5
4
PLLON
BCS
1
0
PLLF
PLLIE
3
2
1
Bit 0
1
1
1
1
1
1
1
1
Write:
Reset:
0
0
= Unimplemented
Figure 10-4. PLL Control Register (PCTL)
PLLIE — PLL Interrupt Enable Bit
This read/write bit enables the PLL to generate a CPU interrupt
request when the LOCK bit toggles, setting the PLL flag, PLLF. When
the AUTO bit in the PLL bandwidth control register (PBWC) is clear,
PLLIE cannot be written and reads as logic 0. Reset clears the PLLIE
bit.
1 = PLL CPU interrupt requests enabled
0 = PLL CPU interrupt requests disabled
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Clock Generator Module (CGM)
183
Clock Generator Module (CGM)
PLLF — PLL Flag Bit
This read-only bit is set whenever the LOCK bit toggles. PLLF
generates a CPU interrupt request if the PLLIE bit also is set. PLLF
always reads as logic 0 when the AUTO bit in the PLL bandwidth
control register (PBWC) is clear. Clear the PLLF bit by reading the
PLL control register. Reset clears the PLLF bit.
1 = Change in lock condition
0 = No change in lock condition
NOTE:
Do not inadvertently clear the PLLF bit. Be aware that any read or readmodify-write operation on the PLL control register clears the PLLF bit.
PLLON — PLL On Bit
This read/write bit activates the PLL and enables the VCO clock,
CGMVCLK. PLLON cannot be cleared if the VCO clock is driving the
base clock, CGMOUT (BCS = 1). See Base Clock Selector Circuit
on page 179. Reset sets this bit so that the loop can stabilize as the
MCU is powering up.
1 = PLL on
0 = PLL off
BCS — Base Clock Select Bit
This read/write bit selects either the crystal oscillator output,
CGMXCLK, or the VCO clock, CGMVCLK, as the source of the CGM
output, CGMOUT. CGMOUT frequency is one-half the frequency of
the selected clock. BCS cannot be set while the PLLON bit is clear.
After toggling BCS, it may take up to three CGMXCLK and three
CGMVCLK cycles to complete the transition from one source clock to
the other. During the transition, CGMOUT is held in stasis. See Base
Clock Selector Circuit on page 179. Reset and the STOP instruction
clear the BCS bit.
1 = CGMVCLK divided by two drives CGMOUT
0 = CGMXCLK divided by two drives CGMOUT
NOTE:
PLLON and BCS have built-in protection that prevents the base clock
selector circuit from selecting the VCO clock as the source of the base
clock if the PLL is off. Therefore, PLLON cannot be cleared when BCS
is set, and BCS cannot be set when PLLON is clear. If the PLL is off
Technical Data
184
MC68HC908AZ60A — Rev 2.0
Clock Generator Module (CGM)
MOTOROLA
Clock Generator Module (CGM)
CGM Registers
(PLLON = 0), selecting CGMVCLK requires two writes to the PLL control
register. See Base Clock Selector Circuit on page 179.
PCTL3–PCTL0 — Unimplemented
These bits provide no function and always read as logic 1s.
10.6.2 PLL Bandwidth Control Register
The PLL bandwidth control register:
•
Selects automatic or manual (software-controlled) bandwidth
control mode
•
Indicates when the PLL is locked
•
In automatic bandwidth control mode, indicates when the PLL is in
acquisition or tracking mode
•
In manual operation, forces the PLL into acquisition or tracking
mode
Address:
$001D
Bit 7
Read:
6
5
4
ACQ
XLD
0
0
LOCK
AUTO
3
2
1
Bit 0
0
0
0
0
0
0
0
0
Write:
Reset:
0
0
= Unimplemented
Figure 10-5. PLL Bandwidth Control Register (PBWC)
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Clock Generator Module (CGM)
185
Clock Generator Module (CGM)
AUTO — Automatic Bandwidth Control Bit
This read/write bit selects automatic or manual bandwidth control.
When initializing the PLL for manual operation (AUTO = 0), clear the
ACQ bit before turning on the PLL. Reset clears the AUTO bit.
1 = Automatic bandwidth control
0 = Manual bandwidth control
LOCK — Lock Indicator Bit
When the AUTO bit is set, LOCK is a read-only bit that becomes set
when the VCO clock, CGMVCLK, is locked (running at the
programmed frequency). When the AUTO bit is clear, LOCK reads as
logic 0 and has no meaning. Reset clears the LOCK bit.
1 = VCO frequency correct or locked
0 = VCO frequency incorrect or unlocked
ACQ — Acquisition Mode Bit
When the AUTO bit is set, ACQ is a read-only bit that indicates
whether the PLL is in acquisition mode or tracking mode. When the
AUTO bit is clear, ACQ is a read/write bit that controls whether the
PLL is in acquisition or tracking mode.
In automatic bandwidth control mode (AUTO = 1), the last-written
value from manual operation is stored in a temporary location and is
recovered when manual operation resumes. Reset clears this bit,
enabling acquisition mode.
1 = Tracking mode
0 = Acquisition mode
XLD — Crystal Loss Detect Bit
When the VCO output, CGMVCLK, is driving CGMOUT, this
read/write bit can indicate whether the crystal reference frequency is
active or not.
1 = Crystal reference not active
0 = Crystal reference active
Technical Data
186
MC68HC908AZ60A — Rev 2.0
Clock Generator Module (CGM)
MOTOROLA
Clock Generator Module (CGM)
CGM Registers
To check the status of the crystal reference, do the following:
1. Write a logic 1 to XLD.
2. Wait N × 4 cycles. N is the VCO frequency multiplier.
3. Read XLD.
The crystal loss detect function works only when the BCS bit is set,
selecting CGMVCLK to drive CGMOUT. When BCS is clear, XLD
always reads as logic 0.
Bits 3–0 — Reserved for Test
These bits enable test functions not available in user mode. To ensure
software portability from development systems to user applications,
software should write 0s to bits 3–0 when writing to PBWC.
10.6.3 PLL Programming Register
The PLL programming register contains the programming information for
the modulo feedback divider and the programming information for the
hardware configuration of the VCO.
Address:
$001E
Bit 7
6
5
4
3
2
1
Bit 0
MUL7
MUL6
MUL5
MUL4
VRS7
VRS6
VRS5
VRS4
0
1
1
0
0
1
1
0
Read:
Write:
Reset:
Figure 10-6. PLL Programming Register (PPG)
MUL7–MUL4 — Multiplier Select Bits
These read/write bits control the modulo feedback divider that selects
the VCO frequency multiplier, N. (See Circuits on page 173 and
Programming the PLL on page 177). A value of $0 in the multiplier
select bits configures the modulo feedback divider the same as a
value of $1. Reset initializes these bits to $6 to give a default multiply
value of 6.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Clock Generator Module (CGM)
187
Clock Generator Module (CGM)
Table 10-3. VCO Frequency Multiplier (N) Selection
NOTE:
MUL7:MUL6:MUL5:MUL4
VCO Frequency Multiplier (N)
0000
1
0001
1
0010
2
0011
3
1101
13
1110
14
1111
15
The multiplier select bits have built-in protection that prevents them from
being written when the PLL is on (PLLON = 1).
VRS7–VRS4 — VCO Range Select Bits
These read/write bits control the hardware center-of-range linear
multiplier L, which controls the hardware center-of-range frequency,
fVRS. (See Circuits on page 173, Programming the PLL on page
177, and PLL Control Register on page 183.) VRS7–VRS4 cannot
be written when the PLLON bit in the PLL control register (PCTL) is
set. See Special Programming Exceptions on page 179. A value of
$0 in the VCO range select bits disables the PLL and clears the BCS
bit in the PCTL. (See Base Clock Selector Circuit on page 179 and
Special Programming Exceptions on page 179 for more
information.) Reset initializes the bits to $6 to give a default range
multiply value of 6.
NOTE:
The VCO range select bits have built-in protection that prevents them
from being written when the PLL is on (PLLON = 1) and prevents
selection of the VCO clock as the source of the base clock (BCS = 1) if
the VCO range select bits are all clear.
The VCO range select bits must be programmed correctly. Incorrect
programming can result in failure of the PLL to achieve lock.
Technical Data
188
MC68HC908AZ60A — Rev 2.0
Clock Generator Module (CGM)
MOTOROLA
Clock Generator Module (CGM)
Interrupts
10.7 Interrupts
When the AUTO bit is set in the PLL bandwidth control register (PBWC),
the PLL can generate a CPU interrupt request every time the LOCK bit
changes state. The PLLIE bit in the PLL control register (PCTL) enables
CPU interrupt requests from the PLL. PLLF, the interrupt flag in the
PCTL, becomes set whether CPU interrupt requests are enabled or not.
When the AUTO bit is clear, CPU interrupt requests from the PLL are
disabled and PLLF reads as logic 0.
Software should read the LOCK bit after a PLL CPU interrupt request to
see if the request was due to an entry into lock or an exit from lock. When
the PLL enters lock, the VCO clock, CGMVCLK, divided by two can be
selected as the CGMOUT source by setting BCS in the PCTL. When the
PLL exits lock, the VCO clock frequency is corrupt, and appropriate
precautions should be taken. If the application is not frequency sensitive,
CPU interrupt requests should be disabled to prevent PLL interrupt
service routines from impeding software performance or from exceeding
stack limitations.
NOTE:
Software can select the CGMVCLK divided by two as the CGMOUT
source even if the PLL is not locked (LOCK = 0). Therefore, software
should make sure the PLL is locked before setting the BCS bit.
10.8 Low-Power Modes
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.
10.8.1 Wait Mode
The CGM remains active in wait mode. Before entering wait mode,
software can disengage and turn off the PLL by clearing the BCS and
PLLON bits in the PLL control register (PCTL). Less power-sensitive
applications can disengage the PLL without turning it off. Applications
that require the PLL to wake the MCU from wait mode also can deselect
the PLL output without turning off the PLL.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Clock Generator Module (CGM)
189
Clock Generator Module (CGM)
10.8.2 Stop Mode
The STOP instruction disables the CGM and holds low all CGM outputs
(CGMXCLK, CGMOUT, and CGMINT).
If CGMOUT is being driven by CGMVCLK and a STOP instruction is
executed; the PLL will clear the BCS bit in the PLL control register,
causing CGMOUT to be driven by CGMXCLK. When the MCU recovers
from STOP, the crystal clock divided by two drives CGMOUT and BCS
remains clear.
10.9 CGM During Break Interrupts
The BCFE bit in the break flag control register (BFCR) enables software
to clear status bits during the break state. See Break Module (BRK) on
page 203.
To allow software to clear status bits during a break interrupt, write a
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it
remains cleared when the MCU exits the break state.
To protect the PLLF bit during the break state, write a logic 0 to the BCFE
bit. With BCFE at logic 0 (its default state), software can read and write
the PLL control register during the break state without affecting the PLLF
bit.
10.10 Acquisition/Lock Time Specifications
The acquisition and lock times of the PLL are, in many applications, the
most critical PLL design parameters. Proper design and use of the PLL
ensures the highest stability and lowest acquisition/lock times.
10.10.1 Acquisition/Lock Time Definitions
Typical control systems refer to the acquisition time or lock time as the
reaction time, within specified tolerances, of the system to a step input.
In a PLL, the step input occurs when the PLL is turned on or when it
suffers a noise hit. The tolerance is usually specified as a percent of the
Technical Data
190
MC68HC908AZ60A — Rev 2.0
Clock Generator Module (CGM)
MOTOROLA
Clock Generator Module (CGM)
Acquisition/Lock Time Specifications
step input or when the output settles to the desired value plus or minus
a percent of the frequency change. Therefore, the reaction time is
constant in this definition, regardless of the size of the step input. For
example, consider a system with a 5% acquisition time tolerance. If a
command instructs the system to change from 0 Hz to 1 MHz, the
acquisition time is the time taken for the frequency to reach
1 MHz ±50 kHz. Fifty kHz = 5% of the 1-MHz step input. If the system is
operating at 1 MHz and suffers a –100 kHz noise hit, the acquisition time
is the time taken to return from 900 kHz to 1 MHz ±5 kHz. Five kHz = 5%
of the 100-kHz step input.
Other systems refer to acquisition and lock times as the time the system
takes to reduce the error between the actual output and the desired
output to within specified tolerances. Therefore, the acquisition or lock
time varies according to the original error in the output. Minor errors may
not even be registered. Typical PLL applications prefer to use this
definition because the system requires the output frequency to be within
a certain tolerance of the desired frequency regardless of the size of the
initial error.
The discrepancy in these definitions makes it difficult to specify an
acquisition or lock time for a typical PLL. Therefore, the definitions for
acquisition and lock times for this module are:
•
Acquisition time, tacq, is the time the PLL takes to reduce the error
between the actual output frequency and the desired output
frequency to less than the tracking mode entry tolerance, ∆trk.
Acquisition time is based on an initial frequency error,
(fdes – forig)/fdes, of not more than ±100%. In automatic bandwidth
control mode (see Manual and Automatic PLL Bandwidth
Modes on page 175), acquisition time expires when the ACQ bit
becomes set in the PLL bandwidth control register (PBWC).
•
Lock time, tLock, is the time the PLL takes to reduce the error
between the actual output frequency and the desired output
frequency to less than the lock mode entry tolerance, ∆Lock. Lock
time is based on an initial frequency error, (fdes – forig)/fdes, of not
more than ±100%. In automatic bandwidth control mode, lock time
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Clock Generator Module (CGM)
191
Clock Generator Module (CGM)
expires when the LOCK bit becomes set in the PLL bandwidth
control register (PBWC). (See Manual and Automatic PLL
Bandwidth Modes on page 175).
Obviously, the acquisition and lock times can vary according to how
large the frequency error is and may be shorter or longer in many cases.
10.10.2 Parametric Influences on Reaction Time
Acquisition and lock times are designed to be as short as possible while
still providing the highest possible stability. These reaction times are not
constant, however. Many factors directly and indirectly affect the
acquisition time.
The most critical parameter which affects the reaction times of the PLL
is the reference frequency, fCGMRDV (please reference Figure 10-1).
This frequency is the input to the phase detector and controls how often
the PLL makes corrections. For stability, the corrections must be small
compared to the desired frequency, so several corrections are required
to reduce the frequency error. Therefore, the slower the reference the
longer it takes to make these corrections. This parameter is also under
user control via the choice of crystal frequency fCGMXCLK.
Another critical parameter is the external filter capacitor. The PLL
modifies the voltage on the VCO by adding or subtracting charge from
this capacitor. Therefore, the rate at which the voltage changes for a
given frequency error (thus a change in charge) is proportional to the
capacitor size. The size of the capacitor also is related to the stability of
the PLL. If the capacitor is too small, the PLL cannot make small enough
adjustments to the voltage and the system cannot lock. If the capacitor
is too large, the PLL may not be able to adjust the voltage in a
reasonable time. See Choosing a Filter Capacitor on page 193.
Also important is the operating voltage potential applied to VDDA. The
power supply potential alters the characteristics of the PLL. A fixed value
is best. Variable supplies, such as batteries, are acceptable if they vary
within a known range at very slow speeds. Noise on the power supply is
not acceptable, because it causes small frequency errors which
continually change the acquisition time of the PLL.
Technical Data
192
MC68HC908AZ60A — Rev 2.0
Clock Generator Module (CGM)
MOTOROLA
Clock Generator Module (CGM)
Acquisition/Lock Time Specifications
Temperature and processing also can affect acquisition time because
the electrical characteristics of the PLL change. The part operates as
specified as long as these influences stay within the specified limits.
External factors, however, can cause drastic changes in the operation of
the PLL. These factors include noise injected into the PLL through the
filter capacitor, filter capacitor leakage, stray impedances on the circuit
board, and even humidity or circuit board contamination.
10.10.3 Choosing a Filter Capacitor
As described in Parametric Influences on Reaction Time on page
192, the external filter capacitor, CF, is critical to the stability and reaction
time of the PLL. The PLL is also dependent on reference frequency and
supply voltage. The value of the capacitor must, therefore, be chosen
with supply potential and reference frequency in mind. For proper
operation, the external filter capacitor must be chosen according to this
equation:
V DDA 
C F = C fact  ----------------- f C G M R D V-
For acceptable values of Cfact, (see Electrical Specifications on page
530). For the value of VDDA, choose the voltage potential at which the
MCU is operating. If the power supply is variable, choose a value near
the middle of the range of possible supply values.
This equation does not always yield a commonly available capacitor
size, so round to the nearest available size. If the value is between two
different sizes, choose the higher value for better stability. Choosing the
lower size may seem attractive for acquisition time improvement, but the
PLL may become unstable. Also, always choose a capacitor with a tight
tolerance (±20% or better) and low dissipation.
10.10.4 Reaction Time Calculation
The actual acquisition and lock times can be calculated using the
equations below. These equations yield nominal values under the
following conditions:
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Clock Generator Module (CGM)
193
Clock Generator Module (CGM)
•
Correct selection of filter capacitor, CF (see Choosing a Filter
Capacitor on page 193).
•
Room temperature operation
•
Negligible external leakage on CGMXFC
•
Negligible noise
The K factor in the equations is derived from internal PLL parameters.
Kacq is the K factor when the PLL is configured in acquisition mode, and
Ktrk is the K factor when the PLL is configured in tracking mode. (See
Acquisition and Tracking Modes on page 175).
V DDA   8 
t acq =  -------------------------------
 f CGMRDV-  K
ACQ
V DDA   4 
t al =  ------------------ f CGMRDV-  ----------K TRK
t Lock = t ACQ + t AL
Note the inverse proportionality between the lock time and the reference
frequency.
In automatic bandwidth control mode, the acquisition and lock times are
quantized into units based on the reference frequency. (See Manual
and Automatic PLL Bandwidth Modes on page 175). A certain
number of clock cycles, nACQ, is required to ascertain that the PLL is
within the tracking mode entry tolerance, ∆TRK, before exiting acquisition
mode. A certain number of clock cycles, nTRK, is required to ascertain
that the PLL is within the lock mode entry tolerance, ∆Lock. Therefore, the
acquisition time, tACQ, is an integer multiple of nACQ/fCGMRDV, and the
acquisition to lock time, tAL, is an integer multiple of nTRK/fCGMRDV. Also,
since the average frequency over the entire measurement period must
be within the specified tolerance, the total time usually is longer than
tLock as calculated above.
Technical Data
194
MC68HC908AZ60A — Rev 2.0
Clock Generator Module (CGM)
MOTOROLA
Clock Generator Module (CGM)
Acquisition/Lock Time Specifications
In manual mode, it is usually necessary to wait considerably longer than
tLock before selecting the PLL clock (see Base Clock Selector Circuit
on page 179), because the factors described in Parametric Influences
on Reaction Time on page 192, may slow the lock time considerably.
When defining a limit in software for the maximum lock time, the value
must allow for variation due to all of the factors mentioned in this section,
especially due to the CF capacitor and application specific influences.
The calculated lock time is only an indication and it is the customer’s
responsibility to allow enough of a guard band for their application. Prior
to finalizing any software and while determining the maximum lock time,
take into account all device to device differences. Typically, applications
set the maximum lock time as an order of magnitude higher than the
measured value. This is considered sufficient for all such device to
device variation.
Motorola recommends measuring the lock time of the application system
by utilizing dedicated software, running in FLASH, EEPROM or RAM.
This should toggle a port pin when the PLL is first configured and
switched on, then again when it goes from acquisition to lock mode and
finally again when the PLL lock bit is set. The resultant waveform can be
captured on an oscilloscope and used to determine the typical lock time
for the microcontroller and the associated external application circuit.
e.g.
tLOCK
tACQ
tAL
Init. low
Signal on port pin
tTRKComplete and Lock Set
tACQComplete
PLL Configured and switched on
NOTE:
The filter capacitor should be fully discharged prior to making any
measurements.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Clock Generator Module (CGM)
195
Clock Generator Module (CGM)
Technical Data
196
MC68HC908AZ60A — Rev 2.0
Clock Generator Module (CGM)
MOTOROLA
Technical Data — MC68HC908AZ60A
Section 11. Configuration Register (CONFIG-1)
11.1 Contents
11.2
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
11.3
Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . .197
11.2 Introduction
This section describes the configuration register (CONFIG-1), which
contains bits that configure these options:
•
Resets caused by the LVI module
•
Power to the LVI module
•
LVI enabled during stop mode
•
Stop mode recovery time (32 CGMXCLK cycles or 4096
CGMXCLK cycles)
•
Computer operating properly module (COP)
•
Stop instruction enable/disable.
11.3 Functional Description
The configuration register is a write-once register. Out of reset, the
configuration register will read the default value. Once the register is
written, further writes will have no effect until a reset occurs.
NOTE:
If the LVI module and the LVI reset signal are enabled, a reset occurs
when VDD falls to a voltage, LVITRIPF, and remains at or below that level
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Configuration Register (CONFIG-1)
197
Configuration Register (CONFIG-1)
for at least nine consecutive CPU cycles. Once an LVI reset occurs, the
MCU remains in reset until VDD rises to a voltage, LVITRIPR.
Address:
$001F
Bit 7
6
5
4
3
2
1
Bit 0
LVISTOP
R
LVIRST
LVIPWR
SSREC
COPL
STOP
COPD
0
1
1
1
0
0
0
0
Read:
Write:
Reset:
R
= Reserved
Figure 11-1. Configuration Register (CONFIG-1)
LVISTOP — LVI Stop Mode Enable Bit
LVISTOP enables the LVI module in stop mode. (See Low Voltage
Inhibit (LVI) on page 229).
1 = LVI enabled during stop mode
0 = LVI disabled during stop mode
NOTE:
To have the LVI enabled in stop mode, the LVIPWR must be at a logic 1
and the LVISTOP bit must be at a logic 1. Take note that by enabling the
LVI in stop mode, the stop IDD current will be higher.
LVIRST — LVI Reset Enable Bit
LVIRST enables the reset signal from the LVI module. (See Low
Voltage Inhibit (LVI) on page 229).
1 = LVI module resets enabled
0 = LVI module resets disabled
Technical Data
198
MC68HC908AZ60A — Rev 2.0
Configuration Register (CONFIG-1)
MOTOROLA
Configuration Register (CONFIG-1)
Functional Description
LVIPWR — LVI Power Enable Bit
LVIPWR enables the LVI module. (See Low Voltage Inhibit (LVI) on
page 229).
1 = LVI module power enabled
0 = LVI module power disabled
SSREC — Short Stop Recovery Bit
SSREC enables the CPU to exit stop mode with a delay of 32
CGMXCLK cycles instead of a 4096-CGMXCLK cycle delay. (See
Stop Mode on page 164).
1 = Stop mode recovery after 32 CGMXCLK cycles
0 = Stop mode recovery after 4096 CGMXCLK cycles
NOTE:
If using an external crystal oscillator, do not set the SSREC bit.
COPL — COP Long Timeout
COPL enables the shorter COP timeout period. (See Computer
Operating Properly (COP) on page 223).
1 = COP timeout period is 213 – 24 CGMXCLK cycles
0 = COP timeout period is 218 – 24 CGMXCLK cycles
STOP — STOP Instruction Enable Bit
STOP enables the STOP instruction.
1 = STOP instruction enabled
0 = STOP instruction treated as illegal opcode
COPD — COP Disable Bit
COPD disables the COP module. (See Computer Operating
Properly (COP) on page 223).
1 = COP module disabled
0 = COP module enabled
Extra care should be exercised when using this emulation part for
development of code to be run in ROM AZ, AB or AS parts that the
options selected by setting the CONFIG-1 register match exactly
the options selected on any ROM code request submitted. The
enable/disable logic is not necessarily identical in all parts of the
AS and AZ families. If in doubt, check with your local field
applications representative.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Configuration Register (CONFIG-1)
199
Configuration Register (CONFIG-1)
Technical Data
200
MC68HC908AZ60A — Rev 2.0
Configuration Register (CONFIG-1)
MOTOROLA
Technical Data — MC68HC908AZ60A
Section 12. Configuration Register (CONFIG-2)
12.1 Contents
12.2
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
12.3
Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . .201
12.2 Introduction
This section describes the configuration register (CONFIG-2). This
register contains bits that configure these options:
•
Configures the device to either the MC68HC08AZxx emulator or
the MC68HC08ASxx emulator
•
Disables the CAN module
12.3 Functional Description
The configuration register is a write-once register. Out of reset, the
configuration register will read the default. Once the register is written,
further writes will have no effect until a reset occurs.
Address:
$FE09
Bit 7
6
5
4
R
R
MSCAND
Write:
EEDIV
CLK
Reset:
0
0
Read:
3
2
1
Bit 0
R
R
AZxx
0
0
0
AT60A
R
0
1
1
R
= Reserved
Figure 12-1. Configuration Register (CONFIG-2)
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Configuration Register (CONFIG-2)
201
Configuration Register (CONFIG-2)
AT60A — Device indicator
This read-only bit is used to distinguish an MC68HC908AS60A and
MC68HC908AZ60A from older non-’A’ suffix versions.
1 = ‘A’ version
0 = Non-’A’ version
EEDIVCLK — EEPROM Timebase Divider Clock select bit
This bit selects the reference clock source for the EEPROM-1 and
EEPROM-2 timebase divider modules.
1 = EExDIV clock input is driven by internal bus clock
0 = EExDIV clock input is driven by CGMXCLK
MSCAND — MSCAN Disable Bit
MSCAND disables the MSCAN module. (See MSCAN Controller
(MSCAN08) on page 379).
1 = MSCAN module disabled
0 = MSCAN Module enabled
AZxx — AZxx Emulator Enable Bit
AZxx enables the MC68HC08AZxx emulator configuration. This bit
will be 0 out of reset.
1 = MC68HC08AZxx emulator enabled
0 = MC68HC08ASxx emulator enabled
NOTE:
AZxx bit is reset by a POWER-ON-RESET only.
Technical Data
202
MC68HC908AZ60A — Rev 2.0
Configuration Register (CONFIG-2)
MOTOROLA
Technical Data — MC68HC908AZ60A
Section 13. Break Module (BRK)
13.1 Contents
13.2
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
13.3
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
13.4 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . .204
13.4.1 Flag Protection During Break Interrupts . . . . . . . . . . . .205
13.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . 206
13.4.3 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . 206
13.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . 206
13.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
13.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
13.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
13.6 Break Module Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
13.6.1 Break Status and Control Register. . . . . . . . . . . . . . . . . 207
13.6.2 Break Address Registers. . . . . . . . . . . . . . . . . . . . . . . . . 208
13.2 Introduction
The break module can generate a break interrupt that stops normal
program flow at a defined address to enter a background program.
13.3 Features
•
Accessible I/O Registers during Break Interrupts
•
CPU-Generated Break Interrupts
•
Software-Generated Break Interrupts
•
COP Disabling during Break Interrupts
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Break Module (BRK)
203
Break Module (BRK)
13.4 Functional Description
When the internal address bus matches the value written in the break
address registers, the break module issues a breakpoint signal to the
CPU. The CPU then loads the instruction register with a software
interrupt instruction (SWI) after completion of the current CPU
instruction. The program counter vectors to $FFFC and $FFFD ($FEFC
and $FEFD in monitor mode).
The following events can cause a break interrupt to occur:
•
A CPU-generated address (the address in the program counter)
matches the contents of the break address registers.
•
Software writes a logic 1 to the BRKA bit in the break status and
control register.
When a CPU-generated address matches the contents of the break
address registers, the break interrupt begins after the CPU completes its
current instruction. A return-from-interrupt instruction (RTI) in the break
routine ends the break interrupt and returns the MCU to normal
operation. Figure 13-1 shows the structure of the break module.
IAB[15:8]
BREAK ADDRESS REGISTER HIGH
8-BIT COMPARATOR
IAB[15:0]
CONTROL
BREAK
8-BIT COMPARATOR
BREAK ADDRESS REGISTER LOW
IAB[7:0]
Figure 13-1. Break Module Block Diagram
Technical Data
204
MC68HC908AZ60A — Rev 2.0
Break Module (BRK)
MOTOROLA
Break Module (BRK)
Functional Description
Register Name
Read:
Break Address Register High
Write:
(BRKH)
Reset:
Read:
Break Address Register Low
Write:
(BRKL)
Reset:
Read:
Break Status and Control Register
Write:
(BSCR)
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
0
0
0
0
0
0
0
0
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
BRKE
BRKA
0
0
0
0
0
0
0
0
0
0
0
0
0
0
= Unimplemented
R = Reserved
Figure 13-2. I/O Register Summary
Table 13-1. I/O Register Address Summary
Register
BRKH
BRKL
BSCR
Address
$FE0C
$FE0D
$FE0E
13.4.1 Flag Protection During Break Interrupts
The BCFE bit in the break flag control register (BFCR) enables software
to clear status bits during the break state.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Break Module (BRK)
205
Break Module (BRK)
13.4.2 CPU During Break Interrupts
The CPU starts a break interrupt by:
•
Loading the instruction register with the SWI instruction
•
Loading the program counter with $FFFC:$FFFD ($FEFC:$FEFD
in monitor mode)
The break interrupt begins after completion of the CPU instruction in
progress. If the break address register match occurs on the last cycle of
a CPU instruction, the break interrupt begins immediately.
13.4.3 TIM During Break Interrupts
A break interrupt stops the timer counter.
13.4.4 COP During Break Interrupts
The COP is disabled during a break interrupt when VHi is present on the
RST pin.
13.5 Low-Power Modes
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.
13.5.1 Wait Mode
If enabled, the break module is active in wait mode. The SIM break wait
bit (BW) in the SIM break status register indicates whether wait was
exited by a break interrupt. If so, the user can modify the return address
on the stack by subtracting one from it. (See SIM Break Status Register
on page 166).
Technical Data
206
MC68HC908AZ60A — Rev 2.0
Break Module (BRK)
MOTOROLA
Break Module (BRK)
Break Module Registers
13.5.2 Stop Mode
The break module is inactive in stop mode. The STOP instruction does
not affect break module register states.
13.6 Break Module Registers
These registers control and monitor operation of the break module:
•
Break address register high (BRKH)
•
Break address register low (BRKL)
•
Break status and control register (BSCR)
13.6.1 Break Status and Control Register
The break status and control register contains break module enable and
status bits.
Address:
$FE0E
Bit 7
6
BRKE
BRKA
0
0
Read:
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
0
0
0
0
Write:
Reset:
= Unimplemented
Figure 13-3. Break Status and Control Register (BSCR)
BRKE — Break Enable Bit
This read/write bit enables breaks on break address register matches.
Clear BRKE by writing a logic 0 to bit 7. Reset clears the BRKE bit.
1 = Breaks enabled on 16-bit address match
0 = Breaks disabled on 16-bit address match
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Break Module (BRK)
207
Break Module (BRK)
BRKA — Break Active Bit
This read/write status and control bit is set when a break address
match occurs. Writing a logic 1 to BRKA generates a break interrupt.
Clear BRKA by writing a logic 0 to it before exiting the break routine.
Reset clears the BRKA bit.
1 = (When read) Break address match
0 = (When read) No break address match
13.6.2 Break Address Registers
The break address registers contain the high and low bytes of the
desired breakpoint address. Reset clears the break address registers.
Register:
BRKH
BRKL
Address:
$FE0C
$FE0D
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
0
0
0
0
0
0
0
0
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
Read:
Write:
Reset:
Read:
Write:
Reset:
Figure 13-4. Break Address Registers (BRKH and BRKL)
Technical Data
208
MC68HC908AZ60A — Rev 2.0
Break Module (BRK)
MOTOROLA
Technical Data — MC68HC908AZ60A
Section 14. Monitor ROM (MON)
14.1 Contents
14.2
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
14.3
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
14.4 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . .210
14.4.1 Entering Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . .212
14.4.2 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
14.4.3 Echoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
14.4.4 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
14.4.5 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
14.4.6 MC68HC908AS60A Baud Rate . . . . . . . . . . . . . . . . . . . . 218
14.4.7 MC68HC908AZ60A Baud Rate . . . . . . . . . . . . . . . . . . . . 219
14.4.8 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
14.2 Introduction
This section describes the monitor ROM (MON). The monitor ROM
allows complete testing of the MCU through a single-wire interface with
a host computer.
14.3 Features
Features of the monitor ROM include:
•
Normal User-Mode Pin Functionality
•
One Pin Dedicated to Serial Communication between Monitor
ROM and Host Computer
•
Standard Mark/Space Non-Return-to-Zero (NRZ) Communication
with Host Computer
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Monitor ROM (MON)
209
Monitor ROM (MON)
•
Up to 28.8 kBaud Communication with Host Computer
•
Execution of Code in RAM or FLASH
•
FLASH Security
•
FLASH Programming
14.4 Functional Description
Monitor ROM receives and executes commands from a host computer.
Figure 14-1 shows a sample circuit used to enter monitor mode and
communicate with a host computer via a standard RS-232 interface.
While simple monitor commands can access any memory address, the
MC68HC908AS60A and MC68HC908AZ60A have a FLASH security
feature to prevent external viewing of the contents of FLASH. Proper
procedures must be followed to verify FLASH content. Access to the
FLASH is denied to unauthorized users of customer specified software
(see Security on page 220).
In monitor mode, the MCU can execute host-computer code in RAM
while all MCU pins except PTA0 retain normal operating mode functions.
All communication between the host computer and the MCU is through
the PTA0 pin. A level-shifting and multiplexing interface is required
between PTA0 and the host computer. PTA0 is used in a wired-OR
configuration and requires a pullup resistor.
Technical Data
210
MC68HC908AZ60A — Rev 2.0
Monitor ROM (MON)
MOTOROLA
Monitor ROM (MON)
Functional Description
VDD
10 kΩ
68HC08
RST
0.1 µF
VHI
1 KΩ
IRQ
9.1V
CGMXFC
1
10 µF
+
MC145407
3
4
10 µF
0.022 µF
20
+
2
OSC1
20 pF
17
+
+
10 µF
18
10 µF
*
X1
4.9152 MHz
10 MΩ
OSC2
VDD
VDDA
20 pF
19
0.1 µF
VDDA/VDDAREF
VSSA
VSS
DB-25
2
5
16
3
6
15
0.1 µF
VDD
7
VDD
VDD
1
MC74HC125
2
3
6
5
4
7
NOTE: Position A — Bus clock = CGMXCLK ÷ 4 or CGMVCLK ÷ 4
Position B — Bus clock = CGMXCLK ÷ 2
VDD
14
10 kΩ
PTA0
PTC3
VDD
VDD
10 kΩ
A
(SEE
NOTE.)
10 kΩ
B
PTC0
PTC1
* = Refer to Table 14-9 and Table 14-10 for correct value.
Figure 14-1. Monitor Mode Circuit
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Monitor ROM (MON)
211
Monitor ROM (MON)
14.4.1 Entering Monitor Mode
Table 14-1 shows the pin conditions for entering monitor mode.
PTC1 Pin
PTA0 Pin
PTC3 Pin
VHI(1)
1
0
1
1
Monitor
CGMXCLK
CGMVCLK
----------------------------- or ----------------------------2
2
CGMOUT
-------------------------2
VHI(1)
1
0
1
0
Monitor
CGMXCLK
CGMOUT
-------------------------2
IRQ Pin
PTC0 Pin
Table 14-1. Mode Selection
Mode
CGMOUT
Bus
Frequency
1. For VHI, 5.0 Volt DC Electrical Characteristics on page 532, and Maximum Ratings on
page 530.
Enter monitor mode by either
•
Executing a software interrupt instruction (SWI) or
•
Applying a logic 0 and then a logic 1 to the RST pin.
Once out of reset, the MCU waits for the host to send eight security bytes
(see Security on page 220). After the security bytes, the MCU sends a
break signal (10 consecutive logic 0s) to the host computer, indicating
that it is ready to receive a command.
Monitor mode uses alternate vectors for reset, SWI, and break interrupt.
The alternate vectors are in the $FE page instead of the $FF page and
allow code execution from the internal monitor firmware instead of user
code. The COP module is disabled in monitor mode as long as VHI (see
5.0 Volt DC Electrical Characteristics on page 532), is applied to
either the IRQ pin or the RESET pin. (See System Integration Module
(SIM) on page 147 for more information on modes of operation).
NOTE:
Holding the PTC3 pin low when entering monitor mode causes a bypass
of a divide-by-two stage at the oscillator. The CGMOUT frequency is
equal to the CGMXCLK frequency, and the OSC1 input directly
generates internal bus clocks. In this case, the OSC1 signal must have
a 50% duty cycle at maximum bus frequency.
Technical Data
212
MC68HC908AZ60A — Rev 2.0
Monitor ROM (MON)
MOTOROLA
Monitor ROM (MON)
Functional Description
Table 14-2 is a summary of the differences between user mode and
monitor mode.
Table 14-2. Mode Differences
Functions
COP
Reset
Vector
High
Reset
Vector
Low
Break
Vector
High
Break
Vector
Low
SWI
Vector
High
SWI
Vector
Low
User
Enabled
$FFFE
$FFFF
$FFFC
$FFFD
$FFFC
$FFFD
Monitor
Disabled(1)
$FEFE
$FEFF
$FEFC
$FEFD
$FEFC
$FEFD
Modes
1. If the high voltage (VHI) is removed from the IRQ and/or RESET pin while in monitor mode,
the SIM asserts its COP enable output. The COP is enabled or disabled by the COPD bit
in the configuration register. (see 5.0 Volt DC Electrical Characteristics on page 532).
14.4.2 Data Format
Communication with the monitor ROM is in standard non-return-to-zero
(NRZ) mark/space data format. (See Figure 14-2 and Figure 14-3.)
The data transmit and receive rate can be anywhere up to 28.8 kBaud.
Transmit and receive baud rates must be identical.
START
BIT
BIT 0
BIT 1
BIT 2
BIT 3
BIT 4
BIT 5
BIT 6
BIT 7
STOP
BIT
NEXT
START
BIT
Figure 14-2. Monitor Data Format
$A5
START
BIT
BIT 0
BIT 1
BIT 2
BIT 3
BIT 4
BIT 5
BIT 6
BIT 7
BREAK
START
BIT
BIT 0
BIT 1
BIT 2
BIT 3
BIT 4
BIT 5
BIT 6
BIT 7
STOP
BIT
STOP
BIT
NEXT
START
BIT
NEXT
START
BIT
Figure 14-3. Sample Monitor Waveforms
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Monitor ROM (MON)
213
Monitor ROM (MON)
14.4.3 Echoing
As shown in Figure 14-4, the monitor ROM immediately echoes each
received byte back to the PTA0 pin for error checking.
Any result of a command appears after the echo of the last byte of the
command.
SENT TO
MONITOR
READ
READ
ADDR. HIGH
ADDR. HIGH
ADDR. LOW
ADDR. LOW
DATA
ECHO
RESULT
Figure 14-4. Read Transaction
14.4.4 Break Signal
A start bit followed by nine low bits is a break signal. (See Figure 14-5).
When the monitor receives a break signal, it drives the PTA0 pin high for
the duration of two bits before echoing the break signal.
MISSING STOP BIT
TWO-STOP-BIT DELAY BEFORE ZERO ECHO
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Figure 14-5. Break Transaction
Technical Data
214
MC68HC908AZ60A — Rev 2.0
Monitor ROM (MON)
MOTOROLA
Monitor ROM (MON)
Functional Description
14.4.5 Commands
The monitor ROM uses these commands:
•
READ, read memory
•
WRITE, write memory
•
IREAD, indexed read
•
IWRITE, indexed write
•
READSP, read stack pointer
•
RUN, run user program
A sequence of IREAD or IWRITE commands can access a block of
memory sequentially over the full 64-Kbyte memory map.
Table 14-3. READ (Read Memory) Command
Description
Read byte from memory
Operand
Specifies 2-byte address in high byte:low byte order
Data Returned
Returns contents of specified address
Opcode
$4A
Command Sequence
SENT TO
MONITOR
READ
READ
ADDR. HIGH
ADDR. HIGH
ECHO
ADDR. LOW
DATA
RESULT
MC68HC908AZ60A — Rev 2.0
MOTOROLA
ADDR. LOW
Technical Data
Monitor ROM (MON)
215
Monitor ROM (MON)
Table 14-4. WRITE (Write Memory) Command
Description
Write byte to memory
Operand
Specifies 2-byte address in high byte:low byte order; low byte followed by data byte
Data Returned
None
Opcode
$49
Command Sequence
SENT TO
MONITOR
WRITE
WRITE
ADDR. HIGH
ADDR. HIGH
ADDR. LOW
ADDR. LOW
DATA
DATA
ECHO
Table 14-5. IREAD (Indexed Read) Command
Description
Read next 2 bytes in memory from last address accessed
Operand
Specifies 2-byte address in high byte:low byte order
Data Returned
Returns contents of next two addresses
Opcode
$1A
Command Sequence
SENT TO
MONITOR
IREAD
IREAD
DATA
RESULT
ECHO
Technical Data
216
DATA
MC68HC908AZ60A — Rev 2.0
Monitor ROM (MON)
MOTOROLA
Monitor ROM (MON)
Functional Description
Table 14-6. IWRITE (Indexed Write) Command
Description
Write to last address accessed + 1
Operand
Specifies single data byte
Data Returned
None
Opcode
$19
Command Sequence
SENT TO
MONITOR
IWRITE
IWRITE
DATA
DATA
ECHO
Table 14-7. READSP (Read Stack Pointer) Command
Description
Reads stack pointer
Operand
None
Data Returned
Returns stack pointer in high byte:low byte order
Opcode
$0C
Command Sequence
SENT TO
MONITOR
READSP
READSP
SP HIGH
RESULT
ECHO
MC68HC908AZ60A — Rev 2.0
MOTOROLA
SP LOW
Technical Data
Monitor ROM (MON)
217
Monitor ROM (MON)
Table 14-8. RUN (Run User Program) Command
Description
Executes RTI instruction
Operand
None
Data Returned
None
Opcode
$28
Command Sequence
SENT TO
MONITOR
RUN
RUN
ECHO
14.4.6 MC68HC908AS60A Baud Rate
With a 4.9152-MHz crystal and the PTC3 pin at logic 1 during reset, data
is transferred between the monitor and host at 4800 baud. If the PTC3
pin is at logic 0 during reset, the monitor baud rate is 9600. When the
CGM output, CGMOUT, is driven by the PLL, the baud rate is
determined by the MUL[7:4] bits in the PLL programming register (PPG).
(See Clock Generator Module (CGM) on page 169).
Table 14-9. MC68HC908AS60A Monitor Baud Rate Selection
VCO Frequency Multiplier (N)
Monitor
Baud Rate
1
2
3
4
5
6
4.9152 MHz
4800
9600
14,400
19,200
24,000
28,800
4.194 MHz
4096
8192
12,288
16,384
20,480
24,576
Technical Data
218
MC68HC908AZ60A — Rev 2.0
Monitor ROM (MON)
MOTOROLA
Monitor ROM (MON)
Functional Description
14.4.7 MC68HC908AZ60A Baud Rate
The MC68HC908AZ60A features a monitor mode which is optimised to
operate with either a 4.9152 MHz crystal clock source (or multiples of
4.9152 MHz) or a 4 MHz crystal (or multiples of 4 MHz). This supports
designs which use the MSCAN module, which is generally clocked from
a 4 MHz, 8 MHz or 16 MHZ internal reference clock. The table below
outlines the available baud rates for a range of crystals and how they can
match to a PC baud rate.
Table 14-10 MC68HC908AZ60A Monitor Baud Rate Selection
Baud rate
Closest PC baud PC
Error %
Clock freq
PTC3=0
PTC3=1
PTC3=0
PTC3=1
PTC3=0
PTC3=1
32kHz
57.97
28.98
57.6
28.8
0.64
0.63
1MHz
1811.59
905.80
1800
900
0.64
0.64
2MHz
3623.19
1811.59
3600
1800
0.64
0.64
4MHz
7246.37
3623.19
7200
3600
0.64
0.64
4.194MHz
7597.83
3798.91
7680
3840
1.08
1.08
4.9152MHz
8904.35
4452.17
8861
4430
0.49
0.50
8MHz
14492.72
7246.37
14400
7200
0.64
0.64
16MHz
28985.51
14492.75
28800
14400
0.64
0.64
Care should be taken when setting the baud rate since incorrect
baud rate setting can result in communications failure.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Monitor ROM (MON)
219
Monitor ROM (MON)
14.4.8 Security
A security feature discourages unauthorized reading of FLASH locations
while in monitor mode. The host can bypass the security feature at
monitor mode entry by sending eight security bytes that match the bytes
at locations $FFF6–$FFFD. Locations $FFF6–$FFFD contain userdefined data.
NOTE:
Do not leave locations $FFF6–$FFFD blank. For security reasons,
program locations $FFF6–$FFFD even if they are not used for vectors.
If FLASH is unprogrammed, the eight security byte values to be sent are
$FF, the unprogrammed state of FLASH.
During monitor mode entry, the MCU waits after the power-on reset for
the host to send the eight security bytes on pin PA0.
VDD
4096 + 32 CGMXCLK CYCLES
RST
Command
Byte 8
Byte 2
Byte 1
24 BUS CYCLES (MINIMUM)
FROM HOST
PA0
4
Break
2
1
Command Echo
NOTE: 1 = Echo delay (2 bit times)
2 = Data return delay (2 bit times)
4 = Wait 1 bit time before sending next byte.
1
Byte 8 Echo
Byte 1 Echo
FROM MCU
1
Byte 2 Echo
4
1
Figure 14-6. Monitor Mode Entry Timing
If the received bytes match those at locations $FFF6–$FFFD, the host
bypasses the security feature and can read all FLASH locations and
execute code from FLASH. Security remains bypassed until a power-on
reset occurs. After the host bypasses security, any reset other than a
power-on reset requires the host to send another eight bytes. If the reset
Technical Data
220
MC68HC908AZ60A — Rev 2.0
Monitor ROM (MON)
MOTOROLA
Monitor ROM (MON)
was not a power-on reset, the security remains bypassed regardless of
the data that the host sends.
If the received bytes do not match the data at locations $FFF6–$FFFD,
the host fails to bypass the security feature. The MCU remains in monitor
mode, but reading FLASH locations returns undefined data, and trying
to execute code from FLASH causes an illegal address reset. After the
host fails to bypass security, any reset other than a power-on reset
causes an endless loop of illegal address resets.
After receiving the eight security bytes from the host, the MCU transmits
a break character signalling that it is ready to receive a command.
NOTE:
The MCU does not transmit a break character until after the host sends
the eight security bytes.
Technical Data
221
MC68HC908AZ60A — Rev 2.0
Monitor ROM (MON)
MOTOROLA
Monitor ROM (MON)
Technical Data
222
MC68HC908AZ60A — Rev 2.0
Monitor ROM (MON)
MOTOROLA
Technical Data — MC68HC908AZ60A
Section 15. Computer Operating Properly (COP)
15.1 Contents
15.2
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
15.3
Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . .224
15.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
15.4.1 CGMXCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
15.4.2 STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
15.4.3 COPCTL Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
15.4.4 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
15.4.5 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
15.4.6 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
15.4.7 COPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
15.4.8 COPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
15.5
COP Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
15.6
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
15.7
Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
15.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
15.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
15.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
15.9
COP Module During Break Interrupts . . . . . . . . . . . . . . . . . 228
15.2 Introduction
The COP module contains a free-running counter that generates a reset
if allowed to overflow. The COP module helps software recover from
runaway code. Prevent a COP reset by periodically clearing the COP
counter.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Computer Operating Properly (COP)
223
Computer Operating Properly (COP)
15.3 Functional Description
The COP counter is a free-running 6-bit counter preceded by a 12-bit
prescaler. If not cleared by software, the COP counter overflows and
generates an asynchronous reset after 213 – 24 or 218 – 24 CGMXCLK
cycles, depending on the state of the COP long timeout bit, COPL, in the
CONFIG-1. When COPL = 0, a 4.9152-MHz crystal gives a COP timeout
period of 53.3 ms. Writing any value to location $FFFF before an
overflow occurs prevents a COP reset by clearing the COP counter and
stages 4–12 of the SIM counter.
NOTE:
Service the COP immediately after reset and before entering or after
exiting stop mode to guarantee the maximum time before the first COP
counter overflow.
A COP reset pulls the RST pin low for 32 CGMXCLK cycles and sets the
COP bit in the reset status register (RSR).
In monitor mode, the COP is disabled if the RST pin or the IRQ pin is held
at VHi. During the break state, VHi on the RST pin disables the COP.
NOTE:
Place COP clearing instructions in the main program and not in an
interrupt subroutine. Such an interrupt subroutine could keep the COP
from generating a reset even while the main program is not working
properly.
Technical Data
224
MC68HC908AZ60A — Rev 2.0
Computer Operating Properly (COP)
MOTOROLA
Computer Operating Properly (COP)
I/O Signals
15.4 I/O Signals
The following paragraphs describe the signals shown in Figure 15-1.
12-BIT COP PRESCALER
CLEAR STAGES 4–12
STOP INSTRUCTION
INTERNAL RESET SOURCES
RESET VECTOR FETCH
CLEAR ALL STAGES
CGMXCLK
COPCTL WRITE
RESET
RESET STATUS
REGISTER
6-BIT COP COUNTER
COPD FROM CONFIG-1
RESET
COPCTL WRITE
CLEAR COP
COUNTER
COPL FROM CONFIG-1
Figure 15-1. COP Block Diagram
15.4.1 CGMXCLK
CGMXCLK is the crystal oscillator output signal. CGMXCLK frequency
is equal to the crystal frequency.
15.4.2 STOP Instruction
The STOP instruction clears the COP prescaler.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Computer Operating Properly (COP)
225
Computer Operating Properly (COP)
15.4.3 COPCTL Write
Writing any value to the COP control register (COPCTL) (see COP
Control Register on page 227), clears the COP counter and clears
stages 12 through 4 of the COP prescaler. Reading the COP control
register returns the reset vector.
15.4.4 Power-On Reset
The power-on reset (POR) circuit clears the COP prescaler 4096
CGMXCLK cycles after power-up.
15.4.5 Internal Reset
An internal reset clears the COP prescaler and the COP counter.
15.4.6 Reset Vector Fetch
A reset vector fetch occurs when the vector address appears on the data
bus. A reset vector fetch clears the COP prescaler.
15.4.7 COPD
The COPD signal reflects the state of the COP disable bit (COPD) in the
configuration register. (See Configuration Register (CONFIG-1) on
page 197).
15.4.8 COPL
The COPL signal reflects the state of the COP rate select bit. (COPL) in
the configuration register. (See Configuration Register (CONFIG-1) on
page 197).
Technical Data
226
MC68HC908AZ60A — Rev 2.0
Computer Operating Properly (COP)
MOTOROLA
Computer Operating Properly (COP)
COP Control Register
15.5 COP Control Register
The COP control register is located at address $FFFF and overlaps the
reset vector. Writing any value to $FFFF clears the COP counter and
starts a new timeout period. Reading location $FFFF returns the low
byte of the reset vector.
Address:
$FFFF
Bit 7
6
5
4
3
Read:
Low Byte of Reset Vector
Write:
Clear COP Counter
Reset:
Unaffected by Reset
2
1
Bit 0
Figure 15-2. COP Control Register (COPCTL)
15.6 Interrupts
The COP does not generate CPU interrupt requests.
15.7 Monitor Mode
The COP is disabled in monitor mode when VHi is present on the IRQ
pin or on the RST pin.
15.8 Low-Power Modes
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.
15.8.1 Wait Mode
The COP remains active in wait mode. To prevent a COP reset during
wait mode, periodically clear the COP counter in a CPU interrupt routine.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Computer Operating Properly (COP)
227
Computer Operating Properly (COP)
15.8.2 Stop Mode
Stop mode turns off the CGMXCLK input to the COP and clears the COP
prescaler. Service the COP immediately before entering or after exiting
stop mode to ensure a full COP timeout period after entering or exiting
stop mode.
The STOP bit in the configuration register (CONFIG) enables the STOP
instruction. To prevent inadvertently turning off the COP with a STOP
instruction, disable the STOP instruction by clearing the STOP bit.
15.9 COP Module During Break Interrupts
The COP is disabled during a break interrupt when VHi is present on the
RST pin.
Technical Data
228
MC68HC908AZ60A — Rev 2.0
Computer Operating Properly (COP)
MOTOROLA
Technical Data — MC68HC908AZ60A
Section 16. Low Voltage Inhibit (LVI)
16.1 Contents
16.2
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
16.3
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
16.4 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . .230
16.4.1 Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
16.4.2 Forced Reset Operation. . . . . . . . . . . . . . . . . . . . . . . . . . 232
16.4.3 False Reset Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . 232
16.5
LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
16.6
LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
16.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
16.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
16.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
16.2 Introduction
This section describes the low-voltage inhibit module (LVI47, Version A),
which monitors the voltage on the VDD pin and can force a reset when
the VDD voltage falls to the LVI trip voltage.
16.3 Features
Features of the LVI module include:
•
Programmable LVI Reset
•
Programmable Power Consumption
•
Digital Filtering of VDD Pin Level
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Low Voltage Inhibit (LVI)
229
Low Voltage Inhibit (LVI)
NOTE:
If a low voltage interrupt (LVI) occurs during programming of EEPROM
or Flash memory, then adequate programming time may not have been
allowed to ensure the integrity and retention of the data. It is the
responsibility of the user to ensure that in the event of an LVI any
addresses being programmed receive specification programming
conditions.
16.4 Functional Description
Figure 16-1 shows the structure of the LVI module. The LVI is enabled
out of reset. The LVI module contains a bandgap reference circuit and
comparator. The LVI power bit, LVIPWR, enables the LVI to monitor VDD
voltage. The LVI reset bit, LVIRST, enables the LVI module to generate
a reset when VDD falls below a voltage, LVITRIPF, and remains at or
below that level for nine or more consecutive CPU cycles.
Note that short VDD spikes may not trip the LVI. It is the user’s
responsibility to ensure a clean VDD signal within the specified operating
voltage range if normal microcontroller operation is to be guaranteed.
LVISTOP, enables the LVI module during stop mode. This will ensure
when the STOP instruction is implemented, the LVI will continue to
monitor the voltage level on VDD. LVIPWR, LVISTOP, and LVIRST are
in the configuration register, CONFIG-1 (see Configuration Register
(CONFIG-1) on page 197).
Once an LVI reset occurs, the MCU remains in reset until VDD rises
above a voltage, LVITRIPR. VDD must be above LVITRIPR for only one
CPU cycle to bring the MCU out of reset (see Forced Reset Operation
on page 232). The output of the comparator controls the state of the
LVIOUT flag in the LVI status register (LVISR).
An LVI reset also drives the RST pin low to provide low-voltage
protection to external peripheral devices.
Technical Data
230
MC68HC908AZ60A — Rev 2.0
Low Voltage Inhibit (LVI)
MOTOROLA
Low Voltage Inhibit (LVI)
Functional Description
VDD
LVIPWR
FROM CONFIG-1
FROM CONFIG-1
CPU CLOCK
LOW VDD
DETECTOR
VDD > LVITRIP = 0
LVIRST
VDD
DIGITAL FILTER
LVI RESET
VDD < LVITRIP = 1
Stop Mode
Filter Bypass
ANLGTRIP
LVIOUT
LVISTOP
FROM CONFIG-1
Figure 16-1. LVI Module Block Diagram
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Low Voltage Inhibit (LVI)
231
Low Voltage Inhibit (LVI)
Figure 16-2. LVI I/O Register Summary
Addr.
$FE0F
Register Name
Bit 7
6
5
4
3
2
1
Bit 0
LVI Status Register (LVISR) LVIOUT
= Unimplemented
16.4.1 Polled LVI Operation
In applications that can operate at VDD levels below the LVITRIPF level,
software can monitor VDD by polling the LVIOUT bit. In the configuration
register, the LVIPWR bit must be at logic 1 to enable the LVI module, and
the LVIRST bit must be at logic 0 to disable LVI resets.
16.4.2 Forced Reset Operation
In applications that require VDD to remain above the LVITRIPF level,
enabling LVI resets allows the LVI module to reset the MCU when VDD
falls to the LVITRIPF level and remains at or below that level for nine or
more consecutive CPU cycles. In the configuration register, the LVIPWR
and LVIRST bits must be at logic 1 to enable the LVI module and to
enable LVI resets.
16.4.3 False Reset Protection
The VDD pin level is digitally filtered to reduce false resets due to power
supply noise. In order for the LVI module to reset the MCU,VDD must
remain at or below the LVITRIPF level for nine or more consecutive CPU
cycles. VDD must be above LVITRIPR for only one CPU cycle to bring the
MCU out of reset.
Technical Data
232
MC68HC908AZ60A — Rev 2.0
Low Voltage Inhibit (LVI)
MOTOROLA
Low Voltage Inhibit (LVI)
LVI Status Register
16.5 LVI Status Register
The LVI status register flags VDD voltages below the LVITRIPF level.
Address:
$FE0F
Bit 7
Read: LVIOUT
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Write:
Reset:
0
= Unimplemented
Figure 16-3. LVI Status Register (LVISR)
LVIOUT — LVI Output Bit
This read-only flag becomes set when the VDD voltage falls below the
LVITRIPF voltage for 32 to 40 CGMXCLK cycles. (See Table 16-1).
Reset clears the LVIOUT bit.
Table 16-1. LVIOUT Bit Indication
VDD
For Number of
CGMXCLK Cycles:
LVIOUT
At Level:
VDD > LVITRIPR
Any
0
VDD < LVITRIPF
< 32 CGMXCLK Cycles
0
VDD < LVITRIPF
Between 32 and 40
CGMXCLK Cycles
0 or 1
VDD < LVITRIPF
> 40 CGMXCLK Cycles
1
LVITRIPF < VDD < LVITRIPR
Any
Previous Value
16.6 LVI Interrupts
The LVI module does not generate interrupt requests.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Low Voltage Inhibit (LVI)
233
Low Voltage Inhibit (LVI)
16.7 Low-Power Modes
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.
16.7.1 Wait Mode
With the LVIPWR bit in the configuration register programmed to logic 1,
the LVI module is active after a WAIT instruction.
With the LVIRST bit in the configuration register programmed to logic 1,
the LVI module can generate a reset and bring the MCU out of wait
mode.
16.7.2 Stop Mode
With the LVISTOP and LVIPWR bits in the configuration register
programmed to a logic 1, the LVI module will be active after a STOP
instruction. Because CPU clocks are disabled during stop mode, the LVI
trip must bypass the digital filter to generate a reset and bring the MCU
out of stop.
With the LVIPWR bit in the configuration register programmed to logic 1
and the LVISTOP bit at a logic 0, the LVI module will be inactive after a
STOP instruction.
Note that the LVI feature is intended to provide the safe shutdown of the
microcontroller and thus protection of related circuitry prior to any
application VDD voltage collapsing completely to an unsafe level. It is not
intended that users operate the microcontroller at lower than specified
operating voltage VDD.
Technical Data
234
MC68HC908AZ60A — Rev 2.0
Low Voltage Inhibit (LVI)
MOTOROLA
Technical Data — MC68HC908AZ60A
Section 17. External Interrupt Module (IRQ)
17.1 Contents
17.2
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
17.3
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
17.4
Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . .236
17.5
IRQ Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
17.6
IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . 240
17.7
IRQ Status and Control Register. . . . . . . . . . . . . . . . . . . . . 240
17.2 Introduction
This section describes the nonmaskable external interrupt (IRQ) input.
17.3 Features
Features include:
•
Dedicated External Interrupt Pin (IRQ)
•
Hysteresis Buffer
•
Programmable Edge-Only or Edge- and Level-Interrupt Sensitivity
•
Automatic Interrupt Acknowledge
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
External Interrupt Module (IRQ)
235
External Interrupt Module (IRQ)
17.4 Functional Description
A logic 0 applied to the external interrupt pin can latch a CPU interrupt
request. Figure 17-1 shows the structure of the IRQ module.
Interrupt signals on the IRQ pin are latched into the IRQ latch. An
interrupt latch remains set until one of the following actions occurs:
•
Vector fetch — A vector fetch automatically generates an interrupt
acknowledge signal that clears the latch that caused the vector
fetch.
•
Software clear — Software can clear an interrupt latch by writing
to the appropriate acknowledge bit in the interrupt status and
control register (ISCR). Writing a logic 1 to the ACK bit clears the
IRQ latch.
•
Reset — A reset automatically clears both interrupt latches.
INTERNAL ADDRESS BUS
ACK
TO CPU FOR
BIL/BIH
INSTRUCTIONS
VECTOR
FETCH
DECODER
VDD
IRQF
D
CLR
Q
SYNCHRONIZER
CK
IRQ
IRQ
INTERRUPT
REQUEST
IRQ
LATCH
IMASK
MODE
HIGH
VOLTAGE
DETECT
TO MODE
SELECT
LOGIC
Figure 17-1. IRQ Block Diagram
Technical Data
236
MC68HC908AZ60A — Rev 2.0
External Interrupt Module (IRQ)
MOTOROLA
External Interrupt Module (IRQ)
Functional Description
Table 17-1. IRQ I/O Register Summary
Addr.
$001A
Register Name
Bit 7
6
5
4
3
2
Read:
0
0
0
0
IRQF
0
Write:
R
R
R
R
R
ACK
IRQ Status/Control Register (ISCR)
R
1
Bit 0
IMASK
MODE
= Reserved
The external interrupt pin is falling-edge triggered and is softwareconfigurable to be both falling-edge and low-level triggered. The MODE
bit in the ISCR controls the triggering sensitivity of the IRQ pin.
When an interrupt pin is edge-triggered only, the interrupt latch remains
set until a vector fetch, software clear, or reset occurs.
When an interrupt pin is both falling-edge and low-level-triggered, the
interrupt latch remains set until both of the following occur:
•
Vector fetch or software clear
•
Return of the interrupt pin to logic 1
The vector fetch or software clear may occur before or after the interrupt
pin returns to logic 1. As long as the pin is low, the interrupt request
remains pending. A reset will clear the latch and the MODE1 control bit,
thereby clearing the interrupt even if the pin stays low.
When set, the IMASK bit in the ISCR masks all external interrupt
requests. A latched interrupt request is not presented to the interrupt
priority logic unless the corresponding IMASK bit is clear.
NOTE:
The interrupt mask (I) in the condition code register (CCR) masks all
interrupt requests, including external interrupt requests.
(See Figure 17-2).
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
External Interrupt Module (IRQ)
237
External Interrupt Module (IRQ)
FROM RESET
YES
I BIT SET?
NO
INTERRUPT?
YES
NO
STACK CPU REGISTERS.
SET I BIT.
LOAD PC WITH INTERRUPT VECTOR.
FETCH NEXT
INSTRUCTION.
SWI
INSTRUCTION?
YES
NO
RTI
INSTRUCTION?
YES
UNSTACK CPU REGISTERS.
NO
EXECUTE INSTRUCTION.
Figure 17-2. IRQ Interrupt Flowchart
Technical Data
238
MC68HC908AZ60A — Rev 2.0
External Interrupt Module (IRQ)
MOTOROLA
External Interrupt Module (IRQ)
IRQ Pin
17.5 IRQ Pin
A logic 0 on the IRQ pin can latch an interrupt request into the IRQ latch.
A vector fetch, software clear, or reset clears the IRQ latch.
If the MODE bit is set, the IRQ pin is both falling-edge sensitive and lowlevel sensitive. With MODE set, both of the following actions must occur
to clear the IRQ latch:
•
Vector fetch or software clear — A vector fetch generates an
interrupt acknowledge signal to clear the latch. Software may
generate the interrupt acknowledge signal by writing a logic 1 to
the ACK bit in the interrupt status and control register (ISCR). The
ACK bit is useful in applications that poll the IRQ pin and require
software to clear the IRQ latch. Writing to the ACK bit can also
prevent spurious interrupts due to noise. Setting ACK does not
affect subsequent transitions on the IRQ pin. A falling edge on IRQ
that occurs after writing to the ACK bit latches another interrupt
request. If the IRQ mask bit, IMASK, is clear, the CPU loads the
program counter with the vector address at locations $FFFA and
$FFFB.
•
Return of the IRQ pin to logic 1 — As long as the IRQ pin is at logic
0, the IRQ1 latch remains set.
The vector fetch or software clear and the return of the IRQ pin to logic 1
can occur in any order. The interrupt request remains pending as long
as the IRQ pin is at logic 0. A reset will clear the latch and the MODE
control bit, thereby clearing the interrupt even if the pin stays low.
If the MODE bit is clear, the IRQ pin is falling-edge sensitive only. With
MODE clear, a vector fetch or software clear immediately clears the IRQ
latch.
The IRQF bit in the ISCR register can be used to check for pending
interrupts. The IRQF bit is not affected by the IMASK bit, which makes it
useful in applications where polling is preferred.
Use the BIH or BIL instruction to read the logic level on the IRQ pin.
NOTE:
When using the level-sensitive interrupt trigger, avoid false interrupts by
masking interrupt requests in the interrupt routine.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
External Interrupt Module (IRQ)
239
External Interrupt Module (IRQ)
17.6 IRQ Module During Break Interrupts
The system integration module (SIM) controls whether the IRQ interrupt
latch can be cleared during the break state. The BCFE bit in the SIM
break flag control register (SBFCR) enables software to clear the latches
during the break state. (See SIM Break Flag Control Register on page
168
To allow software to clear the IRQ latch during a break interrupt, write a
logic 1 to the BCFE bit. If a latch is cleared during the break state, it
remains cleared when the MCU exits the break state.
To protect the latch during the break state, write a logic 0 to the BCFE
bit. With BCFE at logic 0 (its default state), writing to the ACK bit in the
IRQ status and control register during the break state has no effect on
the IRQ latch.
