MOTOROLA MC68HC908LJ24

Freescale Semiconductor, Inc...
Freescale Semiconductor, Inc.
MC68HC908LJ24
MC68HC908LK24
Data Sheet
M68HC08
Microcontrollers
MC68HC908LJ24/D
Rev. 2
8/2003
MOTOROLA.COM/SEMICONDUCTORS
For More Information On This Product,
Go to: www.freescale.com
Freescale Semiconductor, Inc...
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
Freescale Semiconductor, Inc.
Freescale Semiconductor, Inc...
MC68HC908LJ24
MC68HC908LK24
Data Sheet
To provide the most up-to-date information, the revision of our
documents on the World Wide Web will be the most current. Your printed
copy may be an earlier revision. To verify you have the latest information
available, refer to:
http://motorola.com/semiconductors/
The following revision history table summarizes changes contained in
this document. For your convenience, the page number designators
have been linked to the appropriate location.
Motorola and the Stylized M Logo are registered trademarks of Motorola, Inc.
DigitalDNA is a trademark of Motorola, Inc.
This product incorporates SuperFlash® technology licensed from SST.
MC68HC908LJ24/LK24 — Rev. 2
© Motorola, Inc., 2003
Data Sheet
MOTOROLA
3
For More Information On This Product,
Go to: www.freescale.com
Freescale Semiconductor, Inc.
Revision History
Revision History
Revision
Level
8/2003
2
Page
Number(s)
Description
First general release.
—
Freescale Semiconductor, Inc...
Date
Data Sheet
MC68HC908LJ24/LK24 — Rev. 2
4
MOTOROLA
For More Information On This Product,
Go to: www.freescale.com
Freescale Semiconductor, Inc.
Data Sheet – MC68HC908LJ24
List of Sections
Section 1. General Description . . . . . . . . . . . . . . . . . . . . 37
Freescale Semiconductor, Inc...
Section 2. Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Section 3. Random-Access Memory (RAM) . . . . . . . . . . 67
Section 4. FLASH Memory (FLASH) . . . . . . . . . . . . . . . . 69
Section 5. Configuration Registers (CONFIG) . . . . . . . . 79
Section 6. Central Processor Unit (CPU) . . . . . . . . . . . . 85
Section 7. Oscillator (OSC) . . . . . . . . . . . . . . . . . . . . . . 103
Section 8. Clock Generator Module (CGM) . . . . . . . . . . 109
Section 9. System Integration Module (SIM) . . . . . . . . 139
Section 10. Monitor ROM (MON) . . . . . . . . . . . . . . . . . . 163
Section 11. Timer Interface Module (TIM) . . . . . . . . . . . 193
Section 12. Real Time Clock (RTC) . . . . . . . . . . . . . . . . 217
Section 13. Infrared Serial Communications
Interface Module (IRSCI) . . . . . . . . . . . . 245
Section 14. Serial Peripheral Interface Module (SPI) . . 287
Section 15. Multi-Master IIC Interface (MMIIC) . . . . . . . 319
Section 16. Analog-to-Digital Converter (ADC) . . . . . . 333
Section 17. Liquid Crystal Display (LCD) Driver . . . . . 349
Section 18. Input/Output (I/O) Ports . . . . . . . . . . . . . . . 375
Section 19. External Interrupt (IRQ) . . . . . . . . . . . . . . . 401
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
List of Sections
For More Information On This Product,
Go to: www.freescale.com
5
Freescale Semiconductor, Inc.
List of Sections
Section 20. Keyboard Interrupt Module (KBI). . . . . . . . 407
Section 21. Computer Operating Properly (COP) . . . . 415
Section 22. Low-Voltage Inhibit (LVI) . . . . . . . . . . . . . . 421
Section 23. Break Module (BRK) . . . . . . . . . . . . . . . . . . 427
Section 24. Electrical Specifications. . . . . . . . . . . . . . . 435
Section 25. Mechanical Specifications . . . . . . . . . . . . . 451
Freescale Semiconductor, Inc...
Section 26. Ordering Information . . . . . . . . . . . . . . . . . 457
Appendix A. MC68HC908LK24. . . . . . . . . . . . . . . . . . . . 459
Data Sheet
6
MC68HC908LJ24/LK24 — Rev. 2
List of Sections
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Data Sheet – MC68HC908LJ24
Table of Contents
Freescale Semiconductor, Inc...
Section 1. General Description
1.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
1.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.4
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.5
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.6
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
1.6.1
Power Supply Pins (VDD and VSS) . . . . . . . . . . . . . . . . . . . . 44
1.6.2
Analog Power Supply Pin (VDDA) . . . . . . . . . . . . . . . . . . . . .44
1.6.3
LCD Bias Voltage (VLCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.6.4
Oscillator Pins (OSC1 and OSC2) . . . . . . . . . . . . . . . . . . . . 45
1.6.5
External Reset Pin (RST) . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.6.6
External Interrupt Pin (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.6.7
External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . . 45
1.6.8
ADC Voltage High Reference Pin (VREFH). . . . . . . . . . . . . . 45
1.6.9
ADC Voltage Low Reference Pin (VREFL) . . . . . . . . . . . . . . 46
1.6.10 Port A Input/Output (I/O) Pins (PTA7–PTA0) . . . . . . . . . . . . 46
1.6.11 Port B I/O Pins (PTB7–PTB0) . . . . . . . . . . . . . . . . . . . . . . . 46
1.6.12 Port C I/O Pins (PTC7–PTC0) . . . . . . . . . . . . . . . . . . . . . . . 46
1.6.13 Port D I/O Pins (PTD7–PTD0) . . . . . . . . . . . . . . . . . . . . . . . 46
1.6.14 Port E I/O Pins (PTE7–PTE0) . . . . . . . . . . . . . . . . . . . . . . . 47
1.6.15 Port F I/O Pins (PTF7–PTF0). . . . . . . . . . . . . . . . . . . . . . . . 47
1.6.16 LCD Backplane and Frontplane
(BP0-BP2, BP3/FP0, FP1–FP10, FP27–FP32) . . . . . . . 47
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Table of Contents
For More Information On This Product,
Go to: www.freescale.com
7
Freescale Semiconductor, Inc.
Table of Contents
Section 2. Memory Map
2.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
2.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.3
Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . 49
2.4
Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.5
Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Freescale Semiconductor, Inc...
Section 3. Random-Access Memory (RAM)
3.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
3.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
Section 4. FLASH Memory (FLASH)
4.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
4.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
4.4
FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5
FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.6
FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.7
FLASH Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . .74
4.8
FLASH Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.8.1
FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . . 77
Section 5. Configuration Registers (CONFIG)
Data Sheet
8
5.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
5.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
5.4
Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . . 81
5.5
Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . . . 82
MC68HC908LJ24/LK24 — Rev. 2
Table of Contents
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Table of Contents
Section 6. Central Processor Unit (CPU)
6.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
6.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Freescale Semiconductor, Inc...
6.4
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.4.1
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.4.2
Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4.3
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4.4
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.4.5
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.5
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.6
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.6.1
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
6.6.2
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
6.7
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.8
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.9
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Section 7. Oscillator (OSC)
7.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
7.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.3
Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.4
X-tal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.5
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.5.1
Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . . 106
7.5.2
Crystal Amplifier Output Pin (OSC2) . . . . . . . . . . . . . . . . . 106
7.5.3
Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . . 106
7.5.4
Internal RC Clock (ICLK) . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.5.5
CGM Oscillator Clock (CGMXCLK) . . . . . . . . . . . . . . . . . . 106
7.5.6
CGM Reference Clock (CGMRCLK) . . . . . . . . . . . . . . . . . 106
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Table of Contents
For More Information On This Product,
Go to: www.freescale.com
9
Freescale Semiconductor, Inc.
Table of Contents
7.6
Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.6.1
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
7.6.2
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
7.7
Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . . 107
Freescale Semiconductor, Inc...
Section 8. Clock Generator Module (CGM)
8.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109
8.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.4
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111
8.4.1
Oscillator Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.4.2
Phase-Locked Loop Circuit (PLL) . . . . . . . . . . . . . . . . . . . 114
8.4.3
PLL Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.4.4
Acquisition and Tracking Modes . . . . . . . . . . . . . . . . . . . . 116
8.4.5
Manual and Automatic PLL Bandwidth Modes. . . . . . . . . . 116
8.4.6
Programming the PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.4.7
Special Programming Exceptions . . . . . . . . . . . . . . . . . . . 122
8.4.8
Base Clock Selector Circuit . . . . . . . . . . . . . . . . . . . . . . . . 122
8.4.9
CGM External Connections . . . . . . . . . . . . . . . . . . . . . . . . 123
8.5
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
8.5.1
External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . 124
8.5.2
PLL Analog Power Pin (VDDA) . . . . . . . . . . . . . . . . . . . . . . 124
8.5.3
PLL Analog Ground Pin (VSSA) . . . . . . . . . . . . . . . . . . . . . 124
8.5.4
Oscillator Output Frequency Signal (CGMXCLK) . . . . . . . 124
8.5.5
CGM Reference Clock (CGMRCLK) . . . . . . . . . . . . . . . . . 124
8.5.6
CGM VCO Clock Output (CGMVCLK) . . . . . . . . . . . . . . . . 125
8.5.7
CGM Base Clock Output (CGMOUT). . . . . . . . . . . . . . . . . 125
8.5.8
CGM CPU Interrupt (CGMINT) . . . . . . . . . . . . . . . . . . . . . 125
8.6
CGM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.6.1
PLL Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.6.2
PLL Bandwidth Control Register . . . . . . . . . . . . . . . . . . . .128
8.6.3
PLL Multiplier Select Registers . . . . . . . . . . . . . . . . . . . . . 130
8.6.4
PLL VCO Range Select Register . . . . . . . . . . . . . . . . . . . .131
8.6.5
PLL Reference Divider Select Register . . . . . . . . . . . . . . . 132
Data Sheet
10
MC68HC908LJ24/LK24 — Rev. 2
Table of Contents
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Table of Contents
8.7
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
8.8
Special Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.8.1
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
8.8.2
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134
8.8.3
CGM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . 134
Freescale Semiconductor, Inc...
8.9
Acquisition/Lock Time Specifications . . . . . . . . . . . . . . . . . . . 135
8.9.1
Acquisition/Lock Time Definitions. . . . . . . . . . . . . . . . . . . .135
8.9.2
Parametric Influences on Reaction Time . . . . . . . . . . . . . . 135
8.9.3
Choosing a Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Section 9. System Integration Module (SIM)
9.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139
9.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
9.3
SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . 142
9.3.1
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
9.3.2
Clock Start-up from POR or LVI Reset. . . . . . . . . . . . . . . . 143
9.3.3
Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . 144
9.4
Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . 144
9.4.1
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
9.4.2
Active Resets from Internal Sources . . . . . . . . . . . . . . . . . 145
9.4.2.1
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146
9.4.2.2
Computer Operating Properly (COP) Reset. . . . . . . . . . 147
9.4.2.3
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
9.4.2.4
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . .148
9.4.2.5
Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . 148
9.4.2.6
Monitor Mode Entry Module Reset (MODRST) . . . . . . . 148
9.5
SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
9.5.1
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . 149
9.5.2
SIM Counter During Stop Mode Recovery . . . . . . . . . . . . . 149
9.5.3
SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . 149
9.6
Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150
9.6.1
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
9.6.1.1
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
9.6.1.2
SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Table of Contents
For More Information On This Product,
Go to: www.freescale.com
11
Freescale Semiconductor, Inc.
Table of Contents
9.6.1.3
9.6.1.4
9.6.1.5
9.6.1.6
9.6.2
9.6.3
9.6.4
Interrupt Status Registers . . . . . . . . . . . . . . . . . . . . . . .153
Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . 153
Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . 155
Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . 155
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . 156
Freescale Semiconductor, Inc...
9.7
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
9.7.1
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157
9.7.2
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158
9.8
SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
9.8.1
SIM Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . 160
9.8.2
SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . 161
9.8.3
SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . . 162
Section 10. Monitor ROM (MON)
10.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163
10.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
10.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
10.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165
10.4.1 Entering Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
10.4.2 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
10.4.3 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
10.4.4 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171
10.4.5 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
10.5
Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
10.6 ROM-Resident Routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
10.6.1 PRGRNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
10.6.2 ERARNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183
10.6.3 LDRNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
10.6.4 MON_PRGRNGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
10.6.5 MON_ERARNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
10.6.6 MON_LDRNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
10.6.7 EE_WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
10.6.8 EE_READ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Data Sheet
12
MC68HC908LJ24/LK24 — Rev. 2
Table of Contents
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Table of Contents
Section 11. Timer Interface Module (TIM)
11.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193
11.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
11.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
11.4
Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Freescale Semiconductor, Inc...
11.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195
11.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
11.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
11.5.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
11.5.3.1
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . 200
11.5.3.2
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .201
11.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . 201
11.5.4.1
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . 202
11.5.4.2
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . 203
11.5.4.3
PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
11.6
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205
11.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
11.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206
11.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206
11.8
TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 206
11.9 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
11.9.1 TIM Clock Pins (PTD4/KBI4/T1CLK, PTD5/KBI5/T2CLK) . 207
11.9.2 TIM Channel I/O Pins (PTB2/T1CH0, PTB3/T1CH1,
PTB4/T2CH0, PTB5/T2CH1) . . . . . . . . . . . . . . . . . . . . 207
11.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
11.10.1 TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . 208
11.10.2 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
11.10.3 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . 211
11.10.4 TIM Channel Status and Control Registers . . . . . . . . . . . . 212
11.10.5 TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Table of Contents
For More Information On This Product,
Go to: www.freescale.com
13
Freescale Semiconductor, Inc.
Table of Contents
Section 12. Real Time Clock (RTC)
12.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217
12.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
12.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
12.4
I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Freescale Semiconductor, Inc...
12.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221
12.5.1 Time Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223
12.5.2 Calendar Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223
12.5.3 Alarm Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
12.5.4 Chronograph Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
12.5.5 Timebase Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
12.6
RTC Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
12.7 RTC Clock Calibration and Compensation . . . . . . . . . . . . . . . 225
12.7.1 Calibration Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
12.8
RTC Register and Bit Write Protection . . . . . . . . . . . . . . . . . . 227
12.9 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
12.9.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229
12.9.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230
12.10 RTC Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
12.10.1 RTC Calibration Control Register (RTCCOMR) . . . . . . . . . 231
12.10.2 RTC Calibration Data Register (RTCCDAT) . . . . . . . . . . . 233
12.10.3 RTC Control Register 1 (RTCCR1) . . . . . . . . . . . . . . . . . . 234
12.10.4 RTC Control Register 2 (RTCCR2) . . . . . . . . . . . . . . . . . . 235
12.10.5 RTC Status Register (RTCSR). . . . . . . . . . . . . . . . . . . . . . 237
12.10.6 Alarm Minute and Hour Registers (ALMR and ALHR) . . . . 240
12.10.7 Second Register (SECR) . . . . . . . . . . . . . . . . . . . . . . . . . . 241
12.10.8 Minute Register (MINR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
12.10.9 Hour Register (HRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
12.10.10 Day Register (DAYR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
12.10.11 Month Register (MTHR) . . . . . . . . . . . . . . . . . . . . . . . . . . .243
12.10.12 Year Register (YRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
12.10.13 Day-Of-Week Register (DOWR) . . . . . . . . . . . . . . . . . . . . 244
12.10.14 Chronograph Data Register (CHRR) . . . . . . . . . . . . . . . . . 244
Data Sheet
14
MC68HC908LJ24/LK24 — Rev. 2
Table of Contents
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Table of Contents
Freescale Semiconductor, Inc...
Section 13. Infrared Serial Communications
Interface Module (IRSCI)
13.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245
13.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
13.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
13.4
Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
13.5
IRSCI Module Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
13.6 Infrared Functional Description. . . . . . . . . . . . . . . . . . . . . . . . 250
13.6.1 Infrared Transmit Encoder . . . . . . . . . . . . . . . . . . . . . . . . . 251
13.6.2 Infrared Receive Decoder . . . . . . . . . . . . . . . . . . . . . . . . . 251
13.7 SCI Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . .252
13.7.1 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
13.7.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
13.7.2.1
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
13.7.2.2
Character Transmission . . . . . . . . . . . . . . . . . . . . . . . . . 255
13.7.2.3
Break Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
13.7.2.4
Idle Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
13.7.2.5
Transmitter Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . .257
13.7.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
13.7.3.1
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
13.7.3.2
Character Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
13.7.3.3
Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
13.7.3.4
Framing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
13.7.3.5
Baud Rate Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . .261
13.7.3.6
Receiver Wakeup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
13.7.3.7
Receiver Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
13.7.3.8
Error Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
13.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
13.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266
13.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266
13.9
SCI During Break Module Interrupts. . . . . . . . . . . . . . . . . . . .267
13.10 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
13.10.1 PTB0/TxD (Transmit Data). . . . . . . . . . . . . . . . . . . . . . . . . 267
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Table of Contents
For More Information On This Product,
Go to: www.freescale.com
15
Freescale Semiconductor, Inc.
Table of Contents
13.10.2 PTB1/RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . . 267
Freescale Semiconductor, Inc...
13.11 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
13.11.1 SCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
13.11.2 SCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
13.11.3 SCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
13.11.4 SCI Status Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
13.11.5 SCI Status Register 2 (SCS2) . . . . . . . . . . . . . . . . . . . . . . 280
13.11.6 SCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
13.11.7 SCI Baud Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . . .282
13.11.8 SCI Infrared Control Register . . . . . . . . . . . . . . . . . . . . . . . 285
Section 14. Serial Peripheral Interface Module (SPI)
14.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .287
14.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
14.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
14.4
Pin Name Conventions and I/O Register Addresses . . . . . . . 289
14.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .290
14.5.1 Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
14.5.2 Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
14.6 Transmission Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293
14.6.1 Clock Phase and Polarity Controls. . . . . . . . . . . . . . . . . . . 293
14.6.2 Transmission Format When CPHA = 0 . . . . . . . . . . . . . . . 294
14.6.3 Transmission Format When CPHA = 1 . . . . . . . . . . . . . . . 296
14.6.4 Transmission Initiation Latency . . . . . . . . . . . . . . . . . . . . . 297
14.7
Queuing Transmission Data . . . . . . . . . . . . . . . . . . . . . . . . . . 299
14.8 Error Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
14.8.1 Overflow Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
14.8.2 Mode Fault Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
14.9
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .304
14.10 Resetting the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
14.11 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
14.11.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .307
Data Sheet
16
MC68HC908LJ24/LK24 — Rev. 2
Table of Contents
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Table of Contents
14.11.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .307
14.12 SPI During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 308
14.13 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
14.13.1 MISO (Master In/Slave Out) . . . . . . . . . . . . . . . . . . . . . . . . 309
14.13.2 MOSI (Master Out/Slave In) . . . . . . . . . . . . . . . . . . . . . . . . 309
14.13.3 SPSCK (Serial Clock). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
14.13.4 SS (Slave Select) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
14.13.5 CGND (Clock Ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Freescale Semiconductor, Inc...
14.14 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
14.14.1 SPI Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
14.14.2 SPI Status and Control Register . . . . . . . . . . . . . . . . . . . . 314
14.14.3 SPI Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
Section 15. Multi-Master IIC Interface (MMIIC)
15.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .319
15.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
15.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
15.4
I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
15.5 Multi-Master IIC Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
15.5.1 Multi-Master IIC Address Register (MMADR) . . . . . . . . . . 321
15.5.2 Multi-Master IIC Control Register (MMCR) . . . . . . . . . . . . 323
15.5.3 Multi-Master IIC Master Control Register (MIMCR) . . . . . . 324
15.5.4 Multi-Master IIC Status Register (MMSR) . . . . . . . . . . . . . 326
15.5.5 Multi-Master IIC Data Transmit Register (MMDTR) . . . . . . 328
15.5.6 Multi-Master IIC Data Receive Register (MMDRR) . . . . . . 329
15.6
Programming Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 330
Section 16. Analog-to-Digital Converter (ADC)
16.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .333
16.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
16.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
MC68HC908LJ24/LK24 — Rev. 2
Data Sheet
MOTOROLA
Table of Contents
For More Information On This Product,
Go to: www.freescale.com
17
Freescale Semiconductor, Inc.
Table of Contents
16.4 Functional Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
16.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
16.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337
16.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
16.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
16.4.5 Result Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
16.4.6 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
16.5
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340
Freescale Semiconductor, Inc...
16.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
16.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340
16.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340
16.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
16.7.1 ADC Voltage In (VADIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
16.7.2 ADC Analog Power Pin (VDDA) . . . . . . . . . . . . . . . . . . . . . 341
16.7.3 ADC Analog Ground Pin (VSSA). . . . . . . . . . . . . . . . . . . . . 341
16.7.4 ADC Voltage Reference High Pin (VREFH). . . . . . . . . . . . . 341
16.7.5 ADC Voltage Reference Low Pin (VREFL) . . . . . . . . . . . . . 341
16.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
16.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . .342
16.8.2 ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
16.8.3 ADC Clock Control Register. . . . . . . . . . . . . . . . . . . . . . . . 346
Section 17. Liquid Crystal Display (LCD) Driver
17.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349
17.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
17.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
17.4
Pin Name Conventions and I/O Register Addresses . . . . . . . 350
17.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353
17.5.1 LCD Duty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
17.5.2 LCD Voltages (VLCD, VLCD1, VLCD2, VLCD3) . . . . . . . . . . . 355
17.5.3 LCD Cycle Frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
17.5.4 Fast Charge and Low Current . . . . . . . . . . . . . . . . . . . . . . 356
17.5.5 Contrast Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
Data Sheet
18
MC68HC908LJ24/LK24 — Rev. 2
Table of Contents
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Table of Contents
17.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
17.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .358
17.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .358
17.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
17.7.1 BP0–BP3 (Backplane Drivers) . . . . . . . . . . . . . . . . . . . . . . 359
17.7.2 FP0–FP32 (Frontplane Drivers) . . . . . . . . . . . . . . . . . . . . . 361
17.8
Seven Segment Display Connection . . . . . . . . . . . . . . . . . . . 365
Freescale Semiconductor, Inc...
17.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
17.9.1 LCD Control Register (LCDCR) . . . . . . . . . . . . . . . . . . . . . 368
17.9.2 LCD Clock Register (LCDCLK) . . . . . . . . . . . . . . . . . . . . . 370
17.9.3 LCD Data Registers (LDAT1–LDAT17) . . . . . . . . . . . . . . . 372
Section 18. Input/Output (I/O) Ports
18.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .375
18.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
18.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
18.3.1 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . 380
18.3.2 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . 381
18.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
18.4.1 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . 383
18.4.2 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . 385
18.4.3 Port B LED Control Register (LEDB) . . . . . . . . . . . . . . . . . 386
18.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
18.5.1 Port C Data Register (PTC) . . . . . . . . . . . . . . . . . . . . . . . . 387
18.5.2 Data Direction Register C (DDRC). . . . . . . . . . . . . . . . . . . 388
18.5.3 Port C LED Control Register (LEDC) . . . . . . . . . . . . . . . . . 389
18.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
18.6.1 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . . 390
18.6.2 Data Direction Register D (DDRD). . . . . . . . . . . . . . . . . . . 392
18.7 Port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
18.7.1 Port E Data Register (PTE) . . . . . . . . . . . . . . . . . . . . . . . . 394
18.7.2 Data Direction Register E (DDRE) . . . . . . . . . . . . . . . . . . . 395
18.7.3 Port E LED Control Register (LEDE) . . . . . . . . . . . . . . . . . 396
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Table of Contents
For More Information On This Product,
Go to: www.freescale.com
19
Freescale Semiconductor, Inc.
Table of Contents
18.8 Port F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
18.8.1 Port F Data Register (PTF) . . . . . . . . . . . . . . . . . . . . . . . . 397
18.8.2 Data Direction Register F (DDRF) . . . . . . . . . . . . . . . . . . . 398
18.8.3 Port F LED Control Register (LEDF) . . . . . . . . . . . . . . . . . 399
Freescale Semiconductor, Inc...
Section 19. External Interrupt (IRQ)
19.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .401
19.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
19.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
19.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .402
19.4.1 IRQ Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
19.5
IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . 405
19.6
IRQ Status and Control Register (INTSCR) . . . . . . . . . . . . . . 405
Section 20. Keyboard Interrupt Module (KBI)
20.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .407
20.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
20.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
20.4
I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
20.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .409
20.5.1 Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
20.6 Keyboard Interrupt Registers . . . . . . . . . . . . . . . . . . . . . . . . . 412
20.6.1 Keyboard Status and Control Register. . . . . . . . . . . . . . . . 412
20.6.2 Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . . . 413
20.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
20.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .414
20.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .414
20.8
Data Sheet
20
Keyboard Module During Break Interrupts . . . . . . . . . . . . . . . 414
MC68HC908LJ24/LK24 — Rev. 2
Table of Contents
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Table of Contents
Section 21. Computer Operating Properly (COP)
21.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .415
21.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
21.3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .416
Freescale Semiconductor, Inc...
21.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
21.4.1 ICLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
21.4.2 STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
21.4.3 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .417
21.4.4 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
21.4.5 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
21.4.6 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
21.4.7 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
21.4.8 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . 418
21.5
COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
21.6
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .419
21.7
Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .419
21.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
21.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .420
21.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .420
21.9
COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . . 420
Section 22. Low-Voltage Inhibit (LVI)
22.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .421
22.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
22.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
22.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .422
22.4.1 Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
22.4.2 Forced Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . .424
22.4.3 Voltage Hysteresis Protection . . . . . . . . . . . . . . . . . . . . . . 424
22.4.4 LVI Trip Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
22.5
LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
MC68HC908LJ24/LK24 — Rev. 2
Data Sheet
MOTOROLA
Table of Contents
For More Information On This Product,
Go to: www.freescale.com
21
Freescale Semiconductor, Inc.
Table of Contents
22.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
22.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .426
22.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .426
Freescale Semiconductor, Inc...
Section 23. Break Module (BRK)
23.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .427
23.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
23.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
23.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .428
23.4.1 Flag Protection During Break Interrupts . . . . . . . . . . . . . . . 430
23.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .430
23.4.3 TIM1 and TIM2 During Break Interrupts. . . . . . . . . . . . . . . 430
23.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . 430
23.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
23.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .430
23.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .431
23.6 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
23.6.1 Break Status and Control Register. . . . . . . . . . . . . . . . . . . 431
23.6.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 432
23.6.3 SIM Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . 432
23.6.4 SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . . 434
Section 24. Electrical Specifications
Data Sheet
22
24.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .435
24.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
24.3
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 436
24.4
Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . 437
24.5
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
24.6
5V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . 438
24.7
3.3V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . 439
24.8
5V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .440
MC68HC908LJ24/LK24 — Rev. 2
Table of Contents
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Table of Contents
24.9
3.3V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
24.10 5V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 441
24.11 3.3V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 442
24.12 5V ADC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . 443
24.13 3.3V ADC Electrical Characteristics . . . . . . . . . . . . . . . . . . . .444
24.14 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . . 445
Freescale Semiconductor, Inc...
24.15 CGM Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . 445
24.16 5V SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
24.17 3.3V SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
24.18 FLASH Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . 450
Section 25. Mechanical Specifications
25.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .451
25.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
25.3
64-Pin Low-Profile Quad Flat Pack (LQFP) . . . . . . . . . . . . . . 452
25.4
64-Pin Quad Flat Pack (QFP). . . . . . . . . . . . . . . . . . . . . . . . . 453
25.5
80-Pin Low-Profile Quad Flat Pack (LQFP) . . . . . . . . . . . . . . 454
25.6
80-Pin Quad Flat Pack (QFP). . . . . . . . . . . . . . . . . . . . . . . . . 455
Section 26. Ordering Information
26.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .457
26.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
26.3
MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
Appendix A. MC68HC908LK24
A.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .459
A.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Table of Contents
For More Information On This Product,
Go to: www.freescale.com
23
Freescale Semiconductor, Inc.
Table of Contents
A.3
Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .460
A.4
Low-Voltage Inhibit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
A.5 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
A.5.1
5V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . 461
A.5.2
3.3V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . 461
A.5.3
5V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . .462
A.5.4
3.3V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . 462
MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
Freescale Semiconductor, Inc...
A.6
Data Sheet
24
MC68HC908LJ24/LK24 — Rev. 2
Table of Contents
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Data Sheet – MC68HC908LJ24
List of Figures
Freescale Semiconductor, Inc...
Figure
Title
1-1
1-2
1-3
1-4
MC68HC908LJ24 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . 41
80-Pin QFP and LQFP Pin Assignment . . . . . . . . . . . . . . . . . . 42
64-pin QFP and LQFP Pin Assignment . . . . . . . . . . . . . . . . . . 43
Power Supply Bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2-1
2-2
Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Control, Status, and Data Registers . . . . . . . . . . . . . . . . . . . . .52
4-1
4-2
4-3
4-4
FLASH I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . 70
FLASH Control Register (FLCR) . . . . . . . . . . . . . . . . . . . . . . . 71
FLASH Programming Flowchart . . . . . . . . . . . . . . . . . . . . . . . . 75
FLASH Block Protect Register (FLBPR). . . . . . . . . . . . . . . . . . 77
5-1
5-2
5-3
CONFIG Registers Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . . 81
Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . . . 82
6-1
6-2
6-3
6-4
6-5
6-6
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Index Register (H:X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Stack Pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Program Counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
Condition Code Register (CCR) . . . . . . . . . . . . . . . . . . . . . . . . 90
7-1
Oscillator Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . 104
8-1
8-2
8-3
8-4
CGM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
CGM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 113
CGM External Connections . . . . . . . . . . . . . . . . . . . . . . . . . . 123
PLL Control Register (PCTL) . . . . . . . . . . . . . . . . . . . . . . . . . 126
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Page
Data Sheet
List of Figures
For More Information On This Product,
Go to: www.freescale.com
25
Freescale Semiconductor, Inc.
List of Figures
Freescale Semiconductor, Inc...
Figure
Data Sheet
26
Title
Page
8-5
8-6
8-7
8-8
8-9
8-10
PLL Bandwidth Control Register (PBWCR) . . . . . . . . . . . . . . 129
PLL Multiplier Select Register High (PMSH) . . . . . . . . . . . . . 130
PLL Multiplier Select Register Low (PMSL) . . . . . . . . . . . . . . 130
PLL VCO Range Select Register (PMRS) . . . . . . . . . . . . . . . 131
PLL Reference Divider Select Register (PMDS) . . . . . . . . . . 132
PLL Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
9-10
9-11
9-12
9-13
9-14
9-15
9-16
9-17
9-18
9-19
9-20
9-21
9-22
SIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
SIM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .142
CGM Clock Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
External Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145
Internal Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Sources of Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
POR Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Interrupt Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Interrupt Recovery Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Interrupt Recognition Example . . . . . . . . . . . . . . . . . . . . . . . . 152
Interrupt Status Register 1 (INT1). . . . . . . . . . . . . . . . . . . . . . 153
Interrupt Status Register 2 (INT2). . . . . . . . . . . . . . . . . . . . . . 155
Interrupt Status Register 3 (INT3). . . . . . . . . . . . . . . . . . . . . . 155
Wait Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Wait Recovery from Interrupt or Break . . . . . . . . . . . . . . . . . . 158
Wait Recovery from Internal Reset. . . . . . . . . . . . . . . . . . . . . 158
Stop Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Stop Mode Recovery from Interrupt or Break . . . . . . . . . . . . . 159
SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . . . . 160
SIM Reset Status Register (SRSR) . . . . . . . . . . . . . . . . . . . . 161
SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . . . . 162
10-1
10-2
10-3
10-4
10-5
10-6
Monitor Mode Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Low-Voltage Monitor Mode Entry Flowchart. . . . . . . . . . . . . . 170
Monitor Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Break Transaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171
Read Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173
Write Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
MC68HC908LJ24/LK24 — Rev. 2
List of Figures
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
List of Figures
Freescale Semiconductor, Inc...
Figure
Title
10-7
10-8
10-9
10-10
Stack Pointer at Monitor Mode Entry . . . . . . . . . . . . . . . . . . . 176
Monitor Mode Entry Timing. . . . . . . . . . . . . . . . . . . . . . . . . . .177
Data Block Format for ROM-Resident Routines. . . . . . . . . . . 180
EE_WRITE FLASH Memory Usage . . . . . . . . . . . . . . . . . . . .189
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
11-10
11-11
11-12
11-13
11-14
11-15
TIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
TIM I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . .197
PWM Period and Pulse Width . . . . . . . . . . . . . . . . . . . . . . . . 202
TIM Status and Control Register (TSC) . . . . . . . . . . . . . . . . . 208
TIM Counter Registers High (TCNTH) . . . . . . . . . . . . . . . . . . 210
TIM Counter Registers Low (TCNTL) . . . . . . . . . . . . . . . . . . . 211
TIM Counter Modulo Register High (TMODH) . . . . . . . . . . . . 211
TIM Counter Modulo Register Low (TMODL) . . . . . . . . . . . . . 211
TIM Channel 0 Status and Control Register (TSC0) . . . . . . . 212
TIM Channel 1 Status and Control Register (TSC1) . . . . . . . 212
CHxMAX Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215
TIM Channel 0 Register High (TCH0H) . . . . . . . . . . . . . . . . . 216
TIM Channel 0 Register Low (TCH0L) . . . . . . . . . . . . . . . . . . 216
TIM Channel 1 Register High (TCH1H) . . . . . . . . . . . . . . . . . 216
TIM Channel 1 Register Low (TCH1L) . . . . . . . . . . . . . . . . . . 216
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
12-10
12-11
12-12
12-13
12-14
12-15
RTC I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 219
RTC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
RTC Clock Calibration and Compensation . . . . . . . . . . . . . . . 225
1-Hz Clock Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
RTC Write Protect State Diagram. . . . . . . . . . . . . . . . . . . . . . 228
RTC Calibration Control Register (RTCCOMR) . . . . . . . . . . . 231
RTC Calibration Data Register (RTCCDAT). . . . . . . . . . . . . . 233
RTC Control Register 1 (RTCCR1) . . . . . . . . . . . . . . . . . . . . 234
RTC Control Register 2 (RTCCR2) . . . . . . . . . . . . . . . . . . . . 235
RTC Status Register (RTCSR) . . . . . . . . . . . . . . . . . . . . . . . . 237
Alarm Minute Register (ALMR). . . . . . . . . . . . . . . . . . . . . . . . 240
Alarm Hour Register (ALHR) . . . . . . . . . . . . . . . . . . . . . . . . . 240
Second Register (SECR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Minute Register (MINR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Hour Register (HRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Page
Data Sheet
List of Figures
For More Information On This Product,
Go to: www.freescale.com
27
Freescale Semiconductor, Inc.
List of Figures
Freescale Semiconductor, Inc...
Figure
Data Sheet
28
Title
Page
12-16
12-17
12-18
12-19
12-20
Day Register (DAYR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Month Register (MTHR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Year Register (YRR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Day-Of-Week Register (DOWR). . . . . . . . . . . . . . . . . . . . . . . 244
Chronograph Data Register (CHRR) . . . . . . . . . . . . . . . . . . . 244
13-1
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10
13-11
13-12
13-13
13-14
13-15
13-16
13-17
13-18
13-19
13-20
IRSCI I/O Registers Summary . . . . . . . . . . . . . . . . . . . . . . . . 248
IRSCI Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Infrared Sub-Module Diagram . . . . . . . . . . . . . . . . . . . . . . . . 250
Infrared SCI Data Example. . . . . . . . . . . . . . . . . . . . . . . . . . .251
SCI Module Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . .252
SCI Data Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253
SCI Transmitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
SCI Receiver Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 258
Receiver Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Slow Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
Fast Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
SCI Control Register 1 (SCC1). . . . . . . . . . . . . . . . . . . . . . . . 269
SCI Control Register 2 (SCC2). . . . . . . . . . . . . . . . . . . . . . . . 272
SCI Control Register 3 (SCC3). . . . . . . . . . . . . . . . . . . . . . . . 274
SCI Status Register 1 (SCS1) . . . . . . . . . . . . . . . . . . . . . . . . 276
Flag Clearing Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
SCI Status Register 2 (SCS2) . . . . . . . . . . . . . . . . . . . . . . . . 280
SCI Data Register (SCDR) . . . . . . . . . . . . . . . . . . . . . . . . . . .281
SCI Baud Rate Register (SCBR) . . . . . . . . . . . . . . . . . . . . . . 282
SCI Infrared Control Register (SCIRCR) . . . . . . . . . . . . . . . . 285
14-1
14-2
14-3
14-4
14-5
14-6
14-7
14-8
14-9
SPI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . .289
SPI Module Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . .290
Full-Duplex Master-Slave Connections . . . . . . . . . . . . . . . . . 291
Transmission Format (CPHA = 0) . . . . . . . . . . . . . . . . . . . . . 295
CPHA/SS Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Transmission Format (CPHA = 1) . . . . . . . . . . . . . . . . . . . . . 296
Transmission Start Delay (Master) . . . . . . . . . . . . . . . . . . . . . 298
SPRF/SPTE CPU Interrupt Timing . . . . . . . . . . . . . . . . . . . . . 299
Missed Read of Overflow Condition . . . . . . . . . . . . . . . . . . . .301
MC68HC908LJ24/LK24 — Rev. 2
List of Figures
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
List of Figures
Freescale Semiconductor, Inc...
Figure
Title
14-10
14-11
14-12
14-13
14-14
14-15
Clearing SPRF When OVRF Interrupt Is Not Enabled . . . . . . 302
SPI Interrupt Request Generation . . . . . . . . . . . . . . . . . . . . . 305
CPHA/SS Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
SPI Control Register (SPCR) . . . . . . . . . . . . . . . . . . . . . . . . . 312
SPI Status and Control Register (SPSCR) . . . . . . . . . . . . . . . 314
SPI Data Register (SPDR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
15-1
15-2
15-3
15-4
15-5
15-6
15-7
15-8
MMIIC I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . 321
Multi-Master IIC Address Register (MMADR). . . . . . . . . . . . . 321
Multi-Master IIC Control Register (MMCR). . . . . . . . . . . . . . . 323
Multi-Master IIC Master Control Register (MIMCR) . . . . . . . . 324
Multi-Master IIC Status Register (MMSR) . . . . . . . . . . . . . . . 326
Multi-Master IIC Data Transmit Register (MMDTR) . . . . . . . . 328
Multi-Master IIC Data Receive Register (MMDRR) . . . . . . . . 329
Data Transfer Sequences for Master/Slave
Transmit/Receive Modes . . . . . . . . . . . . . . . . . . . . . . . . . . 331
16-1
16-2
16-3
16-4
16-5
16-6
16-7
16-8
16-9
ADC I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 335
ADC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
8-Bit Truncation Mode Error . . . . . . . . . . . . . . . . . . . . . . . . . . 339
ADC Status and Control Register (ADSCR) . . . . . . . . . . . . . . 342
ADRH and ADRL in 8-Bit Truncated Mode. . . . . . . . . . . . . . . 344
ADRH and ADRL in Right Justified Mode. . . . . . . . . . . . . . . . 344
ADRH and ADRL in Left Justified Mode . . . . . . . . . . . . . . . . . 345
ADRH and ADRL in Left Justified Sign Data Mode . . . . . . . . 345
ADC Clock Control Register (ADCLK) . . . . . . . . . . . . . . . . . . 346
17-1
17-2
17-3
17-4
17-5
17-6
17-7
17-8
17-9
17-10
LCD I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 351
LCD Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
Simplified LCD Schematic (1/3 Duty, 1/3 Bias) . . . . . . . . . . . 354
Fast Charge Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
Static LCD Backplane Driver Waveform. . . . . . . . . . . . . . . . . 359
1/3 Duty LCD Backplane Driver Waveforms. . . . . . . . . . . . . . 359
1/4 Duty LCD Backplane Driver Waveforms. . . . . . . . . . . . . . 360
Static LCD Frontplane Driver Waveforms. . . . . . . . . . . . . . . . 361
1/3 Duty LCD Frontplane Driver Waveforms . . . . . . . . . . . . . 362
1/4 Duty LCD Frontplane Driver Waveforms . . . . . . . . . . . . . 363
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Page
Data Sheet
List of Figures
For More Information On This Product,
Go to: www.freescale.com
29
Freescale Semiconductor, Inc.
List of Figures
Figure
Title
Page
Freescale Semiconductor, Inc...
17-11 1/4 Duty LCD Frontplane Driver Waveforms (continued) . . . . 364
17-12 7-Segment Display Example . . . . . . . . . . . . . . . . . . . . . . . . . 365
17-13 BP0–BP2 and FP0–FP2 Output Waveforms for
7-Segment Display Example . . . . . . . . . . . . . . . . . . . . . . . 366
17-14 "f" Segment Voltage Waveform . . . . . . . . . . . . . . . . . . . . . . .367
17-15 "e" Segment Voltage Waveform . . . . . . . . . . . . . . . . . . . . . . . 367
17-16 LCD Control Register (LCDCR) . . . . . . . . . . . . . . . . . . . . . . .368
17-17 LCD Clock Register (LCDCLK). . . . . . . . . . . . . . . . . . . . . . . . 370
17-18 LCD Data Registers 1–17 (LDAT1–LDAT17) . . . . . . . . . . . . . 372
18-1
18-2
18-3
18-4
18-5
18-6
18-7
18-8
18-9
18-10
18-11
18-12
18-13
18-14
18-15
18-16
18-17
18-18
18-19
18-20
18-21
18-22
18-23
I/O Port Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .376
Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . . . 380
Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . . . 381
Port A I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . . . 383
Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . . . 385
Port B I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
Port B LED Control Register (LEDB) . . . . . . . . . . . . . . . . . . . 386
Port C Data Register (PTC) . . . . . . . . . . . . . . . . . . . . . . . . . . 387
Data Direction Register C (DDRC) . . . . . . . . . . . . . . . . . . . . . 388
Port C I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
Port C LED Control Register (LEDC) . . . . . . . . . . . . . . . . . . . 389
Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . . . . 390
Data Direction Register D (DDRD) . . . . . . . . . . . . . . . . . . . . . 392
Port D I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
Port E Data Register (PTE) . . . . . . . . . . . . . . . . . . . . . . . . . . 394
Data Direction Register E (DDRE) . . . . . . . . . . . . . . . . . . . . . 395
Port E I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
Port E LED Control Register (LEDE) . . . . . . . . . . . . . . . . . . . 396
Port F Data Register (PTF). . . . . . . . . . . . . . . . . . . . . . . . . . .397
Data Direction Register F (DDRF) . . . . . . . . . . . . . . . . . . . . . 398
Port F I/O Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
Port F LED Control Register (LEDF) . . . . . . . . . . . . . . . . . . . 399
19-1 IRQ Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 403
19-2 IRQ I/O Port Register Summary . . . . . . . . . . . . . . . . . . . . . . . 403
Data Sheet
30
MC68HC908LJ24/LK24 — Rev. 2
List of Figures
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
List of Figures
Figure
Title
Page
19-3 IRQ Status and Control Register (INTSCR) . . . . . . . . . . . . . . 406
20-1
20-2
20-3
20-4
KBI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . .408
Keyboard Interrupt Block Diagram . . . . . . . . . . . . . . . . . . . . . 409
Keyboard Status and Control Register (KBSCR) . . . . . . . . . . 412
Keyboard Interrupt Enable Register (KBIER) . . . . . . . . . . . . . 413
Freescale Semiconductor, Inc...
21-1 COP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
21-2 Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . 418
21-3 COP Control Register (COPCTL) . . . . . . . . . . . . . . . . . . . . . . 419
22-1 LVI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
22-2 LVI Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . .422
23-1
23-2
23-3
23-4
23-5
23-6
23-7
Break Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 429
Break Module I/O Register Summary . . . . . . . . . . . . . . . . . . . 429
Break Status and Control Register (BRKSCR). . . . . . . . . . . . 431
Break Address Register High (BRKH) . . . . . . . . . . . . . . . . . . 432
Break Address Register Low (BRKL) . . . . . . . . . . . . . . . . . . . 432
SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . . . . 433
SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . . . . 434
24-1 Typical Internal Oscillator Frequency . . . . . . . . . . . . . . . . . . . 442
24-2 SPI Master Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
24-3 SPI Slave Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
25-1
25-2
25-3
25-4
64-Pin Low-Profile Quad Flat Pack (Case No. 840F) . . . . . . . 452
64-Pin Quad Flat Pack (Case No. 840B) . . . . . . . . . . . . . . . . 453
80-Pin Low-Profile Quad Flat Pack (Case No. 917) . . . . . . . . 454
80-Pin Quad Flat Pack (Case No. 841B) . . . . . . . . . . . . . . . . 455
A-1
A-2
MC68HC908LK24 Crystal Oscillator Connection . . . . . . . . . 460
MC68HC908LK24 Configuration Register 1 (CONFIG1) . . . 460
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
List of Figures
For More Information On This Product,
Go to: www.freescale.com
31
Freescale Semiconductor, Inc.
Freescale Semiconductor, Inc...
List of Figures
Data Sheet
32
MC68HC908LJ24/LK24 — Rev. 2
List of Figures
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Data Sheet – MC68HC908LJ24
List of Tables
Freescale Semiconductor, Inc...
Table
Title
2-1
Vector Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
4-1
FLASH Block Protect Register to Physical Address . . . . . . . . . 78
5-1
LVI Trip Point Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6-1
6-2
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8-1
8-3
8-2
Numeric Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
VPR1 and VPR0 Programming . . . . . . . . . . . . . . . . . . . . . . .128
PRE 1 and PRE0 Programming . . . . . . . . . . . . . . . . . . . . . . . 128
9-1
9-2
9-3
Signal Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
PIN Bit Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Vector Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154
10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-11
10-12
10-13
Monitor Mode Signal Requirements and Options . . . . . . . . . . 168
Mode Differences (Vectors) . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Monitor Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . 172
READ (Read Memory) Command . . . . . . . . . . . . . . . . . . . . . 173
WRITE (Write Memory) Command. . . . . . . . . . . . . . . . . . . . . 174
IREAD (Indexed Read) Command . . . . . . . . . . . . . . . . . . . . . 174
IWRITE (Indexed Write) Command . . . . . . . . . . . . . . . . . . . . 175
READSP (Read Stack Pointer) Command . . . . . . . . . . . . . . . 175
RUN (Run User Program) Command . . . . . . . . . . . . . . . . . . . 176
Summary of ROM-Resident Routines . . . . . . . . . . . . . . . . . . 179
PRGRNGE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
ERARNGE Routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
LDRNGE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Page
Data Sheet
List of Tables
For More Information On This Product,
Go to: www.freescale.com
33
Freescale Semiconductor, Inc.
List of Tables
Table
10-14
10-15
10-16
10-17
10-18
Title
Page
MON_PRGRNGE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
MON_ERARNGE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
ICP_LDRNGE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
EE_WRITE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
EE_READ Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Freescale Semiconductor, Inc...
11-1 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
11-2 Prescaler Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
11-3 Mode, Edge, and Level Selection . . . . . . . . . . . . . . . . . . . . . . 214
12-1
12-2
12-3
12-4
Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Compensation Algorithm for Different Values of E . . . . . . . . . 226
Write-Protected RTC Registers and Bits . . . . . . . . . . . . . . . . 227
CALOUT Pin Output Option . . . . . . . . . . . . . . . . . . . . . . . . . . 232
13-1
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10
Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Start Bit Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
Data Bit Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .260
Stop Bit Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261
SCI Pin Functions (Standard and Infrared). . . . . . . . . . . . . . . 268
Character Format Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 271
SCI Baud Rate Prescaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
SCI Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
SCI Baud Rate Selection Examples . . . . . . . . . . . . . . . . . . . .284
Infrared Narrow Pulse Selection . . . . . . . . . . . . . . . . . . . . . . . 285
14-1
14-2
14-3
14-4
Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
SPI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .304
SPI Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
SPI Master Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . 316
15-1 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
15-2 Baud Rate Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
16-1 MUX Channel Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
16-2 ADC Clock Divide Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
16-3 ADC Mode Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347
Data Sheet
34
MC68HC908LJ24/LK24 — Rev. 2
List of Tables
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
List of Tables
Freescale Semiconductor, Inc...
Table
Title
Page
17-1
17-3
17-2
17-4
17-5
17-6
Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
LCD Bias Voltage Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
Resistor Ladder Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
Fast Charge Duty Cycle Selection . . . . . . . . . . . . . . . . . . . . . 370
LCD Duty Cycle Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
LCD Waveform Base Clock Selection . . . . . . . . . . . . . . . . . . 371
18-1
18-2
18-3
18-4
18-5
18-6
18-7
Port Control Register Bits Summary. . . . . . . . . . . . . . . . . . . .378
Port A Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
Port B Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
Port C Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
Port D Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
Port E Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
Port F Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
20-1 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
22-1 LVI Status Register (LVISR) . . . . . . . . . . . . . . . . . . . . . . . . . . 425
22-2 LVIOUT Bit Indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
24-1
24-2
24-3
24-4
24-5
24-6
24-7
24-8
24-9
24-10
24-11
24-12
24-13
24-14
24-15
24-16
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 436
Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . 437
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
5V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . 438
3.3V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . 439
5V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .440
3.3V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
5V Oscillator Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 441
3.3V Oscillator Specifications. . . . . . . . . . . . . . . . . . . . . . . . . 442
5V ADC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . 443
3.3V ADC Electrical Characteristics . . . . . . . . . . . . . . . . . . . .444
Timer Interface Module Characteristics . . . . . . . . . . . . . . . . . 445
CGM Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . 445
5V SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
3.3V SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
FLASH Memory Electrical Characteristics . . . . . . . . . . . . . . . 450
26-1 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
List of Tables
For More Information On This Product,
Go to: www.freescale.com
35
Freescale Semiconductor, Inc.
List of Tables
Table
Page
5V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . 461
3.3V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . 461
5V Oscillator Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 462
3.3V Oscillator Specifications. . . . . . . . . . . . . . . . . . . . . . . . . 462
MC68HC908LK24 Order Numbers. . . . . . . . . . . . . . . . . . . . . 462
Freescale Semiconductor, Inc...
A-1
A-2
A-3
A-4
A-5
Title
Data Sheet
36
MC68HC908LJ24/LK24 — Rev. 2
List of Tables
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Data Sheet – MC68HC908LJ24
Section 1. General Description
Freescale Semiconductor, Inc...
1.1 Contents
1.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.4
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.5
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.6
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
1.6.1
Power Supply Pins (VDD and VSS) . . . . . . . . . . . . . . . . . . . . 44
1.6.2
Analog Power Supply Pin (VDDA) . . . . . . . . . . . . . . . . . . . . .44
1.6.3
LCD Bias Voltage (VLCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.6.4
Oscillator Pins (OSC1 and OSC2) . . . . . . . . . . . . . . . . . . . . 45
1.6.5
External Reset Pin (RST) . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.6.6
External Interrupt Pin (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.6.7
External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . . 45
1.6.8
ADC Voltage High Reference Pin (VREFH). . . . . . . . . . . . . . 45
1.6.9
ADC Voltage Low Reference Pin (VREFL) . . . . . . . . . . . . . . 46
1.6.10 Port A Input/Output (I/O) Pins (PTA7–PTA0) . . . . . . . . . . . . 46
1.6.11 Port B I/O Pins (PTB7–PTB0) . . . . . . . . . . . . . . . . . . . . . . . 46
1.6.12 Port C I/O Pins (PTC7–PTC0) . . . . . . . . . . . . . . . . . . . . . . . 46
1.6.13 Port D I/O Pins (PTD7–PTD0) . . . . . . . . . . . . . . . . . . . . . . . 46
1.6.14 Port E I/O Pins (PTE7–PTE0) . . . . . . . . . . . . . . . . . . . . . . . 47
1.6.15 Port F I/O Pins (PTF7–PTF0). . . . . . . . . . . . . . . . . . . . . . . . 47
1.6.16 LCD Backplane and Frontplane
(BP0-BP2, BP3/FP0, FP1–FP10, FP27–FP32) . . . . . . . 47
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
General Description
For More Information On This Product,
Go to: www.freescale.com
37
Freescale Semiconductor, Inc.
General Description
1.2 Introduction
Freescale Semiconductor, Inc...
The MC68HC908LJ24 is a member of the low-cost, high-performance
M68HC08 Family of 8-bit microcontroller units (MCUs). The M68HC08
Family is based on the customer-specified integrated circuit (CSIC)
design strategy. All MCUs in the family use the enhanced M68HC08
central processor unit (CPU08) and are available with a variety of
modules, memory sizes and types, and package types.
1.3 Features
Features of the MC68HC908LJ24 include the following:
•
High-performance M68HC08 architecture
•
Fully upward-compatible object code with M6805, M146805, and
M68HC05 Families
– 8-MHz at 5V operating voltage
– 4-MHz at 3.3V operating voltage
•
32.768kHz crystal oscillator clock input with 32MHz internal PLL
•
Optional continuous crystal oscillator operation in stop mode
•
24K-bytes user program FLASH memory with security1 feature
•
768 bytes of on-chip RAM
•
Up to 48 general-purpose input/output (I/O) pins:
– High current 15mA sink capability on 30 pins
•
Two 16-bit, 2-channel timer interface modules (TIM1 and TIM2)
with selectable input capture, output compare, PWM capability on
each channel, and external clock input option (T1CLK and T2CLK)
•
Real time clock (RTC) with:
– Clock, calendar, alarm, and chronograph functions
– Selectable periodic interrupt requests for seconds, minutes,
hours, days, 2-Hz, 4-Hz, 8-Hz, 16-Hz, and 128-Hz
1. No security feature is absolutely secure. However, Motorola strategy is to make reading or
copying the FLASH difficult for unauthorized users.