17.7 IRQ Status and Control Register
The IRQ status and control register (ISCR) controls and monitors
operation of the IRQ module. The ISCR has these functions:
•
Shows the state of the IRQ interrupt flag
•
Clears the IRQ interrupt latch
•
Masks IRQ interrupt request
•
Controls triggering sensitivity of the IRQ interrupt pin
Address:
$001A
Bit 7
6
5
4
3
2
Read:
0
0
0
0
IRQF
0
Write:
R
R
R
R
R
ACK
Reset:
0
0
0
0
0
0
R
1
Bit 0
IMASK
MODE
0
0
= Reserved
Figure 17-3. IRQ Status and Control Register (ISCR)
Technical Data
240
MC68HC908AZ60A — Rev 2.0
External Interrupt Module (IRQ)
MOTOROLA
External Interrupt Module (IRQ)
IRQ Status and Control Register
IRQF — IRQ Flag Bit
This read-only status bit is high when the IRQ interrupt is pending.
1 = IRQ interrupt pending
0 = IRQ interrupt not pending
ACK — IRQ Interrupt Request Acknowledge Bit
Writing a logic 1 to this write-only bit clears the IRQ latch. ACK always
reads as logic 0. Reset clears ACK.
IMASK — IRQ Interrupt Mask Bit
Writing a logic 1 to this read/write bit disables IRQ interrupt requests.
Reset clears IMASK.
1 = IRQ interrupt requests disabled
0 = IRQ interrupt requests enabled
MODE — IRQ Edge/Level Select Bit
This read/write bit controls the triggering sensitivity of the IRQ pin.
Reset clears MODE.
1 = IRQ interrupt requests on falling edges and low levels
0 = IRQ interrupt requests on falling edges only
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
External Interrupt Module (IRQ)
241
External Interrupt Module (IRQ)
Technical Data
242
MC68HC908AZ60A — Rev 2.0
External Interrupt Module (IRQ)
MOTOROLA
Technical Data — MC68HC908AZ60A
Section 18. Serial Communications Interface (SCI)
18.1 Contents
18.2
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
18.3
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
18.4
Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . .245
18.5 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . .245
18.5.1 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
18.5.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
18.5.2.1
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248
18.5.2.2
Character Transmission . . . . . . . . . . . . . . . . . . . . . . . 248
18.5.2.3
Break Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252
18.5.2.4
Idle Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
18.5.2.5
Inversion of Transmitted Output . . . . . . . . . . . . . . . . 253
18.5.2.6
Transmitter Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . 253
18.5.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
18.5.3.1
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . .256
18.5.3.2
Character Reception . . . . . . . . . . . . . . . . . . . . . . . . . .256
18.5.3.3
Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
18.5.3.4
Framing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
18.5.3.5
Baud Rate Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . 259
18.5.3.6
Receiver Wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261
18.5.3.7
Receiver Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
18.5.3.8
Error Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
18.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
18.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
18.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
18.7
SCI During Break Module Interrupts. . . . . . . . . . . . . . . . . . 264
18.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
18.8.1 PTE0/SCTxD (Transmit Data) . . . . . . . . . . . . . . . . . . . . . 265
18.8.2 PTE1/SCRxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . .265
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Serial Communications Interface (SCI)
243
Serial Communications Interface (SCI)
18.9 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
18.9.1 SCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
18.9.2 SCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
18.9.3 SCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
18.9.4 SCI Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
18.9.5 SCI Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
18.9.6 SCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
18.9.7 SCI Baud Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . . 279
18.2 Introduction
The SCI allows asynchronous communications with peripheral devices
and other MCUs.
18.3 Features
The SCI module’s features include:
•
Full Duplex Operation
•
Standard Mark/Space Non-Return-to-Zero (NRZ) Format
•
32 Programmable Baud Rates
•
Programmable 8-Bit or 9-Bit Character Length
•
Separately Enabled Transmitter and Receiver
•
Separate Receiver and Transmitter CPU Interrupt Requests
•
Programmable Transmitter Output Polarity
•
Two Receiver Wakeup Methods:
– Idle Line Wakeup
– Address Mark Wakeup
•
Interrupt-Driven Operation with Eight Interrupt Flags:
– Transmitter Empty
– Transmission Complete
– Receiver Full
Technical Data
244
MC68HC908AZ60A — Rev 2.0
Serial Communications Interface (SCI)
MOTOROLA
Serial Communications Interface (SCI)
Pin Name Conventions
– Idle Receiver Input
– Receiver Overrun
– Noise Error
– Framing Error
– Parity Error
•
Receiver Framing Error Detection
•
Hardware Parity Checking
•
1/16 Bit-Time Noise Detection
18.4 Pin Name Conventions
The generic names of the SCI input/output (I/O) pins are:
•
RxD (receive data)
•
TxD (transmit data)
SCI I/O lines are implemented by sharing parallel I/O port pins. The full
name of an SCI input or output reflects the name of the shared port pin.
Table 18-1 shows the full names and the generic names of the SCI I/O
pins.The generic pin names appear in the text of this section.
Table 18-1. Pin Name Conventions
Generic Pin Names
RxD
TxD
Full Pin Names
PTE1/SCRxD
PTE0/SCTxD
18.5 Functional Description
Figure 18-1 shows the structure of the SCI module. The SCI allows fullduplex, asynchronous, NRZ serial communication between the MCU
and remote devices, including other MCUs. The transmitter and receiver
of the SCI operate independently, although they use the same baud rate
generator. During normal operation, the CPU monitors the status of the
SCI, writes the data to be transmitted, and processes received data.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Serial Communications Interface (SCI)
245
Serial Communications Interface (SCI)
INTERNAL BUS
ERROR
INTERRUPT
CONTROL
RECEIVE
SHIFT REGISTER
RxD
SCI DATA
REGISTER
RECEIVER
INTERRUPT
CONTROL
TRANSMITTER
INTERRUPT
CONTROL
SCI DATA
REGISTER
TRANSMIT
SHIFT REGISTER
TxD
TXINV
SCTIE
R8
TCIE
T8
SCRIE
ILIE
TE
SCTE
RE
TC
RWU
SBK
SCRF
OR
ORIE
IDLE
NF
NEIE
FE
FEIE
PE
PEIE
LOOPS
LOOPS
RECEIVE
CONTROL
WAKEUP
CONTROL
ENSCI
ENSCI
TRANSMIT
CONTROL
FLAG
CONTROL
BKF
M
RPF
WAKE
ILTY
CGMXCLK
÷4
PRESCALER
BAUD RATE
GENERATOR
÷ 16
PEN
PTY
DATA SELECTION
CONTROL
Figure 18-1. SCI Module Block Diagram
Technical Data
246
MC68HC908AZ60A — Rev 2.0
Serial Communications Interface (SCI)
MOTOROLA
Serial Communications Interface (SCI)
Functional Description
Register Name
Bit 7
Read:
LOOPS
SCI Control Register 1 (SCC1) Write:
Reset:
0
Read:
SCTIE
SCI Control Register 2 (SCC2) Write:
Reset:
0
Read:
R8
SCI Control Register 3 (SCC3) Write:
Reset:
U
Read: SCTE
SCI Status Register 1 (SCS1) Write:
Reset:
1
Read:
0
SCI Status Register 2 (SCS2) Write:
Reset:
0
Read:
R7
SCI Data Register (SCDR) Write:
T7
Reset:
Read:
0
SCI Baud Rate Register (SCBR) Write:
Reset:
0
6
5
4
3
2
1
Bit 0
ENSCI
TXINV
M
WAKE
ILTY
PEN
PTY
0
0
0
0
0
0
0
TCIE
SCRIE
ILIE
TE
RE
RWU
SBK
0
0
0
0
0
0
0
T8
R
R
ORIE
NEIE
FEIE
PEIE
U
TC
0
SCRF
0
IDLE
0
OR
0
NF
0
FE
0
PE
1
0
0
0
0
0
0
0
0
0
0
BKF
0
RPF
0
R6
T6
0
R5
T5
0
R2
T2
0
R1
T1
0
R0
T0
0
0
0
0
R4
R3
T4
T3
Unaffected by Reset
SCP1
SCP0
R
SCR2
SCR1
SCR0
0
0
0
0
0
0
= Unimplemented
U = Unaffected
R = Reserved
Figure 18-2. SCI I/O Register Summary
Table 18-2. SCI I/O Register Address Summary
Register
SCC1
SCC2
SCC3
SCS1
SCS2
SCDR
SCBR
Address
$0013
$0014
$0015
$0016
$0017
$0018
$0019
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Serial Communications Interface (SCI)
247
Serial Communications Interface (SCI)
18.5.1 Data Format
The SCI uses the standard non-return-to-zero mark/space data format
illustrated in Figure 18-3.
8-BIT DATA FORMAT
(BIT M IN SCC1 CLEAR)
START
BIT
BIT 0
BIT 1
BIT 2
BIT 3
BIT 4
BIT 5
PARITY
OR DATA
BIT
BIT 6
9-BIT DATA FORMAT
(BIT M IN SCC1 SET)
START
BIT
BIT 0
BIT 1
BIT 2
BIT 3
BIT 4
BIT 5
BIT 6
BIT 7
STOP
BIT
NEXT
START
BIT
PARITY
OR DATA
BIT
BIT 7
BIT 8 STOP
BIT
NEXT
START
BIT
Figure 18-3. SCI Data Formats
18.5.2 Transmitter
Figure 18-4 shows the structure of the SCI transmitter.
18.5.2.1 Character Length
The transmitter can accommodate either 8-bit or 9-bit data. The state of
the M bit in SCI control register 1 (SCC1) determines character length.
When transmitting 9-bit data, bit T8 in SCI control register 3 (SCC3) is
the ninth bit (bit 8).
18.5.2.2 Character Transmission
During an SCI transmission, the transmit shift register shifts a character
out to the TxD pin. The SCI data register (SCDR) is the write-only buffer
between the internal data bus and the transmit shift register. To initiate
an SCI transmission:
1. Enable the SCI by writing a logic 1 to the enable SCI bit (ENSCI)
in SCI control register 1 (SCC1).
2. Enable the transmitter by writing a logic 1 to the transmitter enable
bit (TE) in SCI control register 2 (SCC2).
3. Clear the SCI transmitter empty bit (SCTE) by first reading SCI
Technical Data
248
MC68HC908AZ60A — Rev 2.0
Serial Communications Interface (SCI)
MOTOROLA
Serial Communications Interface (SCI)
Functional Description
status register 1 (SCS1) and then writing to the SCDR.
4. Repeat step 3 for each subsequent transmission.
At the start of a transmission, transmitter control logic automatically
loads the transmit shift register with a preamble of logic 1s. After the
preamble shifts out, control logic transfers the SCDR data into the
transmit shift register. A logic 0 start bit automatically goes into the least
significant bit position of the transmit shift register. A logic 1 stop bit goes
into the most significant bit position.
The SCI transmitter empty bit, SCTE, in SCS1 becomes set when the
SCDR transfers a byte to the transmit shift register. The SCTE bit
indicates that the SCDR can accept new data from the internal data bus.
If the SCI transmit interrupt enable bit, SCTIE, in SCC2 is also set, the
SCTE bit generates a transmitter CPU interrupt request.
When the transmit shift register is not transmitting a character, the TxD
pin goes to the idle condition, logic 1. If at any time software clears the
ENSCI bit in SCI control register 1 (SCC1), the transmitter and receiver
relinquish control of the port E pins.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Serial Communications Interface (SCI)
249
Serial Communications Interface (SCI)
INTERNAL BUS
÷ 16
SCI DATA REGISTER
SCP1
11-BIT
TRANSMIT
SHIFT REGISTER
STOP
CGMXCLK
BAUD
DIVIDER
SCP0
SCR1
H
SCR2
8
7
6
5
4
3
2
START
PRESCALER
÷4
1
0
L
TxD
MSB
TXINV
PARITY
GENERATION
T8
BREAK
(ALL ZEROS)
PTY
PREAMBLE
(ALL ONES)
PEN
SHIFT ENABLE
M
LOAD FROM SCDR
TRANSMITTER CPU INTERRUPT REQUEST
SCR0
TRANSMITTER
CONTROL LOGIC
SCTE
SCTE
SCTIE
TC
TCIE
SBK
LOOPS
SCTIE
ENSCI
TC
TE
TCIE
Figure 18-4. SCI Transmitter
Technical Data
250
MC68HC908AZ60A — Rev 2.0
Serial Communications Interface (SCI)
MOTOROLA
Serial Communications Interface (SCI)
Functional Description
Register Name
Bit 7
6
5
4
3
2
1
Bit 0
LOOPS
ENSCI
TXINV
M
WAKE
ILTY
PEN
PTY
0
0
0
0
0
0
0
0
SCTIE
TCIE
SCRIE
ILIE
TE
RE
RWU
SBK
Reset:
0
0
0
0
0
0
0
0
Read:
R8
T8
R
R
ORIE
NEIE
FEIE
PEIE
Read:
SCI Control Register 1 (SCC1) Write:
Reset:
Read:
SCI Control Register 2 (SCC2) Write:
SCI Control Register 3 (SCC3) Write:
Reset:
U
U
0
0
0
0
0
0
Read:
SCTE
TC
SCRF
IDLE
OR
NF
FE
PE
Reset:
1
1
0
0
0
0
0
0
Read:
R7
R6
R5
R4
R3
R2
R1
R0
SCI Data Register (SCDR) Write:
T7
T6
T5
T4
T3
T2
T1
T0
SCI Status Register 1 (SCS1) Write:
Reset:
Read:
Unaffected by Reset
0
0
0
0
SCI Baud Rate Register (SCBR) Write:
Reset:
SCP1
SCP0
R
SCR2
SCR1
SCR0
0
0
0
0
0
0
= Unimplemented
U = Unaffected
R = Reserved
Figure 18-5. SCI Transmitter I/O Register Summary
Table 18-3. SCI Transmitter I/O Address Summary
Register
SCC1
SCC2
SCC3
SCS1
SCDR
SCBR
Address
$0013
$0014
$0015
$0016
$0018
$0019
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Serial Communications Interface (SCI)
251
Serial Communications Interface (SCI)
18.5.2.3 Break Characters
Writing a logic 1 to the send break bit, SBK, in SCC2 loads the transmit
shift register with a break character. A break character contains all logic
0s and has no start, stop, or parity bit. Break character length depends
on the M bit in SCC1. As long as SBK is at logic 1, transmitter logic
continuously loads break characters into the transmit shift register. After
software clears the SBK bit, the shift register finishes transmitting the
last break character and then transmits at least one logic 1. The
automatic logic 1 at the end of a break character guarantees the
recognition of the start bit of the next character.
The SCI recognizes a break character when a start bit is followed by
eight or nine logic 0 data bits and a logic 0 where the stop bit should be.
Receiving a break character has the following effects on SCI registers:
•
Sets the framing error bit (FE) in SCS1
•
Sets the SCI receiver full bit (SCRF) in SCS1
•
Clears the SCI data register (SCDR)
•
Clears the R8 bit in SCC3
•
Sets the break flag bit (BKF) in SCS2
•
May set the overrun (OR), noise flag (NF), parity error (PE), or
reception in progress flag (RPF) bits
18.5.2.4 Idle Characters
An idle character contains all logic 1s and has no start, stop, or parity bit.
Idle character length depends on the M bit in SCC1. The preamble is a
synchronizing idle character that begins every transmission.
If the TE bit is cleared during a transmission, the TxD pin becomes idle
after completion of the transmission in progress. Clearing and then
setting the TE bit during a transmission queues an idle character to be
sent after the character currently being transmitted.
NOTE:
When a break sequence is followed immediately by an idle character,
this SCI design exhibits a condition in which the break character length
is reduced by one half bit time. In this instance, the break sequence will
Technical Data
252
MC68HC908AZ60A — Rev 2.0
Serial Communications Interface (SCI)
MOTOROLA
Serial Communications Interface (SCI)
Functional Description
consist of a valid start bit, eight or nine data bits (as defined by the M bit
in SCC1) of logic 0 and one half data bit length of logic 0 in the stop bit
position followed immediately by the idle character. To ensure a break
character of the proper length is transmitted, always queue up a byte of
data to be transmitted while the final break sequence is in progress.
NOTE:
When queueing an idle character, return the TE bit to logic 1 before the
stop bit of the current character shifts out to the TxD pin. Setting TE after
the stop bit appears on TxD causes data previously written to the SCDR
to be lost.
A good time to toggle the TE bit for a queued idle character is when the
SCTE bit becomes set and just before writing the next byte to the SCDR.
18.5.2.5 Inversion of Transmitted Output
The transmit inversion bit (TXINV) in SCI control register 1 (SCC1)
reverses the polarity of transmitted data. All transmitted values, including
idle, break, start, and stop bits, are inverted when TXINV is at logic 1.
(See SCI Control Register 1.)
18.5.2.6 Transmitter Interrupts
The following conditions can generate CPU interrupt requests from the
SCI transmitter:
•
SCI transmitter empty (SCTE) — The SCTE bit in SCS1 indicates
that the SCDR has transferred a character to the transmit shift
register. SCTE can generate a transmitter CPU interrupt request.
Setting the SCI transmit interrupt enable bit, SCTIE, in SCC2
enables the SCTE bit to generate transmitter CPU interrupt
requests.
•
Transmission complete (TC) — The TC bit in SCS1 indicates that
the transmit shift register and the SCDR are empty and that no
break or idle character has been generated. The transmission
complete interrupt enable bit, TCIE, in SCC2 enables the TC bit to
generate transmitter CPU interrupt requests.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Serial Communications Interface (SCI)
253
Serial Communications Interface (SCI)
18.5.3 Receiver
Figure 18-6 shows the structure of the SCI receiver.
INTERNAL BUS
SCR1
SCP0
SCR0
BAUD
DIVIDER
÷ 16
CGMXCLK
DATA
RECOVERY
RxD
BKF
ALL ZEROS
CPU INTERRUPT REQUEST
RPF
ERROR CPU INTERRUPT REQUEST
STOP
PRESCALER
H
ALL ONES
÷4
SCI DATA REGISTER
11-BIT
RECEIVE SHIFT REGISTER
8
7
6
M
WAKE
ILTY
PEN
PTY
START
SCR2
5
4
3
2
1
0
L
MSB
SCP1
SCRF
WAKEUP
LOGIC
PARITY
CHECKING
IDLE
ILIE
SCRF
SCRIE
OR
ORIE
NF
NEIE
FE
FEIE
PE
PEIE
RWU
IDLE
R8
ILIE
SCRIE
OR
ORIE
NF
NEIE
FE
FEIE
PE
PEIE
Figure 18-6. SCI Receiver Block Diagram
Technical Data
254
MC68HC908AZ60A — Rev 2.0
Serial Communications Interface (SCI)
MOTOROLA
Serial Communications Interface (SCI)
Functional Description
Register Name
SCI Control Register 1 (SCC1)
Bit 7
6
5
4
3
2
1
Bit 0
LOOPS
ENSCI
TXINV
M
WAKE
ILTY
PEN
PTY
0
0
0
0
0
0
0
0
SCTIE
TCIE
SCRIE
ILIE
TE
RE
RWU
SBK
Reset:
0
0
0
0
0
0
0
0
Read:
R8
T8
R
R
ORIE
NEIE
FEIE
PEIE
Read:
Write:
Reset:
SCI Control Register 2 (SCC2)
Read:
Write:
SCI Control Register 3 (SCC3)
Write:
SCI Status Register 1 (SCS1)
Reset:
U
U
0
0
0
0
0
0
Read:
SCTE
TC
SCRF
IDLE
OR
NF
FE
PE
Reset:
1
1
0
0
0
0
0
0
Read:
0
0
0
0
0
0
BKF
RPF
Reset:
0
0
0
0
0
0
0
0
Read:
R7
R6
R5
R4
R3
R2
R1
R0
Write:
T7
T6
T5
T4
T3
T2
T1
T0
Write:
SCI Status Register 2 (SCS2)
Write:
SCI Data Register (SCDR)
Reset:
SCI Baud Rate Register (SCBR)
Read:
Unaffected by Reset
0
0
0
0
Write:
Reset:
SCP1
SCP0
R
SCR2
SCR1
SCR0
0
0
0
0
0
0
= Unimplemented
U = Unaffected
R
= Reserved
Figure 18-7. SCI I/O Receiver Register Summary
Table 18-4. SCI Receiver I/O Address Summary
Register
SCC1
SCC2
SCC3
SCS1
SCS2
SCDR
SCBR
Address
$0013
$0014
$0015
$0016
$0017
$0018
$0019
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Serial Communications Interface (SCI)
255
Serial Communications Interface (SCI)
18.5.3.1 Character Length
The receiver can accommodate either 8-bit or 9-bit data. The state of the
M bit in SCI control register 1 (SCC1) determines character length.
When receiving 9-bit data, bit R8 in SCI control register 2 (SCC2) is the
ninth bit (bit 8). When receiving 8-bit data, bit R8 is a copy of the eighth
bit (bit 7).
18.5.3.2 Character Reception
During an SCI reception, the receive shift register shifts characters in
from the RxD pin. The SCI data register (SCDR) is the read-only buffer
between the internal data bus and the receive shift register.
After a complete character shifts into the receive shift register, the data
portion of the character transfers to the SCDR. The SCI receiver full bit,
SCRF, in SCI status register 1 (SCS1) becomes set, indicating that the
received byte can be read. If the SCI receive interrupt enable bit, SCRIE,
in SCC2 is also set, the SCRF bit generates a receiver CPU interrupt
request.
18.5.3.3 Data Sampling
The receiver samples the RxD pin at the RT clock rate. The RT clock is
an internal signal with a frequency 16 times the baud rate. To adjust for
baud rate mismatch, the RT clock is resynchronized at the following
times (see Figure 18-8):
•
After every start bit
•
After the receiver detects a data bit change from logic 1 to logic 0
(after the majority of data bit samples at RT8, RT9, and RT10
returns a valid logic 1 and the majority of the next RT8, RT9, and
RT10 samples returns a valid logic 0)
To locate the start bit, data recovery logic does an asynchronous search
for a logic 0 preceded by three logic 1s. When the falling edge of a
possible start bit occurs, the RT clock begins to count to 16.
Technical Data
256
MC68HC908AZ60A — Rev 2.0
Serial Communications Interface (SCI)
MOTOROLA
Serial Communications Interface (SCI)
Functional Description
LSB
START BIT
RxD
START BIT
QUALIFICATION
SAMPLES
START BIT
DATA
VERIFICATION SAMPLING
RT CLOCK
STATE
RT1
RT1
RT1
RT1
RT1
RT1
RT1
RT1
RT1
RT2
RT3
RT4
RT5
RT6
RT7
RT8
RT9
RT10
RT11
RT12
RT13
RT14
RT15
RT16
RT1
RT2
RT3
RT4
RT
CLOCK
RT CLOCK
RESET
Figure 18-8. Receiver Data Sampling
To verify the start bit and to detect noise, data recovery logic takes
samples at RT3, RT5, and RT7. Table 18-5 summarizes the results of
the start bit verification samples.
Table 18-5. Start Bit Verification
RT3, RT5, and RT7 Samples
Start Bit Verification
Noise Flag
000
Yes
0
001
Yes
1
010
Yes
1
011
No
0
100
Yes
1
101
No
0
110
No
0
111
No
0
If start bit verification is not successful, the RT clock is reset and a new
search for a start bit begins.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Serial Communications Interface (SCI)
257
Serial Communications Interface (SCI)
To determine the value of a data bit and to detect noise, recovery logic
takes samples at RT8, RT9, and RT10. Table 18-6 summarizes the
results of the data bit samples.
Table 18-6. Data Bit Recovery
NOTE:
RT8, RT9, and RT10 Samples
Data Bit Determination
Noise Flag
000
0
0
001
0
1
010
0
1
011
1
1
100
0
1
101
1
1
110
1
1
111
1
0
The RT8, RT9, and RT10 samples do not affect start bit verification. If
any or all of the RT8, RT9, and RT10 start bit samples are logic 1s
following a successful start bit verification, the noise flag (NF) is set and
the receiver assumes that the bit is a start bit.
To verify a stop bit and to detect noise, recovery logic takes samples at
RT8, RT9, and RT10. Table 18-7 summarizes the results of the stop bit
samples.
Table 18-7. Stop Bit Recovery
RT8, RT9, and RT10 Samples
Framing Error Flag
Noise Flag
000
1
0
001
1
1
010
1
1
011
0
1
100
1
1
101
0
1
110
0
1
111
0
0
Technical Data
258
MC68HC908AZ60A — Rev 2.0
Serial Communications Interface (SCI)
MOTOROLA
Serial Communications Interface (SCI)
Functional Description
18.5.3.4 Framing Errors
If the data recovery logic does not detect a logic 1 where the stop bit
should be in an incoming character, it sets the framing error bit, FE, in
SCS1. A break character also sets the FE bit because a break character
has no stop bit. The FE bit is set at the same time that the SCRF bit is
set.
18.5.3.5 Baud Rate Tolerance
A transmitting device may be operating at a baud rate below or above
the receiver baud rate. Accumulated bit time misalignment can cause
one of the three stop bit data samples to fall outside the actual stop bit.
Then a noise error occurs. If more than one of the samples is outside the
stop bit, a framing error occurs. In most applications, the baud rate
tolerance is much more than the degree of misalignment that is likely to
occur.
As the receiver samples an incoming character, it resynchronizes the RT
clock on any valid falling edge within the character. Resynchronization
within characters corrects misalignments between transmitter bit times
and receiver bit times.
Slow Data Tolerance
Figure 18-9 shows how much a slow received character can be
misaligned without causing a noise error or a framing error. The slow
stop bit begins at RT8 instead of RT1 but arrives in time for the stop
bit data samples at RT8, RT9, and RT10.
MSB
STOP
RT16
RT15
RT14
RT13
RT12
RT11
RT10
RT9
RT8
RT7
RT6
RT5
RT4
RT3
RT2
RT1
RECEIVER
RT CLOCK
DATA
SAMPLES
Figure 18-9. Slow Data
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Serial Communications Interface (SCI)
259
Serial Communications Interface (SCI)
For an 8-bit character, data sampling of the stop bit takes the receiver
9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles.
With the misaligned character shown in Figure 18-9, the receiver
counts 154 RT cycles at the point when the count of the transmitting
device is 9 bit times × 16 RT cycles + 3 RT cycles = 147 RT cycles.
The maximum percent difference between the receiver count and the
transmitter count of a slow 8-bit character with no errors is
154 – 147 × 100 = 4.54%
-------------------------154
For a 9-bit character, data sampling of the stop bit takes the receiver
10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles.
With the misaligned character shown in Figure 18-9, the receiver
counts 170 RT cycles at the point when the count of the transmitting
device is 10 bit times × 16 RT cycles + 3 RT cycles = 163 RT cycles.
The maximum percent difference between the receiver count and the
transmitter count of a slow 9-bit character with no errors is
170 – 163 × 100 = 4.12%
-------------------------170
Fast Data Tolerance
Figure 18-10 shows how much a fast received character can be
misaligned without causing a noise error or a framing error. The fast
stop bit ends at RT10 instead of RT16 but is still there for the stop bit
data samples at RT8, RT9, and RT10.
STOP
IDLE OR NEXT CHARACTER
RT16
RT15
RT14
RT13
RT12
RT11
RT10
RT9
RT8
RT7
RT6
RT5
RT4
RT3
RT2
RT1
RECEIVER
RT CLOCK
DATA
SAMPLES
Figure 18-10. Fast Data
Technical Data
260
MC68HC908AZ60A — Rev 2.0
Serial Communications Interface (SCI)
MOTOROLA
Serial Communications Interface (SCI)
Functional Description
For an 8-bit character, data sampling of the stop bit takes the receiver
9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles.
With the misaligned character shown in Figure 18-10, the receiver
counts 154 RT cycles at the point when the count of the transmitting
device is 10 bit times × 16 RT cycles = 160 RT cycles.
The maximum percent difference between the receiver count and the
transmitter count of a fast 8-bit character with no errors is
154 – 160 × 100 = 3.90%.
-------------------------154
For a 9-bit character, data sampling of the stop bit takes the receiver
10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles.
With the misaligned character shown in Figure 18-10, the receiver
counts 170 RT cycles at the point when the count of the transmitting
device is 11 bit times × 16 RT cycles = 176 RT cycles.
The maximum percent difference between the receiver count and the
transmitter count of a fast 9-bit character with no errors is
170 – 176 × 100 = 3.53%.
-------------------------170
18.5.3.6 Receiver Wakeup
So that the MCU can ignore transmissions intended only for other
receivers in multiple-receiver systems, the receiver can be put into a
standby state. Setting the receiver wakeup bit, RWU, in SCC2 puts the
receiver into a standby state during which receiver interrupts are
disabled.
Depending on the state of the WAKE bit in SCC1, either of two
conditions on the RxD pin can bring the receiver out of the standby state:
•
Address mark — An address mark is a logic 1 in the most
significant bit position of a received character. When the WAKE bit
is set, an address mark wakes the receiver from the standby state
by clearing the RWU bit. The address mark also sets the SCI
receiver full bit, SCRF. Software can then compare the character
containing the address mark to the user-defined address of the
receiver. If they are the same, the receiver remains awake and
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Serial Communications Interface (SCI)
261
Serial Communications Interface (SCI)
processes the characters that follow. If they are not the same,
software can set the RWU bit and put the receiver back into the
standby state.
•
NOTE:
Idle input line condition — When the WAKE bit is clear, an idle
character on the RxD pin wakes the receiver from the standby
state by clearing the RWU bit. The idle character that wakes the
receiver does not set the receiver idle bit, IDLE, or the SCI receiver
full bit, SCRF. The idle line type bit, ILTY, determines whether the
receiver begins counting logic 1s as idle character bits after the
start bit or after the stop bit.
With the WAKE bit clear, setting the RWU bit after the RxD pin has been
idle may cause the receiver to wake up immediately.
18.5.3.7 Receiver Interrupts
The following sources can generate CPU interrupt requests from the SCI
receiver:
•
SCI receiver full (SCRF) — The SCRF bit in SCS1 indicates that
the receive shift register has transferred a character to the SCDR.
SCRF can generate a receiver CPU interrupt request. Setting the
SCI receive interrupt enable bit, SCRIE, in SCC2 enables the
SCRF bit to generate receiver CPU interrupts.
•
Idle input (IDLE) — The IDLE bit in SCS1 indicates that 10 or 11
consecutive logic 1s shifted in from the RxD pin. The idle line
interrupt enable bit, ILIE, in SCC2 enables the IDLE bit to generate
CPU interrupt requests.
18.5.3.8 Error Interrupts
The following receiver error flags in SCS1 can generate CPU interrupt
requests:
•
Receiver overrun (OR) — The OR bit indicates that the receive
shift register shifted in a new character before the previous
character was read from the SCDR. The previous character
Technical Data
262
MC68HC908AZ60A — Rev 2.0
Serial Communications Interface (SCI)
MOTOROLA
Serial Communications Interface (SCI)
Low-Power Modes
remains in the SCDR, and the new character is lost. The overrun
interrupt enable bit, ORIE, in SCC3 enables OR to generate SCI
error CPU interrupt requests.
•
Noise flag (NF) — The NF bit is set when the SCI detects noise on
incoming data or break characters, including start, data, and stop
bits. The noise error interrupt enable bit, NEIE, in SCC3 enables
NF to generate SCI error CPU interrupt requests.
•
Framing error (FE) — The FE bit in SCS1 is set when a logic 0
occurs where the receiver expects a stop bit. The framing error
interrupt enable bit, FEIE, in SCC3 enables FE to generate SCI
error CPU interrupt requests.
•
Parity error (PE) — The PE bit in SCS1 is set when the SCI
detects a parity error in incoming data. The parity error interrupt
enable bit, PEIE, in SCC3 enables PE to generate SCI error CPU
interrupt requests.
18.6 Low-Power Modes
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.
18.6.1 Wait Mode
The SCI module remains active in wait mode. Any enabled CPU
interrupt request from the SCI module can bring the MCU out of wait
mode.
If SCI module functions are not required during wait mode, reduce power
consumption by disabling the module before executing the WAIT
instruction.
18.6.2 Stop Mode
The SCI module is inactive in stop mode. The STOP instruction does not
affect SCI register states. Any enabled CPU interrupt request from the
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Serial Communications Interface (SCI)
263
Serial Communications Interface (SCI)
SCI module does not bring the MCU out of Stop mode. SCI module
operation resumes after the MCU exits stop mode.
Because the internal clock is inactive during stop mode, entering stop
mode during an SCI transmission or reception results in invalid data.
18.7 SCI During Break Module Interrupts
The BCFE bit in the break flag control register (BFCR) enables software
to clear status bits during the break state. (See Break Module (BRK) on
page 203).
To allow software to clear status bits during a break interrupt, write a
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it
remains cleared when the MCU exits the break state.
To protect status bits during the break state, write a logic 0 to the BCFE
bit. With BCFE at logic 0 (its default state), software can read and write
I/O registers during the break state without affecting status bits. Some
status bits have a two-step read/write clearing procedure. If software
does the first step on such a bit before the break, the bit cannot change
during the break state as long as BCFE is at logic 0. After the break,
doing the second step clears the status bit.
18.8 I/O Signals
Port E shares two of its pins with the SCI module. The two SCI I/O pins
are:
•
PTE0/SCTxD — Transmit data
•
PTE1/SCRxD — Receive data
Technical Data
264
MC68HC908AZ60A — Rev 2.0
Serial Communications Interface (SCI)
MOTOROLA
Serial Communications Interface (SCI)
I/O Registers
18.8.1 PTE0/SCTxD (Transmit Data)
The PTE0/SCTxD pin is the serial data output from the SCI transmitter.
The SCI shares the PTE0/SCTxD pin with port E. When the SCI is
enabled, the PTE0/SCTxD pin is an output regardless of the state of the
DDRE2 bit in data direction register E (DDRE).
18.8.2 PTE1/SCRxD (Receive Data)
The PTE1/SCRxD pin is the serial data input to the SCI receiver. The
SCI shares the PTE1/SCRxD pin with port E. When the SCI is enabled,
the PTE1/SCRxD pin is an input regardless of the state of the DDRE1 bit
in data direction register E (DDRE).
18.9 I/O Registers
The following I/O registers control and monitor SCI operation:
•
SCI control register 1 (SCC1)
•
SCI control register 2 (SCC2)
•
SCI control register 3 (SCC3)
•
SCI status register 1 (SCS1)
•
SCI status register 2 (SCS2)
•
SCI data register (SCDR)
•
SCI baud rate register (SCBR)
18.9.1 SCI Control Register 1
SCI control register 1:
•
Enables loop mode operation
•
Enables the SCI
•
Controls output polarity
•
Controls character length
•
Controls SCI wakeup method
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Serial Communications Interface (SCI)
265
Serial Communications Interface (SCI)
•
Controls idle character detection
•
Enables parity function
•
Controls parity type
Address:
$0013
Bit 7
6
5
4
3
2
1
Bit 0
LOOPS
ENSCI
TXINV
M
WAKE
ILLTY
PEN
PTY
0
0
0
0
0
0
0
0
Read:
Write:
Reset:
Figure 18-11. SCI Control Register 1 (SCC1)
LOOPS — Loop Mode Select Bit
This read/write bit enables loop mode operation. In loop mode the
RxD pin is disconnected from the SCI, and the transmitter output goes
into the receiver input. Both the transmitter and the receiver must be
enabled to use loop mode. Reset clears the LOOPS bit.
1 = Loop mode enabled
0 = Normal operation enabled
ENSCI — Enable SCI Bit
This read/write bit enables the SCI and the SCI baud rate generator.
Clearing ENSCI sets the SCTE and TC bits in SCI status register 1
and disables transmitter interrupts. Reset clears the ENSCI bit.
1 = SCI enabled
0 = SCI disabled
TXINV — Transmit Inversion Bit
This read/write bit reverses the polarity of transmitted data. Reset
clears the TXINV bit.
1 = Transmitter output inverted
0 = Transmitter output not inverted
NOTE:
Setting the TXINV bit inverts all transmitted values, including idle, break,
start, and stop bits.
Technical Data
266
MC68HC908AZ60A — Rev 2.0
Serial Communications Interface (SCI)
MOTOROLA
Serial Communications Interface (SCI)
I/O Registers
M — Mode (Character Length) Bit
This read/write bit determines whether SCI characters are eight or
nine bits long. (See Table 18-8).The ninth bit can serve as an extra
stop bit, as a receiver wakeup signal, or as a parity bit. Reset clears
the M bit.
1 = 9-bit SCI characters
0 = 8-bit SCI characters
WAKE — Wakeup Condition Bit
This read/write bit determines which condition wakes up the SCI: a
logic 1 (address mark) in the most significant bit position of a received
character or an idle condition on the RxD pin. Reset clears the WAKE
bit.
1 = Address mark wakeup
0 = Idle line wakeup
ILTY — Idle Line Type Bit
This read/write bit determines when the SCI starts counting logic 1s
as idle character bits. The counting begins either after the start bit or
after the stop bit. If the count begins after the start bit, then a string of
logic 1s preceding the stop bit may cause false recognition of an idle
character. Beginning the count after the stop bit avoids false idle
character recognition, but requires properly synchronized
transmissions. Reset clears the ILTY bit.
1 = Idle character bit count begins after stop bit
0 = Idle character bit count begins after start bit
PEN — Parity Enable Bit
This read/write bit enables the SCI parity function. (See Table 18-8).
When enabled, the parity function inserts a parity bit in the most
significant bit position. (See Table 18-7). Reset clears the PEN bit.
1 = Parity function enabled
0 = Parity function disabled
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Serial Communications Interface (SCI)
267
Serial Communications Interface (SCI)
PTY — Parity Bit
This read/write bit determines whether the SCI generates and checks
for odd parity or even parity. (See Table 18-8). Reset clears the PTY
bit.
1 = Odd parity
0 = Even parity
NOTE:
Changing the PTY bit in the middle of a transmission or reception can
generate a parity error.
Table 18-8. Character Format Selection
Control Bits
Character Format
M
PEN:PTY
Start
Bits
Data
Bits
Parity
Stop
Bits
Character
Length
0
0X
1
8
None
1
10 Bits
1
0X
1
9
None
1
11 Bits
0
10
1
7
Even
1
10 Bits
0
11
1
7
Odd
1
10 Bits
1
10
1
8
Even
1
11 Bits
1
11
1
8
Odd
1
11 Bits
18.9.2 SCI Control Register 2
SCI control register 2:
•
Enables the following CPU interrupt requests:
– Enables the SCTE bit to generate transmitter CPU interrupt
requests
– Enables the TC bit to generate transmitter CPU interrupt
requests
– Enables the SCRF bit to generate receiver CPU interrupt
requests
– Enables the IDLE bit to generate receiver CPU interrupt
requests
Technical Data
268
MC68HC908AZ60A — Rev 2.0
Serial Communications Interface (SCI)
MOTOROLA
Serial Communications Interface (SCI)
I/O Registers
•
Enables the transmitter
•
Enables the receiver
•
Enables SCI wakeup
•
Transmits SCI break characters
Address:
$0014
Bit 7
6
5
4
3
2
1
Bit 0
SCTIE
TCIE
SCRIE
ILIE
TE
RE
RWU
SBK
0
0
0
0
0
0
0
0
Read:
Write:
Reset:
Figure 18-12. SCI Control Register 2 (SCC2)
SCTIE — SCI Transmit Interrupt Enable Bit
This read/write bit enables the SCTE bit to generate SCI transmitter
CPU interrupt requests. Setting the SCTIE bit in SCC3 enables the
SCTE bit to generate CPU interrupt requests. Reset clears the SCTIE
bit.
1 = SCTE enabled to generate CPU interrupt
0 = SCTE not enabled to generate CPU interrupt
TCIE — Transmission Complete Interrupt Enable Bit
This read/write bit enables the TC bit to generate SCI transmitter CPU
interrupt requests. Reset clears the TCIE bit.
1 = TC enabled to generate CPU interrupt requests
0 = TC not enabled to generate CPU interrupt requests
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Serial Communications Interface (SCI)
269
Serial Communications Interface (SCI)
SCRIE — SCI Receive Interrupt Enable Bit
This read/write bit enables the SCRF bit to generate SCI receiver
CPU interrupt requests. Setting the SCRIE bit in SCC3 enables the
SCRF bit to generate CPU interrupt requests. Reset clears the SCRIE
bit.
1 = SCRF enabled to generate CPU interrupt
0 = SCRF not enabled to generate CPU interrupt
ILIE — Idle Line Interrupt Enable Bit
This read/write bit enables the IDLE bit to generate SCI receiver CPU
interrupt requests. Reset clears the ILIE bit.
1 = IDLE enabled to generate CPU interrupt requests
0 = IDLE not enabled to generate CPU interrupt requests
TE — Transmitter Enable Bit
Setting this read/write bit begins the transmission by sending a
preamble of 10 or 11 logic 1s from the transmit shift register to the
TxD pin. If software clears the TE bit, the transmitter completes any
transmission in progress before the TxD returns to the idle condition
(logic 1). Clearing and then setting TE during a transmission queues
an idle character to be sent after the character currently being
transmitted. Reset clears the TE bit.
1 = Transmitter enabled
0 = Transmitter disabled
NOTE:
Writing to the TE bit is not allowed when the enable SCI bit (ENSCI) is
clear. ENSCI is in SCI control register 1.
Technical Data
270
MC68HC908AZ60A — Rev 2.0
Serial Communications Interface (SCI)
MOTOROLA
Serial Communications Interface (SCI)
I/O Registers
RE — Receiver Enable Bit
Setting this read/write bit enables the receiver. Clearing the RE bit
disables the receiver but does not affect receiver interrupt flag bits.
Reset clears the RE bit.
1 = Receiver enabled
0 = Receiver disabled
NOTE:
Writing to the RE bit is not allowed when the enable SCI bit (ENSCI) is
clear. ENSCI is in SCI control register 1.
RWU — Receiver Wakeup Bit
This read/write bit puts the receiver in a standby state during which
receiver interrupts are disabled. The WAKE bit in SCC1 determines
whether an idle input or an address mark brings the receiver out of the
standby state and clears the RWU bit. Reset clears the RWU bit.
1 = Standby state
0 = Normal operation
SBK — Send Break Bit
Setting and then clearing this read/write bit transmits a break
character followed by a logic 1. The logic 1 after the break character
guarantees recognition of a valid start bit. If SBK remains set, the
transmitter continuously transmits break characters with no logic 1s
between them. Reset clears the SBK bit.
1 = Transmit break characters
0 = No break characters being transmitted
NOTE:
Do not toggle the SBK bit immediately after setting the SCTE bit.
Toggling SBK before the preamble begins causes the SCI to send a
break character instead of a preamble.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Serial Communications Interface (SCI)
271
Serial Communications Interface (SCI)
18.9.3 SCI Control Register 3
SCI control register 3:
•
Stores the ninth SCI data bit received and the ninth SCI data bit to
be transmitted.
•
Enables the following interrupts:
– Receiver overrun interrupts
– Noise error interrupts
– Framing error interrupts
– Parity error interrupts
Address:
$0015
Bit 7
Read:
6
5
4
3
2
1
Bit 0
T8
R
R
ORIE
NEIE
FEIE
PEIE
U
0
0
0
0
0
0
= Unimplemented
R
R8
Write:
Reset:
U
= Reserved
U = Unaffected
Figure 18-13. SCI Control Register 3 (SCC3)
R8 — Received Bit 8
When the SCI is receiving 9-bit characters, R8 is the read-only ninth
bit (bit 8) of the received character. R8 is received at the same time
that the SCDR receives the other 8 bits.
When the SCI is receiving 8-bit characters, R8 is a copy of the eighth
bit (bit 7). Reset has no effect on the R8 bit.
T8 — Transmitted Bit 8
When the SCI is transmitting 9-bit characters, T8 is the read/write
ninth bit (bit 8) of the transmitted character. T8 is loaded into the
transmit shift register at the same time that the SCDR is loaded into
the transmit shift register. Reset has no effect on the T8 bit.
Technical Data
272
MC68HC908AZ60A — Rev 2.0
Serial Communications Interface (SCI)
MOTOROLA
Serial Communications Interface (SCI)
I/O Registers
ORIE — Receiver Overrun Interrupt Enable Bit
This read/write bit enables SCI error CPU interrupt requests
generated by the receiver overrun bit, OR.
1 = SCI error CPU interrupt requests from OR bit enabled
0 = SCI error CPU interrupt requests from OR bit disabled
NEIE — Receiver Noise Error Interrupt Enable Bit
This read/write bit enables SCI error CPU interrupt requests
generated by the noise error bit, NE. Reset clears NEIE.
1 = SCI error CPU interrupt requests from NE bit enabled
0 = SCI error CPU interrupt requests from NE bit disabled
FEIE — Receiver Framing Error Interrupt Enable Bit
This read/write bit enables SCI error CPU interrupt requests
generated by the framing error bit, FE. Reset clears FEIE.
1 = SCI error CPU interrupt requests from FE bit enabled
0 = SCI error CPU interrupt requests from FE bit disabled
PEIE — Receiver Parity Error Interrupt Enable Bit
This read/write bit enables SCI receiver CPU interrupt requests
generated by the parity error bit, PE. Reset clears PEIE.
1 = SCI error CPU interrupt requests from PE bit enabled
0 = SCI error CPU interrupt requests from PE bit disabled
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Serial Communications Interface (SCI)
273
Serial Communications Interface (SCI)
18.9.4 SCI Status Register 1
SCI status register 1 contains flags to signal the following conditions:
•
Transfer of SCDR data to transmit shift register complete
•
Transmission complete
•
Transfer of receive shift register data to SCDR complete
•
Receiver input idle
•
Receiver overrun
•
Noisy data
•
Framing error
•
Parity error
Address:
Read:
$0016
Bit 7
6
5
4
3
2
1
Bit 0
SCTE
TC
SCRF
IDLE
OR
NF
FE
PE
1
1
0
0
0
0
0
0
Write:
Reset:
= Unimplemented
Figure 18-14. SCI Status Register 1 (SCS1)
SCTE — SCI Transmitter Empty Bit
This clearable, read-only bit is set when the SCDR transfers a
character to the transmit shift register. SCTE can generate an SCI
transmitter CPU interrupt request. When the SCTIE bit in SCC2 is set,
SCTE generates an SCI transmitter CPU interrupt request. In normal
operation, clear the SCTE bit by reading SCS1 with SCTE set and
then writing to SCDR. Reset sets the SCTE bit.
1 = SCDR data transferred to transmit shift register
0 = SCDR data not transferred to transmit shift register
Technical Data
274
MC68HC908AZ60A — Rev 2.0
Serial Communications Interface (SCI)
MOTOROLA
Serial Communications Interface (SCI)
I/O Registers
TC — Transmission Complete Bit
This read-only bit is set when the SCTE bit is set, and no data,
preamble, or break character is being transmitted. TC generates an
SCI transmitter CPU interrupt request if the TCIE bit in SCC2 is also
set. TC is cleared automatically when data, preamble, or break is
queued and ready to be sent. There may be up to 1.5 transmitter
clocks of latency between queueing data, preamble, and break and
the transmission actually starting. Reset sets the TC bit.
1 = No transmission in progress
0 = Transmission in progress
SCRF — SCI Receiver Full Bit
This clearable, read-only bit is set when the data in the receive shift
register transfers to the SCI data register. SCRF can generate an SCI
receiver CPU interrupt request. When the SCRIE bit in SCC2 is set
the SCRF generates a CPU interrupt request. In normal operation,
clear the SCRF bit by reading SCS1 with SCRF set and then reading
the SCDR. Reset clears SCRF.
1 = Received data available in SCDR
0 = Data not available in SCDR
IDLE — Receiver Idle Bit
This clearable, read-only bit is set when 10 or 11 consecutive logic 1s
appear on the receiver input. IDLE generates an SCI error CPU
interrupt request if the ILIE bit in SCC2 is also set. Clear the IDLE bit
by reading SCS1 with IDLE set and then reading the SCDR. After the
receiver is enabled, it must receive a valid character that sets the
SCRF bit before an idle condition can set the IDLE bit. Also, after the
IDLE bit has been cleared, a valid character must again set the SCRF
bit before an idle condition can set the IDLE bit. Reset clears the IDLE
bit.
1 = Receiver input idle
0 = Receiver input active (or idle since the IDLE bit was cleared)
OR — Receiver Overrun Bit
This clearable, read-only bit is set when software fails to read the
SCDR before the receive shift register receives the next character.
The OR bit generates an SCI error CPU interrupt request if the ORIE
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Serial Communications Interface (SCI)
275
Serial Communications Interface (SCI)
bit in SCC3 is also set. The data in the shift register is lost, but the data
already in the SCDR is not affected. Clear the OR bit by reading SCS1
with OR set and then reading the SCDR. Reset clears the OR bit.
1 = Receive shift register full and SCRF = 1
0 = No receiver overrun
Software latency may allow an overrun to occur between reads of SCS1
and SCDR in the flag-clearing sequence. Figure 18-15 shows the
normal flag-clearing sequence and an example of an overrun caused by
a delayed flag-clearing sequence. The delayed read of SCDR does not
clear the OR bit because OR was not set when SCS1 was read. Byte 2
caused the overrun and is lost. The next flag-clearing sequence reads
byte 3 in the SCDR instead of byte 2.
In applications that are subject to software latency or in which it is
important to know which byte is lost due to an overrun, the flag-clearing
routine can check the OR bit in a second read of SCS1 after reading the
data register.
BYTE 1
BYTE 2
BYTE 3
SCRF = 0
SCRF = 1
SCRF = 0
SCRF = 1
SCRF = 0
SCRF = 1
NORMAL FLAG CLEARING SEQUENCE
BYTE 4
READ SCS1
SCRF = 1
OR = 0
READ SCS1
SCRF = 1
OR = 0
READ SCS1
SCRF = 1
OR = 0
READ SCDR
BYTE 1
READ SCDR
BYTE 2
READ SCDR
BYTE 3
BYTE 1
BYTE 2
BYTE 3
SCRF = 0
OR = 0
SCRF = 1
OR = 1
SCRF = 0
OR = 1
SCRF = 1
SCRF = 1
OR = 1
DELAYED FLAG CLEARING SEQUENCE
BYTE 4
READ SCS1
SCRF = 1
OR = 0
READ SCS1
SCRF = 1
OR = 1
READ SCDR
BYTE 1
READ SCDR
BYTE 3
Figure 18-15. Flag Clearing Sequence
Technical Data
276
MC68HC908AZ60A — Rev 2.0
Serial Communications Interface (SCI)
MOTOROLA
Serial Communications Interface (SCI)
I/O Registers
NF — Receiver Noise Flag Bit
This clearable, read-only bit is set when the SCI detects noise on the
RxD pin. NF generates an NF CPU interrupt request if the NEIE bit in
SCC3 is also set. Clear the NF bit by reading SCS1 and then reading
the SCDR. Reset clears the NF bit.
1 = Noise detected
0 = No noise detected
FE — Receiver Framing Error Bit
This clearable, read-only bit is set when a logic 0 is accepted as the
stop bit. FE generates an SCI error CPU interrupt request if the FEIE
bit in SCC3 also is set. Clear the FE bit by reading SCS1 with FE set
and then reading the SCDR. Reset clears the FE bit.
1 = Framing error detected
0 = No framing error detected
PE — Receiver Parity Error Bit
This clearable, read-only bit is set when the SCI detects a parity error
in incoming data. PE generates a PE CPU interrupt request if the
PEIE bit in SCC3 is also set. Clear the PE bit by reading SCS1 with
PE set and then reading the SCDR. Reset clears the PE bit.
1 = Parity error detected
0 = No parity error detected
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Serial Communications Interface (SCI)
277
Serial Communications Interface (SCI)
18.9.5 SCI Status Register 2
SCI status register 2 contains flags to signal the following conditions:
•
Break character detected
•
Incoming data
Address:
Read:
$0017
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
BKF
RPF
0
0
0
0
0
0
0
0
Write:
Reset:
= Unimplemented
Figure 18-16. SCI Status Register 2 (SCS2)
BKF — Break Flag Bit
This clearable, read-only bit is set when the SCI detects a break
character on the RxD pin. In SCS1, the FE and SCRF bits are also
set. In 9-bit character transmissions, the R8 bit in SCC3 is cleared.
BKF does not generate a CPU interrupt request. Clear BKF by
reading SCS2 with BKF set and then reading the SCDR. Once
cleared, BKF can become set again only after logic 1s again appear
on the RxD pin followed by another break character. Reset clears the
BKF bit.
1 = Break character detected
0 = No break character detected
RPF — Reception in Progress Flag Bit
This read-only bit is set when the receiver detects a logic 0 during the
RT1 time period of the start bit search. RPF does not generate an
interrupt request. RPF is reset after the receiver detects false start bits
(usually from noise or a baud rate mismatch), or when the receiver
detects an idle character. Polling RPF before disabling the SCI
module or entering stop mode can show whether a reception is in
progress.
1 = Reception in progress
0 = No reception in progress
Technical Data
278
MC68HC908AZ60A — Rev 2.0
Serial Communications Interface (SCI)
MOTOROLA
Serial Communications Interface (SCI)
I/O Registers
18.9.6 SCI Data Register
The SCI data register is the buffer between the internal data bus and the
receive and transmit shift registers. Reset has no effect on data in the
SCI data register.
Address:
$0018
Bit 7
6
5
4
3
2
1
Bit 0
Read:
R7
R6
R5
R4
R3
R2
R1
R0
Write:
T7
T6
T5
T4
T3
T2
T1
T0
Reset:
Unaffected by Reset
Figure 18-17. SCI Data Register (SCDR)
R7/T7:R0/T0 — Receive/Transmit Data Bits
Reading address $0018 accesses the read-only received data bits,
R7:R0. Writing to address $0018 writes the data to be transmitted,
T7:T0. Reset has no effect on the SCI data register.
NOTE:
Do not use read-modify-write instructions on the SCI data register.
18.9.7 SCI Baud Rate Register
The baud rate register selects the baud rate for both the receiver and the
transmitter.
Address:
Read:
$0019
Bit 7
6
5
4
3
2
1
Bit 0
0
0
SCP1
SCP0
R
SCR2
SCR1
SCR0
0
0
0
0
0
0
= Unimplemented
R
Write:
Reset:
0
0
= Reserved
Figure 18-18. SCI Baud Rate Register (SCBR)
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Serial Communications Interface (SCI)
279
Serial Communications Interface (SCI)
SCP1 and SCP0 — SCI Baud Rate Prescaler Bits
These read/write bits select the baud rate prescaler divisor as shown
in Table 18-9. Reset clears SCP1 and SCP0.
Table 18-9. SCI Baud Rate Prescaling
SCP[1:0]
Prescaler Divisor (PD)
00
1
01
3
10
4
11
13
SCR2 – SCR0 — SCI Baud Rate Select Bits
These read/write bits select the SCI baud rate divisor as shown in
Table 18-10. Reset clears SCR2–SCR0.
Table 18-10. SCI Baud Rate Selection
SCR[2:1:0]
Baud Rate Divisor (BD)
000
1
001
2
010
4
011
8
100
16
101
32
110
64
111
128
Use the following formula to calculate the SCI baud rate:
f Crystal
Baud rate = -----------------------------------64 × PD × BD
where:
fCrystal = crystal frequency
PD = prescaler divisor
BD = baud rate divisor
Technical Data
280
MC68HC908AZ60A — Rev 2.0
Serial Communications Interface (SCI)
MOTOROLA
Serial Communications Interface (SCI)
Table 18-11 shows the SCI baud rates that can be generated with a
4.9152-MHz crystal.
Table 18-11. SCI Baud Rate Selection Examples
SCP[1:0]
Prescaler
Divisor
(PD)
SCR[2:1:0]
Baud Rate
Divisor
(BD)
Baud Rate
(fCrystal = 4.9152 MHz)
00
1
000
1
76,800
00
1
001
2
38,400
00
1
010
4
19,200
00
1
011
8
9600
00
1
100
16
4800
00
1
101
32
2400
00
1
110
64
1200
00
1
111
128
600
01
3
000
1
25,600
01
3
001
2
12,800
01
3
010
4
6400
01
3
011
8
3200
01
3
100
16
1600
01
3
101
32
800
01
3
110
64
400
01
3
111
128
200
10
4
000
1
19,200
10
4
001
2
9600
10
4
010
4
4800
10
4
011
8
2400
10
4
100
16
1200
10
4
101
32
600
10
4
110
64
300
10
4
111
128
150
11
13
000
1
5908
11
13
001
2
2954
11
13
010
4
1477
11
13
011
8
739
11
13
100
16
369
11
13
101
32
185
11
13
110
64
92
11
13
111
128
46
Technical Data
281
MC68HC908AZ60A — Rev 2.0
Serial Communications Interface (SCI)
MOTOROLA
Serial Communications Interface (SCI)
Technical Data
282
MC68HC908AZ60A — Rev 2.0
Serial Communications Interface (SCI)
MOTOROLA
Serial Communications Interface (SCI)
Technical Data
283
MC68HC908AZ60A — Rev 2.0
Serial Communications Interface (SCI)
MOTOROLA
Serial Communications Interface (SCI)
Technical Data
284
MC68HC908AZ60A — Rev 2.0
Serial Communications Interface (SCI)
MOTOROLA
Technical Data — MC68HC908AZ60A
Section 19. Serial Peripheral Interface (SPI)
19.1 Contents
19.2
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
19.3
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
19.4
Pin Name and Register Name Conventions . . . . . . . . . . . . 287
19.5 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . .288
19.5.1 Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
19.5.2 Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
19.6 Transmission Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292
19.6.1 Clock Phase and Polarity Controls. . . . . . . . . . . . . . . . . 292
19.6.2 Transmission Format When CPHA = 0. . . . . . . . . . . . . . 293
19.6.3 Transmission Format When CPHA = 1. . . . . . . . . . . . . . 294
19.6.4 Transmission Initiation Latency . . . . . . . . . . . . . . . . . . . 295
19.7 Error Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
19.7.1 Overflow Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297
19.7.2 Mode Fault Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
19.8
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
19.9
Queuing Transmission Data . . . . . . . . . . . . . . . . . . . . . . . . 302
19.10 Resetting the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .304
19.11 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
19.11.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
19.11.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
19.12 SPI During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . 305
19.13 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
19.13.1 MISO (Master In/Slave Out) . . . . . . . . . . . . . . . . . . . . . . . 307
19.13.2 MOSI (Master Out/Slave In) . . . . . . . . . . . . . . . . . . . . . . . 307
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Serial Peripheral Interface (SPI)
285
Serial Peripheral Interface (SPI)
19.13.3 SPSCK (Serial Clock) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
19.13.4 SS (Slave Select) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
19.13.5 VSS (Clock Ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
19.14 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
19.14.1 SPI Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
19.14.2 SPI Status and Control Register . . . . . . . . . . . . . . . . . . . 312
19.14.3 SPI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
19.2 Introduction
This section describes the serial peripheral interface (SPI) module,
which allows full-duplex, synchronous, serial communications with
peripheral devices.
19.3 Features
Features of the SPI module include:
•
Full-Duplex Operation
•
Master and Slave Modes
•
Double-Buffered Operation with Separate Transmit and Receive
Registers
•
Four Master Mode Frequencies (Maximum = Bus Frequency ÷ 2)
•
Maximum Slave Mode Frequency = Bus Frequency
•
Serial Clock with Programmable Polarity and Phase
•
Two Separately Enabled Interrupts with CPU Service:
– SPRF (SPI Receiver Full)
– SPTE (SPI Transmitter Empty)
•
Mode Fault Error Flag with CPU Interrupt Capability
•
Overflow Error Flag with CPU Interrupt Capability
•
Programmable Wired-OR Mode
•
I2C (Inter-Integrated Circuit) Compatibility
Technical Data
286
MC68HC908AZ60A — Rev 2.0
Serial Peripheral Interface (SPI)
MOTOROLA
Serial Peripheral Interface (SPI)
Pin Name and Register Name Conventions
19.4 Pin Name and Register Name Conventions
The generic names of the SPI input/output (I/O) pins are:
•
SS (slave select)
•
SPSCK (SPI serial clock)
•
MOSI (master out slave in)
•
MISO (master in slave out)
The SPI shares four I/O pins with a parallel I/O port. The full name of an
SPI pin reflects the name of the shared port pin. Table 19-1 shows the
full names of the SPI I/O pins. The generic pin names appear in the text
that follows.
Table 19-1. Pin Name Conventions
SPI Generic Pin Name
Full SPI Pin Name
MISO
MOSI
SS
SPSCK
PTE5/MISO
PTE6/MOSI
PTE4/SS
PTE7/SPSCK
The generic names of the SPI I/O registers are:
•
SPI control register (SPCR)
•
SPI status and control register (SPSCR)
•
SPI data register (SPDR)
Table 19-2 shows the names and the addresses of the SPI I/O registers.
Table 19-2. I/O Register Addresses
Register Name
SPI Control Register (SPCR)
$0010
SPI Status and Control Register (SPSCR)
$0011
SPI Data Register (SPDR)
$0012
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Address
Technical Data
Serial Peripheral Interface (SPI)
287
Serial Peripheral Interface (SPI)
19.5 Functional Description
Table 19-3 summarizes the SPI I/O registers and Figure 19-1 shows the
structure of the SPI module.
Table 19-3. SPI I/O Register Summary
Addr
Register Name
$0010
R/W
Bit 7
6
5
4
3
2
1
Bit 0
SPI Control Register Read:
SPRIE
(SPCR) Write:
R
SPMSTR
CPOL
CPHA
SPWOM
SPE
SPTIE
0
1
0
1
0
0
0
OVRF
MODF
SPTE
MODFEN
SPR1
SPR0
Reset:
$0011
SPI Status and Control Register Read:
(SPSCR) Write:
Reset:
$0012
SPI Data Register Read:
(SPDR) Write:
0
SPRF
ERRIE
0
0
0
0
1
0
0
0
R7
R6
R5
R4
R3
R2
R1
R0
T7
T6
T5
T4
T3
T2
T1
T0
Reset:
Unaffected by Reset
R
= Reserved
Technical Data
288
= Unimplemented
MC68HC908AZ60A — Rev 2.0
Serial Peripheral Interface (SPI)
MOTOROLA
Serial Peripheral Interface (SPI)
Functional Description
INTERNAL BUS
TRANSMIT DATA REGISTER
SHIFT REGISTER
BUS CLOCK
7
6
5
4
3
2
1
MISO
0
÷2
CLOCK
DIVIDER
MOSI
÷8
RECEIVE DATA REGISTER
÷ 32
PIN
CONTROL
LOGIC
÷ 128
SPMSTR
SPE
CLOCK
SELECT
SPR1
SPSCK
M
CLOCK
LOGIC
S
SS
SPR0
SPMSTR
TRANSMITTER CPU INTERRUPT REQUEST
CPHA
MODFEN
CPOL
SPWOM
ERRIE
SPI
CONTROL
SPTIE
RECEIVER/ERROR CPU INTERRUPT REQUEST
SPRIE
SPE
SPRF
SPTE
OVRF
MODF
Figure 19-1. SPI Module Block Diagram
The SPI module allows full-duplex, synchronous, serial communication
between the MCU and peripheral devices, including other MCUs.
Software can poll the SPI status flags or SPI operation can be interrupt
driven. All SPI interrupts can be serviced by the CPU.
The following paragraphs describe the operation of the SPI module.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Serial Peripheral Interface (SPI)
289
Serial Peripheral Interface (SPI)
19.5.1 Master Mode
The SPI operates in master mode when the SPI master bit, SPMSTR
(SPCR $0010), is set.
NOTE:
Configure the SPI modules as master and slave before enabling them.
Enable the master SPI before enabling the slave SPI. Disable the slave
SPI before disabling the master SPI. See SPI Control Register on page
310.
Only a master SPI module can initiate transmissions. Software begins
the transmission from a master SPI module by writing to the SPI data
register. If the shift register is empty, the byte immediately transfers to
the shift register, setting the SPI transmitter empty bit, SPTE (SPSCR
$0011). The byte begins shifting out on the MOSI pin under the control
of the serial clock. (See Table 19-4).
The SPR1 and SPR0 bits control the baud rate generator and determine
the speed of the shift register. (See SPI Status and Control Register
on page 312). Through the SPSCK pin, the baud rate generator of the
master also controls the shift register of the slave peripheral.
MASTER MCU
SHIFT REGISTER
SLAVE MCU
MISO
MISO
MOSI
MOSI
SHIFT REGISTER
SPSCK
BAUD RATE
GENERATOR
SS
SPSCK
VDD
SS
Figure 19-2. Full-Duplex Master-Slave Connections
Technical Data
290
MC68HC908AZ60A — Rev 2.0
Serial Peripheral Interface (SPI)
MOTOROLA
Serial Peripheral Interface (SPI)
Functional Description
As the byte shifts out on the MOSI pin of the master, another byte shifts
in from the slave on the master’s MISO pin. The transmission ends when
the receiver full bit, SPRF (SPSCR), becomes set. At the same time that
SPRF becomes set, the byte from the slave transfers to the receive data
register. In normal operation, SPRF signals the end of a transmission.
Software clears SPRF by reading the SPI status and control register and
then reading the SPI data register. Writing to the SPI data register clears
the SPTIE bit.
19.5.2 Slave Mode
The SPI operates in slave mode when the SPMSTR bit (SPCR, $0010)
is clear. In slave mode the SPSCK pin is the input for the serial clock
from the master MCU. Before a data transmission occurs, the SS pin of
the slave MCU must be at logic 0. SS must remain low until the
transmission is complete. (See Mode Fault Error on page 299).
In a slave SPI module, data enters the shift register under the control of
the serial clock from the master SPI module. After a byte enters the shift
register of a slave SPI, it is transferred to the receive data register, and
the SPRF bit (SPSCR) is set. To prevent an overflow condition, slave
software then must read the SPI data register before another byte enters
the shift register.
The maximum frequency of the SPSCK for an SPI configured as a slave
is the bus clock speed, which is twice as fast as the fastest master
SPSCK clock that can be generated. The frequency of the SPSCK for an
SPI configured as a slave does not have to correspond to any SPI baud
rate. The baud rate only controls the speed of the SPSCK generated by
an SPI configured as a master. Therefore, the frequency of the SPSCK
for an SPI configured as a slave can be any frequency less than or equal
to the bus speed.
When the master SPI starts a transmission, the data in the slave shift
register begins shifting out on the MISO pin. The slave can load its shift
register with a new byte for the next transmission by writing to its transmit
data register. The slave must write to its transmit data register at least
one bus cycle before the master starts the next transmission. Otherwise
the byte already in the slave shift register shifts out on the MISO pin.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Serial Peripheral Interface (SPI)
291
Serial Peripheral Interface (SPI)
Data written to the slave shift register during a a transmission remains in
a buffer until the end of the transmission.
When the clock phase bit (CPHA) is set, the first edge of SPSCK starts
a transmission. When CPHA is clear, the falling edge of SS starts a
transmission. See Transmission Formats on page 292.
If the write to the data register is late, the SPI transmits the data already
in the shift register from the previous transmission.
NOTE:
To prevent SPSCK from appearing as a clock edge, SPSCK must be in
the proper idle state before the slave is enabled.
19.6 Transmission Formats
During an SPI transmission, data is simultaneously transmitted (shifted
out serially) and received (shifted in serially). A serial clock line
synchronizes shifting and sampling on the two serial data lines. A slave
select line allows individual selection of a slave SPI device; slave
devices that are not selected do not interfere with SPI bus activities. On
a master SPI device, the slave select line can be used optionally to
indicate a multiple-master bus contention.
19.6.1 Clock Phase and Polarity Controls
Software can select any of four combinations of serial clock (SCK) phase
and polarity using two bits in the SPI control register (SPCR). The clock
polarity is specified by the CPOL control bit, which selects an active high
or low clock and has no significant effect on the transmission format.
The clock phase (CPHA) control bit (SPCR) selects one of two
fundamentally different transmission formats. The clock phase and
polarity should be identical for the master SPI device and the
communicating slave device. In some cases, the phase and polarity are
changed between transmissions to allow a master device to
communicate with peripheral slaves having different requirements.
NOTE:
Before writing to the CPOL bit or the CPHA bit (SPCR), disable the SPI
by clearing the SPI enable bit (SPE).
Technical Data
292
MC68HC908AZ60A — Rev 2.0
Serial Peripheral Interface (SPI)
MOTOROLA
Serial Peripheral Interface (SPI)
Transmission Formats
19.6.2 Transmission Format When CPHA = 0
Figure 19-3 shows an SPI transmission in which CPHA (SPCR) is
logic 0. The figure should not be used as a replacement for data sheet
parametric information. Two waveforms are shown for SCK: one for
CPOL = 0 and another for CPOL = 1. The diagram may be interpreted
as a master or slave timing diagram since the serial clock (SCK), master
in/slave out (MISO), and master out/slave in (MOSI) pins are directly
connected between the master and the slave. The MISO signal is the
output from the slave, and the MOSI signal is the output from the master.
The SS line is the slave select input to the slave. The slave SPI drives
its MISO output only when its slave select input (SS) is at logic 0, so that
only the selected slave drives to the master. The SS pin of the master is
not shown but is assumed to be inactive. The SS pin of the master must
be high or must be reconfigured as general-purpose I/O not affecting the
SPI (see Mode Fault Error on page 299). When CPHA = 0, the first
SPSCK edge is the MSB capture strobe. Therefore, the slave must
begin driving its data before the first SPSCK edge, and a falling edge on
the SS pin is used to start the transmission. The SS pin must be toggled
high and then low again between each byte transmitted.
SCK CYCLE #
FOR REFERENCE
1
2
3
4
5
6
7
8
MSB
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
LSB
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
LSB
SCK CPOL = 0
SCK CPOL = 1
MOSI
FROM MASTER
MISO
FROM SLAVE
MSB
SS TO SLAVE
CAPTURE STROBE
Figure 19-3. Transmission Format (CPHA = 0)
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Serial Peripheral Interface (SPI)
293
Serial Peripheral Interface (SPI)
19.6.3 Transmission Format When CPHA = 1
Figure 19-4 shows an SPI transmission in which CPHA (SPCR) is
logic 1. The figure should not be used as a replacement for data sheet
parametric information. Two waveforms are shown for SCK: one for
CPOL = 0 and another for CPOL = 1. The diagram may be interpreted
as a master or slave timing diagram since the serial clock (SCK), master
in/slave out (MISO), and master out/slave in (MOSI) pins are directly
connected between the master and the slave. The MISO signal is the
output from the slave, and the MOSI signal is the output from the master.
The SS line is the slave select input to the slave. The slave SPI drives
its MISO output only when its slave select input (SS) is at logic 0, so that
only the selected slave drives to the master. The SS pin of the master is
not shown but is assumed to be inactive. The SS pin of the master must
be high or must be reconfigured as general-purpose I/O not affecting the
SPI. (See Mode Fault Error on page 299). When CPHA = 1, the master
begins driving its MOSI pin on the first SPSCK edge. Therefore, the
slave uses the first SPSCK edge as a start transmission signal. The SS
pin can remain low between transmissions. This format may be
preferable in systems having only one master and only one slave driving
the MISO data line.
SCK CYCLE #
FOR REFERENCE
1
2
3
4
5
6
7
8
MOSI
FROM MASTER
MSB
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
LSB
MISO
FROM SLAVE
MSB
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
SCK CPOL = 0
SCK CPOL =1
LSB
SS TO SLAVE
CAPTURE STROBE
Figure 19-4. Transmission Format (CPHA = 1)
Technical Data
294
MC68HC908AZ60A — Rev 2.0
Serial Peripheral Interface (SPI)
MOTOROLA
Serial Peripheral Interface (SPI)
Transmission Formats
19.6.4 Transmission Initiation Latency
When the SPI is configured as a master (SPMSTR = 1), transmissions
are started by a software write to the SPDR ($0012). CPHA has no effect
on the delay to the start of the transmission, but it does affect the initial
state of the SCK signal. When CPHA = 0, the SCK signal remains
inactive for the first half of the first SCK cycle. When CPHA = 1, the first
SCK cycle begins with an edge on the SCK line from its inactive to its
active level. The SPI clock rate (selected by SPR1–SPR0) affects the
delay from the write to SPDR and the start of the SPI transmission. (See
Figure 19-5). The internal SPI clock in the master is a free-running
derivative of the internal MCU clock. It is only enabled when both the
SPE and SPMSTR bits (SPCR) are set to conserve power. SCK edges
occur half way through the low time of the internal MCU clock. Since the
SPI clock is free-running, it is uncertain where the write to the SPDR will
occur relative to the slower SCK. This uncertainty causes the variation
in the initiation delay shown in Figure 19-5. This delay will be no longer
than a single SPI bit time. That is, the maximum delay between the write
to SPDR and the start of the SPI transmission is two MCU bus cycles for
DIV2, eight MCU bus cycles for DIV8, 32 MCU bus cycles for DIV32, and
128 MCU bus cycles for DIV128.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Serial Peripheral Interface (SPI)
295
Serial Peripheral Interface (SPI)
WRITE
TO SPDR
INITIATION DELAY
BUS
CLOCK
MOSI
MSB
BIT 6
BIT 5
SCK
CPHA = 1
SCK
CPHA = 0
SCK CYCLE
NUMBER
1
2
3
INITIATION DELAY FROM WRITE SPDR TO TRANSFER BEGIN








WRITE
TO SPDR
BUS
CLOCK
EARLIEST LATEST
SCK = INTERNAL CLOCK ÷ 2;
2 POSSIBLE START POINTS
WRITE
TO SPDR
BUS
CLOCK
EARLIEST
WRITE
TO SPDR
SCK = INTERNAL CLOCK ÷ 8;
8 POSSIBLE START POINTS
LATEST
SCK = INTERNAL CLOCK ÷ 32;
32 POSSIBLE START POINTS
LATEST
SCK = INTERNAL CLOCK ÷ 128;
128 POSSIBLE START POINTS
LATEST
BUS
CLOCK
EARLIEST
WRITE
TO SPDR
BUS
CLOCK
EARLIEST
Figure 19-5. Transmission Start Delay (Master)
Technical Data
296
MC68HC908AZ60A — Rev 2.0
Serial Peripheral Interface (SPI)
MOTOROLA
Serial Peripheral Interface (SPI)
Error Conditions
19.7 Error Conditions
Two flags signal SPI error conditions:
1. Overflow (OVRF in SPSCR) — Failing to read the SPI data
register before the next byte enters the shift register sets the
OVRF bit. The new byte does not transfer to the receive data
register, and the unread byte still can be read by accessing the
SPI data register. OVRF is in the SPI status and control register.
2. Mode fault error (MODF in SPSCR) — The MODF bit indicates
that the voltage on the slave select pin (SS) is inconsistent with the
mode of the SPI. MODF is in the SPI status and control register.
19.7.1 Overflow Error
The overflow flag (OVRF in SPSCR) becomes set if the SPI receive data
register still has unread data from a previous transmission when the
capture strobe of bit 1 of the next transmission occurs. (See Figure 193 and Figure 19-4.) If an overflow occurs, the data being received is not
transferred to the receive data register so that the unread data can still
be read. Therefore, an overflow error always indicates the loss of data.
OVRF generates a receiver/error CPU interrupt request if the error
interrupt enable bit (ERRIE in SPSCR) is also set. MODF and OVRF can
generate a receiver/error CPU interrupt request. (See Figure 19-8). It is
not possible to enable only MODF or OVRF to generate a receiver/error
CPU interrupt request. However, leaving MODFEN low prevents MODF
from being set.
If an end-of-block transmission interrupt was meant to pull the MCU out
of wait, having an overflow condition without overflow interrupts enabled
causes the MCU to hang in wait mode. If the OVRF is enabled to
generate an interrupt, it can pull the MCU out of wait mode instead.
If the CPU SPRF interrupt is enabled and the OVRF interrupt is not,
watch for an overflow condition. Figure 19-6 shows how it is possible to
miss an overflow.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Serial Peripheral Interface (SPI)
297
Serial Peripheral Interface (SPI)
BYTE 1
1
BYTE 2
4
BYTE 3
6
BYTE 4
8
SPRF
OVRF
READ SPSCR
READ SPDR
2
5
3
1
BYTE 1 SETS SPRF BIT.
2
CPU READS SPSCR WITH SPRF BIT SET
AND OVRF BIT CLEAR.
CPU READS BYTE 1 IN SPDR,
CLEARING SPRF BIT.
BYTE 2 SETS SPRF BIT.
3
4
7
5
6
7
8
CPU READS SPSCRW WITH SPRF BIT SET
AND OVRF BIT CLEAR.
BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.
CPU READS BYTE 2 IN SPDR, CLEARING SPRF BIT,
BUT NOT OVRF BIT.
BYTE 4 FAILS TO SET SPRF BIT BECAUSE
OVRF BIT IS SET. BYTE 4 IS LOST.
Figure 19-6. Missed Read of Overflow Condition
The first part of Figure 19-6 shows how to read the SPSCR and SPDR
to clear the SPRF without problems. However, as illustrated by the
second transmission example, the OVRF flag can be set in between the
time that SPSCR and SPDR are read.
In this case, an overflow can be easily missed. Since no more SPRF
interrupts can be generated until this OVRF is serviced, it will not be
obvious that bytes are being lost as more transmissions are completed.
To prevent this, either enable the OVRF interrupt or do another read of
the SPSCR after the read of the SPDR. This ensures that the OVRF was
not set before the SPRF was cleared and that future transmissions will
complete with an SPRF interrupt. Figure 19-7 illustrates this process.
Generally, to avoid this second SPSCR read, enable the OVRF to the
CPU by setting the ERRIE bit (SPSCR).
Technical Data
298
MC68HC908AZ60A — Rev 2.0
Serial Peripheral Interface (SPI)
MOTOROLA
Serial Peripheral Interface (SPI)
Error Conditions
BYTE 1
BYTE 2
BYTE 3
BYTE 4
1
5
7
11
SPI RECEIVE
COMPLETE
SPRF
OVRF
2
READ SPSCR
4
6
9
3
READ SPDR
8
1
BYTE 1 SETS SPRF BIT.
2
CPU READS SPSCR WITH SPRF BIT SET
AND OVRF BIT CLEAR.
CPU READS BYTE 1 IN SPDR,
CLEARING SPRF BIT.
3
12
10
8
CPU READS BYTE 2 IN SPDR,
CLEARING SPRF BIT.
9
CPU READS SPSCR AGAIN
TO CHECK OVRF BIT.
14
13
10 CPU READS BYTE 2 SPDR,
CLEARING OVRF BIT.
4
CPU READS SPSCR AGAIN
TO CHECK OVRF BIT.
11 BYTE 4 SETS SPRF BIT.
5
BYTE 2 SETS SPRF BIT.
12 CPU READS SPSCR.
6
CPU READS SPSCR WITH SPRF BIT SET
AND OVRF BIT CLEAR.
13 CPU READS BYTE 4 IN SPDR,
CLEARING SPRF BIT.
7
BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.
14 CPU READS SPSCR AGAIN
TO CHECK OVRF BIT.
Figure 19-7. Clearing SPRF When OVRF Interrupt Is Not Enabled
19.7.2 Mode Fault Error
For the MODF flag (in SPSCR) to be set, the mode fault error enable bit
(MODFEN in SPSCR) must be set. Clearing the MODFEN bit does not
clear the MODF flag but does prevent MODF from being set again after
MODF is cleared.
MODF generates a receiver/error CPU interrupt request if the error
interrupt enable bit (ERRIE in SPSCR) is also set. The SPRF, MODF,
and OVRF interrupts share the same CPU interrupt vector. MODF and
OVRF can generate a receiver/error CPU interrupt request. (See Figure
19-8). It is not possible to enable only MODF or OVRF to generate a
receiver/error CPU interrupt request. However, leaving MODFEN low
prevents MODF from being set.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Serial Peripheral Interface (SPI)
299
Serial Peripheral Interface (SPI)
In a master SPI with the mode fault enable bit (MODFEN) set, the mode
fault flag (MODF) is set if SS goes to logic 0. A mode fault in a master
SPI causes the following events to occur:
•
If ERRIE = 1, the SPI generates an SPI receiver/error CPU
interrupt request.
•
The SPE bit is cleared.
•
The SPTE bit is set.
•
The SPI state counter is cleared.
•
The data direction register of the shared I/O port regains control of
port drivers.
NOTE:
To prevent bus contention with another master SPI after a mode fault
error, clear all data direction register (DDR) bits associated with the SPI
shared port pins.
NOTE:
Setting the MODF flag (SPSCR) does not clear the SPMSTR bit.
Reading SPMSTR when MODF = 1 will indicate a MODE fault error
occurred in either master mode or slave mode.
When configured as a slave (SPMSTR = 0), the MODF flag is set if SS
goes high during a transmission. When CPHA = 0, a transmission begins
when SS goes low and ends once the incoming SPSCK returns to its idle
level after the shift of the eighth data bit. When CPHA = 1, the
transmission begins when the SPSCK leaves its idle level and SS is
already low. The transmission continues until the SPSCK returns to its
IDLE level after the shift of the last data bit. (See Transmission
Formats on page 292).
NOTE:
When CPHA = 0, a MODF occurs if a slave is selected (SS is at logic 0)
and later deselected (SS is at logic 1) even if no SPSCK is sent to that
slave. This happens because SS at logic 0 indicates the start of the
transmission (MISO driven out with the value of MSB) for CPHA = 0.
When CPHA = 1, a slave can be selected and then later deselected with
no transmission occurring. Therefore, MODF does not occur since a
transmission was never begun.
In a slave SPI (MSTR = 0), the MODF bit generates an SPI
receiver/error CPU interrupt request if the ERRIE bit is set. The MODF
Technical Data
300
MC68HC908AZ60A — Rev 2.0
Serial Peripheral Interface (SPI)
MOTOROLA
Serial Peripheral Interface (SPI)
Interrupts
bit does not clear the SPE bit or reset the SPI in any way. Software can
abort the SPI transmission by toggling the SPE bit of the slave.
NOTE:
A logic 1 voltage on the SS pin of a slave SPI puts the MISO pin in a high
impedance state. Also, the slave SPI ignores all incoming SPSCK
clocks, even if a transmission has begun.
To clear the MODF flag, read the SPSCR and then write to the SPCR
register. This entire clearing procedure must occur with no MODF
condition existing or else the flag will not be cleared.
19.8 Interrupts
Four SPI status flags can be enabled to generate CPU interrupt
requests:
Table 19-4. SPI Interrupts
Flag
Request
SPTE (Transmitter Empty)
SPI Transmitter CPU Interrupt Request (SPTIE = 1)
SPRF (Receiver Full)
SPI Receiver CPU Interrupt Request (SPRIE = 1)
OVRF (Overflow)
SPI Receiver/Error Interrupt Request
(SPRIE = 1, ERRIE = 1)
MODF (Mode Fault)
SPI Receiver/Error Interrupt Request
(SPRIE = 1, ERRIE = 1, MODFEN = 1)
The SPI transmitter interrupt enable bit (SPTIE) enables the SPTE flag
to generate transmitter CPU interrupt requests.
The SPI receiver interrupt enable bit (SPRIE) enables the SPRF bit to
generate receiver CPU interrupt, provided that the SPI is enabled
(SPE = 1).
The error interrupt enable bit (ERRIE) enables both the MODF and
OVRF flags to generate a receiver/error CPU interrupt request.
The mode fault enable bit (MODFEN) can prevent the MODF flag from
being set so that only the OVRF flag is enabled to generate
receiver/error CPU interrupt requests.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Serial Peripheral Interface (SPI)
301
Serial Peripheral Interface (SPI)
SPTE
SPTIE
SPE
SPI TRANSMITTER
CPU INTERRUPT REQUEST
SPRIE
SPRF
SPI RECEIVER/ERROR
CPU INTERRUPT REQUEST
ERRIE
MODF
OVRF
Figure 19-8. SPI Interrupt Request Generation
Two sources in the SPI status and control register can generate CPU
interrupt requests:
1. SPI receiver full bit (SPRF) — The SPRF bit becomes set every
time a byte transfers from the shift register to the receive data
register. If the SPI receiver interrupt enable bit, SPRIE, is also set,
SPRF can generate an SPI receiver/error CPU interrupt request.
2. SPI transmitter empty (SPTE) — The SPTE bit becomes set every
time a byte transfers from the transmit data register to the shift
register. If the SPI transmit interrupt enable bit, SPTIE, is also set,
SPTE can generate an SPTE CPU interrupt request.
19.9 Queuing Transmission Data
The double-buffered transmit data register allows a data byte to be
queued and transmitted. For an SPI configured as a master, a queued
data byte is transmitted immediately after the previous transmission has
completed. The SPI transmitter empty flag (SPTE in SPSCR) indicates
when the transmit data buffer is ready to accept new data. Write to the
SPI data register only when the SPTE bit is high. Figure 19-9 shows the
timing associated with doing back-to-back transmissions with the SPI
(SPSCK has CPHA:CPOL = 1:0).
Technical Data
302
MC68HC908AZ60A — Rev 2.0
Serial Peripheral Interface (SPI)
MOTOROLA
Serial Peripheral Interface (SPI)
Queuing Transmission Data
WRITE TO SPDR
1
SPTE
3
8
5
2
10
SPSCK (CPHA:CPOL = 1:0)
MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT
6 5 4 3 2 1
6 5 4 3 2 1
6 5 4
BYTE 1
BYTE 2
BYTE 3
MOSI
9
4
SPRF
6
READ SPSCR
11
7
READ SPDR
1
CPU WRITES BYTE 1 TO SPDR, CLEARING
SPTE BIT.
2
BYTE 1 TRANSFERS FROM TRANSMIT DATA
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.
3
CPU WRITES BYTE 2 TO SPDR, QUEUEING
BYTE 2 AND CLEARING SPTE BIT.
4
FIRST INCOMING BYTE TRANSFERS FROM SHIFT
REGISTER TO RECEIVE DATA REGISTER, SETTING
SPRF BIT.
5
BYTE 2 TRANSFERS FROM TRANSMIT DATA
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.
6
CPU READS SPSCR WITH SPRF BIT SET.
12
7
CPU READS SPDR, CLEARING SPRF BIT.
8
CPU WRITES BYTE 3 TO SPDR, QUEUEING
BYTE 3 AND CLEARING SPTE BIT.
9
SECOND INCOMING BYTE TRANSFERS FROM SHIFT
REGISTER TO RECEIVE DATA REGISTER, SETTING
SPRF BIT.
10 BYTE 3 TRANSFERS FROM TRANSMIT DATA
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.
11 CPU READS SPSCR WITH SPRF BIT SET.
12 CPU READS SPDR, CLEARING SPRF BIT.
Figure 19-9. SPRF/SPTE CPU Interrupt Timing
For a slave, the transmit data buffer allows back-to-back transmissions
to occur without the slave having to time the write of its data between the
transmissions. Also, if no new data is written to the data buffer, the last
value contained in the shift register will be the next data word
transmitted.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Serial Peripheral Interface (SPI)
303
Serial Peripheral Interface (SPI)
19.10 Resetting the SPI
Any system reset completely resets the SPI. Partial reset occurs
whenever the SPI enable bit (SPE) is low. Whenever SPE is low, the
following occurs:
•
The SPTE flag is set.
•
Any transmission currently in progress is aborted.
•
The shift register is cleared.
•
The SPI state counter is cleared, making it ready for a new
complete transmission.
•
All the SPI port logic is defaulted back to being general-purpose
I/O.
The following additional items are reset only by a system reset:
•
All control bits in the SPCR register
•
All control bits in the SPSCR register (MODFEN, ERRIE, SPR1,
and SPR0)
•
The status flags SPRF, OVRF, and MODF
By not resetting the control bits when SPE is low, the user can clear SPE
between transmissions without having to reset all control bits when SPE
is set back to high for the next transmission.
By not resetting the SPRF, OVRF, and MODF flags, the user can still
service these interrupts after the SPI has been disabled. The user can
disable the SPI by writing 0 to the SPE bit. The SPI also can be disabled
by a mode fault occurring in an SPI that was configured as a master with
the MODFEN bit set.
Technical Data
304
MC68HC908AZ60A — Rev 2.0
Serial Peripheral Interface (SPI)
MOTOROLA
Serial Peripheral Interface (SPI)
Low-Power Modes
19.11 Low-Power Modes
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.
19.11.1 Wait Mode
The SPI module remains active after the execution of a WAIT instruction.
In wait mode, the SPI module registers are not accessible by the CPU.
Any enabled CPU interrupt request from the SPI module can bring the
MCU out of wait mode.
If SPI module functions are not required during wait mode, reduce power
consumption by disabling the SPI module before executing the WAIT
instruction.
To exit wait mode when an overflow condition occurs, enable the OVRF
bit to generate CPU interrupt requests by setting the error interrupt
enable bit (ERRIE). (See Interrupts on page 301).
19.11.2 Stop Mode
The SPI module is inactive after the execution of a STOP instruction.
The STOP instruction does not affect register conditions. SPI operation
resumes after the MCU exits stop mode. If stop mode is exited by reset,
any transfer in progress is aborted and the SPI is reset.
19.12 SPI During Break Interrupts
The system integration module (SIM) controls whether status bits in
other modules can be cleared during the break state. The BCFE bit in
the SIM break flag control register (SBFCR, $FE03) enables software to
clear status bits during the break state. (See SIM Break Flag Control
Register on page 168).
To allow software to clear status bits during a break interrupt, write a
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it
remains cleared when the MCU exits the break state.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Serial Peripheral Interface (SPI)
305
Serial Peripheral Interface (SPI)
To protect status bits during the break state, write a logic 0 to the BCFE
bit. With BCFE at logic 0 (its default state), software can read and write
I/O registers during the break state without affecting status bits. Some
status bits have a two-step read/write clearing procedure. If software
does the first step on such a bit before the break, the bit cannot change
during the break state as long as BCFE is at logic 0. After the break,
doing the second step clears the status bit.
Since the SPTE bit cannot be cleared during a break with the BCFE bit
cleared, a write to the data register in break mode will not initiate a
transmission nor will this data be transferred into the shift register.
Therefore, a write to the SPDR in break mode with the BCFE bit cleared
has no effect.
19.13 I/O Signals
The SPI module has four I/O pins and shares three of them with a
parallel I/O port.
•
MISO — Data received
•
MOSI — Data transmitted
•
SPSCK — Serial clock
•
SS — Slave select
•
VSS — Clock ground
The SPI has limited inter-integrated circuit (I2C) capability (requiring
software support) as a master in a single-master environment. To
communicate with I2C peripherals, MOSI becomes an open-drain output
when the SPWOM bit in the SPI control register is set. In I2C
communication, the MOSI and MISO pins are connected to a
bidirectional pin from the I2C peripheral and through a pullup resistor
to VDD.
Technical Data
306
MC68HC908AZ60A — Rev 2.0
Serial Peripheral Interface (SPI)
MOTOROLA
Serial Peripheral Interface (SPI)
I/O Signals
19.13.1 MISO (Master In/Slave Out)
MISO is one of the two SPI module pins that transmit serial data. In full
duplex operation, the MISO pin of the master SPI module is connected
to the MISO pin of the slave SPI module. The master SPI simultaneously
receives data on its MISO pin and transmits data from its MOSI pin.
Slave output data on the MISO pin is enabled only when the SPI is
configured as a slave. The SPI is configured as a slave when its
SPMSTR bit is logic 0 and its SS pin is at logic 0. To support a multipleslave system, a logic 1 on the SS pin puts the MISO pin in a highimpedance state.
When enabled, the SPI controls data direction of the MISO pin
regardless of the state of the data direction register of the shared I/O
port.
19.13.2 MOSI (Master Out/Slave In)
MOSI is one of the two SPI module pins that transmit serial data. In full
duplex operation, the MOSI pin of the master SPI module is connected
to the MOSI pin of the slave SPI module. The master SPI simultaneously
transmits data from its MOSI pin and receives data on its MISO pin.
When enabled, the SPI controls data direction of the MOSI pin
regardless of the state of the data direction register of the shared I/O
port.
19.13.3 SPSCK (Serial Clock)
The serial clock synchronizes data transmission between master and
slave devices. In a master MCU, the SPSCK pin is the clock output. In a
slave MCU, the SPSCK pin is the clock input. In full duplex operation, the
master and slave MCUs exchange a byte of data in eight serial clock
cycles.
When enabled, the SPI controls data direction of the SPSCK pin
regardless of the state of the data direction register of the shared I/O
port.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Serial Peripheral Interface (SPI)
307
Serial Peripheral Interface (SPI)
19.13.4 SS (Slave Select)
The SS pin has various functions depending on the current state of the
SPI. For an SPI configured as a slave, the SS is used to select a slave.
For CPHA = 0, the SS is used to define the start of a transmission. (See
Transmission Formats.) Since it is used to indicate the start of a
transmission, the SS must be toggled high and low between each byte
transmitted for the CPHA = 0 format. However, it can remain low
throughout the transmission for the CPHA = 1 format. See Figure 19-10.
MISO/MOSI
BYTE 1
BYTE 2
BYTE 3
MASTER SS
SLAVE SS
CPHA = 0
SLAVE SS
CPHA = 1
Figure 19-10. CPHA/SS Timing
When an SPI is configured as a slave, the SS pin is always configured
as an input. It cannot be used as a general-purpose I/O regardless of the
state of the MODFEN control bit. However, the MODFEN bit can still
prevent the state of the SS from creating a MODF error. (See SPI Status
and Control Register on page 312).
NOTE:
A logic 1 voltage on the SS pin of a slave SPI puts the MISO pin in a highimpedance state. The slave SPI ignores all incoming SPSCK clocks,
even if a transmission already has begun.
When an SPI is configured as a master, the SS input can be used in
conjunction with the MODF flag to prevent multiple masters from driving
MOSI and SPSCK. (See Mode Fault Error on page 299). For the state
of the SS pin to set the MODF flag, the MODFEN bit in the SPSCK
register must be set. If the MODFEN bit is low for an SPI master, the SS
pin can be used as a general-purpose I/O under the control of the data
direction register of the shared I/O port. With MODFEN high, it is an
input-only pin to the SPI regardless of the state of the data direction
register of the shared I/O port.
Technical Data
308
MC68HC908AZ60A — Rev 2.0
Serial Peripheral Interface (SPI)
MOTOROLA
Serial Peripheral Interface (SPI)
I/O Registers
The CPU can always read the state of the SS pin by configuring the
appropriate pin as an input and reading the data register. (See Table 195).
Table 19-5. SPI Configuration
SPE SPMSTR MODFEN
SPI Configuration
State of SS Logic
0
X
X
Not Enabled
General-Purpose I/O;
SS Ignored by SPI
1
0
X
Slave
Input-Only to SPI
1
1
0
Master without MODF
General-Purpose I/O;
SS Ignored by SPI
1
1
1
Master with MODF
Input-Only to SPI
X = don’t care
19.13.5 VSS (Clock Ground)
VSS is the ground return for the serial clock pin, SPSCK, and the ground
for the port output buffers. To reduce the ground return path loop and
minimize radio frequency (RF) emissions, connect the ground pin of the
slave to the VSS pin.
19.14 I/O Registers
Three registers control and monitor SPI operation:
•
SPI control register (SPCR $0010)
•
SPI status and control register (SPSCR $0011)
•
SPI data register (SPDR $0012)
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Serial Peripheral Interface (SPI)
309
Serial Peripheral Interface (SPI)
19.14.1 SPI Control Register
The SPI control register:
•
Enables SPI module interrupt requests
•
Selects CPU interrupt requests
•
Configures the SPI module as master or slave
•
Selects serial clock polarity and phase
•
Configures the SPSCK, MOSI, and MISO pins as open-drain
outputs
•
Enables the SPI module
Address:
$0010
Bit 7
6
5
4
3
2
1
Bit 0
SPRIE
R
SPMSTR
CPOL
CPHA
SPWOM
SPE
SPTIE
0
0
1
0
1
0
0
0
Read:
Write:
Reset:
R
= Reserved
Figure 19-11. SPI Control Register (SPCR)
SPRIE — SPI Receiver Interrupt Enable Bit
This read/write bit enables CPU interrupt requests generated by the
SPRF bit. The SPRF bit is set when a byte transfers from the shift
register to the receive data register. Reset clears the SPRIE bit.
1 = SPRF CPU interrupt requests enabled
0 = SPRF CPU interrupt requests disabled
SPMSTR — SPI Master Bit
This read/write bit selects master mode operation or slave mode
operation. Reset sets the SPMSTR bit.
1 = Master mode
0 = Slave mode
Technical Data
310
MC68HC908AZ60A — Rev 2.0
Serial Peripheral Interface (SPI)
MOTOROLA
Serial Peripheral Interface (SPI)
I/O Registers
CPOL — Clock Polarity Bit
This read/write bit determines the logic state of the SPSCK pin
between transmissions. (See Figure 19-3 and Figure 19-4.) To
transmit data between SPI modules, the SPI modules must have
identical CPOL bits. Reset clears the CPOL bit.
CPHA — Clock Phase Bit
This read/write bit controls the timing relationship between the serial
clock and SPI data. (See Figure 19-3 and Figure 19-4.) To transmit
data between SPI modules, the SPI modules must have identical
CPHA bits. When CPHA = 0, the SS pin of the slave SPI module must
be set to logic 1 between bytes. (See Figure 19-10). Reset sets the
CPHA bit.
When CPHA = 0 for a slave, the falling edge of SS indicates the
beginning of the transmission. This causes the SPI to leave its idle
state and begin driving the MISO pin with the MSB of its data. Once
the transmission begins, no new data is allowed into the shift register
from the data register. Therefore, the slave data register must be
loaded with the desired transmit data before the falling edge of SS.
Any data written after the falling edge is stored in the data register and
transferred to the shift register at the current transmission.
When CPHA = 1 for a slave, the first edge of the SPSCK indicates the
beginning of the transmission. The same applies when SS is high for
a slave. The MISO pin is held in a high-impedance state, and the
incoming SPSCK is ignored. In certain cases, it may also cause the
MODF flag to be set. (See Mode Fault Error on page 299). A logic 1
on the SS pin does not in any way affect the state of the SPI state
machine.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Serial Peripheral Interface (SPI)
311
Serial Peripheral Interface (SPI)
SPWOM — SPI Wired-OR Mode Bit
This read/write bit disables the pullup devices on pins SPSCK, MOSI,
and MISO so that those pins become open-drain outputs.
1 = Wired-OR SPSCK, MOSI, and MISO pins
0 = Normal push-pull SPSCK, MOSI, and MISO pins
SPE — SPI Enable Bit
This read/write bit enables the SPI module. Clearing SPE causes a
partial reset of the SPI (see Resetting the SPI on page 304). Reset
clears the SPE bit.
1 = SPI module enabled
0 = SPI module disabled
SPTIE — SPI Transmit Interrupt Enable Bit
This read/write bit enables CPU interrupt requests generated by the
SPTE bit. SPTE is set when a byte transfers from the transmit data
register to the shift register. Reset clears the SPTIE bit.
1 = SPTE CPU interrupt requests enabled
0 = SPTE CPU interrupt requests disabled
19.14.2 SPI Status and Control Register
The SPI status and control register contains flags to signal the following
conditions:
•
Receive data register full
•
Failure to clear SPRF bit before next byte is received (overflow
error)
•
Inconsistent logic level on SS pin (mode fault error)
•
Transmit data register empty
The SPI status and control register also contains bits that perform these
functions:
•
Enable error interrupts
•
Enable mode fault error detection
•
Select master SPI baud rate
Technical Data
312
MC68HC908AZ60A — Rev 2.0
Serial Peripheral Interface (SPI)
MOTOROLA
Serial Peripheral Interface (SPI)
I/O Registers
Address:
$0011
Bit 7
Read:
6
SPRF
5
4
3
OVRF
MODF
SPTE
ERRIE
2
1
Bit 0
MODFEN
SPR1
SPR0
0
0
0
Write:
Reset:
0
R
0
0
0
= Reserved
1
= Unimplemented
Figure 19-12. SPI Status and Control Register (SPSCR)
SPRF — SPI Receiver Full Bit
This clearable, read-only flag is set each time a byte transfers from
the shift register to the receive data register. SPRF generates a CPU
interrupt request if the SPRIE bit in the SPI control register is set also.
During an SPRF CPU interrupt, the CPU clears SPRF by reading the
SPI status and control register with SPRF set and then reading the
SPI data register. Any read of the SPI data register clears the SPRF
bit.
Reset clears the SPRF bit.
1 = Receive data register full
0 = Receive data register not full
ERRIE — Error Interrupt Enable Bit
This read-only bit enables the MODF and OVRF flags to generate
CPU interrupt requests. Reset clears the ERRIE bit.
1 = MODF and OVRF can generate CPU interrupt requests
0 = MODF and OVRF cannot generate CPU interrupt requests
OVRF — Overflow Bit
This clearable, read-only flag is set if software does not read the byte
in the receive data register before the next byte enters the shift
register. In an overflow condition, the byte already in the receive data
register is unaffected, and the byte that shifted in last is lost. Clear the
OVRF bit by reading the SPI status and control register with OVRF set
and then reading the SPI data register. Reset clears the OVRF flag.
1 = Overflow
0 = No overflow
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Serial Peripheral Interface (SPI)
313
Serial Peripheral Interface (SPI)
MODF — Mode Fault Bit
This clearable, read-only flag is set in a slave SPI if the SS pin goes
high during a transmission. In a master SPI, the MODF flag is set if
the SS pin goes low at any time. Clear the MODF bit by reading the
SPI status and control register with MODF set and then writing to the
SPI data register. Reset clears the MODF bit.
1 = SS pin at inappropriate logic level
0 = SS pin at appropriate logic level
SPTE — SPI Transmitter Empty Bit
This clearable, read-only flag is set each time the transmit data
register transfers a byte into the shift register. SPTE generates an
SPTE CPU interrupt request if the SPTIE bit in the SPI control register
is set also.
NOTE:
Do not write to the SPI data register unless the SPTE bit is high.
For an idle master or idle slave that has no data loaded into its
transmit buffer, the SPTE will be set again within two bus cycles since
the transmit buffer empties into the shift register. This allows the user
to queue up a 16-bit value to send. For an already active slave, the
load of the shift register cannot occur until the transmission is
completed. This implies that a back-to-back write to the transmit data
register is not possible. The SPTE indicates when the next write can
occur.
Reset sets the SPTE bit.
1 = Transmit data register empty
0 = Transmit data register not empty
MODFEN — Mode Fault Enable Bit
This read/write bit, when set to 1, allows the MODF flag to be set. If
the MODF flag is set, clearing the MODFEN does not clear the MODF
flag. If the SPI is enabled as a master and the MODFEN bit is low,
then the SS pin is available as a general-purpose I/O.
If the MODFEN bit is set, then this pin is not available as a general
purpose I/O. When the SPI is enabled as a slave, the SS pin is not
available as a general-purpose I/O regardless of the value of
MODFEN. (See SS (Slave Select) on page 308).
Technical Data
314
MC68HC908AZ60A — Rev 2.0
Serial Peripheral Interface (SPI)
MOTOROLA
Serial Peripheral Interface (SPI)
I/O Registers
If the MODFEN bit is low, the level of the SS pin does not affect the
operation of an enabled SPI configured as a master. For an enabled
SPI configured as a slave, having MODFEN low only prevents the
MODF flag from being set. It does not affect any other part of SPI
operation. (See Mode Fault Error on page 299).
SPR1 and SPR0 — SPI Baud Rate Select Bits
In master mode, these read/write bits select one of four baud rates as
shown in Table 19-6. SPR1 and SPR0 have no effect in slave mode.
Reset clears SPR1 and SPR0.
Table 19-6. SPI Master Baud Rate Selection
SPR1:SPR0
Baud Rate Divisor (BD)
00
2
01
8
10
32
11
128
Use this formula to calculate the SPI baud rate:
CGMOUT
Baud rate = -------------------------2 × BD
where:
CGMOUT = base clock output of the clock generator module (CGM),
see Clock Generator Module (CGM) on page 169.
BD = baud rate divisor
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Serial Peripheral Interface (SPI)
315
Serial Peripheral Interface (SPI)
19.14.3 SPI Data Register
The SPI data register is the read/write buffer for the receive data register
and the transmit data register. Writing to the SPI data register writes data
into the transmit data register. Reading the SPI data register reads data
from the receive data register. The transmit data and receive data
registers are separate buffers that can contain different values. See
Figure 19-1
Address:
$0012
Bit 7
6
5
4
3
2
1
Bit 0
Read:
R7
R6
R5
R4
R3
R2
R1
R0
Write:
T7
T6
T5
T4
T3
T2
T1
T0
Reset:
Indeterminate after Reset
Figure 19-13. SPI Data Register (SPDR)
R7–R0/T7–T0 — Receive/Transmit Data Bits
NOTE:
Do not use read-modify-write instructions on the SPI data register since
the buffer read is not the same as the buffer written.
Technical Data
316
MC68HC908AZ60A — Rev 2.0
Serial Peripheral Interface (SPI)
MOTOROLA
Technical Data — MC68HC908AZ60A
Section 20. Timer Interface Module B (TIMB)
20.1 Contents
20.2
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
20.3
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
20.4 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . .321
20.4.1 TIMB Counter Prescaler. . . . . . . . . . . . . . . . . . . . . . . . . . 321
20.4.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
20.4.3 Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
20.4.3.1
Unbuffered Output Compare. . . . . . . . . . . . . . . . . . . . 323
20.4.3.2
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . .324
20.4.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . .324
20.4.4.1
Unbuffered PWM Signal Generation . . . . . . . . . . . . . 325
20.4.4.2
Buffered PWM Signal Generation. . . . . . . . . . . . . . . . 326
20.4.4.3
PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
20.5
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
20.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
20.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
20.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
20.7
TIMB During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . 329
20.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
20.8.1 TIMB Clock Pin (PTD4/ATD12/TBCLK) . . . . . . . . . . . . . . 330
20.8.2 TIMB Channel I/O Pins (PTF5/TBCH1–PTF4/TBCH0) . . 330
20.9 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
20.9.1 TIMB Status and Control Register . . . . . . . . . . . . . . . . . 331
20.9.2 TIMB Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . 333
20.9.3 TIMB Counter Modulo Registers. . . . . . . . . . . . . . . . . . . 335
20.9.4 TIMB Channel Status and Control Registers. . . . . . . . . 336
20.9.5 TIMB Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . . 340
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Timer Interface Module B (TIMB)
317
Timer Interface Module B (TIMB)
20.2 Introduction
This section describes the timer interface module (TIMB). The TIMB is a
2-channel timer that provides a timing reference with input capture,
output compare and pulse width modulation functions. Figure 20-1 is a
block diagram of the TIMB.
The TIMB module is feature of the MC68HC908AZ60A only.
For further information regarding timers on M68HC08 family devices,
please consult the HC08 Timer Reference Manual, TIM08RM/AD.
20.3 Features
Features of the TIMB include:
•
Two Input Capture/Output Compare Channels
– Rising-Edge, Falling-Edge or Any-Edge Input Capture Trigger
– Set, Clear or Toggle Output Compare Action
•
Buffered and Unbuffered Pulse Width Modulation (PWM) Signal
Generation
•
Programmable TIMB Clock Input
– 7 Frequency Internal Bus Clock Prescaler Selection
– External TIMB Clock Input (4 MHz Maximum Frequency)
•
Free-Running or Modulo Up-Count Operation
•
Toggle Any Channel Pin on Overflow
•
TIMB Counter Stop and Reset Bits
Technical Data
318
MC68HC908AZ60A — Rev 2.0
Timer Interface Module B (TIMB)
MOTOROLA
Timer Interface Module B (TIMB)
Features
TCLK
PTD4/ATD12/TBCLK
PRESCALER SELECT
INTERNAL
BUS CLOCK
PRESCALER
TSTOP
PS2
TRST
PS1
PS0
16-BIT COUNTER
TOF
TOIE
INTERRUPT
LOGIC
16-BIT COMPARATOR
TMODH:TMODL
CHANNEL 0
ELS0B
ELS0A
TOV0
CH0MAX
16-BIT COMPARATOR
TCH0H:TCH0L
CH0F
16-BIT LATCH
MS0A
CHANNEL 1
ELS1B
MS0B
ELS1A
TOV1
CH1MAX
16-BIT COMPARATOR
TCH1H:TCH1L
CH0IE
CH1F
16-BIT LATCH
MS1A
CH1IE
PTF4
LOGIC
PTF4/TBCH0
INTERRUPT
LOGIC
PTF5
LOGIC
PTF5/TBCH1
INTERRUPT
LOGIC
Figure 20-1. TIMB Block Diagram
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Timer Interface Module B (TIMB)
319
Timer Interface Module B (TIMB)
Figure 20-2. TIMB I/O Register Summary
Addr.
Register Name
Bit 7
6
5
4
3
2
1
Bit 0
$0040
TIMB Status/Control Register (TBSC)
TOF
TOIE
TSTOP
TRST
0
PS2
PS1
PS0
$0041
TIMB Counter Register High (TBCNTH)
Bit 15
14
13
12
11
10
9
Bit 8
$0042
TIMB Counter Register Low (TBCNTL)
Bit 7
6
5
4
3
2
1
Bit 0
$0043
TIMB Counter Modulo Reg. High (TBMODH)
Bit 15
14
13
12
11
10
9
Bit 8
$0044
TIMB Counter Modulo Reg. Low (TBMODL)
Bit 7
6
5
4
3
2
1
Bit 0
$0045
TIMB Ch. 0 Status/Control Register (TBSC0)
CH0F
CH0IE
MS0B
MS0A
ELS0B
ELS0A
TOV0
CH0MAX
$0046
TIMB Ch. 0 Register High (TBCH0H)
Bit 15
14
13
12
11
10
9
Bit 8
$0047
TIMB Ch. 0 Register Low (TBCH0L)
Bit 7
6
5
4
3
2
1
Bit 0
$0048
TIMB Ch. 1 Status/Control Register (TBSC1)
CH1F
CH1IE
0
MS1A
ELS1B
ELS1A
TOV1
CH1MAX
$0049
TIMB Ch. 1 Register High (TBCH1H)
Bit 15
14
13
12
11
10
9
Bit 8
$004A
TIMB Ch. 1 Register Low (TBCH1L)
Bit 7
6
5
4
3
2
1
Bit 0
R
= Reserved
Technical Data
320
MC68HC908AZ60A — Rev 2.0
Timer Interface Module B (TIMB)
MOTOROLA
Timer Interface Module B (TIMB)
Functional Description
20.4 Functional Description
Figure 20-1 shows the TIMB structure. The central component of the
TIMB is the 16-bit TIMB counter that can operate as a free-running
counter or a modulo up-counter. The TIMB counter provides the timing
reference for the input capture and output compare functions. The TIMB
counter modulo registers, TBMODH–TBMODL, control the modulo
value of the TIMB counter. Software can read the TIMB counter value at
any time without affecting the counting sequence.
The two TIMB channels are programmable independently as input
capture or output compare channels.
20.4.1 TIMB Counter Prescaler
The TIMB clock source can be one of the seven prescaler outputs or the
TIMB clock pin, PTD4/ATD12/TBCLK. The prescaler generates seven
clock rates from the internal bus clock. The prescaler select bits, PS[2:0],
in the TIMB status and control register select the TIMB clock source.
20.4.2 Input Capture
An input capture function has three basic parts: edge select logic, an
input capture latch and a 16-bit counter. Two 8-bit registers, which make
up the 16-bit input capture register, are used to latch the value of the
free-running counter after the corresponding input capture edge detector
senses a defined transition. The polarity of the active edge is
programmable. The level transition which triggers the counter transfer is
defined by the corresponding input edge bits (ELSxB and ELSxA in
TBSC0 through TBSC1 control registers with x referring to the active
channel number). When an active edge occurs on the pin of an input
capture channel, the TIMB latches the contents of the TIMB counter into
the TIMB channel registers, TBCHxH–TBCHxL. Input captures can
generate TIMB CPU interrupt requests. Software can determine that an
input capture event has occurred by enabling input capture interrupts or
by polling the status flag bit.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Timer Interface Module B (TIMB)
321
Timer Interface Module B (TIMB)
The free-running counter contents are transferred to the TIMB channel
register (TBCHxH–TBCHxL, see TIMB Channel Registers on page
340) on each proper signal transition regardless of whether the TIMB
channel flag (CH0F–CH1F in TBSC0–TBSC1 registers) is set or clear.
When the status flag is set, a CPU interrupt is generated if enabled. The
value of the count latched or “captured” is the time of the event. Because
this value is stored in the input capture register 2 bus cycles after the
actual event occurs, user software can respond to this event at a later
time and determine the actual time of the event. However, this must be
done prior to another input capture on the same pin; otherwise, the
previous time value will be lost.
By recording the times for successive edges on an incoming signal,
software can determine the period and/or pulse width of the signal. To
measure a period, two successive edges of the same polarity are
captured. To measure a pulse width, two alternate polarity edges are
captured. Software should track the overflows at the 16-bit module
counter to extend its range.
Another use for the input capture function is to establish a time
reference. In this case, an input capture function is used in conjunction
with an output compare function. For example, to activate an output
signal a specified number of clock cycles after detecting an input event
(edge), use the input capture function to record the time at which the
edge occurred. A number corresponding to the desired delay is added to
this captured value and stored to an output compare register (see TIMB
Channel Registers on page 340). Because both input captures and
output compares are referenced to the same 16-bit modulo counter, the
delay can be controlled to the resolution of the counter independent of
software latencies.
Reset does not affect the contents of the input capture channel register
(TBCHxH–TBCHxL).
Technical Data
322
MC68HC908AZ60A — Rev 2.0
Timer Interface Module B (TIMB)
MOTOROLA
Timer Interface Module B (TIMB)
Functional Description
20.4.3 Output Compare
With the output compare function, the TIMB can generate a periodic
pulse with a programmable polarity, duration and frequency. When the
counter reaches the value in the registers of an output compare channel,
the TIMB can set, clear or toggle the channel pin. Output compares can
generate TIMB CPU interrupt requests.
20.4.3.1 Unbuffered Output Compare
Any output compare channel can generate unbuffered output compare
pulses as described in Output Compare on page 323. The pulses are
unbuffered because changing the output compare value requires writing
the new value over the old value currently in the TIMB channel registers.
An unsynchronized write to the TIMB channel registers to change an
output compare value could cause incorrect operation for up to two
counter overflow periods. For example, writing a new value before the
counter reaches the old value but after the counter reaches the new
value prevents any compare during that counter overflow period. Also,
using a TIMB overflow interrupt routine to write a new, smaller output
compare value may cause the compare to be missed. The TIMB may
pass the new value before it is written.
Use the following methods to synchronize unbuffered changes in the
output compare value on channel x:
•
When changing to a smaller value, enable channel x output
compare interrupts and write the new value in the output compare
interrupt routine. The output compare interrupt occurs at the end
of the current output compare pulse. The interrupt routine has until
the end of the counter overflow period to write the new value.
•
When changing to a larger output compare value, enable TIMB
overflow interrupts and write the new value in the TIMB overflow
interrupt routine. The TIMB overflow interrupt occurs at the end of
the current counter overflow period. Writing a larger value in an
output compare interrupt routine (at the end of the current pulse)
could cause two output compares to occur in the same counter
overflow period.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Timer Interface Module B (TIMB)
323
Timer Interface Module B (TIMB)
20.4.3.2 Buffered Output Compare
Channels 0 and 1 can be linked to form a buffered output compare
channel whose output appears on the PTF4/TBCH0 pin. The TIMB
channel registers of the linked pair alternately control the output.
Setting the MS0B bit in TIMB channel 0 status and control register
(TBSC0) links channel 0 and channel 1. The output compare value in the
TIMB channel 0 registers initially controls the output on the
PTF4/TBCH0 pin. Writing to the TIMB channel 1 registers enables the
TIMB channel 1 registers to synchronously control the output after the
TIMB overflows. At each subsequent overflow, the TIMB channel
registers (0 or 1) that control the output are the ones written to last.
TBSC0 controls and monitors the buffered output compare function and
TIMB channel 1 status and control register (TBSC1) is unused. While the
MS0B bit is set, the channel 1 pin, PTF5/TBCH1, is available as a
general-purpose I/O pin.
NOTE:
In buffered output compare operation, do not write new output compare
values to the currently active channel registers. User software should
track the currently active channel to prevent writing a new value to the
active channel. Writing to the active channel registers is the same as
generating unbuffered output compares.
20.4.4 Pulse Width Modulation (PWM)
By using the toggle-on-overflow feature with an output compare channel,
the TIMB can generate a PWM signal. The value in the TIMB counter
modulo registers determines the period of the PWM signal. The channel
pin toggles when the counter reaches the value in the TIMB counter
modulo registers. The time between overflows is the period of the PWM
signal.
As Figure 20-3 shows, the output compare value in the TIMB channel
registers determines the pulse width of the PWM signal. The time
between overflow and output compare is the pulse width. Program the
TIMB to clear the channel pin on output compare if the state of the PWM
pulse is logic 1. Program the TIMB to set the pin if the state of the PWM
pulse is logic 0.
Technical Data
324
MC68HC908AZ60A — Rev 2.0
Timer Interface Module B (TIMB)
MOTOROLA
Timer Interface Module B (TIMB)
Functional Description
OVERFLOW
OVERFLOW
OVERFLOW
PERIOD
PULSE
WIDTH
PTEx/TCHx
OUTPUT
COMPARE
OUTPUT
COMPARE
OUTPUT
COMPARE
Figure 20-3. PWM Period and Pulse Width
The value in the TIMB counter modulo registers and the selected
prescaler output determines the frequency of the PWM output. The
frequency of an 8-bit PWM signal is variable in 256 increments. Writing
$00FF (255) to the TIMB counter modulo registers produces a PWM
period of 256 times the internal bus clock period if the prescaler select
value is $000 (see TIMB Status and Control Register).
The value in the TIMB channel registers determines the pulse width of
the PWM output. The pulse width of an 8-bit PWM signal is variable in
256 increments. Writing $0080 (128) to the TIMB channel registers
produces a duty cycle of 128/256 or 50%.
20.4.4.1 Unbuffered PWM Signal Generation
Any output compare channel can generate unbuffered PWM pulses as
described in Pulse Width Modulation (PWM) on page 324. The pulses
are unbuffered because changing the pulse width requires writing the
new pulse width value over the value currently in the TIMB channel
registers.
An unsynchronized write to the TIMB channel registers to change a
pulse width value could cause incorrect operation for up to two PWM
periods. For example, writing a new value before the counter reaches
the old value but after the counter reaches the new value prevents any
compare during that PWM period. Also, using a TIMB overflow interrupt
routine to write a new, smaller pulse width value may cause the compare
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Timer Interface Module B (TIMB)
325
Timer Interface Module B (TIMB)
to be missed. The TIMB may pass the new value before it is written to
the TIMB channel registers.
Use the following methods to synchronize unbuffered changes in the
PWM pulse width on channel x:
NOTE:
•
When changing to a shorter pulse width, enable channel x output
compare interrupts and write the new value in the output compare
interrupt routine. The output compare interrupt occurs at the end
of the current pulse. The interrupt routine has until the end of the
PWM period to write the new value.
•
When changing to a longer pulse width, enable TIMB overflow
interrupts and write the new value in the TIMB overflow interrupt
routine. The TIMB overflow interrupt occurs at the end of the
current PWM period. Writing a larger value in an output compare
interrupt routine (at the end of the current pulse) could cause two
output compares to occur in the same PWM period.
In PWM signal generation, do not program the PWM channel to toggle
on output compare. Toggling on output compare prevents reliable 0%
duty cycle generation and removes the ability of the channel to selfcorrect in the event of software error or noise. Toggling on output
compare also can cause incorrect PWM signal generation when
changing the PWM pulse width to a new, much larger value.
20.4.4.2 Buffered PWM Signal Generation
Channels 0 and 1 can be linked to form a buffered PWM channel whose
output appears on the PTF4/TBCH0 pin. The TIMB channel registers of
the linked pair alternately control the pulse width of the output.
Setting the MS0B bit in TIMB channel 0 status and control register
(TBSC0) links channel 0 and channel 1. The TIMB channel 0 registers
initially control the pulse width on the PTF4/TBCH0 pin. Writing to the
TIMB channel 1 registers enables the TIMB channel 1 registers to
synchronously control the pulse width at the beginning of the next PWM
period. At each subsequent overflow, the TIMB channel registers (0 or
1) that control the pulse width are the ones written to last. TBSC0
controls and monitors the buffered PWM function, and TIMB channel 1
Technical Data
326
MC68HC908AZ60A — Rev 2.0
Timer Interface Module B (TIMB)
MOTOROLA
Timer Interface Module B (TIMB)
Functional Description
status and control register (TBSC1) is unused. While the MS0B bit is set,
the channel 1 pin, PTF5/TBCH1, is available as a general-purpose I/O
pin.
NOTE:
In buffered PWM signal generation, do not write new pulse width values
to the currently active channel registers. User software should track the
currently active channel to prevent writing a new value to the active
channel. Writing to the active channel registers is the same as
generating unbuffered PWM signals.
20.4.4.3 PWM Initialization
To ensure correct operation when generating unbuffered or buffered
PWM signals, use the following initialization procedure:
1. In the TIMB status and control register (TBSC):
a. Stop the TIMB counter by setting the TIMB stop bit, TSTOP.
b. Reset the TIMB counter and prescaler by setting the TIMB
reset bit, TRST.
2. In the TIMB counter modulo registers (TBMODH–TBMODL) write
the value for the required PWM period.
3. In the TIMB channel x registers (TBCHxH–TBCHxL) write the
value for the required pulse width.
4. In TIMB channel x status and control register (TBSCx):
a. Write 0:1 (for unbuffered output compare or PWM signals) or
1:0 (for buffered output compare or PWM signals) to the
mode select bits, MSxB–MSxA (see Table 20-2).
b. Write 1 to the toggle-on-overflow bit, TOVx.
c. Write 1:0 (to clear output on compare) or 1:1 (to set output on
compare) to the edge/level select bits, ELSxB–ELSxA. The
output action on compare must force the output to the
complement of the pulse width level (see Table 20-2).
NOTE:
In PWM signal generation, do not program the PWM channel to toggle
on output compare. Toggling on output compare prevents reliable 0%
duty cycle generation and removes the ability of the channel to selfcorrect in the event of software error or noise. Toggling on output
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Timer Interface Module B (TIMB)
327
Timer Interface Module B (TIMB)
compare can also cause incorrect PWM signal generation when
changing the PWM pulse width to a new, much larger value.
5. In the TIMB status control register (TBSC) clear the TIMB stop bit,
TSTOP.
Setting MS0B links channels 0 and 1 and configures them for buffered
PWM operation. The TIMB channel 0 registers (TBCH0H–TBCH0L)
initially control the buffered PWM output. TIMB status control register 0
(TBSC0) controls and monitors the PWM signal from the linked
channels. MS0B takes priority over MS0A.
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on
TIMB overflows. Subsequent output compares try to force the output to
a state it is already in and have no effect. The result is a 0% duty cycle
output.
Setting the channel x maximum duty cycle bit (CHxMAX) and setting the
TOVx bit generates a 100% duty cycle output (see TIMB Channel
Status and Control Registers on page 336).
20.5 Interrupts
The following TIMB sources can generate interrupt requests:
•
TIMB overflow flag (TOF) — The TOF bit is set when the TIMB
counter value reaches the modulo value programmed in the TIMB
counter modulo registers. The TIMB overflow interrupt enable bit,
TOIE, enables TIMB overflow CPU interrupt requests. TOF and
TOIE are in the TIMB status and control register.
•
TIMB channel flags (CH1F–CH0F) — The CHxF bit is set when an
input capture or output compare occurs on channel x. Channel x
TIMB CPU interrupt requests are controlled by the channel x
interrupt enable bit, CHxIE.
Technical Data
328
MC68HC908AZ60A — Rev 2.0
Timer Interface Module B (TIMB)
MOTOROLA
Timer Interface Module B (TIMB)
Low-Power Modes
20.6 Low-Power Modes
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.
20.6.1 Wait Mode
The TIMB remains active after the execution of a WAIT instruction. In
wait mode, the TIMB registers are not accessible by the CPU. Any
enabled CPU interrupt request from the TIMB can bring the MCU out of
wait mode.
If TIMB functions are not required during wait mode, reduce power
consumption by stopping the TIMB before executing the WAIT
instruction.
20.6.2 Stop Mode
The TIMB is inactive after the execution of a STOP instruction. The
STOP instruction does not affect register conditions or the state of the
TIMB counter. TIMB operation resumes when the MCU exits stop mode.
20.7 TIMB During Break Interrupts
A break interrupt stops the TIMB counter and inhibits input captures.
The system integration module (SIM) controls whether status bits in
other modules can be cleared during the break state. The BCFE bit in
the SIM break flag control register (SBFCR) enables software to clear
status bits during the break state (see SIM Break Flag Control Register
on page 168).
To allow software to clear status bits during a break interrupt, write a
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it
remains cleared when the MCU exits the break state.
To protect status bits during the break state, write a logic 0 to the BCFE
bit. With BCFE at logic 0 (its default state), software can read and write
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Timer Interface Module B (TIMB)
329
Timer Interface Module B (TIMB)
I/O registers during the break state without affecting status bits. Some
status bits have a 2-step read/write clearing procedure. If software does
the first step on such a bit before the break, the bit cannot change during
the break state as long as BCFE is at logic 0. After the break, doing the
second step clears the status bit.
20.8 I/O Signals
Port D shares one of its pins with the TIMB. Port F shares two of its pins
with the TIMB. PTD4/ATD12/TBCLK is an external clock input to the
TIMB prescaler. The two TIMB channel I/O pins are PTF4/TBCH0 and
PTF5/TBCH1.
20.8.1 TIMB Clock Pin (PTD4/ATD12/TBCLK)
PTD4/ATD12/TBCLK is an external clock input that can be the clock
source for the TIMB counter instead of the prescaled internal bus clock.
Select the PTD4/ATD12/TBCLK input by writing logic 1s to the three
prescaler select bits, PS[2:0] (see TIMB Status and Control Register).
The minimum TCLK pulse width, TCLKLMIN or TCLKHMIN, is:
1
------------------------------------- + t SU
bus frequency
The maximum TCLK frequency is the least: 4 MHz or bus frequency ÷ 2.
PTD4/ATD12/TBCLK is available as a general-purpose I/O pin or ADC
channel when not used as the TIMB clock input. When the
PTD4/ATD12/TBCLK pin is the TIMB clock input, it is an input regardless
of the state of the DDRD4 bit in data direction register D.
20.8.2 TIMB Channel I/O Pins (PTF5/TBCH1–PTF4/TBCH0)
Each channel I/O pin is programmable independently as an input
capture pin or an output compare pin. PTF4/TBCH0 and PTF5/TBCH1
can be configured as buffered output compare or buffered PWM pins.
Technical Data
330
MC68HC908AZ60A — Rev 2.0
Timer Interface Module B (TIMB)
MOTOROLA
Timer Interface Module B (TIMB)
I/O Registers
20.9 I/O Registers
These I/O registers control and monitor TIMB operation:
•
TIMB status and control register (TBSC)
•
TIMB control registers (TBCNTH–TBCNTL)
•
TIMB counter modulo registers (TBMODH–TBMODL)
•
TIMB channel status and control registers (TBSC0 and TBSC1)
•
TIMB channel registers (TBCH0H–TBCH0L, TBCH1H–TBCH1L)
20.9.1 TIMB Status and Control Register
The TIMB status and control register:
•
Enables TIMB overflow interrupts
•
Flags TIMB overflows
•
Stops the TIMB counter
•
Resets the TIMB counter
•
Prescales the TIMB counter clock
Address:
$0040
Bit 7
Read:
6
5
TOIE
TSTOP
TOF
Write:
0
Reset:
0
R
0
1
4
3
0
0
TRST
R
0
0
2
1
Bit 0
PS2
PS1
PS0
0
0
0
= Reserved
Figure 20-4. TIMB Status and Control Register (TBSC)
TOF — TIMB Overflow Flag Bit
This read/write flag is set when the TIMB counter reaches the modulo
value programmed in the TIMB counter modulo registers. Clear TOF
by reading the TIMB status and control register when TOF is set and
then writing a logic 0 to TOF. If another TIMB overflow occurs before
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Timer Interface Module B (TIMB)
331
Timer Interface Module B (TIMB)
the clearing sequence is complete, then writing logic 0 to TOF has no
effect. Therefore, a TOF interrupt request cannot be lost due to
inadvertent clearing of TOF. Reset clears the TOF bit. Writing a logic
1 to TOF has no effect.
1 = TIMB counter has reached modulo value
0 = TIMB counter has not reached modulo value
TOIE — TIMB Overflow Interrupt Enable Bit
This read/write bit enables TIMB overflow interrupts when the TOF bit
becomes set. Reset clears the TOIE bit.
1 = TIMB overflow interrupts enabled
0 = TIMB overflow interrupts disabled
TSTOP — TIMB Stop Bit
This read/write bit stops the TIMB counter. Counting resumes when
TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIMB
counter until software clears the TSTOP bit.
1 = TIMB counter stopped
0 = TIMB counter active
NOTE:
Do not set the TSTOP bit before entering wait mode if the TIMB is
required to exit wait mode. Also, when the TSTOP bit is set and the timer
is configured for input capture operation, input captures are inhibited
until TSTOP is cleared.
TRST — TIMB Reset Bit
Setting this write-only bit resets the TIMB counter and the TIMB
prescaler. Setting TRST has no effect on any other registers.
Counting resumes from $0000. TRST is cleared automatically after
the TIMB counter is reset and always reads as logic 0. Reset clears
the TRST bit.
1 = Prescaler and TIMB counter cleared
0 = No effect
NOTE:
Setting the TSTOP and TRST bits simultaneously stops the TIMB
counter at a value of $0000.
Technical Data
332
MC68HC908AZ60A — Rev 2.0
Timer Interface Module B (TIMB)
MOTOROLA
Timer Interface Module B (TIMB)
I/O Registers
PS[2:0] — Prescaler Select Bits
These read/write bits select either the PTD4/ATD12/TBCLK pin or
one of the seven prescaler outputs as the input to the TIMB counter
as Table 20-1 shows. Reset clears the PS[2:0] bits.
Table 20-1. Prescaler Selection
PS[2:0]
TIMB Clock Source
000
Internal Bus Clock ÷1
001
Internal Bus Clock ÷ 2
010
Internal Bus Clock ÷ 4
011
Internal Bus Clock ÷ 8
100
Internal Bus Clock ÷ 16
101
Internal Bus Clock ÷ 32
110
Internal Bus Clock ÷ 64
111
PTD4/ATD12/TBCLK
20.9.2 TIMB Counter Registers
The two read-only TIMB counter registers contain the high and low bytes
of the value in the TIMB counter. Reading the high byte (TBCNTH)
latches the contents of the low byte (TBCNTL) into a buffer. Subsequent
reads of TBCNTH do not affect the latched TBCNTL value until TBCNTL
is read. Reset clears the TIMB counter registers. Setting the TIMB reset
bit (TRST) also clears the TIMB counter registers.