Data Sheet
38
MC68HC908LJ24/LK24 — Rev. 2
General Description
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
General Description
Features
Freescale Semiconductor, Inc...
– Temperature drift compensation by user software and external
temperature sensor with temperature drift profile from crystal
vendor
•
Serial communications interface module (SCI) with infrared (IR)
encoder/decoder
•
Inter-IC Bus interface module (IIC)
•
Serial peripheral interface module (SPI)
•
IRQ external interrupt pin with integrated pullup
•
8-bit keyboard wakeup port with programmable pullup
•
4/3 backplanes and static with maximum 32/33 frontplanes liquid
crystal display (LCD) driver
•
6-channel, 10-bit successive approximation analog-to-digital
converter (ADC)
•
Resident routines for in-circuit programming and EEPROM
emulation
•
Low-power design (fully static with stop and wait modes)
•
Master reset pin (with integrated pullup) and power-on reset
•
Spike filter protection for EMC performance enhancement
•
System protection features
– Optional computer operating properly (COP) reset, driven by
internal RC oscillator
– Low-voltage detection with optional reset or interrupt
– Illegal opcode detection with reset
– Illegal address detection with reset
•
80-pin quad flat pack (QFP), 80-pin low-profile quad flat pack
(LQFP), 64-pin quad flat pack (QFP), and 64-pin low-profile quad
flat pack (LQFP)
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
General Description
For More Information On This Product,
Go to: www.freescale.com
39
Freescale Semiconductor, Inc.
General Description
•
Specific features of the MC68HC908LJ24 in 64-pin packages are:
– 40 general-purpose I/Os only
– High current 15-mA sink capability on 22 pins
– 4/3 backplanes and static with maximum 26 or 27 frontplanes
LCD driver
Freescale Semiconductor, Inc...
Features of the CPU08 include the following:
•
Enhanced HC05 programming model
•
Extensive loop control functions
•
16 addressing modes (eight more than the HC05)
•
16-bit Index register and stack pointer
•
Memory-to-memory data transfers
•
Fast 8 × 8 multiply instruction
•
Fast 16/8 divide instruction
•
Binary-coded decimal (BCD) instructions
•
Optimization for controller applications
•
Efficient C language support
1.4 MCU Block Diagram
Figure 1-1 shows the structure of the MC68HC908LJ24.
Data Sheet
40
MC68HC908LJ24/LK24 — Rev. 2
General Description
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
General Description
MCU Block Diagram
INTERNAL BUS
CONTROL AND STATUS REGISTERS — 128 BYTES
DDRA
PORTA
KEYBOARD INTERRUPT
MODULE
PORTB
ARITHMETIC/LOGIC
UNIT (ALU)
PTB7/ADC5
PTB6/ADC4
PTB5/T2CH1†
PTB4/T2CH0†
PTB3/T1CH1†
PTB2/T1CH0†
PTB1/RxD†
PTB0/TxD†
PORTD
CPU
REGISTERS
PTA7/ADC3
PTA6/ADC2
PTA5/ADC1
PTA4/ADC0
PTA3/KBI3**
PTA2/KBI2**
PTA1/KBI1**
PTA0/KBI0**
PTD7/KBI7/SDA
PTD6/KBI6/SCL
PTD5/KBI5/T2CLK**
PTD4/KBI4/T1CLK**
PTD3/SPSCK/CALOUT
PTD2/MOSI
PTD1/MISO
PTD0/SS/CALIN
PORTF
M68HC08 CPU
PTF7†
:
PTF0†
10-BIT ANALOG-TO-DIGITAL
CONVERTER MODULE
USER FLASH — 24,576 BYTES
USER FLASH VECTOR SPACE — 48 BYTES
2-CHANNEL TIMER INTERFACE
MODULE 2
CLOCK GENERATOR MODULE
OSC1
OSC2
32.768-kHz OSCILLATOR
SERIAL COMMUNICATIONS
INTERFACE MODULE
(WITH INFRARED
ENCODER/DECODER)
REAL TIME CLOCK
MODULE
INTER IC BUS
INTERFACE MODULE
EXTERNAL INTERRUPT
MODULE
* IRQ
SERIAL PERIPHERAL
INTERFACE MODULE
DDRF
SYSTEM INTEGRATION
MODULE
* RST
DDRD
PHASE-LOCKED LOOP
CGMXFC
COMPUTER OPERATING
PROPERLY MODULE
#
DDRC
POWER-ON RESET
MODULE
LIQUID CRYSTAL DISPLAY
# VLCD
DRIVER MODULE
VDDA
VSS
VREFH
VREFL
PTC7/FP26†
:
PTC0/FP19†
PTE7/FP18†
:
PTE0/FP11†
FP10
:
FP1
POWER
VDD
DDRE
LOW-VOLTAGE INHIBIT
MODULE
PORTC
FP32
:
FP27
PORTE
Freescale Semiconductor, Inc...
MONITOR ROM — 959 BYTES
DDRB
2-CHANNEL TIMER INTERFACE
MODULE 1
USER RAM — 768 BYTES
BP2
:
BP0
ADC REFERENCE
* Pin contains integrated pullup device.
** Pin contains integrated pullup device if configured as KBI.
†
High current sink pin, 15mA.
# Pins available on 80-pin packages only.
FP0/BP3
Figure 1-1. MC68HC908LJ24 Block Diagram
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
General Description
For More Information On This Product,
Go to: www.freescale.com
41
Freescale Semiconductor, Inc.
General Description
BP1
BP0
FP32
FP31
PTB5/T2CH1
PTB4/T2CH0
PTB3/T1CH1
PTB2/T1CH0
PTB1/RxD
PTB0/TxD
NC
CGMXFC
OSC2
OSC1
VSS
VLCD
VDD
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
1
61
60
VREFL
50
PTA3/KBI3
PTF6
12
49
PTA2/KBI2
PTD6/KBI6/SCL
13
48
PTA1/KBI1
PTD7/KBI7/SDA
14
47
PTA0/KBI0
FP9
15
46
FP28
FP10
16
45
FP27
PTF5
17
44
PTC7/FP26
PTF4
18
43
PTC6/FP25
PTE0/FP11
19
42
PTC5/FP24
PTD0/SS/CALIN
40
41
RST
20
21
PTE1/FP12
39
11
IRQ
PTF7
38
FP29
PTC4/FP23
51
37
10
PTC3/FP22
FP8
36
FP30
PTC2/FP21
52
35
9
PTC1/FP20
FP7
34
53
PTF0
8
33
FP6
PTA5/ADC1
PTA4/ADC0
PTF1
54
PTD1/MISO
7
32
FP5
PTD2/MOSI
PTA6/ADC2
31
55
PTF2
6
30
FP4
29
PTA7/ADC3
PTF3
56
28
5
PTC0/FP19
FP3
27
PTB6/ADC4
PTE7/FP18
57
26
4
PTE6/FP17
FP2
25
PTB7/ADC5
PTE5/FP16
58
24
3
PTE4/FP15
FP1
23
VREFH
PTE3/FP14
59
22
2
PTE2/FP13
PTD5/KBI5/T2CLK
PTD3/SPSCK/CALOUT
Freescale Semiconductor, Inc...
FP0/BP3
VDDA
BP2
79
80
PTD4/KBI4/T1CLK
1.5 Pin Assignments
Figure 1-2. 80-Pin QFP and LQFP Pin Assignment
Data Sheet
42
MC68HC908LJ24/LK24 — Rev. 2
General Description
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
BP1
BP0
PTB5/T2CH1
PTB4/T2CH0
PTB3/T1CH1
PTB2/T1CH0
PTB1/RxD
PTB0/TxD
CGMXFC
OSC2
OSC1
VSS
VDD
62
61
60
59
58
57
56
55
54
53
52
51
50
1
49
48
VREFL
PTD5/KBI5/T2CLK
2
47
VREFH
FP1
3
46
PTB7/ADC5
FP2
4
45
PTB6/ADC4
FP3
5
PTF7
FP32
44
PTA7/ADC3
6
PTF6
FP31
43
PTA6/ADC2
PTF5
FP30
42
PTA5/ADC1
PTF4
FP29
PTF3
FP28
41
PTA4/ADC0
FP27
40
PTA3/KBI3
39
PTA2/KBI2
38
PTA1/KBI1
37
PTA0/KBI0
36
PTC7/FP26
FP4
FP5
Pins not available on 64-LQFP package:
7
FP6
8
FP7
9
PTF2
FP8
10
PTF1
PTD6/KBI6/SCL
11
PTF0
VLCD
Internal PTF7–PTF0 pads are connected to VSS.
Internal FP32–FP27 pads are unconnected.
Internal VLCD pad is connected to VDD.
25
26
27
28
29
30
31
PTD2/MOSI
PTD1/MISO
PTC1/FP20
PTC2/FP21
PTC3/FP22
PTC4/FP23
IRQ
33
PTD0/SS/CALIN
RST
32
24
PTC0/FP19
16
17
PTE1/FP12
23
PTC5/FP24
PTE7/FP18
34
22
15
PTE6/FP17
PTE0/FP11
21
PTC6/FP25
PTE5/FP16
35
20
14
PTE4/FP15
FP10
19
13
PTE3/FP14
FP9
18
12
PTE2/FP13
PTD7/KBI7/SDA
PTD3/SPSCK/CALOUT
Freescale Semiconductor, Inc...
FP0/BP3
VDDA
BP2
63
64
PTD4/KBI4/T1CLK
General Description
Pin Assignments
Figure 1-3. 64-pin QFP and LQFP Pin Assignment
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
General Description
For More Information On This Product,
Go to: www.freescale.com
43
Freescale Semiconductor, Inc.
General Description
1.6 Pin Functions
Description of pin functions are provided here.
1.6.1 Power Supply Pins (VDD and VSS)
Freescale Semiconductor, Inc...
VDD and VSS are the power supply and ground pins. The MCU operates
from a single power supply.
Fast signal transitions on MCU pins place high, short-duration current
demands on the power supply. To prevent noise problems, take special
care to provide power supply bypassing at the MCU as Figure 1-4
shows. Place the C1 bypass capacitor as close to the MCU as possible.
Use a high-frequency-response ceramic capacitor for C1. C2 is an
optional bulk current bypass capacitor for use in applications that require
the port pins to source high current levels. VSS must be grounded for
proper MCU operation.
1.6.2 Analog Power Supply Pin (VDDA)
VDDA is the voltage supply for the analog parts of the MCU. Connect the
VDDA pin to the same voltage potential as VDD. For maximum noise
immunity, route VDDA via a separate trace and place bypass capacitors
as close as possible to the package (see Figure 1-4).
MCU
VDD
0.1 µF
VSS
VDDA
0.1 µF
C1(a)
C1(b)
+
+
C2(a)
C2(b)
VDD
NOTE: Component values shown
represent typical applications.
VDD
Figure 1-4. Power Supply Bypassing
Data Sheet
44
MC68HC908LJ24/LK24 — Rev. 2
General Description
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
General Description
Pin Functions
1.6.3 LCD Bias Voltage (VLCD)
VLCD is the bias voltage supply for the LCD driver module. Connect the
VLCD pin to the same voltage potential as VDD. For maximum noise
immunity, route VLCD via a separate trace and place bypass capacitors
as close as possible to the package. See Section 17. Liquid Crystal
Display (LCD) Driver.
Freescale Semiconductor, Inc...
1.6.4 Oscillator Pins (OSC1 and OSC2)
The OSC1 and OSC2 pins are the connections for the on-chip oscillator
circuit. The OSC1 pin contains a schmitt-trigger and a spike filter for
improved EMC performance. See Section 7. Oscillator (OSC).
1.6.5 External Reset Pin (RST)
A logic 0 on the RST pin forces the MCU to a known start-up state. RST
is bidirectional, allowing a reset of the entire system. It is driven low when
any internal reset source is asserted. A Schmitt-trigger and a spike filter
is associated with this pin so that the device is more robust to EMC
noise. This pin also contains an internal pullup resistor. See 9.4 Reset
and System Initialization.
1.6.6 External Interrupt Pin (IRQ)
IRQ is an asynchronous external interrupt pin. This pin contains an
internal pullup resistor. See Section 19. External Interrupt (IRQ).
1.6.7 External Filter Capacitor Pin (CGMXFC)
CGMXFC is an external filter capacitor connection for the CGM.
See 8.4.9 CGM External Connections.
1.6.8 ADC Voltage High Reference Pin (VREFH)
VREFH is the voltage input pin for the ADC voltage high reference.
See 16.7.4 ADC Voltage Reference High Pin (VREFH).
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
General Description
For More Information On This Product,
Go to: www.freescale.com
45
Freescale Semiconductor, Inc.
General Description
1.6.9 ADC Voltage Low Reference Pin (VREFL)
VREFL is the voltage input pin for the ADC voltage low reference.
See 16.7.5 ADC Voltage Reference Low Pin (VREFL).
Freescale Semiconductor, Inc...
1.6.10 Port A Input/Output (I/O) Pins (PTA7—PTA0)
PTA7–PTA0 are special function, bidirectional port pins. See 18.3 Port A.
PTA7/ADC3–PTA4/ADC0 are shared with ADC, and
PTA3/KBI3–PTA0/KBI0 are shared with the KBI module.
1.6.11 Port B I/O Pins (PTB7—PTB0)
PTB7–PTB0 are special function, bidirectional port pins, with high
current sink capability on PTB5–PTB0. See 18.4 Port B.
PTB1/RxD–PTB0/TxD are shared with the SCI module,
PTB5/T2CH1–PTB4/T2CH0 are shared with the TIM2,
PTB3/T1CH1–PTB2/T1CH0 are shared with the TIM1,
PTB7/ADC5–PTB6/ADC4 are shared with the ADC.
1.6.12 Port C I/O Pins (PTC7—PTC0)
PTC7–PTC0 are special function, bidirectional port pins, with high
current sink capability. See 18.5 Port C.
PTC7/FP26–PTC0/FP19 are shared with the LCD frontplane drivers.
1.6.13 Port D I/O Pins (PTD7—PTD0)
PTD7–PTD0 are special function, bidirectional port pins.
PTD7/KBI7/SDA–PTD6/KBI6/SCL are shared with the KBI and IIC
modules. See 18.6 Port D.
PTD5/KBI5/T2CLK–PTD4/KBI4/T1CLK are shared with the KBI, TIM1,
and TIM2 modules.
PTD3/SPSCK/CALOUT–PTD0/SS/CALIN are shared with the SPI and
RTC modules.
Data Sheet
46
MC68HC908LJ24/LK24 — Rev. 2
General Description
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
General Description
Pin Functions
1.6.14 Port E I/O Pins (PTE7—PTE0)
PTE7–PTE0 are special function, bidirectional port pins, with high
current sink capability. See 18.7 Port E.
PTE7/FP18–PTE0/FP11 are shared with the LCD frontplane drivers.
Freescale Semiconductor, Inc...
1.6.15 Port F I/O Pins (PTF7—PTF0)
PTF7–PTF0 are general purpose bidirectional port pins with high current
sink capability. See 18.8 Port F.
1.6.16 LCD Backplane and Frontplane (BP0-BP2, BP3/FP0, FP1—FP10, FP27—FP32)
BP0–BP2 are the LCD backplane driver pins and FP1– FP10 and
FP27–FP32 are the frontplane driver pins. FP0/BP3 is the shared driver
pin between FP0 and BP3.
See Section 17. Liquid Crystal Display (LCD) Driver.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
General Description
For More Information On This Product,
Go to: www.freescale.com
47
Freescale Semiconductor, Inc.
Freescale Semiconductor, Inc...
General Description
Data Sheet
48
MC68HC908LJ24/LK24 — Rev. 2
General Description
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Data Sheet – MC68HC908LJ24
Section 2. Memory Map
Freescale Semiconductor, Inc...
2.1 Contents
2.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.3
Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . 49
2.4
Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.5
Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.2 Introduction
The CPU08 can address 64k-bytes of memory space. The memory
map, shown in Figure 2-1, includes:
•
24,576 bytes of user FLASH memory
•
768 bytes of random-access memory (RAM)
•
48 bytes of user-defined vectors
•
959 bytes of monitor ROM
2.3 Unimplemented Memory Locations
Accessing an unimplemented location can cause an illegal address
reset. In the memory map (Figure 2-1) and in register figures in this
document, unimplemented locations are shaded.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Memory Map
For More Information On This Product,
Go to: www.freescale.com
49
Freescale Semiconductor, Inc.
Memory Map
2.4 Reserved Memory Locations
Accessing a reserved location can have unpredictable effects on MCU
operation. In Figure 2-2 and in register figures in this document,
reserved locations are marked with the word Reserved or with the
letter R.
2.5 Input/Output (I/O) Section
Freescale Semiconductor, Inc...
Most of the control, status, and data registers are in the zero page
$0000–$007F. Additional I/O registers have the following addresses:
•
$FE00; SIM break status register, SBSR
•
$FE01; SIM reset status register, SRSR
•
$FE03; SIM break flag control register, SBFCR
•
$FE04; Interrupt status register 1, INT1
•
$FE05; Interrupt status register 2, INT2
•
$FE06; Interrupt status register 3, INT3
•
$FE07; Reserved
•
$FE08; FLASH control register, FLCR
•
$FE09; Reserved
•
$FE0A; Reserved
•
$FE0B; Reserved
•
$FE0C; break address register high, BRKH
•
$FE0D; break address register low, BRKL
•
$FE0E; break status and control register, BRKSCR
•
$FE0F; LVI status register, LVISR
•
$FFCF; FLASH block protect register, FLBPR (FLASH register)
•
$FFFF; COP control register, COPCTL
Data registers are shown in Figure 2-2, Table 2-1 is a list of vector
locations.
Data Sheet
50
MC68HC908LJ24/LK24 — Rev. 2
Memory Map
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Freescale Semiconductor, Inc...
Memory Map
Input/Output (I/O) Section
$0000
↓
$007F
I/O Registers
128 Bytes
$0080
↓
$037F
RAM
768 Bytes
$0380
↓
$8FFF
Unimplemented
35,968 Bytes
$9000
↓
$EFFF
User FLASH Memory
24,576 Bytes
$F000
↓
$FBFF
Unimplemented
3,072 Bytes
$FC00
↓
$FDFF
Monitor ROM 1
512 Bytes
$FE00
SIM Break Status Register (SBSR)
$FE01
SIM Reset Status Register (SRSR)
$FE02
Reserved
$FE03
SIM Break Flag Control Register (SBFCR)
$FE04
Interrupt Status Register 1 (INT1)
$FE05
Interrupt Status Register 2 (INT2)
$FE06
Interrupt Status Register 3 (INT3)
$FE07
Reserved
$FE08
FLASH Control Register (FLCR)
$FE09
Reserved
$FE0A
Reserved
$FE0B
Reserved
$FE0C
Break Address Register High (BRKH)
$FE0D
Break Address Register Low (BRKL)
$FE0E
Break Status and Control Register (BRKSCR)
$FE0F
LVI Status Register (LVISR)
$FE10
↓
$FFCE
Monitor ROM 2
447 Bytes
$FFCF
FLASH Block Protect Register (FLBPR)
$FFD0
↓
$FFFF
User Vectors
48 Bytes
Figure 2-1. Memory Map
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Memory Map
For More Information On This Product,
Go to: www.freescale.com
51
Freescale Semiconductor, Inc.
Memory Map
Addr.
Register Name
$0000
Read:
Port A Data Register
Write:
(PTA)
Reset:
Freescale Semiconductor, Inc...
$0001
$0002
$0003
Read:
Port B Data Register
Write:
(PTB)
Reset:
Read:
Port C Data Register
Write:
(PTC)
Reset:
Read:
Port D Data Register
Write:
(PTD)
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
PTA7
PTA6
PTA5
PTA4
PTA3
PTA2
PTA1
PTA0
U
U
U
U
U
U
U
U
PTB7
PTB6
PTB5
PTB4
PTB3
PTB2
PTB1
PTB0
U
U
U
U
U
U
U
U
PTC7
PTC6
PTC5
PTC4
PTC3
PTC2
PTC1
PTC0
U
U
U
U
U
U
U
U
PTD7
PTD6
PTD5
PTD4
PTD3
PTD2
PTD1
PTD0
U
U
U
U
U
U
U
U
DDRA6
DDRA5
DDRA4
DDRA3
DDRA2
DDRA1
DDRA0
0
0
0
0
0
0
0
DDRB6
DDRB5
DDRB4
DDRB3
DDRB2
DDRB1
DDRB0
0
0
0
0
0
0
0
DDRC6
DDRC5
DDRC4
DDRC3
DDRC2
DDRC1
DDRC0
0
0
0
0
0
0
0
DDRD6
DDRD5
DDRD4
DDRD3
DDRD2
DDRD1
DDRD0
0
0
0
0
0
0
0
PTE7
PTE6
PTE5
PTE4
PTE3
PTE2
PTE1
PTE0
U
U
U
U
U
U
U
U
DDRE6
DDRE5
DDRE4
DDRE3
DDRE2
DDRE1
DDRE0
0
0
0
0
0
0
0
= Unimplemented
R
Read:
DDRA7
Data Direction Register A
$0004
Write:
(DDRA)
Reset:
0
Read:
DDRB7
Data Direction Register B
$0005
Write:
(DDRB)
Reset:
0
Read:
DDRC7
Data Direction Register C
$0006
Write:
(DDRC)
Reset:
0
Read:
DDRD7
Data Direction Register D
$0007
Write:
(DDRD)
Reset:
0
$0008
Read:
Port E Data Register
Write:
(PTE)
Reset:
Read:
DDRE7
Data Direction Register E
$0009
Write:
(DDRE)
Reset:
0
U = Unaffected
X = Indeterminate
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 13)
Data Sheet
52
MC68HC908LJ24/LK24 — Rev. 2
Memory Map
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Memory Map
Input/Output (I/O) Section
Addr.
Register Name
$000A
Read:
Port F Data Register
Write:
(PTF)
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
PTF7
PTF6
PTF5
PTF4
PTF3
PTF2
PTF1
PTF0
U
U
U
U
U
U
U
U
DDRF6
DDRF5
DDRF4
DDRF3
DDRF2
DDRF1
DDRF0
0
0
0
0
0
0
0
LEDB5
LEDB4
LEDB3
LEDB2
LEDB1
LEDB0
Freescale Semiconductor, Inc...
Read:
DDRF7
Data Direction Register F
$000B
Write:
(DDRF)
Reset:
0
Read:
Port-B LED Control
Register Write:
(LEDB)
Reset:
$000C
Read:
Port-C LED Control
Register Write:
(LEDC)
Reset:
$000D
Read:
Port-E LED Control
Register Write:
(LEDE)
Reset:
$000E
Read:
Port-F LED Control
Register Write:
(LEDF)
Reset:
$000F
$0010
$0011
Read:
SPI Control Register
Write:
(SPCR)
Reset:
Read:
SPI Status and Control
Register Write:
(SPSCR)
Reset:
Read:
SPI Data Register
Write:
(SPDR)
Reset:
$0012
$0013
0
0
0
0
0
0
0
0
0
0
LEDC7
LEDC6
LEDC5
LEDC4
LEDC3
LEDC2
LEDC1
LEDC0
0
0
0
0
0
0
0
0
LEDE7
LEDE6
LEDE5
LEDE4
LEDE3
LEDE2
LEDE1
LEDE0
0
0
0
0
0
0
0
0
LEDF7
LEDF6
LEDF5
LEDF4
LEDF3
LEDF2
LEDF1
LEDF0
0
0
0
0
0
0
0
0
SPRIE
R
SPMSTR
CPOL
CPHA
SPWOM
SPE
SPTIE
0
0
1
0
1
0
0
0
OVRF
MODF
SPTE
MODFEN
SPR1
SPR0
SPRF
0
0
0
0
1
0
0
0
R7
R6
R5
R4
R3
R2
R1
R0
T7
T6
T5
T4
T3
T2
T1
T0
U
U
U
U
U
U
U
U
M
WAKE
ILTY
PEN
PTY
0
0
0
0
0
= Unimplemented
R
Read:
LOOPS
SCI Control Register 1
Write:
(SCC1)
Reset:
0
U = Unaffected
ERRIE
ENSCI
0
X = Indeterminate
0
0
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 13)
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Memory Map
For More Information On This Product,
Go to: www.freescale.com
53
Freescale Semiconductor, Inc.
Memory Map
Addr.
$0014
Freescale Semiconductor, Inc...
$0015
$0016
$0017
Register Name
Read:
SCI Control Register 2
Write:
(SCC2)
Reset:
5
4
3
2
1
Bit 0
SCTIE
TCIE
SCRIE
ILIE
TE
RE
RWU
SBK
0
0
0
0
0
0
0
0
T8
DMARE
DMATE
ORIE
NEIE
FEIE
PEIE
R8
U
U
0
0
0
0
0
0
Read:
SCI Status Register 1
Write:
(SCS1)
Reset:
SCTE
TC
SCRF
IDLE
OR
NF
FE
PE
1
1
0
0
0
0
0
0
Read:
SCI Status Register 2
Write:
(SCS2)
Reset:
0
0
0
0
0
0
BKF
RPF
0
0
0
0
0
0
0
0
R7
R6
R5
R4
R3
R2
R1
R0
T7
T6
T5
T4
T3
T2
T1
T0
U
U
U
U
U
U
U
U
SCP1
SCP0
R
SCR2
SCR1
SCR0
0
0
0
0
0
0
0
0
0
0
CKTST
TNP1
TNP0
IREN
0
0
0
0
0
0
0
0
0
0
0
0
KEYF
0
IMASKK
MODEK
Read:
SCI Data Register
Write:
(SCDR)
Reset:
Read:
SCI Baud Rate Register
Write:
(SCBR)
Reset:
Read:
SCI Infrared Control
Register Write:
(SCIRCR)
Reset:
$001A
Keyboard Status and Read:
Control Register
Write:
(KBSCR)
Reset:
$001B
Read:
Keyboard Interrupt
Enable Register Write:
(KBIER)
Reset:
$001C
$001D
6
Read:
SCI Control Register 3
Write:
(SCC3)
Reset:
$0018
$0019
Bit 7
Read:
Configuration Register 2
Write:
(CONFIG2)†
Reset:
U = Unaffected
CKS
0
R
0
ACKK
0
0
0
0
0
0
0
0
KBIE7
KBIE6
KBIE5
KBIE4
KBIE3
KBIE2
KBIE1
KBIE0
0
0
0
0
0
0
0
0
PEE
STOP_
IRCDIS
PCEH
PCEL
LVISEL1
LVISEL0
0
0
0
0
0††
1††
= Unimplemented
R
X = Indeterminate
STOP_
DIV2CLK
XCLKEN
0
0
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 13)
Data Sheet
54
MC68HC908LJ24/LK24 — Rev. 2
Memory Map
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Memory Map
Input/Output (I/O) Section
Addr.
$001E
$001F
Register Name
Read:
IRQ Status and Control
Register Write:
(INTSCR)
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
IRQF
0
IMASK
MODE
0
0
0
SSREC
STOP
COPD
0
0
0
PS2
PS1
PS0
ACK
0
Read:
COPRS
Configuration Register 1
Write:
†
(CONFIG1)
Reset:
0
0
0
0
LVISTOP LVIRSTD LVIPWRD
0
0
TOIE
TSTOP
0
0
0††
0
0
0
Freescale Semiconductor, Inc...
† One-time writable register after each reset.
†† Reset by POR only.
Read:
Timer 1 Status and Control
$0020
Register Write:
(T1SC)
Reset:
TOF
0
0
1
0
0
0
0
0
Read:
Timer 1 Counter
Register High Write:
(T1CNTH)
Reset:
Bit 15
14
13
12
11
10
9
Bit 8
0
0
0
0
0
0
0
0
Read:
Timer 1 Counter
Register Low Write:
(T1CNTL)
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
Bit 15
14
13
12
11
10
9
Bit 8
1
1
1
1
1
1
1
1
Bit 7
6
5
4
3
2
1
Bit 0
1
1
1
1
1
1
1
1
CH0IE
MS0B
MS0A
ELS0B
ELS0A
TOV0
CH0MAX
0
0
0
0
0
0
0
0
Bit 15
14
13
12
11
10
9
Bit 8
X
X
X
X
X
X
X
X
= Unimplemented
R
$0021
$0022
$0023
$0024
Read:
Timer 1 Counter Modulo
Register High Write:
(T1MODH)
Reset:
Read:
Timer 1 Counter Modulo
Register Low Write:
(T1MODL)
Reset:
Read:
Timer 1 Channel 0 Status
$0025
and Control Register Write:
(T1SC0)
Reset:
$0026
Read:
Timer 1 Channel 0
Register High Write:
(T1CH0H)
Reset:
U = Unaffected
0
CH0F
0
X = Indeterminate
TRST
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 13)
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Memory Map
For More Information On This Product,
Go to: www.freescale.com
55
Freescale Semiconductor, Inc.
Memory Map
Addr.
Register Name
Read:
Timer 1 Channel 0
Register Low Write:
(T1CH0L)
Reset:
$0027
Freescale Semiconductor, Inc...
Read:
Timer 1 Channel 1 Status
$0028
and Control Register Write:
(T1SC1)
Reset:
Read:
Timer 1 Channel 1
Register High Write:
(T1CH1H)
Reset:
$0029
Read:
Timer 1 Channel 1
Register Low Write:
(T1CH1L)
Reset:
$002A
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
X
X
X
X
X
X
X
X
MS1A
ELS1B
ELS1A
TOV1
CH1MAX
CH1F
0
CH1IE
0
0
0
0
0
0
0
0
0
Bit 15
14
13
12
11
10
9
Bit 8
X
X
X
X
X
X
X
X
Bit 7
6
5
4
3
2
1
Bit 0
X
X
X
X
X
X
X
X
TOIE
TSTOP
0
0
PS2
PS1
PS0
Read:
Timer 2 Status and Control
$002B
Register Write:
(T2SC)
Reset:
TOF
0
0
1
0
0
0
0
0
Read:
Timer 2 Counter
Register High Write:
(T2CNTH)
Reset:
Bit 15
14
13
12
11
10
9
Bit 8
0
0
0
0
0
0
0
0
Read:
Timer 2 Counter
Register Low Write:
(T2CNTL)
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
Bit 15
14
13
12
11
10
9
Bit 8
1
1
1
1
1
1
1
1
Bit 7
6
5
4
3
2
1
Bit 0
1
1
1
1
1
1
1
1
CH0IE
MS0B
MS0A
ELS0B
ELS0A
TOV0
CH0MAX
0
0
0
0
0
0
0
= Unimplemented
R
$002C
$002D
$002E
$002F
Read:
Timer 2 Counter Modulo
Register High Write:
(T2MODH)
Reset:
Read:
Timer 2 Counter Modulo
Register Low Write:
(T2MODL)
Reset:
Read:
Timer 2 Channel 0 Status
$0030
and Control Register Write:
(T2SC0)
Reset:
U = Unaffected
0
CH0F
0
0
X = Indeterminate
TRST
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 13)
Data Sheet
56
MC68HC908LJ24/LK24 — Rev. 2
Memory Map
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Memory Map
Input/Output (I/O) Section
Addr.
Register Name
Read:
Timer 2 Channel 0
Register High Write:
(T2CH0H)
Reset:
$0031
Read:
Timer 2 Channel 0
Register Low Write:
(T2CH0L)
Reset:
Freescale Semiconductor, Inc...
$0032
Read:
Timer 2 Channel 1 Status
$0033
and Control Register Write:
(T2SC1)
Reset:
Read:
Timer 2 Channel 1
Register High Write:
(T2CH1H)
Reset:
$0034
Read:
Timer 2 Channel 1
Register Low Write:
(T2CH1L)
Reset:
$0035
$0036
$0037
$0038
$0039
$003A
Read:
PLL Control Register
Write:
(PTCL)
Reset:
Read:
PLL Bandwidth Control
Register Write:
(PBWC)
Reset:
Read:
PLL Multiplier Select
Register High Write:
(PMSH)
Reset:
Read:
PLL Multiplier Select
Register Low Write:
(PMSL)
Reset:
Read:
PLL VCO Range Select
Register Write:
(PMRS)
Reset:
U = Unaffected
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
X
X
X
X
X
X
X
X
Bit 7
6
5
4
3
2
1
Bit 0
X
X
X
X
X
X
X
X
MS1A
ELS1B
ELS1A
TOV1
CH1MAX
CH1F
0
CH1IE
0
0
0
0
0
0
0
0
0
Bit 15
14
13
12
11
10
9
Bit 8
X
X
X
X
X
X
X
X
Bit 7
6
5
4
3
2
1
Bit 0
X
X
X
X
X
X
X
X
PLLON
BCS
PRE1
PRE0
VPR1
VPR0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
MUL11
MUL10
MUL9
MUL8
PLLIE
0
AUTO
PLLF
0
LOCK
ACQ
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
MUL7
MUL6
MUL5
MUL4
MUL3
MUL2
MUL1
MUL0
0
1
0
0
0
0
0
0
VRS7
VRS6
VRS5
VRS4
VRS3
VRS2
VRS1
VRS0
0
1
0
0
0
0
0
0
= Unimplemented
R
X = Indeterminate
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 13)
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Memory Map
For More Information On This Product,
Go to: www.freescale.com
57
Freescale Semiconductor, Inc.
Memory Map
Addr.
$003B
Freescale Semiconductor, Inc...
$003C
$003D
$003E
Register Name
Bit 7
6
5
4
Read:
PLL Reference Divider
Select Register Write:
(PMDS)
Reset:
0
0
0
0
0
0
0
Read:
ADC Status and Control
Register Write:
(ADCSR)
Reset:
COCO
AIEN
0
Read:
ADC Data Register high
Write:
(ADRH)
Reset:
Read:
ADC Data Register low
(ADRL) Write:
Reset:
ADC Clock Control Read:
Register
Write:
(ADCLK)
Reset:
$003F
$0040
Read:
RTC Calibration Control
Register Write:
(RTCCOMR)
Reset:
Read:
RTC Calibration Data
Register Write:
(RTCCDAT)
Reset:
$0041
$0042
$0043
Read:
RTC Control Register 1
Write:
(RTCCR1)
Reset:
3
2
1
Bit 0
RDS3
RDS2
RDS1
RDS0
0
0
0
0
1
ADCO
ADCH4
ADCH3
ADCH2
ADCH1
ADCH0
0
0
1
1
1
1
1
ADx
ADx
ADx
ADx
ADx
ADx
ADx
ADx
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
ADx
ADx
ADx
ADx
ADx
ADx
ADx
ADx
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
ADIV2
ADIV1
ADIV0
ADICLK
MODE1
MODE0
0
0
0
0
0
0
0
1
0
0
R
R
CAL
AUTOCAL
OUTF1
OUTF0
0
0
0
0
0
0
1
0
EOVL
0
E5
E4
E3
E2
E1
E0
U
0
U
U
U
U
U
U
ALMIE
CHRIE
DAYIE
HRIE
MINIE
SECIE
TB1IE
TB2IE
0
0
0
0
0
0
0
0
CHRE
RTCE
TBH
0
0
0
0
0††
0
0
0
0
= Unimplemented
R
Read:
COMEN
RTC Control Register 2
Write:
(RTCCR2)
Reset:
U
0
CHRCLR
0
R
0
0
0
0
RTCWE1 RTCWE0
†† Reset by POR only.
U = Unaffected
X = Indeterminate
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 7 of 13)
Data Sheet
58
MC68HC908LJ24/LK24 — Rev. 2
Memory Map
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Memory Map
Input/Output (I/O) Section
Addr.
Register Name
Bit 7
6
5
4
3
2
1
Bit 0
ALMF
CHRF
DAYF
HRF
MINF
SECF
TB1F
TB2F
$0044
Read:
RTC Status Register
Write:
(RTCSR)
Reset:
0
0
0
0
0
0
0
0
Read:
Alarm Minute register
Write:
(ALMR)
Reset:
0
0
AM5
AM4
AM3
AM2
AM1
AM0
0
0
U
U
U
U
U
U
Read:
Alarm Hour register
Write:
(ALHR)
Reset:
0
0
0
AH4
AH3
AH2
AH1
AH0
0
0
0
U
U
U
U
U
Read:
Second Register
Write:
(SECR)
Reset:
0
0
SEC5
SEC4
SEC3
SEC2
SEC1
SEC0
0
0
U
U
U
U
U
U
Read:
Minute Register
Write:
(MINR)
Reset:
0
0
MIN5
MIN4
MIN3
MIN2
MIN1
MIN0
0
0
U
U
U
U
U
U
Read:
Hour Register
Write:
(HRR)
Reset:
0
0
0
HR4
HR3
HR2
HR1
HR0
0
0
0
U
U
U
U
U
Read:
Day Register
Write:
(DAYR)
Reset:
0
0
0
DAY4
DAY3
DAY2
DAY1
DAY0
0
0
0
U
U
U
U
U
Read:
Month Register
Write:
(MTHR)
Reset:
0
0
0
0
MTH3
MTH2
MTH1
MTH0
0
0
0
0
U
U
U
U
YR7
YR6
YR5
YR4
YR3
YR2
YR1
YR0
U
U
U
U
U
U
U
U
0
0
0
0
0
DOW2
DOW1
DOW0
0
0
0
0
0
U
U
U
= Unimplemented
R
Freescale Semiconductor, Inc...
$0045
$0046
$0047
$0048
$0049
$004A
$004B
Read:
Year Register
Write:
(YRR)
Reset:
$004C
$004D
Read:
Day-Of-Week Register
Write:
(DOWR)
Reset:
U = Unaffected
X = Indeterminate
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 8 of 13)
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Memory Map
For More Information On This Product,
Go to: www.freescale.com
59
Freescale Semiconductor, Inc.
Memory Map
Addr.
$004E
$004F
Register Name
Bit 7
6
5
4
3
2
1
Bit 0
Read:
Chronograph Data
Register Write:
(CHRR)
Reset:
0
CHR6
CHR5
CHR4
CHR3
CHR2
CHR1
CHR0
0
0
0
0
0
0
0
0
Read:
LCD Clock Register
Write:
(LCDCLK)
Reset:
0
FCCTL1
FCCTL0
DUTY1
DUTY0
LCLK2
LCLK1
LCLK0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
FC
LC
LCCON3
LCCON2
LCCON1
LCCON0
Freescale Semiconductor, Inc...
Read:
$0050
Reserved Write:
Reset:
$0051
$0052
$0053
$0054
$0055
$0056
$0057
Read:
LCD Control Register
Write:
(LCDCR)
Reset:
Read:
LCD Data Register 1
Write:
(LDAT1)
Reset:
Read:
LCD Data Register 2
Write:
(LDAT2)
Reset:
Read:
LCD Data Register 3
Write:
(LDAT3)
Reset:
Read:
LCD Data Register 4
Write:
(LDAT4)
Reset:
Read:
LCD Data Register 5
Write:
(LDAT5)
Reset:
Read:
LCD Data Register 6
Write:
(LDAT6)
Reset:
U = Unaffected
LCDE
0
0
0
0
0
0
0
0
0
F1B3
F1B2
F1B1
F1B0
F0B3
F0B2
F0B1
F0B0
U
U
U
U
U
U
U
U
F3B3
F3B2
F3B1
F3B0
F2B3
F2B2
F2B1
F2B0
U
U
U
U
U
U
U
U
F5B3
F5B2
F5B1
F5B0
F4B3
F4B2
F4B1
F4B0
U
U
U
U
U
U
U
U
F7B3
F7B2
F7B1
F7B0
F6B3
F6B2
F6B1
F6B0
U
U
U
U
U
U
U
U
F9B3
F9B2
F9B1
F9B0
F8B3
F8B2
F8B1
F8B0
U
U
U
U
U
U
U
U
F11B3
F11B2
F11B1
F11B0
F10B3
F10B2
F10B1
F10B0
U
U
U
U
U
U
U
U
= Unimplemented
R
X = Indeterminate
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 9 of 13)
Data Sheet
60
MC68HC908LJ24/LK24 — Rev. 2
Memory Map
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Memory Map
Input/Output (I/O) Section
Addr.
Register Name
$0058
Read:
LCD Data Register 7
Write:
(LDAT7)
Reset:
Freescale Semiconductor, Inc...
$0059
$005A
$005B
$005C
$005D
$005E
$005F
$0060
$0061
Read:
LCD Data Register 8
Write:
(LDAT8)
Reset:
Read:
LCD Data Register 9
Write:
(LDAT9)
Reset:
Read:
LCD Data Register 10
Write:
(LDAT10)
Reset:
Read:
LCD Data Register 11
Write:
(LDAT11)
Reset:
Read:
LCD Data Register 12
Write:
(LDAT12)
Reset:
Read:
LCD Data Register 13
Write:
(LDAT13)
Reset:
Read:
LCD Data Register 14
Write:
(LDAT14)
Reset:
Read:
LCD Data Register 15
Write:
(LDAT15)
Reset:
Read:
LCD Data Register 16
Write:
(LDAT16)
Reset:
U = Unaffected
Bit 7
6
5
4
3
2
1
Bit 0
F13B3
F13B2
F13B1
F13B0
F12B3
F12B2
F12B1
F12B0
U
U
U
U
U
U
U
U
F15B3
F15B2
F15B1
F15B0
F14B3
F14B2
F14B1
F14B0
U
U
U
U
U
U
U
U
F17B3
F17B2
F17B1
F17B0
F16B3
F16B2
F16B1
F16B0
U
U
U
U
U
U
U
U
F19B3
F19B2
F19B1
F19B0
F18B3
F18B2
F18B1
F18B0
U
U
U
U
U
U
U
U
F21B3
F21B2
F21B1
F21B0
F20B3
F20B2
F20B1
F20B0
U
U
U
U
U
U
U
U
F23B3
F23B2
F23B1
F23B0
F22B3
F22B2
F22B1
F22B0
U
U
U
U
U
U
U
U
F25B3
F25B2
F25B1
F25B0
F24B3
F24B2
F24B1
F24B0
U
U
U
U
U
U
U
U
F27B3
F27B2
F27B1
F27B0
F26B3
F26B2
F26B1
F26B0
U
U
U
U
U
U
U
U
F29B3
F29B2
F29B1
F29B0
F28B3
F28B2
F28B1
F28B0
U
U
U
U
U
U
U
U
F31B3
F31B2
F31B1
F31B0
F30B3
F30B2
F30B1
F30B0
U
U
U
U
U
U
U
U
= Unimplemented
R
X = Indeterminate
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 10 of 13)
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Memory Map
For More Information On This Product,
Go to: www.freescale.com
61
Freescale Semiconductor, Inc.
Memory Map
Addr.
$0062
Register Name
Freescale Semiconductor, Inc...
$006B
$006C
$006D
6
5
4
3
2
1
Bit 0
F32B3
F32B2
F32B1
F32B0
U
U
U
U
MMAST
MMRW
MMBR2
MMBR1
MMBR0
0
0
0
0
0
0
MMAD6
MMAD5
MMAD4
MMAD3
MMAD2
0
1
0
0
0
0
0
0
0
Read:
LCD Data Register 17
Write:
(LDAT17)
Reset:
Read:
$0063
to
$0069
$006A
Bit 7
Unimplemented Write:
Reset:
Read: MMALIF MMNAKIF
MMIIC Master Control
Register Write:
0
0
(MIMCR)
Reset:
0
0
Read:
MMAD7
MMIIC Address Register
Write:
(MMADR)
Reset:
1
Read:
MMIIC Control Register
Write:
(MMCR)
Reset:
MMEN
MMIEN
0
0
Read: MMRXIF
MMIIC Status Register
Write:
0
(MMSR)
Reset:
0
$006E
$006F
$0070
to
$007F
Read:
MMIIC Data Transmit
MMTD7
Register Write:
(MMDTR)
Reset:
1
Read: MMRD7
MMIIC Data Receive
Register Write:
(MMDRR)
Reset:
0
Read:
Reserved Write:
R
MMBB
MMAD1 MMEXTAD
MMTXAK REPSEN
0
0
MMTXIF MMATCH MMSRW MMRXAK
0
0
0
0
0
0
0
MMTXBE MMRXBF
0
0
0
0
1
0
1
0
MMTD6
MMTD5
MMTD4
MMTD3
MMTD2
MMTD1
MMTD0
1
1
1
1
1
1
1
MMRD6
MMRD5
MMRD4
MMRD3
MMRD2
MMRD1
MMRD0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
= Unimplemented
R
Reset:
U = Unaffected
X = Indeterminate
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 11 of 13)
Data Sheet
62
MC68HC908LJ24/LK24 — Rev. 2
Memory Map
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Memory Map
Input/Output (I/O) Section
Addr.
Register Name
Read:
SIM Break Status Register
$FE00
Write:
(SBSR)
Reset:
Bit 7
6
5
4
3
2
R
R
R
R
R
R
1
Bit 0
SBSW
R
Note
0
Note: Writing a logic 0 clears SBSW.
Freescale Semiconductor, Inc...
Read:
SIM Reset Status Register
$FE01
Write:
(SRSR)
POR:
Read:
$FE02
Reserved Write:
POR
PIN
COP
ILOP
ILAD
0
LVI
0
1
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
BCFE
R
R
R
R
R
R
R
Reset:
$FE03
Read:
SIM Break Flag Control
Register Write:
(SBFCR)
Reset:
0
Read:
Interrupt Status Register 1
Write:
$FE04
(INT1)
Reset:
IF6
IF5
IF4
IF3
IF2
IF1
0
0
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Read:
Interrupt Status Register 2
$FE05
Write:
(INT2)
Reset:
IF14
IF13
IF12
IF11
IF10
IF9
IF8
IF7
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Read:
Interrupt Status Register 3
$FE06
Write:
(INT3)
Reset:
0
0
0
0
IF18
IF17
IF16
IF15
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
0
0
0
0
HVEN
MASS
ERASE
PGM
0
0
0
0
0
0
0
0
= Unimplemented
R
Read:
$FE07
Reserved Write:
Reset:
$FE08
Read:
FLASH Control Register
Write:
(FLCR)
Reset:
U = Unaffected
X = Indeterminate
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 12 of 13)
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Memory Map
For More Information On This Product,
Go to: www.freescale.com
63
Freescale Semiconductor, Inc.
Memory Map
Addr.
Register Name
Read:
$FE09
Reserved Write:
Bit 7
6
5
4
3
2
1
Bit 0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
Bit 15
14
13
12
11
10
9
Bit 8
0
0
0
0
0
0
0
0
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
BRKE
BRKA
0
0
0
0
0
0
0
0
0
0
0
0
0
0
LVIIF
0
0
0
0
0
Reset:
Read:
$FE0A
Reserved Write:
Reset:
Freescale Semiconductor, Inc...
Read:
$FE0B
Reserved Write:
Reset:
Read:
Break Address
Register High Write:
(BRKH)
Reset:
$FE0C
Read:
Break Address
Register Low Write:
(BRKL)
Reset:
$FE0D
Read:
Break Status and Control
$FE0E
Register Write:
(BRKSCR)
Reset:
Read: LVIOUT
Low-Voltage Inhibit Status
$FE0F
Register Write:
(LVISR)
Reset:
0
Read:
FLASH Block Protect
Register Write:
(FLBPR)#
Reset:
$FFCF
BPR7
LVIIE
LVIIACK
0
0
0
0
0
0
0
BPR6
BPR5
BPR4
BPR3
BPR2
BPR1
BPR0
Unaffected by reset; $FF when blank
# Non-volatile FLASH register; write by programming.
$FFFF
Read:
COP Control Register
Write:
(COPCTL)
Reset:
U = Unaffected
Low byte of reset vector
Writing clears COP counter (any value)
Unaffected by reset
X = Indeterminate
= Unimplemented
R
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 13 of 13)
Data Sheet
64
MC68HC908LJ24/LK24 — Rev. 2
Memory Map
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Memory Map
Input/Output (I/O) Section
.
Table 2-1. Vector Addresses
Priority
Lowest
INT Flag
IF18
IF17
IF16
Freescale Semiconductor, Inc...
IF15
IF14
IF13
IF12
IF11
IF10
IF9
IF8
IF7
IF6
IF5
IF4
IF3
IF2
IF1
—
Highest
—
Address
$FFD8
$FFD9
$FFDA
$FFDB
$FFDC
$FFDD
$FFDE
$FFDF
$FFE0
$FFE1
$FFE2
$FFE3
$FFE4
$FFE5
$FFE6
$FFE7
$FFE8
$FFE9
$FFEA
$FFEB
$FFEC
$FFED
$FFEE
$FFEF
$FFF0
$FFF1
$FFF2
$FFF3
$FFF4
$FFF5
$FFF6
$FFF7
$FFF8
$FFF9
$FFFA
$FFFB
$FFFC
$FFFD
$FFFE
$FFFF
Vector
Real Time Clock
ADC Conversion Complete
Keyboard
MMIIC
SCI Transmit
SCI Receive
SCI Error
SPI Receive
SPI Transmit
TIM2 Overflow
TIM2 Channel 1
TIM2 Channel 0
TIM1 Overflow
TIM1 Channel 1
TIM1 Channel 0
PLL
LVI
IRQ Vector (High)
IRQ Vector (Low)
SWI Vector (High)
SWI Vector (Low)
Reset Vector (High)
Reset Vector (Low)
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Memory Map
For More Information On This Product,
Go to: www.freescale.com
65
Freescale Semiconductor, Inc.
Freescale Semiconductor, Inc...
Memory Map
Data Sheet
66
MC68HC908LJ24/LK24 — Rev. 2
Memory Map
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Data Sheet – MC68HC908LJ24
Section 3. Random-Access Memory (RAM)
Freescale Semiconductor, Inc...
3.1 Contents
3.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
3.2 Introduction
This section describes the 768 bytes of RAM (random-access memory).
3.3 Functional Description
Addresses $0080 through $037F are RAM locations. The location of the
stack RAM is programmable. The 16-bit stack pointer allows the stack to
be anywhere in the 64K-byte memory space.
NOTE:
For correct operation, the stack pointer must point only to RAM
locations.
Within page zero are 128 bytes of RAM. Because the location of the
stack RAM is programmable, all page zero RAM locations can be used
for I/O control and user data or code. When the stack pointer is moved
from its reset location at $00FF out of page zero, direct addressing mode
instructions can efficiently access all page zero RAM locations. Page
zero RAM, therefore, provides ideal locations for frequently accessed
global variables.
Before processing an interrupt, the CPU uses five bytes of the stack to
save the contents of the CPU registers.
NOTE:
For M6805 compatibility, the H register is not stacked.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Random-Access Memory (RAM)
For More Information On This Product,
Go to: www.freescale.com
67
Freescale Semiconductor, Inc.
Random-Access Memory (RAM)
During a subroutine call, the CPU uses two bytes of the stack to store
the return address. The stack pointer decrements during pushes and
increments during pulls.
Be careful when using nested subroutines. The CPU may overwrite data
in the RAM during a subroutine or during the interrupt stacking
operation.
Freescale Semiconductor, Inc...
NOTE:
Data Sheet
68
MC68HC908LJ24/LK24 — Rev. 2
Random-Access Memory (RAM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Data Sheet – MC68HC908LJ24
Section 4. FLASH Memory (FLASH)
Freescale Semiconductor, Inc...
4.1 Contents
4.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
4.4
FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5
FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.6
FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.7
FLASH Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . .74
4.8
FLASH Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.8.1
FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Introduction
This section describes the operation of the embedded FLASH memory.
This memory can be read, programmed, and erased from a single
external supply. The program and erase operations are enabled through
the use of an internal charge pump.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
FLASH Memory (FLASH)
For More Information On This Product,
Go to: www.freescale.com
69
Freescale Semiconductor, Inc.
FLASH Memory (FLASH)
Addr.
$FE08
Register Name
Bit 7
6
5
4
0
0
0
0
0
0
0
BPR7
BPR6
BPR5
Read:
FLASH Control Register
Write:
(FLCR)
Reset:
$FFCF
Read:
FLASH Block Protect
Register Write:
(FLBPR)#
Reset:
3
2
1
Bit 0
HVEN
MASS
ERASE
PGM
0
0
0
0
0
BPR4
BPR3
BPR2
BPR1
BPR0
Unaffected by reset; $FF when blank
Freescale Semiconductor, Inc...
# Non-volatile FLASH register; write by programming.
= Unimplemented
Figure 4-1. FLASH I/O Register Summary
4.3 Functional Description
The FLASH memory consists of an array of 24,576 bytes for user
memory plus a block of 48 bytes for user interrupt vectors. An erased bit
reads as logic 1 and a programmed bit reads as a logic 0. The FLASH
memory page size is defined as 128 bytes, and is the minimum size that
can be erased in a page erase operation. Program and erase operations
are facilitated through control bits in FLASH control register (FLCR). The
address ranges for the FLASH memory are:
•
$9000–$EFFF; user memory, 24,576 bytes
•
$FFD0–$FFFF; user interrupt vectors, 48 bytes
Programming tools are available from Motorola. Contact your local
Motorola representative for more information.