NOTE:
If TBCNTH is read during a break interrupt, be sure to unlatch TBCNTL
by reading TBCNTL before exiting the break interrupt. Otherwise,
TBCNTL retains the value latched during the break.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Timer Interface Module B (TIMB)
333
Timer Interface Module B (TIMB)
Register Name and Address TBCNTH — $0041
Bit 7
6
5
4
3
2
1
Bit 0
Read:
BIT 15
BIT 14
BIT 13
BIT 12
BIT 11
BIT 10
BIT 9
BIT 8
Write:
R
R
R
R
R
R
R
R
Reset:
0
0
0
0
0
0
0
0
Register Name and Address TBCNTL — $0042
Bit 7
6
5
4
3
2
1
Bit 0
Read:
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
Write:
R
R
R
R
R
R
R
R
Reset:
0
0
0
0
0
0
0
0
R
R = Reserved
Figure 20-5. TIMB Counter Registers (TBCNTH and TBCNTL)
Technical Data
334
MC68HC908AZ60A — Rev 2.0
Timer Interface Module B (TIMB)
MOTOROLA
Timer Interface Module B (TIMB)
I/O Registers
20.9.3 TIMB Counter Modulo Registers
The read/write TIMB modulo registers contain the modulo value for the
TIMB counter. When the TIMB counter reaches the modulo value, the
overflow flag (TOF) becomes set and the TIMB counter resumes
counting from $0000 at the next timer clock. Writing to the high byte
(TBMODH) inhibits the TOF bit and overflow interrupts until the low byte
(TBMODL) is written. Reset sets the TIMB counter modulo registers.
Register Name and Address TBMODH — $0043
Bit 7
6
5
4
3
2
1
Bit 0
BIT 15
BIT 14
BIT 13
BIT 12
BIT 11
BIT 10
BIT 9
BIT 8
1
1
1
1
1
1
1
1
Read:
Write:
Reset:
Register Name and Address TBMODL — $0044
Bit 7
6
5
4
3
2
1
Bit 0
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
1
1
1
1
1
1
1
1
Read:
Write:
Reset:
Figure 20-6. TIMB Counter Modulo Registers (TBMODH and
TBMODL)
NOTE:
Reset the TIMB counter before writing to the TIMB counter modulo
registers.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Timer Interface Module B (TIMB)
335
Timer Interface Module B (TIMB)
20.9.4 TIMB Channel Status and Control Registers
Each of the TIMB channel status and control registers:
•
Flags input captures and output compares
•
Enables input capture and output compare interrupts
•
Selects input capture, output compare or PWM operation
•
Selects high, low or toggling output on output compare
•
Selects rising edge, falling edge or any edge as the active input
capture trigger
•
Selects output toggling on TIMB overflow
•
Selects 0% and 100% PWM duty cycle
•
Selects buffered or unbuffered output compare/PWM operation
Register Name and Address TBSC0 — $0045
Bit 7
Read:
CH0F
Write:
0
Reset:
0
6
5
4
3
2
1
Bit 0
CH0IE
MS0B
MS0A
ELS0B
ELS0A
TOV0
CH0MAX
0
0
0
0
0
0
0
4
3
2
1
Bit 0
MS1A
ELS1B
ELS1A
TOV1
CH1MAX
0
0
0
0
0
Register Name and Address TBSC1 — $0048
Bit 7
Read:
6
CH1F
5
0
CH1IE
Write:
0
Reset:
0
R
R
0
0
R = Reserved
Figure 20-7. TIMB Channel Status and Control Registers
(TBSC0–TBSC1)
Technical Data
336
MC68HC908AZ60A — Rev 2.0
Timer Interface Module B (TIMB)
MOTOROLA
Timer Interface Module B (TIMB)
I/O Registers
CHxF — Channel x Flag Bit
When channel x is an input capture channel, this read/write bit is set
when an active edge occurs on the channel x pin. When channel x is
an output compare channel, CHxF is set when the value in the TIMB
counter registers matches the value in the TIMB channel x registers.
When CHxIE = 1, clear CHxF by reading TIMB channel x status and
control register with CHxF set, and then writing a logic 0 to CHxF. If
another interrupt request occurs before the clearing sequence is
complete, then writing logic 0 to CHxF has no effect. Therefore, an
interrupt request cannot be lost due to inadvertent clearing of CHxF.
Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect.
1 = Input capture or output compare on channel x
0 = No input capture or output compare on channel x
CHxIE — Channel x Interrupt Enable Bit
This read/write bit enables TIMB CPU interrupts on channel x.
Reset clears the CHxIE bit.
1 = Channel x CPU interrupt requests enabled
0 = Channel x CPU interrupt requests disabled
MSxB — Mode Select Bit B
This read/write bit selects buffered output compare/PWM operation.
MSxB exists only in the TIMB channel 0.
Setting MS0B disables the channel 1 status and control register and
reverts TBCH1 to general-purpose I/O.
Reset clears the MSxB bit.
1 = Buffered output compare/PWM operation enabled
0 = Buffered output compare/PWM operation disabled
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Timer Interface Module B (TIMB)
337
Timer Interface Module B (TIMB)
MSxA — Mode Select Bit A
When ELSxB:A ≠ 00, this read/write bit selects either input capture
operation or unbuffered output compare/PWM operation (see Table
20-2).
1 = Unbuffered output compare/PWM operation
0 = Input capture operation
When ELSxB:A = 00, this read/write bit selects the initial output level
of the TBCHx pin once PWM, input capture or output compare
operation is enabled (see Table 20-2). Reset clears the MSxA bit.
1 = Initial output level low
0 = Initial output level high
NOTE:
Before changing a channel function by writing to the MSxB or MSxA bit,
set the TSTOP and TRST bits in the TIMB status and control register
(TBSC).
ELSxB and ELSxA — Edge/Level Select Bits
When channel x is an input capture channel, these read/write bits
control the active edge-sensing logic on channel x.
When channel x is an output compare channel, ELSxB and ELSxA
control the channel x output behavior when an output compare
occurs.
When ELSxB and ELSxA are both clear, channel x is not connected
to port F and pin PTFx/TBCHx is available as a general-purpose I/O
pin. However, channel x is at a state determined by these bits and
becomes transparent to the respective pin when PWM, input capture,
or output compare mode is enabled. Table 20-2 shows how ELSxB
and ELSxA work. Reset clears the ELSxB and ELSxA bits.
Technical Data
338
MC68HC908AZ60A — Rev 2.0
Timer Interface Module B (TIMB)
MOTOROLA
Timer Interface Module B (TIMB)
I/O Registers
Table 20-2. Mode, Edge, and Level Selection
MSxB:MSxA
ELSxB:ELSxA
X0
00
Mode
Output
Preset
NOTE:
X1
00
00
01
00
10
00
11
01
01
01
10
01
11
1X
01
1X
10
1X
11
Configuration
Pin under Port Control;
Initialize Timer
Output Level High
Pin under Port Control;
Initialize Timer
Output Level Low
Capture on Rising Edge Only
Input
Capture
Capture on Falling Edge Only
Capture on Rising or Falling Edge
Output
Compare
or PWM
Buffered
Output
Compare
or Buffered
PWM
Toggle Output on Compare
Clear Output on Compare
Set Output on Compare
Toggle Output on Compare
Clear Output on Compare
Set Output on Compare
Before enabling a TIMB channel register for input capture operation,
make sure that the PTFx/TBCHx pin is stable for at least two bus clocks.
TOVx — Toggle-On-Overflow Bit
When channel x is an output compare channel, this read/write bit
controls the behavior of the channel x output when the TIMB counter
overflows. When channel x is an input capture channel, TOVx has no
effect. Reset clears the TOVx bit.
1 = Channel x pin toggles on TIMB counter overflow.
0 = Channel x pin does not toggle on TIMB counter overflow.
NOTE:
When TOVx is set, a TIMB counter overflow takes precedence over a
channel x output compare if both occur at the same time.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Timer Interface Module B (TIMB)
339
Timer Interface Module B (TIMB)
CHxMAX — Channel x Maximum Duty Cycle Bit
When the TOVx bit is at logic 1, setting the CHxMAX bit forces the
duty cycle of buffered and unbuffered PWM signals to 100%. As
Figure 20-8 shows, the CHxMAX bit takes effect in the cycle after it
is set or cleared. The output stays at the 100% duty cycle level until
the cycle after CHxMAX is cleared.
OVERFLOW
OVERFLOW
OVERFLOW
OVERFLOW
OVERFLOW
PERIOD
PTEx/TCHx
OUTPUT
COMPARE
OUTPUT
COMPARE
OUTPUT
COMPARE
OUTPUT
COMPARE
CHxMAX
Figure 20-8. CHxMAX Latency
20.9.5 TIMB Channel Registers
These read/write registers contain the captured TIMB counter value of
the input capture function or the output compare value of the output
compare function. The state of the TIMB channel registers after reset is
unknown.
In input capture mode (MSxB–MSxA = 0:0) reading the high byte of the
TIMB channel x registers (TBCHxH) inhibits input captures until the low
byte (TBCHxL) is read.
In output compare mode (MSxB–MSxA ≠ 0:0) writing to the high byte of
the TIMB channel x registers (TBCHxH) inhibits output compares and
the CHxF bit until the low byte (TBCHxL) is written.
Technical Data
340
MC68HC908AZ60A — Rev 2.0
Timer Interface Module B (TIMB)
MOTOROLA
Timer Interface Module B (TIMB)
I/O Registers
Register Name and Address TBCH0H — $0046
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
Read:
Write:
Reset:
Indeterminate after Reset
Register Name and Address TBCH0L — $0047
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Read:
Write:
Reset:
Indeterminate after Reset
Register Name and Address TBCH1H — $0049
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
Read:
Write:
Reset:
Indeterminate after Reset
Register Name and Address TBCH1L — $004A
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Read:
Write:
Reset:
Indeterminate after Reset
Figure 20-9. TIMB Channel Registers (TBCH0H/L–TBCH1H/L)
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Timer Interface Module B (TIMB)
341
Timer Interface Module B (TIMB)
Technical Data
342
MC68HC908AZ60A — Rev 2.0
Timer Interface Module B (TIMB)
MOTOROLA
Technical Data — MC68HC908AZ60A
Section 21. Programmable Interrupt Timer (PIT)
21.1 Contents
21.2
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
21.3
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
21.4
Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . .344
21.5
PIT Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
21.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
21.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
21.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
21.7
PIT During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . 347
21.8 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
21.8.1 PIT Status and Control Register . . . . . . . . . . . . . . . . . . . 347
21.8.2 PIT Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
21.8.3 PIT Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . 351
21.2 Introduction
This section describes the Programmable Interrupt Timer (PIT) which is
a periodic interrupt timer whose counter is clocked internally via software
programmable options. Figure 21-1 is a block diagram of the PIT.
For further information regarding timers on M68HC08 family devices,
please consult the HC08 Timer Reference Manual, TIM08RM/AD.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Programmable Interrupt Timer (PIT)
343
Programmable Interrupt Timer (PIT)
21.3 Features
Features of the PIT include:
•
Programmable PIT Clock Input
•
Free-Running or Modulo Up-Count Operation
•
PIT Counter Stop and Reset Bits
21.4 Functional Description
Figure 21-1 shows the structure of the PIT. The central component of
the PIT is the 16-bit PIT counter that can operate as a free-running
counter or a modulo up-counter. The counter provides the timing
reference for the interrupt. The PIT counter modulo registers,
PMODH–PMODL, control the modulo value of the counter. Software can
read the counter value at any time without affecting the counting
sequence.
PRESCALER SELECT
INTERNAL
BUS CLOCK
PRESCALER
CSTOP
PPS2
CRST
PPS1
PPS0
16-BIT COUNTER
POF
POIE
INTERRUPT
LOGIC
16-BIT COMPARATOR
TIMPMODH:TIMPMODL
Figure 21-1. PIT Block Diagram
Technical Data
344
MC68HC908AZ60A — Rev 2.0
Programmable Interrupt Timer (PIT)
MOTOROLA
Programmable Interrupt Timer (PIT)
Functional Description
Register Name
Bit 7
6
5
POIE
PSTOP
4
3
0
0
2
1
Bit 0
PPS2
PPS1
PPS0
Read:
PIT Status and Control Register
Write:
(PSC)
Reset:
POF
0
0
1
0
0
0
0
0
Read:
PIT Counter Register High
Write:
(PCNTH)
Reset:
Bit 15
14
13
12
11
10
9
Bit 8
0
0
0
0
0
0
0
0
Read:
PIT Counter Register Low
Write:
(PCNTL)
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
Bit 15
14
13
12
11
10
9
Bit 8
1
1
1
1
1
1
1
1
Bit 7
6
5
4
3
2
1
Bit 0
1
1
1
1
1
1
1
1
Read:
PIT Counter Modulo Register High
Write:
(PMODH)
Reset:
Read:
PIT Counter Modulo Register Low
Write:
(PMODL)
Reset:
0
PRST
=Unimplemented
Figure 21-2. PIT I/O Register Summary
Table 21-1. PIT I/O Register Address Summary
Register
PSC
PCNTH
PCNTL
PMODH
PMODL
Address
$004B
$004C
$004D
$004E
$004F
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Programmable Interrupt Timer (PIT)
345
Programmable Interrupt Timer (PIT)
21.5 PIT Counter Prescaler
The clock source can be one of the seven prescaler outputs. The
prescaler generates seven clock rates from the internal bus clock. The
prescaler select bits, PPS[2:0], in the status and control register select
the PIT clock source.
The value in the PIT counter modulo registers and the selected prescaler
output determines the frequency of the periodic interrupt. The PIT
overflow flag (POF) is set when the PIT counter value reaches the
modulo value programmed in the PIT counter modulo registers. The PIT
interrupt enable bit, POIE, enables PIT overflow CPU interrupt requests.
POF and POIE are in the PIT status and control register.
21.6 Low-Power Modes
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.
21.6.1 Wait Mode
The PIT remains active after the execution of a WAIT instruction. In wait
mode the PIT registers are not accessible by the CPU. Any enabled CPU
interrupt request from the PIT can bring the MCU out of wait mode.
If PIT functions are not required during wait mode, reduce power
consumption by stopping the PIT before executing the WAIT instruction.
21.6.2 Stop Mode
The PIT is inactive after the execution of a STOP instruction. The STOP
instruction does not affect register conditions or the state of the PIT
counter. PIT operation resumes when the MCU exits stop mode after an
external interrupt.
Technical Data
346
MC68HC908AZ60A — Rev 2.0
Programmable Interrupt Timer (PIT)
MOTOROLA
Programmable Interrupt Timer (PIT)
PIT During Break Interrupts
21.7 PIT During Break Interrupts
A break interrupt stops the PIT counter.
The system integration module (SIM) controls whether status bits in
other modules can be cleared during the break state. The BCFE bit in
the SIM break flag control register (SBFCR) enables software to clear
status bits during the break state (see SIM Break Flag Control Register
on page 168).
To allow software to clear status bits during a break interrupt, write a
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it
remains cleared when the MCU exits the break state.
To protect status bits during the break state, write a logic 0 to the BCFE
bit. With BCFE at logic 0 (its default state), software can read and write
I/O registers during the break state without affecting status bits. Some
status bits have a 2-step read/write clearing procedure. If software does
the first step on such a bit before the break, the bit cannot change during
the break state as long as BCFE is at logic 0. After the break, doing the
second step clears the status bit.
21.8 I/O Registers
The following I/O registers control and monitor operation of the PIT:
•
PIT status and control register (PSC)
•
PIT counter registers (PCNTH–PCNTL)
•
PIT counter modulo registers (PMODH–PMODL)
21.8.1 PIT Status and Control Register
The PIT status and control register:
•
Enables PIT interrupt
•
Flags PIT overflows
•
Stops the PIT counter
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Programmable Interrupt Timer (PIT)
347
Programmable Interrupt Timer (PIT)
•
Resets the PIT counter
•
Prescales the PIT counter clock
Address:
$004B
Bit 7
Read:
6
5
POIE
PSTOP
POF
Write:
0
Reset:
0
4
3
0
0
2
1
Bit 0
PPS2
PPS1
PPS0
0
0
0
PRST
0
1
0
0
= Unimplemented
Figure 21-3. PIT Status and Control Register (PSC)
POF — PIT Overflow Flag Bit
This read/write flag is set when the PIT counter reaches the modulo
value programmed in the PIT counter modulo registers. Clear POF by
reading the PIT status and control register when POF is set and then
writing a logic 0 to POF. If another PIT overflow occurs before the
clearing sequence is complete, then writing logic 0 to POF has no
effect. Therefore, a POF interrupt request cannot be lost due to
inadvertent clearing of POF. Reset clears the POF bit. Writing a logic
1 to POF has no effect.
1 = PIT counter has reached modulo value
0 = PIT counter has not reached modulo value
POIE — PIT Overflow Interrupt Enable Bit
This read/write bit enables PIT overflow interrupts when the POF bit
becomes set. Reset clears the POIE bit.
1 = PIT overflow interrupts enabled
0 = PIT overflow interrupts disabled
PSTOP — PIT Stop Bit
This read/write bit stops the PIT counter. Counting resumes when
PSTOP is cleared. Reset sets the PSTOP bit, stopping the PIT
counter until software clears the PSTOP bit.
1 = PIT counter stopped
0 = PIT counter active
Technical Data
348
MC68HC908AZ60A — Rev 2.0
Programmable Interrupt Timer (PIT)
MOTOROLA
Programmable Interrupt Timer (PIT)
I/O Registers
NOTE:
Do not set the PSTOP bit before entering wait mode if the PIT is required
to exit wait mode.
PRST — PIT Reset Bit
Setting this write-only bit resets the PIT counter and the PIT prescaler.
Setting PRST has no effect on any other registers. Counting resumes
from $0000. PRST is cleared automatically after the PIT counter is
reset and always reads as logic zero. Reset clears the PRST bit.
1 = Prescaler and PIT counter cleared
0 = No effect
NOTE:
Setting the PSTOP and PRST bits simultaneously stops the PIT counter
at a value of $0000.
PPS[2:0] — Prescaler Select Bits
These read/write bits select one of the seven prescaler outputs as the
input to the PIT counter as Table 21-2 shows. Reset clears the
PPS[2:0] bits.
Table 21-2. Prescaler Selection
PPS[2:0]
PIT Clock Source
000
Internal Bus Clock ÷1
001
Internal Bus Clock ÷ 2
010
Internal Bus Clock ÷ 4
011
Internal Bus Clock ÷ 8
100
Internal Bus Clock ÷ 16
101
Internal Bus Clock ÷ 32
110
Internal Bus Clock ÷ 64
111
Internal Bus Clock ÷ 64
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Programmable Interrupt Timer (PIT)
349
Programmable Interrupt Timer (PIT)
21.8.2 PIT Counter Registers
The two read-only PIT counter registers contain the high and low bytes
of the value in the PIT counter. Reading the high byte (PCNTH) latches
the contents of the low byte (PCNTL) into a buffer. Subsequent reads of
PCNTH do not affect the latched PCNTL value until PCNTL is read.
Reset clears the PIT counter registers. Setting the PIT reset bit (PRST)
also clears the PIT counter registers.
NOTE:
If you read PCNTH during a break interrupt, be sure to unlatch PCNTL
by reading PCNTL before exiting the break interrupt. Otherwise, PCNTL
retains the value latched during the break.
Address: $004C
Read:
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
0
0
0
0
0
0
0
0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
0
0
0
0
0
0
0
0
Write:
Reset:
Address: $004D
Read:
Write:
Reset:
= Unimplemented
Figure 21-4. PIT Counter Registers (PCNTH–PCNTL)
Technical Data
350
MC68HC908AZ60A — Rev 2.0
Programmable Interrupt Timer (PIT)
MOTOROLA
Programmable Interrupt Timer (PIT)
I/O Registers
21.8.3 PIT Counter Modulo Registers
The read/write PIT modulo registers contain the modulo value for the PIT
counter. When the PIT counter reaches the modulo value the overflow
flag (POF) becomes set and the PIT counter resumes counting from
$0000 at the next timer clock. Writing to the high byte (PMODH) inhibits
the POF bit and overflow interrupts until the low byte (PMODL) is written.
Reset sets the PIT counter modulo registers.
Address: $004E:$004F
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
1
1
1
1
1
1
1
1
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
1
1
1
1
1
1
1
1
Read:
Write:
Reset:
Address: $004E:$004F
Read:
Write:
Reset:
Figure 21-5. PIT Counter Modulo Registers (PMODH–PMODL)
NOTE:
Reset the PIT counter before writing to the PIT counter modulo registers.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Programmable Interrupt Timer (PIT)
351
Programmable Interrupt Timer (PIT)
Technical Data
352
MC68HC908AZ60A — Rev 2.0
Programmable Interrupt Timer (PIT)
MOTOROLA
Technical Data — MC68HC908AZ60A
Section 22. Input/Output Ports
22.1 Contents
22.2
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
22.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355
22.3.1 Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
22.3.2 Data Direction Register A . . . . . . . . . . . . . . . . . . . . . . . . 355
22.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .357
22.4.1 Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
22.4.2 Data Direction Register B . . . . . . . . . . . . . . . . . . . . . . . . 358
22.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .360
22.5.1 Port C Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
22.5.2 Data Direction Register C . . . . . . . . . . . . . . . . . . . . . . . . 361
22.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .363
22.6.1 Port D Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
22.6.2 Data Direction Register D . . . . . . . . . . . . . . . . . . . . . . . . 364
22.7 Port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .366
22.7.1 Port E Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . .366
22.7.2 Data Direction Register E . . . . . . . . . . . . . . . . . . . . . . . . 368
22.8 Port F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .369
22.8.1 Port F Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . .370
22.8.2 Data Direction Register F . . . . . . . . . . . . . . . . . . . . . . . . 371
22.9 Port G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .373
22.9.1 Port G Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
22.9.2 Data Direction Register G . . . . . . . . . . . . . . . . . . . . . . . . 374
22.10 Port H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376
22.10.1 Port H Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
22.10.2 Data Direction Register H . . . . . . . . . . . . . . . . . . . . . . . . 377
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Input/Output Ports
353
Input/Output Ports
22.2 Introduction
On the MC68HC908AZ60A and 64-pin MC68HC908AS60A, fifty
bidirectional input/output (I/O) form seven parallel ports. On the52-pin
MC68HC908AS60A, forty bidirectional input/output (I/O) form six
parallel ports. All I/O pins are programmable as inputs or outputs.
NOTE:
Connect any unused I/O pins to an appropriate logic level, either VDD or
VSS. Although the I/O ports do not require termination for proper
operation, termination reduces excess current consumption and the
possibility of electrostatic damage.
Figure 22-1. I/O Port Register Summary
Addr.
Register Name
Bit 7
6
5
4
3
2
1
Bit 0
$0000
Port A Data Register (PTA)
PTA7
PTA6
PTA5
PTA4
PTA3
PTA2
PTA1
PTA0
$0001
Port B Data Register (PTB)
PTB7
PTB6
PTB5
PTB4
PTB3
PTB2
PTB1
PTB0
$0002
Port C Data Register (PTC)
0
0
PTC5
PTC4
PTC3
PTC2
PTC1
PTC0
$0003
Port D Data Register (PTD)
PTD7
PTD6
PTD5
PTD4
PTD3
PTD2
PTD1
PTD0
$0004
Data Direction Register A (DDRA) DDRA7
DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0
$0005
Data Direction Register B (DDRB) DDRB7
DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0
$0006
Data Direction Register C (DDRC) MCLKEN
$0007
Data Direction Register D (DDRD) DDRD7
0
DDRC5 DDRC4 DDRC3 DDRC2 DDRC1 DDRC0
DDRD6 DDRD5 DDRD4 DDRD3 DDRD2 DDRD1 DDRD0
$0008
Port E Data Register (PTE)
PTE7
PTE6
PTE5
PTE4
PTE3
PTE2
PTE1
PTE0
$0009
Port F Data Register (PTF)
0
PTF6
PTF5
PTF4
PTF3
PTF2
PTF1
PTF0
$000A
Port G Data Register (PTG)
0
0
0
0
0
PTG2
PTG1
PTG0
$000B
Port H Data Register (PTH)
0
0
0
0
0
0
PTH1
PTH0
$000C
Data Direction Register E (DDRE) DDRE7
DDRE6 DDRE5 DDRE4 DDRE3 DDRE2 DDRE1 DDRE0
$000D
Data Direction Register F (DDRF)
0
DDRF6
DDRF5
DDRF4
DDRF3
$000E
Data Direction Register G (DDRG)
0
0
0
0
0
$000F
Data Direction Register H (DDRH)
0
0
0
0
0
Technical Data
354
DDRF2
DDRF1
DDRF0
DDRG2 DDRG1 DDRG0
0
DDRH1 DDRH0
MC68HC908AZ60A — Rev 2.0
Input/Output Ports
MOTOROLA
Input/Output Ports
Port A
22.3 Port A
Port A is an 8-bit general-purpose bidirectional I/O port.
22.3.1 Port A Data Register
The port A data register contains a data latch for each of the eight
port A pins.
Address:
$0000
Bit 7
6
5
4
3
2
1
Bit 0
PTA7
PTA6
PTA5
PTA4
PTA3
PTA2
PTA1
PTA0
Read:
Write:
Reset:
Unaffected by Reset
Figure 22-2. Port A Data Register (PTA)
PTA[7:0] — Port A Data Bits
These read/write bits are software programmable. Data direction of
each port A pin is under the control of the corresponding bit in data
direction register A. Reset has no effect on port A data.
22.3.2 Data Direction Register A
Data direction register A determines whether each port A pin is an input
or an output. Writing a logic 1 to a DDRA bit enables the output buffer for
the corresponding port A pin; a logic 0 disables the output buffer.
Address:
$0004
Bit 7
6
5
4
3
2
1
Bit 0
DDRA7
DDRA6
DDRA5
DDRA4
DDRA3
DDRA2
DDRA1
DDRA0
0
0
0
0
0
0
0
0
Read:
Write:
Reset:
Figure 22-3. Data Direction Register A (DDRA)
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Input/Output Ports
355
Input/Output Ports
DDRA[7:0] — Data Direction Register A Bits
These read/write bits control port A data direction. Reset clears
DDRA[7:0], configuring all port A pins as inputs.
1 = Corresponding port A pin configured as output
0 = Corresponding port A pin configured as input
NOTE:
Avoid glitches on port A pins by writing to the port A data register before
changing data direction register A bits from 0 to 1.
Figure 22-4 shows the port A I/O logic.
READ DDRA ($0004)
INTERNAL DATA BUS
WRITE DDRA ($0004)
RESET
DDRAx
WRITE PTA ($0000)
PTAx
PTAx
READ PTA ($0000)
Figure 22-4. Port A I/O Circuit
When bit DDRAx is a logic 1, reading address $0000 reads the PTAx
data latch. When bit DDRAx is a logic 0, reading address $0000 reads
the voltage level on the pin. The data latch can always be written,
regardless of the state of its data direction bit. Table 22-1 summarizes
the operation of the port A pins.
Technical Data
356
MC68HC908AZ60A — Rev 2.0
Input/Output Ports
MOTOROLA
Input/Output Ports
Port B
Table 22-1. Port A Pin Functions
DDRA
Bit
PTA
Bit
Accesses
to DDRA
I/O Pin
Mode
Accesses to PTA
Read/Write
Read
Write
0
X
Input, Hi-Z
DDRA[7:0]
Pin
PTA[7:0](1)
1
X
Output
DDRA[7:0]
PTA[7:0]
PTA[7:0]
X = don’t care
Hi-Z = high impedance
1. Writing affects data register, but does not affect input.
22.4 Port B
Port B is an 8-bit special function port that shares all of its pins with the
analog-to-digital converter.
22.4.1 Port B Data Register
The port B data register contains a data latch for each of the eight port
B pins.
Address:
$0001
Bit 7
6
5
4
3
2
1
Bit 0
PTB7
PTB6
PTB5
PTB4
PTB3
PTB2
PTB1
PTB0
ATD2
ATD1
ATD0
Read:
Write:
Reset:
Alternate
Functions:
Unaffected by Reset
ATD7
ATD6
ATD5
ATD4
ATD3
Figure 22-5. Port B Data Register (PTB)
PTB[7:0] — Port B Data Bits
These read/write bits are software programmable. Data direction of
each port B pin is under the control of the corresponding bit in data
direction register B. Reset has no effect on port B data.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Input/Output Ports
357
Input/Output Ports
ATD[7:0] — ADC Channels
PTB7/ATD7–PTB0/ATD0 are eight of the analog-to-digital converter
channels. The ADC channel select bits, CH[4:0], determine whether
the PTB7/ATD7–PTB0/ATD0 pins are ADC channels or generalpurpose I/O pins. If an ADC channel is selected and a read of this
corresponding bit in the port B data register occurs, the data will be 0
if the data direction for this bit is programmed as an input. Otherwise,
the data will reflect the value in the data latch. (See Analog-to-Digital
Converter (ADC) on page 471). Data direction register B (DDRB)
does not affect the data direction of port B pins that are being used by
the ADC. However, the DDRB bits always determine whether reading
port B returns to the states of the latches or logic 0.
22.4.2 Data Direction Register B
Data direction register B determines whether each port B pin is an input
or an output. Writing a logic 1 to a DDRB bit enables the output buffer for
the corresponding port B pin; a logic 0 disables the output buffer.
Address:
$0005
Bit 7
6
5
4
3
2
1
Bit 0
DDRB7
DDRB6
DDRB5
DDRB4
DDRB3
DDRB2
DDRB1
DDRB0
0
0
0
0
0
0
0
0
Read:
Write:
Reset:
Figure 22-6. Data Direction Register B (DDRB)
DDRB[7:0] — Data Direction Register B Bits
These read/write bits control port B data direction. Reset clears
DDRB[7:0], configuring all port B pins as inputs.
1 = Corresponding port B pin configured as output
0 = Corresponding port B pin configured as input
NOTE:
Avoid glitches on port B pins by writing to the port B data register before
changing data direction register B bits from 0 to 1.
Figure 22-7 shows the port B I/O logic.
Technical Data
358
MC68HC908AZ60A — Rev 2.0
Input/Output Ports
MOTOROLA
Input/Output Ports
Port B
READ DDRB ($0005)
INTERNAL DATA BUS
WRITE DDRB ($0005)
DDRBx
RESET
WRITE PTB ($0001)
PTBx
PTBx
READ PTB ($0001)
Figure 22-7. Port B I/O Circuit
When bit DDRBx is a logic 1, reading address $0001 reads the PTBx
data latch. When bit DDRBx is a logic 0, reading address $0001 reads
the voltage level on the pin. The data latch can always be written,
regardless of the state of its data direction bit. Table 22-2 summarizes
the operation of the port B pins.
Table 22-2. Port B Pin Functions
DDRB
Bit
PTB
Bit
I/O Pin
Mode
Accesses
to DDRB
Accesses to PTB
Read/Write
Read
Write
0
X
Input, Hi-Z
DDRB[7:0]
Pin
PTB[7:0](1)
1
X
Output
DDRB[7:0]
PTB[7:0]
PTB[7:0]
X = don’t care
Hi-Z = high impedance
1. Writing affects data register, but does not affect input.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Input/Output Ports
359
Input/Output Ports
22.5 Port C
Port C is an 6-bit general-purpose bidirectional I/O port. Note that PTC5
is only available on 64-pin package options.
22.5.1 Port C Data Register
The port C data register contains a data latch for each of the six port C
pins.
Address:
$0002
Bit 7
6
Read:
0
0
Write:
R
R
5
4
3
2
1
Bit 0
PTC5
PTC4
PTC3
PTC2
PTC1
PTC0
Reset:
Unaffected by Reset
R
= Reserved
Alternate
Functions:
MCLK
Figure 22-8. Port C Data Register (PTC)
PTC[5:0] — Port C Data Bits
These read/write bits are software-programmable. Data direction of
each port C pin is under the control of the corresponding bit in data
direction register C. Reset has no effect on port C data (5:0).
MCLK — System Clock Bit
The system clock is driven out of PTC2 when enabled by MCLKEN bit
in PTCDDR7.
Technical Data
360
MC68HC908AZ60A — Rev 2.0
Input/Output Ports
MOTOROLA
Input/Output Ports
Port C
22.5.2 Data Direction Register C
Data direction register C determines whether each port C pin is an input
or an output. Writing a logic 1 to a DDRC bit enables the output buffer for
the corresponding port C pin; a logic 0 disables the output buffer.
Address:
$0006
Bit 7
Read:
6
4
3
2
1
Bit 0
DDRC5
DDRC4
DDRC3
DDRC2
DDRC1
DDRC0
0
0
0
0
0
0
0
MCLKEN
Write:
Reset:
5
R
0
R
0
= Reserved
Figure 22-9. Data Direction Register C (DDRC)
MCLKEN — MCLK Enable Bit
This read/write bit enables MCLK to be an output signal on PTC2. If
MCLK is enabled, DDRC2 has no effect. Reset clears this bit.
1 = MCLK output enabled
0 = MCLK output disabled
DDRC[5:0] — Data Direction Register C Bits
These read/write bits control port C data direction. Reset clears
DDRC[7:0], configuring all port C pins as inputs.
1 = Corresponding port C pin configured as output
0 = Corresponding port C pin configured as input
NOTE:
Avoid glitches on port C pins by writing to the port C data register before
changing data direction register C bits from 0 to 1.
Figure 22-10 shows the port C I/O logic.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Input/Output Ports
361
Input/Output Ports
READ DDRC ($0006)
INTERNAL DATA BUS
WRITE DDRC ($0006)
DDRCx
RESET
WRITE PTC ($0002)
PTCx
PTCx
READ PTC ($0002)
Figure 22-10. Port C I/O Circuit
When bit DDRCx is a logic 1, reading address $0002 reads the PTCx
data latch. When bit DDRCx is a logic 0, reading address $0002 reads
the voltage level on the pin. The data latch can always be written,
regardless of the state of its data direction bit. Table 22-3 summarizes
the operation of the port C pins.
Table 22-3. Port C Pin Functions
Bit
Value
PTC
Bit
I/O Pin
Mode
Accesses
to DDRC
Accesses to PTC
Read/Write
Read
Write
0
2
Input, Hi-Z
DDRC[2]
Pin
PTC2
1
2
Output
DDRC[2]
0
—
0
X
Input, Hi-Z
DDRC[5:0]
Pin
PTC[5:0](1)
1
X
Output
DDRC[5:0]
PTC[5:0]
PTC[5:0]
X = don’t care
Hi-Z = high impedance
1. Writing affects data register, but does not affect input.
Technical Data
362
MC68HC908AZ60A — Rev 2.0
Input/Output Ports
MOTOROLA
Input/Output Ports
Port D
22.6 Port D
Port D is an 8-bit general-purpose I/O port. Note that PTD7 is only
available on 64-pin package options.
22.6.1 Port D Data Register
Port D is a 8-bit special function port that shares seven of its pins with
the analog to digital converter and two with the timer interface
modules.
Address:
$0003
Bit 7
6
5
4
3
2
1
Bit 0
PTD7
PTD6
PTD5
PTD4
PTD3
PTD2
PTD1
PTD0
ATD10
ATD9
ATD8
Read:
Write:
Reset:
Alternate
Functions:
Unaffected by Reset
R
ATD14/
TACLK
ATD13
ATD12/
TBCLK
ATD11
Figure 22-11. Port D Data Register (PTD)
PTD[7:0] — Port D Data Bits
PTD[7:0] are read/write, software programmable bits. Data direction
of PTD[7:0] pins are under the control of the corresponding bit in data
direction register D.
ATD[14:8] — ADC Channel Status Bits
PTD6/ATD14/TACLK–PTD0/ATD8 are seven of the 15 analog-todigital converter channels. The ADC channel select bits, CH[4:0],
determine whether the PTD6/ATD14/TACLK–PTD0/ATD8 pins are
ADC channels or general-purpose I/O pins. If an ADC channel is
selected and a read of this corresponding bit in the port B data register
occurs, the data will be 0 if the data direction for this bit is
programmed as an input. Otherwise, the data will reflect the value in
the data latch. (See Analog-to-Digital Converter (ADC) on page 471).
Data direction register D (DDRD) does not affect the data direction of
port D pins that are being used by the TIMA or TIMB. However, the
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Input/Output Ports
363
Input/Output Ports
DDRD bits always determine whether reading port D returns the states
of the latches or logic 0.
TACLK/TBCLK — Timer Clock Input Bit
The PTD6/ATD14/TACLK pin is the external clock input for the TIMA.
The PTD4/ATD12/TBCLK pin is the external clock input for the TIMB.
The prescaler select bits, PS[2:0], select PTD6/ATD14/TACLK or
PTD4/ATD12/TBCLK as the TIM clock input. (See TIMA Channel
Status and Control Registers on page 462 and TIMB Channel
Status and Control Registers on page 336). When not selected as
the TIM clock, PTD6/ATD14/TACLK and PTD4/ATD12/TBCLK are
available for general-purpose I/O. While TACLK/TBCLK are selected
corresponding DDRD bits have no effect.
22.6.2 Data Direction Register D
Data direction register D determines whether each port D pin is an input
or an output. Writing a logic 1 to a DDRD bit enables the output buffer for
the corresponding port D pin; a logic 0 disables the output buffer.
Address:
$0007
Bit 7
6
5
4
3
2
1
Bit 0
DDRD7
DDRD6
DDRD5
DDRD4
DDRD3
DDRD2
DDRD1
DDRD0
0
0
0
0
0
0
0
0
Read:
Write:
Reset:
Figure 22-12. Data Direction Register D (DDRD)
DDRD[7:0] — Data Direction Register D Bits
These read/write bits control port D data direction. Reset clears
DDRD[7:0], configuring all port D pins as inputs.
1 = Corresponding port D pin configured as output
0 = Corresponding port D pin configured as input
NOTE:
Avoid glitches on port D pins by writing to the port D data register before
changing data direction register D bits from 0 to 1.
Figure 22-13 shows the port D I/O logic.
Technical Data
364
MC68HC908AZ60A — Rev 2.0
Input/Output Ports
MOTOROLA
Input/Output Ports
Port D
READ DDRD ($0007)
INTERNAL DATA BUS
WRITE DDRD ($0007)
DDRDx
RESET
WRITE PTD ($0003)
PTDx
PTDx
READ PTD ($0003)
Figure 22-13. Port D I/O Circuit
When bit DDRDx is a logic 1, reading address $0003 reads the PTDx
data latch. When bit DDRDx is a logic 0, reading address $0003 reads
the voltage level on the pin. The data latch can always be written,
regardless of the state of its data direction bit. Table 22-4 summarizes
the operation of the port D pins.
Table 22-4. Port D Pin Functions
DDRD
Bit
PTD
Bit
I/O Pin
Mode
0
X
1
X
Accesses to
DDRD
Accesses to PTD
Read/Write
Read
Write
Input, Hi-Z
DDRD[7:0]
Pin
PTD[7:0](1)
Output
DDRD[7:0]
PTD[7:0]
PTD[7:0]
X = don’t care
Hi-Z = high impedance
1. Writing affects data register, but does not affect input.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Input/Output Ports
365
Input/Output Ports
22.7 Port E
Port E is an 8-bit special function port that shares two of its pins with the
timer interface module (TIMA), two of its pins with the serial
communications interface module (SCI), and four of its pins with the
serial peripheral interface module (SPI).
22.7.1 Port E Data Register
The port E data register contains a data latch for each of the eight port
E pins.
Address:
$0008
Bit 7
6
5
4
3
2
1
Bit 0
PTE7
PTE6
PTE5
PTE4
PTE3
PTE2
PTE1
PTE0
TACH0
RxD
TxD
Read:
Write:
Reset:
Alternate
Function:
Unaffected by Reset
SPSCK
MOSI
MISO
SS
TACH1
Figure 22-14. Port E Data Register (PTE)
PTE[7:0] — Port E Data Bits
PTE[7:0] are read/write, software programmable bits. Data direction
of each port E pin is under the control of the corresponding bit in data
direction register E.
SPSCK — SPI Serial Clock Bit
The PTE7/SPSCK pin is the serial clock input of an SPI slave module
and serial clock output of an SPI master module. When the SPE bit is
clear, the PTE7/SPSCK pin is available for general-purpose I/O. (See
SPI Control Register on page 310).
MOSI — Master Out/Slave In Bit
The PTE6/MOSI pin is the master out/slave in terminal of the SPI
module. When the SPE bit is clear, the PTE6/MOSI pin is available for
general-purpose I/O.
Technical Data
366
MC68HC908AZ60A — Rev 2.0
Input/Output Ports
MOTOROLA
Input/Output Ports
Port E
MISO — Master In/Slave Out Bit
The PTE5/MISO pin is the master in/slave out terminal of the SPI
module. When the SPI enable bit, SPE, is clear, the SPI module is
disabled, and the PTE5/MISO pin is available for general-purpose
I/O. (See SPI Control Register on page 310).
SS — Slave Select Bit
The PTE4/SS pin is the slave select input of the SPI module. When
the SPE bit is clear, or when the SPI master bit, SPMSTR, is set and
MODFEN bit is low, the PTE4/SS pin is available for general-purpose
I/O. (See SS (Slave Select) on page 308). When the SPI is enabled
as a slave, the DDRF0 bit in data direction register E (DDRE) has no
effect on the PTE4/SS pin.
NOTE:
Data direction register E (DDRE) does not affect the data direction of
port E pins that are being used by the SPI module. However, the DDRE
bits always determine whether reading port E returns the states of the
latches or the states of the pins. (See Table 22-5).
TACH[1:0] — Timer Channel I/O Bits
The PTE3/TACH1–PTE2/TACH0 pins are the TIM input
capture/output compare pins. The edge/level select bits,
ELSxB:ELSxA, determine whether the PTE3/TACH1–PTE2/TACH0
pins are timer channel I/O pins or general-purpose I/O pins. (See
TIMA Channel Status and Control Registers on page 462).
NOTE:
Data direction register E (DDRE) does not affect the data direction of
port E pins that are being used by the TIM. However, the DDRE bits
always determine whether reading port E returns the states of the
latches or the states of the pins. (See Table 22-5).
RxD — SCI Receive Data Input Bit
The PTE1/RxD pin is the receive data input for the SCI module. When
the enable SCI bit, ENSCI, is clear, the SCI module is disabled, and
the PTE1/RxD pin is available for general-purpose I/O. (See SCI
Control Register 1 on page 265).
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Input/Output Ports
367
Input/Output Ports
TxD — SCI Transmit Data Output
The PTE0/TxD pin is the transmit data output for the SCI module.
When the enable SCI bit, ENSCI, is clear, the SCI module is disabled,
and the PTE0/TxD pin is available for general-purpose I/O. (See SCI
Control Register 1 on page 265).
NOTE:
Data direction register E (DDRE) does not affect the data direction of
port E pins that are being used by the SCI module. However, the DDRE
bits always determine whether reading port E returns the states of the
latches or the states of the pins. (See Table 22-5).
22.7.2 Data Direction Register E
Data direction register E determines whether each port E pin is an input
or an output. Writing a logic 1 to a DDRE bit enables the output buffer for
the corresponding port E pin; a logic 0 disables the output buffer.
Address:
$000C
Bit 7
6
5
4
3
2
1
Bit 0
DDRE7
DDRE6
DDRE5
DDRE4
DDRE3
DDRE2
DDRE1
DDRE0
0
0
0
0
0
0
0
0
Read:
Write:
Reset:
Figure 22-15. Data Direction Register E (DDRE)
DDRE[7:0] — Data Direction Register E Bits
These read/write bits control port E data direction. Reset clears
DDRE[7:0], configuring all port E pins as inputs.
1 = Corresponding port E pin configured as output
0 = Corresponding port E pin configured as input
NOTE:
Avoid glitches on port E pins by writing to the port E data register before
changing data direction register E bits from 0 to 1.
Figure 22-16 shows the port E I/O logic.
Technical Data
368
MC68HC908AZ60A — Rev 2.0
Input/Output Ports
MOTOROLA
Input/Output Ports
Port F
READ DDRE ($000C)
INTERNAL DATA BUS
WRITE DDRE ($000C)
DDREx
RESET
WRITE PTE ($0008)
PTEx
PTEx
READ PTE ($0008)
Figure 22-16. Port E I/O Circuit
When bit DDREx is a logic 1, reading address $0008 reads the PTEx
data latch. When bit DDREx is a logic 0, reading address $0008 reads
the voltage level on the pin. The data latch can always be written,
regardless of the state of its data direction bit. Table 22-5 summarizes
the operation of the port E pins.
Table 22-5. Port E Pin Functions
DDRE
Bit
PTE
Bit
I/O Pin
Mode
Accesses
to DDRE
Accesses to PTE
Read/Write
Read
Write
0
X
Input, Hi-Z
DDRE[7:0]
Pin
PTE[7:0](1)
1
X
Output
DDRE[7:0]
PTE[7:0]
PTE[7:0]
X = don’t care
Hi-Z = high impedance
1. Writing affects data register, but does not affect input.
22.8 Port F
Port F is a 7-bit special function port that shares four of its pins with the
timer interface module (TIMA-6) and two of its pins with the timer
interface module (TIMB) on the MC68HC908AZ60A. Note that PTF4,
PTF5 and PTF6 are only available on 64-pin package options.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Input/Output Ports
369
Input/Output Ports
22.8.1 Port F Data Register
The port F data register contains a data latch for each of the seven port
F pins.
Address:
$0009
Bit 7
Read:
0
Write:
R
6
5
4
3
2
1
Bit 0
PTF6
PTF5
PTF4
PTF3
PTF2
PTF1
PTF0
TACH4
TACH3
TACH2
Reset:
Unaffected by Reset
Alternate
Function:
TBCH1
R
TBCH0
TACH5
= Reserved
Figure 22-17. Port F Data Register (PTF)
PTF[6:0] — Port F Data Bits
These read/write bits are software programmable. Data direction of
each port F pin is under the control of the corresponding bit in data
direction register F. Reset has no effect on PTF[6:0].
TACH[5:2] — Timer A Channel I/O Bits
The PTF3–PTF0/TACH2 pins are the TIM input capture/output
compare pins. The edge/level select bits, ELSxB:ELSxA, determine
whether the PTF3–PTF0/TACH2 pins are timer channel I/O pins or
general-purpose I/O pins. (See TIMA Status and Control Register
on page 457).
Technical Data
370
MC68HC908AZ60A — Rev 2.0
Input/Output Ports
MOTOROLA
Input/Output Ports
Port F
TBCH[1:0] — Timer B Channel I/O Bits
The PTF5/TBCH1–PTF4/TBCH0 pins are the TIMB input
capture/output compare pins. The edge/level select bits,
ELSxB:ELSxA, determine whether the PTF5/TBCH1–PTF4/TBCH0
pins are timer channel I/O pins or general-purpose I/O pins. (See
TIMB Status and Control Register on page 331).
NOTE:
Data direction register F (DDRF) does not affect the data direction of port
F pins that are being used by the TIM. However, the DDRF bits always
determine whether reading port F returns the states of the latches or the
states of the pins. (See Table 22-6).
22.8.2 Data Direction Register F
Data direction register F determines whether each port F pin is an input
or an output. Writing a logic 1 to a DDRF bit enables the output buffer for
the corresponding port F pin; a logic 0 disables the output buffer.
Address:
$000D
Bit 7
Read:
0
Write:
R
Reset:
0
R
6
5
4
3
2
1
Bit 0
DDRF6
DDRF5
DDRF4
DDRF3
DDRF2
DDRF1
DDRF0
0
0
0
0
0
0
0
= Reserved
Figure 22-18. Data Direction Register F (DDRF)
DDRF[6:0] — Data Direction Register F Bits
These read/write bits control port F data direction. Reset clears
DDRF[6:0], configuring all port F pins as inputs.
1 = Corresponding port F pin configured as output
0 = Corresponding port F pin configured as input
NOTE:
Avoid glitches on port F pins by writing to the port F data register before
changing data direction register F bits from 0 to 1.
Figure 22-19 shows the port F I/O logic.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Input/Output Ports
371
Input/Output Ports
READ DDRF ($000D)
INTERNAL DATA BUS
WRITE DDRF ($000D)
DDRFx
RESET
WRITE PTF ($0009)
PTFx
PTFx
READ PTF ($0009)
Figure 22-19. Port F I/O Circuit
When bit DDRFx is a logic 1, reading address $0009 reads the PTFx
data latch. When bit DDRFx is a logic 0, reading address $0009 reads
the voltage level on the pin. The data latch can always be written,
regardless of the state of its data direction bit. Table 22-6 summarizes
the operation of the port F pins.
Table 22-6. Port F Pin Functions
DDRF
Bit
PTF
Bit
I/O Pin
Mode
Accesses
to DDRF
Accesses to PTF
Read/Write
Read
Write
0
X
Input, Hi-Z
DDRF[6:0]
Pin
PTF[6:0](1)
1
X
Output
DDRF[6:0]
PTF[6:0]
PTF[6:0]
X = don’t care
Hi-Z = high impedance
1. Writing affects data register, but does not affect input.
Technical Data
372
MC68HC908AZ60A — Rev 2.0
Input/Output Ports
MOTOROLA
Input/Output Ports
Port G
22.9 Port G
Port G is a 3-bit special function port that shares all of its pins with the
keyboard interrupt module (KBD). Note that Port G is only available on
64-pin package options.
22.9.1 Port G Data Register
The port G data register contains a data latch for each of the three port
G pins.
Address:
$000A
Bit 7
6
5
4
3
Read:
0
0
0
0
0
Write:
R
R
R
R
R
Reset:
2
1
Bit 0
PTG2
PTG1
PTG0
KBD2
KBD1
KBD0
Unaffected by Reset
Alternate
Function:
R
= Reserved
Figure 22-20. Port G Data Register (PTG)
PTG[2:0] — Port G Data Bits
These read/write bits are software programmable. Data direction of
each port G pin is under the control of the corresponding bit in data
direction register G. Reset has no effect on PTG[2:0].
KBD[2:0] — Keyboard Wakeup pins
The keyboard interrupt enable bits, KBIE[2:0], in the keyboard
interrupt control register, enable the port G pins as external interrupt
pins (See Keyboard Module (KBD) on page 431). Enabling an
external interrupt pin will override the corresponding DDRGx.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Input/Output Ports
373
Input/Output Ports
22.9.2 Data Direction Register G
Data direction register G determines whether each port G pin is an input
or an output. Writing a logic 1 to a DDRG bit enables the output buffer
for the corresponding port G pin; a logic 0 disables the output buffer.
Address:
$000E
Bit 7
6
5
4
3
Read:
0
0
0
0
0
Write:
R
R
R
R
R
Reset:
0
0
0
0
0
R
2
1
Bit 0
DDRG2
DDRG1
DDRG0
0
0
0
= Reserved
Figure 22-21. Data Direction Register G (DDRG)
DDRG[2:0] — Data Direction Register G Bits
These read/write bits control port G data direction. Reset clears
DDRG[2:0], configuring all port G pins as inputs.
1 = Corresponding port G pin configured as output
0 = Corresponding port G pin configured as input
NOTE:
Avoid glitches on port G pins by writing to the port G data register before
changing data direction register G bits from 0 to 1.
Figure 22-22 shows the port G I/O logic.
READ DDRG ($000E)
INTERNAL DATA BUS
WRITE DDRG ($000E)
RESET
DDRGx
WRITE PTG ($000A)
PTGx
PTGx
READ PTG ($000A)
Figure 22-22. Port G I/O Circuit
Technical Data
374
MC68HC908AZ60A — Rev 2.0
Input/Output Ports
MOTOROLA
Input/Output Ports
Port G
When bit DDRGx is a logic 1, reading address $000A reads the PTGx
data latch. When bit DDRGx is a logic 0, reading address $000A reads
the voltage level on the pin. The data latch can always be written,
regardless of the state of its data direction bit. Table 22-7 summarizes
the operation of the port G pins.
Table 22-7. Port G Pin Functions
DDRG
Bit
PTG
Bit
I/O Pin
Mode
Accesses
to DDRG
Accesses to PTG
Read/Write
Read
Write
0
X
Input, Hi-Z
DDRG[2:0]
Pin
PTG[2:0](1)
1
X
Output
DDRG[2:0]
PTG[2:0]
PTG[2:0]
X = don’t care
Hi-Z = high impedance
1. Writing affects data register, but does not affect input.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Input/Output Ports
375
Input/Output Ports
22.10 Port H
Port H is a 2-bit special function port that shares all of its pins with the
keyboard interrupt module (KBD). Note that Port H is only available on
64-pin package options.
22.10.1 Port H Data Register
The port H data register contains a data latch for each of the two port H
pins.
Address:
$000B
Bit 7
6
5
4
3
2
Read:
0
0
0
0
0
0
Write:
R
R
R
R
R
R
Reset:
1
Bit 0
PTH1
PTH0
KBD4
KBD3
Unaffected by Reset
Alternate
Function:
R
= Reserved
Figure 22-23. Port H Data Register (PTH)
PTH[1:0] — Port H Data Bits
These read/write bits are software programmable. Data direction of
each port H pin is under the control of the corresponding bit in data
direction register H. Reset has no effect on PTH[1:0].
KBD[4:3] — Keyboard Wake-up pins
The keyboard interrupt enable bits, KBIE[4:3], in the keyboard
interrupt control register, enable the port H pins as external interrupt
pins (See Keyboard Module (KBD) on page 431).
Technical Data
376
MC68HC908AZ60A — Rev 2.0
Input/Output Ports
MOTOROLA
Input/Output Ports
Port H
22.10.2 Data Direction Register H
Data direction register H determines whether each port H pin is an input
or an output. Writing a logic 1 to a DDRH bit enables the output buffer for
the corresponding port H pin; a logic 0 disables the output buffer.
Address:
$000F
Bit 7
6
5
4
3
2
Read:
0
0
0
0
0
0
Write:
R
R
R
R
R
R
Reset:
0
0
0
0
0
0
R
1
Bit 0
DDRH1
DDRH0
0
0
= Reserved
Figure 22-24. Data Direction Register H (DDRH)
DDRH[1:0] — Data Direction Register H Bits
These read/write bits control port H data direction. Reset clears
DDRG[1:0], configuring all port H pins as inputs.
1 = Corresponding port H pin configured as output
0 = Corresponding port H pin configured as input
NOTE:
Avoid glitches on port H pins by writing to the port H data register before
changing data direction register H bits from 0 to 1.
Figure 22-25 shows the port H I/O logic.
READ DDRH ($000F)
INTERNAL DATA BUS
WRITE DDRH ($000F)
RESET
DDRHx
WRITE PTH ($000B)
PTHx
PTHx
READ PTH ($000B)
Figure 22-25. Port H I/O Circuit
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Input/Output Ports
377
Input/Output Ports
When bit DDRHx is a logic 1, reading address $000B reads the PTHx
data latch. When bit DDRHx is a logic 0, reading address $000B reads
the voltage level on the pin. The data latch can always be written,
regardless of the state of its data direction bit. Table 22-8 summarizes
the operation of the port H pins.
Table 22-8. Port H Pin Functions
DDRH
Bit
PTH
Bit
I/O Pin
Mode
Accesses
to DDRH
Accesses to PTH
Read/Write
Read
Write
0
X
Input, Hi-Z
DDRH[1:0]
Pin
PTH[1:0](1)
1
X
Output
DDRH[1:0]
PTH[1:0]
PTH[1:0]
X = don’t care
Hi-Z = high impedance
1. Writing affects data register, but does not affect input.
Technical Data
378
MC68HC908AZ60A — Rev 2.0
Input/Output Ports
MOTOROLA
Technical Data — MC68HC908AZ60A
Section 23. MSCAN Controller (MSCAN08)
23.1 Contents
23.2
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
23.3
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
23.4
External Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
23.5 Message Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .383
23.5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
23.5.2 Receive Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
23.5.3 Transmit Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . .387
23.6
Identifier Acceptance Filter . . . . . . . . . . . . . . . . . . . . . . . . . 388
23.7 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
23.7.1 Interrupt Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . .393
23.7.2 Interrupt Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
23.8
Protocol Violation Protection . . . . . . . . . . . . . . . . . . . . . . . 394
23.9 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
23.9.1 MSCAN08 Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
23.9.2 MSCAN08 Soft Reset Mode . . . . . . . . . . . . . . . . . . . . . . . 397
23.9.3 MSCAN08 Power Down Mode . . . . . . . . . . . . . . . . . . . . . 397
23.9.4 CPU Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
23.9.5 Programmable Wakeup Function . . . . . . . . . . . . . . . . . . 398
23.10 Timer Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
23.11 Clock System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
23.12 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
23.13 Programmer’s Model of Message Storage . . . . . . . . . . . . . 403
23.13.1 Message Buffer Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 404
23.13.2 Identifier Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
MSCAN Controller (MSCAN08)
379
MSCAN Controller (MSCAN08)
23.13.3 Data Length Register (DLR) . . . . . . . . . . . . . . . . . . . . . . 407
23.13.4 Data Segment Registers (DSRn). . . . . . . . . . . . . . . . . . . 407
23.13.5 Transmit Buffer Priority Registers . . . . . . . . . . . . . . . . . 408
23.14 Programmer’s Model of Control Registers . . . . . . . . . . . .408
23.14.1 MSCAN08 Module Control Register 0 . . . . . . . . . . . . . . 411
23.14.2 MSCAN08 Module Control Register 1 . . . . . . . . . . . . . . 413
23.14.3 MSCAN08 Bus Timing Register 0 . . . . . . . . . . . . . . . . . . 414
23.14.4 MSCAN08 Bus Timing Register 1 . . . . . . . . . . . . . . . . . . 415
23.14.5 MSCAN08 Receiver Flag Register (CRFLG). . . . . . . . . . 417
23.14.6 MSCAN08 Receiver Interrupt Enable Register . . . . . . . 420
23.14.7 MSCAN08 Transmitter Flag Register . . . . . . . . . . . . . . . 421
23.14.8 MSCAN08 Transmitter Control Register . . . . . . . . . . . .423
23.14.9 MSCAN08 Identifier Acceptance Control Register . . . . 424
23.14.10 MSCAN08 Receive Error Counter . . . . . . . . . . . . . . . . . . 425
23.14.11 MSCAN08 Transmit Error Counter . . . . . . . . . . . . . . . . . 426
23.14.12 MSCAN08 Identifier Acceptance Registers . . . . . . . . . . 426
23.14.13 MSCAN08 Identifier Mask Registers (CIDMR0-3) . . . . .428
23.2 Introduction
The MSCAN08 is the specific implementation of the Motorola scalable
controller area network (MSCAN) concept targeted for the Motorola
M68HC08 Microcontroller Family.
The module is a communication controller implementing the CAN 2.0
A/B protocol as defined in the BOSCH specification dated September
1991.
The CAN protocol was primarily, but not exclusively, designed to be
used as a vehicle serial data bus, meeting the specific requirements of
this field: real-time processing, reliable operation in the electromagnetic
interference (EMI) environment of a vehicle, cost-effectiveness and
required bandwidth.
MSCAN08 utilizes an advanced buffer arrangement, resulting in a
predictable real-time behavior, and simplifies the application software.
The MSCAN08 is only available on the MC68HC908AZ60A.
Technical Data
380
MC68HC908AZ60A — Rev 2.0
MSCAN Controller (MSCAN08)
MOTOROLA
MSCAN Controller (MSCAN08)
Features
23.3 Features
Basic features of the MSCAN08 are:
•
Modular Architecture
•
Implementation of the CAN Protocol — Version 2.0A/B
– Standard and Extended Data Frames.
– 0–8 Bytes Data Length.
– Programmable Bit Rate up to 1 Mbps Depending on the Actual
Bit Timing and the Clock Jitter of the PLL
•
Support for Remote Frames
•
Double-Buffered Receive Storage Scheme
•
Triple-Buffered Transmit Storage Scheme with Internal
Prioritisation Using a “Local Priority” Concept
•
Flexible Maskable Identifier Filter Supports Alternatively One Full
Size Extended Identifier Filter or Two 16-Bit Filters or Four 8-Bit
Filters
•
Programmable Wakeup Functionality with Integrated Low-Pass
Filter
•
Programmable Loop-Back Mode Supports Self-Test Operation
•
Separate Signalling and Interrupt Capabilities for All CAN
Receiver and Transmitter Error States (Warning, Error Passive,
Bus Off)
•
Programmable MSCAN08 Clock Source Either CPU Bus Clock or
Crystal Oscillator Output
•
Programmable Link to On-Chip Timer Interface Module (TIMB) for
Time-Stamping and Network Synchronization
•
Low-Power Sleep Mode
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
MSCAN Controller (MSCAN08)
381
MSCAN Controller (MSCAN08)
23.4 External Pins
The MSCAN08 uses two external pins, one input (RxCAN) and one
output (TxCAN). The TxCAN output pin represents the logic level on the
CAN: 0 is for a dominant state, and 1 is for a recessive state.
A typical CAN system with MSCAN08 is shown in Figure 23-1.
CAN STATION 1
CAN NODE 2
CAN NODE 1
CAN NODE N
MCU
CAN CONTROLLER
(MSCAN08)
TXCAN
RXCAN
TRANSCEIVER
CAN_H
CAN_L
C A N BUS
Figure 23-1. The CAN System
Each CAN station is connected physically to the CAN bus lines through
a transceiver chip. The transceiver is capable of driving the large current
needed for the CAN and has current protection against defected CAN or
defected stations.
Technical Data
382
MC68HC908AZ60A — Rev 2.0
MSCAN Controller (MSCAN08)
MOTOROLA
MSCAN Controller (MSCAN08)
Message Storage
23.5 Message Storage
MSCAN08 facilitates a sophisticated message storage system which
addresses the requirements of a broad range of network applications.
23.5.1 Background
Modern application layer software is built under two fundamental
assumptions:
1. Any CAN node is able to send out a stream of scheduled
messages without releasing the bus between two messages.
Such nodes will arbitrate for the bus right after sending the
previous message and will only release the bus in case of lost
arbitration.
2. The internal message queue within any CAN node is organized as
such that the highest priority message will be sent out first if more
than one message is ready to be sent.
Above behavior cannot be achieved with a single transmit buffer. That
buffer must be reloaded right after the previous message has been sent.
This loading process lasts a definite amount of time and has to be
completed within the inter-frame sequence (IFS) to be able to send an
uninterrupted stream of messages. Even if this is feasible for limited
CAN bus speeds, it requires that the CPU reacts with short latencies to
the transmit interrupt.
A double buffer scheme would de-couple the re-loading of the transmit
buffers from the actual message being sent and as such reduces the
reactiveness requirements on the CPU. Problems may arise if the
sending of a message would be finished just while the CPU re-loads the
second buffer. In that case, no buffer would then be ready for
transmission and the bus would be released.
At least three transmit buffers are required to meet the first of the above
requirements under all circumstances. The MSCAN08 has three
transmit buffers.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
MSCAN Controller (MSCAN08)
383
MSCAN Controller (MSCAN08)
The second requirement calls for some sort of internal prioritisation
which the MSCAN08 implements with the “local priority” concept
described in Receive Structures on page 384.
23.5.2 Receive Structures
The received messages are stored in a 2-stage input first in first out
(FIFO). The two message buffers are mapped using a Ping Pong
arrangement into a single memory area (see Figure 23-2). While the
background receive buffer (RxBG) is exclusively associated to the
MSCAN08, the foreground receive buffer (RxFG) is addressable by the
CPU08. This scheme simplifies the handler software, because only one
address area is applicable for the receive process.
Both buffers have a size of 13 bytes to store the CAN control bits, the
identifier (standard or extended), and the data content (for details, see
Programmer’s Model of Message Storage on page 403).
The receiver full flag (RXF) in the MSCAN08 receiver flag register
(CRFLG) (see MSCAN08 Receiver Flag Register (CRFLG) on page
417), signals the status of the foreground receive buffer. When the buffer
contains a correctly received message with matching identifier, this flag
is set.
On reception, each message is checked to see if it passes the filter (for
details see Identifier Acceptance Filter on page 388) and in parallel is
written into RxBG. The MSCAN08 copies the content of RxBG into
RxFG(1), sets the RXF flag, and generates a receive interrupt to the
CPU(2). The user’s receive handler has to read the received message
from RxFG and to reset the RXF flag to acknowledge the interrupt and
to release the foreground buffer. A new message which can follow
immediately after the IFS field of the CAN frame, is received into RxBG.
The overwriting of the background buffer is independent of the identifier
filter function.
When the MSCAN08 module is transmitting, the MSCAN08 receives its
own messages into the background receive buffer, RxBG. It does NOT
1. Only if the RXF flag is not set.
2. The receive interrupt will occur only if not masked. A polling scheme can be applied on RXF
also.
Technical Data
384
MC68HC908AZ60A — Rev 2.0
MSCAN Controller (MSCAN08)
MOTOROLA
MSCAN Controller (MSCAN08)
Message Storage
overwrite RxFG, generate a receive interrupt or acknowledge its own
messages on the CAN bus. The exception to this rule is in loop-back
mode (see MSCAN08 Module Control Register 1 on page 413), where
the MSCAN08 treats its own messages exactly like all other incoming
messages. The MSCAN08 receives its own transmitted messages in the
event that it loses arbitration. If arbitration is lost, the MSCAN08 must be
prepared to become receiver.
An overrun condition occurs when both the foreground and the
background receive message buffers are filled with correctly received
messages with accepted identifiers and another message is correctly
received from the bus with an accepted identifier. The latter message will
be discarded and an error interrupt with overrun indication will be
generated if enabled. The MSCAN08 is still able to transmit messages
with both receive message buffers filled, but all incoming messages are
discarded.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
MSCAN Controller (MSCAN08)
385
MSCAN Controller (MSCAN08)
CPU08 Ibus
MSCAN08
RxBG
RxFG
RXF
Tx0
TXE
PRIO
TXE
Tx1
PRIO
TXE
Tx2
PRIO
Figure 23-2. User Model for Message Buffer Organization
Technical Data
386
MC68HC908AZ60A — Rev 2.0
MSCAN Controller (MSCAN08)
MOTOROLA
MSCAN Controller (MSCAN08)
Message Storage
23.5.3 Transmit Structures
The MSCAN08 has a triple transmit buffer scheme to allow multiple
messages to be set up in advance and to achieve an optimized real-time
performance. The three buffers are arranged as shown in Figure 23-2.
All three buffers have a 13-byte data structure similar to the outline of the
receive buffers (see Programmer’s Model of Message Storage on
page 403). An additional transmit buffer priority register (TBPR) contains
an 8-bit “local priority” field (PRIO) (see Transmit Buffer Priority
Registers on page 408).