NOTE:
A security feature prevents viewing of the FLASH contents.1
1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or
copying the FLASH difficult for unauthorized users.
Data Sheet
70
MC68HC908LJ24/LK24 — Rev. 2
FLASH Memory (FLASH)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
FLASH Memory (FLASH)
FLASH Control Register
4.4 FLASH Control Register
The FLASH control register (FLCR) controls FLASH program and erase
operations.
Address:
Read:
$FE08
Bit 7
6
5
4
0
0
0
0
3
2
1
Bit 0
HVEN
MASS
ERASE
PGM
0
0
0
0
Write:
Freescale Semiconductor, Inc...
Reset:
0
0
0
0
Figure 4-2. FLASH Control Register (FLCR)
HVEN — High Voltage Enable Bit
This read/write bit enables the charge pump to drive high voltages for
program and erase operations in the array. HVEN can only be set if
either PGM = 1 or ERASE = 1 and the proper sequence for program
or erase is followed.
1 = High voltage enabled to array and charge pump on
0 = High voltage disabled to array and charge pump off
MASS — Mass Erase Control Bit
This read/write bit configures the memory for mass erase operation or
block erase operation when the ERASE bit is set.
1 = Mass Erase operation selected
0 = Block Erase operation selected
ERASE — Erase Control Bit
This read/write bit configures the memory for erase operation.
ERASE is interlocked with the PGM bit such that both bits cannot be
equal to 1 or set to 1 at the same time.
1 = Erase operation selected
0 = Erase operation not selected
PGM — Program Control Bit
This read/write bit configures the memory for program operation.
PGM is interlocked with the ERASE bit such that both bits cannot be
equal to 1 or set to 1 at the same time.
1 = Program operation selected
0 = Program operation not selected
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
FLASH Memory (FLASH)
For More Information On This Product,
Go to: www.freescale.com
71
Freescale Semiconductor, Inc.
FLASH Memory (FLASH)
4.5 FLASH Page Erase Operation
Use the following procedure to erase a page of FLASH memory. A page
consists of 128 consecutive bytes starting from addresses $xx00 or
$xx80. The 48-byte user interrupt vectors area also forms a page. The
48-byte user interrupt vectors cannot be erased by the page erase
operation because of security reasons. Mass erase is required to erase
this page.
Freescale Semiconductor, Inc...
1. Set the ERASE bit and clear the MASS bit in the FLASH control
register.
2. Read the FLASH block protect register.
3. Write any data to any FLASH address within the page address
range desired.
4. Wait for a time, tnvs (min. 10µs).
5. Set the HVEN bit.
6. Wait for a time, terase (1ms).
7. Clear the ERASE bit.
8. Wait for a time, tnvh (5µs).
9. Clear the HVEN bit.
10. After time, trcv (1µs), the memory can be accessed in read mode
again.
NOTE:
Data Sheet
72
Programming and erasing of FLASH locations cannot be performed by
code being executed from the FLASH memory; the code must be
executed from RAM. While these operations must be performed in the
order as shown, but other unrelated operations may occur between the
steps.
MC68HC908LJ24/LK24 — Rev. 2
FLASH Memory (FLASH)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
FLASH Memory (FLASH)
FLASH Mass Erase Operation
4.6 FLASH Mass Erase Operation
Use the following procedure to erase the entire FLASH memory:
1. Set both the ERASE bit and the MASS bit in the FLASH control
register.
2. Read the FLASH block protect register.
3. Write any data to any FLASH address within the FLASH memory
address range.
Freescale Semiconductor, Inc...
4. Wait for a time, tnvs (10µs).
5. Set the HVEN bit.
6. Wait for a time tmerase (4ms).
7. Clear the ERASE bit.
8. Wait for a time, tnvh1 (100µs).
9. Clear the HVEN bit.
10. After time, trcv (1µs), the memory can be accessed again in read
mode.
NOTE:
Programming and erasing of FLASH locations cannot be performed by
code being executed from the FLASH memory; the code must be
executed from RAM. While these operations must be performed in the
order as shown, but other unrelated operations may occur between the
steps.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
FLASH Memory (FLASH)
For More Information On This Product,
Go to: www.freescale.com
73
Freescale Semiconductor, Inc.
FLASH Memory (FLASH)
4.7 FLASH Program Operation
Programming of the FLASH memory is done on a row basis. A row
consists of 64 consecutive bytes starting from addresses $xx00, $xx40,
$xx80, or $xxC0. Use the following procedure to program a row of
FLASH memory. (Figure 4-3 shows a flowchart of the programming
algorithm.)
Freescale Semiconductor, Inc...
1. Set the PGM bit. This configures the memory for program
operation and enables the latching of address and data for
programming.
2. Read the FLASH block protect register.
3. Write any data to any FLASH address within the row address
range desired.
4. Wait for a time, tnvs (10µs).
5. Set the HVEN bit.
6. Wait for a time, tpgs (5µs).
7. Write data to the FLASH address to be programmed.
8. Wait for time, tprog (30µs).
9. Repeat steps 7 and 8 until all bytes within the row are programmed.
10. Clear the PGM bit.
11. Wait for time, tnvh (5µs).
12. Clear the HVEN bit.
13. After time, trcv (1µs), the memory can be accessed in read mode
again.
This program sequence is repeated throughout the memory until all data
is programmed.
Data Sheet
74
NOTE:
The time between each FLASH address change (step 7 to step 7), or the
time between the last FLASH addressed programmed to clearing the
PGM bit (step 7 to step 10), must not exceed the maximum programming
time, tprog max.
NOTE:
Programming and erasing of FLASH locations cannot be performed by
code being executed from the FLASH memory. While these operations
must be performed in the order shown, other unrelated operations may
occur between the steps.
MC68HC908LJ24/LK24 — Rev. 2
FLASH Memory (FLASH)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
FLASH Memory (FLASH)
FLASH Program Operation
1
Freescale Semiconductor, Inc...
Algorithm for programming
a row (64 bytes) of FLASH memory
2
Set PGM bit
Read the FLASH block protect register
3
Write any data to any FLASH location
within the address range of the row to
be programmed
4
Wait for a time, tnvs
5
Set HVEN bit
6
Wait for a time, tpgs
7
8
Write data to the FLASH address
to be programmed
Wait for a time, tprog
Completed
programming
this row?
Y
N
NOTE:
The time between each FLASH address change (step 7 to step 7), or
the time between the last FLASH address programmed
to clearing PGM bit (step 7 to step 10)
must not exceed the maximum programming
time, tprog max.
10
Clear PGM bit
11
Wait for a time, tnvh
12
Clear HVEN bit
13
Wait for a time, trcv
This row program algorithm assumes the row/s
to be programmed are initially erased.
End of programming
Figure 4-3. FLASH Programming Flowchart
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
FLASH Memory (FLASH)
For More Information On This Product,
Go to: www.freescale.com
75
Freescale Semiconductor, Inc.
FLASH Memory (FLASH)
4.8 FLASH Block Protection
Freescale Semiconductor, Inc...
Due to the ability of the on-board charge pump to erase and program the
FLASH memory in the target application, provision is made to protect
pages of memory from unintentional erase or program operations due to
system malfunction. This protection is done by use of a FLASH block
protect register (FLBPR). The FLBPR determines the range of the
FLASH memory which is to be protected. The range of the protected
area starts from a location defined by FLBPR and ends to the bottom of
the FLASH memory ($FFFF). When the memory is protected, the HVEN
bit cannot be set in either erase or program operations.
NOTE:
The 48 bytes of user interrupt vectors are always protected, regardless
of the value in the FLASH block protect register. A mass erase is
required to erase the vectors.
When the FLBPR is program with $20, the entire memory is protected
from being programmed and erased. When the FLBPR is erased ($FF),
the entire memory is accessible for program and erase.
Once the FLBPR is programmed with a value other than $FF, the FLBPR
itself is protected. It can only be erased using a mass erase operation.
NOTE:
Data Sheet
76
In performing a program or erase operation, the FLASH block protect
register must be read after setting the PGM or ERASE bit and before
asserting the HVEN bit
MC68HC908LJ24/LK24 — Rev. 2
FLASH Memory (FLASH)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
FLASH Memory (FLASH)
FLASH Block Protection
4.8.1 FLASH Block Protect Register
The FLASH block protect register (FLBPR) is implemented as a byte
within the FLASH memory, and therefore can only be written during a
programming sequence of the FLASH memory. The value in this register
determines the starting location of the protected range within the FLASH
memory.
Freescale Semiconductor, Inc...
Address:
$FFCF
Bit 7
6
5
4
3
2
1
Bit 0
BPR7
BPR6
BPR5
BPR4
BPR3
BPR2
BPR1
BPR0
Read:
Write:
Reset:
Unaffected by reset; $FF when blank
Non-volatile FLASH register; write by programming.
Figure 4-4. FLASH Block Protect Register (FLBPR)
BPR[7:0] — FLASH Block Protect Bits
BPR[7:0] represent bits [14:7] of a 16-bit memory address. Bits
[15:14] are logic 1’s and bits [6:0] are logic 0’s.
16-bit memory address
Start address of FLASH block protect
1
0 0 0 0 0 0 0
BPR[7:0]
The resultant 16-bit address is used for specifying the start address
of the FLASH memory for block protection. The FLASH is protected
from this start address to the end of FLASH memory, at $FFFF. With
this mechanism, the protect start address can be $XX00 or $XX80 (at
page boundaries — 128 bytes) within the FLASH memory.
Examples of protect start address is shown in Table 4-1:
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
FLASH Memory (FLASH)
For More Information On This Product,
Go to: www.freescale.com
77
Freescale Semiconductor, Inc.
FLASH Memory (FLASH)
Freescale Semiconductor, Inc...
Table 4-1. FLASH Block Protect Register to Physical Address
BPR[7:0]
Start Address of Protection Range(1)
$00 to $1F
The entire FLASH memory is NOT protected.(2)
$20
$9000 (1001 0000 0000 0000)
The entire FLASH memory is protected.
$21
$9080 (1001 0000 1000 0000)
$22
$9100 (1001 0001 0000 0000)
$23
$9180 (1001 0001 1000 0000)
$24
$9200 (1001 0010 0000 0000)
and so on...
$DE
$EF00 (1110 1111 0000 0000)
$DF
$EF80 (1110 1111 1000 0000)
$E0 to $FF
The entire FLASH memory is NOT protected.(2)
Notes:
1. The end address of the protected range is always $FFFF.
2. Except the 48-byte user vectors, which is always protected.
Data Sheet
78
MC68HC908LJ24/LK24 — Rev. 2
FLASH Memory (FLASH)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Data Sheet – MC68HC908LJ24
Section 5. Configuration Registers (CONFIG)
Freescale Semiconductor, Inc...
5.1 Contents
5.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
5.4
Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . . 81
5.5
Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . . . 82
5.2 Introduction
This section describes the configuration registers, CONFIG1 and
CONFIG2. The configuration registers enable or disable these options:
•
Computer operating properly module (COP)
•
COP timeout period (218 – 24 or 213 – 24 ICLK cycles)
•
Low-voltage inhibit (LVI) module power
•
LVI module reset
•
LVI module in stop mode
•
LVI module voltage trip point selection
•
STOP instruction
•
Stop mode recovery time (32 ICLK cycles or 4096 ICLK cycles)
•
Oscillator during stop mode
•
LCD frontplanes FP19–FP26 on port C
•
LCD frontplanes FP11–FP18 on port E
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Configuration Registers (CONFIG)
For More Information On This Product,
Go to: www.freescale.com
79
Freescale Semiconductor, Inc.
Configuration Registers (CONFIG)
Addr.
$001D
Freescale Semiconductor, Inc...
$001F
Register Name
Read:
Configuration Register 2
Write:
(CONFIG2)†
Reset:
Bit 7
6
PEE
STOP_
IRCDIS
0
0
Read:
COPRS
Configuration Register 1
† Write:
(CONFIG1)
Reset:
0
5
4
STOP_
DIV2CLK
XCLKEN
0
0
LVISTOP LVIRSTD LVIPWRD
0
0
0††
3
2
1
Bit 0
PCEH
PCEL
LVISEL1
LVISEL0
0
0
0††
1††
SSREC
STOP
COPD
0
0
0
0
0
† One-time writable register after each reset.
†† Reset by POR only.
= Unimplemented
Figure 5-1. CONFIG Registers Summary
5.3 Functional Description
The configuration registers are used in the initialization of various
options. Since the various options affect the operation of the MCU, it is
recommended that these registers be written immediately after reset.
The configuration registers are located at $001D and $001F. The
configuration registers may be read at anytime.
NOTE:
The CONFIG registers are one-time writable by the user after each
reset. These registers are not in the FLASH memory but are special
registers containing one-time writable latches after each reset. Upon a
reset, the CONFIG registers default to predetermined settings as shown
in Figure 5-2 and Figure 5-3.
Although the LVISEL[1:0] bits default to predetermined setting of
LVISEL[1:0] = 0:1 by a POR only, these bits can still be written once after
each reset other than POR.
Data Sheet
80
MC68HC908LJ24/LK24 — Rev. 2
Configuration Registers (CONFIG)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Configuration Registers (CONFIG)
Configuration Register 1 (CONFIG1)
5.4 Configuration Register 1 (CONFIG1)
The CONFIG1 register can be written once after each reset.
Address:
$001F
Bit 7
6
5
4
Read:
3
2
1
Bit 0
SSREC
STOP
COPD
0
0
0
0
COPRS
LVISTOP LVIRSTD LVIPWRD
Write:
Freescale Semiconductor, Inc...
Reset:
0
0
0
†† Reset by POR only.
0††
0
= Unimplemented
Figure 5-2. Configuration Register 1 (CONFIG1)
COPRS — COP Rate Select
COPRS selects the COP time-out period. Reset clears COPRS. (See
Section 21. Computer Operating Properly (COP).)
1 = COP time out period = 213 – 24 ICLK cycles
0 = COP time out period = 218 – 24 ICLK cycles
LVISTOP — LVI Enable in Stop Mode
When the LVIPWRD bit is clear, setting the LVISTOP bit enables the
LVI to operate during stop mode. Reset clears LVISTOP. (See
Section 22. Low-Voltage Inhibit (LVI).)
1 = LVI enabled during stop mode
0 = LVI disabled during stop mode
LVIRSTD — LVI Reset Disable
LVIRSTD disables the reset signal from the LVI module. (See
Section 22. Low-Voltage Inhibit (LVI).)
1 = LVI module resets disabled
0 = LVI module resets enabled
LVIPWRD — LVI Power Disable Bit
LVIPWRD disables the LVI module. (See Section 22. Low-Voltage
Inhibit (LVI).)
1 = LVI module power disabled
0 = LVI module power enabled
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Configuration Registers (CONFIG)
For More Information On This Product,
Go to: www.freescale.com
81
Freescale Semiconductor, Inc.
Configuration Registers (CONFIG)
SSREC — Short Stop Recovery
Freescale Semiconductor, Inc...
SSREC enables the CPU to exit stop mode with a delay of 32 ICLK
cycles instead of a 4096 ICLK cycle delay.
1 = Stop mode recovery after 32 ICLK cycles
0 = Stop mode recovery after 4096 ICLK cycles
NOTE:
Exiting stop mode by pulling reset will result in the long stop recovery.
If using an external crystal oscillator, do not set the SSREC bit.
NOTE:
When the LVISTOP is enabled, the system stabilization time for power
on reset and long stop recovery (both 4096 ICLK cycles) gives a delay
longer than the enable time for the LVI. There is no period where the
MCU is not protected from a low power condition. However, when using
the short stop recovery configuration option, the 32 ICLK delay is less
than the LVI’s turn-on time and there exists a period in start-up where the
LVI is not protecting the MCU.
STOP — STOP Instruction Enable
STOP enables the STOP instruction.
1 = STOP instruction enabled
0 = STOP instruction treated as illegal opcode
COPD — COP Disable Bit
COPD disables the COP module. (See Section 21. Computer
Operating Properly (COP).)
1 = COP module disabled
0 = COP module enabled
5.5 Configuration Register 2 (CONFIG2)
The CONFIG2 register can be written once after each reset.
Address:
$001D
Bit 7
6
PEE
STOP_
IRCDIS
0
0
Read:
Write:
Reset:
5
4
STOP_
DIV2CLK
XCLKEN
0
0
3
2
1
Bit 0
PCEH
PCEL
LVISEL1
LVISEL0
0
0
0††
1††
†† Reset by POR only.
Figure 5-3. Configuration Register 2 (CONFIG2)
Data Sheet
82
MC68HC908LJ24/LK24 — Rev. 2
Configuration Registers (CONFIG)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Configuration Registers (CONFIG)
Configuration Register 2 (CONFIG2)
PEE — Port E Enable
Setting PEE configures the PTE0/FP11–PTE7/FP18 pins for LCD
frontplane driver use. Reset clears this bit.
1 = PTE0/FP11–PTE7/FP18 pins configured as LCD frontplane
driver pins: FP11–FP18
0 = PTE0/FP11–PTE7/FP18 pins configured as standard I/O pins:
PTE0–PTE7
STOP_IRCDIS — Internal RC Oscillator Stop Mode Disable
Freescale Semiconductor, Inc...
Setting STOP_IRCDIS disables the internal RC oscillator during stop
mode. When this bit is cleared, the internal RC oscillator continues to
operate in stop mode. Reset clears this bit.
1 = Internal RC oscillator disabled during stop mode
0 = Internal RC oscillator enabled during stop mode
STOP_XCLKEN — Crystal Oscillator Stop Mode Enable
Setting STOP_XCLKEN enables the external crystal (XTAL) oscillator
to continue operating in stop mode. This is useful for driving the real
time clock module to allow it to generate periodic wake up while in
stop mode. When this bit is cleared, the external XTAL oscillator will
be disabled during stop mode. Reset clears this bit.
1 = XTAL oscillator enabled during stop mode
0 = XTAL oscillator disabled during stop mode
DIV2CLK — Divide-by-2 Clock Bypass
When CGMXCLK is selected to drive the system clocks (BCS=0),
setting DIV2CLK allows the CGMXCLK to bypass the divide-by-2
divider in the CGM module; CGMOUT will equal CGMXCLK and bus
clock will equal CGMXCLK divide-by-2.
DIV2CLK bit has no effect when the BCS=1 in the PLL control
register (CGMVCLK selected and divide-by-2 always enabled). Reset
clears this bit.
1 = Divide-by-2 divider bypassed;
When BSC=0, CGMOUT equals CGMXCLK
0 = Divide-by-2 divider enabled;
When BSC=0, CGMOUT equals CGMXCLK divide-by-2
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Configuration Registers (CONFIG)
For More Information On This Product,
Go to: www.freescale.com
83
Freescale Semiconductor, Inc.
Configuration Registers (CONFIG)
PCEH — Port C Enable High Nibble
Setting PCEH configures the PTC4/FP23–PTC7/FP26 pins for LCD
frontplane driver use. Reset clears this bit.
1 = PTC4/FP23–PTC7/FP26 pins configured as LCD frontplane
driver pins: FP23–FP26
0 = PTC4/FP23–PTC7/FP26 pins configured as standard I/O pins:
PTC4–PTC7
PCEL — Port C Enable Low Nibble
Freescale Semiconductor, Inc...
Setting PCEL configures the PTC0/FP19–PTC3/FP22 pins for LCD
frontplane driver use. Reset clears this bit.
1 = PTC0/FP19–PTC3/FP22 pins configured as LCD frontplane
driver pins: FP19–FP22
0 = PTC0/FP19–PTC3/FP22 pins configured as standard I/O pins:
PTC0–PTC3
LVISEL[1:0] — LVI Operating Mode Selection
LVISEL[1:0] selects the voltage operating mode of the LVI module.
(See Section 22. Low-Voltage Inhibit (LVI).) The voltage mode
selected for the LVI should match the operating VDD. See Section 24.
Electrical Specifications for the LVI voltage trip points for each of
the modes.
Table 5-1. LVI Trip Point Selection
LVISEL1
LVISEL0
Operating Mode
0
0
Reserved
0
1
3.3V(1)
1
0
5V
1
1
Reserved
Notes:
1. Default setting after a power-on-reset.
Data Sheet
84
MC68HC908LJ24/LK24 — Rev. 2
Configuration Registers (CONFIG)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Data Sheet – MC68HC908LJ24
Section 6. Central Processor Unit (CPU)
Freescale Semiconductor, Inc...
6.1 Contents
6.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.4
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.4.1
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.4.2
Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4.3
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4.4
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.4.5
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.5
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.6
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.6.1
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
6.6.2
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
6.7
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.8
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.9
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Central Processor Unit (CPU)
For More Information On This Product,
Go to: www.freescale.com
85
Freescale Semiconductor, Inc.
Central Processor Unit (CPU)
6.2 Introduction
The M68HC08 CPU (central processor unit) is an enhanced and fully
object-code-compatible version of the M68HC05 CPU. The CPU08
Reference Manual (Motorola document order number CPU08RM/AD)
contains a description of the CPU instruction set, addressing modes,
and architecture.
Freescale Semiconductor, Inc...
6.3 Features
Feature of the CPU include:
Data Sheet
86
•
Object code fully upward-compatible with M68HC05 Family
•
16-bit stack pointer with stack manipulation instructions
•
16-Bit index register with X-register manipulation instructions
•
8-MHz CPU internal bus frequency
•
64-Kbyte program/data memory space
•
16 addressing modes
•
Memory-to-memory data moves without using accumulator
•
Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions
•
Enhanced binary-coded decimal (BCD) data handling
•
Modular architecture with expandable internal bus definition for
extension of addressing range beyond 64-Kbytes
•
Low-power stop and wait modes
MC68HC908LJ24/LK24 — Rev. 2
Central Processor Unit (CPU)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Central Processor Unit (CPU)
CPU Registers
6.4 CPU Registers
Figure 6-1 shows the five CPU registers. CPU registers are not part of
the memory map.
0
7
ACCUMULATOR (A)
0
15
H
X
INDEX REGISTER (H:X)
Freescale Semiconductor, Inc...
15
0
STACK POINTER (SP)
15
0
PROGRAM COUNTER (PC)
7
0
V 1 1 H I N Z C
CONDITION CODE REGISTER (CCR)
CARRY/BORROW FLAG
ZERO FLAG
NEGATIVE FLAG
INTERRUPT MASK
HALF-CARRY FLAG
TWO’S COMPLEMENT OVERFLOW FLAG
Figure 6-1. CPU Registers
6.4.1 Accumulator
The accumulator is a general-purpose 8-bit register. The CPU uses the
accumulator to hold operands and the results of arithmetic/logic
operations.
Bit 7
6
5
4
3
2
1
Bit 0
Read:
Write:
Reset:
Unaffected by reset
Figure 6-2. Accumulator (A)
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Central Processor Unit (CPU)
For More Information On This Product,
Go to: www.freescale.com
87
Freescale Semiconductor, Inc.
Central Processor Unit (CPU)
6.4.2 Index Register
The 16-bit index register allows indexed addressing of a 64K-byte
memory space. H is the upper byte of the index register, and X is the
lower byte. H:X is the concatenated 16-bit index register.
In the indexed addressing modes, the CPU uses the contents of the
index register to determine the conditional address of the operand.
Freescale Semiconductor, Inc...
The index register can serve also as a temporary data storage location.
Bit
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
Bit
0
0
0
0
0
0
0
0
0
X
X
X
X
X
X
X
X
Read:
Write:
Reset:
X = Indeterminate
Figure 6-3. Index Register (H:X)
6.4.3 Stack Pointer
The stack pointer is a 16-bit register that contains the address of the next
location on the stack. During a reset, the stack pointer is preset to
$00FF. The reset stack pointer (RSP) instruction sets the least
significant byte to $FF and does not affect the most significant byte. The
stack pointer decrements as data is pushed onto the stack and
increments as data is pulled from the stack.
In the stack pointer 8-bit offset and 16-bit offset addressing modes, the
stack pointer can function as an index register to access data on the
stack. The CPU uses the contents of the stack pointer to determine the
conditional address of the operand.
Bit
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
Bit
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Read:
Write:
Reset:
Figure 6-4. Stack Pointer (SP)
Data Sheet
88
MC68HC908LJ24/LK24 — Rev. 2
Central Processor Unit (CPU)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Central Processor Unit (CPU)
CPU Registers
NOTE:
The location of the stack is arbitrary and may be relocated anywhere in
RAM. Moving the SP out of page 0 ($0000 to $00FF) frees direct
address (page 0) space. For correct operation, the stack pointer must
point only to RAM locations.
6.4.4 Program Counter
Freescale Semiconductor, Inc...
The program counter is a 16-bit register that contains the address of the
next instruction or operand to be fetched.
Normally, the program counter automatically increments to the next
sequential memory location every time an instruction or operand is
fetched. Jump, branch, and interrupt operations load the program
counter with an address other than that of the next sequential location.
During reset, the program counter is loaded with the reset vector
address located at $FFFE and $FFFF. The vector address is the
address of the first instruction to be executed after exiting the reset state.
Bit
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
Bit
0
Read:
Write:
Reset:
Loaded with Vector from $FFFE and $FFFF
Figure 6-5. Program Counter (PC)
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Central Processor Unit (CPU)
For More Information On This Product,
Go to: www.freescale.com
89
Freescale Semiconductor, Inc.
Central Processor Unit (CPU)
6.4.5 Condition Code Register
The 8-bit condition code register contains the interrupt mask and five
flags that indicate the results of the instruction just executed. Bits 6 and
5 are set permanently to logic 1. The following paragraphs describe the
functions of the condition code register.
Bit 7
6
5
4
3
2
1
Bit 0
V
1
1
H
I
N
Z
C
X
1
1
X
1
X
X
X
Read:
Freescale Semiconductor, Inc...
Write:
Reset:
X = Indeterminate
Figure 6-6. Condition Code Register (CCR)
V — Overflow Flag
The CPU sets the overflow flag when a two's complement overflow
occurs. The signed branch instructions BGT, BGE, BLE, and BLT use
the overflow flag.
1 = Overflow
0 = No overflow
H — Half-Carry Flag
The CPU sets the half-carry flag when a carry occurs between
accumulator bits 3 and 4 during an add-without-carry (ADD) or addwith-carry (ADC) operation. The half-carry flag is required for binarycoded decimal (BCD) arithmetic operations. The DAA instruction
uses the states of the H and C flags to determine the appropriate
correction factor.
1 = Carry between bits 3 and 4
0 = No carry between bits 3 and 4
Data Sheet
90
MC68HC908LJ24/LK24 — Rev. 2
Central Processor Unit (CPU)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Central Processor Unit (CPU)
CPU Registers
I — Interrupt Mask
When the interrupt mask is set, all maskable CPU interrupts are
disabled. CPU interrupts are enabled when the interrupt mask is
cleared. When a CPU interrupt occurs, the interrupt mask is set
automatically after the CPU registers are saved on the stack, but
before the interrupt vector is fetched.
1 = Interrupts disabled
0 = Interrupts enabled
Freescale Semiconductor, Inc...
NOTE:
To maintain M6805 Family compatibility, the upper byte of the index
register (H) is not stacked automatically. If the interrupt service routine
modifies H, then the user must stack and unstack H using the PSHH and
PULH instructions.
After the I bit is cleared, the highest-priority interrupt request is
serviced first.
A return-from-interrupt (RTI) instruction pulls the CPU registers from
the stack and restores the interrupt mask from the stack. After any
reset, the interrupt mask is set and can be cleared only by the clear
interrupt mask software instruction (CLI).
N — Negative Flag
The CPU sets the negative flag when an arithmetic operation, logic
operation, or data manipulation produces a negative result, setting
bit 7 of the result.
1 = Negative result
0 = Non-negative result
Z — Zero Flag
The CPU sets the zero flag when an arithmetic operation, logic
operation, or data manipulation produces a result of $00.
1 = Zero result
0 = Non-zero result
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Central Processor Unit (CPU)
For More Information On This Product,
Go to: www.freescale.com
91
Freescale Semiconductor, Inc.
Central Processor Unit (CPU)
C — Carry/Borrow Flag
Freescale Semiconductor, Inc...
The CPU sets the carry/borrow flag when an addition operation
produces a carry out of bit 7 of the accumulator or when a subtraction
operation requires a borrow. Some instructions — such as bit test and
branch, shift, and rotate — also clear or set the carry/borrow flag.
1 = Carry out of bit 7
0 = No carry out of bit 7
6.5 Arithmetic/Logic Unit (ALU)
The ALU performs the arithmetic and logic operations defined by the
instruction set.
Refer to the CPU08 Reference Manual (Motorola document order
number CPU08RM/AD) for a description of the instructions and
addressing modes and more detail about the architecture of the CPU.
6.6 Low-Power Modes
The WAIT and STOP instructions put the MCU in low power-consumption
standby modes.
6.6.1 Wait Mode
The WAIT instruction:
Data Sheet
92
•
Clears the interrupt mask (I bit) in the condition code register,
enabling interrupts. After exit from wait mode by interrupt, the I bit
remains clear. After exit by reset, the I bit is set.
•
Disables the CPU clock.
MC68HC908LJ24/LK24 — Rev. 2
Central Processor Unit (CPU)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Central Processor Unit (CPU)
CPU During Break Interrupts
6.6.2 Stop Mode
Freescale Semiconductor, Inc...
The STOP instruction:
•
Clears the interrupt mask (I bit) in the condition code register,
enabling external interrupts. After exit from stop mode by external
interrupt, the I bit remains clear. After exit by reset, the I bit is set.
•
Disables the CPU clock.
After exiting stop mode, the CPU clock begins running after the oscillator
stabilization delay.
6.7 CPU During Break Interrupts
If the break module is enabled, a break interrupt causes the CPU to
execute the software interrupt instruction (SWI) at the completion of the
current CPU instruction. (See Section 23. Break Module (BRK).) The
program counter vectors to $FFFC–$FFFD ($FEFC–$FEFD in monitor
mode).
A return-from-interrupt instruction (RTI) in the break routine ends the
break interrupt and returns the MCU to normal operation if the break
interrupt has been deasserted.
6.8 Instruction Set Summary
Table 6-1 provides a summary of the M68HC08 instruction set.
6.9 Opcode Map
The opcode map is provided in Table 6-2.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Central Processor Unit (CPU)
For More Information On This Product,
Go to: www.freescale.com
93
Freescale Semiconductor, Inc.
Central Processor Unit (CPU)
V H I N Z C
Freescale Semiconductor, Inc...
ADC #opr
ADC opr
ADC opr
ADC opr,X
ADC opr,X
ADC ,X
ADC opr,SP
ADC opr,SP
A ← (A) + (M) + (C)
Add with Carry
IMM
DIR
EXT
IX2
R R – R R R
IX1
IX
SP1
SP2
A9
B9
C9
D9
E9
F9
9EE9
9ED9
ii
dd
hh ll
ee ff
ff
IMM
DIR
EXT
IX2
R R – R R R
IX1
IX
SP1
SP2
AB
BB
CB
DB
EB
FB
9EEB
9EDB
ii
dd
hh ll
ee ff
ff
ff
ee ff
A7
ii
2
– – – – – – IMM
AF
ii
2
IMM
DIR
EXT
IX2
0 – – R R –
IX1
IX
SP1
SP2
A4
B4
C4
D4
E4
F4
9EE4
9ED4
ii
dd
hh ll
ee ff
ff
2
3
4
4
3
2
4
5
DIR
INH
INH
R – – R R R
IX1
IX
SP1
38
48
58
68
78
9E68
dd
DIR
INH
INH
R – – R R R
IX1
IX
SP1
37
47
57
67
77
9E67
dd
ff
4
1
1
4
3
5
– – – – – – REL
24
rr
3
DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
– – – – – –
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)
11
13
15
17
19
1B
1D
1F
dd
dd
dd
dd
dd
dd
dd
dd
4
4
4
4
4
4
4
4
Add without Carry
AIS #opr
Add Immediate Value (Signed) to SP
SP ← (SP) + (16 « M)
– – – – – – IMM
AIX #opr
Add Immediate Value (Signed) to H:X
H:X ← (H:X) + (16 « M)
A ← (A) & (M)
AND #opr
AND opr
AND opr
AND opr,X
AND opr,X
AND ,X
AND opr,SP
AND opr,SP
ASL opr
ASLA
ASLX
ASL opr,X
ASL ,X
ASL opr,SP
Logical AND
Arithmetic Shift Left
(Same as LSL)
C
ASR opr
ASRA
ASRX
ASR opr,X
ASR opr,X
ASR opr,SP
Arithmetic Shift Right
BCC rel
Branch if Carry Bit Clear
BCLR n, opr
Data Sheet
94
0
b7
b0
C
b7
Clear Bit n in M
b0
PC ← (PC) + 2 + rel ? (C) = 0
Mn ← 0
2
3
4
4
3
2
4
5
2
3
4
4
3
2
4
5
ADD #opr
ADD opr
ADD opr
ADD opr,X
ADD opr,X
ADD ,X
ADD opr,SP
ADD opr,SP
A ← (A) + (M)
ff
ee ff
Cycles
Effect on
CCR
Description
Operand
Operation
Opcode
Source
Form
Address
Mode
Table 6-1. Instruction Set Summary (Sheet 1 of 8)
ff
ee ff
ff
ff
ff
4
1
1
4
3
5
MC68HC908LJ24/LK24 — Rev. 2
Central Processor Unit (CPU)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Central Processor Unit (CPU)
Opcode Map
Effect on
CCR
Freescale Semiconductor, Inc...
V H I N Z C
Cycles
Description
Operand
Operation
Opcode
Source
Form
Address
Mode
Table 6-1. Instruction Set Summary (Sheet 2 of 8)
BCS rel
Branch if Carry Bit Set (Same as BLO)
PC ← (PC) + 2 + rel ? (C) = 1
– – – – – – REL
25
rr
3
BEQ rel
Branch if Equal
PC ← (PC) + 2 + rel ? (Z) = 1
– – – – – – REL
27
rr
3
BGE opr
Branch if Greater Than or Equal To
(Signed Operands)
PC ← (PC) + 2 + rel ? (N ⊕ V) = 0
– – – – – – REL
90
rr
3
BGT opr
Branch if Greater Than (Signed
Operands)
PC ← (PC) + 2 + rel ? (Z) | (N ⊕ V) = 0 – – – – – – REL
92
rr
3
BHCC rel
Branch if Half Carry Bit Clear
PC ← (PC) + 2 + rel ? (H) = 0
– – – – – – REL
28
rr
3
BHCS rel
Branch if Half Carry Bit Set
PC ← (PC) + 2 + rel ? (H) = 1
– – – – – – REL
29
rr
3
BHI rel
Branch if Higher
PC ← (PC) + 2 + rel ? (C) | (Z) = 0
– – – – – – REL
22
rr
3
BHS rel
Branch if Higher or Same
(Same as BCC)
PC ← (PC) + 2 + rel ? (C) = 0
– – – – – – REL
24
rr
3
BIH rel
Branch if IRQ Pin High
PC ← (PC) + 2 + rel ? IRQ = 1
– – – – – – REL
2F
rr
3
BIL rel
Branch if IRQ Pin Low
PC ← (PC) + 2 + rel ? IRQ = 0
– – – – – – REL
2E
rr
3
(A) & (M)
IMM
DIR
EXT
IX2
0 – – R R –
IX1
IX
SP1
SP2
A5
B5
C5
D5
E5
F5
9EE5
9ED5
ii
dd
hh ll
ee ff
ff
ff
ee ff
2
3
4
4
3
2
4
5
BIT #opr
BIT opr
BIT opr
BIT opr,X
BIT opr,X
BIT ,X
BIT opr,SP
BIT opr,SP
Bit Test
BLE opr
Branch if Less Than or Equal To
(Signed Operands)
PC ← (PC) + 2 + rel ? (Z) | (N ⊕ V) = 1
– – – – – – REL
93
rr
3
BLO rel
Branch if Lower (Same as BCS)
PC ← (PC) + 2 + rel ? (C) = 1
– – – – – – REL
25
rr
3
BLS rel
Branch if Lower or Same
PC ← (PC) + 2 + rel ? (C) | (Z) = 1
– – – – – – REL
23
rr
3
BLT opr
Branch if Less Than (Signed Operands)
PC ← (PC) + 2 + rel ? (N ⊕ V) =1
– – – – – – REL
91
rr
3
BMC rel
Branch if Interrupt Mask Clear
PC ← (PC) + 2 + rel ? (I) = 0
– – – – – – REL
2C
rr
3
BMI rel
Branch if Minus
PC ← (PC) + 2 + rel ? (N) = 1
– – – – – – REL
2B
rr
3
BMS rel
Branch if Interrupt Mask Set
PC ← (PC) + 2 + rel ? (I) = 1
– – – – – – REL
2D
rr
3
BNE rel
Branch if Not Equal
PC ← (PC) + 2 + rel ? (Z) = 0
– – – – – – REL
26
rr
3
BPL rel
Branch if Plus
PC ← (PC) + 2 + rel ? (N) = 0
– – – – – – REL
2A
rr
3
BRA rel
Branch Always
PC ← (PC) + 2 + rel
– – – – – – REL
20
rr
3
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Central Processor Unit (CPU)
For More Information On This Product,
Go to: www.freescale.com
95
Freescale Semiconductor, Inc.
Central Processor Unit (CPU)
Table 6-1. Instruction Set Summary (Sheet 3 of 8)
Operand
Cycles
Effect on
CCR
Opcode
Operation
DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
– – – – – R
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)
01
03
05
07
09
0B
0D
0F
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
5
5
5
5
5
5
5
5
– – – – – – REL
21
rr
3
PC ← (PC) + 3 + rel ? (Mn) = 1
DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
– – – – – R
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)
00
02
04
06
08
0A
0C
0E
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
5
5
5
5
5
5
5
5
Mn ← 1
DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
– – – – – –
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)
10
12
14
16
18
1A
1C
1E
dd
dd
dd
dd
dd
dd
dd
dd
4
4
4
4
4
4
4
4
– – – – – – REL
AD
rr
4
dd rr
ii rr
ii rr
ff rr
rr
ff rr
5
4
4
5
4
6
Description
V H I N Z C
Freescale Semiconductor, Inc...
BRCLR n,opr,rel Branch if Bit n in M Clear
BRN rel
PC ← (PC) + 2
Branch Never
BRSET n,opr,rel Branch if Bit n in M Set
BSET n,opr
Set Bit n in M
BSR rel
Branch to Subroutine
PC ← (PC) + 3 + rel ? (Mn) = 0
PC ← (PC) + 2; push (PCL)
SP ← (SP) – 1; push (PCH)
SP ← (SP) – 1
PC ← (PC) + rel
CBEQ opr,rel
CBEQA #opr,rel
CBEQX #opr,rel
Compare and Branch if Equal
CBEQ opr,X+,rel
CBEQ X+,rel
CBEQ opr,SP,rel
Address
Mode
Source
Form
DIR
PC ← (PC) + 3 + rel ? (A) – (M) = $00
IMM
PC ← (PC) + 3 + rel ? (A) – (M) = $00
IMM
PC ← (PC) + 3 + rel ? (X) – (M) = $00
– – – – – –
IX1+
PC ← (PC) + 3 + rel ? (A) – (M) = $00
IX+
PC ← (PC) + 2 + rel ? (A) – (M) = $00
SP1
PC ← (PC) + 4 + rel ? (A) – (M) = $00
31
41
51
61
71
9E61
CLC
Clear Carry Bit
C←0
– – – – – 0 INH
98
1
CLI
Clear Interrupt Mask
I←0
– – 0 – – – INH
9A
2
M ← $00
A ← $00
X ← $00
H ← $00
M ← $00
M ← $00
M ← $00
DIR
INH
INH
0 – – 0 1 – INH
IX1
IX
SP1
3F
4F
5F
8C
6F
7F
9E6F
CLR opr
CLRA
CLRX
CLRH
CLR opr,X
CLR ,X
CLR opr,SP
Data Sheet
96
Clear
dd
ff
ff
3
1
1
1
3
2
4
MC68HC908LJ24/LK24 — Rev. 2
Central Processor Unit (CPU)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Central Processor Unit (CPU)
Opcode Map
Effect on
CCR
V H I N Z C
Freescale Semiconductor, Inc...
CMP #opr
CMP opr
CMP opr
CMP opr,X
CMP opr,X
CMP ,X
CMP opr,SP
CMP opr,SP
Compare A with M
(A) – (M)
COM opr
COMA
COMX
COM opr,X
COM ,X
COM opr,SP
Complement (One’s Complement)
CPHX #opr
CPHX opr
Compare H:X with M
CPX #opr
CPX opr
CPX opr
CPX ,X
CPX opr,X
CPX opr,X
CPX opr,SP
CPX opr,SP
Compare X with M
DAA
Decimal Adjust A
M ← (M) = $FF – (M)
A ← (A) = $FF – (M)
X ← (X) = $FF – (M)
M ← (M) = $FF – (M)
M ← (M) = $FF – (M)
M ← (M) = $FF – (M)
IMM
DIR
EXT
IX2
R – – R R R
IX1
IX
SP1
SP2
A1
B1
C1
D1
E1
F1
9EE1
9ED1
ii
dd
hh ll
ee ff
ff
DIR
INH
INH
0 – – R R 1
IX1
IX
SP1
33
43
53
63
73
9E63
dd
ff
ee ff
Cycles
Description
Operand
Operation
Opcode
Source
Form
Address
Mode
Table 6-1. Instruction Set Summary (Sheet 4 of 8)
2
3
4
4
3
2
4
5
ff
4
1
1
4
3
5
65
75
ii ii+1
dd
3
4
IMM
DIR
EXT
IX2
R – – R R R
IX1
IX
SP1
SP2
A3
B3
C3
D3
E3
F3
9EE3
9ED3
ii
dd
hh ll
ee ff
ff
2
3
4
4
3
2
4
5
U – – R R R INH
72
PC ← (PC) + 3 + rel ? (result) ≠ 0
PC ← (PC) + 2 + rel ? (result) ≠ 0
PC ← (PC) + 2 + rel ? (result) ≠ 0
PC ← (PC) + 3 + rel ? (result) ≠ 0
PC ← (PC) + 2 + rel ? (result) ≠ 0
PC ← (PC) + 4 + rel ? (result) ≠ 0
DIR
INH
– – – – – – INH
IX1
IX
SP1
3B
4B
5B
6B
7B
9E6B
dd rr
rr
rr
ff rr
rr
ff rr
5
3
3
5
4
6
M ← (M) – 1
A ← (A) – 1
X ← (X) – 1
M ← (M) – 1
M ← (M) – 1
M ← (M) – 1
DIR
INH
INH
R – – R R –
IX1
IX
SP1
3A
4A
5A
6A
7A
9E6A
dd
4
1
1
4
3
5
A ← (H:A)/(X)
H ← Remainder
– – – – R R INH
52
A ← (A ⊕ M)
IMM
DIR
EXT
IX2
0 – – R R –
IX1
IX
SP1
SP2
A8
B8
C8
D8
E8
F8
9EE8
9ED8
(H:X) – (M:M + 1)
(X) – (M)
(A)10
R – – R R R
IMM
DIR
ff
ff
ee ff
2
A ← (A) – 1 or M ← (M) – 1 or X ← (X) – 1
DBNZ opr,rel
DBNZA rel
Decrement and Branch if Not Zero
DBNZX rel
DBNZ opr,X,rel
DBNZ X,rel
DBNZ opr,SP,rel
DEC opr
DECA
DECX
DEC opr,X
DEC ,X
DEC opr,SP
Decrement
DIV
Divide
EOR #opr
EOR opr
EOR opr
EOR opr,X
EOR opr,X
EOR ,X
EOR opr,SP
EOR opr,SP
Exclusive OR M with A
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
ff
ff
7
ii
dd
hh ll
ee ff
ff
ff
ee ff
2
3
4
4
3
2
4
5
Data Sheet
Central Processor Unit (CPU)
For More Information On This Product,
Go to: www.freescale.com
97
Freescale Semiconductor, Inc.
Central Processor Unit (CPU)
V H I N Z C
Freescale Semiconductor, Inc...
INC opr
INCA
INCX
INC opr,X
INC ,X
INC opr,SP
JMP opr
JMP opr
JMP opr,X
JMP opr,X
JMP ,X
JSR opr
JSR opr
JSR opr,X
JSR opr,X
JSR ,X
Load A from M
LDHX #opr
LDHX opr
Load H:X from M
LSL opr
LSLA
LSLX
LSL opr,X
LSL ,X
LSL opr,SP
LSR opr
LSRA
LSRX
LSR opr,X
LSR ,X
LSR opr,SP
Data Sheet
98
DIR
INH
INH
R – – R R –
IX1
IX
SP1
3C
4C
5C
6C
7C
9E6C
PC ← Jump Address
DIR
EXT
– – – – – – IX2
IX1
IX
BC
CC
DC
EC
FC
dd
hh ll
ee ff
ff
2
3
4
3
2
PC ← (PC) + n (n = 1, 2, or 3)
Push (PCL); SP ← (SP) – 1
Push (PCH); SP ← (SP) – 1
PC ← Unconditional Address
DIR
EXT
– – – – – – IX2
IX1
IX
BD
CD
DD
ED
FD
dd
hh ll
ee ff
ff
4
5
6
5
4
A ← (M)
IMM
DIR
EXT
IX2
0 – – R R –
IX1
IX
SP1
SP2
A6
B6
C6
D6
E6
F6
9EE6
9ED6
ii
dd
hh ll
ee ff
ff
ff
ee ff
2
3
4
4
3
2
4
5
ii jj
dd
3
4
2
3
4
4
3
2
4
5
Jump
LDA #opr
LDA opr
LDA opr
LDA opr,X
LDA opr,X
LDA ,X
LDA opr,SP
LDA opr,SP
LDX #opr
LDX opr
LDX opr
LDX opr,X
LDX opr,X
LDX ,X
LDX opr,SP
LDX opr,SP
M ← (M) + 1
A ← (A) + 1
X ← (X) + 1
M ← (M) + 1
M ← (M) + 1
M ← (M) + 1
Increment
Jump to Subroutine
H:X ← (M:M + 1)
Logical Shift Right
0 – – R R –
X ← (M)
Load X from M
Logical Shift Left
(Same as ASL)
Cycles
Effect on
CCR
Description
Operand
Operation
Opcode
Source
Form
Address
Mode
Table 6-1. Instruction Set Summary (Sheet 5 of 8)
C
0
b7
b0
0
C
b7
b0
IMM
DIR
45
55
dd
ff
ff
IMM
DIR
EXT
IX2
0 – – R R –
IX1
IX
SP1
SP2
AE
BE
CE
DE
EE
FE
9EEE
9EDE
ii
dd
hh ll
ee ff
ff
DIR
INH
INH
R – – R R R
IX1
IX
SP1
38
48
58
68
78
9E68
dd
DIR
INH
INH
R – – 0 R R
IX1
IX
SP1
34
44
54
64
74
9E64
dd
ff
ee ff
ff
ff
ff
ff
4
1
1
4
3
5
4
1
1
4
3
5
4
1
1
4
3
5
MC68HC908LJ24/LK24 — Rev. 2
Central Processor Unit (CPU)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Central Processor Unit (CPU)
Opcode Map
Table 6-1. Instruction Set Summary (Sheet 6 of 8)
Opcode
Operand
Cycles
Effect on
CCR
DD
DIX+
0 – – R R –
IMD
IX+D
4E
5E
6E
7E
dd dd
dd
ii dd
dd
5
4
4
4
X:A ← (X) × (A)
– 0 – – – 0 INH
42
M ← –(M) = $00 – (M)
A ← –(A) = $00 – (A)
X ← –(X) = $00 – (X)
M ← –(M) = $00 – (M)
M ← –(M) = $00 – (M)
DIR
INH
INH
R – – R R R
IX1
IX
SP1
30
40
50
60
70
9E60
Operation
Description
Freescale Semiconductor, Inc...
V H I N Z C
MOV opr,opr
MOV opr,X+
MOV #opr,opr
MOV X+,opr
Move
MUL
Unsigned multiply
(M)Destination ← (M)Source
H:X ← (H:X) + 1 (IX+D, DIX+)
Address
Mode
Source
Form
5
dd
4
1
1
4
3
5
NEG opr
NEGA
NEGX
NEG opr,X
NEG ,X
NEG opr,SP
Negate (Two’s Complement)
NOP
No Operation
None
– – – – – – INH
9D
1
NSA
Nibble Swap A
A ← (A[3:0]:A[7:4])
– – – – – – INH
62
3
A ← (A) | (M)
IMM
DIR
EXT
IX2
0 – – R R –
IX1
IX
SP1
SP2
AA
BA
CA
DA
EA
FA
9EEA
9EDA
ff
ff
ORA #opr
ORA opr
ORA opr
ORA opr,X
ORA opr,X
ORA ,X
ORA opr,SP
ORA opr,SP
Inclusive OR A and M
PSHA
Push A onto Stack
Push (A); SP ← (SP) – 1
– – – – – – INH
87
2
PSHH
Push H onto Stack
Push (H); SP ← (SP) – 1
– – – – – – INH
8B
2
PSHX
Push X onto Stack
Push (X); SP ← (SP) – 1
– – – – – – INH
89
2
PULA
Pull A from Stack
SP ← (SP + 1); Pull (A)
– – – – – – INH
86
2
PULH
Pull H from Stack
SP ← (SP + 1); Pull (H)
– – – – – – INH
8A
2
PULX
Pull X from Stack
SP ← (SP + 1); Pull (X)
– – – – – – INH
88
2
39
49
59
69
79
9E69
dd
C
DIR
INH
INH
R – – R R R
IX1
IX
SP1
DIR
INH
INH
R – – R R R
IX1
IX
SP1
36
46
56
66
76
9E66
dd
– – – – – – INH
9C
ROL opr
ROLA
ROLX
ROL opr,X
ROL ,X
ROL opr,SP
Rotate Left through Carry
b7
ROR opr
RORA
RORX
ROR opr,X
ROR ,X
ROR opr,SP
Rotate Right through Carry
RSP
Reset Stack Pointer
b0
C
b7
b0
SP ← $FF
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
ii
dd
hh ll
ee ff
ff
ff
ee ff
ff
ff
ff
ff
2
3
4
4
3
2
4
5
4
1
1
4
3
5
4
1
1
4
3
5
1
Data Sheet
Central Processor Unit (CPU)
For More Information On This Product,
Go to: www.freescale.com
99
Freescale Semiconductor, Inc.
Central Processor Unit (CPU)
Effect on
CCR
Freescale Semiconductor, Inc...
V H I N Z C
RTI
Return from Interrupt
RTS
Return from Subroutine
Cycles
Description
Operand
Operation
Opcode
Source
Form
Address
Mode
Table 6-1. Instruction Set Summary (Sheet 7 of 8)
SP ← (SP) + 1; Pull (CCR)
SP ← (SP) + 1; Pull (A)
SP ← (SP) + 1; Pull (X)
SP ← (SP) + 1; Pull (PCH)
SP ← (SP) + 1; Pull (PCL)
R R R R R R INH
80
7
SP ← SP + 1; Pull (PCH)
SP ← SP + 1; Pull (PCL)
– – – – – – INH
81
4
A ← (A) – (M) – (C)
IMM
DIR
EXT
IX2
R – – R R R
IX1
IX
SP1
SP2
A2
B2
C2
D2
E2
F2
9EE2
9ED2
ii
dd
hh ll
ee ff
ff
2
3
4
4
3
2
4
5
SBC #opr
SBC opr
SBC opr
SBC opr,X
SBC opr,X
SBC ,X
SBC opr,SP
SBC opr,SP
Subtract with Carry
SEC
Set Carry Bit
C←1
– – – – – 1 INH
99
1
SEI
Set Interrupt Mask
I←1
– – 1 – – – INH
9B
2
M ← (A)
DIR
EXT
IX2
0 – – R R – IX1
IX
SP1
SP2
B7
C7
D7
E7
F7
9EE7
9ED7
(M:M + 1) ← (H:X)
0 – – R R – DIR
35
I ← 0; Stop Oscillator
– – 0 – – – INH
8E
M ← (X)
DIR
EXT
IX2
0 – – R R – IX1
IX
SP1
SP2
BF
CF
DF
EF
FF
9EEF
9EDF
dd
hh ll
ee ff
ff
IMM
DIR
EXT
IX2
R – – R R R
IX1
IX
SP1
SP2
A0
B0
C0
D0
E0
F0
9EE0
9ED0
ii
dd
hh ll
ee ff
ff
STA opr
STA opr
STA opr,X
STA opr,X
STA ,X
STA opr,SP
STA opr,SP
Store A in M
STHX opr
Store H:X in M
STOP
Enable IRQ Pin; Stop Oscillator
STX opr
STX opr
STX opr,X
STX opr,X
STX ,X
STX opr,SP
STX opr,SP
SUB #opr
SUB opr
SUB opr
SUB opr,X
SUB opr,X
SUB ,X
SUB opr,SP
SUB opr,SP
Data Sheet
100
Store X in M
Subtract
A ← (A) – (M)
ff
ee ff
ff
ee ff
3
4
4
3
2
4
5
dd
4
dd
hh ll
ee ff
ff
1
ff
ee ff
ff
ee ff
3
4
4
3
2
4
5
2
3
4
4
3
2
4
5
MC68HC908LJ24/LK24 — Rev. 2
Central Processor Unit (CPU)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Central Processor Unit (CPU)
Opcode Map
Freescale Semiconductor, Inc...