To transmit a message, the CPU08 has to identify an available transmit
buffer which is indicated by a set transmit buffer empty (TXE) flag in the
MSCAN08 transmitter flag register (CTFLG) (see MSCAN08
Transmitter Flag Register on page 421).
The CPU08 then stores the identifier, the control bits and the data
content into one of the transmit buffers. Finally, the buffer has to be
flagged ready for transmission by clearing the TXE flag.
The MSCAN08 then will schedule the message for transmission and will
signal the successful transmission of the buffer by setting the TXE flag.
A transmit interrupt is generated(1) when TXE is set and can be used to
drive the application software to re-load the buffer.
In case more than one buffer is scheduled for transmission when the
CAN bus becomes available for arbitration, the MSCAN08 uses the local
priority setting of the three buffers for prioritisation. For this purpose,
every transmit buffer has an 8-bit local priority field (PRIO). The
application software sets this field when the message is set up. The local
priority reflects the priority of this particular message relative to the set
of messages being emitted from this node. The lowest binary value of
the PRIO field is defined as the highest priority.
1. The transmit interrupt will occur only if not masked. A polling scheme can be applied on TXE
also.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
MSCAN Controller (MSCAN08)
387
MSCAN Controller (MSCAN08)
The internal scheduling process takes place whenever the MSCAN08
arbitrates for the bus. This is also the case after the occurrence of a
transmission error.
When a high priority message is scheduled by the application software,
it may become necessary to abort a lower priority message being set up
in one of the three transmit buffers. As messages that are already under
transmission cannot be aborted, the user has to request the abort by
setting the corresponding abort request flag (ABTRQ) in the
transmission control register (CTCR). The MSCAN08 will then grant the
request, if possible, by setting the corresponding abort request
acknowledge (ABTAK) and the TXE flag in order to release the buffer
and by generating a transmit interrupt. The transmit interrupt handler
software can tell from the setting of the ABTAK flag whether the
message was actually aborted (ABTAK = 1) or sent (ABTAK = 0).
23.6 Identifier Acceptance Filter
The Identifier Acceptance Registers (CIDAR0-3) define the acceptance
patterns of the standard or extended identifier (ID10-ID0 or ID28-ID0).
Any of these bits can be marked ‘don’t care’ in the Identifier Mask
Registers (CIDMR0-3).
A filter hit is indicated to the application on software by a set RXF
(Receive Buffer Full Flag, see MSCAN08 Receiver Flag Register
(CRFLG) on page 417) and two bits in the Identifier Acceptance Control
Register (see MSCAN08 Identifier Acceptance Control Register on
page 424). These Identifier Hit Flags (IDHIT1-0) clearly identify the filter
section that caused the acceptance. They simplify the application
software’s task to identify the cause of the receiver interrupt. In case that
more than one hit occurs (two or more filters match) the lower hit has
priority.
A very flexible programmable generic identifier acceptance filter has
been introduced to reduce the CPU interrupt loading. The filter is
programmable to operate in four different modes:
Technical Data
388
MC68HC908AZ60A — Rev 2.0
MSCAN Controller (MSCAN08)
MOTOROLA
MSCAN Controller (MSCAN08)
Identifier Acceptance Filter
•
Single identifier acceptance filter, each to be applied to a) the full
29 bits of the extended identifier and to the following bits of the
CAN frame: RTR, IDE, SRR or b) the 11 bits of the standard
identifier plus the RTR and IDE bits of CAN 2.0A/B messages.
This mode implements a single filter for a full length CAN 2.0B
compliant extended identifier. Figure 23-3 shows how the 32-bit
filter bank (CIDAR0-3, CIDMR0-3) produces a filter 0 hit.
•
Two identifier acceptance filters, each to be applied to a) the 14
most significant bits of the extended identifier plus the SRR and
the IDE bits of CAN2.0B messages, or b) the 11 bits of the
identifier plus the RTR and IDE bits of CAN 2.0A/B messages.
Figure 23-4 shows how the 32-bit filter bank (CIDAR0-3,
CIDMR0-3) produces filter 0 and 1 hits.
•
Four identifier acceptance filters, each to be applied to the first
eight bits of the identifier. This mode implements four independent
filters for the first eight bits of a CAN 2.0A/B compliant standard
identifier. Figure 23-5 shows how the 32-bit filter bank (CIDAR03, CIDMR0-3) produces filter 0 to 3 hits.
•
Closed filter. No CAN message will be copied into the foreground
buffer RxFG, and the RXF flag will never be set.
ID28
IDR0
ID21 ID20
IDR1
ID15 ID14
ID10
IDR0
ID3 ID2
IDR1
AM7
CIDMR0
AM0 AM7
CIDMR1
AM0 AM7
CIDMR2
AM0 AM7
CIDMR3
AM0
AC7
CIDAR0
AC0 AC7
CIDAR1
AC0 AC7
CIDAR2
AC0 AC7
CIDAR3
AC0
IDE
ID10
IDR2
ID7 ID6
IDR3
RTR
IDR2
ID3 ID10
IDR3
ID3
ID Accepted (Filter 0 Hit)
Figure 23-3. Single 32-Bit Maskable Identifier Acceptance Filter
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
MSCAN Controller (MSCAN08)
389
MSCAN Controller (MSCAN08)
ID28
IDR0
ID21 ID20
IDR1
ID10
IDR0
ID3 ID2
IDR1
ID15 ID14
AM7
CIDMR0
AM0 AM7
CIDMR1
AM0
AC7
CIDAR0
AC0 AC7
CIDAR1
AC0
IDE
ID10
IDR2
ID7 ID6
IDR3
RTR
IDR2
ID3 ID10
IDR3
ID3
ID ACCEPTED (FILTER 0 HIT)
AM7
CIDMR2
AM0 AM7
CIDMR3
AM0
AC7
CIDAR2
AC0 AC7
CIDAR3
AC0
ID ACCEPTED (FILTER 1 HIT)
Figure 23-4. Dual 16-Bit Maskable Acceptance Filters
Technical Data
390
MC68HC908AZ60A — Rev 2.0
MSCAN Controller (MSCAN08)
MOTOROLA
MSCAN Controller (MSCAN08)
Identifier Acceptance Filter
.
ID28
IDR0
ID21 ID20
IDR1
ID10
IDR0
ID3 ID2
IDR1
AM7
CIDMR0
AM0
AC7
CIDAR0
AC0
ID15 ID14
IDE
ID10
IDR2
ID7 ID6
IDR3
RTR
IDR2
ID3 ID10
IDR3
ID3
ID ACCEPTED (FILTER 0 HIT)
AM7
CIDMR1
AM0
AC7
CIDAR1
AC0
ID ACCEPTED (FILTER 1 HIT)
AM7
CIDMR2
AM0
AC7
CIDAR2
AC0
ID ACCEPTED (FILTER 2 HIT)
AM7
CIDMR3
AM0
AC7
CIDAR3
AC0
ID ACCEPTED (FILTER 3 HIT)
Figure 23-5. Quadruple 8-Bit Maskable Acceptance Filters
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
MSCAN Controller (MSCAN08)
391
MSCAN Controller (MSCAN08)
23.7 Interrupts
The MSCAN08 supports four interrupt vectors mapped onto eleven
different interrupt sources, any of which can be individually masked (for
details see MSCAN08 Receiver Flag Register (CRFLG) on page 417,
to MSCAN08 Transmitter Control Register on page 423).
•
Transmit Interrupt: At least one of the three transmit buffers is
empty (not scheduled) and can be loaded to schedule a message
for transmission. The TXE flags of the empty message buffers are
set.
•
Receive Interrupt: A message has been received successfully and
loaded into the foreground receive buffer. This interrupt will be
emitted immediately after receiving the EOF symbol. The RXF flag
is set.
•
Wakeup Interrupt: An activity on the CAN bus occurred during
MSCAN08 internal sleep mode or power-down mode (provided
SLPAK = WUPIE = 1).
•
Error Interrupt: An overrun, error, or warning condition occurred.
The receiver flag register (CRFLG) will indicate one of the
following conditions:
– Overrun: An overrun condition as described in Receive
Structures on page 384, has occurred.
– Receiver Warning: The receive error counter has reached the
CPU Warning limit of 96.
– Transmitter Warning: The transmit error counter has reached
the CPU Warning limit of 96.
– Receiver Error Passive: The receive error counter has
exceeded the error passive limit of 127 and MSCAN08 has
gone to error passive state.
– Transmitter Error Passive: The transmit error counter has
exceeded the error passive limit of 127 and MSCAN08 has
gone to error passive state.
– Bus Off: The transmit error counter has exceeded 255 and
MSCAN08 has gone to bus off state.
Technical Data
392
MC68HC908AZ60A — Rev 2.0
MSCAN Controller (MSCAN08)
MOTOROLA
MSCAN Controller (MSCAN08)
Interrupts
23.7.1 Interrupt Acknowledge
Interrupts are directly associated with one or more status flags in either
the MSCAN08 receiver flag register (CRFLG) or the MSCAN08
transmitter flag register (CTFLG). Interrupts are pending as long as one
of the corresponding flags is set. The flags in the above registers must
be reset within the interrupt handler in order to handshake the interrupt.
The flags are reset through writing a ‘1’ to the corresponding bit position.
A flag cannot be cleared if the respective condition still prevails.
NOTE:
Bit manipulation instructions (BSET) shall not be used to clear interrupt
flags.
23.7.2 Interrupt Vectors
The MSCAN08 supports four interrupt vectors as shown in Table 23-1.
The vector addresses and the relative interrupt priority are dependent on
the chip integration and to be defined.
Table 23-1. MSCAN08 Interrupt Vector Addresses
Function
Wakeup
Error
Interrupts
Receive
Transmit
Source
WUPIF
WUPIE
RWRNIF
RWRNIE
TWRNIF
TWRNIE
RERRIF
RERRIE
TERRIF
TERRIE
BOFFIF
BOFFIE
OVRIF
OVRIE
RXF
RXFIE
TXE0
TXEIE0
TXE1
TXEIE1
TXE2
TXEIE2
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Local
Mask
Global
Mask
I Bit
Technical Data
MSCAN Controller (MSCAN08)
393
MSCAN Controller (MSCAN08)
23.8 Protocol Violation Protection
The MSCAN08 will protect the user from accidentally violating the CAN
protocol through programming errors. The protection logic implements
the following features:
•
The receive and transmit error counters cannot be written or
otherwise manipulated.
•
All registers which control the configuration of the MSCAN08 can
not be modified while the MSCAN08 is on-line. The SFTRES bit in
the MSCAN08 module control register (see MSCAN08 Module
Control Register 0 on page 411) serves as a lock to protect the
following registers:
– MSCAN08 module control register 1 (CMCR1)
– MSCAN08 bus timing register 0 and 1 (CBTR0 and CBTR1)
– MSCAN08 identifier acceptance control register (CIDAC)
– MSCAN08 identifier acceptance registers (CIDAR0–3)
– MSCAN08 identifier mask registers (CIDMR0–3)
•
The TxCAN pin is forced to recessive when the MSCAN08 is in
any of the Low Power Modes.
23.9 Low Power Modes
In addition to normal mode, the MSCAN08 has three modes with
reduced power consumption: Sleep, Soft Reset and Power Down
modes. In Sleep and Soft Reset mode, power consumption is reduced
by stopping all clocks except those to access the registers. In Power
Down mode, all clocks are stopped and no power is consumed.
The WAIT and STOP instructions put the MCU in low power
consumption stand-by modes. Table 23-2 summarizes the
combinations of MSCAN08 and CPU modes. A particular combination of
modes is entered for the given settings of the bits SLPAK and SFTRES.
For all modes, an MSCAN wake-up interrupt can occur only if
SLPAK=WUPIE=1.
Technical Data
394
MC68HC908AZ60A — Rev 2.0
MSCAN Controller (MSCAN08)
MOTOROLA
MSCAN Controller (MSCAN08)
Low Power Modes
Table 23-2. MSCAN08 vs CPU operating modes
MSCAN
Mode
Power Down
CPU Mode
STOP
WAIT or RUN
SLPAK = X(1)
SFTRES = X
Sleep
SLPAK = 1
SFTRES = 0
Soft Reset
SLPAK = 0
SFTRES = 1
Normal
SLPAK = 0
SFTRES = 0
1. ‘X’ means don’t care.
23.9.1 MSCAN08 Sleep Mode
The CPU can request the MSCAN08 to enter the low-power mode by
asserting the SLPRQ bit in the module configuration register (see Figure
23-6). The time when the MSCAN08 enters Sleep mode depends on its
activity:
NOTE:
•
if it is transmitting, it continues to transmit until there is no more
message to be transmitted, and then goes into Sleep mode
•
if it is receiving, it waits for the end of this message and then goes
into Sleep mode
•
if it is neither transmitting or receiving, it will immediately go into
Sleep mode
The application software must avoid setting up a transmission (by
clearing or more TXE flags) and immediately request Sleep mode (by
setting SLPRQ). It then depends on the exact sequence of operations
whether MSCAN08 starts transmitting or goes into Sleep mode directly.
During Sleep mode, the SLPAK flag is set. The application software
should use SLPAK as a handshake indication for the request (SLPRQ)
to go into Sleep mode. When in Sleep mode, the MSCAN08 stops its
internal clocks. However, clocks to allow register accesses still run. If the
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
MSCAN Controller (MSCAN08)
395
MSCAN Controller (MSCAN08)
MSCAN08 is in buss-off state, it stops counting the 128*11 consecutive
recessive bits due to the stopped clocks. The TxCAN pin stays in
recessive state. If RXF=1, the message can be read and RXF can be
cleared. Copying of RxGB into RxFG doesn’t take place while in Sleep
mode. It is possible to access the transmit buffers and to clear the TXE
flags. No message abort takes place while in Sleep mode.
The MSCAN08 leaves Sleep mode (wake-up) when:
•
bus activity occurs or
•
the MCU clears the SLPRQ bit or
•
the MCU sets the SFTRES bit
MSCAN08 Running
SLPRQ = 0
SLPAK = 0
MCU
MCU
or MSCAN08
MSCAN08 Sleeping
Sleep Request
SLPRQ = 1
SLPAK = 1
SLPRQ = 1
SLPAK = 0
MSCAN08
Figure 23-6. Sleep Request/Acknowledge Cycle
NOTE:
The MCU cannot clear the SLPRQ bit before the MSCAN08 is in Sleep
mode (SLPAK=1).
After wake-up, the MSCAN08 waits for 11 consecutive recessive bits to
synchronize to the bus. As a consequence, if the MSCAN08 is wokenup by a CAN frame, this frame is not received. The receive message
buffers (RxFG and RxBG) contain messages if they were received
before Sleep mode was entered. All pending actions are executed upon
Technical Data
396
MC68HC908AZ60A — Rev 2.0
MSCAN Controller (MSCAN08)
MOTOROLA
MSCAN Controller (MSCAN08)
Low Power Modes
wake-up: copying of RxBG into RxFG, message aborts and message
transmissions. If the MSCAN08 is still in bus-off state after Sleep mode
was left, it continues counting the 128*11 consecutive recessive bits.
23.9.2 MSCAN08 Soft Reset Mode
In Soft Reset mode, the MSCAN08 is stopped. Registers can still be
accessed. This mode is used to initialize the module configuration, bit
timing and the CAN message filter. See MSCAN08 Module Control
Register 0 on page 411 for a complete description of the Soft Reset
mode.
When setting the SFTRES bit, the MSCAN08 immediately stops all
ongoing transmissions and receptions, potentially causing CAN protocol
violations.
NOTE:
The user is responsible to take care that the MSCAN08 is not active
when Soft Reset mode is entered. The recommended procedure is to
bring the MSCAN08 into Sleep mode before the SFTRES bit is set.
23.9.3 MSCAN08 Power Down Mode
The MSCAN08 is in Power Down mode when the CPU is in Stop mode.
When entering the Power Down mode, the MSCAN08 immediately stops
all ongoing transmissions and receptions, potentially causing CAN
protocol violations.
NOTE:
The user is responsible to take care that the MSCAN08 is not active
when Power Down mode is entered. The recommended procedure is to
bring the MSCAN08 into Sleep mode before the STOP instruction is
executed.
To protect the CAN bus system from fatal consequences of violations to
the above rule, the MSCAN08 drives the TxCAN pin into recessive state.
In Power Down mode, no registers can be accessed.
MSCAN08 bus activity can wake the MCU from CPU Stop/MSCAN08
power-down mode. However, until the oscillator starts up and
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
MSCAN Controller (MSCAN08)
397
MSCAN Controller (MSCAN08)
synchronisation is achieved the MSCAN08 will not respond to incoming
data.
23.9.4 CPU Wait Mode
The MSCAN08 module remains active during CPU wait mode. The
MSCAN08 will stay synchronized to the CAN bus and generates
transmit, receive, and error interrupts to the CPU, if enabled. Any such
interrupt will bring the MCU out of wait mode.
23.9.5 Programmable Wakeup Function
The MSCAN08 can be programmed to apply a low-pass filter function to
the RxCAN input line while in internal sleep mode (see information on
control bit WUPM in MSCAN08 Module Control Register 1 on page
413). This feature can be used to protect the MSCAN08 from wake-up
due to short glitches on the CAN bus lines. Such glitches can result from
electromagnetic inference within noisy environments.
23.10 Timer Link
The MSCAN08 will generate a timer signal whenever a valid frame has
been received. Because the CAN specification defines a frame to be
valid if no errors occurred before the EOF field has been transmitted
successfully, the timer signal will be generated right after the EOF. A
pulse of one bit time is generated. As the MSCAN08 receiver engine also
receives the frames being sent by itself, a timer signal also will be
generated after a successful transmission.
The previously described timer signal can be routed into the on-chip
timer interface module (TIM).This signal is connected to the timer n
channel m input(1) under the control of the timer link enable (TLNKEN)
bit in the CMCR0.
1. The timer channel being used for the timer link is integration dependent.
Technical Data
398
MC68HC908AZ60A — Rev 2.0
MSCAN Controller (MSCAN08)
MOTOROLA
MSCAN Controller (MSCAN08)
Clock System
After timer n has been programmed to capture rising edge events, it can
be used under software control to generate 16-bit time stamps which can
be stored with the received message.
23.11 Clock System
Figure 23-7 shows the structure of the MSCAN08 clock generation
circuitry and its interaction with the clock generation module (CGM).
With this flexible clocking scheme the MSCAN08 is able to handle CAN
bus rates ranging from 10 kbps up to 1 Mbps.
CGMXCLK
÷2
OSC
CGMOUT
(TO SIM)
BCS
PLL
÷2
CGM
MSCAN08
(2 * BUS FREQ.)
÷2
MSCANCLK
PRESCALER
CLKSRC
(1 .. 64)
Figure 23-7. Clocking Scheme
The clock source bit (CLKSRC) in the MSCAN08 module control register
(CMCR1) (see MSCAN08 Module Control Register 0 on page 411)
defines whether the MSCAN08 is connected to the output of the crystal
oscillator or to the PLL output.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
MSCAN Controller (MSCAN08)
399
MSCAN Controller (MSCAN08)
The clock source has to be chosen such that the tight oscillator tolerance
requirements (up to 0.4%) of the CAN protocol are met.
NOTE:
If the system clock is generated from a PLL, it is recommended to select
the crystal clock source rather than the system clock source due to jitter
considerations, especially at faster CAN bus rates.
A programmable prescaler is used to generate out of the MSCAN08
clock the time quanta (Tq) clock. A time quantum is the atomic unit of
time handled by the MSCAN08.
fTq =
fMSCANCLK
Presc value
A bit time is subdivided into three segments(1)(see Figure 23-8).
•
SYNC_SEG: This segment has a fixed length of one time
quantum. Signal edges are expected to happen within this section.
•
Time segment 1: This segment includes the PROP_SEG and the
PHASE_SEG1 of the CAN standard. It can be programmed by
setting the parameter TSEG1 to consist of 4 to 16 time quanta.
•
Time segment 2: This segment represents PHASE_SEG2 of the
CAN standard. It can be programmed by setting the TSEG2
parameter to be 2 to 8 time quanta long.
Bit rate=
fTq
No. of time quanta
The synchronization jump width (SJW) can be programmed in a range
of 1 to 4 time quanta by setting the SJW parameter.
1. For further explanation of the underlying concepts please refer to ISO/DIS 11 519-1, Section
10.3.
Technical Data
400
MC68HC908AZ60A — Rev 2.0
MSCAN Controller (MSCAN08)
MOTOROLA
MSCAN Controller (MSCAN08)
Clock System
The above parameters can be set by programming the bus timing
registers, CBTR0–CBTR1, see MSCAN08 Bus Timing Register 0 on
page 414 and MSCAN08 Bus Timing Register 1 on page 415).
NOTE:
It is the user’s responsibility to make sure that the bit timing settings are
in compliance with the CAN standard,
Table 23-8 gives an overview on the CAN conforming segment settings
and the related parameter values.
NRZ SIGNAL
SYNC
_SEG
TIME SEGMENT 1
(PROP_SEG + PHASE_SEG1)
TIME SEG. 2
(PHASE_SEG2)
1
4 ... 16
2 ... 8
8... 25 TIME QUANTA
= 1 BIT TIME
SAMPLE POINT
(SINGLE OR TRIPLE SAMPLING)
Figure 23-8. Segments within the Bit Time
Table 23-3. Time segment syntax
SYNC_SEG
System expects transitions to occur on the bus
during this period.
Transmit point
A node in transmit mode will transfer a new
value to the CAN bus at this point.
Sample point
A node in receive mode will sample the bus at
this point. If the three samples per bit option is
selected then this point marks the position of
the third sample.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
MSCAN Controller (MSCAN08)
401
MSCAN Controller (MSCAN08)
Time
Segment 1
TSEG1
Time
Segment 2
TSEG2
Synchron.
Jump Width
SJW
5 .. 10
4 .. 9
2
1
1 .. 2
0 .. 1
4 .. 11
3 .. 10
3
2
1 .. 3
0 .. 2
5 .. 12
4 .. 11
4
3
1 .. 4
0 .. 3
6 .. 13
5 .. 12
5
4
1 .. 4
0 .. 3
7 .. 14
6 .. 13
6
5
1 .. 4
0 .. 3
8 .. 15
7 .. 14
7
6
1 .. 4
0 .. 3
9 .. 16
8 .. 15
8
7
1 .. 4
0 .. 3
Table 23-4. CAN Standard Compliant Bit Time Segment Settings
23.12 Memory Map
The MSCAN08 occupies 128 bytes in the CPU08 memory space. The
absolute mapping is implementation dependent with the base address
being a multiple of 128.
$xx00
$xx08
$xx09
$xx0D
$xx0E
$xx0F
$xx10
$xx17
$xx18
$xx3F
$xx40
$xx4F
$xx50
$xx5F
$xx60
$xx6F
$xx70
$xx7F
CONTROL REGISTERS
9 BYTES
RESERVED
5 BYTES
ERROR COUNTERS
2 BYTES
IDENTIFIER FILTER
8 BYTES
RESERVED
40 BYTES
RECEIVE BUFFER
TRANSMIT BUFFER 0
TRANSMIT BUFFER 1
TRANSMIT BUFFER 2
Figure 23-9. MSCAN08 Memory Map
Technical Data
402
MC68HC908AZ60A — Rev 2.0
MSCAN Controller (MSCAN08)
MOTOROLA
MSCAN Controller (MSCAN08)
Programmer’s Model of Message Storage
23.13 Programmer’s Model of Message Storage
This section details the organization of the receive and transmit
message buffers and the associated control registers. For reasons of
programmer interface simplification, the receive and transmit message
buffers have the same outline. Each message buffer allocates 16 bytes
in the memory map containing a 13-byte data structure. An additional
transmit buffer priority register (TBPR) is defined for the transmit buffers.
Addr
Register Name
$05b0
IDENTIFIER REGISTER 0
$05b1
IDENTIFIER REGISTER 1
$05b2
IDENTIFIER REGISTER 2
$05b3
IDENTIFIER REGISTER 3
$05b4
DATA SEGMENT REGISTER 0
$05b5
DATA SEGMENT REGISTER 1
$05b6
DATA SEGMENT REGISTER 2
$05b7
DATA SEGMENT REGISTER 3
$05b8
DATA SEGMENT REGISTER 4
$05b9
DATA SEGMENT REGISTER 5
$05bA
DATA SEGMENT REGISTER 6
$05bB
DATA SEGMENT REGISTER 7
$05bC
DATA LENGTH REGISTER
$05bD
TRANSMIT BUFFER PRIORITY
REGISTER(1)
$05bE
UNUSED
$05bF
UNUSED
1. Not applicable for receive buffers
Figure 23-10. Message Buffer Organization
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
MSCAN Controller (MSCAN08)
403
MSCAN Controller (MSCAN08)
23.13.1 Message Buffer Outline
Figure 23-11 shows the common 13-byte data structure of receive and
transmit buffers for extended identifiers. The mapping of standard
identifiers into the IDR registers is shown in Figure 23-12. All bits of the
13-byte data structure are undefined out of reset.
NOTE:
The foreground receive buffer can be read anytime but cannot be
written. The transmit buffers can be read or written anytime.
23.13.2 Identifier Registers
The identifiers consist of either 11 bits (ID10–ID0) for the standard, or 29
bits (ID28–ID0) for the extended format. ID10/28 is the most significant
bit and is transmitted first on the bus during the arbitration procedure.
The priority of an identifier is defined to be highest for the smallest binary
number.
SRR — Substitute Remote Request
This fixed recessive bit is used only in extended format. It must be set
to 1 by the user for transmission buffers and will be stored as received
on the CAN bus for receive buffers.
Technical Data
404
MC68HC908AZ60A — Rev 2.0
MSCAN Controller (MSCAN08)
MOTOROLA
MSCAN Controller (MSCAN08)
Programmer’s Model of Message Storage
Addr
Register
$05b0
IDR0
$05b1
IDR1
$05b2
IDR2
$05b3
IDR3
$05b4
DSR0
$05b5
DSR1
$05b6
DSR2
$05b7
DSR3
$05b8
DSR4
$05b9
DSR5
$05bA
DSR6
$05bB
DSR7
$05bC
DLR
Bit 7
6
5
4
3
2
1
Bit 0
ID28
ID27
ID26
ID25
ID24
ID23
ID22
ID21
ID20
ID19
ID18
SRR (=1)
IDE (=1)
ID17
ID16
ID15
ID14
ID13
ID12
ID11
ID10
ID9
ID8
ID7
ID6
ID5
ID4
ID3
ID2
ID1
ID0
RTR
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
DLC3
DLC2
DLC1
DLC0
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
= Unimplemented
Figure 23-11. Receive/Transmit Message Buffer Extended Identifier (IDRn)
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
MSCAN Controller (MSCAN08)
405
MSCAN Controller (MSCAN08)
Addr
Register
$05b0
IDR0
Bit 7
6
5
4
3
2
1
Bit 0
ID10
ID9
ID8
ID7
ID6
ID5
ID4
ID3
ID2
ID1
ID0
RTR
IDE(=0)
Read:
Write:
Read:
$05b1
IDR1
Write:
Read:
$05b2
IDR2
Write:
Read:
$05b3
IDR3
Write:
= Unimplemented
Figure 23-12. Standard Identifier Mapping
IDE — ID Extended
This flag indicates whether the extended or standard identifier format
is applied in this buffer. In case of a receive buffer, the flag is set as
being received and indicates to the CPU how to process the buffer
identifier registers. In case of a transmit buffer, the flag indicates to the
MSCAN08 what type of identifier to send.
1 = Extended format, 29 bits
0 = Standard format, 11 bits
RTR — Remote Transmission Request
This flag reflects the status of the remote transmission request bit in
the CAN frame. In case of a receive buffer, it indicates the status of
the received frame and supports the transmission of an answering
frame in software. In case of a transmit buffer, this flag defines the
setting of the RTR bit to be sent.
1 = Remote frame
0 = Data frame
Technical Data
406
MC68HC908AZ60A — Rev 2.0
MSCAN Controller (MSCAN08)
MOTOROLA
MSCAN Controller (MSCAN08)
Programmer’s Model of Message Storage
23.13.3 Data Length Register (DLR)
This register keeps the data length field of the CAN frame.
DLC3–DLC0 — Data Length Code Bits
The data length code contains the number of bytes (data byte count)
of the respective message. At transmission of a remote frame, the
data length code is transmitted as programmed while the number of
transmitted bytes is always 0. The data byte count ranges from 0 to 8
for a data frame. Table 23-5 shows the effect of setting the DLC bits.
Table 23-5. Data Length Codes
Data Length Code
DLC3
DLC2
DLC1
DLC0
Data
Byte
Count
0
0
0
0
0
0
0
0
1
1
0
0
1
0
2
0
0
1
1
3
0
1
0
0
4
0
1
0
1
5
0
1
1
0
6
0
1
1
1
7
1
0
0
0
8
23.13.4 Data Segment Registers (DSRn)
The eight data segment registers contain the data to be transmitted or
received. The number of bytes to be transmitted or being received is
determined by the data length code in the corresponding DLR.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
MSCAN Controller (MSCAN08)
407
MSCAN Controller (MSCAN08)
23.13.5 Transmit Buffer Priority Registers
Address:
$05bD
Bit 7
6
5
4
3
2
1
Bit 0
PRIO7
PRIO6
PRIO5
PRIO4
PRIO3
PRIO2
PRIO1
PRIO0
u
u
u
u
u
u
u
u
Read:
Write:
Reset:
Figure 23-13. Transmit Buffer Priority Register (TBPR)
PRIO7–PRIO0 — Local Priority
This field defines the local priority of the associated message buffer.
The local priority is used for the internal prioritisation process of the
MSCAN08 and is defined to be highest for the smallest binary
number. The MSCAN08 implements the following internal
prioritisation mechanism:
•
All transmission buffers with a cleared TXE flag participate in the
prioritisation right before the SOF is sent.
•
The transmission buffer with the lowest local priority field wins the
prioritisation.
•
In case more than one buffer has the same lowest priority, the
message buffer with the lower index number wins.
23.14 Programmer’s Model of Control Registers
The programmer’s model has been laid out for maximum simplicity and
efficiency. Figure 23-14 gives an overview on the control register block
of the MSCAN08.
Technical Data
408
MC68HC908AZ60A — Rev 2.0
MSCAN Controller (MSCAN08)
MOTOROLA
MSCAN Controller (MSCAN08)
Programmer’s Model of Control Registers
Addr
Register
$0500
CMCR0
Read:
Bit 7
6
5
4
0
0
0
SYNCH
3
2
1
Bit 0
SLPRQ
SFTRES
LOOPB
WUPM
CLKSRC
SLPAK
TLNKEN
Write:
Read:
$0501
0
0
0
0
0
CMCR1
Write:
Read:
$0502
CBTR0
SJW1
SJW0
BRP5
BRP4
BRP3
BRP2
BRP1
BRP0
SAMP
TSEG22
TSEG21
TSEG20
TSEG13
TSEG12
TSEG11
TSEG10
WUPIF
RWRNIF
TWRNIF
RERRIF
TERRIF
BOFFIF
OVRIF
RXF
WUPIE
RWRNIE
TWRNIE
RERRIE
TERRIE
BOFFIE
OVRIE
RXFIE
0
ABTAK2
ABTAK1
ABTAK0
0
TXE2
TXE1
TXE0
TXEIE2
TXEIE1
TXEIE0
0
0
IDHIT1
IDHIT0
R
R
R
R
R
= Reserved
Write:
Read:
$0503
CBTR1
Write:
Read:
$0504
CRFLG
Write:
Read:
$0505
CRIER
Write:
Read:
$0506
CTFLG
Write:
Read:
$0507
0
CTCR
0
ABTRQ2
ABTRQ1
ABTRQ0
IDAM1
IDAM0
R
R
Write:
Read:
$0508
0
0
CIDAC
Write:
Read:
$0509
Reserved
R
R
Write:
= Unimplemented
Figure 23-14. MSCAN08 Control Register Structure
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
MSCAN Controller (MSCAN08)
409
MSCAN Controller (MSCAN08)
Addr
Register
$050E
CRXERR
Bit 7
6
5
4
3
2
1
Bit 0
RXERR7
RXERR6
RXERR5
RXERR4
RXERR3
RXERR2
RXERR1
RXERR0
TXERR7
TXERR6
TXERR5
TXERR4
TXERR3
TXERR2
TXERR1
TXERR0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
Read:
Write:
Read:
$050F
CTXERR
Write:
Read:
$0510
CIDAR0
Write:
Read:
$0511
CIDAR1
Write:
Read:
$0512
CIDAR2
Write:
Read:
$0513
CIDAR3
Write:
Read:
$0514
CIDMR0
Write:
Read:
$0515
CIDMR1
Write:
Read:
$0516
CIDMR2
Write:
Read:
$0517
CIDMR3
Write:
Figure 23-14. MSCAN08 Control Register Structure (Continued)
Technical Data
410
MC68HC908AZ60A — Rev 2.0
MSCAN Controller (MSCAN08)
MOTOROLA
MSCAN Controller (MSCAN08)
Programmer’s Model of Control Registers
23.14.1 MSCAN08 Module Control Register 0
Address:
Read:
$0500
Bit 7
6
5
4
0
0
0
SYNCH
3
2
1
Bit 0
SLPRQ
SFTRES
0
1
SLPAK
TLNKEN
Write:
Reset:
0
0
0
0
0
0
= Unimplemented
Figure 23-15. Module Control Register 0 (CMCR0)
SYNCH — Synchronized Status
This bit indicates whether the MSCAN08 is synchronized to the CAN
bus and as such can participate in the communication process.
1 = MSCAN08 synchronized to the CAN bus
0 = MSCAN08 not synchronized to the CAN bus
TLNKEN — Timer Enable
This flag is used to establish a link between the MSCAN08 and the
on-chip timer (see Timer Link on page 398).
1 = The MSCAN08 timer signal output is connected to the timer
input.
0 = The port is connected to the timer input.
SLPAK — Sleep Mode Acknowledge
This flag indicates whether the MSCAN08 is in module internal sleep
mode. It shall be used as a handshake for the sleep mode request
(see MSCAN08 Sleep Mode on page 395). If the MSCAN08 detects
bus activity while in Sleep mode, it clears the flag.
1 = Sleep – MSCAN08 in internal sleep mode
0 = Wakeup – MSCAN08 is not in Sleep mode
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
MSCAN Controller (MSCAN08)
411
MSCAN Controller (MSCAN08)
SLPRQ — Sleep Request, Go to Internal Sleep Mode
This flag requests the MSCAN08 to go into an internal power-saving
mode (see MSCAN08 Sleep Mode on page 395).
1 = Sleep — The MSCAN08 will go into internal sleep mode.
0 = Wakeup — The MSCAN08 will function normally.
SFTRES — Soft Reset
When this bit is set by the CPU, the MSCAN08 immediately enters the
soft reset state. Any ongoing transmission or reception is aborted and
synchronization to the bus is lost.
The following registers enter and stay in their hard reset state:
CMCR0, CRFLG, CRIER, CTFLG, and CTCR.
The registers CMCR1, CBTR0, CBTR1, CIDAC, CIDAR0–3, and
CIDMR0–3 can only be written by the CPU when the MSCAN08 is in
soft reset state. The values of the error counters are not affected by
soft reset.
When this bit is cleared by the CPU, the MSCAN08 tries to
synchronize to the CAN bus. If the MSCAN08 is not in bus-off state,
it will be synchronized after 11 recessive bits on the bus; if the
MSCAN08 is in bus-off state, it continues to wait for 128 occurrences
of 11 recessive bits.
Clearing SFTRES and writing to other bits in CMCR0 must be in
separate instructions.
1 = MSCAN08 in soft reset state
0 = Normal operation
Technical Data
412
MC68HC908AZ60A — Rev 2.0
MSCAN Controller (MSCAN08)
MOTOROLA
MSCAN Controller (MSCAN08)
Programmer’s Model of Control Registers
23.14.2 MSCAN08 Module Control Register 1
Address:
Read:
$0501
Bit 7
6
5
4
3
0
0
0
0
0
0
0
0
0
0
Write:
Reset:
2
1
Bit 0
LOOPB
WUPM
CLKSRC
0
0
0
= Unimplemented
Figure 23-16. Module Control Register (CMCR1)
LOOPB — Loop Back Self-Test Mode
When this bit is set, the MSCAN08 performs an internal loop back
which can be used for self-test operation: the bit stream output of the
transmitter is fed back to the receiver internally. The RxCAN input pin
is ignored and the TxCAN output goes to the recessive state (logic
‘1’). The MSCAN08 behaves as it does normally when transmitting
and treats its own transmitted message as a message received from
a remote node. In this state the MSCAN08 ignores the bit sent during
the ACK slot of the CAN frame Acknowledge field to insure proper
reception of its own message. Both transmit and receive interrupt are
generated.
1 = Activate loop back self-test mode
0 = Normal operation
WUPM — Wakeup Mode
This flag defines whether the integrated low-pass filter is applied to
protect the MSCAN08 from spurious wakeups (see Programmable
Wakeup Function on page 398).
1 = MSCAN08 will wake up the CPU only in cases of a dominant
pulse on the bus which has a length of at least twup.
0 = MSCAN08 will wake up the CPU after any recessive to
dominant edge on the CAN bus.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
MSCAN Controller (MSCAN08)
413
MSCAN Controller (MSCAN08)
CLKSRC — Clock Source
This flag defines which clock source the MSCAN08 module is driven
from (see Clock System on page 399).
1 = The MSCAN08 clock source is CGMOUT (see Figure 23-7).
0 = The MSCAN08 clock source is CGMXCLK/2 (see Figure 23-7).
NOTE:
The CMCR1 register can be written only if the SFTRES bit in the
MSCAN08 module control register is set
23.14.3 MSCAN08 Bus Timing Register 0
Address:
Read:
Write:
Reset:
$0502
Bit 7
6
5
4
3
2
1
Bit 0
SJW1
SJW0
BRP5
BRP4
BRP3
BRP2
BRP1
BRP0
0
0
0
0
0
0
0
0
Figure 23-17. Bus Timing Register 0 (CBTR0)
SJW1 and SJW0 — Synchronization Jump Width
The synchronization jump width (SJW) defines the maximum number
of time quanta (Tq) clock cycles by which a bit may be shortened, or
lengthened, to achieve resynchronization on data transitions on the
bus (see Table 23-6).
Table 23-6. Synchronization Jump Width
SJW1
SJW0
Synchronization Jump Width
0
0
1 Tq cycle
0
1
2 Tq cycle
1
0
3 Tq cycle
1
1
4 Tq cycle
Technical Data
414
MC68HC908AZ60A — Rev 2.0
MSCAN Controller (MSCAN08)
MOTOROLA
MSCAN Controller (MSCAN08)
Programmer’s Model of Control Registers
BRP5–BRP0 — Baud Rate Prescaler
These bits determine the time quanta (Tq) clock, which is used to build
up the individual bit timing, according toTable 23-7.
Table 23-7. Baud Rate Prescaler
NOTE:
BRP5
BRP4
BRP3
BRP2
BRP1
BRP0
Prescaler Value (P)
0
0
0
0
0
0
1
0
0
0
0
0
1
2
0
0
0
0
1
0
3
0
0
0
0
1
1
4
:
:
:
:
:
:
:
:
:
:
:
:
:
:
1
1
1
1
1
1
64
The CBTR0 register can be written only if the SFTRES bit in the
MSCAN08 module control register is set.
23.14.4 MSCAN08 Bus Timing Register 1
Address:
$0503
Bit 7
6
5
4
3
2
1
Bit 0
SAMP
TSEG22
TSEG21
TSEG20
TSEG13
TSEG12
TSEG11
TSEG10
0
0
0
0
0
0
0
0
Read:
Write:
Reset:
Figure 23-18. Bus Timing Register 1 (CBTR1)
SAMP — Sampling
This bit determines the number of serial bus samples to be taken per
bit time. If set, three samples per bit are taken, the regular one
(sample point) and two preceding samples, using a majority rule. For
higher bit rates, SAMP should be cleared, which means that only one
sample will be taken per bit.
1 = Three samples per bit(1)
0 = One sample per bit
1. In this case PHASE_SEG1 must be at least 2 time quanta.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
MSCAN Controller (MSCAN08)
415
MSCAN Controller (MSCAN08)
TSEG22–TSEG10 — Time Segment
Time segments within the bit time fix the number of clock cycles per
bit time and the location of the sample point.
Time segment 1 (TSEG1) and time segment 2 (TSEG2) are
programmable as shown in Table 23-9.
Table 23-8. Time Segment Values
TSEG13
TSEG12
TSEG11
TSEG10
Time
Segment 1
TSEG22
TSEG21
TSEG20
Time
Segment 2
0
0
0
0
1 Tq Cycle(1)
0
0
0
1 Tq Cycle(1)
0
0
0
1
2 Tq Cycles(1)
0
0
1
2 Tq Cycles
0
0
1
0
3Tq Cycles(1)
.
.
.
.
0
0
1
1
4 Tq Cycles
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
1
1
8Tq Cycles
1
1
1
1
16 Tq Cycles
1. This setting is not valid. Please refer to Table 23-4 for valid settings.
The bit time is determined by the oscillator frequency, the baud rate
prescaler, and the number of time quanta (Tq) clock cycles per bit as
shown in Table 23-9).
Bit time=
NOTE:
Pres value
• number of Time Quanta
fMSCANCLK
The CBTR1 register can only be written if the SFTRES bit in the
MSCAN08 module control register is set.
Technical Data
416
MC68HC908AZ60A — Rev 2.0
MSCAN Controller (MSCAN08)
MOTOROLA
MSCAN Controller (MSCAN08)
Programmer’s Model of Control Registers
23.14.5 MSCAN08 Receiver Flag Register (CRFLG)
All bits of this register are read and clear only. A flag can be cleared by
writing a 1 to the corresponding bit position. A flag can be cleared only
when the condition which caused the setting is valid no more. Writing a
0 has no effect on the flag setting. Every flag has an associated interrupt
enable flag in the CRIER register. A hard or soft reset will clear the
register.
Address:
$0504
Bit 7
6
5
4
3
2
1
Bit 0
WUPIF
RWRNIF
TWRNIF
RERRIF
TERRIF
BOFFIF
OVRIF
RXF
0
0
0
0
0
0
0
0
Read:
Write:
Reset:
Figure 23-19. Receiver Flag Register (CRFLG)
WUPIF — Wakeup Interrupt Flag
If the MSCAN08 detects bus activity while in Sleep mode, it sets the
WUPIF flag. If not masked, a wake-up interrupt is pending while this
flag is set.
1 = MSCAN08 has detected activity on the bus and requested
wake-up.
0 = No wake-up interrupt has occurred.
RWRNIF — Receiver Warning Interrupt Flag
This flag is set when the MSCAN08 goes into warning status due to
the receive error counter (REC) exceeding 96 and neither one of the
Error Interrupt flags or the Bus-off Interrupt flag is set(1). If not
masked, an error interrupt is pending while this flag is set.
1 = MSCAN08 has gone into receiver warning status.
0 = No receiver warning status has been reached.
1. Condition to set the flag: RWRNIF = (96 ð REC) & RERRIF & TERRIF & BOFFIF
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
MSCAN Controller (MSCAN08)
417
MSCAN Controller (MSCAN08)
TWRNIF — Transmitter Warning Interrupt Flag
This flag is set when the MSCAN08 goes into warning status due to
the transmit error counter (TEC) exceeding 96 and neither one of the
error interrupt flags or the bus-off interrupt flag is set(1). If not masked,
an error interrupt is pending while this flag is set.
1 = MSCAN08 has gone into transmitter warning status.
0 = No transmitter warning status has been reached.
RERRIF — Receiver Error Passive Interrupt Flag
This flag is set when the MSCAN08 goes into error passive status due
to the receive error counter exceeding 127 and the bus-off interrupt
flag is not set(2). If not masked, an Error interrupt is pending while this
flag is set.
1 = MSCAN08 has gone into receiver error passive status.
0 = No receiver error passive status has been reached.
TERRIF — Transmitter Error Passive Interrupt Flag
This flag is set when the MSCAN08 goes into error passive status due
to the Transmit Error counter exceeding 127 and the Bus-off interrupt
flag is not set(3). If not masked, an Error interrupt is pending while this
flag is set.
1 = MSCAN08 went into transmit error passive status.
0 = No transmit error passive status has been reached.
BOFFIF — Bus-Off Interrupt Flag
This flag is set when the MSCAN08 goes into bus-off status, due to
the transmit error counter exceeding 255. It cannot be cleared before
the MSCAN08 has monitored 128 times 11 consecutive ‘recessive’
bits on the bus. If not masked, an Error interrupt is pending while this
flag is set.
1 = MSCAN08has gone into bus-off status.
0 = No bus-off status has bee reached.
1. Condition to set the flag: TWRNIF = (96 ð TEC) & RERRIF & TERRIF & BOFFIF
2. Condition to set the flag: RERRIF = (127 ð REC ð 255) & BOFFIF
3. Condition to set the flag: TERRIF = (128 ð TEC ð 255) & BOFFIF
Technical Data
418
MC68HC908AZ60A — Rev 2.0
MSCAN Controller (MSCAN08)
MOTOROLA
MSCAN Controller (MSCAN08)
Programmer’s Model of Control Registers
OVRIF — Overrun Interrupt Flag
This flag is set when a data overrun condition occurs. If not masked,
an error interrupt is pending while this flag is set.
1 = A data overrun has been detected since last clearing the flag.
0 = No data overrun has occurred.
RXF — Receive Buffer Full
The RXF flag is set by the MSCAN08 when a new message is
available in the foreground receive buffer. This flag indicates whether
the buffer is loaded with a correctly received message. After the CPU
has read that message from the receive buffer the RXF flag must be
cleared to release the buffer. A set RXF flag prohibits the exchange
of the background receive buffer into the foreground buffer. If not
masked, a receive interrupt is pending while this flag is set.
1 = The receive buffer is full. A new message is available.
0 = The receive buffer is released (not full).
NOTE:
To ensure data integrity, no registers of the receive buffer shall be read
while the RXF flag is cleared.
NOTE:
The CRFLG register is held in the reset state when the SFTRES bit in
CMCR0 is set.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
MSCAN Controller (MSCAN08)
419
MSCAN Controller (MSCAN08)
23.14.6 MSCAN08 Receiver Interrupt Enable Register
Address:
$0505
Bit 7
6
5
4
3
2
1
Bit 0
WUPIE
RWRNIE
TWRNIE
RERRIE
TERRIE
BOFFIE
OVRIE
RXFIE
0
0
0
0
0
0
0
0
Read:
Write:
Reset:
Figure 23-20. Receiver Interrupt Enable Register (CRIER)
WUPIE — Wakeup Interrupt Enable
1 = A wakeup event will result in a wakeup interrupt.
0 = No interrupt will be generated from this event.
RWRNIE — Receiver Warning Interrupt Enable
1 = A receiver warning status event will result in an error interrupt.
0 = No interrupt is generated from this event.
TWRNIE — Transmitter Warning Interrupt Enable
1 = A transmitter warning status event will result in an error
interrupt.
0 = No interrupt is generated from this event.
RERRIE — Receiver Error Passive Interrupt Enable
1 = A receiver error passive status event will result in an error
interrupt.
0 = No interrupt is generated from this event.
TERRIE — Transmitter Error Passive Interrupt Enable
1 = A transmitter error passive status event will result in an error
interrupt.
0 = No interrupt is generated from this event.
BOFFIE — Bus-Off Interrupt Enable
1 = A bus-off event will result in an error interrupt.
0 = No interrupt is generated from this event.
Technical Data
420
MC68HC908AZ60A — Rev 2.0
MSCAN Controller (MSCAN08)
MOTOROLA
MSCAN Controller (MSCAN08)
Programmer’s Model of Control Registers
OVRIE — Overrun Interrupt Enable
1 = An overrun event will result in an error interrupt.
0 = No interrupt is generated from this event.
RXFIE — Receiver Full Interrupt Enable
1 = A receive buffer full (successful message reception) event will
result in a receive interrupt.
0 = No interrupt will be generated from this event.
NOTE:
The CRIER register is held in the reset state when the SFTRES bit in
CMCR0 is set.
23.14.7 MSCAN08 Transmitter Flag Register
The Abort Acknowledge flags are read only. The Transmitter Buffer
Empty flags are read and clear only. A flag can be cleared by writing a 1
to the corresponding bit position. Writing a 0 has no effect on the flag
setting. The Transmitter Buffer Empty flags each have an associated
interrupt enable bit in the CTCR register. A hard or soft reset will resets
the register.
Address:
Read:
$0506
5
Bit 7
6
5
4
3
0
ABTAK2
ABTAK1
ABTAK0
0
2
1
Bit 0
TXE2
TXE1
TXE0
1
1
1
Write:
Reset:
0
0
0
0
0
= Unimplemented
Figure 23-21. Transmitter Flag Register (CTFLG)
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
MSCAN Controller (MSCAN08)
421
MSCAN Controller (MSCAN08)
ABTAK2–ABTAK0 — Abort Acknowledge
This flag acknowledges that a message has been aborted due to a
pending abort request from the CPU. After a particular message
buffer has been flagged empty, this flag can be used by the
application software to identify whether the message has been
aborted successfully or has been sent. The ABTAKx flag is cleared
implicitly whenever the corresponding TXE flag is cleared.
1 = The message has been aborted.
0 = The message has not been aborted, thus has been sent out.
TXE2–TXE0 — Transmitter Empty
This flag indicates that the associated transmit message buffer is
empty, thus not scheduled for transmission. The CPU must
handshake (clear) the flag after a message has been set up in the
transmit buffer and is due for transmission. The MSCAN08 sets the
flag after the message has been sent successfully. The flag is also set
by the MSCAN08 when the transmission request was successfully
aborted due to a pending abort request (see Transmit Buffer
Priority Registers on page 408). If not masked, a receive interrupt is
pending while this flag is set.
Clearing a TXEx flag also clears the corresponding ABTAKx flag
(ABTAK, see above). When a TXEx flag is set, the corresponding
ABTRQx bit (ABTRQ, see MSCAN08 Transmitter Control Register
on page 423) is cleared.
1 = The associated message buffer is empty (not scheduled).
0 = The associated message buffer is full (loaded with a message
due for transmission).
NOTE:
To ensure data integrity, no registers of the transmit buffers should be
written to while the associated TXE flag is cleared.
NOTE:
The CTFLG register is held in the reset state when the SFTRES bit in
CMCR0 is set.
Technical Data
422
MC68HC908AZ60A — Rev 2.0
MSCAN Controller (MSCAN08)
MOTOROLA
MSCAN Controller (MSCAN08)
Programmer’s Model of Control Registers
23.14.8 MSCAN08 Transmitter Control Register
Address:
$0507
Bit 7
Read:
6
5
4
ABTRQ2
ABTRQ1
ABTRQ0
0
0
0
0
3
2
1
Bit 0
TXEIE2
TXEIE1
TXEIE0
0
0
0
0
Write:
Reset:
0
0
= Unimplemented
Figure 23-22. Transmitter Control Register (CTCR)
ABTRQ2–ABTRQ0 — Abort Request
The CPU sets an ABTRQx bit to request that an already scheduled
message buffer (TXE = 0) be aborted. The MSCAN08 will grant the
request if the message has not already started transmission, or if the
transmission is not successful (lost arbitration or error). When a
message is aborted the associated TXE and the abort acknowledge
flag (ABTAK) (see MSCAN08 Transmitter Flag Register on page
421) will be set and an TXE interrupt is generated if enabled. The
CPU cannot reset ABTRQx. ABTRQx is cleared implicitly whenever
the associated TXE flag is set.
1 = Abort request pending
0 = No abort request
NOTE:
The software must not clear one or more of the TXE flags in CTFLG and
simultaneously set the respective ABTRQ bit(s).
TXEIE2–TXEIE0 — Transmitter Empty Interrupt Enable
1 = A transmitter empty (transmit buffer available for transmission)
event results in a transmitter empty interrupt.
0 = No interrupt is generated from this event.
NOTE:
The CTCR register is held in the reset state when the SFTRES bit in
CMCR0 is set.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
MSCAN Controller (MSCAN08)
423
MSCAN Controller (MSCAN08)
23.14.9 MSCAN08 Identifier Acceptance Control Register
Address:
Read:
$0508
Bit 7
6
0
0
5
4
IDAM1
IDAM0
0
0
3
2
1
Bit 0
0
0
IDHIT1
IDHIT0
0
0
0
0
Write:
Reset:
0
0
= Unimplemented
Figure 23-23. Identifier Acceptance Control Register (CIDAC)
IDAM1–IDAM0— Identifier Acceptance Mode
The CPU sets these flags to define the identifier acceptance filter
organization (see Identifier Acceptance Filter on page 388). Table
23-9 summarizes the different settings. In “filter closed” mode no
messages will be accepted so that the foreground buffer will never be
reloaded.
Table 23-9. Identifier Acceptance Mode Settings
IDAM1
IDAM0
Identifier Acceptance Mode
0
0
Single 32-Bit Acceptance Filter
0
1
Two 16-Bit Acceptance Filter
1
0
Four 8-Bit Acceptance Filters
1
1
Filter Closed
IDHIT1–IDHIT0— Identifier Acceptance Hit Indicator
The MSCAN08 sets these flags to indicate an identifier acceptance hit
(see Identifier Acceptance Filter on page 388). Table 23-9
summarizes the different settings.
Technical Data
424
MC68HC908AZ60A — Rev 2.0
MSCAN Controller (MSCAN08)
MOTOROLA
MSCAN Controller (MSCAN08)
Programmer’s Model of Control Registers
Table 23-10. Identifier Acceptance Hit Indication
IDHIT1
IDHIT0
Identifier Acceptance Hit
0
0
Filter 0 Hit
0
1
Filter 1 Hit
1
0
Filter 2 Hit
1
1
Filter 3 Hit
The IDHIT indicators are always related to the message in the
foreground buffer. When a message gets copied from the background to
the foreground buffer, the indicators are updated as well.
NOTE:
The CIDAC register can be written only if the SFTRES bit in the CMCR0
is set.
23.14.10 MSCAN08 Receive Error Counter
Address:
$050E
Bit 7
Read: RXERR7
6
5
4
3
2
1
Bit 0
RXERR6
RXERR5
RXERR4
RXERR3
RXERR2
RXERR1
RXERR0
0
0
0
0
0
0
0
Write:
Reset:
0
= Unimplemented
Figure 23-24. Receiver Error Counter (CRXERR)
This register reflects the status of the MSCAN08 receive error counter.
The register is read only.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
MSCAN Controller (MSCAN08)
425
MSCAN Controller (MSCAN08)
23.14.11 MSCAN08 Transmit Error Counter
Address:
$050F
Bit 7
Read: TXERR7
6
5
4
3
2
1
Bit 0
TXERR6
TXERR5
TXERR4
TXERR3
TXERR2
TXERR1
TXERR0
0
0
0
0
0
0
0
Write:
Reset:
0
= Unimplemented
Figure 23-25. Transmit Error Counter (CTXERR)
This register reflects the status of the MSCAN08 transmit error counter.
The register is read only.
NOTE:
Both error counters may only be read when in Sleep or Soft Reset mode.
23.14.12 MSCAN08 Identifier Acceptance Registers
On reception each message is written into the background receive
buffer. The CPU is only signalled to read the message, however, if it
passes the criteria in the identifier acceptance and identifier mask
registers (accepted); otherwise, the message will be overwritten by the
next message (dropped).
The acceptance registers of the MSCAN08 are applied on the IDR0 to
IDR3 registers of incoming messages in a bit by bit manner.
For extended identifiers, all four acceptance and mask registers are
applied. For standard identifiers only the first two (CIDMR0/1 and
CIDAR0/1) are applied.
Technical Data
426
MC68HC908AZ60A — Rev 2.0
MSCAN Controller (MSCAN08)
MOTOROLA
MSCAN Controller (MSCAN08)
Programmer’s Model of Control Registers
CIDAR0
Address: $0510
Bit 7
6
5
4
3
2
1
Bit 0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
Read:
Write:
Reset:
CIDAR1
Unaffected by Reset
Address: $050511
Bit 7
6
5
4
3
2
1
Bit 0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
Read:
Write:
Reset:
CIDAR2
Unaffected by Reset
Address: $0512
Bit 7
6
5
4
3
2
1
Bit 0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
Read:
Write:
Reset:
CIDAR3
Unaffected by Reset
Address: $0513
Bit 7
6
5
4
3
2
1
Bit 0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
Read:
Write:
Reset:
Unaffected by Reset
Figure 23-26. Identifier Acceptance Registers (CIDAR0–CIDAR3)
AC7–AC0 — Acceptance Code Bits
AC7–AC0 comprise a user-defined sequence of bits with which the
corresponding bits of the related identifier register (IDRn) of the
receive message buffer are compared. The result of this comparison
is then masked with the corresponding identifier mask register.
NOTE:
The CIDAR0–3 registers can be written only if the SFTRES bit in
CMCR0 is set
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
MSCAN Controller (MSCAN08)
427
MSCAN Controller (MSCAN08)
23.14.13 MSCAN08 Identifier Mask Registers (CIDMR0-3)
The identifier mask registers specify which of the corresponding bits in
the identifier acceptance register are relevant for acceptance filtering.
For standard identifiers it is required to program the last three bits (AM2AM0) in the mask register CIDMR1 to ‘don’t care’.
CIDMRO
Read:
Write:
Address: $0514
Bit 7
6
5
4
3
2
1
Bit 0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
Reset:
CIDMR1
Read:
Write:
Unaffected by Reset
Address: $0515
Bit 7
6
5
4
3
2
1
Bit 0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
Reset:
CIDMR2
Read:
Write:
Unaffected by Reset
Address: $0516
Bit 7
6
5
4
3
2
1
Bit 0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
Reset:
CIDMR3
Read:
Write:
Reset:
Unaffected by Reset
Address: $0517
Bit 7
6
5
4
3
2
1
Bit 0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
Unaffected by Reset
Figure 23-27. Identifier Mask Registers (CIDMR0–CIDMR3)
Technical Data
428
MC68HC908AZ60A — Rev 2.0
MSCAN Controller (MSCAN08)
MOTOROLA
MSCAN Controller (MSCAN08)
AM7–AM0 — Acceptance Mask Bits
If a particular bit in this register is cleared, this indicates that the
corresponding bit in the identifier acceptance register must be the
same as its identifier bit before a match will be detected. The
message will be accepted if all such bits match. If a bit is set, it
indicates that the state of the corresponding bit in the identifier
acceptance register will not affect whether or not the message is
accepted.
1 = Ignore corresponding acceptance code register bit.
0 = Match corresponding acceptance code register and identifier
bits.
NOTE:
The CIDMR0-3 registers can be written only if the SFTRES bit in the
CMCR0 is set
Technical Data
429
MC68HC908AZ60A — Rev 2.0
MSCAN Controller (MSCAN08)
MOTOROLA
MSCAN Controller (MSCAN08)
Technical Data
430
MC68HC908AZ60A — Rev 2.0
MSCAN Controller (MSCAN08)
MOTOROLA
Technical Data — MC68HC908AZ60A
Section 24. Keyboard Module (KBD)
24.1 Contents
24.2
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
24.3
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
24.4
Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . .432
24.5
Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .435
24.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
24.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
24.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
24.7
Keyboard Module During Break Interrupts . . . . . . . . . . . .436
24.8 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
24.8.1 Keyboard Status and Control Register . . . . . . . . . . . . . 437
24.8.2 Keyboard Interrupt Enable Register. . . . . . . . . . . . . . . . 438
24.2 Introduction
The keyboard interrupt module (KBD) provides five independently
maskable external interrupt pins.
This module is only available on 64-pin package options.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Keyboard Module (KBD)
431
Keyboard Module (KBD)
24.3 Features
KBD features include:
•
Five Keyboard Interrupt Pins with Separate Keyboard Interrupt
Enable Bits and One Keyboard Interrupt Mask
•
Hysteresis Buffers
•
Programmable Edge-Only or Edge- and Level- Interrupt Sensitivity
•
Automatic Interrupt Acknowledge
•
Exit from Low-Power Modes
24.4 Functional Description
Writing to the KBIE4–KBIE0 bits in the keyboard interrupt enable register
independently enables or disables each port G or port H pin as a
keyboard interrupt pin. Enabling a keyboard interrupt pin also enables its
internal pullup device. A logic 0 applied to an enabled keyboard interrupt
pin latches a keyboard interrupt request.
A keyboard interrupt is latched when one or more keyboard pins goes
low after all were high. The MODEK bit in the keyboard status and
control register controls the triggering mode of the keyboard interrupt.
•
If the keyboard interrupt is edge-sensitive only, a falling edge on a
keyboard pin does not latch an interrupt request if another
keyboard pin is already low. To prevent losing an interrupt request
on one pin because another pin is still low, software can disable
the latter pin while it is low.
•
If the keyboard interrupt is falling edge- and low level-sensitive, an
interrupt request is present as long as any keyboard pin is low.
Technical Data
432
MC68HC908AZ60A — Rev 2.0
Keyboard Module (KBD)
MOTOROLA
MOTOROLA
Register Name
KB4IE
KB0IE
.
.
.
MODEK
VDD
CK
D
CLR
Q
KEYBOARD
INTERRUPT FF
RESET
ACKK
MC68HC908AZ60A — Rev 2.0
Keyboard Module (KBD)
0
0
0
0
0
0
0
0
0
5
0
KBSCR
$001A
Register
Address
$001B
KBIER
Table 24-1. I/O Register Address Summary
0
KBIE3
KBIE4
0
0
3
KEYF
0
4
0
Figure 24-2. I/O Register Summary
= Unimplemented
6
0
Bit 7
0
0
KBIE2
2
0
ACKK
0
IMASKK
0
KBIE1
0
IMASKK
1
SYNCHRONIZER
VECTOR FETCH
DECODER
Figure 24-1. Keyboard Module Block Diagram
Read:
Keyboard Status and Control RegWrite:
ister (KBSCR)
Reset:
Read:
Keyboard Interrupt Enable RegisWrite:
ter (KBIER)
Reset:
TO PULLUP ENABLE
KBD4
TO PULLUP ENABLE
KBD0
INTERNAL BUS
0
KBIE0
0
MODEK
Bit 0
KEYF
KEYBOARD
INTERRUPT
REQUEST
Keyboard Module (KBD)
Functional Description
Technical Data
433
Keyboard Module (KBD)
If the MODEK bit is set, the keyboard interrupt pins are both falling edgeand low level-sensitive, and both of the following actions must occur to
clear a keyboard interrupt request:
•
Vector fetch or software clear — A vector fetch generates an
interrupt acknowledge signal to clear the interrupt request.
Software may generate the interrupt acknowledge signal by
writing a logic 1 to the ACKK bit in the keyboard status and control
register (KBSCR). The ACKK bit is useful in applications that poll
the keyboard interrupt pins and require software to clear the
keyboard interrupt request. Writing to the ACKK bit prior to leaving
an interrupt service routine also can prevent spurious interrupts
due to noise. Setting ACKK does not affect subsequent transitions
on the keyboard interrupt pins. A falling edge that occurs after
writing to the ACKK bit latches another interrupt request. If the
keyboard interrupt mask bit, IMASKK, is clear, the CPU loads the
program counter with the vector address at locations $FFDE and
$FFDF.
•
Return of all enabled keyboard interrupt pins to logic 1. As long as
any enabled keyboard interrupt pin is at logic 0, the keyboard
interrupt remains set.
The vector fetch or software clear and the return of all enabled keyboard
interrupt pins to logic 1 may occur in any order.
If the MODEK bit is clear, the keyboard interrupt pin is falling edgesensitive only. With MODEK clear, a vector fetch or software clear
immediately clears the keyboard interrupt request.
Reset clears the keyboard interrupt request and the MODEK bit, clearing
the interrupt request even if a keyboard interrupt pin stays at logic 0.
The keyboard flag bit (KEYF) in the keyboard status and control register
can be used to see if a pending interrupt exists. The KEYF bit is not
affected by the keyboard interrupt mask bit (IMASKK) which makes it
useful in applications where polling is preferred.
To determine the logic level on a keyboard interrupt pin, use the data
direction register to configure the pin as an input and read the data
register.
Technical Data
434
MC68HC908AZ60A — Rev 2.0
Keyboard Module (KBD)
MOTOROLA
Keyboard Module (KBD)
Keyboard Initialization
NOTE:
Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding
keyboard interrupt pin to be an input, overriding the data direction
register. However, the data direction register bit must be a logic 0 for
software to read the pin.
24.5 Keyboard Initialization
When a keyboard interrupt pin is enabled, it takes time for the internal
pullup to reach a logic 1. Therefore, a false interrupt can occur as soon
as the pin is enabled.
To prevent a false interrupt on keyboard initialization:
1. Mask keyboard interrupts by setting the IMASKK bit in the
keyboard status and control register
2. Enable the KBI pins by setting the appropriate KBIEx bits in the
keyboard interrupt enable register
3. Write to the ACKK bit in the keyboard status and control register
to clear any false interrupts
4. Clear the IMASKK bit.
An interrupt signal on an edge-triggered pin can be acknowledged
immediately after enabling the pin. An interrupt signal on an edge- and
level-triggered interrupt pin must be acknowledged after a delay that
depends on the external load.
Another way to avoid a false interrupt:
1. Configure the keyboard pins as outputs by setting the appropriate
DDRG bits in data direction register G.
2. Configure the keyboard pins as outputs by setting the appropriate
DDRH bits in data direction register H.
3. Write logic 1s to the appropriate port G and port H data register
bits.
4. Enable the KBI pins by setting the appropriate KBIEx bits in the
keyboard interrupt enable register.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Keyboard Module (KBD)
435
Keyboard Module (KBD)
24.6 Low-Power Modes
The WAIT and STOP instructions put the MCU in low-powerconsumption standby modes.
24.6.1 Wait Mode
The keyboard module remains active in wait mode. Clearing the
IMASKK bit in the keyboard status and control register enables keyboard
interrupt requests to bring the MCU out of wait mode.
24.6.2 Stop Mode
The keyboard module remains active in stop mode. Clearing the
IMASKK bit in the keyboard status and control register enables keyboard
interrupt requests to bring the MCU out of stop mode.
24.7 Keyboard Module During Break Interrupts
The BCFE bit in the break flag control register (BFCR) enables software
to clear status bits during the break state. See Break Module (BRK) on
page 203.
To allow software to clear the KEYF bit during a break interrupt, write a
logic 1 to the BCFE bit. If KEYF is cleared during the break state, it
remains cleared when the MCU exits the break state.
To protect the KEYF bit during the break state, write a logic 0 to the
BCFE bit. With BCFE at logic 0, writing to the keyboard acknowledge bit
(ACKK) in the keyboard status and control register during the break state
has no effect. See Keyboard Status and Control Register on page
437.
Technical Data
436
MC68HC908AZ60A — Rev 2.0
Keyboard Module (KBD)
MOTOROLA
Keyboard Module (KBD)
I/O Registers
24.8 I/O Registers
The following registers control and monitor operation of the keyboard
module:
•
Keyboard status and control register (KBSCR)
•
Keyboard interrupt enable register (KBIER)
24.8.1 Keyboard Status and Control Register
The keyboard status and control register:
•
Flags keyboard interrupt requests
•
Acknowledges keyboard interrupt requests
•
Masks keyboard interrupt requests
•
Controls keyboard interrupt triggering sensitivity
Address: $001A
Read:
Bit 7
6
5
4
3
2
0
0
0
0
KEYF
0
Write:
Reset:
1
Bit 0
IMASKK
MODEK
0
0
ACKK
0
0
0
0
0
0
= Unimplemented
Figure 24-3. Keyboard Status and Control Register (KBSCR)
Bits 7–4 — Not used
These read-only bits always read as logic 0s.
KEYF — Keyboard Flag Bit
This read-only bit is set when a keyboard interrupt is pending. Reset
clears the KEYF bit.
1 = Keyboard interrupt pending
0 = No keyboard interrupt pending
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Keyboard Module (KBD)
437
Keyboard Module (KBD)
ACKK — Keyboard Acknowledge Bit
Writing a logic 1 to this write-only bit clears the keyboard interrupt
request. ACKK always reads as logic 0. Reset clears ACKK.
IMASKK — Keyboard Interrupt Mask Bit
Writing a logic 1 to this read/write bit prevents the output of the
keyboard interrupt mask from generating interrupt requests. Reset
clears the IMASKK bit.
1 = Keyboard interrupt requests masked
0 = Keyboard interrupt requests not masked
MODEK — Keyboard Triggering Sensitivity Bit
This read/write bit controls the triggering sensitivity of the keyboard
interrupt pins. Reset clears MODEK.
1 = Keyboard interrupt requests on falling edges and low levels
0 = Keyboard interrupt requests on falling edges only
24.8.2 Keyboard Interrupt Enable Register
The keyboard interrupt enable register enables or disables each port G
and each port H pin to operate as a keyboard interrupt pin.
Address: $001B
Read:
Bit 7
6
5
0
0
0
4
3
2
1
Bit 0
KBIE4
KBIE3
KBIE2
KBIE1
KBIE0
0
0
0
0
0
Write:
Reset:
0
0
0
= Unimplemented
Figure 24-4. Keyboard Interrupt Enable Register (KBIER)
KBIE4–KBIE0 — Keyboard Interrupt Enable Bits
Each of these read/write bits enables the corresponding keyboard
interrupt pin to latch interrupt requests. Reset clears the keyboard
interrupt enable register.
1 = PDx pin enabled as keyboard interrupt pin
0 = PDx pin not enabled as keyboard interrupt pin
Technical Data
438
MC68HC908AZ60A — Rev 2.0
Keyboard Module (KBD)
MOTOROLA
Keyboard Module (KBD)
Technical Data
439
MC68HC908AZ60A — Rev 2.0
Keyboard Module (KBD)
MOTOROLA
Keyboard Module (KBD)
Technical Data
440
MC68HC908AZ60A — Rev 2.0
Keyboard Module (KBD)
MOTOROLA
Technical Data — MC68HC908AZ60A
Section 25. Timer Interface Module A (TIMA)
25.1 Contents
25.2
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
25.3
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
25.4 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . .445
25.4.1 TIMA Counter Prescaler. . . . . . . . . . . . . . . . . . . . . . . . . . 445
25.4.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
25.4.3 Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
25.4.3.1
Unbuffered Output Compare. . . . . . . . . . . . . . . . . . . . 447
25.4.3.2
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . .448
25.4.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . .449
25.4.4.1
Unbuffered PWM Signal Generation . . . . . . . . . . . . . 450
25.4.4.2
Buffered PWM Signal Generation. . . . . . . . . . . . . . . . 451
25.4.4.3
PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
25.5
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
25.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
25.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
25.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
25.7
TIMA During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . 455
25.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
25.8.1 TIMA Clock Pin (PTD6/ATD14/ TACLK) . . . . . . . . . . . . . 456
25.8.2 TIMA Channel I/O Pins (PTF3–PTF0/TACH2 and
PTE3/TACH1–PTE2/TACH0)456
25.9 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
25.9.1 TIMA Status and Control Register . . . . . . . . . . . . . . . . . 457
25.9.2 TIMA Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . 459
25.9.3 TIMA Counter Modulo Registers. . . . . . . . . . . . . . . . . . . 461
25.9.4 TIMA Channel Status and Control Registers. . . . . . . . . 462
25.9.5 TIMA Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . . 467
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Timer Interface Module A (TIMA)
441
Timer Interface Module A (TIMA)
25.2 Introduction
This section describes the timer interface module (TIMA). The TIMA is a
6-channel timer that provides a timing reference with input capture,
output compare and pulse-width-modulation functions. Figure 25-1 is a
block diagram of the TIMA.
For further information regarding timers on M68HC08 family devices,
please consult the HC08 Timer Reference Manual, TIM08RM/AD.
25.3 Features
Features of the TIMA include:
•
Six Input Capture/Output Compare Channels
– Rising-Edge, Falling-Edge or Any-Edge Input Capture Trigger
– Set, Clear or Toggle Output Compare Action
•
Buffered and Unbuffered Pulse Width Modulation (PWM) Signal
Generation
•
Programmable TIMA Clock Input
– 7 Frequency Internal Bus Clock Prescaler Selection
– External TIMA Clock Input (4 MHz Maximum Frequency)
•
Free-Running or Modulo Up-Count Operation
•
Toggle Any Channel Pin on Overflow
•
TIMA Counter Stop and Reset Bits
Technical Data
442
MC68HC908AZ60A — Rev 2.0
Timer Interface Module A (TIMA)
MOTOROLA
Timer Interface Module A (TIMA)
Features
TCLK
PTD6/ATD14/TACLK
PRESCALER SELECT
INTERNAL
BUS CLOCK
PRESCALER
TSTOP
PS2
TRST
PS1
PS0
16-BIT COUNTER
TOF
TOIE
INTERRUPT
LOGIC
16-BIT COMPARATOR
TMODH:TMODL
CHANNEL 0
ELS0B
ELS0A
TOV0
CH0MAX
16-BIT COMPARATOR
TCH0H:TCH0L
CH0F
16-BIT LATCH
MS0A
CHANNEL 1
ELS1B
MS0B
ELS1A
TOV1
CH1MAX
16-BIT COMPARATOR
TCH1H:TCH1L
CH0IE
CH1F
16-BIT LATCH
CH1IE
MS1A
CHANNEL 2
ELS2B
ELS2A
TOV2
CH2MAX
16-BIT COMPARATOR
TCH2H:TCH2L
CH2F
16-BIT LATCH
MS2A
CHANNEL 3
ELS3B
MS2B
ELS3A
TOV3
CH3MAX
16-BIT COMPARATOR
TCH3H:TCH3L
CH2IE
CH3F
16-BIT LATCH
CH3IE
MS3A
CHANNEL 4
ELS4B
ELS4A
TOV4
CH5MAX
16-BIT COMPARATOR
TCH4H:TCH4L
CH4F
16-BIT LATCH
MS4A
CHANNEL 5
ELS5B
MS4B
ELS5A
TOV5
CH5MAX
16-BIT COMPARATOR
TCH5H:TCH5L
CH4IE
CH5F
16-BIT LATCH
MS5A
CH5IE
PTE2
LOGIC
PTE2/TACH0
INTERRUPT
LOGIC
PTE3
LOGIC
PTE3/TACH1
INTERRUPT
LOGIC
PTF0
LOGIC
PTF0/TACH2
INTERRUPT
LOGIC
PTF1
LOGIC
PTF1/TACH3
INTERRUPT
LOGIC
PTF2
LOGIC
PTF2/TACH4
INTERRUPT
LOGIC
PTF3
LOGIC
PTF3/TACH5
INTERRUPT
LOGIC
Figure 25-1. TIMA Block Diagram
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Timer Interface Module A (TIMA)
443
Timer Interface Module A (TIMA)
Figure 25-2. TIMA I/O Register Summary
Addr.
Register Name
Bit 7
6
5
4
3
2
1
Bit 0
TOF
TOIE
TSTOP
TRST
0
PS2
PS1
PS0
R
R
R
R
R
R
R
R
$0020
TIMA Status/Control Register (TASC)
$0021
Reserved
$0022
TIMA Counter Register High (TACNTH)
Bit 15
14
13
12
11
10
9
Bit 8
$0023
TIMA Counter Register Low (TACNTL)
Bit 7
6
5
4
3
2
1
Bit 0
$0024
TIMA Counter Modulo Reg. High (TAMODH)
Bit 15
14
13
12
11
10
9
Bit 8
$0025
TIMA Counter Modulo Reg. Low (TAMODL)
Bit 7
6
5
4
3
2
1
Bit 0
$0026
TIMA Ch. 0 Status/Control Register (TASC0)
CH0F
CH0IE
MS0B
MS0A
ELS0B
ELS0A
TOV0
CH0MAX
$0027
TIMA Ch. 0 Register High (TACH0H)
Bit 15
14
13
12
11
10
9
Bit 8
$0028
TIMA Ch. 0 Register Low (TACH0L)
Bit 7
6
5
4
3
2
1
Bit 0
$0029
TIMA Ch. 1 Status/Control Register (TASC1)
CH1F
CH1IE
0
MS1A
ELS1B
ELS1A
TOV1
CH1MAX
$002A
TIMA Ch. 1 Register High (TACH1H)
Bit 15
14
13
12
11
10
9
Bit 8
$002B
TIMA Ch. 1 Register Low (TACH1L)
Bit 7
6
5
4
3
2
1
Bit 0
$002C
TIMA Ch. 2 Status/Control Register (TASC2)
CH2F
CH2IE
MS2B
MS2A
ELS2B
ELS2A
TOV2
CH2MAX
$002D
TIMA Ch. 2 Register High (TACH2H)
Bit 15
14
13
12
11
10
9
Bit 8
$002E
TIMA Ch. 2 Register Low (TACH2L)
Bit 7
6
5
4
3
2
1
Bit 0
$002F
TIMA Ch. 3 Status/Control Register (TASC3)
CH3F
CH3IE
0
MS3A
ELS3B
ELS3A
TOV3
CH3MAX
$0030
TIMA Ch. 3 Register High (TACH3H)
Bit 15
14
13
12
11
10
9
Bit 8
$0031
TIMA Ch. 3 Register Low (TACH3L)
Bit 7
6
5
4
3
2
1
Bit 0
$0032
TIMA Ch. 4 Status/Control Register (TASC4)
CH4F
CH4IE
MS4B
MS4A
ELS4B
ELS4A
TOV4
CH4MAX
$0033
TIMA Ch. 4 Register High (TACH4H)
Bit 15
14
13
12
11
10
9
Bit 8
$0034
TIMA Ch. 4 Register Low (TACH4L)
Bit 7
6
5
4
3
2
1
Bit 0
$0035
TIMA Ch. 5 Status/Control Register (TASC5)
CH5F
CH5IE
0
MS5A
ELS5B
ELS5A
TOV5
CH5MAX
$0036
TIMA Ch. 5 Register High (TACH5H)
Bit 15
14
13
12
11
10
9
Bit 8
$0037
TIMA Ch. 5 Register Low (TACH5L)
Bit 7
6
5
4
3
2
1
Bit 0
R
= Reserved
Technical Data
444
MC68HC908AZ60A — Rev 2.0
Timer Interface Module A (TIMA)
MOTOROLA
Timer Interface Module A (TIMA)
Functional Description
25.4 Functional Description
Figure 25-1 shows the TIMA structure. The central component of the
TIMA is the 16-bit TIMA counter that can operate as a free-running
counter or a modulo up-counter. The TIMA counter provides the timing
reference for the input capture and output compare functions. The TIMA
counter modulo registers, TAMODH–TAMODL, control the modulo
value of the TIMA counter. Software can read the TIMA counter value at
any time without affecting the counting sequence.
The six TIMA channels are programmable independently as input
capture or output compare channels.
25.4.1 TIMA Counter Prescaler
The TIMA clock source can be one of the seven prescaler outputs or the
TIMA clock pin, PTD6/ATD14/TACLK. The prescaler generates seven
clock rates from the internal bus clock. The prescaler select bits, PS[2:0],
in the TIMA status and control register select the TIMA clock source.
25.4.2 Input Capture
An input capture function has three basic parts: edge select logic, an
input capture latch and a 16-bit counter. Two 8-bit registers, which make
up the 16-bit input capture register, are used to latch the value of the
free-running counter after the corresponding input capture edge detector
senses a defined transition. The polarity of the active edge is
programmable. The level transition which triggers the counter transfer is
defined by the corresponding input edge bits (ELSxB and ELSxA in
TASC0 through TASC5 control registers with x referring to the active
channel number). When an active edge occurs on the pin of an input
capture channel, the TIMA latches the contents of the TIMA counter into
the TIMA channel registers, TACHxH–TACHxL. Input captures can
generate TIMA CPU interrupt requests. Software can determine that an
input capture event has occurred by enabling input capture interrupts or
by polling the status flag bit.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Timer Interface Module A (TIMA)
445
Timer Interface Module A (TIMA)
The free-running counter contents are transferred to the TIMA channel
register (TACHxH–TACHxL see TIMA Channel Registers on page 467)
on each proper signal transition regardless of whether the TIMA channel
flag (CH0F–CH5F in TASC0–TASC5 registers) is set or clear. When the
status flag is set, a CPU interrupt is generated if enabled. The value of
the count latched or “captured” is the time of the event. Because this
value is stored in the input capture register 2 bus cycles after the actual
event occurs, user software can respond to this event at a later time and
determine the actual time of the event. However, this must be done prior
to another input capture on the same pin; otherwise, the previous time
value will be lost.
By recording the times for successive edges on an incoming signal,
software can determine the period and/or pulse width of the signal. To
measure a period, two successive edges of the same polarity are
captured. To measure a pulse width, two alternate polarity edges are
captured. Software should track the overflows at the 16-bit module
counter to extend its range.
Another use for the input capture function is to establish a time
reference. In this case, an input capture function is used in conjunction
with an output compare function. For example, to activate an output
signal a specified number of clock cycles after detecting an input event
(edge), use the input capture function to record the time at which the
edge occurred. A number corresponding to the desired delay is added to
this captured value and stored to an output compare register (see TIMA
Channel Registers on page 467). Because both input captures and
output compares are referenced to the same 16-bit modulo counter, the
delay can be controlled to the resolution of the counter independent of
software latencies.
Reset does not affect the contents of the TIMA channel register
(TACHxH–TACHxL).
Technical Data
446
MC68HC908AZ60A — Rev 2.0
Timer Interface Module A (TIMA)
MOTOROLA
Timer Interface Module A (TIMA)
Functional Description
25.4.3 Output Compare
With the output compare function, the TIMA can generate a periodic
pulse with a programmable polarity, duration and frequency. When the
counter reaches the value in the registers of an output compare channel,
the TIMA can set, clear or toggle the channel pin. Output compares can
generate TIMA CPU interrupt requests.
25.4.3.1 Unbuffered Output Compare
Any output compare channel can generate unbuffered output compare
pulses as described in Output Compare on page 447. The pulses are
unbuffered because changing the output compare value requires writing
the new value over the old value currently in the TIMA channel registers.
An unsynchronized write to the TIMA channel registers to change an
output compare value could cause incorrect operation for up to two
counter overflow periods. For example, writing a new value before the
counter reaches the old value but after the counter reaches the new
value prevents any compare during that counter overflow period. Also,
using a TIMA overflow interrupt routine to write a new, smaller output
compare value may cause the compare to be missed. The TIMA may
pass the new value before it is written.
Use the following methods to synchronize unbuffered changes in the
output compare value on channel x:
•
When changing to a smaller value, enable channel x output
compare interrupts and write the new value in the output compare
interrupt routine. The output compare interrupt occurs at the end
of the current output compare pulse. The interrupt routine has until
the end of the counter overflow period to write the new value.
•
When changing to a larger output compare value, enable TIMA
overflow interrupts and write the new value in the TIMA overflow
interrupt routine. The TIMA overflow interrupt occurs at the end of
the current counter overflow period. Writing a larger value in an
output compare interrupt routine (at the end of the current pulse)
could cause two output compares to occur in the same counter
overflow period.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Timer Interface Module A (TIMA)
447
Timer Interface Module A (TIMA)
25.4.3.2 Buffered Output Compare
Channels 0 and 1 can be linked to form a buffered output compare
channel whose output appears on the PTE2/TACH0 pin. The TIMA
channel registers of the linked pair alternately control the output.
Setting the MS0B bit in TIMA channel 0 status and control register
(TASC0) links channel 0 and channel 1. The output compare value in the
TIMA channel 0 registers initially controls the output on the
PTE2/TACH0 pin. Writing to the TIMA channel 1 registers enables the
TIMA channel 1 registers to synchronously control the output after the
TIMA overflows. At each subsequent overflow, the TIMA channel
registers (0 or 1) that control the output are the ones written to last.
TASC0 controls and monitors the buffered output compare function and
TIMA channel 1 status and control register (TASC1) is unused. While the
MS0B bit is set, the channel 1 pin, PTE3/TACH1, is available as a
general-purpose I/O pin.
Channels 2 and 3 can be linked to form a buffered output compare
channel whose output appears on the PTF0/TACH2 pin. The TIMA
channel registers of the linked pair alternately control the output.
Setting the MS2B bit in TIMA channel 2 status and control register
(TASC2) links channel 2 and channel 3. The output compare value in the
TIMA channel 2 registers initially controls the output on the
PTF0/TACH2 pin. Writing to the TIMA channel 3 registers enables the
TIMA channel 3 registers to synchronously control the output after the
TIMA overflows. At each subsequent overflow, the TIMA channel
registers (2 or 3) that control the output are the ones written to last.
TASC2 controls and monitors the buffered output compare function, and
TIMA channel 3 status and control register (TASC3) is unused. While the
MS2B bit is set, the channel 3 pin, PTF1/TACH3, is available as a
general-purpose I/O pin.
Channels 4 and 5 can be linked to form a buffered output compare
channel whose output appears on the PTF2 pin. The TIMA channel
registers of the linked pair alternately control the output.
Setting the MS4B bit in TIMA channel 4 status and control register
(TASC4) links channel 4 and channel 5. The output compare value in the
Technical Data
448
MC68HC908AZ60A — Rev 2.0
Timer Interface Module A (TIMA)
MOTOROLA
Timer Interface Module A (TIMA)
Functional Description
TIMA channel 4 registers initially controls the output on the PTF2 pin.
Writing to the TIMA channel 5 registers enables the TIMA channel 5
registers to synchronously control the output after the TIMA overflows.
At each subsequent overflow, the TIMA channel registers (4 or 5) that
control the output are the ones written to last. TASC4 controls and
monitors the buffered output compare function and TIMA channel 5
status and control register (TASC5) is unused. While the MS4B bit is set,
the channel 5 pin, PTF3, is available as a general-purpose I/O pin.
NOTE:
In buffered output compare operation, do not write new output compare
values to the currently active channel registers. User software should
track the currently active channel to prevent writing a new value to the
active channel. Writing to the active channel registers is the same as
generating unbuffered output compares.
25.4.4 Pulse Width Modulation (PWM)
By using the toggle-on-overflow feature with an output compare channel,
the TIMA can generate a PWM signal. The value in the TIMA counter
modulo registers determines the period of the PWM signal. The channel
pin toggles when the counter reaches the value in the TIMA counter
modulo registers. The time between overflows is the period of the PWM
signal.
As Figure 25-3 shows, the output compare value in the TIMA channel
registers determines the pulse width of the PWM signal. The time
between overflow and output compare is the pulse width. Program the
TIMA to clear the channel pin on output compare if the state of the PWM
pulse is logic 1. Program the TIMA to set the pin if the state of the PWM
pulse is logic 0.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Timer Interface Module A (TIMA)
449
Timer Interface Module A (TIMA)
OVERFLOW
OVERFLOW
OVERFLOW
PERIOD
PULSE
WIDTH
PTEx/TCHx
OUTPUT
COMPARE
OUTPUT
COMPARE
OUTPUT
COMPARE
Figure 25-3. PWM Period and Pulse Width
The value in the TIMA counter modulo registers and the selected
prescaler output determines the frequency of the PWM output. The
frequency of an 8-bit PWM signal is variable in 256 increments. Writing
$00FF (255) to the TIMA counter modulo registers produces a PWM
period of 256 times the internal bus clock period if the prescaler select
value is $000 (see TIMA Status and Control Register on page 457).
The value in the TIMA channel registers determines the pulse width of
the PWM output. The pulse width of an 8-bit PWM signal is variable in
256 increments. Writing $0080 (128) to the TIMA channel registers
produces a duty cycle of 128/256 or 50%.
25.4.4.1 Unbuffered PWM Signal Generation
Any output compare channel can generate unbuffered PWM pulses as
described in Pulse Width Modulation (PWM) on page 449. The pulses
are unbuffered because changing the pulse width requires writing the
new pulse width value over the value currently in the TIMA channel
registers.
An unsynchronized write to the TIMA channel registers to change a
pulse width value could cause incorrect operation for up to two PWM
periods. For example, writing a new value before the counter reaches
the old value but after the counter reaches the new value prevents any
compare during that PWM period. Also, using a TIMA overflow interrupt
routine to write a new, smaller pulse width value may cause the compare
Technical Data
450
MC68HC908AZ60A — Rev 2.0
Timer Interface Module A (TIMA)
MOTOROLA
Timer Interface Module A (TIMA)
Functional Description
to be missed. The TIMA may pass the new value before it is written to
the TIMA channel registers.
Use the following methods to synchronize unbuffered changes in the
PWM pulse width on channel x:
NOTE:
•
When changing to a shorter pulse width, enable channel x output
compare interrupts and write the new value in the output compare
interrupt routine. The output compare interrupt occurs at the end
of the current pulse. The interrupt routine has until the end of the
PWM period to write the new value.
•
When changing to a longer pulse width, enable TIMA overflow
interrupts and write the new value in the TIMA overflow interrupt
routine. The TIMA overflow interrupt occurs at the end of the
current PWM period. Writing a larger value in an output compare
interrupt routine (at the end of the current pulse) could cause two
output compares to occur in the same PWM period.
In PWM signal generation, do not program the PWM channel to toggle
on output compare. Toggling on output compare prevents reliable 0%
duty cycle generation and removes the ability of the channel to selfcorrect in the event of software error or noise. Toggling on output
compare also can cause incorrect PWM signal generation when
changing the PWM pulse width to a new, much larger value.
25.4.4.2 Buffered PWM Signal Generation
Channels 0 and 1 can be linked to form a buffered PWM channel whose
output appears on the PTE2/TACH0 pin. The TIMA channel registers of
the linked pair alternately control the pulse width of the output.
Setting the MS0B bit in TIMA channel 0 status and control register
(TASC0) links channel 0 and channel 1. The TIMA channel 0 registers
initially control the pulse width on the PTE2/TACH0 pin. Writing to the
TIMA channel 1 registers enables the TIMA channel 1 registers to
synchronously control the pulse width at the beginning of the next PWM
period. At each subsequent overflow, the TIMA channel registers (0 or
1) that control the pulse width are the ones written to last. TASC0
controls and monitors the buffered PWM function and TIMA channel 1
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Timer Interface Module A (TIMA)
451
Timer Interface Module A (TIMA)
status and control register (TASC1) is unused. While the MS0B bit is set,
the channel 1 pin, PTE3/TACH1, is available as a general-purpose I/O
pin.
Channels 2 and 3 can be linked to form a buffered PWM channel whose
output appears on the PTF0/TACH2 pin. The TIMA channel registers of
the linked pair alternately control the pulse width of the output.
Setting the MS2B bit in TIMA channel 2 status and control register
(TASC2) links channel 2 and channel 3. The TIMA channel 2 registers
initially control the pulse width on the PTF0/TACH2 pin. Writing to the
TIMA channel 3 registers enables the TIMA channel 3 registers to
synchronously control the pulse width at the beginning of the next PWM
period. At each subsequent overflow, the TIMA channel registers (2 or
3) that control the pulse width are the ones written to last. TASC2
controls and monitors the buffered PWM function and TIMA channel 3
status and control register (TASC3) is unused. While the MS2B bit is set,
the channel 3 pin, PTF1/TACH3, is available as a general-purpose I/O
pin.
Channels 4 and 5 can be linked to form a buffered PWM channel whose
output appears on the PTF2 pin. The TIMA channel registers of the
linked pair alternately control the pulse width of the output.
Setting the MS4B bit in TIMA channel 4 status and control register
(TASC4) links channel 4 and channel 5. The TIMA channel 4 registers
initially control the pulse width on the PTF2 pin. Writing to the TIMA
channel 5 registers enables the TIMA channel 5 registers to
synchronously control the pulse width at the beginning of the next PWM
period. At each subsequent overflow, the TIMA channel registers (4 or
5) that control the pulse width are the ones written to last. TASC4
controls and monitors the buffered PWM function and TIMA channel 5
status and control register (TASC5) is unused. While the MS4B bit is set,
the channel 5 pin, PTF3, is available as a general-purpose I/O pin.
NOTE:
In buffered PWM signal generation, do not write new pulse width values
to the currently active channel registers. User software should track the
currently active channel to prevent writing a new value to the active
channel. Writing to the active channel registers is the same as
generating unbuffered PWM signals.
Technical Data
452
MC68HC908AZ60A — Rev 2.0
Timer Interface Module A (TIMA)
MOTOROLA
Timer Interface Module A (TIMA)
Functional Description
25.4.4.3 PWM Initialization
To ensure correct operation when generating unbuffered or buffered
PWM signals, use the following initialization procedure:
1. In the TIMA status and control register (TASC):
a. Stop the TIMA counter by setting the TIMA stop bit, TSTOP.
b. Reset the TIMA counter and prescaler by setting the TIMA
reset bit, TRST.
2. In the TIMA counter modulo registers (TAMODH–TAMODL) write
the value for the required PWM period.
3. In the TIMA channel x registers (TACHxH–TACHxL) write the
value for the required pulse width.
4. In TIMA channel x status and control register (TASCx):
a. Write 0:1 (for unbuffered output compare or PWM signals) or
1:0 (for buffered output compare or PWM signals) to the
mode select bits, MSxB–MSxA (see Table 25-2).
b. Write 1 to the toggle-on-overflow bit, TOVx.
c. Write 1:0 (to clear output on compare) or 1:1 (to set output on
compare) to the edge/level select bits, ELSxB–ELSxA. The
output action on compare must force the output to the
complement of the pulse width level (see Table 25-2).
NOTE:
In PWM signal generation, do not program the PWM channel to toggle
on output compare. Toggling on output compare prevents reliable 0%
duty cycle generation and removes the ability of the channel to selfcorrect in the event of software error or noise. Toggling on output
compare can also cause incorrect PWM signal generation when
changing the PWM pulse width to a new, much larger value.
5. In the TIMA status control register (TASC) clear the TIMA stop bit,
TSTOP.
Setting MS0B links channels 0 and 1 and configures them for buffered
PWM operation. The TIMA channel 0 registers (TACH0H–TACH0L)
initially control the buffered PWM output. TIMA status control register 0
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Timer Interface Module A (TIMA)
453
Timer Interface Module A (TIMA)
(TASC0) controls and monitors the PWM signal from the linked
channels. MS0B takes priority over MS0A.
Setting MS2B links channels 2 and 3 and configures them for buffered
PWM operation. The TIMA channel 2 registers (TACH2H–TACH2L)
initially control the buffered PWM output. TIMA status control register 2
(TASC2) controls and monitors the PWM signal from the linked
channels. MS2B takes priority over MS2A.
Setting MS4B links channels 4 and 5 and configures them for buffered
PWM operation. The TIMA channel 4 registers (TACH4H–TACH4L)
initially control the buffered PWM output. TIMA status control register 4
(TASC4) controls and monitors the PWM signal from the linked
channels. MS4B takes priority over MS4A.
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on
TIMA overflows. Subsequent output compares try to force the output to
a state it is already in and have no effect. The result is a 0% duty cycle
output.
Setting the channel x maximum duty cycle bit (CHxMAX) and setting the
TOVx bit generates a 100% duty cycle output (see TIMA Channel
Status and Control Registers on page 462).
25.5 Interrupts
The following TIMA sources can generate interrupt requests:
•
TIMA overflow flag (TOF) — The TOF bit is set when the TIMA
counter reaches the modulo value programmed in the TIMA
counter modulo registers. The TIMA overflow interrupt enable bit,
TOIE, enables TIMA overflow CPU interrupt requests. TOF and
TOIE are in the TIMA status and control register.
•
TIMA channel flags (CH5F–CH0F) — The CHxF bit is set when an
input capture or output compare occurs on channel x. Channel x
TIMA CPU interrupt requests are controlled by the channel x
interrupt enable bit, CHxIE.
Technical Data
454
MC68HC908AZ60A — Rev 2.0
Timer Interface Module A (TIMA)
MOTOROLA
Timer Interface Module A (TIMA)
Low-Power Modes
25.6 Low-Power Modes
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.
25.6.1 Wait Mode
The TIMA remains active after the execution of a WAIT instruction. In
wait mode, the TIMA registers are not accessible by the CPU. Any
enabled CPU interrupt request from the TIMA can bring the MCU out of
wait mode.
If TIMA functions are not required during wait mode, reduce power
consumption by stopping the TIMA before executing the WAIT
instruction.
25.6.2 Stop Mode
The TIMA is inactive after the execution of a STOP instruction. The
STOP instruction does not affect register conditions or the state of the
TIMA counter. TIMA operation resumes when the MCU exits stop mode.
25.7 TIMA During Break Interrupts
A break interrupt stops the TIMA counter and inhibits input captures.
The system integration module (SIM) controls whether status bits in
other modules can be cleared during the break state. The BCFE bit in
the SIM break flag control register (SBFCR) enables software to clear
status bits during the break state (see SIM Break Flag Control Register
on page 168).
To allow software to clear status bits during a break interrupt, write a
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it
remains cleared when the MCU exits the break state.
To protect status bits during the break state, write a logic 0 to the BCFE
bit. With BCFE at logic 0 (its default state), software can read and write
I/O registers during the break state without affecting status bits. Some
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Timer Interface Module A (TIMA)
455
Timer Interface Module A (TIMA)
status bits have a 2-step read/write clearing procedure. If software does
the first step on such a bit before the break, the bit cannot change during
the break state as long as BCFE is at logic 0. After the break, doing the
second step clears the status bit.
25.8 I/O Signals
Port D shares one of its pins with the TIMA. Port E shares two of its pins
with the TIMA and port F shares four of its pins with the TIMA.
PTD6/ATD14/TACLK is an external clock input to the TIMA prescaler.
The six TIMA channel I/O pins are PTE2/TACH0, PTE3/TACH1,
PTF0/TACH2, PTF1/TACH3, PTF2, and PTF3.
25.8.1 TIMA Clock Pin (PTD6/ATD14/
TACLK)
PTD6/ATD14/TACLK is an external clock input that can be the clock
source for the TIMA counter instead of the prescaled internal bus clock.
Select the PTD6/ATD14/TACLK input by writing logic 1s to the three
prescaler select bits, PS[2:0] (see TIMA Status and Control Register).
The minimum TCLK pulse width, TCLKLMIN or TCLKHMIN, is:
1
------------------------------------- + t SU
bus frequency
The maximum TCLK frequency is the least: 4 MHz or bus frequency ÷ 2.
PTD6/ATD14/TACLK is available as a general-purpose I/O pin or ADC
channel when not used as the TIMA clock input. When the
PTD6/ATD14/TACLK pin is the TIMA clock input, it is an input regardless
of the state of the DDRD6 bit in data direction register D.
25.8.2 TIMA Channel I/O Pins (PTF3–PTF0/TACH2 and PTE3/TACH1–PTE2/TACH0)
Each channel I/O pin is programmable independently as an input
capture pin or an output compare pin. PTE2/TACH0, PTF0/TACH2 and
PTF2 can be configured as buffered output compare or buffered PWM
pins.
Technical Data
456
MC68HC908AZ60A — Rev 2.0
Timer Interface Module A (TIMA)
MOTOROLA
Timer Interface Module A (TIMA)
I/O Registers
25.9 I/O Registers
These I/O registers control and monitor TIMA operation:
•
TIMA status and control register (TASC)
•
TIMA control registers (TACNTH–TACNTL)
•
TIMA counter modulo registers (TAMODH–TAMODL)
•
TIMA channel status and control registers (TASC0, TASC1,
TASC2, TASC3, TASC4 and TASC5)
•
TIMA channel registers (TACH0H–TACH0L, TACH1H–TACH1L,
TACH2H–TACH2L, TACH3H–TACH3L, TACH4H–TACH4L and
TACH5H–TACH5L)
25.9.1 TIMA Status and Control Register
The TIMA status and control register:
•
Enables TIMA overflow interrupts
•
Flags TIMA overflows
•
Stops the TIMA counter
•
Resets the TIMA counter
•
Prescales the TIMA counter clock
Address:
$0020
Bit 7
Read:
6
5
TOIE
TSTOP
TOF
Write:
0
Reset:
0
R
0
1
4
3
0
0
TRST
R
0
0
2
1
Bit 0
PS2
PS1
PS0
0
0
0
= Reserved
Figure 25-4. TIMA Status and Control Register (TASC)
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Timer Interface Module A (TIMA)
457
Timer Interface Module A (TIMA)
TOF — TIMA Overflow Flag Bit
This read/write flag is set when the TIMA counter reaches the modulo
value programmed in the TIMA counter modulo registers. Clear TOF
by reading the TIMA status and control register when TOF is set and
then writing a logic 0 to TOF. If another TIMA overflow occurs before
the clearing sequence is complete, then writing logic 0 to TOF has no
effect. Therefore, a TOF interrupt request cannot be lost due to
inadvertent clearing of TOF. Reset clears the TOF bit. Writing a logic
1 to TOF has no effect.
1 = TIMA counter has reached modulo value.
0 = TIMA counter has not reached modulo value.
TOIE — TIMA Overflow Interrupt Enable Bit
This read/write bit enables TIMA overflow interrupts when the TOF bit
becomes set. Reset clears the TOIE bit.
1 = TIMA overflow interrupts enabled
0 = TIMA overflow interrupts disabled
TSTOP — TIMA Stop Bit
This read/write bit stops the TIMA counter. Counting resumes when
TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIMA
counter until software clears the TSTOP bit.
1 = TIMA counter stopped
0 = TIMA counter active
NOTE:
Do not set the TSTOP bit before entering wait mode if the TIMA is
required to exit wait mode. Also, when the TSTOP bit is set and input
capture mode is enabled, input captures are inhibited until TSTOP is
cleared.
TRST — TIMA Reset Bit
Setting this write-only bit resets the TIMA counter and the TIMA
prescaler. Setting TRST has no effect on any other registers.
Counting resumes from $0000. TRST is cleared automatically after
the TIMA counter is reset and always reads as logic 0. Reset clears
the TRST bit.
1 = Prescaler and TIMA counter cleared
0 = No effect
Technical Data
458
MC68HC908AZ60A — Rev 2.0
Timer Interface Module A (TIMA)
MOTOROLA
Timer Interface Module A (TIMA)
I/O Registers
NOTE:
Setting the TSTOP and TRST bits simultaneously stops the TIMA
counter at a value of $0000.
PS[2:0] — Prescaler Select Bits
These read/write bits select either the PTD6/ATD14/TACLK pin or
one of the seven prescaler outputs as the input to the TIMA counter
as Table 25-1 shows. Reset clears the PS[2:0] bits.
Table 25-1. Prescaler Selection
PS[2:0]
TIMA Clock Source
000
Internal Bus Clock ÷1
001
Internal Bus Clock ÷ 2
010
Internal Bus Clock ÷ 4
011
Internal Bus Clock ÷ 8
100
Internal Bus Clock ÷ 16
101
Internal Bus Clock ÷ 32
110
Internal Bus Clock ÷ 64
111
PTD6/ATD14/TACLK
25.9.2 TIMA Counter Registers
The two read-only TIMA counter registers contain the high and low bytes
of the value in the TIMA counter. Reading the high byte (TACNTH)
latches the contents of the low byte (TACNTL) into a buffer. Subsequent
reads of TACNTH do not affect the latched TACNTL value until TACNTL
is read. Reset clears the TIMA counter registers. Setting the TIMA reset
bit (TRST) also clears the TIMA counter registers.
NOTE:
If TACNTH is read during a break interrupt, be sure to unlatch TACNTL
by reading TACNTL before exiting the break interrupt. Otherwise,
TACNTL retains the value latched during the break.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Timer Interface Module A (TIMA)
459
Timer Interface Module A (TIMA)
Register Name and Address TACNTH — $0022
Bit 7
6
5
4
3
2
1
Bit 0
Read:
BIT 15
BIT 14
BIT 13
BIT 12
BIT 11
BIT 10
BIT 9
BIT 8
Write:
R
R
R
R
R
R
R
R
Reset:
0
0
0
0
0
0
0
0
Register Name and Address TACNTL — $0023
Bit 7
6
5
4
3
2
1
Bit 0
Read:
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
Write:
R
R
R
R
R
R
R
R
Reset:
0
0
0
0
0
0
0
0
R
= Reserved
Figure 25-5. TIMA Counter Registers (TACNTH and TACNTL)
Technical Data
460
MC68HC908AZ60A — Rev 2.0
Timer Interface Module A (TIMA)
MOTOROLA
Timer Interface Module A (TIMA)
I/O Registers
25.9.3 TIMA Counter Modulo Registers
The read/write TIMA modulo registers contain the modulo value for the
TIMA counter. When the TIMA counter reaches the modulo value, the
overflow flag (TOF) becomes set and the TIMA counter resumes
counting from $0000 at the next timer clock. Writing to the high byte
(TAMODH) inhibits the TOF bit and overflow interrupts until the low byte
(TAMODL) is written. Reset sets the TIMA counter modulo registers.
Register Name and Address TAMODH — $0024
Bit 7
6
5
4
3
2
1
Bit 0
BIT 15
BIT 14
BIT 13
BIT 12
BIT 11
BIT 10
BIT 9
BIT 8
1
1
1
1
1
1
1
1
Read:
Write:
Reset:
Register Name and Address TAMODL — $0025
Bit 7
6
5
4
3
2
1
Bit 0
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
1
1
1
1
1
1
1
1
Read:
Write:
Reset:
Figure 25-6. TIMA Counter Modulo Registers (TAMODH and
TAMODL)
NOTE:
Reset the TIMA counter before writing to the TIMA counter modulo
registers.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Timer Interface Module A (TIMA)
461
Timer Interface Module A (TIMA)
25.9.4 TIMA Channel Status and Control Registers
Each of the TIMA channel status and control registers:
•
Flags input captures and output compares
•
Enables input capture and output compare interrupts
•
Selects input capture, output compare or PWM operation
•
Selects high, low or toggling output on output compare
•
Selects rising edge, falling edge or any edge as the active input
capture trigger
•
Selects output toggling on TIMA overflow
•
Selects 0% and 100% PWM duty cycle
•
Selects buffered or unbuffered output compare/PWM operation
Register Name and Address TASC0 — $0026
Bit 7
Read:
CH0F
Write:
0
Reset:
0
6
5
4
3
2
1
Bit 0
CH0IE
MS0B
MS0A
ELS0B
ELS0A
TOV0
CH0MAX
0
0
0
0
0
0
0
4
3
2
1
Bit 0
MS1A
ELS1B
ELS1A
TOV1
CH1MAX
0
0
0
0
0
Register Name and Address TASC1 — $0029
Bit 7
Read:
6
CH1F
5
0
CH1IE
Write:
0
Reset:
0
R
R
0
0
= Reserved
Figure 25-7. TIMA Channel Status and Control Registers
(TASC0–TASC5)
Technical Data
462
MC68HC908AZ60A — Rev 2.0
Timer Interface Module A (TIMA)
MOTOROLA
Timer Interface Module A (TIMA)
I/O Registers
Register Name and Address TASC2 — $002C
Bit 7
Read:
CH2F
Write:
0
Reset:
0
6
5
4
3
2
1
Bit 0
CH2IE
MS2B
MS2A
ELS2B
ELS2A
TOV2
CH2MAX
0
0
0
0
0
0
0
4
3
2
1
Bit 0
MS3A
ELS3B
ELS3A
TOV3
CH3MAX
0
0
0
0
0
Register Name and Address TASC3 — $002F
Bit 7
Read:
6
CH3F
5
0
CH3IE
Write:
0
Reset:
0
R
0
0
Register Name and Address TASC4 — $0032
Bit 7
Read:
CH4F
Write:
0
Reset:
0
6
5
4
3
2
1
Bit 0
CH4IE
MS4B
MS4A
ELS4B
ELS4A
TOV4
CH4MAX
0
0
0
0
0
0
0
4
3
2
1
Bit 0
MS5A
ELS5B
ELS5A
TOV5
CH5MAX
0
0
0
0
0
Register Name and Address TASC5 — $0035
Bit 7
Read:
6
CH5F
5
0
CH5IE
Write:
0
Reset:
0
R
R
0
0
= Reserved
Figure 25-7. TIMA Channel Status and Control Registers
(TASC0–TASC5) (Continued)
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Timer Interface Module A (TIMA)
463
Timer Interface Module A (TIMA)
CHxF — Channel x Flag Bit
When channel x is an input capture channel, this read/write bit is set
when an active edge occurs on the channel x pin. When channel x is
an output compare channel, CHxF is set when the value in the TIMA
counter registers matches the value in the TIMA channel x registers.
When CHxIE = 1, clear CHxF by reading TIMA channel x status and
control register with CHxF set and then writing a logic 0 to CHxF. If
another interrupt request occurs before the clearing sequence is
complete, then writing logic 0 to CHxF has no effect. Therefore, an
interrupt request cannot be lost due to inadvertent clearing of CHxF.
Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect.
1 = Input capture or output compare on channel x
0 = No input capture or output compare on channel x
CHxIE — Channel x Interrupt Enable Bit
This read/write bit enables TIMA CPU interrupts on channel x.
Reset clears the CHxIE bit.
1 = Channel x CPU interrupt requests enabled
0 = Channel x CPU interrupt requests disabled
MSxB — Mode Select Bit B
This read/write bit selects buffered output compare/PWM operation.
MSxB exists only in the TIMA channel 0, TIMA channel 2 and TIMA
channel 4 status and control registers.
Setting MS0B disables the channel 1 status and control register and
reverts TACH1 pin to general-purpose I/O.
Setting MS2B disables the channel 3 status and control register and
reverts TACH3 pin to general-purpose I/O.
Setting MS4B disables the channel 5 status and control register and
reverts TACH5 pin to general-purpose I/O.
Reset clears the MSxB bit.
1 = Buffered output compare/PWM operation enabled
0 = Buffered output compare/PWM operation disabled
Technical Data
464
MC68HC908AZ60A — Rev 2.0
Timer Interface Module A (TIMA)
MOTOROLA
Timer Interface Module A (TIMA)
I/O Registers
MSxA — Mode Select Bit A
When ELSxB:A ≠ 00, this read/write bit selects either input capture
operation or unbuffered output compare/PWM operation. See Table
25-2.
1 = Unbuffered output compare/PWM operation
0 = Input capture operation
When ELSxB:A = 00, this read/write bit selects the initial output level
of the TACHx pin once PWM, output compare mode or input capture
mode is enabled. See Table 25-2. Reset clears the MSxA bit.
1 = Initial output level low
0 = Initial output level high
NOTE:
Before changing a channel function by writing to the MSxB or MSxA bit,
set the TSTOP and TRST bits in the TIMA status and control register
(TASC).
ELSxB and ELSxA — Edge/Level Select Bits
When channel x is an input capture channel, these read/write bits
control the active edge-sensing logic on channel x.
When channel x is an output compare channel, ELSxB and ELSxA
control the channel x output behavior when an output compare
occurs.
When ELSxB and ELSxA are both clear, channel x is not connected
to port E or port F and pin PTEx/TACHx or pin PTFx/TACHx is
available as a general-purpose I/O pin. However, channel x is at a
state determined by these bits and becomes transparent to the
respective pin when PWM, input capture mode or output compare
operation mode is enabled. Table 25-2 shows how ELSxB and
ELSxA work. Reset clears the ELSxB and ELSxA bits.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Timer Interface Module A (TIMA)
465
Timer Interface Module A (TIMA)
Table 25-2. Mode, Edge, and Level Selection
MSxB:MSxA
ELSxB:ELSxA
X0
00
Mode
Output
Preset
NOTE:
X1
00
00
01
00
10
00
11
01
01
01
10
01
11
1X
01
1X
10
1X
11
Configuration
Pin under Port Control;
Initialize Timer
Output Level High
Pin under Port Control;
Initialize Timer
Output Level Low
Capture on Rising Edge Only
Input
Capture
Capture on Falling Edge Only
Capture on Rising or Falling Edge
Output
Compare
or PWM
Buffered
Output
Compare
or Buffered
PWM
Toggle Output on Compare
Clear Output on Compare
Set Output on Compare
Toggle Output on Compare
Clear Output on Compare
Set Output on Compare
Before enabling a TIMA channel register for input capture operation,
make sure that the PTEx/TACHx pin or PTFx/TACHx pin is stable for at
least two bus clocks.
TOVx — Toggle-On-Overflow Bit
When channel x is an output compare channel, this read/write bit
controls the behavior of the channel x output when the TIMA counter
overflows. When channel x is an input capture channel, TOVx has no
effect. Reset clears the TOVx bit.
1 = Channel x pin toggles on TIMA counter overflow.
0 = Channel x pin does not toggle on TIMA counter overflow.
NOTE:
When TOVx is set, a TIMA counter overflow takes precedence over a
channel x output compare if both occur at the same time.
Technical Data
466
MC68HC908AZ60A — Rev 2.0
Timer Interface Module A (TIMA)
MOTOROLA
Timer Interface Module A (TIMA)
I/O Registers
CHxMAX — Channel x Maximum Duty Cycle Bit
When the TOVx bit is at logic 1, setting the CHxMAX bit forces the
duty cycle of buffered and unbuffered PWM signals to 100%. As
Figure 25-8 shows, the CHxMAX bit takes effect in the cycle after it
is set or cleared. The output stays at the 100% duty cycle level until
the cycle after CHxMAX is cleared.
OVERFLOW
OVERFLOW
OVERFLOW
OVERFLOW
OVERFLOW
PERIOD
PTEx/TCHx
OUTPUT
COMPARE
OUTPUT
COMPARE
OUTPUT
COMPARE
OUTPUT
COMPARE
CHxMAX
Figure 25-8. CHxMAX Latency
25.9.5 TIMA Channel Registers
These read/write registers contain the captured TIMA counter value of
the input capture function or the output compare value of the output
compare function. The state of the TIMA channel registers after reset is
unknown.
In input capture mode (MSxB–MSxA = 0:0) reading the high byte of the
TIMA channel x registers (TACHxH) inhibits input captures until the low
byte (TACHxL) is read.
In output compare mode (MSxB–MSxA ≠ 0:0) writing to the high byte of
the TIMA channel x registers (TACHxH) inhibits output compares and
the CHxF bit until the low byte (TACHxL) is written.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Timer Interface Module A (TIMA)
467
Timer Interface Module A (TIMA)
Register Name and Address TACH0H — $0027
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
Read:
Write:
Reset:
Indeterminate after Reset
Register Name and Address TACH0L — $0028
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Read:
Write:
Reset:
Indeterminate after Reset
Register Name and Address TACH1H — $002A
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
Read:
Write:
Reset:
Indeterminate after Reset
Register Name and Address TACH1L — $002B
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Read:
Write:
Reset:
Indeterminate after Reset
Register Name and Address TACH2H — $002D
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
Read:
Write:
Reset:
Indeterminate after Reset
Figure 25-9. TIMA Channel Registers (TACH0H/L–TACH5H/L) (Sheet
1 of 3)
Technical Data
468
MC68HC908AZ60A — Rev 2.0
Timer Interface Module A (TIMA)
MOTOROLA
Timer Interface Module A (TIMA)
I/O Registers
Register Name and Address TACH2L — $002E
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Read:
Write:
Reset:
Indeterminate after Reset
Register Name and Address TACH3H — $0030
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
Read:
Write:
Reset:
Indeterminate after Reset
Register Name and Address TACH3L — $0031
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Read:
Write:
Reset:
Indeterminate after Reset
Register Name and Address TACH4H — $0033
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
Read:
Write:
Reset:
Indeterminate after Reset
Register Name and Address TACH4L — $0034
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Read:
Write:
Reset:
Indeterminate after Reset
Figure 25-9. TIMA Channel Registers (TACH0H/L–TACH5H/L) (Sheet
2 of 3)
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Timer Interface Module A (TIMA)
469
Timer Interface Module A (TIMA)
Register Name and Address TACH5H — $0036
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
Read:
Write:
Reset:
Indeterminate after Reset
Register Name and Address TACH5L — $0037
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Read:
Write:
Reset:
Indeterminate after Reset
Figure 25-9. TIMA Channel Registers (TACH0H/L–TACH5H/L) (Sheet
3 of 3)
Technical Data
470
MC68HC908AZ60A — Rev 2.0
Timer Interface Module A (TIMA)
MOTOROLA
Technical Data — MC68HC908AZ60A
Section 26. Analog-to-Digital Converter (ADC)
26.1 Contents
26.2
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
26.3
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
26.4 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . .472
26.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
26.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
26.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
26.4.4 Continuous Conversion. . . . . . . . . . . . . . . . . . . . . . . . . . 475
26.4.5 Accuracy and Precision. . . . . . . . . . . . . . . . . . . . . . . . . . 475
26.5
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
26.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
26.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
26.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
26.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
26.7.1 ADC Analog Power Pin (VDDAREF)/ADC Voltage
Reference Pin (VREFH) . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
26.7.2 ADC Analog Ground Pin (VSSA)/ADC Voltage Reference
Low Pin (VREFL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
26.7.3 ADC Voltage In (ADCVIN) . . . . . . . . . . . . . . . . . . . . . . . . 476
26.8 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
26.8.1 ADC Status and Control Register . . . . . . . . . . . . . . . . . . 477
26.8.2 ADC Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
26.8.3 ADC Input Clock Register . . . . . . . . . . . . . . . . . . . . . . . . 480
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Analog-to-Digital Converter (ADC)
471
Analog-to-Digital Converter (ADC)
26.2 Introduction
This section describes the analog-to-digital converter (ADC-15). The
ADC is an 8-bit analog-to-digital converter.
For further information regarding analog-to-digital converters on
Motorola microcontrollers, please consult the HC08 ADC Reference
Manual, ADCRM/AD.
26.3 Features
Features of the ADC module include:
•
15 Channels with Multiplexed Input
•
Linear Successive Approximation
•
8-Bit Resolution
•
Single or Continuous Conversion
•
Conversion Complete Flag or Conversion Complete Interrupt
•
Selectable ADC Clock
26.4 Functional Description
Fifteen ADC channels are available for sampling external sources at
pins PTD6/ATD14/TACLK–PTD0/ATD8 and PTB7/ATD7–PTB0/ATD0.
An analog multiplexer allows the single ADC converter to select one of
15 ADC channels as ADC voltage in (ADCVIN). ADCVIN is converted by
the successive approximation register-based counters. When the
conversion is completed, ADC places the result in the ADC data register
and sets a flag or generates an interrupt. See Figure 26-1.
Technical Data
472
MC68HC908AZ60A — Rev 2.0
Analog-to-Digital Converter (ADC)
MOTOROLA
Analog-to-Digital Converter (ADC)
Functional Description
INTERNAL
DATA BUS
READ DDRB/DDRB
WRITE DDRB/DDRD
RESET
WRITE PTB/PTD
DISABLE
DDRBx/DDRDx
PTBx/PTDx
PTBx/PTDx
ADC CHANNEL x
READ PTB/PTD
DISABLE
ADC DATA REGISTER
INTERRUPT
LOGIC
AIEN
CONVERSION
COMPLETE
ADC VOLTAGE IN
ADCVIN
ADC
CHANNEL
SELECT
ADCH[4:0]
COCO
ADC CLOCK
CGMXCLK
BUS CLOCK
CLOCK
GENERATOR
ADIV[2:0]
ADICLK
Figure 26-1. ADC Block Diagram
26.4.1 ADC Port I/O Pins
PTD6/ATD14/TACLK–PTD0/ATD8 and PTB7/ATD7–PTB0/ATD0 are
general-purpose I/O pins that share with the ADC channels.
The channel select bits define which ADC channel/port pin will be used
as the input signal. The ADC overrides the port I/O logic by forcing that
pin as input to the ADC. The remaining ADC channels/port pins are
controlled by the port I/O logic and can be used as general-purpose I/O.
Writes to the port register or DDR will not have any affect on the port pin
that is selected by the ADC. Read of a port pin which is in use by the
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Analog-to-Digital Converter (ADC)
473
Analog-to-Digital Converter (ADC)
ADC will return a logic 0 if the corresponding DDR bit is at logic 0. If the
DDR bit is at logic 1, the value in the port data latch is read.
NOTE:
Do not use ADC channels ATD14 or ATD12 when using the
PTD6/ATD14/TACLK or PTD4/ATD12/TBCLK pins as the clock inputs
for the 16-bit Timers.
26.4.2 Voltage Conversion
When the input voltage to the ADC equals VREFH (see ADC
Characteristics on page 534), the ADC converts the signal to $FF (full
scale). If the input voltage equals VSSA, the ADC converts it to $00. Input
voltages between VREFH and VSSA are a straight-line linear conversion.
Conversion accuracy of all other input voltages is not guaranteed. Avoid
current injection on unused ADC inputs to prevent potential conversion
error.
NOTE:
Input voltage should not exceed the analog supply voltages.
26.4.3 Conversion Time
Conversion starts after a write to the ADSCR (ADC status control
register, $0038), and requires between 16 and 17 ADC clock cycles to
complete. Conversion time in terms of the number of bus cycles is a
function of ADICLK select, CGMXCLK frequency, bus frequency, and
ADIV prescaler bits. For example, with a CGMXCLK frequency of 4
MHz, bus frequency of 8 MHz, and fixed ADC clock frequency of 1 MHz,
one conversion will take between 16 and 17 µs and there will be between
128 bus cycles between each conversion. Sample rate is approximately
60 kHz.
Refer to ADC Characteristics on page 534.
16 to 17 ADC Clock Cycles
Conversion Time = 
ADC Clock Frequency
Number of Bus Cycles = Conversion Time x Bus Frequency
Technical Data
474
MC68HC908AZ60A — Rev 2.0
Analog-to-Digital Converter (ADC)
MOTOROLA
Analog-to-Digital Converter (ADC)
Interrupts
26.4.4 Continuous Conversion
In the continuous conversion mode, the ADC data register will be filled
with new data after each conversion. Data from the previous conversion
will be overwritten whether that data has been read or not. Conversions
will continue until the ADCO bit (ADC status control register, $0038) is
cleared. The COCO bit is set after the first conversion and will stay set
for the next several conversions until the next write of the ADC status
and control register or the next read of the ADC data register.
26.4.5 Accuracy and Precision
The conversion process is monotonic and has no missing codes. See
ADC Characteristics on page 534 for accuracy information.
26.5 Interrupts
When the AIEN bit is set, the ADC module is capable of generating a
CPU interrupt after each ADC conversion. A CPU interrupt is generated
if the COCO bit (ADC status control register, $0038) is at logic 0. If the
COCO bit is set, an interrupt is generated. The COCO bit is not used as
a conversion complete flag when interrupts are enabled.
26.6 Low-Power Modes
The following subsections describe the low-power modes.
26.6.1 Wait Mode
The ADC continues normal operation during wait mode. Any enabled
CPU interrupt request from the ADC can bring the MCU out of wait
mode. If the ADC is not required to bring the MCU out of wait mode,
power down the ADC by setting the ADCH[4:0] bits in the ADC status
and control register before executing the WAIT instruction.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Analog-to-Digital Converter (ADC)
475
Analog-to-Digital Converter (ADC)
26.6.2 Stop Mode
The ADC module is inactive after the execution of a STOP instruction.
Any pending conversion is aborted. ADC conversions resume when the
MCU exits stop mode. Allow one conversion cycle to stabilize the analog
circuitry before attempting a new ADC conversion after exiting stop
mode.
26.7 I/O Signals
The ADC module has 15 channels that are shared with I/O ports B and
D. Refer to ADC Characteristics on page 534 for voltages referenced
below.
26.7.1 ADC Analog Power Pin (VDDAREF)/ADC Voltage Reference Pin (VREFH)
The ADC analog portion uses VDDAREF as its power pin. Connect the
VDDA/VDDAREF pin to the same voltage potential as VDD. External
filtering may be necessary to ensure clean VDDAREF for good results.
VREFH is the high reference voltage for all analog-to-digital conversions.
NOTE:
Route VDDAREF carefully for maximum noise immunity and place bypass
capacitors as close as possible to the package. VDDAREF must be
present for operation of the ADC.
26.7.2 ADC Analog Ground Pin (VSSA)/ADC Voltage Reference Low Pin (VREFL)
The ADC analog portion uses VSSA as its ground pin. Connect the VSSA
pin to the same voltage potential as VSS.
VREFL is the lower reference supply for the ADC.
26.7.3 ADC Voltage In (ADCVIN)
ADCVIN is the input voltage signal from one of the 15 ADC channels to
the ADC module.
Technical Data
476
MC68HC908AZ60A — Rev 2.0
Analog-to-Digital Converter (ADC)
MOTOROLA
Analog-to-Digital Converter (ADC)
I/O Registers
26.8 I/O Registers
These I/O registers control and monitor ADC operation:
•
ADC status and control register (ADSCR)
•
ADC data register (ADR)
•
ADC clock register (ADICLK)
26.8.1 ADC Status and Control Register
The following paragraphs describe the function of the ADC status and
control register.
Address:
$0038
Bit 7
Read:
COCO
Write:
R
Reset:
0
R
6
5
4
3
2
1
Bit 0
AIEN
ADCO
CH4
CH3
CH2
CH1
CH0
0
0
1
1
1
1
1
= Reserved
Figure 26-2. ADC Status and Control Register (ADSCR)
COCO — Conversions Complete Bit
When the AIEN bit is a logic 0, the COCO is a read-only bit which is
set each time a conversion is completed. This bit is cleared whenever
the ADC status and control register is written or whenever the ADC
data register is read.
If the AIEN bit is a logic 1, the COCO is a read/write bit which selects
the CPU to service the ADC interrupt request. Reset clears this bit.
1 = conversion completed (AIEN = 0)
0 = conversion not completed (AIEN = 0)
or
CPU interrupt enabled (AIEN = 1)
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Analog-to-Digital Converter (ADC)
477
Analog-to-Digital Converter (ADC)
AIEN — ADC Interrupt Enable Bit
When this bit is set, an interrupt is generated at the end of an ADC
conversion. The interrupt signal is cleared when the data register is
read or the status/control register is written. Reset clears the AIEN bit.
1 = ADC interrupt enabled
0 = ADC interrupt disabled
ADCO — ADC Continuous Conversion Bit
When set, the ADC will convert samples continuously and update the
ADR register at the end of each conversion. Only one conversion is
allowed when this bit is cleared. Reset clears the ADCO bit.
1 = Continuous ADC conversion
0 = One ADC conversion
ADCH[4:0] — ADC Channel Select Bits
ADCH4, ADCH3, ADCH2, ADCH1, and ADCH0 form a 5-bit field
which is used to select one of 15 ADC channels. Channel selection is
detailed in the following table. Care should be taken when using a port
pin as both an analog and a digital input simultaneously to prevent
switching noise from corrupting the analog signal. See Table 26-1.
The ADC subsystem is turned off when the channel select bits are all
set to one. This feature allows for reduced power consumption for the
MCU when the ADC is not used. Reset sets these bits.
NOTE:
Recovery from the disabled state requires one conversion cycle to
stabilize.
Table 26-1. Mux Channel Select
ADCH4
ADCH3
ADCH2
ADCH1
ADCH0
Input Select
0
0
0
0
0
PTB0/ATD0
0
0
0
0
1
PTB1/ATD1
0
0
0
1
0
PTB2/ATD2
0
0
0
1
1
PTB3/ATD3
0
0
1
0
0
PTB4/ATD4
0
0
1
0
1
PTB5/ATD5
0
0
1
1
0
PTB6/ATD6
Technical Data
478
MC68HC908AZ60A — Rev 2.0
Analog-to-Digital Converter (ADC)
MOTOROLA
Analog-to-Digital Converter (ADC)
I/O Registers
Table 26-1. Mux Channel Select
ADCH4
ADCH3
ADCH2
ADCH1
ADCH0
Input Select
0
0
1
1
1
PTB7/ATD7
0
1
0
0
0
PTD0/ATD8/ATD8
0
1
0
0
1
PTD1/ATD9/ATD9
0
1
0
1
0
PTD2/ATD10/ATD10
0
1
0
1
1
PTD3/ATD11/ATD11
0
1
1
0
0
PTD4/ATD12/TBCLK/
ATD12
0
1
1
0
1
PTD5/ATD13/ATD13
0
1
1
1
0
PTD6/ATD14/TACLK/
ATD14
Unused (see Note 1)
Range 01111 ($0F) to 11010 ($1A)
Unused (see Note 1)
1
1
0
1
1
Reserved
1
1
1
0
0
Unused (see Note 1)
1
1
1
0
1
VREFH
(see Note 2)
1
1
1
1
0
VSSA/VREFL (see Note 2)
1
1
1
1
1
[ADC power off]
NOTES:
1. If any unused channels are selected, the resulting ADC conversion will be
unknown.
2. The voltage levels supplied from internal reference nodes as specified in the
table are used to verify the operation of the ADC converter both in production
test and for user applications.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Analog-to-Digital Converter (ADC)
479
Analog-to-Digital Converter (ADC)
26.8.2 ADC Data Register
One 8-bit result register is provided. This register is updated each time
an ADC conversion completes.
Address:
$0039
Bit 7
6
5
4
3
2
1
Bit 0
Read:
AD7
AD6
AD5
AD4
AD3
AD2
AD1
AD0
Write:
R
R
R
R
R
R
R
R
Reset:
Indeterminate after Reset
R
= Reserved
Figure 26-3. ADC Data Register (ADR)
26.8.3 ADC Input Clock Register
This register selects the clock frequency for the ADC.
Address:
$003A
Bit 7
6
5
4
ADIV2
ADIV1
ADIV0
ADICLK
Read:
Write:
Reset:
0
R
0
0
0
3
2
1
Bit 0
0
0
0
0
R
R
R
R
0
0
0
0
= Reserved
Figure 26-4. ADC Input Clock Register (ADICLK)
ADIV2–ADIV0 — ADC Clock Prescaler Bits
ADIV2, ADIV1, and ADIV0 form a 3-bit field which selects the divide
ratio used by the ADC to generate the internal ADC clock. Table 262 shows the available clock configurations. The ADC clock should be
set to approximately 1 MHz.
Technical Data
480
MC68HC908AZ60A — Rev 2.0
Analog-to-Digital Converter (ADC)
MOTOROLA
Analog-to-Digital Converter (ADC)
I/O Registers
Table 26-2. ADC Clock Divide Ratio
ADIV2
ADIV1
ADIV0
ADC Clock Rate
0
0
0
ADC Input Clock /1
0
0
1
ADC Input Clock / 2
0
1
0
ADC Input Clock / 4
0
1
1
ADC Input Clock / 8
1
X
X
ADC Input Clock / 16
X = don’t care
ADICLK — ADC Input Clock Register Bit
ADICLK selects either bus clock or CGMXCLK as the input clock
source to generate the internal ADC clock. Reset selects CGMXCLK
as the ADC clock source.
If the external clock (CGMXCLK) is equal to or greater than 1 MHz,
CGMXCLK can be used as the clock source for the ADC. If
CGMXCLK is less than 1 MHz, use the PLL-generated bus clock as
the clock source. As long as the internal ADC clock is at
approximately 1 MHz, correct operation can be guaranteed. See ADC
Characteristics on page 534.