V H I N Z C
Cycles
Effect on
CCR
Description
Operand
Operation
Opcode
Source
Form
Address
Mode
Table 6-1. Instruction Set Summary (Sheet 8 of 8)
SWI
Software Interrupt
PC ← (PC) + 1; Push (PCL)
SP ← (SP) – 1; Push (PCH)
SP ← (SP) – 1; Push (X)
SP ← (SP) – 1; Push (A)
SP ← (SP) – 1; Push (CCR)
SP ← (SP) – 1; I ← 1
PCH ← Interrupt Vector High Byte
PCL ← Interrupt Vector Low Byte
TAP
Transfer A to CCR
CCR ← (A)
R R R R R R INH
84
2
TAX
Transfer A to X
X ← (A)
– – – – – – INH
97
1
TPA
Transfer CCR to A
A ← (CCR)
– – – – – – INH
85
1
(A) – $00 or (X) – $00 or (M) – $00
DIR
INH
INH
0 – – R R –
IX1
IX
SP1
3D
4D
5D
6D
7D
9E6D
H:X ← (SP) + 1
– – – – – – INH
95
2
A ← (X)
– – – – – – INH
9F
1
(SP) ← (H:X) – 1
– – – – – – INH
94
2
TST opr
TSTA
TSTX
TST opr,X
TST ,X
TST opr,SP
Test for Negative or Zero
TSX
Transfer SP to H:X
TXA
Transfer X to A
TXS
Transfer H:X to SP
A
C
CCR
dd
dd rr
DD
DIR
DIX+
ee ff
EXT
ff
H
H
hh ll
I
ii
IMD
IMM
INH
IX
IX+
IX+D
IX1
IX1+
IX2
M
N
Accumulator
Carry/borrow bit
Condition code register
Direct address of operand
Direct address of operand and relative offset of branch instruction
Direct to direct addressing mode
Direct addressing mode
Direct to indexed with post increment addressing mode
High and low bytes of offset in indexed, 16-bit offset addressing
Extended addressing mode
Offset byte in indexed, 8-bit offset addressing
Half-carry bit
Index register high byte
High and low bytes of operand address in extended addressing
Interrupt mask
Immediate operand byte
Immediate source to direct destination addressing mode
Immediate addressing mode
Inherent addressing mode
Indexed, no offset addressing mode
Indexed, no offset, post increment addressing mode
Indexed with post increment to direct addressing mode
Indexed, 8-bit offset addressing mode
Indexed, 8-bit offset, post increment addressing mode
Indexed, 16-bit offset addressing mode
Memory location
Negative bit
n
opr
PC
PCH
PCL
REL
rel
rr
SP1
SP2
SP
U
V
X
Z
&
|
⊕
()
–( )
#
«
←
?
:
R
—
– – 1 – – – INH
83
9
ff
ff
3
1
1
3
2
4
Any bit
Operand (one or two bytes)
Program counter
Program counter high byte
Program counter low byte
Relative addressing mode
Relative program counter offset byte
Relative program counter offset byte
Stack pointer, 8-bit offset addressing mode
Stack pointer 16-bit offset addressing mode
Stack pointer
Undefined
Overflow bit
Index register low byte
Zero bit
Logical AND
Logical OR
Logical EXCLUSIVE OR
Contents of
Negation (two’s complement)
Immediate value
Sign extend
Loaded with
If
Concatenated with
Set or cleared
Not affected
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
dd
Data Sheet
Central Processor Unit (CPU)
For More Information On This Product,
Go to: www.freescale.com
101
Data Sheet
102
Central Processor Unit (CPU)
For More Information On This Product,
Go to: www.freescale.com
5
BRSET0
3 DIR
5
BRCLR0
3 DIR
5
BRSET1
3 DIR
5
BRCLR1
3 DIR
5
BRSET2
3 DIR
5
BRCLR2
3 DIR
5
BRSET3
3 DIR
5
BRCLR3
3 DIR
5
BRSET4
3 DIR
5
BRCLR4
3 DIR
5
BRSET5
3 DIR
5
BRCLR5
3 DIR
5
BRSET6
3 DIR
5
BRCLR6
3 DIR
5
BRSET7
3 DIR
5
BRCLR7
3 DIR
0
4
BSET0
2 DIR
4
BCLR0
2 DIR
4
BSET1
2 DIR
4
BCLR1
2 DIR
4
BSET2
2 DIR
4
BCLR2
2 DIR
4
BSET3
2 DIR
4
BCLR3
2 DIR
4
BSET4
2 DIR
4
BCLR4
2 DIR
4
BSET5
2 DIR
4
BCLR5
2 DIR
4
BSET6
2 DIR
4
BCLR6
2 DIR
4
BSET7
2 DIR
4
BCLR7
2 DIR
1
3
BRA
2 REL
3
BRN
2 REL
3
BHI
2 REL
3
BLS
2 REL
3
BCC
2 REL
3
BCS
2 REL
3
BNE
2 REL
3
BEQ
2 REL
3
BHCC
2 REL
3
BHCS
2 REL
3
BPL
2 REL
3
BMI
2 REL
3
BMC
2 REL
3
BMS
2 REL
3
BIL
2 REL
3
BIH
2 REL
2
Branch
REL
4
INH
1
NEGX
1 INH
4
CBEQX
3 IMM
7
DIV
1 INH
1
COMX
1 INH
1
LSRX
1 INH
4
LDHX
2 DIR
1
RORX
1 INH
1
ASRX
1 INH
1
LSLX
1 INH
1
ROLX
1 INH
1
DECX
1 INH
3
DBNZX
2 INH
1
INCX
1 INH
1
TSTX
1 INH
4
MOV
2 DIX+
1
CLRX
1 INH
5
4
NEG
2
IX1
5
CBEQ
3 IX1+
3
NSA
1 INH
4
COM
2 IX1
4
LSR
2 IX1
3
CPHX
3 IMM
4
ROR
2 IX1
4
ASR
2 IX1
4
LSL
2 IX1
4
ROL
2 IX1
4
DEC
2 IX1
5
DBNZ
3 IX1
4
INC
2 IX1
3
TST
2 IX1
4
MOV
3 IMD
3
CLR
2 IX1
6
7
IX
9
7
3
RTI
BGE
1 INH 2 REL
4
3
RTS
BLT
1 INH 2 REL
3
BGT
2 REL
9
3
SWI
BLE
1 INH 2 REL
2
2
TAP
TXS
1 INH 1 INH
1
2
TPA
TSX
1 INH 1 INH
2
PULA
1 INH
2
1
PSHA
TAX
1 INH 1 INH
2
1
PULX
CLC
1 INH 1 INH
2
1
PSHX
SEC
1 INH 1 INH
2
2
PULH
CLI
1 INH 1 INH
2
2
PSHH
SEI
1 INH 1 INH
1
1
CLRH
RSP
1 INH 1 INH
1
NOP
1 INH
1
STOP
*
1 INH
1
1
WAIT
TXA
1 INH 1 INH
8
Control
INH
INH
B
DIR
MSB
0
LSB
3
SUB
2 DIR
3
CMP
2 DIR
3
SBC
2 DIR
3
CPX
2 DIR
3
AND
2 DIR
3
BIT
2 DIR
3
LDA
2 DIR
3
STA
2 DIR
3
EOR
2 DIR
3
ADC
2 DIR
3
ORA
2 DIR
3
ADD
2 DIR
2
JMP
2 DIR
4
4
BSR
JSR
2 REL 2 DIR
2
3
LDX
LDX
2 IMM 2 DIR
2
3
AIX
STX
2 IMM 2 DIR
2
SUB
2 IMM
2
CMP
2 IMM
2
SBC
2 IMM
2
CPX
2 IMM
2
AND
2 IMM
2
BIT
2 IMM
2
LDA
2 IMM
2
AIS
2 IMM
2
EOR
2 IMM
2
ADC
2 IMM
2
ORA
2 IMM
2
ADD
2 IMM
A
IMM
Low Byte of Opcode in Hexadecimal
5
3
NEG
NEG
3 SP1 1 IX
6
4
CBEQ
CBEQ
4 SP1 2 IX+
2
DAA
1 INH
5
3
COM
COM
3 SP1 1 IX
5
3
LSR
LSR
3 SP1 1 IX
4
CPHX
2 DIR
5
3
ROR
ROR
3 SP1 1 IX
5
3
ASR
ASR
3 SP1 1 IX
5
3
LSL
LSL
3 SP1 1 IX
5
3
ROL
ROL
3 SP1 1 IX
5
3
DEC
DEC
3 SP1 1 IX
6
4
DBNZ
DBNZ
4 SP1 2 IX
5
3
INC
INC
3 SP1 1 IX
4
2
TST
TST
3 SP1 1 IX
4
MOV
2 IX+D
4
2
CLR
CLR
3 SP1 1 IX
9E6
SP1
Table 6-2. Opcode Map
Read-Modify-Write
INH
IX1
SP1 Stack Pointer, 8-Bit Offset
SP2 Stack Pointer, 16-Bit Offset
IX+ Indexed, No Offset with
Post Increment
IX1+ Indexed, 1-Byte Offset with
Post Increment
4
1
NEG
NEGA
2 DIR 1 INH
5
4
CBEQ CBEQA
3 DIR 3 IMM
5
MUL
1 INH
4
1
COM
COMA
2 DIR 1 INH
4
1
LSR
LSRA
2 DIR 1 INH
4
3
STHX
LDHX
2 DIR 3 IMM
4
1
ROR
RORA
2 DIR 1 INH
4
1
ASR
ASRA
2 DIR 1 INH
4
1
LSL
LSLA
2 DIR 1 INH
4
1
ROL
ROLA
2 DIR 1 INH
4
1
DEC
DECA
2 DIR 1 INH
5
3
DBNZ DBNZA
3 DIR 2 INH
4
1
INC
INCA
2 DIR 1 INH
3
1
TST
TSTA
2 DIR 1 INH
5
MOV
3 DD
3
1
CLR
CLRA
2 DIR 1 INH
3
DIR
INH Inherent
REL Relative
IMM Immediate
IX
Indexed, No Offset
DIR Direct
IX1 Indexed, 8-Bit Offset
EXT Extended
IX2 Indexed, 16-Bit Offset
DD Direct-Direct
IMD Immediate-Direct
IX+D Indexed-Direct DIX+ Direct-Indexed
*Pre-byte for stack pointer indexed instructions
F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0
LSB
MSB
Bit Manipulation
DIR
DIR
E
3
SUB
2 IX1
3
CMP
2 IX1
3
SBC
2 IX1
3
CPX
2 IX1
3
AND
2 IX1
3
BIT
2 IX1
3
LDA
2 IX1
3
STA
2 IX1
3
EOR
2 IX1
3
ADC
2 IX1
3
ORA
2 IX1
3
ADD
2 IX1
3
JMP
2 IX1
5
JSR
2 IX1
5
3
LDX
LDX
4 SP2 2 IX1
5
3
STX
STX
4 SP2 2 IX1
5
SUB
4 SP2
5
CMP
4 SP2
5
SBC
4 SP2
5
CPX
4 SP2
5
AND
4 SP2
5
BIT
4 SP2
5
LDA
4 SP2
5
STA
4 SP2
5
EOR
4 SP2
5
ADC
4 SP2
5
ORA
4 SP2
5
ADD
4 SP2
9ED
IX1
F
IX
2
SUB
1 IX
2
CMP
1 IX
2
SBC
1 IX
2
CPX
1 IX
2
AND
1 IX
2
BIT
1 IX
2
LDA
1 IX
2
STA
1 IX
2
EOR
1 IX
2
ADC
1 IX
2
ORA
1 IX
2
ADD
1 IX
2
JMP
1 IX
4
JSR
1 IX
4
2
LDX
LDX
3 SP1 1 IX
4
2
STX
STX
3 SP1 1 IX
4
SUB
3 SP1
4
CMP
3 SP1
4
SBC
3 SP1
4
CPX
3 SP1
4
AND
3 SP1
4
BIT
3 SP1
4
LDA
3 SP1
4
STA
3 SP1
4
EOR
3 SP1
4
ADC
3 SP1
4
ORA
3 SP1
4
ADD
3 SP1
9EE
SP1
High Byte of Opcode in Hexadecimal
4
SUB
3 IX2
4
CMP
3 IX2
4
SBC
3 IX2
4
CPX
3 IX2
4
AND
3 IX2
4
BIT
3 IX2
4
LDA
3 IX2
4
STA
3 IX2
4
EOR
3 IX2
4
ADC
3 IX2
4
ORA
3 IX2
4
ADD
3 IX2
4
JMP
3 IX2
6
JSR
3 IX2
4
LDX
3 IX2
4
STX
3 IX2
D
Register/Memory
IX2
SP2
5
Cycles
BRSET0 Opcode Mnemonic
3 DIR Number of Bytes / Addressing Mode
0
4
SUB
3 EXT
4
CMP
3 EXT
4
SBC
3 EXT
4
CPX
3 EXT
4
AND
3 EXT
4
BIT
3 EXT
4
LDA
3 EXT
4
STA
3 EXT
4
EOR
3 EXT
4
ADC
3 EXT
4
ORA
3 EXT
4
ADD
3 EXT
3
JMP
3 EXT
5
JSR
3 EXT
4
LDX
3 EXT
4
STX
3 EXT
C
EXT
Freescale Semiconductor, Inc...
Freescale Semiconductor, Inc.
Central Processor Unit (CPU)
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Freescale Semiconductor, Inc.
Data Sheet – MC68HC908LJ24
Section 7. Oscillator (OSC)
Freescale Semiconductor, Inc...
7.1 Contents
7.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.3
Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.4
X-tal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.5
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.5.1
Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . . 106
7.5.2
Crystal Amplifier Output Pin (OSC2) . . . . . . . . . . . . . . . . . 106
7.5.3
Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . . 106
7.5.4
Internal RC Clock (ICLK) . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.5.5
CGM Oscillator Clock (CGMXCLK) . . . . . . . . . . . . . . . . . . 106
7.5.6
CGM Reference Clock (CGMRCLK) . . . . . . . . . . . . . . . . . 106
7.6
Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.6.1
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
7.6.2
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
7.7
Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2 Introduction
The oscillator module provides the reference clock for the clock
generator module (CGM), the real time clock module (RTC), and other
MCU sub-systems.
The oscillator module consist of two types of oscillator circuits:
•
Internal RC oscillator
•
32.768kHz crystal (x-tal) oscillator
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Oscillator (OSC)
For More Information On This Product,
Go to: www.freescale.com
103
Freescale Semiconductor, Inc.
Oscillator (OSC)
The reference clock for the CGM, real time clock module (RTC) and
other MCU sub-systems is driven by the crystal oscillator. The COP
module is always driven by internal RC clock.
The internal RC oscillator runs continuously after a POR or reset and is
always available in run and wait modes. In stop mode, it can be disabled
by setting the STOP_IRCDIS bit in CONFIG2 register.
Figure 7-1. shows the block diagram of the oscillator module.
SIMOSCEN
Freescale Semiconductor, Inc...
From SIM
CONFIG2
EN
STOP_IRCDIS
ICLK
INTERNAL RC
To SIM, COP
OSCILLATOR
INTERNAL RC OSCILLATOR
CGMRCLK
To CGM PLL
CONFIG2
CGMXCLK
STOP_XCLKEN
MCU
To RTC, ADC, LCD,
CGM Clock Selection MUX
CRYSTAL OSCILLATOR
OSC1
OSC2
RB
RS*
*RS can be zero (shorted) when used with higher-frequency crystals.
Refer to manufacturer’s data.
X1
See Section 24. for component value requirements.
C1
32.768kHz
(typical)
C2
Figure 7-1. Oscillator Module Block Diagram
Data Sheet
104
MC68HC908LJ24/LK24 — Rev. 2
Oscillator (OSC)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Oscillator (OSC)
Internal Oscillator
7.3 Internal Oscillator
The internal RC oscillator clock (ICLK) is a free running 64kHz clock (at
VDD = 5V) that requires no external components. It is the reference clock
input to the computer operating properly (COP) module.
Freescale Semiconductor, Inc...
The ICLK can be turned off in stop mode by setting the STOP_IRCDIS
bit in CONFIG2. After reset, the bit is clear by default and ICLK is
enabled during stop mode.
7.4 X-tal Oscillator
The crystal (x-tal) oscillator circuit is designed for use with an external
32.768kHz crystal or ceramic resonator to provide an accurate clock
source.
In its typical configuration, the X-tal oscillator is connected in a Pierce
oscillator configuration, as shown in Figure 7-1. This figure shows only
the logical representation of the internal components and may not
represent actual circuitry. The oscillator configuration uses five
components:
•
Crystal, X1 (32.768kHz)
•
Fixed capacitor, C1
•
Tuning capacitor, C2 (can also be a fixed capacitor)
•
Feedback resistor, RB
•
Series resistor, RS (optional)
The series resistor (RS) is included in the diagram to follow strict Pierce
oscillator guidelines and may not be required for all ranges of operation,
especially with high frequency crystals. Refer to the crystal
manufacturer’s data for more information.
7.5 I/O Signals
The following paragraphs describe the oscillator I/O signals.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Oscillator (OSC)
For More Information On This Product,
Go to: www.freescale.com
105
Freescale Semiconductor, Inc.
Oscillator (OSC)
7.5.1 Crystal Amplifier Input Pin (OSC1)
OSC1 pin is an input to the crystal oscillator amplifier. Schmitt trigger and
glitch filter are implemented on this pin to improve EMC performance.
See Section 24. Electrical Specifications for detail specification of the
glitch filter.
Freescale Semiconductor, Inc...
7.5.2 Crystal Amplifier Output Pin (OSC2)
OSC2 pin is the output of the crystal oscillator inverting amplifier.
7.5.3 Oscillator Enable Signal (SIMOSCEN)
The SIMOSCEN signal from the system integration module (SIM)
enables/disables the x-tal oscillator circuit.
7.5.4 Internal RC Clock (ICLK)
The ICLK clock is the output from the internal RC oscillator. This clock
drives the SIM and COP modules.
7.5.5 CGM Oscillator Clock (CGMXCLK)
The CGMXCLK clock is the output from the x-tal oscillator. This clock
drives to CGM, real time clock module, analog-to-digital converter, liquid
crystal display driver module, and other MCU sub-systems.
7.5.6 CGM Reference Clock (CGMRCLK)
This is buffered signal of CGMXCLK, it is used by the CGM as the
phase-locked-loop (PLL) reference clock.
7.6 Low Power Modes
The WAIT and STOP instructions put the MCU in low-power
consumption standby modes.
Data Sheet
106
MC68HC908LJ24/LK24 — Rev. 2
Oscillator (OSC)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Oscillator (OSC)
Oscillator During Break Mode
7.6.1 Wait Mode
The WAIT instruction has no effect on the oscillator module. CGMXCLK,
CGMRCLK, and ICLK continues to drive the MCU modules.
Freescale Semiconductor, Inc...
7.6.2 Stop Mode
The STOP instruction clears the SIMOSCEN signal, and hence the
CGMXCLK (and CGMRCLK) clock stops running. For continuous
CGMXCLK operation in stop mode, set the STOP_XCLKEN to logic 1
before entering stop mode. Continuous CGMXCLK operation in stop
mode allows the RTC module to generate interrupts to wake up the CPU.
By default, the internal RC oscillator clock, ICLK, continues to run in stop
mode. To disable the ICLK in stop mode, set the STOP_IRCDIS bit to
logic 1 before entering stop mode.
7.7 Oscillator During Break Mode
The oscillator circuits continue to drive CGMXCLK, CGMRCLK, and
ICLK when the device enters the break state.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Oscillator (OSC)
For More Information On This Product,
Go to: www.freescale.com
107
Freescale Semiconductor, Inc.
Freescale Semiconductor, Inc...
Oscillator (OSC)
Data Sheet
108
MC68HC908LJ24/LK24 — Rev. 2
Oscillator (OSC)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Data Sheet – MC68HC908LJ24
Section 8. Clock Generator Module (CGM)
Freescale Semiconductor, Inc...
8.1 Contents
8.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.4
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111
8.4.1
Oscillator Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.4.2
Phase-Locked Loop Circuit (PLL) . . . . . . . . . . . . . . . . . . . 114
8.4.3
PLL Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.4.4
Acquisition and Tracking Modes . . . . . . . . . . . . . . . . . . . . 116
8.4.5
Manual and Automatic PLL Bandwidth Modes. . . . . . . . . . 116
8.4.6
Programming the PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.4.7
Special Programming Exceptions . . . . . . . . . . . . . . . . . . . 122
8.4.8
Base Clock Selector Circuit . . . . . . . . . . . . . . . . . . . . . . . . 122
8.4.9
CGM External Connections . . . . . . . . . . . . . . . . . . . . . . . . 123
8.5
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
8.5.1
External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . 124
8.5.2
PLL Analog Power Pin (VDDA) . . . . . . . . . . . . . . . . . . . . . . 124
8.5.3
PLL Analog Ground Pin (VSSA) . . . . . . . . . . . . . . . . . . . . . 124
8.5.4
Oscillator Output Frequency Signal (CGMXCLK) . . . . . . . 124
8.5.5
CGM Reference Clock (CGMRCLK) . . . . . . . . . . . . . . . . . 124
8.5.6
CGM VCO Clock Output (CGMVCLK) . . . . . . . . . . . . . . . . 125
8.5.7
CGM Base Clock Output (CGMOUT). . . . . . . . . . . . . . . . . 125
8.5.8
CGM CPU Interrupt (CGMINT) . . . . . . . . . . . . . . . . . . . . . 125
8.6
CGM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.6.1
PLL Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.6.2
PLL Bandwidth Control Register . . . . . . . . . . . . . . . . . . . .128
8.6.3
PLL Multiplier Select Registers . . . . . . . . . . . . . . . . . . . . . 130
8.6.4
PLL VCO Range Select Register . . . . . . . . . . . . . . . . . . . .131
8.6.5
PLL Reference Divider Select Register . . . . . . . . . . . . . . . 132
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Clock Generator Module (CGM)
For More Information On This Product,
Go to: www.freescale.com
109
Freescale Semiconductor, Inc.
Clock Generator Module (CGM)
8.7
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
Freescale Semiconductor, Inc...
8.8
Special Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.8.1
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
8.8.2
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134
8.8.3
CGM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . 134
8.9
Acquisition/Lock Time Specifications . . . . . . . . . . . . . . . . . . . 135
8.9.1
Acquisition/Lock Time Definitions. . . . . . . . . . . . . . . . . . . .135
8.9.2
Parametric Influences on Reaction Time . . . . . . . . . . . . . . 135
8.9.3
Choosing a Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.2 Introduction
This section describes the clock generator module (CGM). The CGM
generates the base clock signal, CGMOUT, which is based on either the
oscillator clock divided by two or the divided phase-locked loop (PLL)
clock, CGMPCLK, divided by two. CGMOUT is the clock from which the
SIM derives the system clocks, including the bus clock, which is at a
frequency of CGMOUT÷2.
The PLL is a frequency generator designed for use with a low frequency
crystal (typically 32.768kHz) to generate a base frequency and dividing
to a maximum bus frequency of 8MHz.
Data Sheet
110
MC68HC908LJ24/LK24 — Rev. 2
Clock Generator Module (CGM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Clock Generator Module (CGM)
Features
8.3 Features
Freescale Semiconductor, Inc...
Features of the CGM include:
•
Phase-locked loop with output frequency in integer multiples of an
integer dividend of the crystal reference
•
Low-frequency crystal operation with low-power operation and
high-output frequency resolution
•
Programmable prescaler for power-of-two increases in frequency
•
Programmable hardware voltage-controlled oscillator (VCO) for
low-jitter operation
•
Automatic bandwidth control mode for low-jitter operation
•
Automatic frequency lock detector
•
CPU interrupt on entry or exit from locked condition
•
Configuration register bit to allow oscillator operation during stop
mode
8.4 Functional Description
The CGM consists of three major sub-modules:
•
Oscillator module — The oscillator module generates the constant
reference frequency clock, CGMRCLK (buffered CGMXCLK).
•
Phase-locked loop (PLL) — The PLL generates the
programmable VCO frequency clock, CGMVCLK, and the divided,
CGMPCLK. The CGMPCLK is one of the reference clocks to the
base clock selector circuit.
•
Base clock selector circuit — This software-controlled circuit
selects the one of three clocks as the base clock, CGMOUT:
CGMXCLK, CGMXCLK divided by two, or CGMPCLK divided by
two.
Figure 8-1 shows the structure of the CGM.
Figure 8-2 is a summary of the CGM registers.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Clock Generator Module (CGM)
For More Information On This Product,
Go to: www.freescale.com
111
Freescale Semiconductor, Inc.
Clock Generator Module (CGM)
OSCILLATOR (OSC) MODULE
See Section 7. Oscillator (OSC).
SIMOSCEN
From SIM
ICLK
INTERNAL RC OSC
To SIM (and COP)
CGMXCLK
OSC2
CRYSTAL OSCILLATOR
T0 RTC, ADC, LCD
CGMRCLK
OSC1
USER MODE:
CGMOUT = B
RESET: A
Freescale Semiconductor, Inc...
PHASE-LOCKED LOOP (PLL)
RESET: A
A
÷2
A
B1 S
1
B S
CGMRDV
REFERENCE
DIVIDER
CGMRCLK
1
B S
BASE
CLOCK
SELECT
CIRCUIT
BCS
R
CGMOUT
A
To SIM
SIMDIV2
From SIM
DIV2CLK
RDS[3:0]
VDDA
CGMXFC
CGMPCLK
VSSA
CONFIG2
VPR[1:0]
VRS[7:0]
L
PHASE
DETECTOR
2E
VOLTAGE
CONTROLLED
OSCILLATOR
LOOP
FILTER
PLL ANALOG
AUTOMATIC
MODE
CONTROL
LOCK
DETECTOR
LOCK
AUTO
MUL[11:0]
N
CGMVDV
FREQUENCY
DIVIDER
ACQ
CGMINT
INTERRUPT
CONTROL
PLLIE
To SIM
PLLF
PRE[1:0]
2P
FREQUENCY
DIVIDER
CGMVCLK
CGMPCLK
Figure 8-1. CGM Block Diagram
Data Sheet
112
MC68HC908LJ24/LK24 — Rev. 2
Clock Generator Module (CGM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Clock Generator Module (CGM)
Functional Description
Addr.
Register Name
Bit 7
Read:
$0036
Freescale Semiconductor, Inc...
$0037
$0038
$0039
$003A
$003B
PLL Control Register
Write:
(PTCL)
Reset:
Read:
PLL Bandwidth Control
Register Write:
(PBWC)
Reset:
Read:
PLL Multiplier Select
Register High Write:
(PMSH)
Reset:
Read:
PLL Multiplier Select
Register Low Write:
(PMSL)
Reset:
Read:
PLL VCO Range Select
Register Write:
(PMRS)
Reset:
Read:
PLL Reference Divider
Select Register Write:
(PMDS)
Reset:
6
5
4
3
2
1
Bit 0
PLLON
BCS
PRE1
PRE0
VPR1
VPR0
1
0
0
0
0
0
0
0
0
0
PLLF
PLLIE
0
0
LOCK
AUTO
ACQ
R
0
0
0
0
0
0
0
0
0
0
0
0
MUL11
MUL10
MUL9
MUL8
0
0
0
0
0
0
0
0
MUL7
MUL6
MUL5
MUL4
MUL3
MUL2
MUL1
MUL0
0
1
0
0
0
0
0
0
VRS7
VRS6
VRS5
VRS4
VRS3
VRS2
VRS1
VRS0
0
1
0
0
0
0
0
0
0
0
0
0
RDS3
RDS2
RDS1
RDS0
0
0
0
1
0
0
0
0
= Unimplemented
R
= Reserved
NOTES:
1. When AUTO = 0, PLLIE is forced clear and is read-only.
2. When AUTO = 0, PLLF and LOCK read as clear.
3. When AUTO = 1, ACQ is read-only.
4. When PLLON = 0 or VRS7:VRS0 = $0, BCS is forced clear and is read-only.
5. When PLLON = 1, the PLL programming register is read-only.
6. When BCS = 1, PLLON is forced set and is read-only.
Figure 8-2. CGM I/O Register Summary
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Clock Generator Module (CGM)
For More Information On This Product,
Go to: www.freescale.com
113
Freescale Semiconductor, Inc.
Clock Generator Module (CGM)
Freescale Semiconductor, Inc...
8.4.1 Oscillator Module
The oscillator module provides two clock outputs CGMXCLK and
CGMRCLK to the CGM module. CGMXCLK or CGMXCLK divide-by-two
can be selected to drive the SIM module to generate the system bus
clocks. CGMRCLK is the reference clock for the phase-lock-loop, to
generate a higher frequency clock. The oscillator module also provides
the reference clock for the real time clock (RTC) module.
See Section 7. Oscillator (OSC) for detailed description on oscillator
module. See Section 12. Real Time Clock (RTC) for detailed
description on RTC.
8.4.2 Phase-Locked Loop Circuit (PLL)
The PLL is a frequency generator that can operate in either acquisition
mode or tracking mode, depending on the accuracy of the output
frequency. The PLL can change between acquisition and tracking
modes either automatically or manually.
8.4.3 PLL Circuits
The PLL consists of these circuits:
Data Sheet
114
•
Voltage-controlled oscillator (VCO)
•
Reference divider
•
Frequency pre-scaler
•
Modulo VCO frequency divider
•
Phase detector
•
Loop filter
•
Lock detector
MC68HC908LJ24/LK24 — Rev. 2
Clock Generator Module (CGM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Clock Generator Module (CGM)
Functional Description
The operating range of the VCO is programmable for a wide range of
frequencies and for maximum immunity to external noise, including
supply and CGMXFC noise. The VCO frequency is bound to a range
from roughly one-half to twice the center-of-range frequency, fVRS.
Modulating the voltage on the CGMXFC pin changes the frequency
within this range. By design, fVRS is equal to the nominal center-of-range
frequency, fNOM, (38.4 kHz) times a linear factor, L, and a power-of-two
factor, E, or (L × 2E)fNOM.
Freescale Semiconductor, Inc...
CGMRCLK is the PLL reference clock, a buffered version of CGMXCLK.
CGMRCLK runs at a frequency, fRCLK, and is fed to the PLL through a
programmable modulo reference divider, which divides fRCLK by a
factor, R. The divider’s output is the final reference clock, CGMRDV,
running at a frequency, fRDV = fRCLK/R. With an external crystal
(30kHz–100kHz), always set R = 1 for specified performance. With an
external high-frequency clock source, use R to divide the external
frequency to between 30kHz and 100kHz.
The VCO’s output clock, CGMVCLK, running at a frequency, fVCLK, is
fed back through a programmable pre-scaler divider and a
programmable modulo divider. The pre-scaler divides the VCO clock by
a power-of-two factor P (the CGMPCLK) and the modulo divider reduces
the VCO clock by a factor, N. The dividers’ output is the VCO feedback
clock, CGMVDV, running at a frequency, fVDV = fVCLK/(N × 2P). (See
8.4.6 Programming the PLL for more information.)
The phase detector then compares the VCO feedback clock, CGMVDV,
with the final reference clock, CGMRDV. A correction pulse is generated
based on the phase difference between the two signals. The loop filter
then slightly alters the DC voltage on the external capacitor connected
to CGMXFC based on the width and direction of the correction pulse.
The filter can make fast or slow corrections depending on its mode,
described in 8.4.4 Acquisition and Tracking Modes. The value of the
external capacitor and the reference frequency determines the speed of
the corrections and the stability of the PLL.
The lock detector compares the frequencies of the VCO feedback clock,
CGMVDV, and the final reference clock, CGMRDV. Therefore, the
speed of the lock detector is directly proportional to the final reference
frequency, fRDV. The circuit determines the mode of the PLL and the lock
condition based on this comparison.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Clock Generator Module (CGM)
For More Information On This Product,
Go to: www.freescale.com
115
Freescale Semiconductor, Inc.
Clock Generator Module (CGM)
8.4.4 Acquisition and Tracking Modes
Freescale Semiconductor, Inc...
The PLL filter is manually or automatically configurable into one of two
operating modes:
•
Acquisition mode — In acquisition mode, the filter can make large
frequency corrections to the VCO. This mode is used at PLL start
up or when the PLL has suffered a severe noise hit and the VCO
frequency is far off the desired frequency. When in acquisition
mode, the ACQ bit is clear in the PLL bandwidth control register.
(See 8.6.2 PLL Bandwidth Control Register.)
•
Tracking mode — In tracking mode, the filter makes only small
corrections to the frequency of the VCO. PLL jitter is much lower
in tracking mode, but the response to noise is also slower. The
PLL enters tracking mode when the VCO frequency is nearly
correct, such as when the PLL is selected as the base clock
source. (See 8.4.8 Base Clock Selector Circuit.) The PLL is
automatically in tracking mode when not in acquisition mode or
when the ACQ bit is set.
8.4.5 Manual and Automatic PLL Bandwidth Modes
The PLL can change the bandwidth or operational mode of the loop filter
manually or automatically. Automatic mode is recommended for most
users.
In automatic bandwidth control mode (AUTO = 1), the lock detector
automatically switches between acquisition and tracking modes.
Automatic bandwidth control mode also is used to determine when the
VCO clock, CGMVCLK, is safe to use as the source for the base clock,
CGMOUT. (See 8.6.2 PLL Bandwidth Control Register.) If PLL
interrupts are enabled, the software can wait for a PLL interrupt request
and then check the LOCK bit. If interrupts are disabled, software can poll
the LOCK bit continuously (during PLL start-up, usually) or at periodic
intervals. In either case, when the LOCK bit is set, the VCO clock is safe
to use as the source for the base clock. (See 8.4.8 Base Clock Selector
Circuit.) If the VCO is selected as the source for the base clock and the
LOCK bit is clear, the PLL has suffered a severe noise hit and the
software must take appropriate action, depending on the application.
(See 8.7 Interrupts for information and precautions on using interrupts.)
Data Sheet
116
MC68HC908LJ24/LK24 — Rev. 2
Clock Generator Module (CGM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Clock Generator Module (CGM)
Functional Description
Freescale Semiconductor, Inc...
The following conditions apply when the PLL is in automatic bandwidth
control mode:
•
The ACQ bit (See 8.6.2 PLL Bandwidth Control Register.) is a
read-only indicator of the mode of the filter. (See 8.4.4
Acquisition and Tracking Modes.)
•
The ACQ bit is set when the VCO frequency is within a certain
tolerance and is cleared when the VCO frequency is out of a
certain tolerance. (See 8.9 Acquisition/Lock Time
Specifications for more information.)
•
The LOCK bit is a read-only indicator of the locked state of the
PLL.
•
The LOCK bit is set when the VCO frequency is within a certain
tolerance and is cleared when the VCO frequency is out of a
certain tolerance. (See 8.9 Acquisition/Lock Time
Specifications for more information.)
•
CPU interrupts can occur if enabled (PLLIE = 1) when the PLL’s
lock condition changes, toggling the LOCK bit. (See 8.6.1 PLL
Control Register.)
The PLL also may operate in manual mode (AUTO = 0). Manual mode
is used by systems that do not require an indicator of the lock condition
for proper operation. Such systems typically operate well below
fBUSMAX.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Clock Generator Module (CGM)
For More Information On This Product,
Go to: www.freescale.com
117
Freescale Semiconductor, Inc.
Clock Generator Module (CGM)
Freescale Semiconductor, Inc...
The following conditions apply when in manual mode:
•
ACQ is a writable control bit that controls the mode of the filter.
Before turning on the PLL in manual mode, the ACQ bit must be
clear.
•
Before entering tracking mode (ACQ = 1), software must wait a
given time, tACQ (See 8.9 Acquisition/Lock Time
Specifications.), after turning on the PLL by setting PLLON in the
PLL control register (PCTL).
•
Software must wait a given time, tAL, after entering tracking mode
before selecting the PLL as the clock source to CGMOUT
(BCS = 1).
•
The LOCK bit is disabled.
•
CPU interrupts from the CGM are disabled.
8.4.6 Programming the PLL
The following procedure shows how to program the PLL.
NOTE:
The round function in the following equations means that the real
number should be rounded to the nearest integer number.
1. Choose the desired bus frequency, fBUSDES.
2. Calculate the desired VCO frequency, fVCLKDES.
P
P
f VCLKDES = 2 × f CGMPCLK = 2 × 4
× fBUSDES
where P is the power of two multiplier, and can be 0, 1, 2, or 3
3. Choose a practical PLL reference frequency, fRCLK, and the
reference clock divider, R. Typically, the reference is 32.768kHz
and R = 1.
Frequency errors to the PLL are corrected at a rate of fRCLK/R. For
stability and lock time reduction, this rate must be as fast as
possible. The VCO frequency must be an integer multiple of this
rate.
Data Sheet
118
MC68HC908LJ24/LK24 — Rev. 2
Clock Generator Module (CGM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Clock Generator Module (CGM)
Functional Description
The relationship between the VCO frequency, fVCLK, and the
reference frequency, fRCLK, is
P
2 N
f VCLK = ----------- ( f RCLK )
R
where N is the integer range multiplier, between 1 and 4095.
In cases where desired bus frequency has some tolerance,
choose fRCLK to a value determined either by other module
Freescale Semiconductor, Inc...
requirements (such as modules which are clocked by CGMXCLK),
cost requirements, or ideally, as high as the specified range
allows. See Section 24. Electrical Specifications. Choose the
reference divider, R = 1.
When the tolerance on the bus frequency is tight, choose fRCLK to
an integer divisor of fBUSDES, and R = 1. If fRCLK cannot meet this
requirement, use the following equation to solve for R with
practical choices of fRCLK, and choose the fRCLK that gives the
lowest R.
⎛ f VCLKDES⎞ ⎫
⎧ ⎛ f VCLKDES⎞
R = round R MAX × ⎨ ⎜ --------------------------⎟ – integer ⎜ --------------------------⎟ ⎬
⎝ f RCLK ⎠ ⎭
⎩ ⎝ f RCLK ⎠
4. Calculate N:
⎛ R × f VCLKDES⎞
N = round ⎜ -------------------------------------⎟
P
⎝ f
×2 ⎠
RCLK
5. Calculate and verify the adequacy of the VCO and bus
frequencies fVCLK and fBUS.
P
2 N
f VCLK = ----------- ( f RCLK )
R
f BUS =
f
VCLK
---------P
2 ×4
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Clock Generator Module (CGM)
For More Information On This Product,
Go to: www.freescale.com
119
Freescale Semiconductor, Inc.
Clock Generator Module (CGM)
6. Select the VCO’s power-of-two range multiplier E, according to
this table:
Frequency Range
E
0 < fVCLK < 9,830,400
0
9,830,400 ≤ fVCLK < 19,660,800
1
19,660,800 ≤ fVCLK < 39,321,600
2
Freescale Semiconductor, Inc...
NOTE: Do not program E to a value of 3.
7. Select a VCO linear range multiplier, L, where fNOM = 38.4kHz
⎛ f VCLK ⎞
L = round ⎜ --------------------------⎟
⎝ 2E × f
⎠
NOM
8. Calculate and verify the adequacy of the VCO programmed
center-of-range frequency, fVRS. The center-of-range frequency is
the midpoint between the minimum and maximum frequencies
attainable by the PLL.
E
f VRS = ( L × 2 )f NOM
For proper operation,
E
f NOM × 2
f VRS – f VCLK ≤ -------------------------2
9. Verify the choice of P, R, N, E, and L by comparing fVCLK to fVRS
and fVCLKDES. For proper operation, fVCLK must be within the
application’s tolerance of fVCLKDES, and fVRS must be as close as
possible to fVCLK.
NOTE:
Data Sheet
120
Exceeding the recommended maximum bus frequency or VCO
frequency can crash the MCU.
MC68HC908LJ24/LK24 — Rev. 2
Clock Generator Module (CGM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Clock Generator Module (CGM)
Functional Description
10. Program the PLL registers accordingly:
a. In the PRE bits of the PLL control register (PCTL), program
the binary equivalent of P.
b. In the VPR bits of the PLL control register (PCTL), program
the binary equivalent of E.
c. In the PLL multiplier select register low (PMSL) and the PLL
multiplier select register high (PMSH), program the binary
equivalent of N.
Freescale Semiconductor, Inc...
d. In the PLL VCO range select register (PMRS), program the
binary coded equivalent of L.
e. In the PLL reference divider select register (PMDS), program
the binary coded equivalent of R.
NOTE:
The values for P, E, N, L, and R can only be programmed when the PLL
is off (PLLON = 0).
Table 8-1 provides numeric examples (numbers are in hexadecimal
notation):
Table 8-1. Numeric Examples
CGMVCLK
CGMPCLK
fBUS
fRCLK
R
N
P
E
L
8.0 MHz
8.0 MHz
2.0 MHz
32.768 kHz
1
F5
0
0
D1
9.8304 MHz
9.8304 MHz
2.4576 MHz
32.768 kHz
1
12C
0
1
80
10.0 MHz
10.0 MHz
2.5 MHz
32.768 kHz
1
132
0
1
83
16 MHz
16 MHz
4.0 MHz
32.768 kHz
1
1E9
0
1
D1
19.6608 MHz
19.6608 MHz
4.9152 MHz
32.768 kHz
1
258
0
2
80
20 MHz
20 MHz
5.0 MHz
32.768 kHz
1
263
0
2
82
29.4912 MHz
29.4912 MHz
7.3728 MHz
32.768 kHz
1
384
0
2
C0
32 MHz
32 MHz
8.0 MHz
32.768 kHz
1
3D1
0
2
D0
32 MHz
16 MHz
4.0 MHz
32.768 kHz
1
1E9
1
2
D0
32 MHz
8 MHz
2.0 MHz
32.768 kHz
1
F5
2
2
D0
32 MHz
4 MHz
1.0 MHz
32.768 kHz
1
7B
3
2
D0
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Clock Generator Module (CGM)
For More Information On This Product,
Go to: www.freescale.com
121
Freescale Semiconductor, Inc.
Clock Generator Module (CGM)
8.4.7 Special Programming Exceptions
Freescale Semiconductor, Inc...
The programming method described in 8.4.6 Programming the PLL
does not account for three possible exceptions. A value of 0 for R, N, or
L is meaningless when used in the equations given. To account for these
exceptions:
•
A 0 value for R or N is interpreted exactly the same as a value of 1.
•
A 0 value for L disables the PLL and prevents its selection as the
source for the base clock.
(See 8.4.8 Base Clock Selector Circuit.)
8.4.8 Base Clock Selector Circuit
This circuit is used to select either the oscillator clock, CGMXCLK, or the
divided VCO clock, CGMPCLK, as the source of the base clock,
CGMOUT. The two input clocks go through a transition control circuit
that waits up to three CGMXCLK cycles and three CGMPCLK cycles to
change from one clock source to the other. During this time, CGMOUT
is held in stasis. The output of the transition control circuit is then divided
by two to correct the duty cycle. Therefore, the bus clock frequency,
which is one-half of CGMOUT, is one-fourth the frequency of the
selected clock (CGMXCLK or CGMPCLK).
For the CGMXCLK, the divide-by-2 can be by-passed by setting the
DIV2CLK bit in the CONFIG2 register. Therefore, the bus clock
frequency can be one-half of CGMXCLK.
The BCS bit in the PLL control register (PCTL) selects which clock drives
CGMOUT. The divided VCO clock cannot be selected as the base clock
source if the PLL is not turned on. The PLL cannot be turned off if the
divided VCO clock is selected. The PLL cannot be turned on or off
simultaneously with the selection or deselection of the divided VCO
clock. The divided VCO clock also cannot be selected as the base clock
source if the factor L is programmed to a 0. This value would set up a
condition inconsistent with the operation of the PLL, so that the PLL
would be disabled and the oscillator clock would be forced as the source
of the base clock.
Data Sheet
122
MC68HC908LJ24/LK24 — Rev. 2
Clock Generator Module (CGM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Clock Generator Module (CGM)
I/O Signals
8.4.9 CGM External Connections
In its typical configuration, the CGM requires up to four external
components.
Figure 8-3 shows the external components for the PLL:
•
Bypass capacitor, CBYP
•
Filter network
Freescale Semiconductor, Inc...
Care should be taken with PCB routing in order to minimize signal cross
talk and noise. (See 8.9 Acquisition/Lock Time Specifications for
routing information, filter network and its effects on PLL performance.)
MCU
VSSA
CGMXFC
VDDA
VDD
10 kΩ
0.01 µF
CBYP
0.1 µF
0.033 µF
Note: Filter network in box can be replaced with a 0.47µF capacitor, but will degrade stability.
Figure 8-3. CGM External Connections
8.5 I/O Signals
The following paragraphs describe the CGM I/O signals.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Clock Generator Module (CGM)
For More Information On This Product,
Go to: www.freescale.com
123
Freescale Semiconductor, Inc.
Clock Generator Module (CGM)
8.5.1 External Filter Capacitor Pin (CGMXFC)
The CGMXFC pin is required by the loop filter to filter out phase
corrections. An external filter network is connected to this pin. (See
Figure 8-3.)
Freescale Semiconductor, Inc...
NOTE:
To prevent noise problems, the filter network should be placed as close
to the CGMXFC pin as possible, with minimum routing distances and no
routing of other signals across the network.
8.5.2 PLL Analog Power Pin (VDDA)
VDDA is a power pin used by the analog portions of the PLL. Connect the
VDDA pin to the same voltage potential as the VDD pin.
NOTE:
Route VDDA carefully for maximum noise immunity and place bypass
capacitors as close as possible to the package.
8.5.3 PLL Analog Ground Pin (VSSA)
VSSA is a ground pin used by the analog portions of the PLL. Connect
the VSSA pin to the same voltage potential as the VSS pin.
NOTE:
Route VSSA carefully for maximum noise immunity and place bypass
capacitors as close as possible to the package.
NOTE:
On this MCU, the VSSA is physically bonded to the VSS pin.
8.5.4 Oscillator Output Frequency Signal (CGMXCLK)
CGMXCLK is the oscillator output signal. It runs at the full speed of the
oscillator, and is generated directly from the crystal oscillator circuit, the
RC oscillator circuit, or the internal oscillator circuit.
8.5.5 CGM Reference Clock (CGMRCLK)
CGMRCLK is a buffered version of CGMXCLK, this clock is the
reference clock for the phase-locked-loop circuit.
Data Sheet
124
MC68HC908LJ24/LK24 — Rev. 2
Clock Generator Module (CGM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Clock Generator Module (CGM)
CGM Registers
8.5.6 CGM VCO Clock Output (CGMVCLK)
CGMVCLK is the clock output from the VCO.
Freescale Semiconductor, Inc...
8.5.7 CGM Base Clock Output (CGMOUT)
CGMOUT is the clock output of the CGM. This signal goes to the SIM,
which generates the MCU clocks. CGMOUT is a 50 percent duty cycle
clock running at twice the bus frequency. CGMOUT is software
programmable to be equal to CGMXCLK, CGMXCLK divided by two, or
CGMPCLK divided by two.
8.5.8 CGM CPU Interrupt (CGMINT)
CGMINT is the interrupt signal generated by the PLL lock detector.
8.6 CGM Registers
The following registers control and monitor operation of the CGM:
•
PLL control register (PCTL)
(See 8.6.1 PLL Control Register.)
•
PLL bandwidth control register (PBWC)
(See 8.6.2 PLL Bandwidth Control Register.)
•
PLL multiplier select registers (PMSH and PMSL)
(See 8.6.3 PLL Multiplier Select Registers.)
•
PLL VCO range select register (PMRS)
(See 8.6.4 PLL VCO Range Select Register.)
•
PLL reference divider select register (PMDS)
(See 8.6.5 PLL Reference Divider Select Register.)
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Clock Generator Module (CGM)
For More Information On This Product,
Go to: www.freescale.com
125
Freescale Semiconductor, Inc.
Clock Generator Module (CGM)
8.6.1 PLL Control Register
The PLL control register (PCTL) contains the interrupt enable and flag
bits, the on/off switch, the base clock selector bit, the prescaler bits, and
the VCO power-of-two range selector bits.
Address:
$0036
Bit 7
Read:
6
5
4
3
2
1
Bit 0
PLLON
BCS
PRE1
PRE0
VPR1
VPR0
1
0
0
0
0
0
PLLF
PLLIE
Freescale Semiconductor, Inc...
Write:
Reset:
0
0
= Unimplemented
Figure 8-4. PLL Control Register (PCTL)
PLLIE — PLL Interrupt Enable Bit
This read/write bit enables the PLL to generate an interrupt request
when the LOCK bit toggles, setting the PLL flag, PLLF. When the
AUTO bit in the PLL bandwidth control register (PBWC) is clear,
PLLIE cannot be written and reads as logic 0. Reset clears the PLLIE
bit.
1 = PLL interrupts enabled
0 = PLL interrupts disabled
PLLF — PLL Interrupt Flag Bit
This read-only bit is set whenever the LOCK bit toggles. PLLF
generates an interrupt request if the PLLIE bit also is set. PLLF
always reads as logic 0 when the AUTO bit in the PLL bandwidth
control register (PBWC) is clear. Clear the PLLF bit by reading the
PLL control register. Reset clears the PLLF bit.
1 = Change in lock condition
0 = No change in lock condition
NOTE:
Data Sheet
126
Do not inadvertently clear the PLLF bit. Any read or read-modify-write
operation on the PLL control register clears the PLLF bit.
MC68HC908LJ24/LK24 — Rev. 2
Clock Generator Module (CGM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Clock Generator Module (CGM)
CGM Registers
PLLON — PLL On Bit
This read/write bit activates the PLL and enables the VCO clock,
CGMVCLK. PLLON cannot be cleared if the VCO clock is driving the
base clock, CGMOUT (BCS = 1). (See 8.4.8 Base Clock Selector
Circuit.) Reset sets this bit so that the loop can stabilize as the MCU
is powering up.
1 = PLL on
0 = PLL off
Freescale Semiconductor, Inc...
BCS — Base Clock Select Bit
This read/write bit selects either the oscillator output, CGMXCLK, or
the divided VCO clock, CGMPCLK, as the source of the CGM output,
CGMOUT. CGMOUT frequency is one-half the frequency of the
selected clock. BCS cannot be set while the PLLON bit is clear. After
toggling BCS, it may take up to three CGMXCLK and three
CGMPCLK cycles to complete the transition from one source clock to
the other. During the transition, CGMOUT is held in stasis. (See 8.4.8
Base Clock Selector Circuit.) Reset clears the BCS bit.
1 = CGMPCLK divided by two drives CGMOUT
0 = CGMXCLK divided by two drives CGMOUT
NOTE:
PLLON and BCS have built-in protection that prevents the base clock
selector circuit from selecting the VCO clock as the source of the base
clock if the PLL is off. Therefore, PLLON cannot be cleared when BCS
is set, and BCS cannot be set when PLLON is clear. If the PLL is off
(PLLON = 0), selecting CGMPCLK requires two writes to the PLL control
register. (See 8.4.8 Base Clock Selector Circuit.)
PRE1 and PRE0 — Prescaler Program Bits
These read/write bits control a prescaler that selects the prescaler
power-of-two multiplier, P. (See 8.4.3 PLL Circuits and 8.4.6
Programming the PLL.) PRE1 and PRE0 cannot be written when
the PLLON bit is set. Reset clears these bits.
These prescaler bits affects the relationship between the VCO clock
and the final system bus clock.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Clock Generator Module (CGM)
For More Information On This Product,
Go to: www.freescale.com
127
Freescale Semiconductor, Inc.
Clock Generator Module (CGM)
Table 8-2. PRE 1 and PRE0 Programming
PRE1 and PRE0
P
Prescaler Multiplier
00
0
1
01
1
2
10
2
4
11
3
8
Freescale Semiconductor, Inc...
VPR1 and VPR0 — VCO Power-of-Two Range Select Bits
These read/write bits control the VCO’s hardware power-of-two range
multiplier E that, in conjunction with L (See 8.4.3 PLL Circuits, 8.4.6
Programming the PLL, and 8.6.4 PLL VCO Range Select
Register.) controls the hardware center-of-range frequency, fVRS.
VPR1:VPR0 cannot be written when the PLLON bit is set. Reset
clears these bits.
Table 8-3. VPR1 and VPR0 Programming
VPR1 and VPR0
E
VCO Power-of-Two
Range Multiplier
00
0
1
01
1
2
10
2
4
NOTE: Do not program E to a value of 3.
8.6.2 PLL Bandwidth Control Register
The PLL bandwidth control register (PBWC):
Data Sheet
128
•
Selects automatic or manual (software-controlled) bandwidth
control mode
•
Indicates when the PLL is locked
•
In automatic bandwidth control mode, indicates when the PLL is in
acquisition or tracking mode
•
In manual operation, forces the PLL into acquisition or tracking
mode
MC68HC908LJ24/LK24 — Rev. 2
Clock Generator Module (CGM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Clock Generator Module (CGM)
CGM Registers
Address:
$0037
Bit 7
Read:
6
5
LOCK
AUTO
4
3
2
1
0
0
0
0
Bit 0
ACQ
R
Write:
Reset:
0
0
0
= Unimplemented
0
0
R
0
0
0
= Reserved
Figure 8-5. PLL Bandwidth Control Register (PBWCR)
Freescale Semiconductor, Inc...
AUTO — Automatic Bandwidth Control Bit
This read/write bit selects automatic or manual bandwidth control.
When initializing the PLL for manual operation (AUTO = 0), clear the
ACQ bit before turning on the PLL. Reset clears the AUTO bit.
1 = Automatic bandwidth control
0 = Manual bandwidth control
LOCK — Lock Indicator Bit
When the AUTO bit is set, LOCK is a read-only bit that becomes set
when the VCO clock, CGMVCLK, is locked (running at the
programmed frequency). When the AUTO bit is clear, LOCK reads as
logic 0 and has no meaning. The write one function of this bit is
reserved for test, so this bit must always be written a 0. Reset clears
the LOCK bit.
1 = VCO frequency correct or locked
0 = VCO frequency incorrect or unlocked
ACQ — Acquisition Mode Bit
When the AUTO bit is set, ACQ is a read-only bit that indicates
whether the PLL is in acquisition mode or tracking mode. When the
AUTO bit is clear, ACQ is a read/write bit that controls whether the
PLL is in acquisition or tracking mode.
In automatic bandwidth control mode (AUTO = 1), the last-written
value from manual operation is stored in a temporary location and is
recovered when manual operation resumes. Reset clears this bit,
enabling acquisition mode.
1 = Tracking mode
0 = Acquisition mode
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Clock Generator Module (CGM)
For More Information On This Product,
Go to: www.freescale.com
129
Freescale Semiconductor, Inc.
Clock Generator Module (CGM)
8.6.3 PLL Multiplier Select Registers
The PLL multiplier select registers (PMSH and PMSL) contain the
programming information for the modulo feedback divider.
Address:
Read:
$0038
Bit 7
6
5
4
0
0
0
0
3
2
1
Bit 0
MUL11
MUL10
MUL9
MUL8
0
0
0
0
Write:
Freescale Semiconductor, Inc...
Reset:
0
0
0
0
= Unimplemented
Figure 8-6. PLL Multiplier Select Register High (PMSH)
Address:
$0039
Bit 7
6
5
4
3
2
1
Bit 0
MUL7
MUL6
MUL5
MUL4
MUL3
MUL2
MUL1
MUL0
0
1
0
0
0
0
0
0
Read:
Write:
Reset:
Figure 8-7. PLL Multiplier Select Register Low (PMSL)
MUL[11:0] — Multiplier Select Bits
These read/write bits control the modulo feedback divider that selects
the VCO frequency multiplier N. (See 8.4.3 PLL Circuits and 8.4.6
Programming the PLL.) A value of $0000 in the multiplier select
registers configure the modulo feedback divider the same as a value
of $0001. Reset initializes the registers to $0040 for a default multiply
value of 64.
NOTE:
Data Sheet
130
The multiplier select bits have built-in protection such that they cannot
be written when the PLL is on (PLLON = 1).
MC68HC908LJ24/LK24 — Rev. 2
Clock Generator Module (CGM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Clock Generator Module (CGM)
CGM Registers
8.6.4 PLL VCO Range Select Register
The PLL VCO range select register (PMRS) contains the programming
information required for the hardware configuration of the VCO.
Address:
$003A
Bit 7
6
5
4
3
2
1
Bit 0
VRS7
VRS6
VRS5
VRS4
VRS3
VRS2
VRS1
VRS0
0
1
0
0
0
0
0
0
Read:
Write:
Freescale Semiconductor, Inc...
Reset:
Figure 8-8. PLL VCO Range Select Register (PMRS)
VRS[7:0] — VCO Range Select Bits
These read/write bits control the hardware center-of-range linear
multiplier L which, in conjunction with E (See 8.4.3 PLL Circuits,
8.4.6 Programming the PLL, and 8.6.1 PLL Control Register.),
controls the hardware center-of-range frequency, fVRS. VRS[7:0]
cannot be written when the PLLON bit in the PCTL is set. (See 8.4.7
Special Programming Exceptions.) A value of $00 in the VCO
range select register disables the PLL and clears the BCS bit in the
PLL control register (PCTL). (See 8.4.8 Base Clock Selector Circuit
and 8.4.7 Special Programming Exceptions.). Reset initializes the
register to $40 for a default range multiply value of 64.
NOTE:
The VCO range select bits have built-in protection such that they cannot
be written when the PLL is on (PLLON = 1) and such that the VCO clock
cannot be selected as the source of the base clock (BCS = 1) if the VCO
range select bits are all clear.
The PLL VCO range select register must be programmed correctly.
Incorrect programming can result in failure of the PLL to achieve lock.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Clock Generator Module (CGM)
For More Information On This Product,
Go to: www.freescale.com
131
Freescale Semiconductor, Inc.
Clock Generator Module (CGM)
8.6.5 PLL Reference Divider Select Register
The PLL reference divider select register (PMDS) contains the
programming information for the modulo reference divider.
Address:
Read:
$003B
Bit 7
6
5
4
0
0
0
0
3
2
1
Bit 0
RDS3
RDS2
RDS1
RDS0
0
0
0
1
Write:
Freescale Semiconductor, Inc...
Reset:
0
0
0
0
= Unimplemented
Figure 8-9. PLL Reference Divider Select Register (PMDS)
RDS[3:0] — Reference Divider Select Bits
These read/write bits control the modulo reference divider that selects
the reference division factor, R. (See 8.4.3 PLL Circuits and 8.4.6
Programming the PLL.) RDS[3:0] cannot be written when the
PLLON bit in the PCTL is set. A value of $00 in the reference divider
select register configures the reference divider the same as a value of
$01. (See 8.4.7 Special Programming Exceptions.) Reset
initializes the register to $01 for a default divide value of 1.
Data Sheet
132
NOTE:
The reference divider select bits have built-in protection such that they
cannot be written when the PLL is on (PLLON = 1).
NOTE:
The default divide value of 1 is recommended for all applications.
MC68HC908LJ24/LK24 — Rev. 2
Clock Generator Module (CGM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Clock Generator Module (CGM)
Interrupts
8.7 Interrupts
Freescale Semiconductor, Inc...
When the AUTO bit is set in the PLL bandwidth control register (PBWC),
the PLL can generate a CPU interrupt request every time the LOCK bit
changes state. The PLLIE bit in the PLL control register (PCTL) enables
CPU interrupts from the PLL. PLLF, the interrupt flag in the PCTL,
becomes set whether interrupts are enabled or not. When the AUTO bit
is clear, CPU interrupts from the PLL are disabled and PLLF reads as
logic 0.
Software should read the LOCK bit after a PLL interrupt request to see
if the request was due to an entry into lock or an exit from lock. When the
PLL enters lock, the divided VCO clock, CGMPCLK, divided by two can
be selected as the CGMOUT source by setting BCS in the PCTL. When
the PLL exits lock, the VCO clock frequency is corrupt, and appropriate
precautions should be taken. If the application is not frequency sensitive,
interrupts should be disabled to prevent PLL interrupt service routines
from impeding software performance or from exceeding stack
limitations.
NOTE:
Software can select the CGMPCLK divided by two as the CGMOUT
source even if the PLL is not locked (LOCK = 0). Therefore, software
should make sure the PLL is locked before setting the BCS bit.
8.8 Special Modes
The WAIT instruction puts the MCU in low power-consumption standby
modes.
8.8.1 Wait Mode
The WAIT instruction does not affect the CGM. Before entering wait
mode, software can disengage and turn off the PLL by clearing the BCS
and PLLON bits in the PLL control register (PCTL) to save power. Less
power-sensitive applications can disengage the PLL without turning it
off, so that the PLL clock is immediately available at WAIT exit. This
would be the case also when the PLL is to wake the MCU from wait
mode, such as when the PLL is first enabled and waiting for LOCK or
LOCK is lost.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Clock Generator Module (CGM)
For More Information On This Product,
Go to: www.freescale.com
133
Freescale Semiconductor, Inc.
Clock Generator Module (CGM)
8.8.2 Stop Mode
Freescale Semiconductor, Inc...
If the oscillator stop mode enable bit (STOP_XCLKEN in CONFIG2
register) is configured to disabled the oscillator in stop mode, then the
STOP instruction disables the CGM (oscillator and phase locked loop)
and holds low all CGM outputs (CGMOUT, CGMVCLK, CGMPCLK, and
CGMINT).
If the STOP instruction is executed with the divided VCO clock,
CGMPCLK, divided by two driving CGMOUT, the PLL automatically
clears the BCS bit in the PLL control register (PCTL), thereby selecting
the oscillator clock, CGMXCLK, divided by two as the source of
CGMOUT. When the MCU recovers from STOP, the crystal clock
divided by two drives CGMOUT and BCS remains clear.
If the oscillator stop mode enable bit is configured for continuous
oscillator operation in stop mode, then the phase locked loop is shut off
but the CGMXCLK will continue to drive the SIM and other MCU subsystems.
8.8.3 CGM During Break Interrupts
The system integration module (SIM) controls whether status bits in
other modules can be cleared during the break state. The BCFE bit in
the SIM break flag control register (SBFCR) enables software to clear
status bits during the break state. (See 9.8.3 SIM Break Flag Control
Register.)
To allow software to clear status bits during a break interrupt, write a
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it
remains cleared when the MCU exits the break state.
To protect the PLLF bit during the break state, write a logic 0 to the BCFE
bit. With BCFE at logic 0 (its default state), software can read and write
the PLL control register during the break state without affecting the PLLF
bit.
Data Sheet
134
MC68HC908LJ24/LK24 — Rev. 2
Clock Generator Module (CGM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Clock Generator Module (CGM)
Acquisition/Lock Time Specifications
8.9 Acquisition/Lock Time Specifications
The acquisition and lock times of the PLL are, in many applications, the
most critical PLL design parameters. Proper design and use of the PLL
ensures the highest stability and lowest acquisition/lock times.
8.9.1 Acquisition/Lock Time Definitions
Freescale Semiconductor, Inc...
Typical control systems refer to the acquisition time or lock time as the
reaction time, within specified tolerances, of the system to a step input.
In a PLL, the step input occurs when the PLL is turned on or when it
suffers a noise hit. The tolerance is usually specified as a percent of the
step input or when the output settles to the desired value plus or minus
a percent of the frequency change. Therefore, the reaction time is
constant in this definition, regardless of the size of the step input. For
example, consider a system with a 5 percent acquisition time tolerance.
If a command instructs the system to change from 0Hz to 1MHz, the
acquisition time is the time taken for the frequency to reach
1MHz ±50kHz. 50kHz = 5% of the 1MHz step input. If the system is
operating at 1MHz and suffers a –100kHz noise hit, the acquisition time
is the time taken to return from 900kHz to 1MHz ±5kHz. 5kHz = 5% of
the 100kHz step input.
Other systems refer to acquisition and lock times as the time the system
takes to reduce the error between the actual output and the desired
output to within specified tolerances. Therefore, the acquisition or lock
time varies according to the original error in the output. Minor errors may
not even be registered. Typical PLL applications prefer to use this
definition because the system requires the output frequency to be within
a certain tolerance of the desired frequency regardless of the size of the
initial error.
8.9.2 Parametric Influences on Reaction Time
Acquisition and lock times are designed to be as short as possible while
still providing the highest possible stability. These reaction times are not
constant, however. Many factors directly and indirectly affect the
acquisition time.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Clock Generator Module (CGM)
For More Information On This Product,
Go to: www.freescale.com
135
Freescale Semiconductor, Inc.
Clock Generator Module (CGM)
Freescale Semiconductor, Inc...
The most critical parameter which affects the reaction times of the PLL
is the reference frequency, fRDV. This frequency is the input to the phase
detector and controls how often the PLL makes corrections. For stability,
the corrections must be small compared to the desired frequency, so
several corrections are required to reduce the frequency error.
Therefore, the slower the reference the longer it takes to make these
corrections. This parameter is under user control via the choice of crystal
frequency fXCLK and the R value programmed in the reference divider.
(See 8.4.3 PLL Circuits, 8.4.6 Programming the PLL, and 8.6.5 PLL
Reference Divider Select Register.)
Another critical parameter is the external filter network. The PLL
modifies the voltage on the VCO by adding or subtracting charge from
capacitors in this network. Therefore, the rate at which the voltage
changes for a given frequency error (thus change in charge) is
proportional to the capacitance. The size of the capacitor also is related
to the stability of the PLL. If the capacitor is too small, the PLL cannot
make small enough adjustments to the voltage and the system cannot
lock. If the capacitor is too large, the PLL may not be able to adjust the
voltage in a reasonable time. (See 8.9.3 Choosing a Filter.)
Also important is the operating voltage potential applied to VDDA. The
power supply potential alters the characteristics of the PLL. A fixed value
is best. Variable supplies, such as batteries, are acceptable if they vary
within a known range at very slow speeds. Noise on the power supply is
not acceptable, because it causes small frequency errors which
continually change the acquisition time of the PLL.
Temperature and processing also can affect acquisition time because
the electrical characteristics of the PLL change. The part operates as
specified as long as these influences stay within the specified limits.
External factors, however, can cause drastic changes in the operation of
the PLL. These factors include noise injected into the PLL through the
filter capacitor, filter capacitor leakage, stray impedances on the circuit
board, and even humidity or circuit board contamination.
Data Sheet
136
MC68HC908LJ24/LK24 — Rev. 2
Clock Generator Module (CGM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Clock Generator Module (CGM)
Acquisition/Lock Time Specifications
8.9.3 Choosing a Filter
As described in 8.9.2 Parametric Influences on Reaction Time, the
external filter network is critical to the stability and reaction time of the
PLL. The PLL is also dependent on reference frequency and supply
voltage.
Freescale Semiconductor, Inc...
Either of the filter networks in Figure 8-10 is recommended when using
a 32.768kHz reference clock (CGMRCLK). Figure 8-10 (a) is used for
applications requiring better stability. Figure 8-10 (b) is used in low-cost
applications where stability is not critical.
CGMXFC
10 kΩ
CGMXFC
0.01 µF
0.47 µF
0.033 µF
VSSA
VSSA
(a)
(b)
Figure 8-10. PLL Filter
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Clock Generator Module (CGM)
For More Information On This Product,
Go to: www.freescale.com
137
Freescale Semiconductor, Inc.
Freescale Semiconductor, Inc...
Clock Generator Module (CGM)
Data Sheet
138
MC68HC908LJ24/LK24 — Rev. 2
Clock Generator Module (CGM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Data Sheet – MC68HC908LJ24
Section 9. System Integration Module (SIM)
9.1 Contents
Freescale Semiconductor, Inc...
9.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
9.3
SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . 142
9.3.1
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
9.3.2
Clock Start-up from POR or LVI Reset. . . . . . . . . . . . . . . . 143
9.3.3
Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . 144
9.4
Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . 144
9.4.1
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
9.4.2
Active Resets from Internal Sources . . . . . . . . . . . . . . . . . 145
9.4.2.1
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146
9.4.2.2
Computer Operating Properly (COP) Reset. . . . . . . . . . 147
9.4.2.3
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
9.4.2.4
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . .148
9.4.2.5
Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . 148
9.4.2.6
Monitor Mode Entry Module Reset (MODRST) . . . . . . . 148
9.5
SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
9.5.1
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . 149
9.5.2
SIM Counter During Stop Mode Recovery . . . . . . . . . . . . . 149
9.5.3
SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . 149
9.6
Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150
9.6.1
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
9.6.1.1
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
9.6.1.2
SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
9.6.1.3
Interrupt Status Registers . . . . . . . . . . . . . . . . . . . . . . .153
9.6.1.4
Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . 153
9.6.1.5
Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . 155
9.6.1.6
Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . 155
9.6.2
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
9.6.3
Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
System Integration Module (SIM)
For More Information On This Product,
Go to: www.freescale.com
139
Freescale Semiconductor, Inc.
System Integration Module (SIM)
9.6.4
Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . 156
9.7
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
9.7.1
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157
9.7.2
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158
Freescale Semiconductor, Inc...
9.8
SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
9.8.1
SIM Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . 160
9.8.2
SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . 161
9.8.3
SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . . 162
9.2 Introduction
This section describes the system integration module (SIM). Together
with the CPU, the SIM controls all MCU activities. A block diagram of the
SIM is shown in Figure 9-1. Table 9-1 is a summary of the SIM
input/output (I/O) registers. The SIM is a system state controller that
coordinates CPU and exception timing. The SIM is responsible for:
•
Bus clock generation and control for CPU and peripherals:
– Stop/wait/reset/break entry and recovery
– Internal clock control
•
Master reset control, including power-on reset (POR) and COP
timeout
•
Interrupt control:
– Acknowledge timing
– Arbitration control timing
– Vector address generation
•
CPU enable/disable timing
•
Modular architecture expandable to 128 interrupt sources
Table 9-1 shows the internal signal names used in this section.
Data Sheet
140
MC68HC908LJ24/LK24 — Rev. 2
System Integration Module (SIM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
System Integration Module (SIM)
Introduction
MODULE STOP
MODULE WAIT
CPU STOP (FROM CPU)
CPU WAIT (FROM CPU)
STOP/WAIT
CONTROL
SIMOSCEN (TO CGM, OSC)
SIM
COUNTER
COP CLOCK
ICLK (FROM OSC)
Freescale Semiconductor, Inc...
CGMOUT (FROM CGM)
÷2
CLOCK
CONTROL
VDD
CLOCK GENERATORS
INTERNAL CLOCKS
INTERNAL
PULLUP
DEVICE
LVI (FROM LVI MODULE)
RESET
PIN LOGIC
POR CONTROL
MASTER
RESET
CONTROL
RESET PIN CONTROL
SIM RESET STATUS REGISTER
ILLEGAL OPCODE (FROM CPU)
ILLEGAL ADDRESS
(FROM ADDRESS MAP DECODERS)
COP (FROM COP MODULE)
RESET
INTERRUPT SOURCES
INTERRUPT CONTROL
AND PRIORITY DECODE
CPU INTERFACE
Figure 9-1. SIM Block Diagram
Table 9-1. Signal Name Conventions
Signal Name
ICLK
Description
Internal RC oscillator clock
CGMXCLK
Buffered version of OSC1 from the oscillator module
CGMPCLK
The divided PLL output
CGMOUT
PLL-based or oscillator-based clock output from CGM module
(Bus clock = CGMOUT ÷ 2)
IAB
Internal address bus
IDB
Internal data bus
PORRST
Signal from the power-on reset module to the SIM
IRST
Internal reset signal
R/W
Read/write signal
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
System Integration Module (SIM)
For More Information On This Product,
Go to: www.freescale.com
141
Freescale Semiconductor, Inc.
System Integration Module (SIM)
Addr.
Register Name
Read:
SIM Break Status Register
$FE00
Write:
(SBSR)
Reset:
Bit 7
6
5
4
3
2
R
R
R
R
R
R
1
Bit 0
SBSW
Note
R
0
Note: Writing a logic 0 clears SBSW.
Freescale Semiconductor, Inc...
Read:
SIM Reset Status Register
$FE01
Write:
(SRSR)
POR:
$FE03
Read:
SIM Break Flag Control
Register Write:
(SBFCR)
Reset:
POR
PIN
COP
ILOP
ILAD
0
LVI
0
1
0
0
0
0
0
0
0
BCFE
R
R
R
R
R
R
R
0
Read:
Interrupt Status Register 1
$FE04
Write:
(INT1)
Reset:
IF6
IF5
IF4
IF3
IF2
IF1
0
0
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Read:
Interrupt Status Register 2
$FE05
Write:
(INT2)
Reset:
IF14
IF13
IF12
IF11
IF10
IF9
IF8
IF7
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Read:
Interrupt Status Register 3
$FE06
Write:
(INT3)
Reset:
0
0
0
0
IF18
IF17
IF16
IF15
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
= Unimplemented
R
= Reserved
Figure 9-2. SIM I/O Register Summary
9.3 SIM Bus Clock Control and Generation
The bus clock generator provides system clock signals for the CPU and
peripherals on the MCU. The system clocks are generated from an
incoming clock, CGMOUT, as shown in Figure 9-3. This clock can come
from either the oscillator module or from the on-chip PLL. (See Section
8. Clock Generator Module (CGM).)
Data Sheet
142
MC68HC908LJ24/LK24 — Rev. 2
System Integration Module (SIM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
System Integration Module (SIM)
SIM Bus Clock Control and Generation
OSC2
OSCILLATOR (OSC) MODULE
CGMXCLK
OSC1
ICLK
Freescale Semiconductor, Inc...
STOP MODE CLOCK
ENABLE SIGNALS
FROM CONFIG2
TO RTC, ADC
SIM COUNTER
SIMOSCEN
SYSTEM INTEGRATION MODULE
CGMRCLK
CGMOUT
÷2
PHASE-LOCKED LOOP (PLL)
BUS CLOCK
GENERATORS
SIMDIV2
IT12
TO REST
OF MCU
IT23
TO REST
OF MCU
PTC1
MONITOR MODE
USER MODE
Figure 9-3. CGM Clock Signals
9.3.1 Bus Timing
In user mode, the internal bus frequency is either the oscillator output
(CGMXCLK) divided by four, CGMXCLK divided by two, or the PLL
output (CGMPCLK) divided by four.
9.3.2 Clock Start-up from POR or LVI Reset
When the power-on reset module or the low-voltage inhibit module
generates a reset, the clocks to the CPU and peripherals are inactive
and held in an inactive phase until after the 4096 ICLK cycle POR
timeout has completed. The RST pin is driven low by the SIM during this
entire period. The IBUS clocks start upon completion of the timeout.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
System Integration Module (SIM)
For More Information On This Product,
Go to: www.freescale.com
143
Freescale Semiconductor, Inc.
System Integration Module (SIM)
9.3.3 Clocks in Stop Mode and Wait Mode
Freescale Semiconductor, Inc...
Upon exit from stop mode by an interrupt, break, or reset, the SIM allows
ICLK to clock the SIM counter. The CPU and peripheral clocks do not
become active until after the stop delay timeout. This timeout is
selectable as 4096 or 32 ICLK cycles. (See 9.7.2 Stop Mode.)
In wait mode, the CPU clocks are inactive. The SIM also produces two
sets of clocks for other modules. Refer to the wait mode subsection of
each module to see if the module is active or inactive in wait mode.
Some modules can be programmed to be active in wait mode.
9.4 Reset and System Initialization
The MCU has these reset sources:
•
Power-on reset module (POR)
•
External reset pin (RST)
•
Computer operating properly module (COP)
•
Low-voltage inhibit module (LVI)
•
Illegal opcode
•
Illegal address
All of these resets produce the vector $FFFE:$FFFF ($FEFE:$FEFF in
monitor mode) and assert the internal reset signal (IRST). IRST causes
all registers to be returned to their default values and all modules to be
returned to their reset states.
An internal reset clears the SIM counter (see 9.5 SIM Counter), but an
external reset does not. Each of the resets sets a corresponding bit in
the SIM reset status register (SRSR). (See 9.8 SIM Registers.)
Data Sheet
144
MC68HC908LJ24/LK24 — Rev. 2
System Integration Module (SIM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
System Integration Module (SIM)
Reset and System Initialization
9.4.1 External Pin Reset
The RST pin circuit includes an internal pull-up device. Pulling the
asynchronous RST pin low halts all processing. The PIN bit of the SIM
reset status register (SRSR) is set as long as RST is held low for a
minimum of 67 ICLK cycles, assuming that neither the POR nor the LVI
was the source of the reset. See Table 9-2 for details.
Figure 9-4 shows the relative timing.
Freescale Semiconductor, Inc...
Table 9-2. PIN Bit Set Timing
Reset Type
Number of Cycles Required to Set PIN
POR/LVI
4163 (4096 + 64 + 3)
All others
67 (64 + 3)
CGMOUT
RST
IAB
VECT H VECT L
PC
Figure 9-4. External Reset Timing
9.4.2 Active Resets from Internal Sources
All internal reset sources actively pull the RST pin low for 32 ICLK cycles
to allow resetting of external peripherals. The internal reset signal IRST
continues to be asserted for an additional 32 cycles (see Figure 9-5). An
internal reset can be caused by an illegal address, illegal opcode, COP
timeout, LVI, or POR (see Figure 9-6).
NOTE:
For LVI or POR resets, the SIM cycles through 4096 + 32 ICLK cycles
during which the SIM forces the RST pin low. The internal reset signal
then follows the sequence from the falling edge of RST shown in
Figure 9-5.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
System Integration Module (SIM)
For More Information On This Product,
Go to: www.freescale.com
145
Freescale Semiconductor, Inc.
System Integration Module (SIM)
IRST
RST
RST PULLED LOW BY MCU
32 CYCLES
32 CYCLES
ICLK
IAB
VECTOR HIGH
Freescale Semiconductor, Inc...
Figure 9-5. Internal Reset Timing
The COP reset is asynchronous to the bus clock.
ILLEGAL ADDRESS RST
ILLEGAL OPCODE RST
COPRST
LVI
POR
INTERNAL RESET
Figure 9-6. Sources of Internal Reset
The active reset feature allows the part to issue a reset to peripherals
and other chips within a system built around the MCU.
9.4.2.1 Power-On Reset
When power is first applied to the MCU, the power-on reset module
(POR) generates a pulse to indicate that power-on has occurred. The
external reset pin (RST) is held low while the SIM counter counts out
4096 + 32 ICLK cycles. Thirty-two ICLK cycles later, the CPU and
memories are released from reset to allow the reset vector sequence to
occur.
At power-on, these events occur:
Data Sheet
146
•
A POR pulse is generated.
•
The internal reset signal is asserted.
•
The SIM enables CGMOUT.
•
Internal clocks to the CPU and modules are held inactive for 4096
ICLK cycles to allow stabilization of the oscillator.
•
The RST pin is driven low during the oscillator stabilization time.
•
The POR bit of the SIM reset status register (SRSR) is set and all
other bits in the register are cleared.
MC68HC908LJ24/LK24 — Rev. 2
System Integration Module (SIM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
System Integration Module (SIM)
Reset and System Initialization
OSC1
PORRST
4096
CYCLES
32
CYCLES
32
CYCLES
ICLK
Freescale Semiconductor, Inc...
CGMOUT
RST
IRST
$FFFE
IAB
$FFFF
Figure 9-7. POR Recovery
9.4.2.2 Computer Operating Properly (COP) Reset
An input to the SIM is reserved for the COP reset signal. The overflow of
the COP counter causes an internal reset and sets the COP bit in the
SIM reset status register (SRSR). The SIM actively pulls down the RST
pin for all internal reset sources.
To prevent a COP module timeout, write any value to location $FFFF.
Writing to location $FFFF clears the COP counter and bits 12 through 5
of the SIM counter. The SIM counter output, which occurs at least every
213 – 24 ICLK cycles, drives the COP counter. The COP should be
serviced as soon as possible out of reset to guarantee the maximum
amount of time before the first timeout.
The COP module is disabled if the RST pin or the IRQ pin is held at VTST
while the MCU is in monitor mode. The COP module can be disabled
only through combinational logic conditioned with the high voltage signal
on the RST or the IRQ pin. This prevents the COP from becoming
disabled as a result of external noise. During a break state, VTST on the
RST pin disables the COP module.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
System Integration Module (SIM)
For More Information On This Product,
Go to: www.freescale.com
147
Freescale Semiconductor, Inc.
System Integration Module (SIM)
9.4.2.3 Illegal Opcode Reset
The SIM decodes signals from the CPU to detect illegal instructions. An
illegal instruction sets the ILOP bit in the SIM reset status register
(SRSR) and causes a reset.
Freescale Semiconductor, Inc...
If the stop enable bit, STOP, in the mask option register is logic 0, the
SIM treats the STOP instruction as an illegal opcode and causes an
illegal opcode reset. The SIM actively pulls down the RST pin for all
internal reset sources.
9.4.2.4 Illegal Address Reset
An opcode fetch from an unmapped address generates an illegal
address reset. The SIM verifies that the CPU is fetching an opcode prior
to asserting the ILAD bit in the SIM reset status register (SRSR) and
resetting the MCU. A data fetch from an unmapped address does not
generate a reset. The SIM actively pulls down the RST pin for all internal
reset sources.
9.4.2.5 Low-Voltage Inhibit (LVI) Reset
The low-voltage inhibit module (LVI) asserts its output to the SIM when
the VDD voltage falls to the LVI trip falling voltage, VTRIPF. The LVI bit in
the SIM reset status register (SRSR) is set, and the external reset pin
(RST) is held low while the SIM counter counts out 4096 + 32 ICLK
cycles. Thirty-two ICLK cycles later, the CPU is released from reset to
allow the reset vector sequence to occur. The SIM actively pulls down
the RST pin for all internal reset sources.
9.4.2.6 Monitor Mode Entry Module Reset (MODRST)
The monitor mode entry module reset (MODRST) asserts its output to
the SIM when monitor mode is entered in the condition where the reset
vectors are blank ($FF). (See Section 10. Monitor ROM (MON).) When
MODRST gets asserted, an internal reset occurs. The SIM actively pulls
down the RST pin for all internal reset sources.
Data Sheet
148
MC68HC908LJ24/LK24 — Rev. 2
System Integration Module (SIM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
System Integration Module (SIM)
SIM Counter
9.5 SIM Counter
Freescale Semiconductor, Inc...
The SIM counter is used by the power-on reset module (POR) and in
stop mode recovery to allow the oscillator time to stabilize before
enabling the internal bus (IBUS) clocks. The SIM counter also serves as
a prescaler for the computer operating properly module (COP). The SIM
counter overflow supplies the clock for the COP module. The SIM
counter is 12 bits long and is clocked by the falling edge of ICLK.
9.5.1 SIM Counter During Power-On Reset
The power-on reset module (POR) detects power applied to the MCU.
At power-on, the POR circuit asserts the signal PORRST. Once the SIM
is initialized, it enables the clock generation module (CGM) to drive the
bus clock state machine.
9.5.2 SIM Counter During Stop Mode Recovery
The SIM counter also is used for stop mode recovery. The STOP
instruction clears the SIM counter. After an interrupt, break, or reset, the
SIM senses the state of the short stop recovery bit, SSREC, in the
configuration register 1 (CONFIG1). If the SSREC bit is a logic 1, then
the stop recovery is reduced from the normal delay of 4096 ICLK cycles
down to 32 ICLK cycles. This is ideal for applications using canned
oscillators that do not require long start-up times from stop mode.
External crystal applications should use the full stop recovery time, that
is, with SSREC cleared.
9.5.3 SIM Counter and Reset States
External reset has no effect on the SIM counter. (See 9.7.2 Stop Mode
for details.) The SIM counter is free-running after all reset states. (See
9.4.2 Active Resets from Internal Sources for counter control and
internal reset recovery sequences.)
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
System Integration Module (SIM)
For More Information On This Product,
Go to: www.freescale.com
149
Freescale Semiconductor, Inc.
System Integration Module (SIM)
9.6 Exception Control
Normal, sequential program execution can be changed in three different
ways:
•
Interrupts:
– Maskable hardware CPU interrupts
Freescale Semiconductor, Inc...
– Non-maskable software interrupt instruction (SWI)
•
Reset
•
Break interrupts
9.6.1 Interrupts
At the beginning of an interrupt, the CPU saves the CPU register
contents on the stack and sets the interrupt mask (I bit) to prevent
additional interrupts. At the end of an interrupt, the RTI instruction
recovers the CPU register contents from the stack so that normal
processing can resume. Figure 9-8 shows interrupt entry timing, and
Figure 9-9 shows interrupt recovery timing.
MODULE
INTERRUPT
I-BIT
IAB
IDB
SP
DUMMY
DUMMY
SP – 1
SP – 2
PC – 1[7:0] PC – 1[15:8]
SP – 3
X
SP – 4
A
VECT H
CCR
VECT L
V DATA H
START ADDR
V DATA L
OPCODE
R/W
Figure 9-8. Interrupt Entry Timing
MODULE
INTERRUPT
I-BIT
IAB
IDB
SP – 4
SP – 3
CCR
SP – 2
A
SP – 1
X
SP
PC
PC – 1[15:8] PC – 1[7:0]
PC + 1
OPCODE
OPERAND
R/W
Figure 9-9. Interrupt Recovery Timing
Data Sheet
150
MC68HC908LJ24/LK24 — Rev. 2
System Integration Module (SIM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
System Integration Module (SIM)
Exception Control
Interrupts are latched, and arbitration is performed in the SIM at the start
of interrupt processing. The arbitration result is a constant that the CPU
uses to determine which vector to fetch. Once an interrupt is latched by
the SIM, no other interrupt can take precedence, regardless of priority,
until the latched interrupt is serviced (or the I bit is cleared).
(See Figure 9-10.)
Freescale Semiconductor, Inc...
FROM RESET
BREAK
I BIT
SET?
INTERRUPT?
YES
NO
YES
I-BIT SET?
NO
IRQ
INTERRUPT?
YES
NO
STACK CPU REGISTERS
SET I-BIT
LOAD PC WITH INTERRUPT VECTOR
AS MANY INTERRUPTS
AS EXIST ON CHIP
FETCH NEXT
INSTRUCTION
SWI
INSTRUCTION?
YES
NO
RTI
INSTRUCTION?
YES
UNSTACK CPU REGISTERS
NO
EXECUTE INSTRUCTION
Figure 9-10. Interrupt Processing
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
System Integration Module (SIM)
For More Information On This Product,
Go to: www.freescale.com
151
Freescale Semiconductor, Inc.
System Integration Module (SIM)
9.6.1.1 Hardware Interrupts
A hardware interrupt does not stop the current instruction. Processing of
a hardware interrupt begins after completion of the current instruction.
When the current instruction is complete, the SIM checks all pending
hardware interrupts. If interrupts are not masked (I bit clear in the
condition code register) and if the corresponding interrupt enable bit is
set, the SIM proceeds with interrupt processing; otherwise, the next
instruction is fetched and executed.
Freescale Semiconductor, Inc...
If more than one interrupt is pending at the end of an instruction
execution, the highest priority interrupt is serviced first. Figure 9-11
demonstrates what happens when two interrupts are pending. If an
interrupt is pending upon exit from the original interrupt service routine,
the pending interrupt is serviced before the LDA instruction is executed.
CLI
BACKGROUND
ROUTINE
LDA #$FF
INT1
PSHH
INT1 INTERRUPT SERVICE ROUTINE
PULH
RTI
INT2
PSHH
INT2 INTERRUPT SERVICE ROUTINE
PULH
RTI
Figure 9-11. Interrupt Recognition Example
The LDA opcode is prefetched by both the INT1 and INT2 RTI
instructions. However, in the case of the INT1 RTI prefetch, this is a
redundant operation.
NOTE:
Data Sheet
152
To maintain compatibility with the M6805 Family, the H register is not
pushed on the stack during interrupt entry. If the interrupt service routine
modifies the H register or uses the indexed addressing mode, software
should save the H register and then restore it prior to exiting the routine.
MC68HC908LJ24/LK24 — Rev. 2
System Integration Module (SIM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
System Integration Module (SIM)
Exception Control
9.6.1.2 SWI Instruction
The SWI instruction is a non-maskable instruction that causes an
interrupt regardless of the state of the interrupt mask (I bit) in the
condition code register.
NOTE:
A software interrupt pushes PC onto the stack. A software interrupt does
not push PC – 1, as a hardware interrupt does.
Freescale Semiconductor, Inc...
9.6.1.3 Interrupt Status Registers
The flags in the interrupt status registers identify maskable interrupt
sources. Table 9-3 summarizes the interrupt sources and the interrupt
status register flags that they set. The interrupt status registers can be
useful for debugging.
9.6.1.4 Interrupt Status Register 1
Address:
$FE04
Bit 7
6
5
4
3
2
1
Bit 0
Read:
IF6
IF5
IF4
IF3
IF2
IF1
0
0
Write:
R
R
R
R
R
R
R
R
Reset:
0
0
0
0
0
0
0
0
R
= Reserved
Figure 9-12. Interrupt Status Register 1 (INT1)
IF6–IF1 — Interrupt Flags 6–1
These flags indicate the presence of interrupt requests from the
sources shown in Table 9-3.
1 = Interrupt request present
0 = No interrupt request present
Bit 0 and Bit 1 — Always read 0
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
System Integration Module (SIM)
For More Information On This Product,
Go to: www.freescale.com
153
Freescale Semiconductor, Inc.
System Integration Module (SIM)
Table 9-3. Vector Addresses
Priority
Lowest
INT Flag
IF18
IF17
IF16
Freescale Semiconductor, Inc...
IF15
IF14
IF13
IF12
IF11
IF10
IF9
IF8
IF7
IF6
IF5
IF4
IF3
IF2
IF1
—
Highest
Data Sheet
154
—
Address
$FFD8
$FFD9
$FFDA
$FFDB
$FFDC
$FFDD
$FFDE
$FFDF
$FFE0
$FFE1
$FFE2
$FFE3
$FFE4
$FFE5
$FFE6
$FFE7
$FFE8
$FFE9
$FFEA
$FFEB
$FFEC
$FFED
$FFEE
$FFEF
$FFF0
$FFF1
$FFF2
$FFF3
$FFF4
$FFF5
$FFF6
$FFF7
$FFF8
$FFF9
$FFFA
$FFFB
$FFFC
$FFFD
$FFFE
$FFFF
Vector
Real Time Clock Vector (High)
Real Time Clock Vector (Low)
ADC Conversion Complete Vector (High)
ADC Conversion Complete Vector (Low)
Keyboard Vector (High)
Keyboard Vector (Low)
MMIIC Vector (High)
MMIIC Vector (Low)
SCI Transmit Vector (High)
SCI Transmit Vector (Low)
SCI Receive Vector (High)
SCI Receive Vector (Low)
SCI Error Vector (High)
SCI Error Vector (Low)
SPI Receive Vector (High)
SPI Receive Vector (Low)
SPI Transmit Vector (High)
SPI Transmit Vector (Low)
TIM2 Overflow Vector (High)
TIM2 Overflow Vector (Low)
TIM2 Channel 1 Vector (High)
TIM2 Channel 1 Vector (Low)
TIM2 Channel 0 Vector (High)
TIM2 Channel 0 Vector (Low)
TIM1 Overflow Vector (High)
TIM1 Overflow Vector (Low)
TIM1 Channel 1 Vector (High)
TIM1 Channel 1 Vector (Low)
TIM1 Channel 0 Vector (High)
TIM1 Channel 0 Vector (Low)
PLL Vector (High)
PLL Vector (Low)
LVI Vector (High)
LVI Vector (Low)
IRQ Vector (High)
IRQ Vector (Low)
SWI Vector (High)
SWI Vector (Low)
Reset Vector (High)
Reset Vector (Low)
MC68HC908LJ24/LK24 — Rev. 2
System Integration Module (SIM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
System Integration Module (SIM)
Exception Control
9.6.1.5 Interrupt Status Register 2
Address:
$FE05
Bit 7
6
5
4
3
2
1
Bit 0
Read:
IF14
IF13
IF12
IF11
IF10
IF9
IF8
IF7
Write:
R
R
R
R
R
R
R
R
Reset:
0
0
0
0
0
0
0
0
Freescale Semiconductor, Inc...
R
= Reserved
Figure 9-13. Interrupt Status Register 2 (INT2)
IF14–IF7 — Interrupt Flags 14–7
These flags indicate the presence of interrupt requests from the
sources shown in Table 9-3.
1 = Interrupt request present
0 = No interrupt request present
9.6.1.6 Interrupt Status Register 3
Address:
$FE06
Bit 7
6
5
4
3
2
1
Bit 0
Read:
0
0
0
0
IF18
IF17
IF16
IF15
Write:
R
R
R
R
R
R
R
R
Reset:
0
0
0
0
0
0
0
0
R
= Reserved
Figure 9-14. Interrupt Status Register 3 (INT3)
IF18–IF15 — Interrupt Flags 18–15
These flags indicate the presence of an interrupt request from the
source shown in Table 9-3.
1 = Interrupt request present
0 = No interrupt request present
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
System Integration Module (SIM)
For More Information On This Product,
Go to: www.freescale.com
155
Freescale Semiconductor, Inc.
System Integration Module (SIM)
9.6.2 Reset
All reset sources always have equal and highest priority and cannot be
arbitrated.
Freescale Semiconductor, Inc...
9.6.3 Break Interrupts
The break module can stop normal program flow at a softwareprogrammable break point by asserting its break interrupt output. (See
Section 23. Break Module (BRK).) The SIM puts the CPU into the
break state by forcing it to the SWI vector location. Refer to the break
interrupt subsection of each module to see how each module is affected
by the break state.
9.6.4 Status Flag Protection in Break Mode
The SIM controls whether status flags contained in other modules can
be cleared during break mode. The user can select whether flags are
protected from being cleared by properly initializing the break clear flag
enable bit (BCFE) in the SIM break flag control register (SBFCR).
Protecting flags in break mode ensures that set flags will not be cleared
while in break mode. This protection allows registers to be freely read
and written during break mode without losing status flag information.
Setting the BCFE bit enables the clearing mechanisms. Once cleared in
break mode, a flag remains cleared even when break mode is exited.
Status flags with a 2-step clearing mechanism — for example, a read of
one register followed by the read or write of another — are protected,
even when the first step is accomplished prior to entering break mode.
Upon leaving break mode, execution of the second step will clear the flag
as normal.
Data Sheet
156
MC68HC908LJ24/LK24 — Rev. 2
System Integration Module (SIM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
System Integration Module (SIM)
Low-Power Modes
9.7 Low-Power Modes
Executing the WAIT or STOP instruction puts the MCU in a low powerconsumption mode for standby situations. The SIM holds the CPU in a
non-clocked state. The operation of each of these modes is described in
the following subsections. Both STOP and WAIT clear the interrupt mask
(I) in the condition code register, allowing interrupts to occur.
Freescale Semiconductor, Inc...
9.7.1 Wait Mode
In wait mode, the CPU clocks are inactive while the peripheral clocks
continue to run. Figure 9-15 shows the timing for wait mode entry.
A module that is active during wait mode can wake up the CPU with an
interrupt if the interrupt is enabled. Stacking for the interrupt begins one
cycle after the WAIT instruction during which the interrupt occurred. In
wait mode, the CPU clocks are inactive. Refer to the wait mode
subsection of each module to see if the module is active or inactive in
wait mode. Some modules can be programmed to be active in wait
mode.
Wait mode also can be exited by a reset or break. A break interrupt
during wait mode sets the SIM break stop/wait bit, SBSW, in the SIM
break status register (SBSR). If the COP disable bit, COPD, in the mask
option register is logic 0, then the computer operating properly module
(COP) is enabled and remains active in wait mode.
IAB
IDB
WAIT ADDR
WAIT ADDR + 1
PREVIOUS DATA
SAME
NEXT OPCODE
SAME
SAME
SAME
R/W
NOTE: Previous data can be operand data or the WAIT opcode, depending on the
last instruction.
Figure 9-15. Wait Mode Entry Timing
Figure 9-16 and Figure 9-17 show the timing for WAIT recovery.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
System Integration Module (SIM)
For More Information On This Product,
Go to: www.freescale.com
157
Freescale Semiconductor, Inc.
System Integration Module (SIM)
IAB
$6E0B
IDB
$A6
$6E0C
$A6
$A6
$01
$00FF
$00FE
$0B
$00FD
$00FC
$6E
EXITSTOPWAIT
NOTE: EXITSTOPWAIT = RST pin OR CPU interrupt OR break interrupt
Freescale Semiconductor, Inc...
Figure 9-16. Wait Recovery from Interrupt or Break
32
CYCLES
IAB
IDB
32
CYCLES
$6E0B
$A6
$A6
RST VCT H RST VCT L
$A6
RST
ICLK
Figure 9-17. Wait Recovery from Internal Reset
9.7.2 Stop Mode
In stop mode, the SIM counter is reset and the system clocks are
disabled. An interrupt request from a module can cause an exit from stop
mode. Stacking for interrupts begins after the selected stop recovery
time has elapsed. Reset or break also causes an exit from stop mode.
The SIM disables the clock generator module output (CGMOUT) in stop
mode, stopping the CPU and peripherals. Stop recovery time is
selectable using the SSREC bit in the configuration register 1
(CONFIG1). If SSREC is set, stop recovery is reduced from the normal
delay of 4096 ICLK cycles down to 32. This is ideal for applications using
canned oscillators that do not require long start-up times from stop
mode.
NOTE:
Data Sheet
158
External crystal applications should use the full stop recovery time by
clearing the SSREC bit.
MC68HC908LJ24/LK24 — Rev. 2
System Integration Module (SIM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
System Integration Module (SIM)
SIM Registers
A break interrupt during stop mode sets the SIM break stop/wait bit
(SBSW) in the SIM break status register (SBSR).
The SIM counter is held in reset from the execution of the STOP
instruction until the beginning of stop recovery. It is then used to time the
recovery period. Figure 9-18 shows stop mode entry timing.
Freescale Semiconductor, Inc...
NOTE:
To minimize stop current, all pins configured as inputs should be driven
to a logic 1 or logic 0.
CPUSTOP
IAB
IDB
STOP ADDR
STOP ADDR + 1
PREVIOUS DATA
SAME
NEXT OPCODE
SAME
SAME
SAME
R/W
NOTE: Previous data can be operand data or the STOP opcode, depending on the last
instruction.
Figure 9-18. Stop Mode Entry Timing
STOP RECOVERY PERIOD
ICLK
INT/BREAK
IAB
STOP +1
STOP + 2
STOP + 2
SP
SP – 1
SP – 2
SP – 3
Figure 9-19. Stop Mode Recovery from Interrupt or Break
9.8 SIM Registers
The SIM has three memory-mapped registers:
•
SIM Break Status Register (SBSR) — $FE00
•
SIM Reset Status Register (SRSR) — $FE01
•
SIM Break Flag Control Register (SBFCR) — $FE03
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
System Integration Module (SIM)
For More Information On This Product,
Go to: www.freescale.com
159
Freescale Semiconductor, Inc.
System Integration Module (SIM)
9.8.1 SIM Break Status Register
The SIM break status register (SBSR) contains a flag to indicate that a
break caused an exit from stop mode or wait mode.
Address:
$FE00
Bit 7
6
5
4
3
2
R
R
R
R
R
R
Freescale Semiconductor, Inc...
Read:
1
Bit 0
SBSW
R
Write:
Note
Reset:
0
Note: Writing a logic 0 clears SBSW.
R
= Reserved
Figure 9-20. SIM Break Status Register (SBSR)
SBSW — Break Wait Bit
This status bit is set when a break interrupt causes an exit from wait
mode or stop mode. Clear SBSW by writing a logic 0 to it. Reset clears
SBSW.
1 = Stop mode or wait mode was exited by break interrupt
0 = Stop mode or wait mode was not exited by break interrupt
SBSW can be read within the break interrupt routine. The user can
modify the return address on the stack by subtracting 1 from it. The
following code is an example.
This code works if the H register has been pushed onto the stack in the break
service routine software. This code should be executed at the end of the break
service routine software.
HIBYTE
EQU
LOBYTE
EQU
If not SBSW, do RTI
BRCLR
SBSW,SBSR, RETURN
; See if wait mode or stop mode was exited by
; break.
TST
LOBYTE,SP
;If RETURNLO is not zero,
BNE
DOLO
;then just decrement low byte.
DEC
HIBYTE,SP
;Else deal with high byte, too.
DOLO
DEC
LOBYTE,SP
;Point to WAIT/STOP opcode.
RETURN
PULH
RTI
Data Sheet
160
;Restore H register.
MC68HC908LJ24/LK24 — Rev. 2
System Integration Module (SIM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
System Integration Module (SIM)
SIM Registers
9.8.2 SIM Reset Status Register
This register contains six flags that show the source of the last reset
provided all previous reset status bits have been cleared. Clear the SIM
reset status register by reading it. A power-on reset sets the POR bit and
clears all other bits in the register.
Address:
Freescale Semiconductor, Inc...
Read:
$FE01
Bit 7
6
5
4
3
2
1
Bit 0
POR
PIN
COP
ILOP
ILAD
0
LVI
0
1
0
0
0
0
0
0
0
Write:
Reset:
= Unimplemented
Figure 9-21. SIM Reset Status Register (SRSR)
POR — Power-On Reset Bit
1 = Last reset caused by POR circuit
0 = Read of SRSR
PIN — External Reset Bit
1 = Last reset caused by external reset pin (RST)
0 = POR or read of SRSR
COP — Computer Operating Properly Reset Bit
1 = Last reset caused by COP counter
0 = POR or read of SRSR
ILOP — Illegal Opcode Reset Bit
1 = Last reset caused by an illegal opcode
0 = POR or read of SRSR
ILAD — Illegal Address Reset Bit (opcode fetches only)
1 = Last reset caused by an opcode fetch from an illegal address
0 = POR or read of SRSR
LVI — Low-Voltage Inhibit Reset Bit
1 = Last reset caused by the LVI circuit
0 = POR or read of SRSR
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
System Integration Module (SIM)
For More Information On This Product,
Go to: www.freescale.com
161
Freescale Semiconductor, Inc.
System Integration Module (SIM)
9.8.3 SIM Break Flag Control Register
The SIM break control register contains a bit that enables software to
clear status bits while the MCU is in a break state.
Address:
$FE03
Bit 7
6
5
4
3
2
1
Bit 0
BCFE
R
R
R
R
R
R
R
Read:
Write:
Freescale Semiconductor, Inc...
Reset:
0
R
= Reserved
Figure 9-22. SIM Break Flag Control Register (SBFCR)
BCFE — Break Clear Flag Enable Bit
This read/write bit enables software to clear status bits by accessing
status registers while the MCU is in a break state. To clear status bits
during the break state, the BCFE bit must be set.
1 = Status bits clearable during break
0 = Status bits not clearable during break
Data Sheet
162
MC68HC908LJ24/LK24 — Rev. 2
System Integration Module (SIM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Data Sheet – MC68HC908LJ24
Section 10. Monitor ROM (MON)
Freescale Semiconductor, Inc...
10.1 Contents
10.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
10.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
10.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165
10.4.1 Entering Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
10.4.2 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
10.4.3 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
10.4.4 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171
10.4.5 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
10.5
Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
10.6 ROM-Resident Routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
10.6.1 PRGRNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
10.6.2 ERARNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183
10.6.3 LDRNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
10.6.4 MON_PRGRNGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
10.6.5 MON_ERARNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
10.6.6 MON_LDRNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
10.6.7 EE_WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
10.6.8 EE_READ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Monitor ROM (MON)
For More Information On This Product,
Go to: www.freescale.com
163
Freescale Semiconductor, Inc.
Monitor ROM (MON)
Freescale Semiconductor, Inc...
10.2 Introduction
This section describes the monitor ROM (MON) and the monitor mode
entry methods. The monitor ROM allows complete testing of the MCU
through a single-wire interface with a host computer. Monitor mode entry
can be achieved without use of the higher test voltage, VTST, as long as
vector addresses $FFFE and $FFFF are blank, thus reducing the
hardware requirements for in-circuit programming.
In addition, to simplify user coding, routines are also stored in the
monitor ROM area for FLASH memory program /erase and EEPROM
emulation.
10.3 Features
Features of the monitor ROM include:
•
Normal user-mode pin functionality
•
One pin dedicated to serial communication between monitor ROM
and host computer
•
Standard mark/space non-return-to-zero (NRZ) communication
with host computer
•
Execution of code in RAM or FLASH
•
FLASH memory security feature1
•
FLASH memory programming interface
•
Enhanced PLL (phase-locked loop) option to allow use of external
32.768-kHz crystal to generate internal frequency of 2.4576 MHz
•
959 bytes monitor ROM code size
($FC00–$FDFF and $FE10–$FFCE)
•
Monitor mode entry without high voltage, VTST, if reset vector is
blank ($FFFE and $FFFF contain $FF)
•
Standard monitor mode entry if high voltage, VTST, is applied to
IRQ
•
Resident routines for in-circuit programming and EEPROM
emulation
1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or
copying the FLASH difficult for unauthorized users.
Data Sheet
164
MC68HC908LJ24/LK24 — Rev. 2
Monitor ROM (MON)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Monitor ROM (MON)
Functional Description
10.4 Functional Description
The monitor ROM receives and executes commands from a host
computer. Figure 10-1 shows an example circuit used to enter monitor
mode and communicate with a host computer via a standard RS-232
interface.
Freescale Semiconductor, Inc...
Simple monitor commands can access any memory address. In monitor
mode, the MCU can execute code downloaded into RAM by a host
computer while most MCU pins retain normal operating mode functions.
All communication between the host computer and the MCU is through
the PTA0 pin. A level-shifting and multiplexing interface is required
between PTA0 and the host computer. PTA0 is used in a wired-OR
configuration and requires a pullup resistor.