1 = Internal bus clock
0 = External clock (CGMXCLK)
fXCLK or Bus Frequency
1 MHz = 
ADIV[2:0]
NOTE:
During the conversion process, changing the ADC clock will result in an
incorrect conversion.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Analog-to-Digital Converter (ADC)
481
Analog-to-Digital Converter (ADC)
Technical Data
482
MC68HC908AZ60A — Rev 2.0
Analog-to-Digital Converter (ADC)
MOTOROLA
Technical Data — MC68HC908AZ60A
Section 27. Byte Data Link Controller (BDLC)
27.1 Contents
27.2
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484
27.3
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484
27.4 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . .485
27.4.1 BDLC Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . 487
27.4.1.1
Power Off Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
27.4.1.2
Reset Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
27.4.1.3
Run Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
27.4.1.4
BDLC Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
27.4.1.5
BDLC Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
27.4.1.6
Digital Loopback Mode . . . . . . . . . . . . . . . . . . . . . . . . 489
27.4.1.7
Analog Loopback Mode. . . . . . . . . . . . . . . . . . . . . . . . 489
27.5 BDLC MUX Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
27.5.1 Rx Digital Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
27.5.1.1
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
27.5.1.2
Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
27.5.2 J1850 Frame Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
27.5.3 J1850 VPW Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
27.5.4 J1850 VPW Valid/Invalid Bits and Symbols . . . . . . . . . . 500
27.5.5 Message Arbitration. . . . . . . . . . . . . . . . . . . . . . . . . . . . .504
27.6 BDLC Protocol Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
27.6.1 Protocol Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
27.6.2 Rx and Tx Shift Registers . . . . . . . . . . . . . . . . . . . . . . . . 507
27.6.3 Rx and Tx Shadow Registers . . . . . . . . . . . . . . . . . . . . . 508
27.6.4 Digital Loopback Multiplexer . . . . . . . . . . . . . . . . . . . . . 508
27.6.5 State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
27.6.5.1
4X Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
27.6.5.2
Receiving a Message in Block Mode . . . . . . . . . . . . . 509
27.6.5.3
Transmitting a Message in Block Mode. . . . . . . . . . . 509
27.6.5.4
J1850 Bus Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . .509
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Byte Data Link Controller (BDLC)
483
Byte Data Link Controller (BDLC)
27.6.5.5
Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .511
27.7 BDLC CPU Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
27.7.1 BDLC Analog and Roundtrip Delay Register. . . . . . . . . 513
27.7.2 BDLC Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . 514
27.7.3 BDLC Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . 517
27.7.4 BDLC State Vector Register . . . . . . . . . . . . . . . . . . . . . . 524
27.7.5 BDLC Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .526
27.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
27.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
27.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
27.2 Introduction
The byte data link controller (BDLC) provides access to an external
serial communication multiplex bus, operating according to the Society
of Automotive Engineers (SAE) J1850 protocol.
The BDLC-D is only available on the MC68HC908AS60A.
27.3 Features
Features of the BDLC module include:
•
SAE J1850 class B data communications network interface
compatible and ISO compatible for low speed (<125 kbps) serial
data communications in automotive applications
•
10.4 kbps variable pulse width (VPW) bit format
•
Digital noise filter
•
Collision detection
•
Hardware cyclical redundancy check (CRC) generation and
checking
•
Two power-saving modes with automatic wakeup on network
activity
•
Polling and CPU interrupts available
Technical Data
484
MC68HC908AZ60A — Rev 2.0
Byte Data Link Controller (BDLC)
MOTOROLA
Byte Data Link Controller (BDLC)
Functional Description
•
Block mode receive and transmit supported
•
Supports 4X receive mode, 41.6 kbps
•
Digital loopback mode
•
Analog loopback mode
•
In-frame response (IFR) types 0, 1, 2, and 3 supported
27.4 Functional Description
Figure 27-1 shows the organization of the BDLC module. The CPU
interface contains the software addressable registers and provides the
link between the CPU and the buffers. The buffers provide storage for
data received and data to be transmitted onto the J1850 bus. The
protocol handler is responsible for the encoding and decoding of data
bits and special message symbols during transmission and reception.
The MUX interface provides the link between the BDLC digital section
and the analog physical interface. The wave shaping, driving, and
digitizing of data is performed by the physical interface.
Use of the BDLC module in message networking fully implements the
SAE Standard J1850 Class B Data Communication Network Interface
specification.
NOTE:
It is recommended that the reader be familiar with the SAE J1850
document and ISO Serial Communication document prior to proceeding
with this section of the MC68HC908AZ60A specification.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Byte Data Link Controller (BDLC)
485
Byte Data Link Controller (BDLC)
TO CPU
CPU INTERFACE
PROTOCOL HANDLER
MUX INTERFACE
PHYSICAL INTERFACE
BDLC
TO J1850 BUS
Figure 27-1. BDLC Block Diagram
Table 27-1. BDLC I/O Register Summary
Addr.
$003B
$003C
$003D
$003E
Name
Bit 7
6
BDLC Analog and Rou5ndtrip Read:
Delay Register (BARD) Write:
ATE
RXPOL
BDLC Control Register 1 Read:
(BCR1) Write:
IMSG
BDLC Control Register 2 Read:
ALOOP
(BCR2) Write:
BDLC State Vector Register Read:
(BSVR) Write:
CLKS
5
4
0
0
R
R
R1
R0
3
2
1
Bit 0
BO3
BO2
BO1
BO0
0
0
IE
WCM
R
R
DLOOP
RX4XE
NBFS
TEOD
TSIFR
TMIFR1
TMIFR0
0
0
I3
I2
I1
I0
0
0
R
R
R
R
R
R
R
R
BD7
BD6
BD5
BD4
BD3
BD2
BD1
BD0
Read:
$003F
BDLC Data Register (BDR)
Write:
R
= Reserved
Technical Data
486
MC68HC908AZ60A — Rev 2.0
Byte Data Link Controller (BDLC)
MOTOROLA
Byte Data Link Controller (BDLC)
Functional Description
27.4.1 BDLC Operating Modes
The BDLC has five main modes of operation which interact with the
power supplies, pins, and the remainder of the MCU as shown in Figure
27-2.
POWER OFF
VDD > VDD (MINIMUM) AND
ANY MCU RESET SOURCE ASSERTED
VDD ≤ VDD (MINIMUM)
RESET
ANY MCU RESET SOURCE ASSERTED
(FROM ANY MODE)
COP, ILLADDR, PU, RESET, LVR, POR
NETWORK ACTIVITY OR
OTHER MCU WAKEUP
NO MCU RESET SOURCE ASSERTED
NETWORK ACTIVITY OR
OTHER MCU WAKEUP
RUN
BDLC STOP
BDLC WAIT
STOP INSTRUCTION OR
WAIT INSTRUCTION AND WCM = 1
WAIT INSTRUCTION AND WCM = 0
Figure 27-2. BDLC Operating Modes State Diagram
27.4.1.1 Power Off Mode
This mode is entered from reset mode whenever the BDLC supply
voltage, VDD, drops below its minimum specified value for the BDLC to
guarantee operation. The BDLC will be placed in reset mode by lowvoltage reset (LVR) before being powered down. In this mode, the pin
input and output specifications are not guaranteed.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Byte Data Link Controller (BDLC)
487
Byte Data Link Controller (BDLC)
27.4.1.2 Reset Mode
This mode is entered from the power off mode whenever the BDLC
supply voltage, VDD, rises above its minimum specified value
(VDD –10%) and some MCU reset source is asserted. The internal MCU
reset must be asserted while powering up the BDLC or an unknown state
will be entered and correct operation cannot be guaranteed. Reset mode
is also entered from any other mode as soon as one of the MCU’s
possible reset sources (such as LVR, POR, COP watchdog, and reset
pin, etc.) is asserted.
In reset mode, the internal BDLC voltage references are operative; VDD
is supplied to the internal circuits which are held in their reset state; and
the internal BDLC system clock is running. Registers will assume their
reset condition. Outputs are held in their programmed reset state.
Therefore, inputs and network activity are ignored.
27.4.1.3 Run Mode
This mode is entered from the reset mode after all MCU reset sources
are no longer asserted. Run mode is entered from the BDLC wait mode
whenever activity is sensed on the J1850 bus.
Run mode is entered from the BDLC stop mode whenever network
activity is sensed, although messages will not be received properly until
the clocks have stabilized and the CPU is in run mode also.
In this mode, normal network operation takes place. The user should
ensure that all BDLC transmissions have ceased before exiting this
mode.
27.4.1.4 BDLC Wait Mode
This power-conserving mode is entered automatically from run mode
whenever the CPU executes a WAIT instruction and if the WCM bit in the
BCR1 register is cleared previously.
In this mode, the BDLC internal clocks continue to run. The first passiveto-active transition of the bus generates a CPU interrupt request from the
BDLC which wakes up the BDLC and the CPU. In addition, if the BDLC
Technical Data
488
MC68HC908AZ60A — Rev 2.0
Byte Data Link Controller (BDLC)
MOTOROLA
Byte Data Link Controller (BDLC)
Functional Description
receives a valid EOF symbol while operating in wait mode, then the
BDLC also will generate a CPU interrupt request which wakes up the
BDLC and the CPU. See Wait Mode.
27.4.1.5 BDLC Stop Mode
This power-conserving mode is entered automatically from run mode
whenever the CPU executes a STOP instruction or if the CPU executes
a WAIT instruction and the WCM bit in the BCR1 register is set
previously.
In this mode, the BDLC internal clocks are stopped but the physical
interface circuitry is placed in a low-power mode and awaits network
activity. If network activity is sensed, then a CPU interrupt request will be
generated, restarting the BDLC internal clocks. See Stop Mode.
27.4.1.6 Digital Loopback Mode
When a bus fault has been detected, the digital loopback mode is used
to determine if the fault condition is caused by failure in the node’s
internal circuits or elsewhere in the network, including the node’s analog
physical interface. In this mode, the transmit digital output pin (BDTxD)
and the receive digital input pin (BDRxD) of the digital interface are
disconnected from the analog physical interface and tied together to
allow the digital portion of the BDLC to transmit and receive its own
messages without driving the J1850 bus.
27.4.1.7 Analog Loopback Mode
Analog loopback is used to determine if a bus fault has been caused by
a failure in the node’s off-chip analog transceiver or elsewhere in the
network. The BCLD analog loopback mode does not modify the digital
transmit or receive functions of the BDLC. It does, however, ensure that
once analog loopback mode is exited, the BDLC will wait for an idle bus
condition before participation in network communication resumes. If the
off-chip analog transceiver has a loopback mode, it usually causes the
input to the output drive stage to be looped back into the receiver,
allowing the node to receive messages it has transmitted without driving
the J1850 bus. In this mode, the output to the J1850 bus is typically high
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Byte Data Link Controller (BDLC)
489
Byte Data Link Controller (BDLC)
impedance. This allows the communication path through the analog
transceiver to be tested without interfering with network activity. Using
the BDLC analog loopback mode in conjunction with the analog
transceiver’s loopback mode ensures that, once the off-chip analog
transceiver has exited loopback mode, the BCLD will not begin
communicating before a known condition exists on the J1850 bus.
27.5 BDLC MUX Interface
The MUX interface is responsible for bit encoding/decoding and digital
noise filtering between the protocol handler and the physical interface.
TO CPU
CPU INTERFACE
PROTOCOL HANDLER
MUX INTERFACE
PHYSICAL INTERFACE
BDLC
TO J1850 BUS
Figure 27-3. BDLC Block Diagram
27.5.1 Rx Digital Filter
The receiver section of the BDLC includes a digital low pass filter to
remove narrow noise pulses from the incoming message. An outline of
the digital filter is shown in Figure 27-4.
Technical Data
490
MC68HC908AZ60A — Rev 2.0
Byte Data Link Controller (BDLC)
MOTOROLA
Byte Data Link Controller (BDLC)
BDLC MUX Interface
INPUT
DATA
SYNC
LATCH
4-BIT UP/DOWN COUTER
RX DATA
FROM
FILTERED
RX DATA OUT
D
Q
UP/DOWN
OUT
D
Q
PHYSICAL
INTERFACE
(BDRxD)
MUX INTERFACE
CLOCK
Figure 27-4. BDLC Rx Digital Filter Block Diagram
27.5.1.1 Operation
The clock for the digital filter is provided by the MUX interface clock (see
fBDLC parameter in Table 27-4). At each positive edge of the clock
signal, the current state of the receiver physical interface (BDRxD) signal
is sampled. The BDRxD signal state is used to determine whether the
counter should increment or decrement at the next negative edge of the
clock signal.
The counter will increment if the input data sample is high but decrement
if the input sample is low. Therefore, the counter will thus progress either
up toward 15 if, on average, the BDRxD signal remains high or progress
down toward 0 if, on average, the BDRxD signal remains low.
When the counter eventually reaches the value 15, the digital filter
decides that the condition of the BDRxD signal is at a stable logic level
1 and the data latch is set, causing the filtered Rx data signal to become
a logic level 1. Furthermore, the counter is prevented from overflowing
and can only be decremented from this state.
Alternatively, should the counter eventually reach the value 0, the digital
filter decides that the condition of the BDRxD signal is at a stable logic
level 0 and the data latch is reset, causing the filtered Rx data signal to
become a logic level 0. Furthermore, the counter is prevented from
underflowing and can only be incremented from this state.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Byte Data Link Controller (BDLC)
491
Byte Data Link Controller (BDLC)
The data latch will retain its value until the counter next reaches the
opposite end point, signifying a definite transition of the signal.
27.5.1.2 Performance
The performance of the digital filter is best described in the time domain
rather than the frequency domain.
If the signal on the BDRxD signal transitions, then there will be a delay
before that transition appears at the filtered Rx data output signal. This
delay will be between 15 and 16 clock periods, depending on where the
transition occurs with respect to the sampling points. This filter delay
must be taken into account when performing message arbitration.
For example, if the frequency of the MUX interface clock (fBDLC) is
1.0486 MHz, then the period (tBDLC) is 954 ns and the maximum filter
delay in the absence of noise will be 15.259 µs.
The effect of random noise on the BDRxD signal depends on the
characteristics of the noise itself. Narrow noise pulses on the BDRxD
signal will be ignored completely if they are shorter than the filter delay.
This provides a degree of low pass filtering.
If noise occurs during a symbol transition, the detection of that transition
can be delayed by an amount equal to the length of the noise burst. This
is just a reflection of the uncertainty of where the transition is truly
occurring within the noise.
Noise pulses that are wider than the filter delay, but narrower than the
shortest allowable symbol length, will be detected by the next stage of
the BDLC’s receiver as an invalid symbol.
Noise pulses that are longer than the shortest allowable symbol length
will be detected normally as an invalid symbol or as invalid data when
the frame’s CRC is checked.
Technical Data
492
MC68HC908AZ60A — Rev 2.0
Byte Data Link Controller (BDLC)
MOTOROLA
Byte Data Link Controller (BDLC)
BDLC MUX Interface
27.5.2 J1850 Frame Format
All messages transmitted on the J1850 bus are structured using the
format shown in Figure 27-5.
J1850 states that each message has a maximum length of 101 PWM bit
times or 12 VPW bytes, excluding SOF, EOD, NB, and EOF, with each
byte transmitted MSB first.
All VPW symbol lengths in the following descriptions are typical values
at a 10.4 kbps bit rate.
DATA
IDLE
SOF
PRIORITY
(DATA0)
MESSAGE ID
(DATA1)
DATAN
CRC
E
O
D
OPTIONAL
N
B
IFR
EOF
I
F
S
IDLE
Figure 27-5. J1850 Bus Message Format (VPW)
SOF — Start-of-Frame Symbol
All messages transmitted onto the J1850 bus must begin with a longactive 200-µs period SOF symbol. This indicates the start of a new
message transmission. The SOF symbol is not used in the CRC
calculation.
Data — In-Message Data Bytes
The data bytes contained in the message include the message
priority/type, message ID byte (typically the physical address of the
responder), and any actual data being transmitted to the receiving
node. The message format used by the BDLC is similar to the 3-byte
consolidated header message format outlined by the SAE J1850
document. See SAE J1850 — Class B Data Communications
Network Interface for more information about 1- and 3-byte headers.
Messages transmitted by the BDLC onto the J1850 bus must contain
at least one data byte and, therefore, can be as short as one data byte
and one CRC byte. Each data byte in the message is eight bits in
length and is transmitted MSB to LSB.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Byte Data Link Controller (BDLC)
493
Byte Data Link Controller (BDLC)
CRC — Cyclical Redundancy Check Byte
This byte is used by the receiver(s) of each message to determine if
any errors have occurred during the transmission of the message.
The BDLC calculates the CRC byte and appends it onto any
messages transmitted onto the J1850 bus. It also performs CRC
detection on any messages it receives from the J1850 bus.
CRC generation uses the divisor polynomial X8 + X4 + X3 + X2 + 1.
The remainder polynomial initially is set to all ones. Each byte in the
message after the start of frame (SOF) symbol is processed serially
through the CRC generation circuitry. The one’s complement of the
remainder then becomes the 8-bit CRC byte, which is appended to
the message after the data bytes in MSB-to-LSB order.
When receiving a message, the BDLC uses the same divisor
polynomial. All data bytes, excluding the SOF and end of data
symbols (EOD) but including the CRC byte, are used to check the
CRC. If the message is error free, the remainder polynomial will equal
X7 + X6 + X2 = $C4, regardless of the data contained in the message.
If the calculated CRC does not equal $C4, the BDLC will recognize
this as a CRC error and set the CRC error flag in the BSVR.
EOD — End-of-Data Symbol
The EOD symbol is a long 200-µs passive period on the J1850 bus
used to signify to any recipients of a message that the transmission
by the originator has completed. No flag is set upon reception of the
EOD symbol.
IFR — In-Frame Response Bytes
The IFR section of the J1850 message format is optional. Users
desiring further definition of in-frame response should review the SAE
J1850 — Class B Data Communications Network Interface
specification.
EOF — End-of-Frame Symbol
This symbol is a long 280-µs passive period on the J1850 bus and is
longer than an end-of-data (EOD) symbol, which signifies the end of
a message. Since an EOF symbol is longer than a 200-µs EOD
Technical Data
494
MC68HC908AZ60A — Rev 2.0
Byte Data Link Controller (BDLC)
MOTOROLA
Byte Data Link Controller (BDLC)
BDLC MUX Interface
symbol, if no response is transmitted after an EOD symbol, it
becomes an EOF, and the message is assumed to be completed. The
EOF flag is set upon receiving the EOF symbol.
IFS — Inter-Frame Separation Symbol
The IFS symbol is a 20-µs passive period on the J1850 bus which
allows proper synchronization between nodes during continuous
message transmission. The IFS symbol is transmitted by a node after
the completion of the end-of-frame (EOF) period and, therefore, is
seen as a 300-µs passive period.
When the last byte of a message has been transmitted onto the J1850
bus and the EOF symbol time has expired, all nodes then must wait
for the IFS symbol time to expire before transmitting a start-of-frame
(SOF) symbol, marking the beginning of another message.
However, if the BDLC is waiting for the IFS period to expire before
beginning a transmission and a rising edge is detected before the IFS
time has expired, it will synchronize internally to that edge. If a write
to the BDR register (for instance, to initiate transmission) occurred on
or before 104 • tBDLC from the received rising edge, then the BDLC
will transmit and arbitrate for the bus. If a CPU write to the BDR
register occurred after 104 • tBDLC from the detection of the rising
edge, then the BDLC will not transmit, but will wait for the next IFS
period to expire before attempting to transmit the byte.
A rising edge may occur during the IFS period because of varying
clock tolerances and loading of the J1850 bus, causing different
nodes to observe the completion of the IFS period at different times.
To allow for individual clock tolerances, receivers must synchronize to
any SOF occurring during an IFS period.
NOTE:
If two messages are received with a 300µs (± 1µs) interframe separation
(IFS) as measured at the RX pin, the start-of-frame (SOF) symbol of the
second message will generate an invalid symbol interrupt. This interrupt
results in the second message being lost and will therefore be
unavailable to the application software. Implementations of this BDLC
design on silicon have not been exposed to interframe separation rates
faster than 320µs in practical application and have therefore previously
not exhibited this behavior. Ensuring that no nodes on the J1850
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Byte Data Link Controller (BDLC)
495
Byte Data Link Controller (BDLC)
network transmit messages at 300µs (± 1µs) IFS will avoid this missed
message frame. In addition, developing application software to robustly
handle lost messages will minimize application impact.
BREAK — Break
The BDLC cannot transmit a BREAK symbol.
If the BDLC is transmitting at the time a BREAK is detected, it treats
the BREAK as if a transmission error had occurred and halts
transmission.
If the BDLC detects a BREAK symbol while receiving a message, it
treats the BREAK as a reception error and sets the invalid symbol flag
in the BSVR, also ignoring the frame it was receiving. If while
receiving a message in 4X mode, the BDLC detects a BREAK
symbol, it treats the BREAK as a reception error, sets the invalid
symbol flag, and exits 4X mode (for example, the RX4XE bit in BCR2
is cleared automatically). If bus control is required after the BREAK
symbol is received and the IFS time has elapsed, the programmer
must resend the transmission byte using highest priority.
NOTE:
The J1850 protocol BREAK symbol is not related to the HC08 break
module. See Break Module (BRK) on page 203.
IDLE — Idle Bus
An idle condition exists on the bus during any passive period after
expiration of the IFS period (for instance, ≥ 300 µs). Any node sensing
an idle bus condition can begin transmission immediately.
27.5.3 J1850 VPW Symbols
Huntsinger’s variable pulse width modulation (VPW) is an encoding
technique in which each bit is defined by the time between successive
transitions and by the level of the bus between transitions (for instance,
active or passive). Active and passive bits are used alternately. This
encoding technique is used to reduce the number of bus transitions for
a given bit rate.
Each logic 1 or logic 0 contains a single transition and can be at either
the active or passive level and one of two lengths, either 64 µs or 128 µs
Technical Data
496
MC68HC908AZ60A — Rev 2.0
Byte Data Link Controller (BDLC)
MOTOROLA
Byte Data Link Controller (BDLC)
BDLC MUX Interface
(tNOM at 10.4 kbps baud rate), depending upon the encoding of the
previous bit. The start-of-frame (SOF), end-of-data (EOD), end-of-frame
(EOF), and inter-frame separation (IFS) symbols always will be encoded
at an assigned level and length. See Figure 27-6.
Each message will begin with an SOF symbol an active symbol and,
therefore, each data byte (including the CRC byte) will begin with a
passive bit, regardless of whether it is a logic 1 or a logic 0.
All VPW bit lengths stated in the following descriptions are typical values
at a 10.4 kbps bit rate.
Logic 0
A logic 0 is defined as either:
– An active-to-passive transition followed by a passive period
64 µs in length, or
– A passive-to-active transition followed by an active period
128 µs in length
See Figure 27-6(a).
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Byte Data Link Controller (BDLC)
497
Byte Data Link Controller (BDLC)
ACTIVE
128 µs
OR
64 µs
OR
64 µs
PASSIVE
(A) LOGIC 0
ACTIVE
128 µs
PASSIVE
(B) LOGIC 1
ACTIVE
≥ 240 µs
200 µs
200 µs
PASSIVE
(C) BREAK
(D) START OF FRAME
(E) END OF DATA
300 µs
ACTIVE
280 µs
20 µs
IDLE > 300 µs
PASSIVE
(G) INTER-FRAME
SEPARATION
(F) END OF FRAME
(H) IDLE
Figure 27-6. J1850 VPW Symbols with Nominal Symbol Times
Logic 1
A logic 1 is defined as either:
– An active-to-passive transition followed by a passive period
128 µs in length, or
– A passive-to-active transition followed by an active period
64 µs in length
See Figure 27-6(b).
Technical Data
498
MC68HC908AZ60A — Rev 2.0
Byte Data Link Controller (BDLC)
MOTOROLA
Byte Data Link Controller (BDLC)
BDLC MUX Interface
Normalization Bit (NB)
The NB symbol has the same property as a logic 1 or a logic 0. It is
only used in IFR message responses.
Break Signal (BREAK)
The BREAK signal is defined as a passive-to-active transition
followed by an active period of at least 240 µs (See Figure 27-6(c)).
Start-of-Frame Symbol (SOF)
The SOF symbol is defined as passive-to-active transition followed by
an active period 200 µs in length (See Figure 27-6(d)). This allows
the data bytes which follow the SOF symbol to begin with a passive
bit, regardless of whether it is a logic 1 or a logic 0.
End-of-Data Symbol (EOD)
The EOD symbol is defined as an active-to-passive transition
followed by a passive period 200 µs in length (See Figure 27-6(e)).
End-of-Frame Symbol (EOF)
The EOF symbol is defined as an active-to-passive transition followed
by a passive period 280 µs in length (See Figure 27-6(f)). If no IFR
byte is transmitted after an EOD symbol is transmitted, after another
80 µs the EOD becomes an EOF, indicating completion of the
message.
Inter-Frame Separation Symbol (IFS)
The IFS symbol is defined as a passive period 300 µs in length. The
20-µs IFS symbol contains no transition, since when used it always
appends to an EOF symbol (See Figure 27-6(g)).
Idle
An idle is defined as a passive period greater than 300 µs in length.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Byte Data Link Controller (BDLC)
499
Byte Data Link Controller (BDLC)
27.5.4 J1850 VPW Valid/Invalid Bits and Symbols
The timing tolerances for receiving data bits and symbols from the
J1850 bus have been defined to allow for variations in oscillator
frequencies. In many cases the maximum time allowed to define a data
bit or symbol is equal to the minimum time allowed to define another data
bit or symbol.
Since the minimum resolution of the BDLC for determining what symbol
is being received is equal to a single period of the MUX interface clock
(tBDLC), an apparent separation in these maximum time/minimum time
concurrences equal to one cycle of tBDLC occurs.
This one clock resolution allows the BDLC to differentiate properly
between the different bits and symbols. This is done without reducing the
valid window for receiving bits and symbols from transmitters onto the
J1850 bus which have varying oscillator frequencies.
In Huntsinger’s’ variable pulse width (VPW) modulation bit encoding, the
tolerances for both the passive and active data bits received and the
symbols received are defined with no gaps between definitions. For
example, the maximum length of a passive logic 0 is equal to the
minimum length of a passive logic 1, and the maximum length of an
active logic 0 is equal to the minimum length of a valid SOF symbol.
Invalid Passive Bit
See Figure 27-7(1). If the passive-to-active received transition
beginning the next data bit or symbol occurs between the active-topassive transition beginning the current data bit (or symbol) and a, the
current bit would be invalid.
Technical Data
500
MC68HC908AZ60A — Rev 2.0
Byte Data Link Controller (BDLC)
MOTOROLA
Byte Data Link Controller (BDLC)
BDLC MUX Interface
200 µs
128 µs
64 µs
ACTIVE
(1) INVALID PASSIVE BIT
PASSIVE
a
ACTIVE
(2) VALID PASSIVE LOGIC 0
PASSIVE
a
b
ACTIVE
(3) VALID PASSIVE LOGIC 1
PASSIVE
b
c
ACTIVE
(4) VALID EOD SYMBOL
PASSIVE
c
d
Figure 27-7. J1850 VPW Received Passive Symbol Times
Valid Passive Logic 0
See Figure 27-7(2). If the passive-to-active received transition
beginning the next data bit (or symbol) occurs between a and b, the
current bit would be considered a logic 0.
Valid Passive Logic 1
See Figure 27-7(3). If the passive-to-active received transition
beginning the next data bit (or symbol) occurs between b and c, the
current bit would be considered a logic 1.
Valid EOD Symbol
See Figure 27-7(4). If the passive-to-active received transition
beginning the next data bit (or symbol) occurs between c and d, the
current symbol would be considered a valid end-of-data symbol
(EOD).
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Byte Data Link Controller (BDLC)
501
Byte Data Link Controller (BDLC)
300 µs
280 µs
ACTIVE
(1) VALID EOF SYMBOL
PASSIVE
a
b
ACTIVE
(2) VALID EOF+
IFS SYMBOL
PASSIVE
c
d
Figure 27-8. J1850 VPW Received Passive
EOF and IFS Symbol Times
Valid EOF and IFS Symbol
In Figure 27-8(1), if the passive-to-active received transition
beginning the SOF symbol of the next message occurs between a
and b, the current symbol will be considered a valid end-of-frame
(EOF) symbol.
See Figure 27-8(2). If the passive-to-active received transition
beginning the SOF symbol of the next message occurs between c
and d, the current symbol will be considered a valid EOF symbol
followed by a valid inter-frame separation symbol (IFS). All nodes
must wait until a valid IFS symbol time has expired before beginning
transmission. However, due to variations in clock frequencies and bus
loading, some nodes may recognize a valid IFS symbol before others
and immediately begin transmitting. Therefore, any time a node
waiting to transmit detects a passive-to-active transition once a valid
EOF has been detected, it should immediately begin transmission,
initiating the arbitration process.
Idle Bus
In Figure 27-8(2), if the passive-to-active received transition
beginning the start-of-frame (SOF) symbol of the next message does
not occur before d, the bus is considered to be idle, and any node
wishing to transmit a message may do so immediately.
Technical Data
502
MC68HC908AZ60A — Rev 2.0
Byte Data Link Controller (BDLC)
MOTOROLA
Byte Data Link Controller (BDLC)
BDLC MUX Interface
200 µs
128 µs
64 µs
ACTIVE
(1) INVALID ACTIVE BIT
PASSIVE
a
ACTIVE
(2) VALID ACTIVE LOGIC 1
PASSIVE
a
b
ACTIVE
(3) VALID ACTIVE LOGIC 0
PASSIVE
b
c
ACTIVE
(4) VALID SOF SYMBOL
PASSIVE
c
d
Figure 27-9. J1850 VPW Received Active Symbol Times
Invalid Active Bit
In Figure 27-9(1), if the active-to-passive received transition
beginning the next data bit (or symbol) occurs between the passiveto-active transition beginning the current data bit (or symbol) and a,
the current bit would be invalid.
Valid Active Logic 1
In Figure 27-9(2), if the active-to-passive received transition
beginning the next data bit (or symbol) occurs between a and b, the
current bit would be considered a logic 1.
Valid Active Logic 0
In Figure 27-9(3), if the active-to-passive received transition
beginning the next data bit (or symbol) occurs between b and c, the
current bit would be considered a logic 0.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Byte Data Link Controller (BDLC)
503
Byte Data Link Controller (BDLC)
Valid SOF Symbol
In Figure 27-9(4), if the active-to-passive received transition
beginning the next data bit (or symbol) occurs between c and d, the
current symbol would be considered a valid SOF symbol.
Valid BREAK Symbol
In Figure 27-10, if the next active-to-passive received transition does
not occur until after e, the current symbol will be considered a valid
BREAK symbol. A BREAK symbol should be followed by a start-offrame (SOF) symbol beginning the next message to be transmitted
onto the J1850 bus. See J1850 Frame Format for BDLC response to
BREAK symbols.
240 µs
ACTIVE
(2) VALID BREAK SYMBOL
PASSIVE
e
Figure 27-10. J1850 VPW Received BREAK Symbol Times
27.5.5 Message Arbitration
Message arbitration on the J1850 bus is accomplished in a nondestructive manner, allowing the message with the highest priority to be
transmitted, while any transmitters which lose arbitration simply stop
transmitting and wait for an idle bus to begin transmitting again.
If the BDLC wants to transmit onto the J1850 bus, but detects that
another message is in progress, it waits until the bus is idle. However, if
multiple nodes begin to transmit in the same synchronization window,
message arbitration will occur beginning with the first bit after the SOF
symbol and will continue with each bit thereafter.
Technical Data
504
MC68HC908AZ60A — Rev 2.0
Byte Data Link Controller (BDLC)
MOTOROLA
Byte Data Link Controller (BDLC)
BDLC MUX Interface
The variable pulse width modulation (VPW) symbols and J1850 bus
electrical characteristics are chosen carefully so that a logic 0 (active or
passive type) will always dominate over a logic 1 (active or passive type)
that is simultaneously transmitted. Hence, logic 0s are said to be
dominant and logic 1s are said to be recessive.
Whenever a node detects a dominant bit on BDRxD when it transmitted
a recessive bit, the node loses arbitration and immediately stops
transmitting. This is known as bitwise arbitration.
0
1
1
0
1
1
TRANSMITTER A DETECTS
AN ACTIVE STATE ON
THE BUS AND STOPS
TRANSMITTING
1
ACTIVE
TRANSMITTER A
PASSIVE
0
0
ACTIVE
TRANSMITTER B
PASSIVE
0
1
1
0
0
DATA
DATA
DATA
DATA
DATA
BIT 1
BIT 2
BIT 3
BIT 4
BIT 5
TRANSMITTER B WINS
ARBITRATION AND
CONTINUES
TRANSMITTING
ACTIVE
J1850 BUS
PASSIVE
SOF
Figure 27-11. J1850 VPW Bitwise Arbitrations
Since a logic 0 dominates a logic 1, the message with the lowest value
will have the highest priority and will always win arbitration. For instance,
a message with priority 000 will win arbitration over a message with
priority 011.
This method of arbitration will work no matter how many bits of priority
encoding are contained in the message.
During arbitration, or even throughout the transmitting message, when
an opposite bit is detected, transmission is stopped immediately unless
it occurs on the 8th bit of a byte. In this case, the BDLC automatically will
append up to two extra logic 1 bits and then stop transmitting. These two
extra bits will be arbitrated normally and thus will not interfere with
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Byte Data Link Controller (BDLC)
505
Byte Data Link Controller (BDLC)
another message. The second logic 1 bit will not be sent if the first loses
arbitration. If the BDLC has lost arbitration to another valid message,
then the two extra logic 1s will not corrupt the current message.
However, if the BDLC has lost arbitration due to noise on the bus, then
the two extra logic 1s will ensure that the current message will be
detected and ignored as a noise-corrupted message.
27.6 BDLC Protocol Handler
The protocol handler is responsible for framing, arbitration, CRC
generation/checking, and error detection. The protocol handler
conforms to SAE J1850 — Class B Data Communications Network
Interface.
NOTE:
Motorola assumes that the reader is familiar with the J1850 specification
before this protocol handler description is read.
TO CPU
CPU INTERFACE
PROTOCOL HANDLER
MUX INTERFACE
PHYSICAL INTERFACE
BDLC
TO J1850 BUS
Figure 27-12. BDLC Block Diagram
Technical Data
506
MC68HC908AZ60A — Rev 2.0
Byte Data Link Controller (BDLC)
MOTOROLA
Byte Data Link Controller (BDLC)
BDLC Protocol Handler
27.6.1 Protocol Architecture
The protocol handler contains the state machine, Rx shadow register, Tx
shadow register, Rx shift register, Tx shift register, and loopback
multiplexer as shown in Figure 27-13.
TO PHYSICAL INTERFACE
BDRxD
ALOOP
BDTxD
CONTROL
LOOPBACK
MULTIPLEXER
RxD
DLOOP FROM BCR2
LOOPBACK CONTROL
BDTxD
STATE MACHINE
Tx SHADOW REGISTER
8
Tx DATA
Rx SHADOW REGISTER
CONTROL
Tx SHIFT REGISTER
Rx DATA
Rx SHIFT REGISTER
8
TO CPU INTERFACE AND Rx/Tx BUFFERS
Figure 27-13. BDLC Protocol Handler Outline
27.6.2 Rx and Tx Shift Registers
The Rx shift register gathers received serial data bits from the J1850 bus
and makes them available in parallel form to the Rx shadow register. The
Tx shift register takes data, in parallel form, from the Tx shadow register
and presents it serially to the state machine so that it can be transmitted
onto the J1850 bus.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Byte Data Link Controller (BDLC)
507
Byte Data Link Controller (BDLC)
27.6.3 Rx and Tx Shadow Registers
Immediately after the Rx shift register has completed shifting in a byte of
data, this data is transferred to the Rx shadow register and RDRF or
RXIFR is set (see BDLC State Vector Register) and an interrupt is
generated if the interrupt enable bit (IE) in BCR1 is set. After the transfer
takes place, this new data byte in the Rx shadow register is available to
the CPU interface, and the Rx shift register is ready to shift in the next
byte of data. Data in the Rx shadow register must be retrieved by the
CPU before it is overwritten by new data from the Rx shift register.
Once the Tx shift register has completed its shifting operation for the
current byte, the data byte in the Tx shadow register is loaded into the
Tx shift register. After this transfer takes place, the Tx shadow register is
ready to accept new data from the CPU when TDRE flag in BSVR is set.
27.6.4 Digital Loopback Multiplexer
The digital loopback multiplexer connects RxD to either BDTxD or
BDRxD, depending on the state of the DLOOP bit in the BCR2 register
(See BDLC Control Register 2).
27.6.5 State Machine
All of the functions associated with performing the protocol are executed
or controlled by the state machine. The state machine is responsible for
framing, collision detection, arbitration, CRC generation/checking, and
error detection. The following sections describe the BDLC’s actions in a
variety of situations.
27.6.5.1 4X Mode
The BDLC can exist on the same J1850 bus as modules which use a
special 4X (41.6 kbps) mode of J1850 variable pulse width modulation
(VPW) operation. The BDLC cannot transmit in 4X mode, but can
receive messages in 4X mode, if the RX4X bit is set in BCR2 register. If
the RX4X bit is not set in the BCR2 register, any 4X message on the
J1850 bus is treated as noise by the BDLC and is ignored.
Technical Data
508
MC68HC908AZ60A — Rev 2.0
Byte Data Link Controller (BDLC)
MOTOROLA
Byte Data Link Controller (BDLC)
BDLC Protocol Handler
27.6.5.2 Receiving a Message in Block Mode
Although not a part of the SAE J1850 protocol, the BDLC does allow for
a special block mode of operation of the receiver. As far as the BDLC is
concerned, a block mode message is simply a long J1850 frame that
contains an indefinite number of data bytes. All of the other features of
the frame remain the same, including the SOF, CRC, and EOD symbols.
Another node wishing to send a block mode transmission must first
inform all other nodes on the network that this is about to happen. This
is usually accomplished by sending a special predefined message.
27.6.5.3 Transmitting a Message in Block Mode
A block mode message is transmitted inherently by simply loading the
bytes one by one into the BDR register until the message is complete.
The programmer should wait until the TDRE flag (see BDLC State
Vector Register) is set prior to writing a new byte of data into the BDR
register. The BDLC does not contain any predefined maximum J1850
message length requirement.
27.6.5.4 J1850 Bus Errors
The BDLC detects several types of transmit and receive errors which
can occur during the transmission of a message onto the J1850 bus.
Transmission Error
If the message transmitted by the BDLC contains invalid bits or
framing symbols on non-byte boundaries, this constitutes a
transmission error. When a transmission error is detected, the BDLC
immediately will cease transmitting. The error condition ($1C) is
reflected in the BSVR register (see Table 27-6). If the interrupt enable
bit (IE in BCR1) is set, a CPU interrupt request from the BDLC is
generated.
CRC Error
A cyclical redundancy check (CRC) error is detected when the data
bytes and CRC byte of a received message are processed and the
CRC calculation result is not equal to $C4. The CRC code will detect
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Byte Data Link Controller (BDLC)
509
Byte Data Link Controller (BDLC)
any single and 2-bit errors, as well as all 8-bit burst errors and almost
all other types of errors. The CRC error flag ($18 in BSVR) is set when
a CRC error is detected. (See BDLC State Vector Register.)
Symbol Error
A symbol error is detected when an abnormal (invalid) symbol is
detected in a message being received from the J1850 bus. However,
if the BDLC is transmitting when this happens, it will be treated as a
loss of arbitration ($14 in BSVR) rather than a transmitter error. The
($1C) symbol invalid or the out-of-range flag is set when a symbol
error is detected. Therefore, ($1C) symbol invalid flag is stacked
behind the ($14) LOA flag during a transmission error process. (See
BDLC State Vector Register.)
Framing Error
A framing error is detected if an EOD or EOF symbol is detected on a
non-byte boundary from the J1850 bus. A framing error also is
detected if the BDLC is transmitting the EOD and instead receives an
active symbol. The ($1C) symbol invalid or the out-of-range flag is set
when a framing error is detected. (See BDLC State Vector
Register.)
Bus Fault
If a bus fault occurs, the response of the BDLC will depend upon the
type of bus fault.
If the bus is shorted to battery, the BDLC will wait for the bus to fall to
a passive state before it will attempt to transmit a message. As long
as the short remains, the BDLC will never attempt to transmit a
message onto the J1850 bus.
If the bus is shorted to ground, the BDLC will see an idle bus, begin
to transmit the message, and then detect a transmission error ($1C in
BSVR), since the short to ground would not allow the bus to be driven
to the active (dominant) SOF state. The BDLC will abort that
transmission and wait for the next CPU command to transmit.
In any case, if the bus fault is temporary, as soon as the fault is
cleared, the BDLC will resume normal operation. If the bus fault is
permanent, it may result in permanent loss of communication on the
J1850 bus. (See BDLC State Vector Register.)
Technical Data
510
MC68HC908AZ60A — Rev 2.0
Byte Data Link Controller (BDLC)
MOTOROLA
Byte Data Link Controller (BDLC)
BDLC Protocol Handler
BREAK — Break
If a BREAK symbol is received while the BDLC is transmitting or
receiving, an invalid symbol ($1C in BSVR) interrupt will be
generated. Reading the BSVR register (see BDLC State Vector
Register) will clear this interrupt condition. The BDLC will wait for the
bus to idle, then wait for a start-of-frame (SOF) symbol.
The BDLC cannot transmit a BREAK symbol. It can only receive a
BREAK symbol from the J1850 bus.
27.6.5.5 Summary
Table 27-2. BDLC J1850 Bus Error Summary
Error Condition
BDLC Function
Transmission Error
For invalid bits or framing symbols on non-byte
boundaries, invalid symbol interrupt will be
generated. BDLC stops transmission.
Cyclical Redundancy Check
(CRC) Error
CRC error interrupt will be generated. The
BDLC will wait for SOF.
Invalid Symbol: BDLC Receives
Invalid Bits (Noise)
The BDLC will abort transmission immediately.
Invalid symbol interrupt will be generated.
Framing Error
Invalid symbol interrupt will be generated. The
BDLC will wait for start-of-frame (SOF).
Bus Short to VDD
The BDLC will not transmit until the bus is idle.
Bus Short to GND
Thermal overload will shut down physical
interface. Fault condition is reflected in BSVR
as an invalid symbol.
BDLC Receives BREAK Symbol.
The BDLC will wait for the next valid SOF.
Invalid symbol interrupt will be generated.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Byte Data Link Controller (BDLC)
511
Byte Data Link Controller (BDLC)
27.7 BDLC CPU Interface
The CPU interface provides the interface between the CPU and the
BDLC and consists of five user registers.
•
BDLC analog and roundtrip delay register (BARD)
•
BDLC control register 1 (BCR1)
•
BDLC control register 2 (BCR2)
•
BDLC state vector register (BSVR)
•
BDLC data register (BDR)
TO CPU
CPU INTERFACE
PROTOCOL HANDLER
MUX INTERFACE
PHYSICAL INTERFACE
BDLC
TO J1850 BUS
Figure 27-14. BDLC Block Diagram
Technical Data
512
MC68HC908AZ60A — Rev 2.0
Byte Data Link Controller (BDLC)
MOTOROLA
Byte Data Link Controller (BDLC)
BDLC CPU Interface
27.7.1 BDLC Analog and Roundtrip Delay Register
This register programs the BDLC to compensate for various delays of
different external transceivers. The default delay value is16 µs.
Timing adjustments from 9 µs to 24 µs in steps of 1 µs are available. The
BARD register can be written only once after each reset, after which they
become read-only bits. The register may be read at any time.
Address:
$003B
Bit 7
6
ATE
RXPOL
Read:
Write:
Reset:
1
1
R
= Reserved
5
4
0
0
R
R
0
0
3
2
1
Bit 0
BO3
BO2
BO1
BO0
0
1
1
1
Figure 27-15. BDLC Analog and Roundtrip Delay Register (BARD)
ATE — Analog Transceiver Enable Bit
The analog transceiver enable (ATE) bit is used to select either the
on-board or an off-chip analog transceiver.
1 = Select on-board analog transceiver
0 = Select off-chip analog transceiver
NOTE:
This device does not contain an on-board transceiver. This bit should be
programmed to a logic 0 for proper operation.
RXPOL — Receive Pin Polarity Bit
The receive pin polarity (RXPOL) bit is used to select the polarity of
an incoming signal on the receive pin. Some external analog
transceivers invert the receive signal from the J1850 bus before
feeding it back to the digital receive pin.
1 = Select normal/true polarity; true non-inverted signal from the
J1850 bus; for example, the external transceiver does not
invert the receive signal
0 = Select inverted polarity, where an external transceiver inverts
the receive signal from the J1850 bus
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Byte Data Link Controller (BDLC)
513
Byte Data Link Controller (BDLC)
B03–B00 — BARD Offset Bits
Table 27-3 shows the expected transceiver delay with respect to
BARD offset values.
Table 27-3. BDLC Transceiver Delay
BARD Offset Bits B0[3:0]
Corresponding Expected
Transceiver’s Delays (µs)
0000
9
0001
10
0010
11
0011
12
0100
13
0101
14
0110
15
0111
16
1000
17
1001
18
1010
19
1011
20
1100
21
1101
22
1110
23
1111
24
27.7.2 BDLC Control Register 1
This register is used to configure and control the BDLC.
Address:
$003C
Bit 7
6
5
4
IMSG
CLKS
R1
R0
Read:
Write:
Reset:
1
1
R
= Reserved
1
0
3
2
0
0
R
R
0
0
1
Bit 0
IE
WCM
0
0
Figure 27-16. BDLC Control Register 1 (BCR1)
Technical Data
514
MC68HC908AZ60A — Rev 2.0
Byte Data Link Controller (BDLC)
MOTOROLA
Byte Data Link Controller (BDLC)
BDLC CPU Interface
IMSG — Ignore Message Bit
This bit is used to disable the receiver until a new start-of-frame (SOF)
is detected.
1 = Disable receiver. When set, all BDLC interrupt requests will be
masked and the status bits will be held in their reset state. If
this bit is set while the BDLC is receiving a message, the rest
of the incoming message will be ignored.
0 = Enable receiver. This bit is cleared automatically by the
reception of an SOF symbol or a BREAK symbol. It will then
generate interrupt requests and will allow changes of the
status register to occur. However, these interrupts may still be
masked by the interrupt enable (IE) bit.
CLKS — Clock Bit
The nominal BDLC operating frequency (fBDLC) must always be
1.048576 MHz or 1 MHz for J1850 bus communications to take place.
The CLKS register bit allows the user to select the frequency
(1.048576 MHz or 1 MHz) used to adjust symbol timing automatically.
1 = Binary frequency (1.048576 MHz) selected for fBDLC
0 = Integer frequency (1 MHz) selected for fBDLC
R1 and R0 — Rate Select Bits
These bits determine the amount by which the frequency of the MCU
CGMXCLK signal is divided to form the MUX interface clock (fBDLC)
which defines the basic timing resolution of the MUX interface. They
may be written only once after reset, after which they become readonly bits.
The nominal frequency of fBDLC must always be 1.048576 MHz or 1.0
MHz for J1850 bus communications to take place. Hence, the value
programmed into these bits is dependent on the chosen MCU system
clock frequency per Table 27-4
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Byte Data Link Controller (BDLC)
515
Byte Data Link Controller (BDLC)
.
Table 27-4. BDLC Rate Selection
fXCLK Frequency
R1
R0
Division
fBDLC
1.049 MHz
0
0
1
1.049 MHz
2.097 MHz
0
1
2
1.049 MHz
4.194 MHz
1
0
4
1.049 MHz
8.389 MHz
1
1
8
1.049 MHz
1.000 MHz
0
0
1
1.00 MHz
2.000 MHz
0
1
2
1.00 MHz
4.000 MHz
1
0
4
1.00 MHz
8.000 MHz
1
1
8
1.00 MHz
IE— Interrupt Enable Bit
This bit determines whether the BDLC will generate CPU interrupt
requests in run mode. It does not affect CPU interrupt requests when
exiting the BDLC stop or BDLC wait modes. Interrupt requests will be
maintained until all of the interrupt request sources are cleared by
performing the specified actions upon the BDLC’s registers. Interrupts
that were pending at the time that this bit is cleared may be lost.
1 = Enable interrupt requests from BDLC
0 = Disable interrupt requests from BDLC
If the programmer does not wish to use the interrupt capability of the
BDLC, the BDLC state vector register (BSVR) can be polled
periodically by the programmer to determine BDLC states. See BDLC
State Vector Register for a description of the BSVR.
WCM — Wait Clock Mode Bit
This bit determines the operation of the BDLC during CPU wait mode.
See Stop Mode and Wait Mode for more details on its use.
1 = Stop BDLC internal clocks during CPU wait mode
0 = Run BDLC internal clocks during CPU wait mode
Technical Data
516
MC68HC908AZ60A — Rev 2.0
Byte Data Link Controller (BDLC)
MOTOROLA
Byte Data Link Controller (BDLC)
BDLC CPU Interface
27.7.3 BDLC Control Register 2
This register controls transmitter operations of the BDLC. It is
recommended that BSET and BCLR instructions be used to manipulate
data in this register to ensure that the register’s content does not change
inadvertently.
Address:
$003D
Bit 7
6
5
4
3
2
1
Bit 0
ALOOP
DLOOP
RX4XE
NBFS
TEOD
TSIFR
TMIFR1
TMIFR0
1
1
0
0
0
0
0
0
Read:
Write:
Reset:
Figure 27-17. BDLC Control Register 2 (BCR2)
ALOOP — Analog Loopback Mode Bit
This bit determines whether the J1850 bus will be driven by the
analog physical interface’s final drive stage. The programmer can use
this bit to reset the BDLC state machine to a known state after the offchip analog transceiver is placed in loopback mode. When the user
clears ALOOP, to indicate that the off-chip analog transceiver is no
longer in loopback mode, the BDLC waits for an EOF symbol before
attempting to transmit.
1 = Input to the analog physical interface’s final drive stage is
looped back to the BDLC receiver. The J1850 bus is not driven.
0 = The J1850 bus will be driven by the BDLC. After the bit is
cleared, the BDLC requires the bus to be idle for a minimum of
end-of-frame symbol time (tTRV4) before message reception or
a minimum of inter-frame symbol time (tTRV6) before message
transmission. (See BDLC Transmitter VPW Symbol
Timings.)
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Byte Data Link Controller (BDLC)
517
Byte Data Link Controller (BDLC)
DLOOP — Digital Loopback Mode Bit
This bit determines the source to which the digital receive input
(BDRxD) is connected and can be used to isolate bus fault conditions
(see Figure 27-13). If a fault condition has been detected on the bus,
this control bit allows the programmer to connect the digital transmit
output to the digital receive input. In this configuration, data sent from
the transmit buffer will be reflected back into the receive buffer. If no
faults exist in the BDLC, the fault is in the physical interface block or
elsewhere on the J1850 bus.
1 = When set, BDRxD is connected to BDTxD. The BDLC is now
in digital loopback mode.
0 = When cleared, BDTxD is not connected to BDRxD. The BDLC
is taken out of digital loopback mode and can now drive the
J1850 bus normally.
RX4XE — Receive 4X Enable Bit
This bit determines if the BDLC operates at normal transmit and
receive speed (10.4 kbps) or receive only at 41.6 kbps. This feature
is useful for fast download of data into a J1850 node for diagnostic or
factory programming of the node.
1 = When set, the BDLC is put in 4X receive-only operation.
0 = When cleared, the BDLC transmits and receives at 10.4 kbps.
NBFS — Normalization Bit Format Select Bit
This bit controls the format of the normalization bit (NB). (See Figure
27-18.) SAE J1850 strongly encourages using an active long (logic 0)
for in-frame responses containing cyclical redundancy check (CRC)
and an active short (logic 1) for in-frame responses without CRC.
1 = NB that is received or transmitted is a 0 when the response part
of an in-frame response (IFR) ends with a CRC byte. NB that
is received or transmitted is a 1 when the response part of an
in-frame response (IFR) does not end with a CRC byte.
0 = NB that is received or transmitted is a 1 when the response part
of an in-frame response (IFR) ends with a CRC byte. NB that
is received or transmitted is a 0 when the response part of an
in-frame response (IFR) does not end with a CRC byte.
Technical Data
518
MC68HC908AZ60A — Rev 2.0
Byte Data Link Controller (BDLC)
MOTOROLA
Byte Data Link Controller (BDLC)
BDLC CPU Interface
TEOD — Transmit End of Data Bit
This bit is set by the programmer to indicate the end of a message is
being sent by the BDLC. It will append an 8-bit CRC after completing
transmission of the current byte. This bit also is used to end an inframe response (IFR). If the transmit shadow register is full when
TEOD is set, the CRC byte will be transmitted after the current byte in
the Tx shift register and the byte in the Tx shadow register have been
transmitted. (See Rx and Tx Shadow Registers for a description of
the transmit shadow register.) Once TEOD is set, the transmit data
register empty flag (TDRE) in the BDLC state vector register (BSVR)
is cleared to allow lower priority interrupts to occur. (See BDLC State
Vector Register.)
1 = Transmit end-of-data (EOD) symbol
0 = The TEOD bit will be cleared automatically at the rising edge of
the first CRC bit that is sent or if an error is detected. When
TEOD is used to end an IFR transmission, TEOD is cleared
when the BDLC receives back a valid EOD symbol or an error
condition occurs.
TSIFR, TMIFR1, and TMIFR0 — Transmit In-Frame Response Control Bits
These three bits control the type of in-frame response being sent. The
programmer should not set more than one of these control bits to a 1
at any given time. However, if more than one of these three control
bits are set to 1, the priority encoding logic will force these register bits
to a known value as shown in Table 27-5. For example, if 011 is
written to TSIFR, TMIFR1, and TMIFR0, then internally they will be
encoded as 010. However, when these bits are read back, they will
read 011.
Table 27-5. BDLC Transmit In-Frame Response
Control Bit Priority Encoding
Write/Read
TSIFR
Write/Read
TMIFR1
Write/Read
TMIFR0
Actual
TSIFR
Actual
TMIFR1
Actual
TMIFR0
0
0
0
0
0
0
1
X
X
1
0
0
0
1
X
0
1
0
0
0
1
0
0
1
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Byte Data Link Controller (BDLC)
519
Byte Data Link Controller (BDLC)
The BDLC supports the in-frame response (IFR) feature of J1850 by
setting these bits correctly. The four types of J1850 IFR are shown
below. The purpose of the in-frame response modes is to allow
multiple nodes to acknowledge receipt of the data by responding with
their personal ID or physical address in a concatenated manner after
they have seen the EOD symbol. If transmission arbitration is lost by
a node while sending its response, it continues to transmit its
ID/address until observing its unique byte in the response stream. For
VPW modulation, because the first bit of the IFR is always passive, a
normalization bit (active) must be generated by the responder and
sent prior to its ID/address byte. When there are multiple responders
on the J1850 bus, only one normalization bit is sent which assists all
other transmitting nodes to sync up their response.
CRC
CRC
EOD
DATA FIELD
EOF
EOD
SOF
HEADER
TYPE 0 — NO IFR
DATA FIELD
NB
EOF
EOD
SOF
HEADER
ID
TYPE 1 — SINGLE BYTE TRANSMITTED FROM A SINGLE RESPONDER
CRC
NB
ID1
ID N
EOF
EOD
DATA FIELD
EOD
SOF
HEADER
TYPE 2 — SINGLE BYTE TRANSMITTED FROM MULTIPLE RESPONDERS
CRC
NB
CRC
(OPTIONAL)
IFR DATA FIELD
EOF
EOD
DATA FIELD
EOD
SOF
HEADER
TYPE 3 — MULTIPLE BYTES TRANSMITTED FROM A SINGLE RESPONDER
NB = Normalization Bit
ID = Identifier (usually the physical address of the responder(s))
HEADER = Specifies one of three frame lengths
Figure 27-18. Types of In-Frame Response (IFR)
Technical Data
520
MC68HC908AZ60A — Rev 2.0
Byte Data Link Controller (BDLC)
MOTOROLA
Byte Data Link Controller (BDLC)
BDLC CPU Interface
TSIFR — Transmit Single Byte IFR with No CRC (Type 1 or 2) Bit
The TSIFR bit is used to request the BDLC to transmit the byte in the
BDLC data register (BDR, $003F) as a single byte IFR with no CRC.
Typically, the byte transmitted is a unique identifier or address of the
transmitting (responding) node. See Figure 27-18.
1 = If this bit is set prior to a valid EOD being received with no CRC
error, once the EOD symbol has been received the BDLC will
attempt to transmit the appropriate normalization bit followed
by the byte in the BDR.
0 = The TSIFR bit will be cleared automatically, once the BDLC
has successfully transmitted the byte in the BDR onto the
bus, or TEOD is set, or an error is detected on the bus.
If the programmer attempts to set the TSIFR bit immediately after the
EOD symbol has been received from the bus, the TSIFR bit will remain
in the reset state and no attempt will be made to transmit the IFR byte.
If a loss of arbitration occurs when the BDLC attempts to transmit and
after the IFR byte winning arbitration completes transmission, the BDLC
will again attempt to transmit the BDR (with no normalization bit). The
BDLC will continue transmission attempts until an error is detected on
the bus, or TEOD is set, or the BDLC transmission is successful.
If loss or arbitration occurs in the last two bits of the IFR byte, two
additional 1 bits will not be sent out because the BDLC will attempt to
retransmit the byte in the transmit shift register after the IRF byte winning
arbitration completes transmission.
TMIFR1 — Transmit Multiple Byte IFR with CRC (Type 3) Bit
The TMIFR1 bit requests the BDLC to transmit the byte in the BDLC
data register (BDR) as the first byte of a multiple byte IFR with CRC
or as a single byte IFR with CRC. Response IFR bytes are still subject
to J1850 message length maximums (see J1850 Frame Format and
Figure 27-18).
If this bit is set prior to a valid EOD being received with no CRC error,
once the EOD symbol has been received the BDLC will attempt to
transmit the appropriate normalization bit followed by IFR bytes. The
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Byte Data Link Controller (BDLC)
521
Byte Data Link Controller (BDLC)
programmer should set TEOD after the last IFR byte has been written
into the BDR register. After TEOD has been set and the last IFR byte
has been transmitted, the CRC byte is transmitted.
0 = The TMIFR1 bit will be cleared automatically – once the BDLC
has successfully transmitted the CRC byte and EOD
symbol – by the detection of an error on the multiplex bus or by
a transmitter underrun caused when the programmer does not
write another byte to the BDR after the TDRE interrupt.
If the TMIFR1 bit is set, the BDLC will attempt to transmit the
normalization symbol followed by the byte in the BDR. After the byte
in the BDR has been loaded into the transmit shift register, a TDRE
interrupt (see BDLC State Vector Register) will occur similar to the
main message transmit sequence. The programmer should then load
the next byte of the IFR into the BDR for transmission. When the last
byte of the IFR has been loaded into the BDR, the programmer should
set the TEOD bit in the BDLC control register 2 (BCR2). This will
instruct the BDLC to transmit a CRC byte once the byte in the BDR is
transmitted and then transmit an EOD symbol, indicating the end of
the IFR portion of the message frame.
However, if the programmer wishes to transmit a single byte followed
by a CRC byte, the programmer should load the byte into the BDR
before the EOD symbol has been received, and then set the TMIFR1
bit. Once the TDRE interrupt occurs, the programmer should then set
the TEOD bit in the BCR2. This will result in the byte in the BDR being
the only byte transmitted before the IFR CRC byte, and no TDRE
interrupt will be generated.
If the programmer attempts to set the TMIFR1 bit immediately after
the EOD symbol has been received from the bus, the TMIFR1 bit will
remain in the reset state, and no attempt will be made to transmit an
IFR byte.
If a loss of arbitration occurs when the BDLC is transmitting any byte
of a multiple byte IFR, the BDLC will go to the loss of arbitration state,
set the appropriate flag, and cease transmission.
If the BDLC loses arbitration during the IFR, the TMIFR1 bit will be
cleared and no attempt will be made to retransmit the byte in the BDR.
If loss of arbitration occurs in the last two bits of the IFR byte, two
additional 1 bits will be sent out.
Technical Data
522
MC68HC908AZ60A — Rev 2.0
Byte Data Link Controller (BDLC)
MOTOROLA
Byte Data Link Controller (BDLC)
BDLC CPU Interface
NOTE:
The extra logic 1s are an enhancement to the J1850 protocol which
forces a byte boundary condition fault. This is helpful in preventing noise
from going onto the J1850 bus from a corrupted message.
TMIFR0 — Transmit Multiple Byte IFR without CRC (Type 3) Bit
The TMIFR0 bit is used to request the BDLC to transmit the byte in
the BDLC data register (BDR) as the first byte of a multiple byte IFR
without CRC. Response IFR bytes are still subject to J1850 message
length maximums (see J1850 Frame Format and Figure 27-18).
1 = If this bit is set prior to a valid EOD being received with no CRC
error, once the EOD symbol has been received the BDLC will
attempt to transmit the appropriate normalization bit followed
by IFR bytes. The programmer should set TEOD after the last
IFR byte has been written into the BDR register. After TEOD
has been set, the last IFR byte to be transmitted will be the last
byte which was written into the BDR register.
0 = The TMIFR0 bit will be cleared automatically; once the BDLC
has successfully transmitted the EOD symbol; by the detection
of an error on the multiplex bus; or by a transmitter underrun
caused when the programmer does not write another byte to
the BDR after the TDRE interrupt.
If the TMIFR0 bit is set, the BDLC will attempt to transmit the
normalization symbol followed by the byte in the BDR. After the byte
in the BDR has been loaded into the transmit shift register, a TDRE
interrupt (see BDLC State Vector Register) will occur similar to the
main message transmit sequence. The programmer should then load
the next byte of the IFR into the BDR for transmission. When the last
byte of the IFR has been loaded into the BDR, the programmer should
set the TEOD bit in the BCR2. This will instruct the BDLC to transmit
an EOD symbol once the byte in the BDR is transmitted, indicating the
end of the IFR portion of the message frame. The BDLC will not
append a CRC when the TMIFR0 is set.
If the programmer attempts to set the TMIFR0 bit after the EOD
symbol has been received from the bus, the TMIFR0 bit will remain in
the reset state, and no attempt will be made to transmit an IFR byte.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Byte Data Link Controller (BDLC)
523
Byte Data Link Controller (BDLC)
If a loss of arbitration occurs when the BDLC is transmitting, the
TMIFR0 bit will be cleared and no attempt will be made to retransmit
the byte in the BDR. If loss of arbitration occurs in the last two bits of
the IFR byte, two additional 1 bits (active short bits) will be sent out.
NOTE:
The extra logic 1s are an enhancement to the J1850 protocol which
forces a byte boundary condition fault. This is helpful in preventing noise
from going onto the J1850 bus from a corrupted message.
27.7.4 BDLC State Vector Register
This register is provided to substantially decrease the CPU overhead
associated with servicing interrupts while under operation of a multiplex
protocol. It provides an index offset that is directly related to the BDLC’s
current state, which can be used with a user-supplied jump table to
rapidly enter an interrupt service routine. This eliminates the need for the
user to maintain a duplicate state machine in software.
Address:
$003E
Bit 7
6
5
4
3
2
1
Bit 0
Read:
0
0
I3
I2
I1
I0
0
0
Write:
R
R
R
R
R
R
R
R
Reset:
0
0
0
0
0
0
0
0
R
= Reserved
Figure 27-19. BDLC State Vector Register (BSVR)
I0, I1, I2, and I3 — Interrupt Source Bits
These bits indicate the source of the interrupt request that currently is
pending. The encoding of these bits are listed in Table 27-6.
Technical Data
524
MC68HC908AZ60A — Rev 2.0
Byte Data Link Controller (BDLC)
MOTOROLA
Byte Data Link Controller (BDLC)
BDLC CPU Interface
Table 27-6. BDLC Interrupt Sources
BSVR
I3
I2
I1
I0
Interrupt Source
Priority
$00
0
0
0
0
No Interrupts Pending
0 (Lowest)
$04
0
0
0
1
Received EOF
1
$08
0
0
1
0
Received IFR Byte (RXIFR)
2
$0C
0
0
1
1
BDLC Rx Data Register Full (RDRF)
3
$10
0
1
0
0
BDLC Tx Data Register Empty (TDRE)
4
$14
0
1
0
1
Loss of Arbitration
5
$18
0
1
1
0
Cyclical Redundancy Check (CRC) Error
6
$1C
0
1
1
1
Symbol Invalid or Out of Range
7
$20
1
0
0
0
Wakeup
8 (Highest)
Bits I0, I1, I2, and I3 are cleared by a read of the BSVR except when the
BDLC data register needs servicing (RDRF, RXIFR, or TDRE
conditions). RXIFR and RDRF can be cleared only by a read of the
BSVR followed by a read of the BDLC data register (BDR). TDRE can
either be cleared by a read of the BSVR followed by a write to the BDLC
BDR or by setting the TEOD bit in BCR2.
Upon receiving a BDLC interrupt, the user can read the value within the
BSVR, transferring it to the CPU’s index register. The value can then be
used to index into a jump table, with entries four bytes apart, to quickly
enter the appropriate service routine. For example:
Service
*
*
JMPTAB
LDX
JMP
BSVR
JMPTAB,X
Fetch State Vector Number
Enter service routine,
(must end in RTI)
JMP
NOP
JMP
NOP
JMP
NOP
SERVE0
Service condition #0
SERVE1
Service condition #1
SERVE2
Service condition #2
JMP
END
SERVE8
Service condition #8
*
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Byte Data Link Controller (BDLC)
525
Byte Data Link Controller (BDLC)
NOTE:
The NOPs are used only to align the JMPs onto 4-byte boundaries so
that the value in the BSVR can be used intact. Each of the service
routines must end with an RTI instruction to guarantee correct continued
operation of the device. Note also that the first entry can be omitted since
it corresponds to no interrupt occurring.
The service routines should clear all of the sources that are causing the
pending interrupts. Note that the clearing of a high priority interrupt may
still leave a lower priority interrupt pending, in which case bits I0, I1, and
I2 of the BSVR will then reflect the source of the remaining interrupt
request.
If fewer states are used or if a different software approach is taken, the
jump table can be made smaller or omitted altogether.
27.7.5 BDLC Data Register
Address:
$003F
Bit 7
6
5
4
3
2
1
Bit 0
D7
D6
D5
D4
D3
D2
D1
D0
Read:
Write:
Reset:
Unaffected by Reset
Figure 27-20. BDLC Data Register (BDR)
This register is used to pass the data to be transmitted to the J1850 bus
from the CPU to the BDLC. It is also used to pass data received from the
J1850 bus to the CPU. Each data byte (after the first one) should be
written only after a Tx data register empty (TDRE) state is indicated in
the BSVR.