The monitor code allows enabling the PLL to generate the internal clock,
provided the reset vector is blank, when the device is being clocked by
a low-frequency crystal. This entry method, which is enabled when IRQ
is held low out of reset, is intended to support serial communication/
programming at 9600 baud in monitor mode by stepping up the external
frequency (assumed to be 32.768 kHz) by a fixed amount to generate
the desired internal frequency (2.4576 MHz). Since this feature is
enabled only when IRQ is held low out of reset, it cannot be used when
the reset vector is non-zero because entry into monitor mode in this case
requires VTST on IRQ.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Monitor ROM (MON)
For More Information On This Product,
Go to: www.freescale.com
165
Freescale Semiconductor, Inc.
Monitor ROM (MON)
RST
0.1 µF
HC908LJ24
VDD
VDD
VDDA
VLCD
0.1 µF
VREFH
VSS
VREFL
4.9152MHz/9.8304MHz
(50% DUTY)
CGMXFC
OSC1
0.01 µF
10k
0.033 µF
MUST BE USED IF SW2 IS AT POSITION C.
CONNECT TO OSC1, WITH OSC2 UNCONNECTED.
EXT OSC
32.768kHz
OSC1
6–30 pF
MAX232
1
1 µF
+
3
4
1 µF
C1+
VCC
GND
C2+
V+
OSC2
16
6–30 pF
+
1 µF
15
1 µF
XTAL CIRCUIT
+
C
VTST
2
VDD
+
V–
6
1 µF
7
10
3
8
9
(SEE NOTE 1)
IRQ
D
10 k
74HC125
5
6
DB9
2
SW2
1k
8.5 V
+
5
330k
VDD
C1–
5 C2–
10M
Freescale Semiconductor, Inc...
VDD
2
74HC125
3
PTA0
4
VDD
VDD
1
10 k
10 k
PTA1
SW1
A
PTC1
(SEE NOTE 2)
NOTES:
1. Monitor mode entry method:
SW2: Position C — High voltage entry (VTST); must use external OSC
Bus clock depends on SW1 (note 2).
SW2: Position D — Reset vector must be blank ($FFFE:$FFFF = $FF)
Bus clock = 2.4576MHz.
2. Affects high voltage entry to monitor mode only (SW2 at position C):
SW1: Position A — Bus clock = OSC1 ÷ 4
SW1: Position B — Bus clock = OSC1 ÷ 2
5. See Table 24-4 for VTST voltage level requirements.
B
PTA2
10 k
10 k
Figure 10-1. Monitor Mode Circuit
Data Sheet
166
MC68HC908LJ24/LK24 — Rev. 2
Monitor ROM (MON)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Monitor ROM (MON)
Functional Description
10.4.1 Entering Monitor Mode
Table 10-1 shows the pin conditions for entering monitor mode. As
specified in the table, monitor mode may be entered after a POR and will
allow communication at 9600 baud provided one of the following sets of
conditions is met:
1. If $FFFE and $FFFF do not contain $FF (programmed state):
Freescale Semiconductor, Inc...
– The external clock is 4.9152 MHz with PTC1 low or
9.8304 MHz with PTC1 high
– IRQ = VTST (PLL off)
2. If $FFFE and $FFFF both contain $FF (erased state):
– The external clock is 9.8304 MHz
– IRQ = VDD (this can be implemented through the internal IRQ
pullup; PLL off)
3. If $FFFE and $FFFF both contain $FF (erased state):
– The external clock is 32.768 kHz (crystal)
– IRQ = VSS (this setting initiates the PLL to boost the external
32.768 kHz to an internal bus frequency of 2.4576 MHz)
If VTST is applied to IRQ and PTC1 is low upon monitor mode entry
(above condition set 1), the bus frequency is a divide-by-two of the input
clock. If PTC1 is high with VTST applied to IRQ upon monitor mode entry,
the bus frequency will be a divide-by-four of the input clock. Holding the
PTC1 pin low when entering monitor mode causes a bypass of a divideby-two stage at the oscillator only if VTST is applied to IRQ. In this event,
the CGMOUT frequency is equal to the CGMXCLK frequency, and the
OSC1 input directly generates internal bus clocks. In this case, the
OSC1 signal must have a 50% duty cycle at maximum bus frequency.
If entering monitor mode without high voltage on IRQ (above condition
set 2 or 3, where applied voltage is either VDD or VSS), then all port A pin
requirements and conditions, including the PTC1 frequency divisor
selection, are not in effect. This is to reduce circuit requirements when
performing in-circuit programming.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Monitor ROM (MON)
For More Information On This Product,
Go to: www.freescale.com
167
IRQ
GND
RST
X
Address
$FFFE/
$FFFF
0
X
PTA2
1
X
PTA1
1
X
PTA0(1)
0
X
PTC1
4.9152
MHz
X
External
Clock(2)
2.4576
MHz
0
Bus
Frequency
OFF
X
PLL
Disabled
Disabled
COP
9600
0
Baud
Rate
No operation until
reset goes high
Table 10-1. Monitor Mode Signal Requirements and Options
X
X
Disabled
9600
9600
External frequency
always divided by 4
PTA1 and PTA2
voltages only
required if
IRQ = VTST;
PTC1 determines
frequency divider
For More Information On This Product,
Go to: www.freescale.com
Comment
VTST(3)
VDD
or
VTST
OFF
Disabled
2.4576
MHz
9600
OFF
9.8304
MHz
Disabled
2.4576
MHz
X
ON
9.8304
MHz
1
X
1
1
168
—
Enters user
mode — will
encounter an illegal
address reset
PLL enabled
(BCS set)
in monitor code
Enabled
Data Sheet
Monitor ROM (MON)
Enabled
Enters user mode
2.4576
MHz
OFF
OFF
—
32.768
kHz
—
—
X
X
X
X
X
X
1
PTA1 and PTA2
voltages only
required if
IRQ = VTST;
PTC1 determines
frequency divider
1
X
0
X
X
Blank
"$FFFF"
X
VTST(3)
VDD
X
VDD
or
VTST
VDD
VDD
X
X
GND
X
X
Blank
"$FFFF"
Not Blank
Blank
"$FFFF"
VDD
or
VTST
VTST
VDD
or
GND
VDD
or
GND
Monitor ROM (MON)
Notes:
1. PTA0 = 1 if serial communication; PTA0 = 0 if parallel communication
2. External clock is derived by a 32.768 kHz crystal or a 4.9152/9.8304 MHz off-chip oscillator
3. Monitor mode entry by IRQ = VTST, a 4.9152/9.8304 MHz off-chip oscillator must be used. The MCU internal crystal oscillator circuit is bypassed.
Freescale Semiconductor, Inc...
Freescale Semiconductor, Inc.
MOTOROLA
MC68HC908LJ24/LK24 — Rev. 2
Freescale Semiconductor, Inc.
Monitor ROM (MON)
Functional Description
NOTE:
If the reset vector is blank and monitor mode is entered, the chip will see
an additional reset cycle after the initial POR reset. Once the part has
been programmed, the traditional method of applying a voltage, VTST, to
IRQ must be used to enter monitor mode.
Freescale Semiconductor, Inc...
The COP module is disabled in monitor mode based on these
conditions:
•
If monitor mode was entered as a result of the reset vector being
blank (above condition set 2 or 3), the COP is always disabled
regardless of the state of IRQ or RST.
•
If monitor mode was entered with VTST on IRQ (condition set 1),
then the COP is disabled as long as VTST is applied to either IRQ
or RST.
The second condition states that as long as VTST is maintained on the
IRQ pin after entering monitor mode, or if VTST is applied to RST after
the initial reset to get into monitor mode (when VTST was applied to IRQ),
then the COP will be disabled. In the latter situation, after VTST is applied
to the RST pin, VTST can be removed from the IRQ pin in the interest of
freeing the IRQ for normal functionality in monitor mode.
Figure 10-2 shows a simplified diagram of the monitor mode entry when
the reset vector is blank and just 1 x VDD voltage is applied to the IRQ
pin. An external oscillator of 9.8304 MHz is required for a baud rate of
9600, as the internal bus frequency is automatically set to the external
frequency divided by four.
Enter monitor mode with pin configuration shown in Figure 10-1 by
pulling RST low and then high. The rising edge of RST latches monitor
mode. Once monitor mode is latched, the values on the specified pins
can change.
Once out of reset, the MCU waits for the host to send eight security
bytes. (See 10.5 Security.) After the security bytes, the MCU sends a
break signal (10 consecutive logic 0s) to the host, indicating that it is
ready to receive a command.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Monitor ROM (MON)
For More Information On This Product,
Go to: www.freescale.com
169
Freescale Semiconductor, Inc.
Monitor ROM (MON)
POR RESET
IS VECTOR
BLANK?
NO
NORMAL USER
MODE
YES
MONITOR MODE
Freescale Semiconductor, Inc...
EXECUTE
MONITOR
CODE
POR
TRIGGERED?
NO
YES
Figure 10-2. Low-Voltage Monitor Mode Entry Flowchart
In monitor mode, the MCU uses different vectors for reset, SWI
(software interrupt), and break interrupt than those for user mode. The
alternate vectors are in the $FE page instead of the $FF page and allow
code execution from the internal monitor firmware instead of user code.
NOTE:
Exiting monitor mode after it has been initiated by having a blank reset
vector requires a power-on reset (POR). Pulling RST low will not exit
monitor mode in this situation.
Table 10-2 summarizes the differences between user mode and monitor
mode vectors.
Table 10-2. Mode Differences (Vectors)
Functions
Data Sheet
170
Modes
Reset
Vector
High
Reset
Vector
Low
Break
Vector
High
Break
Vector
Low
SWI
Vector
High
SWI
Vector
Low
User
$FFFE
$FFFF
$FFFC
$FFFD
$FFFC
$FFFD
Monitor
$FEFE
$FEFF
$FEFC
$FEFD
$FEFC
$FEFD
MC68HC908LJ24/LK24 — Rev. 2
Monitor ROM (MON)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Monitor ROM (MON)
Functional Description
10.4.2 Data Format
Communication with the monitor ROM is in standard non-return-to-zero
(NRZ) mark/space data format. Transmit and receive baud rates must
be identical.
Freescale Semiconductor, Inc...
START
BIT
BIT 0
BIT 1
BIT 2
BIT 3
BIT 4
BIT 5
BIT 6
NEXT
START
STOP
BIT
BIT
BIT 7
Figure 10-3. Monitor Data Format
10.4.3 Break Signal
A start bit (logic 0) followed by nine logic 0 bits is a break signal. When
the monitor receives a break signal, it drives the PTA0 pin high for the
duration of two bits and then echoes back the break signal.
MISSING STOP BIT
2-STOP BIT DELAY BEFORE ZERO ECHO
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Figure 10-4. Break Transaction
10.4.4 Baud Rate
The communication baud rate is controlled by the crystal frequency and
the state of the PTC1 pin (when IRQ is set to VTST) upon entry into
monitor mode. When PTC1 is high, the divide by ratio is 1024. If the
PTC1 pin is at logic 0 upon entry into monitor mode, the divide by ratio
is 512.
If monitor mode was entered with VDD on IRQ, then the divide by ratio is
set at 1024, regardless of PTC1. If monitor mode was entered with VSS
on IRQ, then the internal PLL steps up the external frequency, presumed
to be 32.768 kHz, to 2.4576 MHz. These latter two conditions for monitor
mode entry require that the reset vector is blank.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Monitor ROM (MON)
For More Information On This Product,
Go to: www.freescale.com
171
Freescale Semiconductor, Inc.
Monitor ROM (MON)
Table 10-3 lists external frequencies required to achieve a standard
baud rate of 9600 BPS. Other standard baud rates can be accomplished
using proportionally higher or lower frequency generators. If using a
crystal as the clock source, be aware of the upper frequency limit that the
internal clock module can handle.
Freescale Semiconductor, Inc...
Table 10-3. Monitor Baud Rate Selection
External
Frequency
IRQ
PTC1
Internal
Frequency
Baud Rate
(BPS)
4.9152 MHz
VTST
0
2.4576 MHz
9600
9.8304 MHz
VTST
1
2.4576 MHz
9600
9.8304 MHz
VDD
X
2.4576 MHz
9600
32.768 kHz
VSS
X
2.4576 MHz
9600
10.4.5 Commands
The monitor ROM firmware uses these commands:
•
READ (read memory)
•
WRITE (write memory)
•
IREAD (indexed read)
•
IWRITE (indexed write)
•
READSP (read stack pointer)
•
RUN (run user program)
The monitor ROM firmware echoes each received byte back to the PTA0
pin for error checking. An 11-bit delay at the end of each command
allows the host to send a break character to cancel the command. A
delay of two bit times occurs before each echo and before READ,
IREAD, or READSP data is returned. The data returned by a read
command appears after the echo of the last byte of the command.
NOTE:
Data Sheet
172
Wait one bit time after each echo before sending the next byte.
MC68HC908LJ24/LK24 — Rev. 2
Monitor ROM (MON)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Monitor ROM (MON)
Functional Description
FROM HOST
4
ADDRESS
HIGH
READ
READ
4
1
ADDRESS
HIGH
ADDRESS
LOW
1
4
ADDRESS
LOW
DATA
1
3, 2
4
ECHO
RETURN
Notes:
1 = Echo delay, 2 bit times
2 = Data return delay, 2 bit times
3 = Cancel command delay, 11 bit times
4 = Wait 1 bit time before sending next byte.
Freescale Semiconductor, Inc...
Figure 10-5. Read Transaction
FROM HOST
3
ADDRESS
HIGH
WRITE
WRITE
1
3
ADDRESS
HIGH
1
ADDRESS
LOW
3
ADDRESS
LOW
1
DATA
DATA
3
1
2, 3
ECHO
Notes:
1 = Echo delay, 2 bit times
2 = Cancel command delay, 11 bit times
3 = Wait 1 bit time before sending next byte.
Figure 10-6. Write Transaction
A brief description of each monitor mode command is given in
Table 10-4 through Table 10-9.
Table 10-4. READ (Read Memory) Command
Description
Read byte from memory
Operand
2-byte address in high-byte:low-byte order
Data
Returned
Returns contents of specified address
Opcode
$4A
Command Sequence
SENT TO
MONITOR
READ
READ
ADDRESS
HIGH
ADDRESS
HIGH
ADDRESS
LOW
ADDRESS
LOW
ECHO
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
DATA
RETURN
Data Sheet
Monitor ROM (MON)
For More Information On This Product,
Go to: www.freescale.com
173
Freescale Semiconductor, Inc.
Monitor ROM (MON)
Table 10-5. WRITE (Write Memory) Command
Description
Operand
2-byte address in high-byte:low-byte order;
low byte followed by data byte
Data
Returned
None
Opcode
Freescale Semiconductor, Inc...
Write byte to memory
$49
Command Sequence
FROM
HOST
WRITE
ADDRESS
HIGH
WRITE
ADDRESS
HIGH
ADDRESS
LOW
ADDRESS
LOW
DATA
DATA
ECHO
Table 10-6. IREAD (Indexed Read) Command
Description
Read next 2 bytes in memory from last address accessed
Operand
2-byte address in high byte:low byte order
Data
Returned
Returns contents of next two addresses
Opcode
$1A
Command Sequence
FROM
HOST
IREAD
IREAD
DATA
ECHO
Data Sheet
174
DATA
RETURN
MC68HC908LJ24/LK24 — Rev. 2
Monitor ROM (MON)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Monitor ROM (MON)
Functional Description
Table 10-7. IWRITE (Indexed Write) Command
Description
Write to last address accessed + 1
Operand
Single data byte
Data
Returned
None
Opcode
$19
Freescale Semiconductor, Inc...
Command Sequence
FROM
HOST
IWRITE
IWRITE
DATA
DATA
ECHO
A sequence of IREAD or IWRITE commands can access a block of
memory sequentially over the full 64-Kbyte memory map.
Table 10-8. READSP (Read Stack Pointer) Command
Description
Reads stack pointer
Operand
None
Data
Returned
Returns incremented stack pointer value (SP + 1) in
high-byte:low-byte order
Opcode
$0C
Command Sequence
FROM
HOST
READSP
READSP
SP
HIGH
ECHO
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
SP
LOW
RETURN
Data Sheet
Monitor ROM (MON)
For More Information On This Product,
Go to: www.freescale.com
175
Freescale Semiconductor, Inc.
Monitor ROM (MON)
Table 10-9. RUN (Run User Program) Command
Description
Executes PULH and RTI instructions
Operand
None
Data
Returned
None
Opcode
$28
Command Sequence
Freescale Semiconductor, Inc...
FROM
HOST
RUN
RUN
ECHO
The MCU executes the SWI and PSHH instructions when it enters
monitor mode. The RUN command tells the MCU to execute the PULH
and RTI instructions. Before sending the RUN command, the host can
modify the stacked CPU registers to prepare to run the host program.
The READSP command returns the incremented stack pointer value,
SP + 1. The high and low bytes of the program counter are at addresses
SP + 5 and SP + 6.
SP
HIGH BYTE OF INDEX REGISTER
SP + 1
CONDITION CODE REGISTER
SP + 2
ACCUMULATOR
SP + 3
LOW BYTE OF INDEX REGISTER
SP + 4
HIGH BYTE OF PROGRAM COUNTER SP + 5
LOW BYTE OF PROGRAM COUNTER SP + 6
SP + 7
Figure 10-7. Stack Pointer at Monitor Mode Entry
Data Sheet
176
MC68HC908LJ24/LK24 — Rev. 2
Monitor ROM (MON)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Monitor ROM (MON)
Security
10.5 Security
A security feature discourages unauthorized reading of FLASH locations
while in monitor mode. The host can bypass the security feature at
monitor mode entry by sending eight security bytes that match the bytes
at locations $FFF6–$FFFD. Locations $FFF6–$FFFD contain userdefined data.
Freescale Semiconductor, Inc...
NOTE:
Do not leave locations $FFF6–$FFFD blank. For security reasons,
program locations $FFF6–$FFFD even if they are not used for vectors.
During monitor mode entry, the MCU waits after the power-on reset for
the host to send the eight security bytes on pin PTA0. If the received
bytes match those at locations $FFF6–$FFFD, the host bypasses the
security feature and can read all FLASH locations and execute code
from FLASH. Security remains bypassed until a power-on reset occurs.
If the reset was not a power-on reset, security remains bypassed and
security code entry is not required. (See Figure 10-8.)
VDD
4096 + 32 ICLK CYCLES
RST
COMMAND
BYTE 8
BYTE 2
BYTE 1
256 BUS CYCLES (MINIMUM)
FROM HOST
PTA0
4
BREAK
2
1
COMMAND ECHO
NOTES:
1 = Echo delay, 2 bit times.
2 = Data return delay, 2 bit times.
4 = Wait 1 bit time before sending next byte.
1
BYTE 8 ECHO
BYTE 1 ECHO
FROM MCU
1
BYTE 2 ECHO
4
1
Figure 10-8. Monitor Mode Entry Timing
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Monitor ROM (MON)
For More Information On This Product,
Go to: www.freescale.com
177
Freescale Semiconductor, Inc.
Monitor ROM (MON)
Upon power-on reset, if the received bytes of the security code do not
match the data at locations $FFF6–$FFFD, the host fails to bypass the
security feature. The MCU remains in monitor mode, but reading a
FLASH location returns an invalid value and trying to execute code from
FLASH causes an illegal address reset. After receiving the eight security
bytes from the host, the MCU transmits a break character, signifying that
it is ready to receive a command.
Freescale Semiconductor, Inc...
NOTE:
The MCU does not transmit a break character until after the host sends
the eight security bits.
To determine whether the security code entered is correct, check to see
if bit 6 of RAM address $40 is set. If it is, then the correct security code
has been entered and FLASH can be accessed.
If the security sequence fails, the device should be reset by a power-on
reset and brought up in monitor mode to attempt another entry. After
failing the security sequence, the FLASH module can also be mass
erased by executing an erase routine that was downloaded into internal
RAM. The mass erase operation clears the security code locations so
that all eight security bytes become $FF (blank).
Data Sheet
178
MC68HC908LJ24/LK24 — Rev. 2
Monitor ROM (MON)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Monitor ROM (MON)
ROM-Resident Routines
10.6 ROM-Resident Routines
Eight routines stored in the monitor ROM area (thus ROM-resident) are
provided for FLASH memory manipulation. Six of the eight routines are
intended to simplify FLASH program, erase, and load operations. The
other two routines are intended to simplify the use of the FLASH memory
as EEPROM. Table 10-10 shows a summary of the ROM-resident
routines.
Freescale Semiconductor, Inc...
Table 10-10. Summary of ROM-Resident Routines
Routine Name
Routine Description
Call
Address
Stack Used
(bytes)
PRGRNGE
Program a range of locations
$FC06
14
ERARNGE
Erase a page or the entire array
$FCBE
9
Loads data from a range of locations
$FF30
9
MON_PRGRNGE
Program a range of locations in
monitor mode
$FF28
16
MON_ERARNGE
Erase a page or the entire array in
monitor mode
$FF2C
11
MON_LDRNGE
Loads data from a range of locations
in monitor mode
$FF24
11
EE_WRITE
Emulated EEPROM write. Data size
ranges from 2 to 15 bytes at a time.
$FC00
17
EE_READ
Emulated EEPROM read. Data size
ranges from 2 to 15 bytes at a time.
$FC03
15
LDRNGE
The routines are designed to be called as stand-alone subroutines in the
user program or monitor mode. The parameters that are passed to a
routine are in the form of a contiguous data block, stored in RAM. The
index register (H:X) is loaded with the address of the first byte of the data
block (acting as a pointer), and the subroutine is called (JSR). Using the
start address as a pointer, multiple data blocks can be used, any area of
RAM be used. A data block has the control and data bytes in a defined
order, as shown in Figure 10-9.
During the software execution, it does not consume any dedicated RAM
location, the run-time heap will extend the system stack, all other RAM
location will not be affected.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Monitor ROM (MON)
For More Information On This Product,
Go to: www.freescale.com
179
Freescale Semiconductor, Inc.
Monitor ROM (MON)
R
FILE_PTR
$XXXX
ADDRESS AS POINTER
A
M
BUS SPEED (BUS_SPD)
DATA SIZE (DATASIZE)
START ADDRESS HIGH (ADDRH)
START ADDRESS LOW (ADDRL)
DATA 0
DATA 1
DATA
BLOCK
Freescale Semiconductor, Inc...
DATA
ARRAY
DATA N
Figure 10-9. Data Block Format for ROM-Resident Routines
The control and data bytes are described below.
Data Sheet
180
•
Bus speed — This one byte indicates the operating bus speed of
the MCU. The value of this byte should be equal to 4 times the bus
speed. E.g., for a 4MHz bus, the value is 16 ($10). This control
byte is useful where the MCU clock source is switched between
the PLL clock and the crystal clock.
•
Data size — This one byte indicates the number of bytes in the
data array that are to be manipulated. The maximum data array
size is 255. Routines EE_WRITE and EE_READ are restricted to
manipulate a data array between 2 to 15 bytes. Whereas routines
ERARNGE and MON_ERARNGE do not manipulate a data array,
thus, this data size byte has no meaning.
•
Start address — These two bytes, high byte followed by low byte,
indicate the start address of the FLASH memory to be
manipulated.
•
Data array — This data array contains data that are to be
manipulated. Data in this array are programmed to FLASH
memory by the programming routines: PRGRNGE,
MON_PRGRNGE, EE_WRITE. For the read routines: LDRNGE,
MON_LDRNGE, and EE_READ, data is read from FLASH and
stored in this array.
MC68HC908LJ24/LK24 — Rev. 2
Monitor ROM (MON)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Monitor ROM (MON)
ROM-Resident Routines
10.6.1 PRGRNGE
PRGRNGE is used to program a range of FLASH locations with data
loaded into the data array.
Freescale Semiconductor, Inc...
Table 10-11. PRGRNGE Routine
Routine Name
PRGRNGE
Routine Description
Program a range of locations
Calling Address
$FC06
Stack Used
14 bytes
Data Block Format
Bus speed (BUS_SPD)
Data size (DATASIZE)
Start address high (ADDRH)
Start address (ADDRL)
Data 1 (DATA1)
:
Data N (DATAN)
The start location of the FLASH to be programmed is specified by the
address ADDRH:ADDRL and the number of bytes from this location is
specified by DATASIZE. The maximum number of bytes that can be
programmed in one routine call is 255 bytes (max. DATASIZE is 255).
ADDRH:ADDRL do not need to be at a page boundary, the routine
handles any boundary misalignment during programming. A check to
see that all bytes in the specified range are erased is not performed by
this routine prior programming. Nor does this routine do a verification
after programming, so there is no return confirmation that programming
was successful. User must assure that the range specified is first
erased.
The coding example below is to program 64 bytes of data starting at
FLASH location $EF00, with a bus speed of 4.9152 MHz. The coding
assumes the data block is already loaded in RAM, with the address
pointer, FILE_PTR, pointing to the first byte of the data block.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Monitor ROM (MON)
For More Information On This Product,
Go to: www.freescale.com
181
Freescale Semiconductor, Inc.
Monitor ROM (MON)
ORG
RAM
:
FILE_PTR:
BUS_SPD
DATASIZE
START_ADDR
DATAARRAY
DS.B
DS.B
DS.W
DS.B
1
1
1
64
PRGRNGE
FLASH_START
EQU
EQU
$FC06
$EF00
;
;
;
;
Indicates 4x bus frequency
Data size to be programmed
FLASH start address
Reserved data array
Freescale Semiconductor, Inc...
ORG
FLASH
INITIALISATION:
MOV
#20,
BUS_SPD
MOV
#64,
DATASIZE
LDHX
#FLASH_START
STHX
START_ADDR
RTS
MAIN:
BSR
INITIALISATION
:
:
LDHX
#FILE_PTR
JSR
PRGRNGE
Data Sheet
182
MC68HC908LJ24/LK24 — Rev. 2
Monitor ROM (MON)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Monitor ROM (MON)
ROM-Resident Routines
10.6.2 ERARNGE
ERARNGE is used to erase a range of locations in FLASH.
Freescale Semiconductor, Inc...
Table 10-12. ERARNGE Routine
Routine Name
ERARNGE
Routine Description
Erase a page or the entire array
Calling Address
$FCBE
Stack Used
9 bytes
Data Block Format
Bus speed (BUS_SPD)
Data size (DATASIZE)
Starting address (ADDRH)
Starting address (ADDRL)
There are two sizes of erase ranges: a page or the entire array. The
ERARNGE will erase the page (128 consecutive bytes) in FLASH
specified by the address ADDRH:ADDRL. This address can be any
address within the page. Calling ERARNGE with ADDRH:ADDRL equal
to $FFFF will erase the entire FLASH array (mass erase). Therefore,
care must be taken when calling this routine to prevent an accidental
mass erase.
The ERARNGE routine do not use a data array. The DATASIZE byte is
a dummy byte that is also not used.
The coding example below is to perform a page erase, from
$EF00–$EF7F. The Initialization subroutine is the same as the coding
example for PRGRNGE (see 10.6.1 PRGRNGE).
ERARNGE
MAIN:
EQU
BSR
:
:
LDHX
JSR
:
$FCBE
INITIALISATION
#FILE_PTR
ERARNGE
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Monitor ROM (MON)
For More Information On This Product,
Go to: www.freescale.com
183
Freescale Semiconductor, Inc.
Monitor ROM (MON)
10.6.3 LDRNGE
LDRNGE is used to load the data array in RAM with data from a range
of FLASH locations.
Freescale Semiconductor, Inc...
Table 10-13. LDRNGE Routine
Routine Name
LDRNGE
Routine Description
Loads data from a range of locations
Calling Address
$FF30
Stack Used
9 bytes
Data Block Format
Bus speed (BUS_SPD)
Data size (DATASIZE)
Starting address (ADDRH)
Starting address (ADDRL)
Data 1
:
Data N
The start location of FLASH from where data is retrieved is specified by
the address ADDRH:ADDRL and the number of bytes from this location
is specified by DATASIZE. The maximum number of bytes that can be
retrieved in one routine call is 255 bytes. The data retrieved from FLASH
is loaded into the data array in RAM. Previous data in the data array will
be overwritten. User can use this routine to retrieve data from FLASH
that was previously programmed.
The coding example below is to retrieve 64 bytes of data starting from
$EF00 in FLASH. The Initialization subroutine is the same as the coding
example for PRGRNGE (see 10.6.1 PRGRNGE).
LDRNGE
MAIN:
EQU
BSR
:
:
LDHX
JSR
:
Data Sheet
184
$FF30
INITIALIZATION
#FILE_PTR
LDRNGE
MC68HC908LJ24/LK24 — Rev. 2
Monitor ROM (MON)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Monitor ROM (MON)
ROM-Resident Routines
10.6.4 MON_PRGRNGE
In monitor mode, MON_PRGRNGE is used to program a range of
FLASH locations with data loaded into the data array.
Freescale Semiconductor, Inc...
Table 10-14. MON_PRGRNGE Routine
Routine Name
MON_PRGRNGE
Routine Description
Program a range of locations, in monitor mode
Calling Address
$FC28
Stack Used
16 bytes
Data Block Format
Bus speed
Data size
Starting address (high byte)
Starting address (low byte)
Data 1
:
Data N
The MON_PRGRNGE routine is designed to be used in monitor mode.
It performs the same function as the PRGRNGE routine (see 10.6.1
PRGRNGE), except that MON_PRGRNGE returns to the main program
via an SWI instruction. After a MON_PRGRNGE call, the SWI instruction
will return the control back to the monitor code.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Monitor ROM (MON)
For More Information On This Product,
Go to: www.freescale.com
185
Freescale Semiconductor, Inc.
Monitor ROM (MON)
10.6.5 MON_ERARNGE
In monitor mode, ERARNGE is used to erase a range of locations in
FLASH.
Freescale Semiconductor, Inc...
Table 10-15. MON_ERARNGE Routine
Routine Name
MON_ERARNGE
Routine Description
Erase a page or the entire array, in monitor mode
Calling Address
$FF2C
Stack Used
11 bytes
Data Block Format
Bus speed
Data size
Starting address (high byte)
Starting address (low byte)
The MON_ERARNGE routine is designed to be used in monitor mode.
It performs the same function as the ERARNGE routine (see 10.6.2
ERARNGE), except that MON_ERARNGE returns to the main program
via an SWI instruction. After a MON_ERARNGE call, the SWI instruction
will return the control back to the monitor code.
Data Sheet
186
MC68HC908LJ24/LK24 — Rev. 2
Monitor ROM (MON)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Monitor ROM (MON)
ROM-Resident Routines
10.6.6 MON_LDRNGE
In monitor mode, LDRNGE is used to load the data array in RAM with
data from a range of FLASH locations.
Freescale Semiconductor, Inc...
Table 10-16. ICP_LDRNGE Routine
Routine Name
MON_LDRNGE
Routine Description
Loads data from a range of locations, in monitor mode
Calling Address
$FF24
Stack Used
11 bytes
Data Block Format
Bus speed
Data size
Starting address (high byte)
Starting address (low byte)
Data 1
:
Data N
The MON_LDRNGE routine is designed to be used in monitor mode. It
performs the same function as the LDRNGE routine (see 10.6.3
LDRNGE), except that MON_LDRNGE returns to the main program via
an SWI instruction. After a MON_LDRNGE call, the SWI instruction will
return the control back to the monitor code.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Monitor ROM (MON)
For More Information On This Product,
Go to: www.freescale.com
187
Freescale Semiconductor, Inc.
Monitor ROM (MON)
10.6.7 EE_WRITE
EE_WRITE is used to write a set of data from the data array to FLASH.
Freescale Semiconductor, Inc...
Table 10-17. EE_WRITE Routine
Routine Name
EE_WRITE
Routine Description
Emulated EEPROM write. Data size ranges from 2 to 15
bytes at a time.
Calling Address
$FC00
Stack Used
17 bytes
Data Block Format
Bus speed (BUS_SPD)
Data size (DATASIZE)(1)
Starting address (ADDRH)(2)
Starting address (ADDRL)(1)
Data 1
:
Data N
Notes:
1. The minimum data size is 2 bytes. The maximum data size is 15 bytes.
2. The start address must be a page boundary start address, e.g. $xx00 or $xx80.
The start location of the FLASH to be programmed is specified by the
address ADDRH:ADDRL and the number of bytes in the data array is
specified by DATASIZE. The minimum number of bytes that can be
programmed in one routine call is 2 bytes, the maximum is 15 bytes.
ADDRH:ADDRL must always be the start of boundary address (the page
start address: $XX00 or $0080) and DATASIZE must be the same size
when accessing the same page.
In some applications, the user may want to repeatedly store and read a
set of data from an area of non-volatile memory. This is easily possible
when using an EEPROM array. As the write and erase operations can
be executed on a byte basis. For FLASH memory, the minimum erase
size is the page — 128 bytes per page for MC68HC908LJ24. If the data
array size is less than the page size, writing and erasing to the same
page cannot fully utilize the page. Unused locations in the page will be
wasted. The EE_WRITE routine is designed to emulate the properties
similar to the EEPROM. Allowing a more efficient use of the FLASH page
for data storage.
Data Sheet
188
MC68HC908LJ24/LK24 — Rev. 2
Monitor ROM (MON)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Monitor ROM (MON)
ROM-Resident Routines
Freescale Semiconductor, Inc...
When the user dedicates a page of FLASH for data storage, and the size
of the data array defined, each call of the EE_WRTIE routine will
automatically transfer the data in the data array (in RAM) to the next
blank block of locations in the FLASH page. Once a page is filled up, the
EE_WRITE routine automatically erases the page, and starts reuse the
page again. In the 128-byte page, an 8-byte control block is used by the
routine to monitor the utilization of the page. In effect, only 120 bytes are
used for data storage. (see Figure 10-10). The page control operations
are transparent to the user.
F L A S H
PAGE BOUNDARY
CONTROL: 8 BYTES
$XX00 OR $XX80
DATA ARRAY
DATA ARRAY
DATA ARRAY
ONE PAGE = 128 BYTES
PAGE BOUNDARY
Figure 10-10. EE_WRITE FLASH Memory Usage
When using this routine to store a 2-byte data array, the FLASH page
can be programmed 60 times before the an erase is required. In effect,
the write/erase endurance is increased by 60 times. When a 15-byte
data array is used, the write/erase endurance is increased by 8 times.
Due to the FLASH page size limitation, the data array is limited from 2
bytes to 15 bytes.
The coding example below uses the $EF00–$EE7F page for data
storage. The data array size is 15 bytes, and the bus speed is
4.9152 MHz. The coding assumes the data block is already loaded in
RAM, with the address pointer, FILE_PTR, pointing to the first byte of the
data block.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Monitor ROM (MON)
For More Information On This Product,
Go to: www.freescale.com
189
Freescale Semiconductor, Inc.
Monitor ROM (MON)
ORG
RAM
:
FILE_PTR:
BUS_SPD
DATASIZE
START_ADDR
DATAARRAY
DS.B
DS.B
DS.W
DS.B
1
1
1
15
EE_WRITE
FLASH_START
EQU
EQU
$FC00
$EF00
;
;
;
;
Indicates 4x bus frequency
Data size to be programmed
FLASH starting address
Reserved data array
Freescale Semiconductor, Inc...
ORG
FLASH
INITIALISATION:
MOV
#20,
BUS_SPD
MOV
#15,
DATASIZE
LDHX
#FLASH_START
STHX
START_ADDR
RTS
MAIN:
BSR
INITIALISATION
:
:
LHDX
#FILE_PTR
JSR
EE_WRITE
NOTE:
Data Sheet
190
The EE_WRITE routine is unable to check for incorrect data blocks,
such as the FLASH page boundary address and data size. It is the
responsibility of the user to ensure the starting address indicated in the
data block is at the FLASH page boundary and the data size is 2 to 15.
If the FLASH page is already programmed with a data array with a
different size, the EE_WRITE call will be ignored.
MC68HC908LJ24/LK24 — Rev. 2
Monitor ROM (MON)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Monitor ROM (MON)
ROM-Resident Routines
10.6.8 EE_READ
EE_READ is used to load the data array in RAM with a set of data from
FLASH.
Freescale Semiconductor, Inc...
Table 10-18. EE_READ Routine
Routine Name
EE_READ
Routine Description
Emulated EEPROM read. Data size ranges from 2 to 15
bytes at a time.
Calling Address
$FC03
Stack Used
15 bytes
Data Block Format
Bus speed (BUS_SPD)
Data size (DATASIZE)
Starting address (ADDRH)(1)
Starting address (ADDRL)(1)
Data 1
:
Data N
Notes:
1. The start address must be a page boundary start address, e.g. $xx00 or $xx80.
The EE_READ routine reads data stored by the EE_WRITE routine. An
EE_READ call will retrieve the last data written to a FLASH page and
loaded into the data array in RAM. Same as EE_WRITE, the data size
indicated by DATASIZE is 2 to 15, and the start address
ADDRH:ADDRL must the FLASH page boundary address.
The coding example below uses the data stored by the EE_WRITE
coding example (see 10.6.7 EE_WRITE). It loads the 15-byte data set
stored in the $EF00–$EE7F page to the data array in RAM. The
initialization subroutine is the same as the coding example for
EE_WRITE (see 10.6.7 EE_WRITE).
EE_READ
EQU
$FC03
MAIN:
BSR
:
:
LDHX
JSR
:
INITIALIZATION
#FILE_PTR
EE_READ
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Monitor ROM (MON)
For More Information On This Product,
Go to: www.freescale.com
191
Freescale Semiconductor, Inc.
Monitor ROM (MON)
The EE_READ routine is unable to check for incorrect data blocks, such
as the FLASH page boundary address and data size. It is the
responsibility of the user to ensure the starting address indicated in the
data block is at the FLASH page boundary and the data size is 2 to 15.
If the FLASH page is programmed with a data array with a different size,
the EE_READ call will be ignored.
Freescale Semiconductor, Inc...
NOTE:
Data Sheet
192
MC68HC908LJ24/LK24 — Rev. 2
Monitor ROM (MON)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Data Sheet – MC68HC908LJ24
Section 11. Timer Interface Module (TIM)
Freescale Semiconductor, Inc...
11.1 Contents
11.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
11.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
11.4
Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
11.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195
11.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
11.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
11.5.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
11.5.3.1
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . 200
11.5.3.2
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .201
11.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . 201
11.5.4.1
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . 202
11.5.4.2
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . 203
11.5.4.3
PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
11.6
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205
11.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
11.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206
11.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206
11.8
TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 206
11.9 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
11.9.1 TIM Clock Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207
11.9.2 TIM Channel I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
11.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
11.10.1 TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . 208
11.10.2 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
11.10.3 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . 211
11.10.4 TIM Channel Status and Control Registers . . . . . . . . . . . . 212
11.10.5 TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Timer Interface Module (TIM)
For More Information On This Product,
Go to: www.freescale.com
193
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
11.2 Introduction
This section describes the timer interface (TIM) module. The TIM is a
two-channel timer that provides a timing reference with input capture,
output compare, and pulse-width-modulation functions. Figure 11-1 is a
block diagram of the TIM.
Freescale Semiconductor, Inc...
This particular MCU has two timer interface modules which are denoted
as TIM1 and TIM2.
11.3 Features
Features of the TIM include:
•
Two input capture/output compare channels:
– Rising-edge, falling-edge, or any-edge input capture trigger
– Set, clear, or toggle output compare action
•
Buffered and unbuffered pulse-width-modulation (PWM) signal
generation
•
Programmable TIM clock input
– 7-frequency internal bus clock prescaler selection
– External TIM clock input (bus frequency ÷2 maximum)
Data Sheet
194
•
Free-running or modulo up-count operation
•
Toggle any channel pin on overflow
•
TIM counter stop and reset bits
MC68HC908LJ24/LK24 — Rev. 2
Timer Interface Module (TIM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
Pin Name Conventions
11.4 Pin Name Conventions
The text that follows describes both timers, TIM1 and TIM2. The TIM
input/output (I/O) pin names are T[1,2]CH0 (timer channel 0). T[1,2]CH1
(timer channel 1), and T[1,2]CLK (external timer clock), where “1” is
used to indicate TIM1 and “2” is used to indicate TIM2. The full names of
the TIM I/O pins are listed in Table 11-1. The generic pin names appear
in the text that follows.
Freescale Semiconductor, Inc...
Table 11-1. Pin Name Conventions
TIM Generic Pin Names:
Full TIM
Pin Names:
NOTE:
T[1,2]CH0
T[1,2]CH1
T[1,2]CLK
TIM1
PTB2/T1CH0
PTB3/T1CH1
PTD4/KBI4/T1CLK
TIM2
PTB4/T2CH0
PTB5/T2CH1
PTD5/KBI5/T2CLK
References to either timer 1 or timer 2 may be made in the following text
by omitting the timer number. For example, TCH0 may refer generically
to T1CH0 and T2CH0, and TCH1 may refer to T1CH1 and T2CH1.
The T1CLK and T2CLK pins are also shared with KBI4 and KBI5
respectively. To avoid erratic behavior, these two pins should never be
configured for use as TCLK and KBI inputs simultaneously.
11.5 Functional Description
Figure 11-1 shows the structure of the TIM. The central component of
the TIM is the 16-bit TIM counter that can operate as a free-running
counter or a modulo up-counter. The TIM counter provides the timing
reference for the input capture and output compare functions. The TIM
counter modulo registers, TMODH:TMODL, control the modulo value of
the TIM counter. Software can read the TIM counter value at any time
without affecting the counting sequence.
The two TIM channels (per timer) are programmable independently as
input capture or output compare channels.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Timer Interface Module (TIM)
For More Information On This Product,
Go to: www.freescale.com
195
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
T[1,2]CLK
PRESCALER SELECT
INTERNAL
BUS CLOCK
PRESCALER
TSTOP
PS2
TRST
PS1
PS0
16-BIT COUNTER
TOF
TOIE
INTERRUPT
LOGIC
16-BIT COMPARATOR
Freescale Semiconductor, Inc...
TMODH:TMODL
TOV0
ELS0B
CHANNEL 0
ELS0A
CH0MAX
16-BIT COMPARATOR
TCH0H:TCH0L
PORT
LOGIC
T[1,2]CH0
CH0F
INTERRUPT
LOGIC
16-BIT LATCH
CH0IE
MS0A
MS0B
INTERNAL BUS
TOV1
ELS1B
CHANNEL 1
ELS1A
CH1MAX
PORT
LOGIC
T[1,2]CH1
16-BIT COMPARATOR
TCH1H:TCH1L
CH1F
INTERRUPT
LOGIC
16-BIT LATCH
MS1A
CH1IE
Figure 11-1. TIM Block Diagram
Figure 11-2 summarizes the timer registers.
NOTE:
Data Sheet
196
References to either timer 1 or timer 2 may be made in the following text
by omitting the timer number. For example, TSC may generically refer to
both T1SC and T2SC.
MC68HC908LJ24/LK24 — Rev. 2
Timer Interface Module (TIM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
Functional Description
Addr.
Register Name
$0020
Freescale Semiconductor, Inc...
$0021
$0022
$0023
$0024
Bit 7
TOIE
TSTOP
4
3
0
0
2
1
Bit 0
PS2
PS1
PS0
TOF
0
0
1
0
0
0
0
0
Read:
Timer 1 Counter
Register High Write:
(T1CNTH)
Reset:
Bit 15
14
13
12
11
10
9
Bit 8
0
0
0
0
0
0
0
0
Read:
Timer 1 Counter
Register Low Write:
(T1CNTL)
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
Bit 15
14
13
12
11
10
9
Bit 8
1
1
1
1
1
1
1
1
Bit 7
6
5
4
3
2
1
Bit 0
1
1
1
1
1
1
1
1
CH0IE
MS0B
MS0A
ELS0B
ELS0A
TOV0
CH0MAX
0
0
0
0
0
0
0
0
Bit 15
14
13
12
11
10
9
Bit 8
2
1
Bit 0
Read:
Timer 1 Counter Modulo
Register Low Write:
(T1MODL)
Reset:
Read:
Timer 1 Channel 0 Status
$0025
and Control Register Write:
(T1SC0)
Reset:
$0027
5
Read:
Timer 1 Status and
Control Register Write:
(T1SC)
Reset:
Read:
Timer 1 Counter Modulo
Register High Write:
(T1MODH)
Reset:
$0026
6
Read:
Timer 1 Channel 0
Register High Write:
(T1CH0H)
Reset:
Read:
Timer 1 Channel 0
Register Low Write:
(T1CH0L)
Reset:
Read:
Timer 1 Channel 1 Status
$0028
and Control Register Write:
(T1SC1)
Reset:
0
TRST
CH0F
0
Indeterminate after reset
Bit 7
6
5
4
3
Indeterminate after reset
CH1F
0
CH1IE
MS1A
ELS1B
ELS1A
TOV1
CH1MAX
0
0
0
0
0
0
0
0
0
= Unimplemented
Figure 11-2. TIM I/O Register Summary (Sheet 1 of 3)
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Timer Interface Module (TIM)
For More Information On This Product,
Go to: www.freescale.com
197
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
Addr.
Register Name
Read:
Timer 1 Channel 1
Register High Write:
(T1CH1H)
Reset:
$0029
Read:
Timer 1 Channel 1
Register Low Write:
(T1CH1L)
Reset:
Freescale Semiconductor, Inc...
$002A
$002B
$002C
$002D
$002E
$002F
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
2
1
Bit 0
PS2
PS1
PS0
Indeterminate after reset
Bit 7
6
5
4
3
Indeterminate after reset
Read:
Timer 2 Status and
Control Register Write:
(T2SC)
Reset:
TOF
0
0
1
0
0
0
0
0
Read:
Timer 2 Counter
Register High Write:
(T2CNTH)
Reset:
Bit 15
14
13
12
11
10
9
Bit 8
0
0
0
0
0
0
0
0
Read:
Timer 2 Counter
Register Low Write:
(T2CNTL)
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
Bit 15
14
13
12
11
10
9
Bit 8
1
1
1
1
1
1
1
1
Bit 7
6
5
4
3
2
1
Bit 0
1
1
1
1
1
1
1
1
CH0IE
MS0B
MS0A
ELS0B
ELS0A
TOV0
CH0MAX
0
0
0
0
0
0
0
0
Bit 15
14
13
12
11
10
9
Bit 8
Read:
Timer 2 Counter Modulo
Register High Write:
(T2MODH)
Reset:
Read:
Timer 2 Counter Modulo
Register Low Write:
(T2MODL)
Reset:
Read:
Timer 2 Channel 0 Status
$0030
and Control Register Write:
(T2SC0)
Reset:
$0031
Bit 7
Read:
Timer 2 Channel 0
Register High Write:
(T2CH0H)
Reset:
0
TOIE
0
TSTOP
0
TRST
CH0F
0
Indeterminate after reset
= Unimplemented
Figure 11-2. TIM I/O Register Summary (Sheet 2 of 3)
Data Sheet
198
MC68HC908LJ24/LK24 — Rev. 2
Timer Interface Module (TIM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
Functional Description
Addr.
Register Name
$0032
Read:
Timer 2 Channel 0
Register Low Write:
(T2CH0L)
Reset:
Freescale Semiconductor, Inc...
Read:
Timer 2 Channel 1 Status
$0033
and Control Register Write:
(T2SC1)
Reset:
$0034
$0035
Read:
Timer 2 Channel 1
Register High Write:
(T2CH1H)
Reset:
Read:
Timer 2 Channel 1
Register Low Write:
(T2CH1L)
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Indeterminate after reset
CH1F
0
CH1IE
MS1A
ELS1B
ELS1A
TOV1
CH1MAX
0
0
0
0
0
0
0
0
0
Bit 15
14
13
12
11
10
9
Bit 8
2
1
Bit 0
Indeterminate after reset
Bit 7
6
5
4
3
Indeterminate after reset
= Unimplemented
Figure 11-2. TIM I/O Register Summary (Sheet 3 of 3)
11.5.1 TIM Counter Prescaler
The TIM clock source can be one of the seven prescaler outputs or the
TIM clock pin, TCLK. The prescaler generates seven clock rates from
the internal bus clock. The prescaler select bits, PS[2:0], in the TIM
status and control register select the TIM clock source.
11.5.2 Input Capture
With the input capture function, the TIM can capture the time at which an
external event occurs. When an active edge occurs on the pin of an input
capture channel, the TIM latches the contents of the TIM counter into the
TIM channel registers, TCHxH:TCHxL. The polarity of the active edge is
programmable. Input captures can generate TIM CPU interrupt
requests.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Timer Interface Module (TIM)
For More Information On This Product,
Go to: www.freescale.com
199
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
11.5.3 Output Compare
With the output compare function, the TIM can generate a periodic pulse
with a programmable polarity, duration, and frequency. When the
counter reaches the value in the registers of an output compare channel,
the TIM can set, clear, or toggle the channel pin. Output compares can
generate TIM CPU interrupt requests.
Freescale Semiconductor, Inc...
11.5.3.1 Unbuffered Output Compare
Any output compare channel can generate unbuffered output compare
pulses as described in 11.5.3 Output Compare. The pulses are
unbuffered because changing the output compare value requires writing
the new value over the old value currently in the TIM channel registers.
An unsynchronized write to the TIM channel registers to change an
output compare value could cause incorrect operation for up to two
counter overflow periods. For example, writing a new value before the
counter reaches the old value but after the counter reaches the new
value prevents any compare during that counter overflow period. Also,
using a TIM overflow interrupt routine to write a new, smaller output
compare value may cause the compare to be missed. The TIM may pass
the new value before it is written.
Use the following methods to synchronize unbuffered changes in the
output compare value on channel x:
Data Sheet
200
•
When changing to a smaller value, enable channel x output
compare interrupts and write the new value in the output compare
interrupt routine. The output compare interrupt occurs at the end
of the current output compare pulse. The interrupt routine has until
the end of the counter overflow period to write the new value.
•
When changing to a larger output compare value, enable TIM
overflow interrupts and write the new value in the TIM overflow
interrupt routine. The TIM overflow interrupt occurs at the end of
the current counter overflow period. Writing a larger value in an
output compare interrupt routine (at the end of the current pulse)
could cause two output compares to occur in the same counter
overflow period.
MC68HC908LJ24/LK24 — Rev. 2
Timer Interface Module (TIM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
Functional Description
11.5.3.2 Buffered Output Compare
Freescale Semiconductor, Inc...
Channels 0 and 1 can be linked to form a buffered output compare
channel whose output appears on the TCH0 pin. The TIM channel
registers of the linked pair alternately control the output.
Setting the MS0B bit in TIM channel 0 status and control register (TSC0)
links channel 0 and channel 1. The output compare value in the TIM
channel 0 registers initially controls the output on the TCH0 pin. Writing
to the TIM channel 1 registers enables the TIM channel 1 registers to
synchronously control the output after the TIM overflows. At each
subsequent overflow, the TIM channel registers (0 or 1) that control the
output are the ones written to last. TSC0 controls and monitors the
buffered output compare function, and TIM channel 1 status and control
register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin,
TCH1, is available as a general-purpose I/O pin.
NOTE:
In buffered output compare operation, do not write new output compare
values to the currently active channel registers. User software should
track the currently active channel to prevent writing a new value to the
active channel. Writing to the active channel registers is the same as
generating unbuffered output compares.
11.5.4 Pulse Width Modulation (PWM)
By using the toggle-on-overflow feature with an output compare channel,
the TIM can generate a PWM signal. The value in the TIM counter
modulo registers determines the period of the PWM signal. The channel
pin toggles when the counter reaches the value in the TIM counter
modulo registers. The time between overflows is the period of the PWM
signal.
As Figure 11-3 shows, the output compare value in the TIM channel
registers determines the pulse width of the PWM signal. The time
between overflow and output compare is the pulse width. Program the
TIM to clear the channel pin on output compare if the state of the PWM
pulse is logic 1. Program the TIM to set the pin if the state of the PWM
pulse is logic 0.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Timer Interface Module (TIM)
For More Information On This Product,
Go to: www.freescale.com
201
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
The value in the TIM counter modulo registers and the selected
prescaler output determines the frequency of the PWM output. The
frequency of an 8-bit PWM signal is variable in 256 increments. Writing
$00FF (255) to the TIM counter modulo registers produces a PWM
period of 256 times the internal bus clock period if the prescaler select
value is $000. See 11.10.1 TIM Status and Control Register.
OVERFLOW
OVERFLOW
OVERFLOW
Freescale Semiconductor, Inc...
PERIOD
PULSE
WIDTH
TCHx
OUTPUT
COMPARE
OUTPUT
COMPARE
OUTPUT
COMPARE
Figure 11-3. PWM Period and Pulse Width
The value in the TIM channel registers determines the pulse width of the
PWM output. The pulse width of an 8-bit PWM signal is variable in 256
increments. Writing $0080 (128) to the TIM channel registers produces
a duty cycle of 128/256 or 50%.
11.5.4.1 Unbuffered PWM Signal Generation
Any output compare channel can generate unbuffered PWM pulses as
described in 11.5.4 Pulse Width Modulation (PWM). The pulses are
unbuffered because changing the pulse width requires writing the new
pulse width value over the old value currently in the TIM channel
registers.
An unsynchronized write to the TIM channel registers to change a pulse
width value could cause incorrect operation for up to two PWM periods.
For example, writing a new value before the counter reaches the old
value but after the counter reaches the new value prevents any compare
during that PWM period. Also, using a TIM overflow interrupt routine to
write a new, smaller pulse width value may cause the compare to be
missed. The TIM may pass the new value before it is written.
Data Sheet
202
MC68HC908LJ24/LK24 — Rev. 2
Timer Interface Module (TIM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
Functional Description
Freescale Semiconductor, Inc...
Use the following methods to synchronize unbuffered changes in the
PWM pulse width on channel x:
NOTE:
•
When changing to a shorter pulse width, enable channel x output
compare interrupts and write the new value in the output compare
interrupt routine. The output compare interrupt occurs at the end
of the current pulse. The interrupt routine has until the end of the
PWM period to write the new value.
•
When changing to a longer pulse width, enable TIM overflow
interrupts and write the new value in the TIM overflow interrupt
routine. The TIM overflow interrupt occurs at the end of the current
PWM period. Writing a larger value in an output compare interrupt
routine (at the end of the current pulse) could cause two output
compares to occur in the same PWM period.
In PWM signal generation, do not program the PWM channel to toggle
on output compare. Toggling on output compare prevents reliable 0%
duty cycle generation and removes the ability of the channel to selfcorrect in the event of software error or noise. Toggling on output
compare also can cause incorrect PWM signal generation when
changing the PWM pulse width to a new, much larger value.
11.5.4.2 Buffered PWM Signal Generation
Channels 0 and 1 can be linked to form a buffered PWM channel whose
output appears on the TCH0 pin. The TIM channel registers of the linked
pair alternately control the pulse width of the output.
Setting the MS0B bit in TIM channel 0 status and control register (TSC0)
links channel 0 and channel 1. The TIM channel 0 registers initially
control the pulse width on the TCH0 pin. Writing to the TIM channel 1
registers enables the TIM channel 1 registers to synchronously control
the pulse width at the beginning of the next PWM period. At each
subsequent overflow, the TIM channel registers (0 or 1) that control the
pulse width are the ones written to last. TSC0 controls and monitors the
buffered PWM function, and TIM channel 1 status and control register
(TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1,
is available as a general-purpose I/O pin.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Timer Interface Module (TIM)
For More Information On This Product,
Go to: www.freescale.com
203
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
NOTE:
In buffered PWM signal generation, do not write new pulse width values
to the currently active channel registers. User software should track the
currently active channel to prevent writing a new value to the active
channel. Writing to the active channel registers is the same as
generating unbuffered PWM signals.
11.5.4.3 PWM Initialization
Freescale Semiconductor, Inc...
To ensure correct operation when generating unbuffered or buffered
PWM signals, use the following initialization procedure:
1. In the TIM status and control register (TSC):
a. Stop the TIM counter by setting the TIM stop bit, TSTOP.
b. Reset the TIM counter and prescaler by setting the TIM reset
bit, TRST.
2. In the TIM counter modulo registers (TMODH:TMODL), write the
value for the required PWM period.
3. In the TIM channel x registers (TCHxH:TCHxL), write the value for
the required pulse width.
4. In TIM channel x status and control register (TSCx):
a. Write 0:1 (for unbuffered output compare or PWM signals) or
1:0 (for buffered output compare or PWM signals) to the
mode select bits, MSxB:MSxA. (See Table 11-3.)
b. Write 1 to the toggle-on-overflow bit, TOVx.
c. Write 1:0 (to clear output on compare) or 1:1 (to set output on
compare) to the edge/level select bits, ELSxB:ELSxA. The
output action on compare must force the output to the
complement of the pulse width level. (See Table 11-3.)
NOTE:
In PWM signal generation, do not program the PWM channel to toggle
on output compare. Toggling on output compare prevents reliable 0%
duty cycle generation and removes the ability of the channel to selfcorrect in the event of software error or noise. Toggling on output
compare can also cause incorrect PWM signal generation when
changing the PWM pulse width to a new, much larger value.
5. In the TIM status control register (TSC), clear the TIM stop bit,
TSTOP.
Data Sheet
204
MC68HC908LJ24/LK24 — Rev. 2
Timer Interface Module (TIM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
Interrupts
Setting MS0B links channels 0 and 1 and configures them for buffered
PWM operation. The TIM channel 0 registers (TCH0H:TCH0L) initially
control the buffered PWM output. TIM channel 0 status and control
register (TSC0) controls and monitors the PWM signal from the linked
channels.
Freescale Semiconductor, Inc...
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM
overflows. Subsequent output compares try to force the output to a state
it is already in and have no effect. The result is a 0% duty cycle output.
Setting the channel x maximum duty cycle bit (CHxMAX) and setting the
TOVx bit generates a 100% duty cycle output. (See 11.10.4 TIM
Channel Status and Control Registers.)
11.6 Interrupts
The following TIM sources can generate interrupt requests:
•
TIM overflow flag (TOF) — The TOF bit is set when the TIM
counter reaches the modulo value programmed in the TIM counter
modulo registers. The TIM overflow interrupt enable bit, TOIE,
enables TIM overflow CPU interrupt requests. TOF and TOIE are
in the TIM status and control register.
•
TIM channel flags (CH1F:CH0F) — The CHxF bit is set when an
input capture or output compare occurs on channel x. Channel x
TIM CPU interrupt requests are controlled by the channel x
interrupt enable bit, CHxIE. Channel x TIM CPU interrupt requests
are enabled when CHxIE = 1. CHxF and CHxIE are in the TIM
channel x status and control register.
11.7 Low-Power Modes
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Timer Interface Module (TIM)
For More Information On This Product,
Go to: www.freescale.com
205
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
11.7.1 Wait Mode
The TIM remains active after the execution of a WAIT instruction. In wait
mode, the TIM registers are not accessible by the CPU. Any enabled
CPU interrupt request from the TIM can bring the MCU out of wait mode.
Freescale Semiconductor, Inc...
If TIM functions are not required during wait mode, reduce power
consumption by stopping the TIM before executing the WAIT instruction.
11.7.2 Stop Mode
The TIM is inactive after the execution of a STOP instruction. The STOP
instruction does not affect register conditions or the state of the TIM
counter. TIM operation resumes when the MCU exits stop mode after an
external interrupt.
11.8 TIM During Break Interrupts
A break interrupt stops the TIM counter.
The system integration module (SIM) controls whether status bits in
other modules can be cleared during the break state. The BCFE bit in
the SIM break flag control register (SBFCR) enables software to clear
status bits during the break state. (See 9.8.3 SIM Break Flag Control
Register.)
To allow software to clear status bits during a break interrupt, write a
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it
remains cleared when the MCU exits the break state.
To protect status bits during the break state, write a logic 0 to the BCFE
bit. With BCFE at logic 0 (its default state), software can read and write
I/O registers during the break state without affecting status bits. Some
status bits have a 2-step read/write clearing procedure. If software does
the first step on such a bit before the break, the bit cannot change during
the break state as long as BCFE is at logic 0. After the break, doing the
second step clears the status bit.
Data Sheet
206
MC68HC908LJ24/LK24 — Rev. 2
Timer Interface Module (TIM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
I/O Signals
11.9 I/O Signals
Port B shares four of its pins with the TIM channel I/O pins: T1CH0,
T1CH1, T2CH0, and T2CH1.
Port D shares two of its pins with the TIM clock input pins: T1CLK and
T2CLK
Freescale Semiconductor, Inc...
11.9.1 TIM Clock Pins (PTD4/KBI4/T1CLK, PTD5/KBI5/T2CLK)
T[1,2]CLK is an external clock input that can be the clock source for the
TIM[1,2] counter instead of the prescaled internal bus clock. Select the
T[1,2]CLK input by writing logic 1’s to the three prescaler select bits,
PS[2:0]. (See 11.10.1 TIM Status and Control Register.) The minimum
T[1,2]CLK pulse width, T[1,2]CLKLMIN or T[1,2]CLKHMIN, is:
1
------------------------------------- + t SU
bus frequency
The maximum T[1,2]CLK frequency is:
bus frequency ÷ 2
T1CLK and T2CLK are available as standard I/Os or KBI pins when not
used as the TIM clock inputs.
11.9.2 TIM Channel I/O Pins (PTB2/T1CH0, PTB3/T1CH1, PTB4/T2CH0, PTB5/T2CH1)
Each channel I/O pin is programmable independently as an input
capture pin or an output compare pin. T1CH0 and T2CH0 can be
configured as buffered output compare or buffered PWM pins.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Timer Interface Module (TIM)
For More Information On This Product,
Go to: www.freescale.com
207
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
11.10 I/O Registers
NOTE:
References to either timer 1 or timer 2 may be made in the following text
by omitting the timer number. For example, TSC may generically refer to
both T1SC AND T2SC.
Freescale Semiconductor, Inc...
These I/O registers control and monitor operation of the TIM:
•
TIM status and control register (TSC)
•
TIM counter registers (TCNTH:TCNTL)
•
TIM counter modulo registers (TMODH:TMODL)
•
TIM channel status and control registers (TSC0, TSC1)
•
TIM channel registers (TCH0H:TCH0L, TCH1H:TCH1L)
11.10.1 TIM Status and Control Register
The TIM status and control register (TSC):
•
Enables TIM overflow interrupts
•
Flags TIM overflows
•
Stops the TIM counter
•
Resets the TIM counter
•
Prescales the TIM counter clock
Address: T1SC, $0020 and T2SC, $002B
Bit 7
Read:
6
5
TOIE
TSTOP
TOF
Write:
0
Reset:
0
4
3
0
0
2
1
Bit 0
PS2
PS1
PS0
0
0
0
TRST
0
1
0
0
= Unimplemented
Figure 11-4. TIM Status and Control Register (TSC)
Data Sheet
208
MC68HC908LJ24/LK24 — Rev. 2
Timer Interface Module (TIM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
I/O Registers
TOF — TIM Overflow Flag Bit
Freescale Semiconductor, Inc...
This read/write flag is set when the TIM counter reaches the modulo
value programmed in the TIM counter modulo registers. Clear TOF by
reading the TIM status and control register when TOF is set and then
writing a logic 0 to TOF. If another TIM overflow occurs before the
clearing sequence is complete, then writing logic 0 to TOF has no
effect. Therefore, a TOF interrupt request cannot be lost due to
inadvertent clearing of TOF. Reset clears the TOF bit. Writing a
logic 1 to TOF has no effect.
1 = TIM counter has reached modulo value
0 = TIM counter has not reached modulo value
TOIE — TIM Overflow Interrupt Enable Bit
This read/write bit enables TIM overflow interrupts when the TOF bit
becomes set. Reset clears the TOIE bit.
1 = TIM overflow interrupts enabled
0 = TIM overflow interrupts disabled
TSTOP — TIM Stop Bit
This read/write bit stops the TIM counter. Counting resumes when
TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIM
counter until software clears the TSTOP bit.
1 = TIM counter stopped
0 = TIM counter active
NOTE:
Do not set the TSTOP bit before entering wait mode if the TIM is required
to exit wait mode.
TRST — TIM Reset Bit
Setting this write-only bit resets the TIM counter and the TIM
prescaler. Setting TRST has no effect on any other registers.
Counting resumes from $0000. TRST is cleared automatically after
the TIM counter is reset and always reads as logic 0. Reset clears the
TRST bit.
1 = Prescaler and TIM counter cleared
0 = No effect
NOTE:
Setting the TSTOP and TRST bits simultaneously stops the TIM counter
at a value of $0000.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Timer Interface Module (TIM)
For More Information On This Product,
Go to: www.freescale.com
209
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
PS[2:0] — Prescaler Select Bits
These read/write bits select one of the seven prescaler outputs as the
input to the TIM counter as Table 11-2 shows. Reset clears the
PS[2:0] bits.
Freescale Semiconductor, Inc...
Table 11-2. Prescaler Selection
PS2
PS1
PS0
TIM Clock Source
0
0
0
Internal bus clock ÷ 1
0
0
1
Internal bus clock ÷ 2
0
1
0
Internal bus clock ÷ 4
0
1
1
Internal bus clock ÷ 8
1
0
0
Internal bus clock ÷ 16
1
0
1
Internal bus clock ÷ 32
1
1
0
Internal bus clock ÷ 64
1
1
1
TCLK
11.10.2 TIM Counter Registers
The two read-only TIM counter registers contain the high and low bytes
of the value in the TIM counter. Reading the high byte (TCNTH) latches
the contents of the low byte (TCNTL) into a buffer. Subsequent reads of
TCNTH do not affect the latched TCNTL value until TCNTL is read.
Reset clears the TIM counter registers. Setting the TIM reset bit (TRST)
also clears the TIM counter registers.
NOTE:
If you read TCNTH during a break interrupt, be sure to unlatch TCNTL
by reading TCNTL before exiting the break interrupt. Otherwise, TCNTL
retains the value latched during the break.
Address: T1CNTH, $0021 and T2CNTH, $002C
Read:
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
0
0
0
0
0
0
0
0
Write:
Reset:
= Unimplemented
Figure 11-5. TIM Counter Registers High (TCNTH)
Data Sheet
210
MC68HC908LJ24/LK24 — Rev. 2
Timer Interface Module (TIM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
I/O Registers
Address: T1CNTL, $0022 and T2CNTL, $002D
Read:
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
Write:
Reset:
= Unimplemented
Freescale Semiconductor, Inc...
Figure 11-6. TIM Counter Registers Low (TCNTL)
11.10.3 TIM Counter Modulo Registers
The read/write TIM modulo registers contain the modulo value for the
TIM counter. When the TIM counter reaches the modulo value, the
overflow flag (TOF) becomes set, and the TIM counter resumes counting
from $0000 at the next timer clock. Writing to the high byte (TMODH)
inhibits the TOF bit and overflow interrupts until the low byte (TMODL) is
written. Reset sets the TIM counter modulo registers.
Address: T1MODH, $0023 and T2MODH, $002E
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
1
1
1
1
1
1
1
1
Read:
Write:
Reset:
Figure 11-7. TIM Counter Modulo Register High (TMODH)
Address: T1MODL, $0024 and T2MODL, $002F
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
1
1
1
1
1
1
1
1
Read:
Write:
Reset:
Figure 11-8. TIM Counter Modulo Register Low (TMODL)
NOTE:
Reset the TIM counter before writing to the TIM counter modulo registers.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Timer Interface Module (TIM)
For More Information On This Product,
Go to: www.freescale.com
211
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
11.10.4 TIM Channel Status and Control Registers
Freescale Semiconductor, Inc...
Each of the TIM channel status and control registers:
•
Flags input captures and output compares
•
Enables input capture and output compare interrupts
•
Selects input capture, output compare, or PWM operation
•
Selects high, low, or toggling output on output compare
•
Selects rising edge, falling edge, or any edge as the active input
capture trigger
•
Selects output toggling on TIM overflow
•
Selects 0% and 100% PWM duty cycle
•
Selects buffered or unbuffered output compare/PWM operation
Address: T1SC0, $0025 and T2SC0, $0030
Bit 7
Read:
CH0F
Write:
0
Reset:
0
6
5
4
3
2
1
Bit 0
CH0IE
MS0B
MS0A
ELS0B
ELS0A
TOV0
CH0MAX
0
0
0
0
0
0
0
Figure 11-9. TIM Channel 0 Status and Control Register (TSC0)
Address: T1SC1, $0028 and T2SC1, $0033
Bit 7
Read:
6
CH1F
5
0
Reset:
0
3
2
1
Bit 0
MS1A
ELS1B
ELS1A
TOV1
CH1MAX
0
0
0
0
0
0
CH1IE
Write:
4
0
0
= Unimplemented
Figure 11-10. TIM Channel 1 Status and Control Register (TSC1)
Data Sheet
212
MC68HC908LJ24/LK24 — Rev. 2
Timer Interface Module (TIM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
I/O Registers
CHxF — Channel x Flag Bit
When channel x is an input capture channel, this read/write bit is set
when an active edge occurs on the channel x pin. When channel x is
an output compare channel, CHxF is set when the value in the TIM
counter registers matches the value in the TIM channel x registers.
Freescale Semiconductor, Inc...
When TIM CPU interrupt requests are enabled (CHxIE = 1), clear
CHxF by reading TIM channel x status and control register with CHxF
set and then writing a logic 0 to CHxF. If another interrupt request
occurs before the clearing sequence is complete, then writing logic 0
to CHxF has no effect. Therefore, an interrupt request cannot be lost
due to inadvertent clearing of CHxF.
Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect.
1 = Input capture or output compare on channel x
0 = No input capture or output compare on channel x
CHxIE — Channel x Interrupt Enable Bit
This read/write bit enables TIM CPU interrupt service requests on
channel x.
Reset clears the CHxIE bit.
1 = Channel x CPU interrupt requests enabled
0 = Channel x CPU interrupt requests disabled
MSxB — Mode Select Bit B
This read/write bit selects buffered output compare/PWM operation.
MSxB exists only in the TIM1 channel 0 and TIM2 channel 0 status
and control registers.
Setting MS0B disables the channel 1 status and control register and
reverts TCH1 to general-purpose I/O.
Reset clears the MSxB bit.
1 = Buffered output compare/PWM operation enabled
0 = Buffered output compare/PWM operation disabled
MSxA — Mode Select Bit A
When ELSxB:ELSxA ≠ 0:0, this read/write bit selects either input
capture operation or unbuffered output compare/PWM operation.
See Table 11-3.
1 = Unbuffered output compare/PWM operation
0 = Input capture operation
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Timer Interface Module (TIM)
For More Information On This Product,
Go to: www.freescale.com
213
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
When ELSxB:ELSxA = 0:0, this read/write bit selects the initial output
level of the TCHx pin. See Table 11-3. Reset clears the MSxA bit.
1 = Initial output level low
0 = Initial output level high
NOTE:
Before changing a channel function by writing to the MSxB or MSxA bit,
set the TSTOP and TRST bits in the TIM status and control register
(TSC).
Freescale Semiconductor, Inc...
ELSxB and ELSxA — Edge/Level Select Bits
When channel x is an input capture channel, these read/write bits
control the active edge-sensing logic on channel x.
When channel x is an output compare channel, ELSxB and ELSxA
control the channel x output behavior when an output compare
occurs.
When ELSxB and ELSxA are both clear, channel x is not connected
to an I/O port, and pin TCHx is available as a general-purpose I/O pin.
Table 11-3 shows how ELSxB and ELSxA work. Reset clears the
ELSxB and ELSxA bits.
Table 11-3. Mode, Edge, and Level Selection
MSxB:MSxA
ELSxB:ELSxA
X0
00
Mode
Configuration
Pin under port control;
initial output level high
Output preset
Data Sheet
214
X1
00
Pin under port control;
initial output level low
00
01
Capture on rising edge only
00
10
00
11
01
01
01
10
01
11
1X
01
1X
10
1X
11
Capture on falling edge only
Input capture
Capture on rising or
falling edge
Toggle output on compare
Output
compare or
PWM
Clear output on compare
Set output on compare
Toggle output on compare
Buffered
output
compare or
buffered PWM
Clear output on compare
Set output on compare
MC68HC908LJ24/LK24 — Rev. 2
Timer Interface Module (TIM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
I/O Registers
NOTE:
Before enabling a TIM channel register for input capture operation, make
sure that the TCHx pin is stable for at least two bus clocks. User software
should also clear CHxF before setting CHxIE to avoid any false
interrupts.
TOVx — Toggle On Overflow Bit
Freescale Semiconductor, Inc...
When channel x is an output compare channel, this read/write bit
controls the behavior of the channel x output when the TIM counter
overflows. When channel x is an input capture channel, TOVx has no
effect. Reset clears the TOVx bit.
1 = Channel x pin toggles on TIM counter overflow
0 = Channel x pin does not toggle on TIM counter overflow
NOTE:
When TOVx is set, a TIM counter overflow takes precedence over a
channel x output compare if both occur at the same time.
CHxMAX — Channel x Maximum Duty Cycle Bit
When the TOVx bit is at logic 1, setting the CHxMAX bit forces the
duty cycle of buffered and unbuffered PWM signals to 100%. As
Figure 11-11 shows, the CHxMAX bit takes effect in the cycle after it
is set or cleared. The output stays at the 100% duty cycle level until
the cycle after CHxMAX is cleared.
OVERFLOW
OVERFLOW
OVERFLOW
OVERFLOW
OVERFLOW
PERIOD
TCHx
OUTPUT
COMPARE
OUTPUT
COMPARE
OUTPUT
COMPARE
OUTPUT
COMPARE
CHxMAX
Figure 11-11. CHxMAX Latency
11.10.5 TIM Channel Registers
These read/write registers contain the captured TIM counter value of the
input capture function or the output compare value of the output
compare function. The state of the TIM channel registers after reset is
unknown.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Timer Interface Module (TIM)
For More Information On This Product,
Go to: www.freescale.com
215
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the
TIM channel x registers (TCHxH) inhibits input captures until the low
byte (TCHxL) is read.
In output compare mode (MSxB:MSxA ≠ 0:0), writing to the high byte of
the TIM channel x registers (TCHxH) inhibits output compares until the
low byte (TCHxL) is written.
Freescale Semiconductor, Inc...
Address: T1CH0H, $0026 and T2CH0H, $0031
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
Read:
Write:
Reset:
Indeterminate after reset
Figure 11-12. TIM Channel 0 Register High (TCH0H)
Address: T1CH0L, $0027 and T2CH0L $0032
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Read:
Write:
Reset:
Indeterminate after reset
Figure 11-13. TIM Channel 0 Register Low (TCH0L)
Address: T1CH1H, $0029 and T2CH1H, $0034
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
Read:
Write:
Reset:
Indeterminate after reset
Figure 11-14. TIM Channel 1 Register High (TCH1H)
Address: T1CH1L, $002A and T2CH1L, $0035
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Read:
Write:
Reset:
Indeterminate after reset
Figure 11-15. TIM Channel 1 Register Low (TCH1L)
Data Sheet
216
MC68HC908LJ24/LK24 — Rev. 2
Timer Interface Module (TIM)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Data Sheet – MC68HC908LJ24
Section 12. Real Time Clock (RTC)
Freescale Semiconductor, Inc...
12.1 Contents
12.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
12.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
12.4
I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
12.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221
12.5.1 Time Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223
12.5.2 Calendar Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223
12.5.3 Alarm Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
12.5.4 Chronograph Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
12.5.5 Timebase Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
12.6
RTC Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
12.7 RTC Clock Calibration and Compensation . . . . . . . . . . . . . . . 225
12.7.1 Calibration Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
12.8
RTC Register and Bit Write Protection . . . . . . . . . . . . . . . . . . 227
12.9 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
12.9.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229
12.9.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230
12.10 RTC Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
12.10.1 RTC Calibration Control Register (RTCCOMR) . . . . . . . . . 231
12.10.2 RTC Calibration Data Register (RTCCDAT) . . . . . . . . . . . 233
12.10.3 RTC Control Register 1 (RTCCR1) . . . . . . . . . . . . . . . . . . 234
12.10.4 RTC Control Register 2 (RTCCR2) . . . . . . . . . . . . . . . . . . 235
12.10.5 RTC Status Register (RTCSR). . . . . . . . . . . . . . . . . . . . . . 237
12.10.6 Alarm Minute and Hour Registers (ALMR and ALHR) . . . . 240
12.10.7 Second Register (SECR) . . . . . . . . . . . . . . . . . . . . . . . . . . 241
12.10.8 Minute Register (MINR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
12.10.9 Hour Register (HRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Real Time Clock (RTC)
For More Information On This Product,
Go to: www.freescale.com
217
Freescale Semiconductor, Inc.
Real Time Clock (RTC)
12.10.10
12.10.11
12.10.12
12.10.13
12.10.14
Day Register (DAYR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Month Register (MTHR) . . . . . . . . . . . . . . . . . . . . . . . . . . .243
Year Register (YRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Day-Of-Week Register (DOWR) . . . . . . . . . . . . . . . . . . . . 244
Chronograph Data Register (CHRR) . . . . . . . . . . . . . . . . . 244
Freescale Semiconductor, Inc...
12.2 Introduction
This section describes the real time clock (RTC) module. The RTC
provides real time clock and calendar functions with automatic leap year
adjustments. Other functions include alarm interrupt, periodic interrupts,
and a chronograph timer.
NOTE:
This module is designed for a 32.768-kHz oscillator.
12.3 Features
Features of the RTC module include:
•
32.768kHz clock input with frequency compensation
•
Counter registers for:
– Second
– Minute
– Hour
– Day
– Day-of-week
– Month
– Year
Data Sheet
218
•
Day counter with automatic month and leap year adjustment
•
1/100 seconds chronograph counter
•
Seven periodic interrupts
•
Alarm interrupt
MC68HC908LJ24/LK24 — Rev. 2
Real Time Clock (RTC)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Real Time Clock (RTC)
I/O Pins
12.4 I/O Pins
Two RTC clock calibration pins are shared with standard port I/O pins.
Freescale Semiconductor, Inc...
Table 12-1. Pin Name Conventions
RTC
Generic Pin Name
Full MCU Pin Name
Pin Selected for RTC Function by
Bits in RTCCOMR ($0040)
CALIN
PTD0/SS/CALIN
AUTOCAL
CALOUT
PTD3/SPSCK/CALOUT (1)
OUTF[1:0}
Notes:
1. Do not enable the SPI function if the pin is used for RTC calibration.
Addr.
$0040
$0041
$0042
$0043
$0044
$0045
Register Name
Read:
RTC Calibration Control
Register Write:
(RTCCOMR)
Reset:
Read:
RTC Calibration Data
Register Write:
(RTCCDAT)
Reset:
Read:
RTC Control Register 1
Write:
(RTCCR1)
Reset:
Bit 7
6
5
4
3
2
0
0
R
R
0
0
EOVL
0
U
CAL
AUTOCAL
OUTF1
OUTF0
0
0
0
0
0
0
E5
E4
E3
E2
E1
E0
0
U
U
U
U
U
U
ALMIE
CHRIE
DAYIE
HRIE
MINIE
SECIE
TB1IE
TB2IE
0
0
0
0
0
0
0
0
CHRE
RTCE
TBH
0
0
0
0
0
0††
0
0
0
0
Read:
COMEN
RTC Control Register 2
Write:
(RTCCR2)
Reset:
U
0
CHRCLR
1
Bit 0
0
0
RTCWE1 RTCWE0
Read:
RTC Status Register
Write:
(RTCSR)
Reset:
ALMF
CHRF
DAYF
HRF
MINF
SECF
TB1F
TB2F
0
0
0
0
0
0
0
0
Read:
Alarm Minute Register
Write:
(ALMR)
Reset:
0
0
AM5
AM4
AM3
AM2
AM1
AM0
0
0
U
U
U
U
U
U
= Unimplemented
R
†† Reset by POR only.
U = Unaffected
= Reserved
Figure 12-1. RTC I/O Register Summary
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Real Time Clock (RTC)
For More Information On This Product,
Go to: www.freescale.com
219
Freescale Semiconductor, Inc.
Real Time Clock (RTC)
0
0
0
0
Read:
Second Register
Write:
(SECR)
Reset:
0
0
0
0
Read:
Minute Register
Write:
(MINR)
Reset:
0
0
0
Read:
Hour Register
Write:
(HRR)
Reset:
AH3
AH2
AH1
AH0
0
U
U
U
U
U
SEC5
SEC4
SEC3
SEC2
SEC1
SEC0
U
U
U
U
U
U
MIN5
MIN4
MIN3
MIN2
MIN1
MIN0
0
U
U
U
U
U
U
0
0
0
HR4
HR3
HR2
HR1
HR0
0
0
0
U
U
U
U
U
Read:
Day Register
Write:
(DAYR)
Reset:
0
0
0
DAY4
DAY3
DAY2
DAY1
DAY0
0
0
0
U
U
U
U
U
Read:
Month Register
Write:
(MTHR)
Reset:
0
0
0
0
MTH3
MTH2
MTH1
MTH0
0
0
0
0
U
U
U
U
YR7
YR6
YR5
YR4
YR3
YR2
YR1
YR0
U
U
U
U
U
U
U
U
Read:
Day-Of-Week Register
Write:
(DOWR)
Reset:
0
0
0
0
0
DOW2
DOW1
DOW0
0
0
0
0
0
U
U
U
Read:
Chronograph Data
Register Write:
(CHRR)
Reset:
0
CHR6
CHR5
CHR4
CHR3
CHR2
CHR1
CHR0
0
0
0
0
0
0
0
0
= Unimplemented
R
$0047
$0048
Freescale Semiconductor, Inc...
0
AH4
$0046
$0049
$004A
$004B
Read:
Year Register
Write:
(YRR)
Reset:
$004C
$004D
Read:
Alarm Hour Register
Write:
(ALHR)
Reset:
$004E
U = Unaffected
= Reserved
Figure 12-1. RTC I/O Register Summary
Data Sheet
220
MC68HC908LJ24/LK24 — Rev. 2
Real Time Clock (RTC)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Real Time Clock (RTC)
Functional Description
12.5 Functional Description
The RTC module provides clock indications in seconds, minutes, and
hours; calendar indications in day-of-week, day-of-month, month, and
year; with automatic adjustment for month and leap year. Reading the
clock and calendar registers return the current time and date. Writing to
these registers set the time and date, and the counters will continue to
count from the new settings.
Freescale Semiconductor, Inc...
The alarm interrupt is set for the hour and minute. When the hour and
minute counters matches the time set in the alarm hour and minute
registers, the alarm flag is set. The alarm can be configured to generate
a CPU interrupt request.
A 1/100 seconds chronograph counter is provided for timing
applications. This counter can be independently enabled or disabled,
and cleared at any time.
RTC module interrupts include the alarm interrupt and seven periodic
interrupts from the clock and chronograph counters.
A frequency compensation mechanism is built into this RTC module to
allow adjustments made to the RTC clock when a less accurate
32.768kHz crystal is used.
The 1-Hz clock that drives the clock and calendar could make use of the
built-in compensation mechanism for crystal frequency error
compensation so that the 1-Hz clock could be made more accurate than
the frequency accuracy of the crystal that drive the module. The
compensation value can be provided by application software or acquire
automatically during calibration operation of the module.
Figure 12-2 shows the structure of the RTC module.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Real Time Clock (RTC)
For More Information On This Product,
Go to: www.freescale.com
221
Freescale Semiconductor, Inc.
Real Time Clock (RTC)
CALOUT
CALIN
1Hz
CLOCK CALIBRATION
AND
REFERENCE
1Hz
TBH = 0 => X,Y = A
TBH = 1 => X,Y = B
TBH
COMPENSATION CIRCUIT
TO CLOCK
COUNTERS
SL
CGMXCLK
(32.768kHz)
÷ 256
÷2
÷2
÷2
÷2
÷2
÷2
2Hz
XA
4Hz
8Hz
XB
16Hz
TB1F
TB1IE
Y
TB2F
YB
TB2IE
128 Hz
×
25 16
+
32 32
1/100 SECONDS
CHRF
CHRIE
CHRONOGRAPH COUNTER
CHRE
CHRCLR
FROM CLOCK
COMPENSATION CIRCUIT
1Hz
CHRONOGRAPH DATA REGISTER
SECF
SECIE
SECOND COUNTER REGISTER
ALARM MINUTE REGISTER
INTERRUPT
LOGIC
MINF
MINIE
COMPARATOR
MINUTE COUNTER REGISTER
INTERNAL BUS
Freescale Semiconductor, Inc...
X
YA
HRF
ALARM HOUR REGISTER
HRIE
COMPARATOR
ALMF
ALMIE
HOUR COUNTER REGISTER
DAYF
DAY-OF-WEEK COUNTER REGISTER
DAYIE
DAY COUNTER REGISTER
MONTH COUNTER REGISTER
YEAR COUNTER REGISTER
Figure 12-2. RTC Block Diagram
Data Sheet
222
MC68HC908LJ24/LK24 — Rev. 2
Real Time Clock (RTC)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Real Time Clock (RTC)
Functional Description
12.5.1 Time Functions
Freescale Semiconductor, Inc...
Real time clock functions are provided by the second, minute, and hour
counter registers. All three clock counters are able to generate interrupts
on every counter increment, providing periodic interrupts for the second
(SECF), minute (MINF), and hour (HRF). A CPU interrupt request is
generated if the corresponding enable bit (SECIE, MINIE, and HRIE) is
also set.
12.5.2 Calendar Functions
Calendar functions are provided by the day, day-of-week, month, and
year counter registers. The roll over of the day counter is automatically
adjusted for the month and leap years. The setting for the year counter
ranges from 1901 to 2099.
The day flag (DAYF) is set on every increment of the day counter. A CPU
interrupt request is generated if the day interrupt enable bit (DAYIE) is
also set.
12.5.3 Alarm Functions
An alarm function is provided for the minute and hour counters. When
minute counter matches the value stored in the alarm minute register,
and the hour counter matches the value stored in the alarm hour register,
the alarm flag (ALMF) will be set. A CPU interrupt request is generated
if the alarm interrupt enable bit (ALMIE) is also set.
12.5.4 Chronograph Functions
The chronograph function is provided by a counter clocked at 128Hz
(CGMXCLK/256). This counter can be started, stopped, and cleared at
any time. The value of this chronograph counter is converted to 100Hz
resolution and stored in the chronograph data register. Hence, the value
in the chronograph register counts from 0 to 99 (and rolls over), with
each increment representing 1/100th of a second (10ms).
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Real Time Clock (RTC)
For More Information On This Product,
Go to: www.freescale.com
223
Freescale Semiconductor, Inc.
Real Time Clock (RTC)
The value in the chronograph data register satisfies the following
equation:
(128Hz
counter value × 25) + 16------------------------------------------------------------------------------------32
The accuracy of the chronograph counter is ±5ms (max).
Freescale Semiconductor, Inc...
12.5.5 Timebase Interrupts
In addition to the second, minute, hour, and day periodic interrupts
generated by the clock functions, the divider circuits generates four
periodic clocks, separated into two groups: 2Hz and 4Hz; 8Hz and
16Hz. The TBH bit in the RTC control register 2 (RTCCR2) selects the
group for the timebase interrupts, indicated by TB1F and TB2F flags. A
CPU interrupt request is generated if the corresponding enable bits
(TB1IE and TB2IE) are also set.
12.6 RTC Interrupts
The RTC has one alarm interrupt and seven periodic interrupts:
•
Alarm interrupt
•
Periodic interrupts:
– Second
– Minute
– Hour
– Day
– 1/128 seconds (chronograph)
– Timebase 1 and 2:
1/2 seconds and 1/4 seconds, or
1/8 seconds and 1/16 seconds
A CPU interrupt request is generated if the corresponding interrupt
enable bits are also set.
Data Sheet
224
MC68HC908LJ24/LK24 — Rev. 2
Real Time Clock (RTC)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Real Time Clock (RTC)
RTC Clock Calibration and Compensation
12.7 RTC Clock Calibration and Compensation
Freescale Semiconductor, Inc...
The RTC module is built with a calibration and compensation circuit for
the CGMXCLK. The circuit is used to compensate frequency errors of
the 32.768kHz crystal so that a more accurate 1-Hz RTC clock can be
achieved. Using this method, it is possible to use a less expensive
crystal. If the crystal temperature profile and the current temperature is
known, the calibration circuit can also be used to compensate crystal
frequency errors due to ambient temperature change and crystal aging.
The circuit provides a ±60ppm compensation range, which is suitable for
common 30ppm crystals, and can achieve a compensated RTC clock
accuracy between –3ppm and +2ppm.
CALIN
1-Hz REF
÷ 30
EVOL
tdiff
CGMXCLK
(32.768-kHz)
÷ 983040
E-REGISTER
÷ 32766
÷ 32767
1-Hz FROM
CGMXCLK ÷ 32768
1-Hz
RTC CLOCK
A
÷ 32768
÷ 32769
÷ 32770
COMPENSATED
1-Hz
B1
S
COMEN
Figure 12-3. RTC Clock Calibration and Compensation
The automatic calibration process works by comparing an external 1-Hz
(1ppm) signal driven into the CALIN pin, with the CGMXCLK signal
driven by the 32.768kHz crystal. The calibration is started by setting the
CAL bit followed by the AUTOCAL bit in the RTC calibration register
(RTCCOMR). During calibration, the tdiff block compares the time
difference between the two clock sources for 15 seconds. This time
difference is expressed in the number of CGMXCLK clock cycles and
stored in two’s complement format in the 6-bit E-register (the RTC
calibration data register, RTCCDAT).
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Real Time Clock (RTC)
For More Information On This Product,
Go to: www.freescale.com
225
Freescale Semiconductor, Inc.
Real Time Clock (RTC)
A negative E-value indicates the number of CGMXCLK cycles that
needs to be subtracted, because the CGMXCLK is slower than the ideal
32.768kHz; 32768 CGMXCLK cycles will be more longer than 1-second.
Freescale Semiconductor, Inc...
A positive E-value indicates the number of CGMXCLK cycles that needs
to be added, because the CGMXCLK is faster than the ideal 32.768kHz;
32768 CGMXCLK cycles will be more shorter than 1-second.
If the time difference is more than 31 CGMXCLK cycles, the E-register
will overflow, causing the EVOL flag to be set. The maximum (+30) or
minimum (–30) value will remain in the E-register.
After calibration, with the E-value stored in the calibration data register,
clock compensation is only enabled when the COMEN bit is set in
RTCCR2. As the E-value is the time difference for 15 seconds, the
CGMXCLK is modified for every 15-second intervals. The CGMXCLK
additions and subtractions are simulated using programmable dividers,
therefore, the compensated clock does not have the same period within
the 15-second, but is consistent for every 15-second periods. See Table
12-2 and Figure 12-4.
12.7.1 Calibration Error
During clock calibration, the reference signal to the CALIN pin is not
synchronized to the CGMXCLK being measured. A maximum
inaccuracy of minus 1.5×CGMXCLK period or plus 1×CGMXCLK period
will be introduced to the time difference measured.
Table 12-2. Compensation Algorithm for Different Values of E
Period A
E
Number of
CGMXCLK Cycles
CGMXCLK
Divider A
Number of
CGMXCLK Cycles
CGMXCLK
Divider B
–30 ≤ E ≤ –16
(|E| – 15) × 32766
32766
(30 – |E|) × 32767
32767
–15 ≤ E ≤ –1
|E| × 32767
32767
(15 – |E|) × 32768
32768
E =0
No compensation is required: Divider is 32768 throughout.
1 ≤ E ≤ 15
|E| × 32769
32769
(15 – |E|) × 32768
32769
16 ≤ E ≤ 30
(|E| – 15) × 32770
32770
(30 – |E|) × 32769
32769
Data Sheet
226
Period B
MC68HC908LJ24/LK24 — Rev. 2
Real Time Clock (RTC)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Real Time Clock (RTC)
RTC Register and Bit Write Protection
TRUE 15 SECONDS
CGMXCLK
UNCOMPENSATED
1-Hz CLOCK
(CGMXCLK ÷ 32768)
Freescale Semiconductor, Inc...
COMPENSATED
1-Hz CLOCK
PERIOD A
PERIOD B
1-Hz CLOCK = CGMXCLK ÷ A
1-Hz CLOCK = CGMXCLK ÷ B
Figure 12-4. 1-Hz Clock Compensation
12.8 RTC Register and Bit Write Protection
A write-protect mechanism is implemented to prevent accidental writes
to the RTC clock registers, calendar registers, and other control bits. The
protected RTC registers and bits are listed in Table 12-3.
Table 12-3. Write-Protected RTC Registers and Bits
Register
Bit
CAL
RTC Control Register 1
AUTOCAL
OUTF[1:0]
COMEN
RTC Control Register 2
RTCE
Second Register
(All Bits)
Minute Register
(All Bits)
Hour Register
(All Bits)
Day-Of-Week Register
(All Bits)
Day Register
(All Bits)
Month Register
(All Bits)
Year Register
(All Bits)
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Real Time Clock (RTC)
For More Information On This Product,
Go to: www.freescale.com
227
Freescale Semiconductor, Inc.
Real Time Clock (RTC)
The mechanism uses the RTCWE[1:0] bits in the RTC calibration control
register (RTCCOMR) in a state machine, which requires a bit-write
sequence to disable the write-protection. A block diagram of the state
machine is shown in Figure 12-5.
RESET
Write-Protect ENABLED
Write-Protect
DISABLED
to RTCW
E
10
to
Freescale Semiconductor, Inc...
Write 10
r i te
W
Write any value
other than 10
to RTWE
E
CW
RT
than 1
e other
ny valu
Write a
RTCWE = 10
CWE
0 to RT
RTCWE
Write 11 to
Note: Reading RTCWE[1:0]
always return 00.
RTCWE = 00
Write
any
va
lue o
te
Wri
Write any value
other than 00
to RTWE
ther
than
11
to R
T
o
00 t
C WE
WE
RTC
r
othe
alue
ny v TCWE
R
te a
Wr i 0 1 t o
than
RTCWE = 11
E
CW
RT
o
t
01
ite
Wr
RTCWE 01
Figure 12-5. RTC Write Protect State Diagram
After a reset, the write-protect mechanism is disabled, allowing the user
code to calibrate the RTC clock, set the time in the clock registers, and
set the date in the calendar registers.
To enable write-protect after reset or write-protect is disabled execute
the following code:
RTCWE1 EQU
RTCWE0 EQU
Data Sheet
228
1
0
;RTCWE1 bit
;RTCWE0 bit
MC68HC908LJ24/LK24 — Rev. 2
Real Time Clock (RTC)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Real Time Clock (RTC)
Low-Power Modes
RTCWE_R EQU
$40
...
RTC_WRTIE_PROTECT
;RTCCOMR register
BSET
BSET
RTCWE1,RTCWE_R ;write %10
RTCWE1,RTCWE_R ;write %10 again
...
Freescale Semiconductor, Inc...
To disable write-protect after write-protect is enabled execute the
following code:
RTCWE1 EQU
1
RTCWE0 EQU
0
RTCWE_R EQU
$40
...
RTC_WRITE_ENABLE
;RTCWE1 bit
;RTCWE0 bit
;RTCCOMR register
BSET
BSET
RTCWE1,RTCWE_R ;write %10 twice to
RTCWE1,RTCWE_R ;ensure protected
BCLR
BSET
LDA
ORA
STA
BSET
RTCWE1,RTCWE_R
RTCWE0,RTCWE_R
RTCWE_R
#%00000011
RTCWE_R
RTCWE1,RTCWE_R
...
;write %00
;write %01
;write %11
;write %10
...
; Write-protect is disabled, RTC registers/bits can be written.
...
; Protect register/bits again after write access.
RTC_WRTIE_PROTECT
BSET RTCWE1,RTCWE_R ;write %10
BSET RTCWE1,RTCWE_R ;write %10 again
...
12.9 Low-Power Modes
The STOP and WAIT instructions put the MCU in low powerconsumption standby modes.
12.9.1 Wait Mode
The RTC module continues normal operation in wait mode. Any enabled
CPU interrupt request from the RTC can bring the MCU out of wait
mode. If the RTC is not required to bring the MCU out of wait mode,
power down the RTC by clearing the RTCE bit before executing the
WAIT instruction.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Real Time Clock (RTC)
For More Information On This Product,
Go to: www.freescale.com
229
Freescale Semiconductor, Inc.
Real Time Clock (RTC)
12.9.2 Stop Mode
Freescale Semiconductor, Inc...
For continuous RTC operation in stop mode, the oscillator stop mode
enable bit (STOP_XCLKEN in CONFIG2 register) must be set before
executing the STOP instruction. When STOP_XCLKEN is set,
CGMXCLK continues to drive the RTC module, and any enabled CPU
interrupt request from the RTC can bring the MCU out of stop mode.
If STOP_XCLKEN bit is cleared, the RTC module is inactive after the
execution of a STOP instruction. The STOP instruction does not affect
RTC register states. RTC module operation resumes after an external
interrupt. To further reduce power consumption, the RTC module should
be powered-down by clearing the RTCE bit before executing the STOP
instruction.
12.10 RTC Registers
The RTC module has fifteen memory-mapped registers:
Data Sheet
230
•
RTC calibration control register (RTCCOMR)
•
RTC calibration data register (RTCCDAT)
•
RTC control register 1 (RTCCR1)
•
RTC control register 2 (RTCCR2)
•
RTC status register (RTCSR)
•
Alarm minute and hour registers (ALMR and ALHR)
•
Second register (SECR)
•
Minute register (MINR)
•
Hour register (HRR)
•
Day register (DAY)
•
Month register (MTHR)
•
Year register (YRR)
•
Day of the week register (DOWR)
•
Chronograph data register (CHRR)
MC68HC908LJ24/LK24 — Rev. 2
Real Time Clock (RTC)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Real Time Clock (RTC)
RTC Registers
12.10.1 RTC Calibration Control Register (RTCCOMR)
The RTC calibration control register (RTCCOMR) contains control bits
for RTC calibration, output option for the CALOUT pin, and registers/bits
write-protect enable.
Address:
Read:
$0040
0
0
0
Freescale Semiconductor, Inc...
CAL*
Write:
R
R
Reset:
0
0
AUTOCAL*
OUTF1*
0
OUTF0*
RTCWE1 RTCWE0
0
0
0
0
0
0
* CAL, AUTOCAL, and OUTF{1:0] bits are write-protected; unprotect by a write sequence to RTCWE[1:0].
Figure 12-6. RTC Calibration Control Register (RTCCOMR)
CAL — RTC Calibration Mode
This read/write bit enables the RTC calibration circuit. The CAL bit is
cleared automatically after completion of automatic calibration if
AUTOCAL is also set when CAL bit is set.
1 = RTC calibration mode enabled
0 = RTC calibration mode disabled
AUTOCAL — RTC Automatic Calibration Enable
This read/write bit enables the CALIN pin to accept an incoming
1-Hz signal and calibration circuits for RTC automatic calibration. This
bit can only be set when the CAL bit is set. After calibration (approx.
15 seconds), the AUTOCAL bit is automatically cleared.
1 = RTC automatic calibration enabled
0 = RTC automatic calibration disabled
NOTE:
RTC clock and calendar functions are not affected when calibration is
enabled.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Real Time Clock (RTC)
For More Information On This Product,
Go to: www.freescale.com
231
Freescale Semiconductor, Inc.
Real Time Clock (RTC)
OUTF[1:0] — Calibration Mode CALOUT Pin Output Selection
These two bits select the output option for the CALOUT pin.
When CAL = 0, OUTF[1:0] is always 00.
Table 12-4. CALOUT Pin Output Option
Freescale Semiconductor, Inc...
OUTF[1:0]
CALOUT Pin Output
00
CALOUT pin is disconnected.
01
CALOUT pin outputs compensated 1-Hz.
10
CALOUT pin outputs CGMXCLK clock.
11
Reserved
RTCWE[1:0] — RTC Module Write Enable
These two write-only bits control the write-protect function of several
RTC registers and bits. After a reset, write-protect is disabled,
allowing full write access to RTC registers and bits. These two bits
always read as 0.
To enable write-protect, perform the following sequence:
1. Write %10 to RTCWE[1:0] bits
2. Write %10 to RTCWE[1:0] bits
To disable write-protect, perform the following sequence:
1. Write %00 to RTCWE[1:0] bits
2. Write %01 to RTCWE[1:0] bits
3. Write %11 to RTCWE[1:0] bits
4. Write %10 to RTCWE[1:0] bits
To disable write-protect from an unsure protection state, first perform
the enable write-protect sequence, followed by the disable writeprotect sequence.
Data Sheet
232
MC68HC908LJ24/LK24 — Rev. 2
Real Time Clock (RTC)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Real Time Clock (RTC)
RTC Registers
12.10.2 RTC Calibration Data Register (RTCCDAT)
The RTC calibration data register (RTCCDAT) contains the RTC
calibration data.
Address:
$0041
Read:
EOVL
0
E5
E4
E3
E2
E1
E0
U
U
U
U
U
U
Write:
Reset:
U
0
Freescale Semiconductor, Inc...
Figure 12-7. RTC Calibration Data Register (RTCCDAT)
EOVL — E Register Overflow
This read-only bit indicates that the time difference recorded between
CALIN and CGMXCLK after 15 seconds during the last automatic
calibration had exceeded 31 CGMXCLK cycles. Clear this flag by
writing to the E register after the CAL bit is set. Setting the AUTOCAL
bit will also clear this flag, but subsequent automatic calibration may
set this flag again.
1 = E register overflow detected during the last automatic
calibration
0 = No E register overflow detected during last automatic
calibration
E[5:0] — RTC Compensation Value (E register)
E[5:0] is a two’s complement number which indicates the number of
CGMXCLK cycles the RTC requires to compensate for a 15 second
duration. If the compensation exceeds the limit of ±31 CGMXCLK
cycles, the E[5:0] bits remain at the maximum value of –30 (%100010)
or +30 (%011110), and the EOVL flag will be set.
When compensation is enabled (COMEN = 1): If E is negative, an E
number of cycles will be subtracted from the 491520 CGMXCLK
cycles (32768 × 15).
When compensation is enabled (COMEN = 1): If E is positive, an E
number of cycles will be added to the 491520 CGMXCLK cycles
(32768 × 15).
E[5:0] is written by the RTC compensation circuit during automatic
calibration (AUTOCAL = 1). User can only write to E{5:0] when
AUTOCAL = 0 and CAL = 1. Reset has no effect on E[1:0] bits.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Real Time Clock (RTC)
For More Information On This Product,
Go to: www.freescale.com
233
Freescale Semiconductor, Inc.
Real Time Clock (RTC)
12.10.3 RTC Control Register 1 (RTCCR1)
The RTC control register 1 (RTCCR1) contains the eight interrupt enable
bits for RTC interrupt functions.
Address:
$0042
Read:
ALMIE
CHRIE
DAYIE
HRIE
MINIE
SECIE
TB1IE
TB2IE
0
0
0
0
0
0
0
0
Write:
Reset:
Freescale Semiconductor, Inc...
Figure 12-8. RTC Control Register 1 (RTCCR1)
ALMIE — Alarm Interrupt Enable
This read/write bit enables the alarm flag, ALMF, to generate CPU
interrupt requests. Reset clears the ALMIE bit.
1 = ALMF enabled to generate CPU interrupt
0 = ALMF not enabled to generate CPU interrupt
CHRIE — Chronograph Interrupt Enable
This read/write bit enables the chronograph flag, CHRF, to generate
CPU interrupt requests. Reset clears the CHRIE bit.
1 = CHRF enabled to generate CPU interrupt
0 = CHRF not enabled to generate CPU interrupt
DAYIE — Day Interrupt Enable
This read/write bit enables the day flag, DAYF, to generate CPU
interrupt requests. Reset clears the DAYIE bit.
1 = DAYF enabled to generate CPU interrupt
0 = DAYF not enabled to generate CPU interrupt
HRIE — Hour Interrupt Enable
This read/write bit enables the hour flag, HRF, to generate CPU
interrupt requests. Reset clears the HRIE bit.
1 = HRF enabled to generate CPU interrupt
0 = HRF not enabled to generate CPU interrupt
MINIE — Minute Interrupt Enable
This read/write bit enables the minute flag, MINF, to generate CPU
interrupt requests. Reset clears the MINIE bit.
1 = MINF enabled to generate CPU interrupt
0 = MINF not enabled to generate CPU interrupt
Data Sheet
234
MC68HC908LJ24/LK24 — Rev. 2
Real Time Clock (RTC)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Real Time Clock (RTC)
RTC Registers
SECIE — Second Interrupt Enable
This read/write bit enables the second flag, SECF, to generate CPU
interrupt requests. Reset clears the SECIE bit.
1 = SECF enabled to generate CPU interrupt
0 = SECF not enabled to generate CPU interrupt
Freescale Semiconductor, Inc...
TB1IE — Timebase 1 Interrupt Enable
This read/write bit enables the timebase1 flag, TB1F, to generate
CPU interrupt requests. Reset clears the TB1IE bit.
1 = TB1F enabled to generate CPU interrupt
0 = TB1F not enabled to generate CPU interrupt
TB2IE — Timebase 2 Interrupt Enable
This read/write bit enables the timebase2 flag, TB2F, to generate
CPU interrupt requests. Reset clears the TB2IE bit.
1 = TB2F enabled to generate CPU interrupt
0 = TB2F not enabled to generate CPU interrupt
12.10.4 RTC Control Register 2 (RTCCR2)
The RTC control register 2 (RTCCR2) contains control and clock
selection bits for RTC operation.
Address:
$0043
Read:
0
COMEN*
Write:
Reset:
CHRE
RTCE*
TBH
0
0††
0
0
0
0
0
0
0
CHRCLR
U
0
= Unimplemented
†† Reset by POR only.
* COMEN and RTCE bits are write-protected; unprotect by a write sequence to RTCWE[1:0] in RTCCOMR.
Figure 12-9. RTC Control Register 2 (RTCCR2)
COMEN — RTC Compensation Enable
This read/write bit enables the clock compensation mechanism for
CGMXCLK frequency errors. Reset has no effect on COMEN bit.
1 = Compensation mechanism enabled
0 = Compensation mechanism not enabled
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Real Time Clock (RTC)
For More Information On This Product,
Go to: www.freescale.com
235
Freescale Semiconductor, Inc.
Real Time Clock (RTC)
NOTE:
With compensation enabled, the RTC clock and calendar register
updates may not be synchronized to the timebase and chronograph
clocks, since their clocks are derived from the uncompensated
CGMXCLK.
Hence, time intervals for timebase ticks may not align with the RTC clock
and calendar register updates.