Data read from this register will be the last data byte received from the
J1850 bus. This received data should only be read after an Rx data
register full (RDRF) interrupt has occurred. (See BDLC State Vector
Register.)
Technical Data
526
MC68HC908AZ60A — Rev 2.0
Byte Data Link Controller (BDLC)
MOTOROLA
Byte Data Link Controller (BDLC)
Low-Power Modes
The BDR is double buffered via a transmit shadow register and a receive
shadow register. After the byte in the transmit shift register has been
transmitted, the byte currently stored in the transmit shadow register is
loaded into the transmit shift register. Once the transmit shift register has
shifted the first bit out, the TDRE flag is set, and the shadow register is
ready to accept the next data byte. The receive shadow register works
similarly. Once a complete byte has been received, the receive shift
register stores the newly received byte into the receive shadow register.
The RDRF flag is set to indicate that a new byte of data has been
received. The programmer has one BDLC byte reception time to read
the shadow register and clear the RDRF flag before the shadow register
is overwritten by the newly received byte.
To abort an in-progress transmission, the programmer should stop
loading data into the BDR. This will cause a transmitter underrun error
and the BDLC automatically will disable the transmitter on the next nonbyte boundary. This means that the earliest a transmission can be halted
is after at least one byte plus two extra logic 1s have been transmitted.
The receiver will pick this up as an error and relay it in the state vector
register as an invalid symbol error.
NOTE:
The extra logic 1s are an enhancement to the J1850 protocol which
forces a byte boundary condition fault. This is helpful in preventing noise
from going onto the J1850 bus from a corrupted message.
27.8 Low-Power Modes
The following information concerns wait mode and stop mode.
27.8.1 Wait Mode
This power-conserving mode is entered automatically from run mode
whenever the CPU executes a WAIT instruction and the WCM bit in
BDLC control register 1 (BCR1) is previously clear. In BDLC wait mode,
the BDLC cannot drive any data.
A subsequent successfully received message, including one that is in
progress at the time that this mode is entered, will cause the BDLC to
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Byte Data Link Controller (BDLC)
527
Byte Data Link Controller (BDLC)
wake up and generate a CPU interrupt request if the interrupt enable (IE)
bit in the BDLC control register 1 (BCR1) is previously set. (See BDLC
Control Register 1 for a better understanding of IE.) This results in less
of a power saving, but the BDLC is guaranteed to receive correctly the
message which woke it up, since the BDLC internal operating clocks are
kept running.
NOTE:
Ensuring that all transmissions are complete or aborted before putting
the BDLC into wait mode is important.
27.8.2 Stop Mode
This power-conserving mode is entered automatically from run mode
whenever the CPU executes a STOP instruction or if the CPU executes
a WAIT instruction and the WCM bit in the BDLC control register 1
(BCR1) is previously set. This is the lowest power mode that the BDLC
can enter.
A subsequent passive-to-active transition on the J1850 bus will cause
the BDLC to wake up and generate a non-maskable CPU interrupt
request. When a STOP instruction is used to put the BDLC in stop mode,
the BDLC is not guaranteed to correctly receive the message which
woke it up, since it may take some time for the BDLC internal operating
clocks to restart and stabilize. If a WAIT instruction is used to put the
BDLC in stop mode, the BDLC is guaranteed to correctly receive the
byte which woke it up, if and only if an end-of-frame (EOF) has been
detected prior to issuing the WAIT instruction by the CPU. Otherwise,
the BDLC will not correctly receive the byte that woke it up.
If this mode is entered while the BDLC is receiving a message, the first
subsequent received edge will cause the BDLC to wake up immediately,
generate a CPU interrupt request, and wait for the BDLC internal
operating clocks to restart and stabilize before normal communications
can resume. Therefore, the BDLC is not guaranteed to receive that
message correctly.
NOTE:
It is important to ensure all transmissions are complete or aborted prior
to putting the BDLC into stop mode.
Technical Data
528
MC68HC908AZ60A — Rev 2.0
Byte Data Link Controller (BDLC)
MOTOROLA
Technical Data — MC68HC908AZ60A
Section 28. Electrical Specifications
28.1 Contents
28.2 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
28.2.1 Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
28.2.2 Functional Operating Range . . . . . . . . . . . . . . . . . . . . . .531
28.2.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 532
28.2.4 5.0 Volt DC Electrical Characteristics . . . . . . . . . . . . . . 532
28.2.5 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .534
28.2.6 ADC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . .534
28.2.7 5.0 Vdc ± 0.5 V Serial Peripheral Interface (SPI) Timing536
28.2.8 CGM Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . 539
28.2.9 CGM Component Information . . . . . . . . . . . . . . . . . . . . . 540
28.2.10 CGM Acquisition/Lock Time Information. . . . . . . . . . . . 541
28.2.11 Timer Module Characteristics . . . . . . . . . . . . . . . . . . . . . 542
28.2.12 RAM Memory Characteristics . . . . . . . . . . . . . . . . . . . . . 542
28.2.13 EEPROM Memory Characteristics . . . . . . . . . . . . . . . . . 542
28.2.14 FLASH Memory Characteristics . . . . . . . . . . . . . . . . . . .543
28.2.15 BDLC Transmitter VPW Symbol Timings. . . . . . . . . . . . 544
28.2.16 BDLC Receiver VPW Symbol Timings . . . . . . . . . . . . . . 544
28.2.17 BDLC Transmitter DC Electrical Characteristics . . . . .545
28.2.18 BDLC Receiver DC Electrical Characteristics . . . . . . . .546
28.3 Mechanical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 547
28.3.1 52-pin Plastic Leaded Chip Carrier (PLCC) . . . . . . . . . . 547
28.3.2 64-Pin Quad Flat Pack (QFP). . . . . . . . . . . . . . . . . . . . . .548
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Electrical Specifications
529
Electrical Specifications
28.2 Electrical Specifications
28.2.1 Maximum Ratings
Maximum ratings are the extreme limits to which the MCU can be
exposed without permanently damaging it.
NOTE:
This device is not guaranteed to operate properly at the maximum
ratings. Refer to 5.0 Volt DC Electrical Characteristics on page 532 for
guaranteed operating conditions.
Rating
Symbol
Value
Unit
Supply Voltage
VDD
–0.3 to +6.0
V
Input Voltage
VIN
VSS –0.3 to VDD +0.3
V
I
± 25
mA
Storage Temperature
TSTG
–55 to +150
°C
Maximum Current out of VSS
IMVSS
100
mA
Maximum Current into VDD
IMVDD
100
mA
VHI
VDD + 4.5
V
Maximum Current Per Pin
Excluding VDD and VSS
Reset and IRQ Input Voltage
NOTE: Voltages are referenced to VSS.
NOTE:
This device contains circuitry to protect the inputs against damage due
to high static voltages or electric fields; however, it is advised that normal
precautions be taken to avoid application of any voltage higher than
maximum-rated voltages to this high-impedance circuit. For proper
operation, it is recommended that VIN and VOUT be constrained to the
range VSS ≤ (VIN or VOUT) ≤ VDD. Reliability of operation is enhanced if
unused inputs are connected to an appropriate logic voltage level (for
example, either VSS or VDD).
Technical Data
530
MC68HC908AZ60A — Rev 2.0
Electrical Specifications
MOTOROLA
Electrical Specifications
Electrical Specifications
28.2.2 Functional Operating Range
Rating
Operating Temperature Range
Symbol
Value
Unit
TA
–40 to TA(MAX)
°C
VDD
5.0 ± 0.5v
V
(1)
Operating Voltage Range
1. TA(MAX) = 125°C for part suffix MFU/MFN
TA(MAX) = 105°C for part suffix VFU/VFN
TA(MAX) = 85°C for part suffix CFU/CFN
NOTE:
For applications which use the LVI, Motorola guarantee the functionality
of the device down to the LVI trip point (VLVI) within the constraints
outlined in Low Voltage Inhibit (LVI).
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Electrical Specifications
531
Electrical Specifications
28.2.3 Thermal Characteristics
Characteristic
Symbol
Value
Unit
Thermal Resistance
QFP (64 Pins)
θJA
70
°C/W
Thermal Resistance
PLCC (52 Pins)
θJA
50
°C/W
I/O Pin Power Dissipation
PI/O
User Determined
W
Power Dissipation (see Note 1)
PD
PD = (IDD x VDD) +
PI/O = K/(TJ + 273 °C)
W
Constant (see Note 2)
K
Average Junction Temperature
TJ
PD x (TA + 273 °C)
W/°C
+ (PD2 x θJA)
TA + PD
x θJA
°C
NOTES:
1.Power dissipation is a function of temperature.
2.K is a constant unique to the device. K can be determined from a known TA and
measured PD. With this value of K, PD and TJ can be determined for any value of TA.
28.2.4 5.0 Volt DC Electrical Characteristics
Characteristic
Symbol
Min
Typical
Max
Unit
VDD –0.8
—
—
V
VDD –1.5
—
—
V
—
—
10
mA
—
—
0.4
V
—
—
1.5
V
IOL(TOT)
—
—
15
mA
Input High Voltage
All Ports, IRQs, RESET, OSC1
VIH
0.7 x VDD
—
VDD
V
Input Low Voltage
All Ports, IRQs, RESET, OSC1
VIL
VSS
—
0.3 x VDD
V
Output High Voltage
(ILOAD = –2.0 mA) All Ports
(ILOAD = –5.0 mA) All Ports
Total source current
VOH
IOH(TOT)
Output Low Voltage
(ILOAD = 1.6 mA) All Ports
(ILOAD = 10.0 mA) All Ports
Total sink current
VOL
Technical Data
532
MC68HC908AZ60A — Rev 2.0
Electrical Specifications
MOTOROLA
Electrical Specifications
Electrical Specifications
Characteristic
Symbol
VDD Supply Current
Run (see Note 2)
Wait (see Note 3)
Stop (see Note 4)
LVI enabled, TA=25 °C
LVI disabled, TA=25 °C
LVI enabled, –40 °C to +125 °C
LVI disabled, –40 °C to +125 °C
IDD
Min
Typical
Max
Unit
—
—
25
14
35
20
mA
mA
—
—
—
—
100
35
400
50
500
100
µA
µA
µA
µA
I/O Ports Hi-Z Leakage Current
IL
–1
1
µA
Input Current
IIN
–1
1
µA
COUT
CIN
—
—
12
8
pF
Capacitance
Ports (As Input or Output)
Low-Voltage Reset Inhibit
(trip)
(recover)
VLVI
3.80
4.49
V
POR ReArm Voltage (see Note 5)
VPOR
0
200
mV
POR Reset Voltage (see Note 6)
VPORRST
0
800
mV
POR Rise Time Ramp Rate (see Note 7)
RPOR
0.02
—
V/ms
High COP Disable Voltage (see Note 8)
VHI
VDD + 3.0
VDD + 4.5
V
Monitor mode entry voltage on IRQ (see Note 10)
VHI
VDD + 3.0
VDD + 4.5
V
NOTES:
1. VDD = 5.0 Vdc ± 10%, VSS = 0 Vdc, TA = –40 °C to +TA(MAX), unless otherwise noted.
2. Run (Operating) IDD measured using external square wave clock source (fBUS = 8.4 MHz). All inputs
0.2 V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports
configured as inputs. OSC2 capacitance linearly affects run IDD. Measured with all modules enabled.
Typical values at midpoint of voltage range, 25C only.
3. Wait IDD measured using external square wave clock source (fBUS = 8.4 MHz). All inputs 0.2 Vdc
from rail. No dc loads. Less than 100 pF on all outputs, CL = 20 pF on OSC2. All ports configured as
inputs.
OSC2 capacitance linearly affects wait IDD. Measured with all modules enabled.
Typical values at midpoint of voltage range, 25C only.
4. Stop IDD measured with OSC1 = VSS.
Typical values at midpoint of voltage range, 25C only.
5. Maximum is highest voltage that POR is guaranteed.
6. Maximum is highest voltage that POR is possible.
7. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low
externally until minimum VDD is reached.
8. See COP Module During Break Interrupts on page 228. VHI applied to RST.
9. Although IDD is proportional to bus frequency, a current of several mA is present even at very low
frequencies.
10. See Monitor mode description within Computer Operating Properly (COP). VHI applied to
IRQ or RST
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Electrical Specifications
533
Electrical Specifications
28.2.5 Control Timing
Characteristic
Symbol
Min
Max
Unit
fBUS
—
8.4
MHz
RESET Pulse Width Low
tRL
1.5
—
tcyc
IRQ Interrupt Pulse Width Low (Edge-Triggered)
tILHI
1.5
—
tcyc
IRQ Interrupt Pulse Period
tILIL
Note 4
—
tcyc
tTH, tTL
tTLTL
2
Note 4
—
—
tcyc
tWUP
2
5
µs
Bus Operating Frequency (4.5–5.5 V — VDD Only)
16-Bit Timer (see Note 2)
Input Capture Pulse Width (see Note 3)
Input Capture Period
MSCAN Wake-up Filter Pulse Width (see Note 5)
NOTES:
1.VDD = 5.0 Vdc ± 0.5v, VSS = 0 Vdc, TA = –40 °C to TA(MAX), unless otherwise noted.
2.The 2-bit timer prescaler is the limiting factor in determining timer resolution.
3.Refer to Table 25-2 and supporting note.
4.The minimum period tTLTL or tILIL should not be less than the number of cycles it takes to execute the capture interrupt
service routine plus TBD tcyc.
5. The minimum pulse width to wake up the MSCAN module is guaranteed by design but not tested.
28.2.6 ADC Characteristics
Characteristic
Min
Max
Unit
Resolution
8
8
Bits
Absolute Accuracy
(VREFL = 0 V, VDDA/VDDAREF = VREFH = 5 V ±
0.5v)
–1
+1
LSB
Includes
Quantization
VREFL
VREFH
V
VREFL = VSSA
Power-Up Time
16
17
µs
Conversion Time
Period
Input Leakage (see Note 3)
Ports B and D
–1
1
µA
Conversion Time
16
17
ADC
Clock
Cycles
Conversion Range (see Note 1)
Monotonicity
Comments
Includes Sampling
Time
Inherent within Total Error
Zero Input Reading
00
01
Hex
VIN = VREFL
Full-Scale Reading
FE
FF
Hex
VIN = VREFH
5
—
ADC
Clock
Cycles
Sample Time (see Note 2)
Technical Data
534
MC68HC908AZ60A — Rev 2.0
Electrical Specifications
MOTOROLA
Electrical Specifications
Electrical Specifications
Characteristic
Min
Max
Unit
Comments
Input Capacitance
—
8
pF
Not Tested
ADC Internal Clock
500 k
1.048 M
Hz
Tested Only at 1 MHz
Analog Input Voltage
VREFL
VREFH
V
NOTES:
1.VDD = 5.0 Vdc ± 0.5v, VSS = 0 Vdc, VDDA/VDDAREF = 5.0 Vdc ± 0.5v, VSSA = 0 Vdc, VREFH = 5.0 Vdc ± 0.5v
2.Source impedances greater than 10 kΩ adversely affect internal RC charging time during input sampling.
3.The external system error caused by input leakage current is approximately equal to the product of R
source and input current.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Electrical Specifications
535
Electrical Specifications
28.2.7 5.0 Vdc ± 0.5 V Serial Peripheral Interface (SPI) Timing
Num
Symbol
Min
Max
Unit
Operating Frequency (see Note 3)
Master
Slave
fBUS(M)
fBUS(S)
fBUS/128
dc
fBUS/2
fBUS
MHz
1
Cycle Time
Master
Slave
tcyc(M)
tcyc(S)
2
1
128
—
tcyc
2
Enable Lead Time
tLead
15
—
ns
3
Enable Lag Time
tLag
15
—
ns
4
Clock (SCK) High Time
Master
Slave
tW(SCKH)M
tW(SCKH)S
100
50
—
—
ns
5
Clock (SCK) Low Time
Master
Slave
tW(SCKL)M
tW(SCKL)S
100
50
—
—
ns
6
Data Setup Time (Inputs)
Master
Slave
tSU(M)
tSU(S)
45
5
—
—
ns
7
Data Hold Time (Inputs)
Master
Slave
tH(M)
tH(S)
0
15
—
—
ns
tA(CP0)
tA(CP1)
0
0
40
20
ns
tDIS
—
25
ns
8
Characteristic
Access Time, Slave (see Note 4)
CPHA = 0
CPHA = 1
9
Slave Disable Time (Hold Time to High-Impedance State)
10
Enable Edge Lead Time to Data Valid (see Note 6)
Master
Slave
tEV(M)
tEV(S)
—
—
10
40
ns
11
Data Hold Time (Outputs, after Enable Edge)
Master
Slave
tHO(M)
tHO(S)
0
5
—
—
ns
12
Data Valid
Master (Before Capture Edge)
tV(M)
90
—
ns
13
Data Hold Time (Outputs)
Master (Before Capture Edge)
tHO(M)
100
—
ns
NOTES:
1. All timing is shown with respect to 30% VDD and 70% VDD, unless otherwise noted; assumes 100 pF load on all SPI
pins.
2. Item numbers refer to dimensions in Figure 28-1 and Figure 28-2.
3. fBUS = the currently active bus frequency for the microcontroller.
4. Time to data active from high-impedance state.
5. With 100 pF on all SPI pins
Technical Data
536
MC68HC908AZ60A — Rev 2.0
Electrical Specifications
MOTOROLA
Electrical Specifications
Electrical Specifications
SS
(INPUT)
SS pin of master held high.
1
SCK (CPOL = 0)
(OUTPUT)
NOTE
SCK (CPOL = 1)
(OUTPUT)
NOTE
5
4
5
4
6
MISO
(INPUT)
MSB IN
BITS 6–1
10
11
MOSI
(OUTPUT)
MASTER MSB OUT
7
LSB IN
10
11
BITS 6–1
MASTER LSB OUT
13
12
NOTE: This first clock edge is generated internally, but is not seen at the SCK pin.
a) SPI Master Timing (CPHA = 0)
SS
(INPUT)
SS pin of master held high.
1
SCK (CPOL = 0)
(OUTPUT)
SCK (CPOL = 1)
(OUTPUT)
5
NOTE
4
5
NOTE
4
6
MISO
(INPUT)
MSB IN
10
MOSI
(OUTPUT)
BITS 6–1
11
MASTER MSB OUT
12
7
LSB IN
10
BITS 6–1
11
MASTER LSB OUT
13
NOTE: This last clock edge is generated internally, but is not seen at the SCK pin.
b) SPI Master Timing (CPHA = 1)
Figure 28-1. SPI Master Timing Diagram
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Electrical Specifications
537
Electrical Specifications
SS
(INPUT)
3
1
SCK (CPOL = 0)
(INPUT)
11
5
4
2
SCK (CPOL = 1)
(INPUT)
5
4
9
8
MISO
(INPUT)
SLAVE
MSB OUT
6
MOSI
(OUTPUT)
BITS 6–1
7
NOTE
11
11
10
MSB IN
SLAVE LSB OUT
BITS 6–1
LSB IN
NOTE: Not defined but normally MSB of character just received
a) SPI Slave Timing (CPHA = 0)
SS
(INPUT)
1
SCK (CPOL = 0)
(INPUT)
5
4
2
3
SCK (CPOL = 1)
(INPUT)
8
MISO
(OUTPUT)
MOSI
(INPUT)
5
4
10
NOTE
9
SLAVE
MSB OUT
6
7
BITS 6–1
SLAVE LSB OUT
11
10
BITS 6–1
MSB IN
LSB IN
NOTE: Not defined but normally LSB of character previously transmitted
b) SPI Slave Timing (CPHA = 1)
Figure 28-2. SPI Slave Timing Diagram
Technical Data
538
MC68HC908AZ60A — Rev 2.0
Electrical Specifications
MOTOROLA
Electrical Specifications
Electrical Specifications
28.2.8 CGM Operating Conditions
Characteristic
Symbol
Min
Typ
Max
Unit
VDDA
VDD-0.3
—
VDD+0.3
V
VSSA
VSS-0.3
—
VSS+0.3
V
Crystal Reference Frequency
fCGMRCLK
1
4.9152
16
MHz
Module Crystal Reference
Frequency
fCGMXCLK
—
4.9152
—
MHz
fNOM
—
4.9152
—
MHz
VCO Center-of-Range Frequency
fCGMVRS
4.9152
—
Note 1
MHz
VCO Operating Frequency
fCGMVCLK
4.9152
—
32.0
Comments
Operating Voltage
Range Nom. Multiplier
Same Frequency
as fCGMRCLK
1. fCGMVRS is a nominal value described and calculated as an example in the Clock Generator Module (CGM) section for
the desired VCO operating frequency, fCGMVCLK.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Electrical Specifications
539
Electrical Specifications
28.2.9 CGM Component Information
Description
Symbol
Min
Typ
Max
Unit
Crystal Load Capacitance
CL
—
—
—
—
Consult Crystal
Manufacturer’s Data
Crystal Fixed Capacitance
C1
—
2 x CL
—
—
Consult Crystal
Manufacturer’s Data
Crystal Tuning Capacitance
C2
—
2 x CL
—
—
Consult Crystal
Manufacturer’s Data
Cfact
—
0.0154
—
F/s V
CF
—
CFACT x
(VDDA/
fXCLK)
—
—
Filter Capacitor Multiply Factor
Filter Capacitor
Bypass Capacitor
CBYP
—
0.1
Technical Data
540
Comments
See External Filter
Capacitor Pin (CGMXFC)
on page 181
—
µF
CBYP must provide low
AC impedance from f =
fCGMXCLK/100 to 100 x
fCGMVCLK, so series
resistance must be
considered.
MC68HC908AZ60A — Rev 2.0
Electrical Specifications
MOTOROLA
Electrical Specifications
Electrical Specifications
28.2.10 CGM Acquisition/Lock Time Information
Description
Symbol
Min
Typ
Max
Unit
Notes
Manual Mode Time to Stable
tACQ
—
(8 x VDDA) /
(fCGMXCLK x KACQ)
—
s
If CF Chosen
Correctly
Manual Stable to Lock Time
tAL
—
(4 x VDDA) /
(fCGMXCLK x KTRK)
—
s
If CF Chosen
Correctly
Manual Acquisition Time
tLOCK
—
tACQ+tAL
—
s
Tracking Mode Entry
Frequency Tolerance
DTRK
0
—
± 3.6
%
Acquisition Mode Entry
Frequency Tolerance
DUNT
± 6.3
—
± 7.2
%
LOCK Entry Freq. Tolerance
DLOCK
0
—
± 0.9
%
LOCK Exit Freq. Tolerance
DUNL
± 0.9
—
± 1.8
%
Reference Cycles per
Acquisition Mode
Measurement
nACQ
—
32
—
—
Reference Cycles per
Tracking Mode
Measurement
nTRK
—
128
—
—
Automatic Mode Time
to Stable
tACQ
nACQ/fXCLK
(8 x VDDA) /
(fXCLK x KACQ)
tAL
nTRK/fXCLK
(4 x VDDA) /
(fXCLK x KTRK)
tLOCK
—
Automatic Stable to Lock
Time
Automatic Lock Time
PLL Jitter, Deviation of
Average Bus Frequency
over 2 ms (note 1)
s
If CF Chosen
Correctly
—
s
If CF Chosen
Correctly
0.65
25
ms
0
—
± (fCRYS)
x (.025%)
x (N/4)
%
K value for automatic mode
time to stable
Kacq
—
0.2
—
—
K value
Ktrk
—
0.004
—
—
N = VCO
Freq. Mult.
NOTES:
1. Guaranteed but not tested.
2. VDD = 5.0 Vdc ± 0.5 V, VSS = 0 Vdc, TA = -40C to TA (MAX), unless otherwise noted.
3. Conditions for typical and maximum values are for Run mode with fCGMXCLK = 8MHz, fBUSDES = 8MHz, N = 4, L = 7,
discharged CF = 15 nF, VDD = 5Vdc.
4. Refer to Phase-Locked Loop (PLL) section for guidance on the use of the PLL.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Electrical Specifications
541
Electrical Specifications
28.2.11 Timer Module Characteristics
Characteristic
Symbol
Min
Max
Unit
tTIH, tTIL
125
—
ns
tTCH, tTCL
(1/fOP) + 5
—
ns
Input Capture Pulse Width
Input Clock Pulse Width
28.2.12 RAM Memory Characteristics
Characteristic
Symbol
Min
Max
Unit
VRDR
0.7
—
V
Symbol
Min
Max
Unit
EEPROM Programming Time per Byte
tEEPGM
10
—
ms
EEPROM Erasing Time per Byte
tEEBYTE
10
—
ms
EEPROM Erasing Time per Block
tEEBLOCK
10
—
ms
EEPROM Erasing Time per Bulk
tEEBULK
10
—
ms
EEPROM Programming Voltage Discharge
Period
tEEFPV
100
—
µs
Number of Programming Operations to the Same
EEPROM Byte Before Erase (1)
—
—
8
—
EEPROM Write/Erase Cycles
@ 10 ms Write Time
—
10,000
—
Cycles
EEPROM Data Retention
After 10,000 Write/Erase Cycles
—
10
—
Years
EEPROM Programming Maximum Time to
‘AUTO’ Bit Set
—
—
500
µs
EEPROM Erasing Maximum Time to ‘AUTO’ Bit
Set
—
—
8
ms
RAM Data Retention Voltage
28.2.13 EEPROM Memory Characteristics
Characteristic
NOTES:
1. Programming a byte more times than the specified maximum may affect the data integrity of that byte. The byte must
be erased before it can be programmed again.
Technical Data
542
MC68HC908AZ60A — Rev 2.0
Electrical Specifications
MOTOROLA
Electrical Specifications
Electrical Specifications
28.2.14 FLASH Memory Characteristics
Characteristic
Symbol
Min
Max
Unit
FLASH Program Bus Clock Frequency
—
1
—
MHz
FLASH Read Bus Clock Frequency
fREAD(1)
32K
8.4M
Hz
FLASH Page Erase Time
tERASE(2)
1
—
ms
FLASH Mass Erase Time
tMERASE(3)
4
—
ms
FLASH PGM/ERASE to HVEN Set Up Time
tNVS
10
—
µs
FLASH High Voltage Hold Time
tNVH
5
—
µs
FLASH High Voltage Hold Time (Mass)
tNVHL
100
—
µs
FLASH Program Hold Time
tPGS
5
—
µs
FLASH Program Time
tPROG
30
40
µs
FLASH Return to Read Time
tRCV(4)
1
FLASH Cumulative Program HV Period
tHV(5)
—
4
ms
FLASH Row Erase Endurance(6)
10,000
—
cycles
FLASH Row Program Endurance(7)
10,000
—
cycles
FLASH Data Retention Time(8)
10
—
years
µs
1. fREAD is defined as the frequency range for which the FLASH memory can be read.
2. If the page erase time is longer than tERASE(MIN), there is no erase-disturb, but it reduces the endurance of the FLASH
memory.
3. If the mass erase time is longer than tMERASE(MIN), there is no erase-disturb, but it reduces the endurance of the FLASH
memory.
4. tRCV is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump by clearing
HVEN to logic 0.
5. tHV is defined as the cumulative high voltage programming time to the same row before next erase.
tHV must satisfy this condition: tNVS+ tNVH + tPGS + (tPROGX 64) ð tHV max.
6. The minimum row erase endurance value specifies each row of the FLASH memory is guaranteed to work for at least this
many erase cycles.
7. The minimum row program endurance value specifies each row of the FLASH memory is guaranteed to work for at least
this many program cycles.
8. The FLASH is guaranteed to retain data over the entire operating temperature range for at least the minimum time specified.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Electrical Specifications
543
Electrical Specifications
28.2.15 BDLC Transmitter VPW Symbol Timings
Characteristic(1),
(2) (3)
Number
Symbol
Min
Typ
Max
Unit
Passive Logic 0
10
tTVP1
62
64
66
µs
Passive Logic 1
11
tTVP2
126
128
130
µs
Active Logic 0
12
tTVA1
126
128
130
µs
Active Logic 1
13
tTVA2
62
64
66
µs
Start-of-Frame (SOF)
14
tTVA3
198
200
202
µs
End-of-Data (EOD)
15
tTVP3
198
200
202
µs
End-of-Frame (EOF)
16
tTV4
278
280
282
µs
Inter-Frame Separator (IFS)
17
tTV6
298
300
—
µs
1. fBDLC = 1.048576 or 1.0 MHz, VDD = 5.0 V ± 10%, VSS = 0 V
2. See Figure 28-3.
3. Transmit timing dependent upon BARD register matching physical transceiver timing.
28.2.16 BDLC Receiver VPW Symbol Timings
Characteristic(1),
(2), (3)
Number
Symbol
Min
Typ
Max
Unit
Passive Logic 0
10
tTRVP1
34
64
96
µs
Passive Logic 1
11
tTRVP2
96
128
163
µs
Active Logic 0
12
tTRVA1
96
128
163
µs
Active Logic 1
13
tTRVA2
34
64
96
µs
Start-of-Frame (SOF)
14
tTRVA3
163
200
239
µs
End-of-Data (EOD)
15
tTRVP3
163
200
239
µs
End-of-Frame (EOF)
16
tTRV4
239
280
320
µs
Break
18
tTRV6
280
—
—
µs
1. fBDLC = 1.048576 or 1.0 MHz, VDD = 5.0 V ± 10%, VSS = 0 V
2. The receiver symbol timing boundaries are subject to an uncertainty of 1 tBDLC µs due to sampling considerations.
3. See Figure 28-3.
Technical Data
544
MC68HC908AZ60A — Rev 2.0
Electrical Specifications
MOTOROLA
Electrical Specifications
Electrical Specifications
13
11
1
1
14
10
12
SOF
0
0
15
0
EOD
16
EOF
18
BRK
Figure 28-3. BDLC Variable Pulse Width Modulation (VPW) Symbol Timing
28.2.17 BDLC Transmitter DC Electrical Characteristics
Characteristic(1)
Symbol
Min
Max
Unit
BDTxD Output Low Voltage
(IBDTxD = 1.6 mA)
VOLTX
—
0.4
V
BDTxD Output High Voltage
(IBDTx = –800 µA)
VOHTX
VDD –0.8
—
V
1. VDD = 5.0 Vdc + 10%, VSS = 0 Vdc, TA = –40 oC to +125 oC, unless otherwise noted
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Electrical Specifications
545
Electrical Specifications
28.2.18 BDLC Receiver DC Electrical Characteristics
Characteristic(1)
Symbol
Min
Max
Unit
BDRxD Input Low Voltage
VILRX
VSS
0.3 x VDD
V
BDRxD Input High Voltage
VIHRX
0.7 x VDD
VDD
V
BDRxD Input Low Current
IILBDRXI
–1
+1
µA
BDRxD Input High Current
IHBDRX
–1
+1
µA
1. VDD = 5.0 Vdc + 10%, VSS = 0 Vdc, TA = –40 oC to +125 oC, unless otherwise noted
Technical Data
546
MC68HC908AZ60A — Rev 2.0
Electrical Specifications
MOTOROLA
Electrical Specifications
28.3 Mechanical Specifications
28.3.1 52-pin Plastic Leaded Chip Carrier (PLCC)
0.18 M T N S –P S
B
L S –M S
–N–
Y BRK
–L–
–M–
G1
W
pin 52
Z1
pin 1
–P–
X
V
A
R
Z
U
0.18 M T N S –P S
L S –M S
0.18 M T L S –M S
N S –P S
0.18 M T L S –M S
N S –P S
C
0.10
G
G1
0.25 S T L S –M S
Dim.
Min.
Max.
A
19.94
20.19
B
19.94
20.19
C
4.20
4.57
E
2.29
2.79
F
0.33
0.48
G
1.27 BSC
H
0.66
0.81
J
0.51
—
K
0.64
—
R
19.05
19.20
J E
–T– SEATING PLANE
N S –P S
Notes
1. Datums –L–, –M–, –N– and –P– are determined where top of lead
shoulder exits plastic body at mould parting line.
2. Dimension G1, true position to be measured at datum –T– (seating
plane).
3. Dimensions R and U do not include mould protrusion. Allowable
mould protrusion is 0.25mm per side.
4. Dimensions and tolerancing per ANSI Y 14.5M, 1982.
5. All dimensions in mm.
Technical Data
547
Dim.
Min.
Max.
U
19.05
19.20
V
1.07
1.21
W
1.07
1.21
X
1.07
1.42
Y
—
0.50
Z
2°
10 °
G1
18.04
18.54
K1
1.02
—
Z1
2°
10 °
MC68HC908AZ60A — Rev 2.0
Electrical Specifications
MOTOROLA
Electrical Specifications
28.3.2 64-Pin Quad Flat Pack (QFP)
L
B
33
P
B
-A-
-B-
L
B
0.05 A – B
32
0.20 M C A – B S D S
49
V
0.20 M H A – B S D S
48
- A, B, D Detail “A”
F
Detail “A”
64
17
1
N
J
16
-D-
Base
Metal
D
A
0.20 M C A – B S D S
Section B–B
0.05 A – B
0.20 M C A – B S D S
S
0.20 M H A – B S D S
U
T
Detail “C”
M
E
Q
C
-CSeating
Plane
R
Datum
-H- Plane
K
G
H
W
M
X
Dim.
Min.
Max.
Notes
Dim.
Min.
A
13.90
14.10
M
5°
10 °
B
13.90
14.10
N
0.13
0.17
C
2.15
2.45
D
0.30
0.45
E
2.00
2.40
F
0.30
0.40
1. Datum Plane –H– is located at bottom of lead and is coincident with
the lead where the lead exits the plastic body at the bottom of the
parting line.
2. Datums A–B and –D to be determined at Datum Plane –H–.
3. Dimensions S and V to be determined at seating plane –C–.
4. Dimensions A and B do not include mould protrusion. Allowable
mould protrusion is 0.25mm per side. Dimensions A and B do
include mould mismatch and are determined at Datum Plane –H–.
5. Dimension D does not include dambar protrusion. Allowable
dambar protrusion shall be 0.08 total in excess of the D dimension
at maximum material condition. Dambar cannot be located on the
lower radius or the foot.
6. Dimensions and tolerancing per ANSI Y 14.5M, 1982.
7. All dimensions in mm.
G
0.80 BSC
H
—
0.25
J
0.13
0.23
K
0.65
0.95
L
12.00 REF
Technical Data
548
P
Max.
0.40 BSC
Q
0°
7°
R
0.13
0.30
S
16.95
17.45
T
0.13
—
U
0°
—
V
16.95
17.45
W
0.35
0.45
X
1.6 REF
MC68HC908AZ60A — Rev 2.0
Electrical Specifications
MOTOROLA
Electrical Specifications
Technical Data
549
MC68HC908AZ60A — Rev 2.0
Electrical Specifications
MOTOROLA
Electrical Specifications
Technical Data
550
MC68HC908AZ60A — Rev 2.0
Electrical Specifications
MOTOROLA
Electrical Specifications
Technical Data
551
MC68HC908AZ60A — Rev 2.0
Electrical Specifications
MOTOROLA
Electrical Specifications
Technical Data
552
MC68HC908AZ60A — Rev 2.0
Electrical Specifications
MOTOROLA
Technical Data — MC68HC908AZ60A
Section 29. MC68HC908AS60 and MC68HC908AZ60
29.1 Contents
29.2
Changes from the MC68HC908AS60 and MC68HC908AZ60
(non-A suffix devices) . . . . . . . . . . . . . . . . . . . . . . . . . 29.2553
29.2.1 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
29.2.2 FLASH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
29.2.3 EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
29.2.4 Config-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
29.2.5 Keyboard Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
29.2.6 Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
29.2.7 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
29.2.8 Monitor Mode Entry and COP Disable Voltage . . . . . . . 557
29.2.9 Low-Voltage Inhibit (LVI) . . . . . . . . . . . . . . . . . . . . . . . . . 557
29.2 Changes from the MC68HC908AS60 and MC68HC908AZ60 (non-A suffix
devices)
29.2.1 Specification
Specifications for MC68HC908AS60A and MC68HC908AZ60A devices
have been integrated, reflecting the many commonalties.
29.2.2 FLASH
29.2.2.1 FLASH Architecture
FLASH-1 and FLASH-2 are made from a new non-volatile memory
(NVM) technology. The architecture is now arranged in pages of 128
bytes and 2 rows per page. Programming is now carried out on a whole
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
MC68HC908AS60 and MC68HC908AZ60
553
MC68HC908AS60 and MC68HC908AZ60
row (64 bytes) at a time. Erasing is now carried out on a whole page (128
bytes) at a time. In this new technology an erased bit now reads as a
logic 1 and a programmed bit now reads as a logic 0.
29.2.2.2 FLASH Control Registers
FLASH-1 control register is moved from $FE0B to $FF88. FLASH-2
control register is moved from $FE11 to $FE08. Bits 4 to 7 in the FLASH
control registers are no longer used since clock control is now achieved
automatically and erasing of variable block sizes is no longer a feature.
Bit 2 of the FLASH control registers no longer activates a so-called
‘margin read’ operation but instead is the bit that controls a mass (bulk)
erase operation.
29.2.2.3 FLASH Programming Procedure
Programming of the FLASH is largely as before within the new
architecture constraints outlined above. However, an extra dummy write
operation to any address in the page is required prior to programming
data into one of the two rows in the page. Margin reading of programmed
data is no longer required. Nor is read / verify / re-pulse of the
programming a requirement.
29.2.2.4 FLASH Programming Time
The most significant change resulting from the new FLASH technology
is that the byte programming time is reduced to a maximum of 40us. This
represents several orders of magnitude improvement from the previous
technology.
29.2.2.5 FLASH Block Protection
The FLASH block protect registers are now 8-bit registers in place of 4bit protecting array ranges that can be incremented by as little as 1 page
(128 bytes) at a time as opposed to 8 Kbytes at a time on previous
MCUs. Users making use of the block protect feature must change their
block protect register.
Technical Data
554
MC68HC908AZ60A — Rev 2.0
MC68HC908AS60 and MC68HC908AZ60
MOTOROLA
MC68HC908AS60 and MC68HC908AZ60
Changes from the MC68HC908AS60 and MC68HC908AZ60 (non-A suffix devices)
A further significant change is that high voltage (VHI) is no longer needed
on the IRQ pin to program or erase the FLASH block protect registers.
29.2.2.6 FLASH Endurance
The FLASH endurance is now specified as 10,000 write / erase cycles
as opposed to less than 1000 before.
29.2.3 EEPROM
29.2.3.1 EEPROM Architecture
Like the FLASH, EEPROM-1 and EEPROM-2 are also made from a new
NVM technology. However, unlike the FLASH, the bit polarity remains
the same i.e. programmed=0, erased=1. The architecture and basic
programming and erase operations are unchanged.
29.2.3.2 EEPROM Clock Source and Pre-scaler
The first major difference on the new EEPROM is that it requires a
constant time base source to ensure secure programming and erase
operations. This is done by firstly selecting which clock source is going
to drive the EEDIVG clock divider input using a new bit 7 introduced onto
the CONFIG-2 register $FE09. Next the divide ratio from this source has
to be set by programming an 11-bit time base pre-scalar into bits spread
over two new registers, EEDIVxH and EEDIVxL (where x=1 or 2 for
EEPROM-1 or EEPROM-2 arrays).
The EEDIVxH and EEDIVxL registers are volatile. However, they are
loaded upon reset by the contents of duplicate non-volatile
EEDIVxHNVR and EEDIVxLNVR registers much in the same way as the
array control registers (EEACRx) interact with the non-volatile registers
(EENVRx) for configuration control on the existing revision. As a result
of the new EEDIV clock described above bit 7 (EEBCLK) of the
EEPROM control registers (EECRx) is no longer used.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
MC68HC908AS60 and MC68HC908AZ60
555
MC68HC908AS60 and MC68HC908AZ60
29.2.3.3 EEPROM AUTO programming & erasing
The second major change to the EEPROM is the inclusion in the
EEPROM control registers (EECRx) of an AUTO function using
previously unused bit 1 of these registers.
The AUTO function enables the logic of the MCU to automatically use
the optimum programming or erasing time for the EEPROM. If using
AUTO the user does not need to wait for the normal minimum specified
programming or erasing time. After setting the EEPGM bit as normal the
user just has to poll that bit again, waiting for the MCU to clear it
indicating that programming or erasing is complete.
29.2.4 Config-2
Config-2 register $FE09 has 2 new bits activated. Bit 3 is now a silicon
hard set bit, which identifies this new A-suffix silicon (1) from the
previous non-A suffix silicon (0). Bit 7 is now an EEPROM time base
divider clock select bit selecting the reference clock source for the
EEPROM time base divider module (refer to EEPROM changes
described above).
29.2.5 Keyboard Interrupt
The keyboard module is now a feature of the MC68HC908AS60A in 64qfp package whereas previously it was only a feature of the AZ device.
Vector addresses $FFD2 and $FFD3 are now in the AS memory map in
support of this option.
29.2.6 Current Consumption
Current consumption will be significantly lower in many applications.
Although maximum specifications are still very dependent upon
fabrication process variation and configuration of the MCU in the target
application, additional values have been added to the IDD specifications
to provide typical current consumption data. Please see Electrical
Specifications for further details.
Technical Data
556
MC68HC908AZ60A — Rev 2.0
MC68HC908AS60 and MC68HC908AZ60
MOTOROLA
MC68HC908AS60 and MC68HC908AZ60
29.2.7 Illegal Address Reset
Only an opcode fetch from an illegal address will generate an illegal
address reset. Data fetches from unmapped addresses will not generate
a reset.
29.2.8 Monitor Mode Entry and COP Disable Voltage
The monitor mode entry and COP disable voltage specifications (VHI)
have been increased. Please see Electrical Specifications for details.
29.2.9 Low-Voltage Inhibit (LVI)
The Low-Voltage Inhibit (LVI) specifications for trip and recovery voltage
(VLVI) have been altered based upon module performance on silicon.
Please see for Electrical Specifications details.
Technical Data
557
MC68HC908AZ60A — Rev 2.0
MC68HC908AS60 and MC68HC908AZ60
MOTOROLA
MC68HC908AS60 and MC68HC908AZ60
Technical Data
558
MC68HC908AZ60A — Rev 2.0
MC68HC908AS60 and MC68HC908AZ60
MOTOROLA
Technical Data — MC68HC908AZ60A
Revision History
Major Changes Between Revision 2.0 and Revision 1.0
The following table lists the major changes between the current revision
of the MC68HC908AZ60A Technical Data Book, Rev 2.0, and the
previous revision, Rev 1.0.
Section affected
Description of change
Timer Interface Module B
(TIMB)
Programmable Interrupt
Timer
(PIT)
Various changes for clarification.
Timer Interface Module A
(TIMA)
Major Changes Between Revision 1.0 and Revision 0.0
The following table lists the major changes between the current revision
of the MC68HC908AZ60A Technical Data Book, Rev 1.0, and the
previous revision, Rev 0.0.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Revision History
559
Revision History
Section affected
General Description
Description of change
Highlighted that Keyboard Interrupt Module only available in 64 QFP.
Corrected device name in Figure 5 title.
Added ADC supply and reference pins to pin descriptions.
Corrected text in numerous pin descriptions.
Added VDDA and VSSA pins to Table 1-External Pins Summary.
Added Table 2-Clock Signal Naming Conventions.
Added FLASH and RAM to Table 3-Clock Source Summary.
Corrected part numbers in Table 4-MC Order Numbers.
Memory Map
Corrected type errors.
Corrected various addresses and register names in Figure 1-Memory Map.
Corrected numerous register bit descriptions in Figure 2-I/O Data, Status and
Control Registers to match module sections.
Added Additional Status and Control Registers section and moved register
descriptions accordingly. Corrected bit descriptions to match module
sections.
Added Vector Addresses and Priority section and moved Table 4-Vector
Addresses accordingly.
FLASH-1 and FLASH-2
Both sections altered significantly to better align module descriptions across
groups within Motorola using 0.5µ TSMC/SST FLASH. Numerous additions
submitted by applications engineering for further clarification of functional
operation.
EEPROM-1 and EEPROM-2
Both sections altered significantly to better align module descriptions across
groups within Motorola using 0.5µ TSMC/SST FLASH. Numerous additions
submitted by applications engineering for further clarification of functional
operation.
Clock Generator Module
(CGM)
Corrected clock signal names and associated timing parameters for
consistency and to match signal naming conventions.
Additional textual description added to Reaction Time Calculation
subsection.
Configuration Register 2
(CONFIG-2)
Corrected Figure 1-Configuration Register reserved bit descriptions for
consistency.
Monitor ROM
(MON)
Computer Operating
Properly
(COP)
Modified Figure 1-Monitor Mode Circuit based upon recommendations from
applications engineering.
Correct text of Note 1 to Table 2-Mode Differences.
Corrected type errors.
Corrected text describing state of unprogrammed FLASH in Security
subsection.
Corrected Figure 6-Monitor Mode Entry Timing.
Corrected state of COPL bit in Functional Description subsection.
Technical Data
560
MC68HC908AZ60A — Rev 2.0
Revision History
MOTOROLA
Revision History
Major Changes Between Revision 1.0 and Revision 0.0
Section affected
Description of change
Timer Interface Module B
(TIMB)
Corrected numerous type and grammatical errors.
Corrected numerous pin and register name errors within text.
Corrected references to TIMB overflow interrupts (removed "channel x"
references as they are incorrect).
Programmable Interrupt
Timer
(PIT)
Corrected type and grammatical errors.
Corrected PIT Overflow Interrupt Enable Bit acronym from PIE to POIE.
Keyboard Module
(KBD)
Corrected addresses of KBSCR and KBIER within text.
Timer Interface Module A
(TIMA-6)
Corrected numerous type and grammatical errors.
Corrected numerous pin and register name errors within text.
Corrected references to TIMA overflow interrupts (removed "channel x"
references as they are incorrect).
Corrected functional description of TOF flag.
Electrical Specifications
Corrected type errors.
Increased VHI specification in Maximum Ratings to VDD + 4.5V.
Corrected formula for Average Junction Temperature in Thermal
Characteristics.
Added column for typical VDD Supply Current values in 5.0 Volt DC Electrical
Characteristics.
Decreased LVI trip voltage specification to 3.80V and increased LVI recovery
voltage to 4.49V in 5.0 Volt DC Electrical Characteristics.
Increased VHI specification to minimum of VDD + 3.0V and maximum of VDD +
4.5V in 5.0 Volt DC Electrical Characteristics.
Added Unit columns to all CGM specification tables and adjusted text
accordingly.
Corrected Operating Voltage specification in CGM Operating Conditions.
Added typical specifications for Kacq and Ktrk parameters in CGM
Acquisition/Lock Time Information.
Split Memory Characteristics table into separate RAM Memory
Characteristics, EEPROM Memory Characteristics and FLASH Memory
Characteristics tables.
Added maximum specification for EEPROM AUTO bit set for each of program
and erase operation in EEPROM Memory Characteristics.
Corrected NOTES section of FLASH Memory Characteristics.
Added Note 3 to BDLC Transmitter VPW Symbol Timings table.
Appendix A
Added text describing elimination of need for VHI on IRQ pin to program/erase
FLASH block protect registers.
Added subsection highlighting change of Monitor Mode entry and COP disable
voltage change.
Added subsection highlighting change in LVI trip and recovery voltage
specifications.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Revision History
561
Revision History
Technical Data
562
MC68HC908AZ60A — Rev 2.0
Revision History
MOTOROLA
Technical Data — MC68HC908AZ60A
Glossary
A — See “accumulator (A).”
accumulator (A) — An 8-bit general-purpose register in the CPU08. The CPU08 uses the
accumulator to hold operands and results of arithmetic and logic operations.
acquisition mode — A mode of PLL operation during startup before the PLL locks on a
frequency. Also see "tracking mode."
address bus — The set of wires that the CPU or DMA uses to read and write memory locations.
addressing mode — The way that the CPU determines the operand address for an instruction.
The M68HC08 CPU has 16 addressing modes.
ALU — See “arithmetic logic unit (ALU).”
arithmetic logic unit (ALU) — The portion of the CPU that contains the logic circuitry to perform
arithmetic, logic, and manipulation operations on operands.
asynchronous — Refers to logic circuits and operations that are not synchronized by a common
reference signal.
baud rate — The total number of bits transmitted per unit of time.
BCD — See “binary-coded decimal (BCD).”
binary — Relating to the base 2 number system.
binary number system — The base 2 number system, having two digits, 0 and 1. Binary
arithmetic is convenient in digital circuit design because digital circuits have two
permissible voltage levels, low and high. The binary digits 0 and 1 can be interpreted to
correspond to the two digital voltage levels.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Glossary
563
Glossary
binary-coded decimal (BCD) — A notation that uses 4-bit binary numbers to represent the 10
decimal digits and that retains the same positional structure of a decimal number. For
example,
234 (decimal) = 0010 0011 0100 (BCD)
bit — A binary digit. A bit has a value of either logic 0 or logic 1.
branch instruction — An instruction that causes the CPU to continue processing at a memory
location other than the next sequential address.
break module — A module in the M68HC08 Family. The break module allows software to halt
program execution at a programmable point in order to enter a background routine.
breakpoint — A number written into the break address registers of the break module. When a
number appears on the internal address bus that is the same as the number in the break
address registers, the CPU executes the software interrupt instruction (SWI).
break interrupt — A software interrupt caused by the appearance on the internal address bus
of the same value that is written in the break address registers.
bus — A set of wires that transfers logic signals.
bus clock — The bus clock is derived from the CGMOUT output from the CGM. The bus clock
frequency, fop, is equal to the frequency of the oscillator output, CGMXCLK, divided by
four.
byte — A set of eight bits.
C — The carry/borrow bit in the condition code register. The CPU08 sets the carry/borrow bit
when an addition operation produces a carry out of bit 7 of the accumulator or when a
subtraction operation requires a borrow. Some logical operations and data manipulation
instructions also clear or set the carry/borrow bit (as in bit test and branch instructions and
shifts and rotates).
CCR — See “condition code register.”
central processor unit (CPU) — The primary functioning unit of any computer system. The
CPU controls the execution of instructions.
Technical Data
564
MC68HC908AZ60A — Rev 2.0
Glossary
MOTOROLA
Glossary
CGM — See “clock generator module (CGM).”
clear — To change a bit from logic 1 to logic 0; the opposite of set.
clock — A square wave signal used to synchronize events in a computer.
clock generator module (CGM) — A module in the M68HC08 Family. The CGM generates a
base clock signal from which the system clocks are derived. The CGM may include a
crystal oscillator circuit and or phase-locked loop (PLL) circuit.
comparator — A device that compares the magnitude of two inputs. A digital comparator defines
the equality or relative differences between two binary numbers.
computer operating properly module (COP) — A counter module in the M68HC08 Family that
resets the MCU if allowed to overflow.
condition code register (CCR) — An 8-bit register in the CPU08 that contains the interrupt
mask bit and five bits that indicate the results of the instruction just executed.
control bit — One bit of a register manipulated by software to control the operation of the
module.
control unit — One of two major units of the CPU. The control unit contains logic functions that
synchronize the machine and direct various operations. The control unit decodes
instructions and generates the internal control signals that perform the requested
operations. The outputs of the control unit drive the execution unit, which contains the
arithmetic logic unit (ALU), CPU registers, and bus interface.
COP — See "computer operating properly module (COP)."
counter clock — The input clock to the TIM counter. This clock is the output of the TIM
prescaler.
CPU — See “central processor unit (CPU).”
CPU08 — The central processor unit of the M68HC08 Family.
CPU clock — The CPU clock is derived from the CGMOUT output from the CGM. The CPU
clock frequency is equal to the frequency of the oscillator output, CGMXCLK, divided by
four.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Glossary
565
Glossary
CPU cycles — A CPU cycle is one period of the internal bus clock, normally derived by dividing
a crystal oscillator source by two or more so the high and low times will be equal. The
length of time required to execute an instruction is measured in CPU clock cycles.
CPU registers — Memory locations that are wired directly into the CPU logic instead of being
part of the addressable memory map. The CPU always has direct access to the
information in these registers. The CPU registers in an M68HC08 are:
•
A (8-bit accumulator)
•
H:X (16-bit index register)
•
SP (16-bit stack pointer)
•
PC (16-bit program counter)
•
CCR (condition code register containing the V, H, I, N, Z, and C
bits)
CSIC — customer-specified integrated circuit
cycle time — The period of the operating frequency: tCYC = 1/fOP.
decimal number system — Base 10 numbering system that uses the digits zero through nine.
direct memory access module (DMA) — A M68HC08 Family module that can perform data
transfers between any two CPU-addressable locations without CPU intervention. For
transmitting or receiving blocks of data to or from peripherals, DMA transfers are faster
and more code-efficient than CPU interrupts.
DMA — See "direct memory access module (DMA)."
DMA service request — A signal from a peripheral to the DMA module that enables the DMA
module to transfer data.
duty cycle — A ratio of the amount of time the signal is on versus the time it is off. Duty cycle is
usually represented by a percentage.
EEPROM — Electrically erasable, programmable, read-only memory. A nonvolatile type of
memory that can be electrically reprogrammed.
EPROM — Erasable, programmable, read-only memory. A nonvolatile type of memory that can
be erased by exposure to an ultraviolet light source and then reprogrammed.
Technical Data
566
MC68HC908AZ60A — Rev 2.0
Glossary
MOTOROLA
Glossary
exception — An event such as an interrupt or a reset that stops the sequential execution of the
instructions in the main program.
external interrupt module (IRQ) — A module in the M68HC08 Family with both dedicated
external interrupt pins and port pins that can be enabled as interrupt pins.
fetch — To copy data from a memory location into the accumulator.
firmware — Instructions and data programmed into nonvolatile memory.
free-running counter — A device that counts from zero to a predetermined number, then rolls
over to zero and begins counting again.
full-duplex transmission — Communication on a channel in which data can be sent and
received simultaneously.
H — The upper byte of the 16-bit index register (H:X) in the CPU08.
H — The half-carry bit in the condition code register of the CPU08. This bit indicates a carry from
the low-order four bits of the accumulator value to the high-order four bits. The half-carry
bit is required for binary-coded decimal arithmetic operations. The decimal adjust
accumulator (DAA) instruction uses the state of the H and C bits to determine the
appropriate correction factor.
hexadecimal — Base 16 numbering system that uses the digits 0 through 9 and the letters A
through F.
high byte — The most significant eight bits of a word.
illegal address — An address not within the memory map
illegal opcode — A nonexistent opcode.
I — The interrupt mask bit in the condition code register of the CPU08. When I is set, all interrupts
are disabled.
index register (H:X) — A 16-bit register in the CPU08. The upper byte of H:X is called H. The
lower byte is called X. In the indexed addressing modes, the CPU uses the contents of
H:X to determine the effective address of the operand. H:X can also serve as a temporary
data storage location.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Glossary
567
Glossary
input/output (I/O) — Input/output interfaces between a computer system and the external world.
A CPU reads an input to sense the level of an external signal and writes to an output to
change the level on an external signal.
instructions — Operations that a CPU can perform. Instructions are expressed by programmers
as assembly language mnemonics. A CPU interprets an opcode and its associated
operand(s) and instruction.
interrupt — A temporary break in the sequential execution of a program to respond to signals
from peripheral devices by executing a subroutine.
interrupt request — A signal from a peripheral to the CPU intended to cause the CPU to
execute a subroutine.
I/O — See “input/output (I/0).”
IRQ — See "external interrupt module (IRQ)."
jitter — Short-term signal instability.
latch — A circuit that retains the voltage level (logic 1 or logic 0) written to it for as long as power
is applied to the circuit.
latency — The time lag between instruction completion and data movement.
least significant bit (LSB) — The rightmost digit of a binary number.
logic 1 — A voltage level approximately equal to the input power voltage (VDD).
logic 0 — A voltage level approximately equal to the ground voltage (VSS).
low byte — The least significant eight bits of a word.
low voltage inhibit module (LVI) — A module in the M68HC08 Family that monitors power
supply voltage.
LVI — See "low voltage inhibit module (LVI)."
M68HC08 — A Motorola family of 8-bit MCUs.
mark/space — The logic 1/logic 0 convention used in formatting data in serial communication.
Technical Data
568
MC68HC908AZ60A — Rev 2.0
Glossary
MOTOROLA
Glossary
mask — 1. A logic circuit that forces a bit or group of bits to a desired state. 2. A photomask used
in integrated circuit fabrication to transfer an image onto silicon.
mask option — A optional microcontroller feature that the customer chooses to enable or
disable.
mask option register (MOR) — An EPROM location containing bits that enable or disable
certain MCU features.
MCU — Microcontroller unit. See “microcontroller.”
memory location — Each M68HC08 memory location holds one byte of data and has a unique
address. To store information in a memory location, the CPU places the address of the
location on the address bus, the data information on the data bus, and asserts the write
signal. To read information from a memory location, the CPU places the address of the
location on the address bus and asserts the read signal. In response to the read signal,
the selected memory location places its data onto the data bus.
memory map — A pictorial representation of all memory locations in a computer system.
microcontroller — Microcontroller unit (MCU). A complete computer system, including a CPU,
memory, a clock oscillator, and input/output (I/O) on a single integrated circuit.
modulo counter — A counter that can be programmed to count to any number from zero to its
maximum possible modulus.
monitor ROM — A section of ROM that can execute commands from a host computer for testing
purposes.
MOR — See "mask option register (MOR)."
most significant bit (MSB) — The leftmost digit of a binary number.
multiplexer — A device that can select one of a number of inputs and pass the logic level of that
input on to the output.
N — The negative bit in the condition code register of the CPU08. The CPU sets the negative bit
when an arithmetic operation, logical operation, or data manipulation produces a negative
result.
nibble — A set of four bits (half of a byte).
object code — The output from an assembler or compiler that is itself executable machine code,
or is suitable for processing to produce executable machine code.
opcode — A binary code that instructs the CPU to perform an operation.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Glossary
569
Glossary
open-drain — An output that has no pullup transistor. An external pullup device can be
connected to the power supply to provide the logic 1 output voltage.
operand — Data on which an operation is performed. Usually a statement consists of an
operator and an operand. For example, the operator may be an add instruction, and the
operand may be the quantity to be added.
oscillator — A circuit that produces a constant frequency square wave that is used by the
computer as a timing and sequencing reference.
OTPROM — One-time programmable read-only memory. A nonvolatile type of memory that
cannot be reprogrammed.
overflow — A quantity that is too large to be contained in one byte or one word.
page zero — The first 256 bytes of memory (addresses $0000–$00FF).
parity — An error-checking scheme that counts the number of logic 1s in each byte transmitted.
In a system that uses odd parity, every byte is expected to have an odd number of logic
1s. In an even parity system, every byte should have an even number of logic 1s. In the
transmitter, a parity generator appends an extra bit to each byte to make the number of
logic 1s odd for odd parity or even for even parity. A parity checker in the receiver counts
the number of logic 1s in each byte. The parity checker generates an error signal if it finds
a byte with an incorrect number of logic 1s.
PC — See “program counter (PC).”
peripheral — A circuit not under direct CPU control.
phase-locked loop (PLL) — A oscillator circuit in which the frequency of the oscillator is
synchronized to a reference signal.
PLL — See "phase-locked loop (PLL)."
pointer — Pointer register. An index register is sometimes called a pointer register because its
contents are used in the calculation of the address of an operand, and therefore points to
the operand.
polarity — The two opposite logic levels, logic 1 and logic 0, which correspond to two different
voltage levels, VDD and VSS.
polling — Periodically reading a status bit to monitor the condition of a peripheral device.
port — A set of wires for communicating with off-chip devices.
prescaler — A circuit that generates an output signal related to the input signal by a fractional
scale factor such as 1/2, 1/8, 1/10 etc.
Technical Data
570
MC68HC908AZ60A — Rev 2.0
Glossary
MOTOROLA
Glossary
program — A set of computer instructions that cause a computer to perform a desired operation
or operations.
program counter (PC) — A 16-bit register in the CPU08. The PC register holds the address of
the next instruction or operand that the CPU will use.
pull — An instruction that copies into the accumulator the contents of a stack RAM location. The
stack RAM address is in the stack pointer.
pullup — A transistor in the output of a logic gate that connects the output to the logic 1 voltage
of the power supply.
pulse-width — The amount of time a signal is on as opposed to being in its off state.
pulse-width modulation (PWM) — Controlled variation (modulation) of the pulse width of a
signal with a constant frequency.
push — An instruction that copies the contents of the accumulator to the stack RAM. The stack
RAM address is in the stack pointer.
PWM period — The time required for one complete cycle of a PWM waveform.
RAM — Random access memory. All RAM locations can be read or written by the CPU. The
contents of a RAM memory location remain valid until the CPU writes a different value or
until power is turned off.
RC circuit — A circuit consisting of capacitors and resistors having a defined time constant.
read — To copy the contents of a memory location to the accumulator.
register — A circuit that stores a group of bits.
reserved memory location — A memory location that is used only in special factory test modes.
Writing to a reserved location has no effect. Reading a reserved location returns an
unpredictable value.
reset — To force a device to a known condition.
ROM — Read-only memory. A type of memory that can be read but cannot be changed (written).
The contents of ROM must be specified before manufacturing the MCU.
SCI — See "serial communication interface module (SCI)."
serial — Pertaining to sequential transmission over a single line.
serial communications interface module (SCI) — A module in the M68HC08 Family that
supports asynchronous communication.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Glossary
571
Glossary
serial peripheral interface module (SPI) — A module in the M68HC08 Family that supports
synchronous communication.
set — To change a bit from logic 0 to logic 1; opposite of clear.
shift register — A chain of circuits that can retain the logic levels (logic 1 or logic 0) written to
them and that can shift the logic levels to the right or left through adjacent circuits in the
chain.
signed — A binary number notation that accommodates both positive and negative numbers.
The most significant bit is used to indicate whether the number is positive or negative,
normally logic 0 for positive and logic 1 for negative. The other seven bits indicate the
magnitude of the number.
software — Instructions and data that control the operation of a microcontroller.
software interrupt (SWI) — An instruction that causes an interrupt and its associated vector
fetch.
SPI — See "serial peripheral interface module (SPI)."
stack — A portion of RAM reserved for storage of CPU register contents and subroutine return
addresses.
stack pointer (SP) — A 16-bit register in the CPU08 containing the address of the next available
storage location on the stack.
start bit — A bit that signals the beginning of an asynchronous serial transmission.
status bit — A register bit that indicates the condition of a device.
stop bit — A bit that signals the end of an asynchronous serial transmission.
subroutine — A sequence of instructions to be used more than once in the course of a program.
The last instruction in a subroutine is a return from subroutine (RTS) instruction. At each
place in the main program where the subroutine instructions are needed, a jump or branch
to subroutine (JSR or BSR) instruction is used to call the subroutine. The CPU leaves the
flow of the main program to execute the instructions in the subroutine. When the RTS
instruction is executed, the CPU returns to the main program where it left off.
synchronous — Refers to logic circuits and operations that are synchronized by a common
reference signal.
TIM — See "timer interface module (TIM)."
timer interface module (TIM) — A module used to relate events in a system to a point in time.
timer — A module used to relate events in a system to a point in time.
Technical Data
572
MC68HC908AZ60A — Rev 2.0
Glossary
MOTOROLA
Glossary
toggle — To change the state of an output from a logic 0 to a logic 1 or from a logic 1 to a logic 0.
tracking mode — Mode of low-jitter PLL operation during which the PLL is locked on a
frequency. Also see "acquisition mode."
two’s complement — A means of performing binary subtraction using addition techniques. The
most significant bit of a two’s complement number indicates the sign of the number (1
indicates negative). The two’s complement negative of a number is obtained by inverting
each bit in the number and then adding 1 to the result.
unbuffered — Utilizes only one register for data; new data overwrites current data.
unimplemented memory location — A memory location that is not used. Writing to an
unimplemented location has no effect. Reading an unimplemented location returns an
unpredictable value. Executing an opcode at an unimplemented location causes an illegal
address reset.
V —The overflow bit in the condition code register of the CPU08. The CPU08 sets the V bit when
a two's complement overflow occurs. The signed branch instructions BGT, BGE, BLE,
and BLT use the overflow bit.
variable — A value that changes during the course of program execution.
VCO — See "voltage-controlled oscillator."
vector — A memory location that contains the address of the beginning of a subroutine written
to service an interrupt or reset.
voltage-controlled oscillator (VCO) — A circuit that produces an oscillating output signal of a
frequency that is controlled by a dc voltage applied to a control input.
waveform — A graphical representation in which the amplitude of a wave is plotted against time.
wired-OR — Connection of circuit outputs so that if any output is high, the connection point is
high.
word — A set of two bytes (16 bits).
write — The transfer of a byte of data from the CPU to a memory location.
X — The lower byte of the index register (H:X) in the CPU08.
Z — The zero bit in the condition code register of the CPU08. The CPU08 sets the zero bit when
an arithmetic operation, logical operation, or data manipulation produces a result of $00.
MC68HC908AZ60A — Rev 2.0
MOTOROLA
Technical Data
Glossary
573
Glossary
Technical Data
574
MC68HC908AZ60A — Rev 2.0
Glossary
MOTOROLA
How to Reach Us:
USA/EUROPE/LOCATIONS NOT LISTED:
Motorola Literature Distribution
P.O. Box 5405
Denver, Colorado 80217
1-303-675-2140
1-800-441-2447
TECHNICAL INFORMATION CENTER:
1-800-521-6274
JAPAN:
Motorola Japan Ltd.
SPS, Technical Information Center
3-20-1, Minami-Azabu, Minato-ku
Tokyo 106-8573 Japan
81-3-3440-3569
ASIA/PACIFIC:
Motorola Semiconductors H.K. Ltd.
Silicon Harbour Centre
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
852-26668334
HOME PAGE:
http://www.motorola.com/semiconductors/
MC68HC908AZ60A/D
REV 2.0