CHRCLR — Chronograph counter clear
Freescale Semiconductor, Inc...
Setting this write-only bit resets the chronograph counter and the
chronograph data register (CHRR). Setting CHRCLR has no effect on
any other registers. Counting resumes from $00. CHRCLR is cleared
automatically after the chronograph counter is reset and always reads
as logic 0. Reset clears the CHRCLR bit.
1 = Chronograph counter cleared
0 = No effect
CHRE — Chronograph Enable
This read/write bit enables the chronograph counter. When the
chronograph counter is disabled (CHRE = 0), the value in the
chronograph data register is held at the count value. Reset clears the
CHRE bit.
1 = Chronograph counter enabled
0 = Chronograph counter disabled
RTCE — Real Time Clock Enable
This read/write bit enables the entire RTC module, allowing all RTC
and chronograph operations. Disabling the RTC module does not
affect the contents in the RTC registers. Reset clears the RTCE bit.
1 = RTC module enabled
0 = RTC module disabled
TBH — Timebase High Frequency Select
This read/write bit selects the timebase interrupt period for TB1 and
TB2. Reset clears the TBH bit.
1 = TB1 interrupt is 0.125s; TB2 interrupt is 0.0625s
0 = TB1 interrupt is 0.5s; TB2 interrupt is 0.25s
Data Sheet
236
MC68HC908LJ24/LK24 — Rev. 2
Real Time Clock (RTC)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Real Time Clock (RTC)
RTC Registers
12.10.5 RTC Status Register (RTCSR)
The RTC status register contains eight status flags. When a flag is set
and the corresponding interrupt enable bit is also set, a CPU interrupt
request is generated.
Address:
$0044
Read:
ALMF
CHRF
DAYF
HRF
MINF
SECF
TB1F
TB2F
0
0
0
0
0
0
0
0
Write:
Freescale Semiconductor, Inc...
Reset:
= Unimplemented
Figure 12-10. RTC Status Register (RTCSR)
ALMF — Alarm Flag
This clearable, read-only bit is set when the value in the RTC hour and
minute counters matches the value in the alarm hour and alarm
minute registers. When the ALMIE bit in RTCCR1 is set, ALMF
generates a CPU interrupt request. In normal operation, clear the
ALMF bit by reading RTCSR with ALMF set and then reading the
alarm hour register (ALHR). Reset clears ALMF.
1 = RTC hour and minute counters matches the
alarm hour and minute registers
0 = No matching between hour and minute counters and alarm
hour and minute registers
CHRF — Chronograph Flag
This clearable, read-only bit is set on every tick of the chronograph
counter (every counter count). The tick is on every 1/128 seconds
(see 12.5.4 Chronograph Functions). When the CHRIE bit in
RTCCR1 is set, CHRF generates a CPU interrupt request. In normal
operation, clear the CHRF bit by reading RTCSR with CHRF set and
then reading the chronograph data register (CHRR). Reset clears
CHRF.
1 = A chronograph counter tick has occurred
0 = No chronograph counter tick has occurred
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Real Time Clock (RTC)
For More Information On This Product,
Go to: www.freescale.com
237
Freescale Semiconductor, Inc.
Real Time Clock (RTC)
DAYF — Day Flag
This clearable, read-only bit is set on every increment of the day
counter. When the DAYIE bit in RTCCR1 is set, DAYF generates a
CPU interrupt request. In normal operation, clear the DAYF bit by
reading RTCSR with DAYF set and then reading the day register
(DAYR). Reset clears DAYF.
1 = Day counter incremented
0 = No day counter incremented
Freescale Semiconductor, Inc...
HRF — Hour Flag
This clearable, read-only bit is set on every increment of the hour
counter. When the HRIE bit in RTCCR1 is set, HRF generates a CPU
interrupt request. In normal operation, clear the HRF bit by reading
RTCSR with HRF set and then reading the hour register (HRR). Reset
clears HRF.
1 = Hour counter incremented
0 = No hour counter incremented
MINF — Minute Flag
This clearable, read-only bit is set on every increment of the minute
counter. When the MINIE bit in RTCCR1 is set, MINF generates a
CPU interrupt request. In normal operation, clear the MINF bit by
reading RTCSR with MINF set and then reading the minute register
(MINR). Reset clears MINF.
1 = Minute counter incremented
0 = No minute counter incremented
SECF — Second Flag
This clearable, read-only bit is set on every increment of the second
counter. When the SECIE bit in RTCCR1 is set, SECF generates a
CPU interrupt request. In normal operation, clear the SECF bit by
reading RTCSR with SECF set and then reading the second register
(SECR). Reset clears SECF.
1 = Second counter incremented
0 = No second counter incremented
Data Sheet
238
MC68HC908LJ24/LK24 — Rev. 2
Real Time Clock (RTC)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Real Time Clock (RTC)
RTC Registers
TB1F — Timebase 1 Flag
This clearable, read-only bit is set on every tick of the timebase 1
counter (every 0.5 or 0.125 seconds). When the TB1IE bit in RTCCR1
is set, TB1F generates a CPU interrupt request. In normal operation,
clear the TB1F bit by reading RTCSR with TB1F set and then reading
the chronograph data register (CHRR). Reset clears TB1F.
1 = A timebase 1 tick has occurred
0 = No timebase 1 tick has occurred
Freescale Semiconductor, Inc...
NOTE:
Timebase 1 is not synchronized to the compensated RTC 1-Hz clock.
Hence, time intervals for timebase ticks may not align with the RTC clock
and calendar register updates.
TB2F — Timebase 2 Flag
This clearable, read-only bit is set on every tick of the timebase 2
counter (every 0.25 or 0.0625 seconds). When the TB2IE bit in
RTCCR1 is set, TB2F generates a CPU interrupt request. In normal
operation, clear the TB2F bit by reading RTCSR with TB2F set and
then reading the chronograph register (CHRR). Reset clears TB2F.
1 = A timebase 2 tick has occurred
0 = No timebase 2 tick has occurred
NOTE:
Timebase 2 is not synchronized to the compensated RTC 1-Hz clock.
Hence, time intervals for timebase ticks may not align with the RTC clock
and calendar register updates.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Real Time Clock (RTC)
For More Information On This Product,
Go to: www.freescale.com
239
Freescale Semiconductor, Inc.
Real Time Clock (RTC)
12.10.6 Alarm Minute and Hour Registers (ALMR and ALHR)
These read/write registers contain the alarm minute and hour values for
the hour and minute alarm function. When the hour counter matches the
value in the alarm hour register (ALHR) and the minute counter matches
the value in the alarm minute register (ALMR), the alarm flag, ALMF, is
set. When ALMF is set and the alarm interrupt enable bit, ALMIE, is also
set, a CPU interrupt request is generated.
Freescale Semiconductor, Inc...
Address:
Read:
$0045
0
0
AM5
AM4
AM3
AM2
AM1
AM0
U
U
U
U
U
U
Write:
Reset:
0
0
= Unimplemented
Figure 12-11. Alarm Minute Register (ALMR)
NOTE:
Writing values other than 0 to 59, to ALMR is possible, but the alarm flag
will never be set.
Address:
Read:
$0046
0
0
0
AH4
AH3
AH2
AH1
AH0
U
U
U
U
U
Write:
Reset:
0
0
0
= Unimplemented
Figure 12-12. Alarm Hour Register (ALHR)
NOTE:
Data Sheet
240
Writing values other than 0 to 23, to ALHR is possible, but the alarm flag
will never be set.
MC68HC908LJ24/LK24 — Rev. 2
Real Time Clock (RTC)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Real Time Clock (RTC)
RTC Registers
12.10.7 Second Register (SECR)
This read/write register contains the current value of the second counter.
This register can be read at any time without affecting the counter count.
Writing to this register loads the value to the second counter and the
counter continues to count from this new value.
Freescale Semiconductor, Inc...
The second counter rolls over to 0 ($00) after reaching 59 ($4B). Writing
a value other than 0 to 59 to this register has no effect.
Address:
Read:
$0047
0
0
SEC5
SEC4
SEC3
SEC2
SEC1
SEC0
U
U
U
U
U
U
Write:
Reset:
0
0
= Unimplemented
This register is write-protected; unprotect by a write sequence to RTCWE[1:0] in RTCCOMR.
Figure 12-13. Second Register (SECR)
12.10.8 Minute Register (MINR)
This read/write register contains the current value of the minute counter.
This register can be read at any time without affecting the counter count.
Writing to this register loads the value to the minute counter and the
counter continues to count from this new value.
The minute counter rolls over to 0 ($00) after reaching 59 ($4B). Writing
a value other than 0 to 59 to this register has no effect.
Address:
Read:
$0048
0
0
MIN5
MIN4
MIN3
MIN2
MIN1
MIN0
U
U
U
U
U
U
Write:
Reset:
0
0
= Unimplemented
This register is write-protected; unprotect by a write sequence to RTCWE[1:0] in RTCCOMR.
Figure 12-14. Minute Register (MINR)
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Real Time Clock (RTC)
For More Information On This Product,
Go to: www.freescale.com
241
Freescale Semiconductor, Inc.
Real Time Clock (RTC)
12.10.9 Hour Register (HRR)
This read/write register contains the current value of the hour counter.
This register can be read at any time without affecting the counter count.
Writing to this register loads the value to the hour counter and the
counter continues to count from this new value.
The hour counter rolls over to 0 ($00) after reaching 23 ($17). Writing a
value other than 0 to 23 to this register has no effect.
Freescale Semiconductor, Inc...
Address:
$0049
Read:
0
0
0
HR4
HR3
HR2
HR1
HR0
U
U
U
U
U
Write:
Reset:
0
0
0
= Unimplemented
This register is write-protected; unprotect by a write sequence to RTCWE[1:0] in RTCCOMR.
Figure 12-15. Hour Register (HRR)
12.10.10 Day Register (DAYR)
This read/write register contains the current value of the day-of-month
counter. This register can be read at any time without affecting the
counter count. Writing to this register loads the value to the day counter
and the counter continues to count from this new value.
The day counter rolls over to 1 ($01) after reaching 28 ($1B), 29 ($1C),
30 ($1D), or 31 ($1E), depending on the value in the month and year
registers. Writing a value that is not valid for the month and year to this
register has no effect.
Address:
Read:
$004A
0
0
0
DAY4
DAY3
DAY2
DAY1
DAY0
U
U
U
U
U
Write:
Reset:
0
0
0
= Unimplemented
This register is write-protected; unprotect by a write sequence to RTCWE[1:0] in RTCCOMR.
Figure 12-16. Day Register (DAYR)
Data Sheet
242
MC68HC908LJ24/LK24 — Rev. 2
Real Time Clock (RTC)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Real Time Clock (RTC)
RTC Registers
12.10.11 Month Register (MTHR)
This read/write register contains the current value of the month counter.
This register can be read at any time without affecting the counter count.
Writing to this register loads the value to the month counter and the
counter continues to count from this new value.
Freescale Semiconductor, Inc...
The month counter rolls over to 1 ($01) after reaching 12 ($0B). Writing
a value other than 1 to 12 to this register has no effect.
Address:
Read:
$004B
0
0
0
0
MTH3
MTH2
MTH1
MTH0
U
U
U
U
Write:
Reset:
0
0
0
0
= Unimplemented
This register is write-protected; unprotect by a write sequence to RTCWE[1:0] in RTCCOMR.
Figure 12-17. Month Register (MTHR)
12.10.12 Year Register (YRR)
This read/write register contains the current value of the year counter.
This register can be read at any time without affecting the counter count.
Writing to this register loads the value to the year counter and the
counter continues to count from this new value.
The value stored in this register is a two’s complement representation of
the year, relative to 2000. For example, the year 2008 is represented
by 8 ($08), and the year 1979 is presented by –11 ($F5). The range of
this register is only valid for –99 to +99.
Address:
$004C
Read:
YR7
YR6
YR5
YR4
YR3
YR2
YR1
YR0
U
U
U
U
U
U
U
U
Write:
Reset:
This register is write-protected; unprotect by a write sequence to RTCWE[1:0] in RTCCOMR.
Figure 12-18. Year Register (YRR)
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Real Time Clock (RTC)
For More Information On This Product,
Go to: www.freescale.com
243
Freescale Semiconductor, Inc.
Real Time Clock (RTC)
12.10.13 Day-Of-Week Register (DOWR)
This read/write register contains the current value of the day-of-week
counter. This register can be read at any time without affecting the
counter count. Writing to this register loads the value to the day-of-week
counter and the counter continues to count from this new value.
The day-of-week counter value rolls over to 0 ($00) after reaching 6
($06). Writing a value other than 0 to 6 to this register has no effect.
Freescale Semiconductor, Inc...
Address:
Read:
$004D
0
0
0
0
0
DOW2
DOW1
DOW0
U
U
U
Write:
Reset:
0
0
0
0
0
= Unimplemented
This register is write-protected; unprotect by a write sequence to RTCWE[1:0] in RTCCOMR.
Figure 12-19. Day-Of-Week Register (DOWR)
12.10.14 Chronograph Data Register (CHRR)
This read-only chronograph data register contains the value in the
chronograph counter. Reset clears the chronograph data register.
Setting the chronograph counter reset bit (CHRCLR) also clears the
chronograph data register.
The chronograph data register has a resolution of 1/100 seconds. The
chronograph counter value rolls over to $00 after reaching $63.
Address:
Read:
$004E
0
CHR6
CHR5
CHR4
CHR3
CHR2
CHR1
CHR0
0
0
0
0
0
0
0
0
Write:
Reset:
= Unimplemented
Figure 12-20. Chronograph Data Register (CHRR)
NOTE:
Data Sheet
244
The chronograph counter is not synchronized to the compensated RTC
1-Hz clock. Hence, chronograph ticks may not align with the RTC clock
and calendar register updates.
MC68HC908LJ24/LK24 — Rev. 2
Real Time Clock (RTC)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Data Sheet – MC68HC908LJ24
Section 13. Infrared Serial Communications
Interface Module (IRSCI)
Freescale Semiconductor, Inc...
13.1 Contents
13.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
13.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
13.4
Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
13.5
IRSCI Module Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
13.6 Infrared Functional Description. . . . . . . . . . . . . . . . . . . . . . . . 250
13.6.1 Infrared Transmit Encoder . . . . . . . . . . . . . . . . . . . . . . . . . 251
13.6.2 Infrared Receive Decoder . . . . . . . . . . . . . . . . . . . . . . . . . 251
13.7 SCI Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . .252
13.7.1 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
13.7.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
13.7.2.1
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
13.7.2.2
Character Transmission . . . . . . . . . . . . . . . . . . . . . . . . . 255
13.7.2.3
Break Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
13.7.2.4
Idle Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
13.7.2.5
Transmitter Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . .257
13.7.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
13.7.3.1
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
13.7.3.2
Character Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
13.7.3.3
Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
13.7.3.4
Framing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
13.7.3.5
Baud Rate Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . .261
13.7.3.6
Receiver Wakeup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
13.7.3.7
Receiver Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
13.7.3.8
Error Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
13.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
13.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266
13.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
Data Sheet
245
Freescale Semiconductor, Inc.
Infrared Serial Communications
13.9
SCI During Break Module Interrupts. . . . . . . . . . . . . . . . . . . .267
Freescale Semiconductor, Inc...
13.10 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
13.10.1 PTB0/TxD (Transmit Data). . . . . . . . . . . . . . . . . . . . . . . . . 267
13.10.2 PTB1/RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . . 267
13.11 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
13.11.1 SCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
13.11.2 SCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
13.11.3 SCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
13.11.4 SCI Status Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
13.11.5 SCI Status Register 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
13.11.6 SCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
13.11.7 SCI Baud Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . . .282
13.11.8 SCI Infrared Control Register . . . . . . . . . . . . . . . . . . . . . . . 285
13.2 Introduction
This section describes the infrared serial communications interface
(IRSCI) module which allows high-speed asynchronous
communications with peripheral devices and other MCUs. This IRSCI
consists of an SCI module for conventional SCI functions and a software
programmable infrared encoder/decoder sub-module for
encoding/decoding the serial data for connection to infrared LEDs in
remote control applications.
NOTE:
Data Sheet
246
References to DMA (direct-memory access) and associated functions
are only valid if the MCU has a DMA module. This MCU does not have
the DMA function. Any DMA-related register bits should be left in their
reset state for normal MCU operation.
MC68HC908LJ24/LK24 — Rev. 2
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Infrared Serial Communications Interface Module (IRSCI)
Features
13.3 Features
Freescale Semiconductor, Inc...
Features of the SCI module include the following:
•
Full duplex operation
•
Standard mark/space non-return-to-zero (NRZ) format
•
Programmable 8-bit or 9-bit character length
•
Separately enabled transmitter and receiver
•
Separate receiver and transmitter CPU interrupt requests
•
Two receiver wakeup methods:
– Idle line wakeup
– Address mark wakeup
•
Interrupt-driven operation with eight interrupt flags:
– Transmitter empty
– Transmission complete
– Receiver full
– Idle receiver input
– Receiver overrun
– Noise error
– Framing error
– Parity error
•
Receiver framing error detection
•
Hardware parity checking
•
1/16 bit-time noise detection
Features of the infrared (IR) sub-module include the following:
•
IR sub-module enable/disable for infrared SCI or conventional SCI
on TxD and RxD pins
•
Software selectable infrared modulation/demodulation
(3/16, 1/16 or 1/32 width pulses)
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
Data Sheet
247
Freescale Semiconductor, Inc.
Infrared Serial Communications
Addr.
$0013
Freescale Semiconductor, Inc...
$0014
$0015
$0016
$0017
Register Name
Read:
LOOPS
SCI Control Register 1
Write:
(SCC1)
Reset:
0
Read:
SCI Control Register 2
Write:
(SCC2)
Reset:
6
5
4
3
2
1
Bit 0
M
WAKE
ILTY
PEN
PTY
0
ENSCI
0
0
0
0
0
0
0
SCTIE
TCIE
SCRIE
ILIE
TE
RE
RWU
SBK
0
0
0
0
0
0
0
0
T8
DMARE
DMATE
ORIE
NEIE
FEIE
PEIE
Read:
SCI Control Register 3
Write:
(SCC3)
Reset:
R8
U
U
0
0
0
0
0
0
Read:
SCI Status Register 1
Write:
(SCS1)
Reset:
SCTE
TC
SCRF
IDLE
OR
NF
FE
PE
1
1
0
0
0
0
0
0
Read:
SCI Status Register 2
Write:
(SCS2)
Reset:
0
0
0
0
0
0
BKF
RPF
0
0
0
0
0
0
0
0
Read:
SCI Data Register
Write:
(SCDR)
Reset:
R7
R6
R5
R4
R3
R2
R1
R0
T7
T6
T5
T4
T3
T2
T1
T0
$0018
$0019
Bit 7
Read:
SCI Baud Rate Register
Write:
(SCBR)
Reset:
$001A
Read:
SCI Infrared Control
Register Write:
(SCIRCR)
Reset:
Unaffected by reset
0
CKS
0
SCP1
SCP0
R
SCR2
SCR1
SCR0
0
0
0
0
0
0
0
0
0
0
R
TNP1
TNP0
IREN
0
0
0
0
R
0
0
0
= Unimplemented
0
R = Reserved
U = Unaffected
Figure 13-1. IRSCI I/O Registers Summary
Data Sheet
248
MC68HC908LJ24/LK24 — Rev. 2
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Infrared Serial Communications Interface Module (IRSCI)
Pin Name Conventions
13.4 Pin Name Conventions
Freescale Semiconductor, Inc...
The generic names of the IRSCI I/O pins are:
•
RxD (receive data)
•
TxD (transmit data)
IRSCI I/O (input/output) lines are implemented by sharing parallel I/O
port pins. The full name of an IRSCI input or output reflects the name of
the shared port pin. Table 13-1 shows the full names and the generic
names of the IRSCI I/O pins.
The generic pin names appear in the text of this section.
Table 13-1. Pin Name Conventions
Generic Pin Names:
RxD
TxD
Full Pin Names:
PTB1/RxD
PTB0/TxD
13.5 IRSCI Module Overview
The IRSCI consists of a serial communications interface (SCI) and a
infrared interface sub-module as shown in Figure 13-2.
INTERNAL BUS
SCI_TxD
CGMXCLK
BUS CLOCK
SERIAL
COMMUNICATIONS
INTERFACE MODULE
(SCI)
TxD
SCI_R32XCLK
SCI_R16XCLK
INFRARED
SUB-MODULE
SCI_RxD
RxD
Figure 13-2. IRSCI Block Diagram
The SCI module provides serial data transmission and reception, with a
programmable baud rate clock based on the bus clock or the
CGMXCLK.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
Data Sheet
249
Freescale Semiconductor, Inc.
Infrared Serial Communications
The infrared sub-module receives two clock sources from the SCI
module: SCI_R16XCLK and SCI_R32XCLK. Both reference clocks are
used to generate the narrow pulses during data transmission.
The SCI_R16XCLK and SCI_R32XCLK are internal clocks with
frequencies that are 16 and 32 times the baud rate respectively. Both
SCI_R16XCLK and SCI_R32XCLK clocks are used for transmitting
data. The SCI_R16XCLK clock is used only for receiving data.
Freescale Semiconductor, Inc...
NOTE:
For proper SCI function (transmit or receive), the bus clock MUST be
programmed to at least 32 times that of the selected baud rate.
When the infrared sub-module is disabled, signals on the TxD and RxD
pins pass through unchanged to the SCI module.
13.6 Infrared Functional Description
Figure 13-3 shows the structure of the infrared sub-module.
TNP[1:0]
TRANSMIT
ENCODER
SCI_TxD
IREN
IR_TxD
MUX
TxD
SCI_R32XCLK
SCI_R16XCLK
IR_RxD
SCI_RxD
RECEIVE
DECODER
RxD
MUX
Figure 13-3. Infrared Sub-Module Diagram
The infrared sub-module provides the capability of transmitting narrow
pulses to an infrared LED and receiving narrow pulses and transforming
them to serial bits, which are sent to the SCI module. The infrared submodule receives two clocks from the SCI. One of these two clocks is
selected as the base clock to generate the 3/16, 1/16, or 1/32 bit width
narrow pulses during transmission.
Data Sheet
250
MC68HC908LJ24/LK24 — Rev. 2
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Infrared Serial Communications Interface Module (IRSCI)
Infrared Functional Description
Freescale Semiconductor, Inc...
The sub-module consists of two main blocks: the transmit encoder and
the receive decoder. When transmitting data, the SCI data stream is
encoded by the infrared sub-module. For every "0" bit, a narrow "low"
pulse is transmitted; no pulse is transmitted for "1" bits. When receiving
data, the infrared pulses should be detected using an infrared photo
diode for conversion to CMOS voltage levels before connecting to the
RxD pin for the infrared decoder. The SCI data stream is reconstructed
by stretching the "0" pulses.
13.6.1 Infrared Transmit Encoder
The infrared transmit encoder converts the "0" bits in the serial data
stream from the SCI module to narrow "low" pulses, to the TxD pin. The
narrow pulse is sent with a duration of 1/32, 1/16, or 3/16 of a data bit
width. When two consecutive zeros are sent, the two consecutive narrow
pulses will be separated by a time equal to a data bit width.
DATA BIT WIDTH DETERMINED BY BAUD RATE
SCI DATA
INFRARED
SCI DATA
PULSE WIDTH = 1/32, 1/16, OR 3/16 DATA BIT WIDTH
Figure 13-4. Infrared SCI Data Example
13.6.2 Infrared Receive Decoder
The infrared receive decoder converts low narrow pulses from the RxD
pin to standard SCI data bits. The reference clock, SCI_R16XCLK,
clocks a four bit internal counter which counts from 0 to 15. An incoming
pulse starts the internal counter and a "0" is sent out to the IR_RxD
output. Subsequent incoming pulses are ignored when the counter count
is between 0 and 7; IR_RxD remains "0". Once the counter passes 7, an
incoming pulse will reset the counter; IR_RxD remains "0". When the
counter reaches 15, the IR_RxD output returns to "1", the counter stops
and waits for further pulses. A pulse is interpreted as jitter if it arrives
shortly after the counter reaches 15; IR_RxD remains "1".
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
Data Sheet
251
Freescale Semiconductor, Inc.
Infrared Serial Communications
13.7 SCI Functional Description
Figure 13-5 shows the structure of the SCI.
INTERNAL BUS
SCI DATA
REGISTER
ERROR
INTERRUPT
CONTROL
RECEIVER
INTERRUPT
CONTROL
Freescale Semiconductor, Inc...
DMA
INTERRUPT
CONTROL
RECEIVE
SHIFT REGISTER
SCI_RxD
TRANSMITTER
INTERRUPT
CONTROL
SCI DATA
REGISTER
TRANSMIT
SHIFT REGISTER
SCTIE
SCI_TxD
R8
TCIE
T8
SCRIE
ILIE
DMARE
TE
SCTE
RE
DMATE
TC
RWU
SBK
SCRF
OR
ORIE
IDLE
NF
NEIE
FE
FEIE
PE
PEIE
LOOPS
LOOPS
CKS
FLAG
CONTROL
RECEIVE
CONTROL
WAKEUP
CONTROL
ENSCI
ENSCI
TRANSMIT
CONTROL
BKF
M
RPF
WAKE
ILTY
CGMXCLK
BUS CLOCK
A SL
X
B
BAUD RATE
GENERATOR
PEN
PTY
SL = 0 => X = A
SL = 1 => X = B
SCI_R32XCLK
SCI_R16XCLK
÷16
DATA SELECTION
CONTROL
Figure 13-5. SCI Module Block Diagram
Data Sheet
252
MC68HC908LJ24/LK24 — Rev. 2
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Infrared Serial Communications Interface Module (IRSCI)
SCI Functional Description
Freescale Semiconductor, Inc...
The SCI allows full-duplex, asynchronous, NRZ serial communication
between the MCU and remote devices, including other MCUs. The
transmitter and receiver of the SCI operate independently, although they
use the same baud rate generator. During normal operation, the CPU
monitors the status of the SCI, writes the data to be transmitted, and
processes received data.
NOTE:
For SCI operations, the IR sub-module is transparent to the SCI module.
Data at going out of the SCI transmitter and data going into the SCI
receiver is always in SCI format. It makes no difference to the SCI
module whether the IR sub-module is enabled or disabled.
NOTE:
This SCI module is a standard HC08 SCI module with the following
modifications:
•
A control bit, CKS, is added to the SCI baud rate control register
to select between two input clocks for baud rate clock generation
•
The TXINV bit is removed from the SCI control register 1
13.7.1 Data Format
The SCI uses the standard non-return-to-zero mark/space data format
illustrated in Figure 13-6.
8-BIT DATA FORMAT
BIT M IN SCC1 CLEAR
START
BIT
BIT 0
BIT 1
BIT 2
BIT 3
BIT 4
BIT 5
PARITY
BIT
BIT 6
BIT 7
9-BIT DATA FORMAT
BIT M IN SCC1 SET
START
BIT
BIT 0
BIT 1
BIT 2
BIT 3
BIT 4
BIT 5
STOP
BIT
NEXT
START
BIT
PARITY
BIT
BIT 6
BIT 7
BIT 8
STOP
BIT
NEXT
START
BIT
Figure 13-6. SCI Data Formats
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
Data Sheet
253
Freescale Semiconductor, Inc.
Infrared Serial Communications
13.7.2 Transmitter
Figure 13-7 shows the structure of the SCI transmitter.
The baud rate clock source for the SCI can be selected by the CKS bit,
in the SCI baud rate register (see 13.11.7 SCI Baud Rate Register).
SL = 0 => X = A
SL = 1 => X = B
PRESCALER
BAUD
DIVIDER
÷ 16
SCI DATA REGISTER
SCP1
SCP0
11-BIT
TRANSMIT
SHIFT REGISTER
SCR1
H
SCR2
8
7
6
5
4
3
2
START
A SL
X
B
STOP
CGMXCLK
BUS CLOCK
INTERNAL BUS
1
0
L
SCI_TxD
MSB
PARITY
GENERATION
T8
DMATE
DMATE
SCTIE
SCTE
DMATE
SCTE
SCTIE
TC
TCIE
BREAK
ALL 0s
PTY
PREAMBLE
ALL 1s
PEN
SHIFT ENABLE
M
LOAD FROM SCDR
TRANSMITTER DMA SERVICE REQUEST
SCR0
TRANSMITTER CPU INTERRUPT REQUEST
Freescale Semiconductor, Inc...
CKS
TRANSMITTER
CONTROL LOGIC
SCTE
SBK
LOOPS
SCTIE
ENSCI
TC
TE
TCIE
Figure 13-7. SCI Transmitter
Data Sheet
254
MC68HC908LJ24/LK24 — Rev. 2
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Infrared Serial Communications Interface Module (IRSCI)
SCI Functional Description
13.7.2.1 Character Length
The transmitter can accommodate either 8-bit or 9-bit data. The state of
the M bit in SCI control register 1 (SCC1) determines character length.
When transmitting 9-bit data, bit T8 in SCI control register 3 (SCC3) is
the ninth bit (bit 8).
13.7.2.2 Character Transmission
Freescale Semiconductor, Inc...
During an SCI transmission, the transmit shift register shifts a character
out to the TxD pin. The SCI data register (SCDR) is the write-only buffer
between the internal data bus and the transmit shift register. To initiate
an SCI transmission:
1. Enable the SCI by writing a logic 1 to the enable SCI bit (ENSCI)
in SCI control register 1 (SCC1).
2. Enable the transmitter by writing a logic 1 to the transmitter enable
bit (TE) in SCI control register 2 (SCC2).
3. Clear the SCI transmitter empty bit by first reading SCI status
register 1 (SCS1) and then writing to the SCDR.
4. Repeat step 3 for each subsequent transmission.
At the start of a transmission, transmitter control logic automatically
loads the transmit shift register with a preamble of logic 1s. After the
preamble shifts out, control logic transfers the SCDR data into the
transmit shift register. A logic 0 start bit automatically goes into the least
significant bit position of the transmit shift register. A logic 1 stop bit goes
into the most significant bit position.
The SCI transmitter empty bit, SCTE, in SCS1 becomes set when the
SCDR transfers a byte to the transmit shift register. The SCTE bit
indicates that the SCDR can accept new data from the internal data bus.
If the SCI transmit interrupt enable bit, SCTIE, in SCC2 is also set, the
SCTE bit generates a transmitter interrupt request.
When the transmit shift register is not transmitting a character, the TxD
pin goes to the idle condition, logic 1. If at any time software clears the
ENSCI bit in SCI control register 1 (SCC1), the transmitter and receiver
relinquish control of the port pins.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
Data Sheet
255
Freescale Semiconductor, Inc.
Infrared Serial Communications
Freescale Semiconductor, Inc...
13.7.2.3 Break Characters
Writing a logic 1 to the send break bit, SBK, in SCC2 loads the transmit
shift register with a break character. A break character contains all logic
0s and has no start, stop, or parity bit. Break character length depends
on the M bit in SCC1. As long as SBK is at logic 1, transmitter logic
continuously loads break characters into the transmit shift register. After
software clears the SBK bit, the shift register finishes transmitting the
last break character and then transmits at least one logic 1. The
automatic logic 1 at the end of a break character guarantees the
recognition of the start bit of the next character.
The SCI recognizes a break character when a start bit is followed by
eight or nine logic 0 data bits and a logic 0 where the stop bit should be.
Receiving a break character has the following effects on SCI registers:
•
Sets the framing error bit (FE) in SCS1
•
Sets the SCI receiver full bit (SCRF) in SCS1
•
Clears the SCI data register (SCDR)
•
Clears the R8 bit in SCC3
•
Sets the break flag bit (BKF) in SCS2
•
May set the overrun (OR), noise flag (NF), parity error (PE), or
reception in progress flag (RPF) bits
13.7.2.4 Idle Characters
An idle character contains all logic 1s and has no start, stop, or parity bit.
Idle character length depends on the M bit in SCC1. The preamble is a
synchronizing idle character that begins every transmission.
If the TE bit is cleared during a transmission, the TxD pin becomes idle
after completion of the transmission in progress. Clearing and then
setting the TE bit during a transmission queues an idle character to be
sent after the character currently being transmitted.
Data Sheet
256
MC68HC908LJ24/LK24 — Rev. 2
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Infrared Serial Communications Interface Module (IRSCI)
SCI Functional Description
NOTE:
When queueing an idle character, return the TE bit to logic 1 before the
stop bit of the current character shifts out to the TxD pin. Setting TE after
the stop bit appears on TxD causes data previously written to the SCDR
to be lost.
Toggle the TE bit for a queued idle character when the SCTE bit
becomes set and just before writing the next byte to the SCDR.
Freescale Semiconductor, Inc...
13.7.2.5 Transmitter Interrupts
The following conditions can generate CPU interrupt requests from the
SCI transmitter:
•
SCI transmitter empty (SCTE) — The SCTE bit in SCS1 indicates
that the SCDR has transferred a character to the transmit shift
register. SCTE can generate a transmitter CPU interrupt request.
Setting the SCI transmit interrupt enable bit, SCTIE, in SCC2
enables the SCTE bit to generate transmitter CPU interrupt
requests.
•
Transmission complete (TC) — The TC bit in SCS1 indicates that
the transmit shift register and the SCDR are empty and that no
break or idle character has been generated. The transmission
complete interrupt enable bit, TCIE, in SCC2 enables the TC bit to
generate transmitter CPU interrupt requests.
13.7.3 Receiver
Figure 13-8 shows the structure of the SCI receiver.
13.7.3.1 Character Length
The receiver can accommodate either 8-bit or 9-bit data. The state of the
M bit in SCI control register 1 (SCC1) determines character length.
When receiving 9-bit data, bit R8 in SCI control register 2 (SCC2) is the
ninth bit (bit 8). When receiving 8-bit data, bit R8 is a copy of the eighth
bit (bit 7).
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
Data Sheet
257
Freescale Semiconductor, Inc.
Infrared Serial Communications
INTERNAL BUS
SCR1
SCR0
PRESCALER
SL = 0 => X = A
SL = 1 => X = B
÷ 16
DATA
RECOVERY
SCI_RxD
BKF
Freescale Semiconductor, Inc...
BAUD
DIVIDER
CPU INTERRUPT REQUEST
H
11-BIT
RECEIVE SHIFT REGISTER
8
7
6
5
M
WAKE
ILTY
PEN
PTY
4
3
2
1
0
L
ALL 0s
RPF
ERROR CPU INTERRUPT REQUEST
DMA SERVICE REQUEST
SCI DATA REGISTER
START
SCP0
STOP
A SL
X
B
SCR2
ALL 1s
CGMXCLK
BUS CLOCK
SCP1
MSB
CKS
SCRF
WAKEUP
LOGIC
RWU
IDLE
R8
PARITY
CHECKING
IDLE
ILIE
DMARE
ILIE
SCRF
SCRIE
DMARE
SCRIE
SCRF
SCRIE
DMARE
DMARE
OR
OR
ORIE
ORIE
NF
NF
NEIE
NEIE
FE
FE
FEIE
FEIE
PE
PE
PEIE
PEIE
Figure 13-8. SCI Receiver Block Diagram
Data Sheet
258
MC68HC908LJ24/LK24 — Rev. 2
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Infrared Serial Communications Interface Module (IRSCI)
SCI Functional Description
13.7.3.2 Character Reception
After a complete character shifts into the receive shift register, the data
portion of the character transfers to the SCDR. The SCI receiver full bit,
SCRF, in SCI status register 1 (SCS1) becomes set, indicating that the
received byte can be read. If the SCI receive interrupt enable bit, SCRIE,
in SCC2 is also set, the SCRF bit generates a receiver CPU interrupt
request.
13.7.3.3 Data Sampling
The receiver samples the RxD pin at the RT clock rate. The RT clock is
an internal signal with a frequency 16 times the baud rate. To adjust for
baud rate mismatch, the RT clock is resynchronized at the following
times (see Figure 13-9):
•
After every start bit
•
After the receiver detects a data bit change from logic 1 to logic 0
(after the majority of data bit samples at RT8, RT9, and RT10
returns a valid logic 1 and the majority of the next RT8, RT9, and
RT10 samples returns a valid logic 0)
START BIT
LSB
SCI_RxD
START BIT
QUALIFICATION
SAMPLES
START BIT
VERIFICATION
DATA
SAMPLING
RT4
RT3
RT2
RT1
RT16
RT15
RT14
RT13
RT12
RT11
RT10
RT9
RT8
RT7
RT6
RT5
RT4
RT3
RT2
RT1
RT1
RT1
RT1
RT1
RT1
RT1
RT CLOCK
STATE
RT1
RT
CLOCK
RT1
Freescale Semiconductor, Inc...
During an SCI reception, the receive shift register shifts characters in
from the RxD pin. The SCI data register (SCDR) is the read-only buffer
between the internal data bus and the receive shift register.
RT CLOCK
RESET
Figure 13-9. Receiver Data Sampling
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
Data Sheet
259
Freescale Semiconductor, Inc.
Infrared Serial Communications
To locate the start bit, data recovery logic does an asynchronous search
for a logic 0 preceded by three logic 1s. When the falling edge of a
possible start bit occurs, the RT clock begins to count to 16.
To verify the start bit and to detect noise, data recovery logic takes
samples at RT3, RT5, and RT7. Table 13-2 summarizes the results of
the start bit verification samples.
Freescale Semiconductor, Inc...
Table 13-2. Start Bit Verification
RT3, RT5, and RT7
Samples
Start Bit
Verification
Noise Flag
000
Yes
0
001
Yes
1
010
Yes
1
011
No
0
100
Yes
1
101
No
0
110
No
0
111
No
0
If start bit verification is not successful, the RT clock is reset and a new
search for a start bit begins.
To determine the value of a data bit and to detect noise, recovery logic
takes samples at RT8, RT9, and RT10. Table 13-3 summarizes the
results of the data bit samples.
Table 13-3. Data Bit Recovery
Data Sheet
260
RT8, RT9, and RT10
Samples
Data Bit
Determination
Noise Flag
000
0
0
001
0
1
010
0
1
011
1
1
100
0
1
101
1
1
110
1
1
111
1
0
MC68HC908LJ24/LK24 — Rev. 2
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Infrared Serial Communications Interface Module (IRSCI)
SCI Functional Description
NOTE:
The RT8, RT9, and RT10 samples do not affect start bit verification. If
any or all of the RT8, RT9, and RT10 start bit samples are logic 1s
following a successful start bit verification, the noise flag (NF) is set and
the receiver assumes that the bit is a start bit.
To verify a stop bit and to detect noise, recovery logic takes samples at
RT8, RT9, and RT10. Table 13-4 summarizes the results of the stop bit
samples.
Freescale Semiconductor, Inc...
Table 13-4. Stop Bit Recovery
RT8, RT9, and RT10
Samples
Framing
Error Flag
Noise Flag
000
1
0
001
1
1
010
1
1
011
0
1
100
1
1
101
0
1
110
0
1
111
0
0
13.7.3.4 Framing Errors
If the data recovery logic does not detect a logic 1 where the stop bit
should be in an incoming character, it sets the framing error bit, FE, in
SCS1. The FE flag is set at the same time that the SCRF bit is set. A
break character that has no stop bit also sets the FE bit.
13.7.3.5 Baud Rate Tolerance
A transmitting device may be operating at a baud rate below or above
the receiver baud rate. Accumulated bit time misalignment can cause
one of the three stop bit data samples to fall outside the actual stop bit.
Then a noise error occurs. If more than one of the samples is outside the
stop bit, a framing error occurs. In most applications, the baud rate
tolerance is much more than the degree of misalignment that is likely to
occur.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
Data Sheet
261
Freescale Semiconductor, Inc.
Infrared Serial Communications
As the receiver samples an incoming character, it resynchronizes the RT
clock on any valid falling edge within the character. Resynchronization
within characters corrects misalignments between transmitter bit times
and receiver bit times.
Slow Data Tolerance
RT16
RT15
RT14
RT13
RT11
RT10
RT9
RT8
RT7
RT6
STOP
RT5
RT4
RT3
RT2
RECEIVER
RT CLOCK
RT1
MSB
RT12
Freescale Semiconductor, Inc...
Figure 13-10 shows how much a slow received character can be
misaligned without causing a noise error or a framing error. The slow
stop bit begins at RT8 instead of RT1 but arrives in time for the stop bit
data samples at RT8, RT9, and RT10.
DATA
SAMPLES
Figure 13-10. Slow Data
For an 8-bit character, data sampling of the stop bit takes the receiver
9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles.
With the misaligned character shown in Figure 13-10, the receiver
counts 154 RT cycles at the point when the count of the transmitting
device is 9 bit times × 16 RT cycles + 3 RT cycles = 147 RT cycles.
The maximum percent difference between the receiver count and the
transmitter count of a slow 8-bit character with no errors is
154 – 147 × 100 = 4.54%
-------------------------154
For a 9-bit character, data sampling of the stop bit takes the receiver
10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles.
With the misaligned character shown in Figure 13-10, the receiver
counts 170 RT cycles at the point when the count of the transmitting
device is 10 bit times × 16 RT cycles + 3 RT cycles = 163 RT cycles.
Data Sheet
262
MC68HC908LJ24/LK24 — Rev. 2
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Infrared Serial Communications Interface Module (IRSCI)
SCI Functional Description
The maximum percent difference between the receiver count and the
transmitter count of a slow 9-bit character with no errors is
170 – 163 × 100 = 4.12%
-------------------------170
Fast Data Tolerance
RT16
RT15
RT14
RT13
RT12
RT10
RT9
RT8
RT7
IDLE OR NEXT CHARACTER
RT6
RT5
RT4
RT3
RT2
RECEIVER
RT CLOCK
RT1
STOP
RT11
Freescale Semiconductor, Inc...
Figure 13-11 shows how much a fast received character can be
misaligned without causing a noise error or a framing error. The fast stop
bit ends at RT10 instead of RT16 but is still there for the stop bit data
samples at RT8, RT9, and RT10.
DATA
SAMPLES
Figure 13-11. Fast Data
For an 8-bit character, data sampling of the stop bit takes the receiver
9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles.
With the misaligned character shown in Figure 13-11, the receiver
counts 154 RT cycles at the point when the count of the transmitting
device is 10 bit times × 16 RT cycles = 160 RT cycles.
The maximum percent difference between the receiver count and the
transmitter count of a fast 8-bit character with no errors is
·
154 – 160 × 100 = 3.90%
-------------------------154
For a 9-bit character, data sampling of the stop bit takes the receiver
10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles.
With the misaligned character shown in Figure 13-11, the receiver
counts 170 RT cycles at the point when the count of the transmitting
device is 11 bit times × 16 RT cycles = 176 RT cycles.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
Data Sheet
263
Freescale Semiconductor, Inc.
Infrared Serial Communications
The maximum percent difference between the receiver count and the
transmitter count of a fast 9-bit character with no errors is
170 – 176 × 100 = 3.53%
-------------------------170
13.7.3.6 Receiver Wakeup
Freescale Semiconductor, Inc...
So that the MCU can ignore transmissions intended only for other
receivers in multiple-receiver systems, the receiver can be put into a
standby state. Setting the receiver wakeup bit, RWU, in SCC2 puts the
receiver into a standby state during which receiver interrupts are
disabled.
Depending on the state of the WAKE bit in SCC1, either of two
conditions on the RxD pin can bring the receiver out of the standby state:
NOTE:
Data Sheet
264
•
Address mark — An address mark is a logic 1 in the most
significant bit position of a received character. When the WAKE bit
is set, an address mark wakes the receiver from the standby state
by clearing the RWU bit. The address mark also sets the SCI
receiver full bit, SCRF. Software can then compare the character
containing the address mark to the user-defined address of the
receiver. If they are the same, the receiver remains awake and
processes the characters that follow. If they are not the same,
software can set the RWU bit and put the receiver back into the
standby state.
•
Idle input line condition — When the WAKE bit is clear, an idle
character on the RxD pin wakes the receiver from the standby
state by clearing the RWU bit. The idle character that wakes the
receiver does not set the receiver idle bit, IDLE, or the SCI receiver
full bit, SCRF. The idle line type bit, ILTY, determines whether the
receiver begins counting logic 1s as idle character bits after the
start bit or after the stop bit.
Clearing the WAKE bit after the RxD pin has been idle may cause the
receiver to wake up immediately.
MC68HC908LJ24/LK24 — Rev. 2
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Infrared Serial Communications Interface Module (IRSCI)
SCI Functional Description
13.7.3.7 Receiver Interrupts
Freescale Semiconductor, Inc...
The following sources can generate CPU interrupt requests from the SCI
receiver:
•
SCI receiver full (SCRF) — The SCRF bit in SCS1 indicates that
the receive shift register has transferred a character to the SCDR.
SCRF can generate a receiver interrupt request. Setting the SCI
receive interrupt enable bit, SCRIE, in SCC2 enables the SCRF bit
to generate receiver CPU interrupts.
•
Idle input (IDLE) — The IDLE bit in SCS1 indicates that 10 or 11
consecutive logic 1s shifted in from the RxD pin. The idle line
interrupt enable bit, ILIE, in SCC2 enables the IDLE bit to generate
CPU interrupt requests.
13.7.3.8 Error Interrupts
The following receiver error flags in SCS1 can generate CPU interrupt
requests:
•
Receiver overrun (OR) — The OR bit indicates that the receive
shift register shifted in a new character before the previous
character was read from the SCDR. The previous character
remains in the SCDR, and the new character is lost. The overrun
interrupt enable bit, ORIE, in SCC3 enables OR to generate SCI
error CPU interrupt requests.
•
Noise flag (NF) — The NF bit is set when the SCI detects noise on
incoming data or break characters, including start, data, and stop
bits. The noise error interrupt enable bit, NEIE, in SCC3 enables
NF to generate SCI error CPU interrupt requests.
•
Framing error (FE) — The FE bit in SCS1 is set when a logic 0
occurs where the receiver expects a stop bit. The framing error
interrupt enable bit, FEIE, in SCC3 enables FE to generate SCI
error CPU interrupt requests.
•
Parity error (PE) — The PE bit in SCS1 is set when the SCI
detects a parity error in incoming data. The parity error interrupt
enable bit, PEIE, in SCC3 enables PE to generate SCI error CPU
interrupt requests.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
Data Sheet
265
Freescale Semiconductor, Inc.
Infrared Serial Communications
13.8 Low-Power Modes
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.
Freescale Semiconductor, Inc...
13.8.1 Wait Mode
The SCI module remains active after the execution of a WAIT
instruction. In wait mode, the SCI module registers are not accessible by
the CPU. Any enabled CPU interrupt request from the SCI module can
bring the MCU out of wait mode.
If SCI module functions are not required during wait mode, reduce power
consumption by disabling the module before executing the WAIT
instruction.
Refer to 9.7 Low-Power Modes for information on exiting wait mode.
13.8.2 Stop Mode
The SCI module is inactive after the execution of a STOP instruction.
The STOP instruction does not affect SCI register states. SCI module
operation resumes after an external interrupt.
Because the internal clock is inactive during stop mode, entering stop
mode during an SCI transmission or reception results in invalid data.
Refer to 9.7 Low-Power Modes for information on exiting stop mode.
Data Sheet
266
MC68HC908LJ24/LK24 — Rev. 2
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Infrared Serial Communications Interface Module (IRSCI)
SCI During Break Module Interrupts
13.9 SCI During Break Module Interrupts
The system integration module (SIM) controls whether status bits in other
modules can be cleared during interrupts generated by the break
module. The BCFE bit in the SIM break flag control register (SBFCR)
enables software to clear status bits during the break state.
Freescale Semiconductor, Inc...
To allow software to clear status bits during a break interrupt, write a
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it
remains cleared when the MCU exits the break state.
To protect status bits during the break state, write a logic 0 to the BCFE
bit. With BCFE at logic 0 (its default state), software can read and write
I/O registers during the break state without affecting status bits. Some
status bits have a two-step read/write clearing procedure. If software
does the first step on such a bit before the break, the bit cannot change
during the break state as long as BCFE is at logic 0. After the break,
doing the second step clears the status bit.
13.10 I/O Signals
The two IRSCI I/O pins are:
•
PTB0/TxD — Transmit data
•
PTB1/RxD — Receive data
13.10.1 PTB0/TxD (Transmit Data)
The PTB0/TxD pin is the serial data (standard or infrared) output from
the SCI transmitter. The IRSCI shares the PTB0/TxD pin with port B.
When the IRSCI is enabled, the PTB0/TxD pin is an output regardless of
the state of the DDRB0 bit in data direction register B (DDRB). TxD pin
has high current (15mA) sink capability when the LEDB0 bit is set in the
port B LED control register ($000C).
13.10.2 PTB1/RxD (Receive Data)
The PTB1/RxD pin is the serial data input to the IRSCI receiver. The
IRSCI shares the PTB1/RxD pin with port B. When the IRSCI is enabled,
the PTB1/RxD pin is an input regardless of the state of the DDRB1 bit in
data direction register B (DDRB).
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
Data Sheet
267
Freescale Semiconductor, Inc.
Infrared Serial Communications
Table 13-5 shows a summary of I/O pin functions when the SCI is
enabled.
Freescale Semiconductor, Inc...
Table 13-5. SCI Pin Functions (Standard and Infrared)
SCC1
[ENSCI]
SCIRCR
[IREN]
SCC2
[TE]
SCC2
[RE]
1
0
0
0
Hi-Z(1)
Input ignored (terminate externally)
1
0
0
1
Hi-Z(1)
Input sampled, pin should idle high
1
0
1
0
Output SCI (idle high)
Input ignored (terminate externally)
1
0
1
1
Output SCI (idle high)
Input sampled, pin should idle high
1
1
0
0
Hi-Z(1)
Input ignored (terminate externally)
1
1
0
1
Hi-Z(1)
Input sampled, pin should idle high
1
1
1
0
Output IR SCI (idle high)
Input ignored (terminate externally)
1
1
1
1
Output IR SCI (idle high)
Input sampled, pin should idle high
0
X
X
X
Pins under port control (standard I/O port)
TxD Pin
RxD Pin
Notes:
1. After completion of transmission in progress.
13.11 I/O Registers
The following I/O registers control and monitor SCI operation:
Data Sheet
268
•
SCI control register 1 (SCC1)
•
SCI control register 2 (SCC2)
•
SCI control register 3 (SCC3)
•
SCI status register 1 (SCS1)
•
SCI status register 2 (SCS2)
•
SCI data register (SCDR)
•
SCI baud rate register (SCBR)
•
SCI infrared control register (SCIRCR)
MC68HC908LJ24/LK24 — Rev. 2
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Infrared Serial Communications Interface Module (IRSCI)
I/O Registers
13.11.1 SCI Control Register 1
Freescale Semiconductor, Inc...
SCI control register 1:
•
Enables loop mode operation
•
Enables the SCI
•
Controls output polarity
•
Controls character length
•
Controls SCI wakeup method
•
Controls idle character detection
•
Enables parity function
•
Controls parity type
Address:
$0013
Bit 7
6
LOOPS
ENSCI
0
0
Read:
5
4
3
2
1
Bit 0
M
WAKE
ILTY
PEN
PTY
0
0
0
0
0
0
Write:
Reset:
0
Figure 13-12. SCI Control Register 1 (SCC1)
LOOPS — Loop Mode Select Bit
This read/write bit enables loop mode operation for the SCI only. In
loop mode the RxD pin is disconnected from the SCI, and the
transmitter output goes into the receiver input. Both the transmitter
and the receiver must be enabled to use loop mode. The infrared
encoder/decoder is not in the loop. Reset clears the LOOPS bit.
1 = Loop mode enabled
0 = Normal operation enabled
ENSCI — Enable SCI Bit
This read/write bit enables the SCI and the SCI baud rate generator.
Clearing ENSCI sets the SCTE and TC bits in SCI status register 1
and disables transmitter interrupts. Reset clears the ENSCI bit.
1 = SCI enabled
0 = SCI disabled
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
Data Sheet
269
Freescale Semiconductor, Inc.
Infrared Serial Communications
M — Mode (Character Length) Bit
This read/write bit determines whether SCI characters are eight or
nine bits long. (See Table 13-6.) The ninth bit can serve as an extra
stop bit, as a receiver wakeup signal, or as a parity bit. Reset clears
the M bit.
1 = 9-bit SCI characters
0 = 8-bit SCI characters
WAKE — Wakeup Condition Bit
Freescale Semiconductor, Inc...
This read/write bit determines which condition wakes up the SCI: a
logic 1 (address mark) in the most significant bit position of a received
character or an idle condition on the RxD pin. Reset clears the WAKE
bit.
1 = Address mark wakeup
0 = Idle line wakeup
ILTY — Idle Line Type Bit
This read/write bit determines when the SCI starts counting logic 1s
as idle character bits. The counting begins either after the start bit or
after the stop bit. If the count begins after the start bit, then a string of
logic 1s preceding the stop bit may cause false recognition of an idle
character. Beginning the count after the stop bit avoids false idle
character recognition, but requires properly synchronized
transmissions. Reset clears the ILTY bit.
1 = Idle character bit count begins after stop bit
0 = Idle character bit count begins after start bit
PEN — Parity Enable Bit
This read/write bit enables the SCI parity function. (See Table 13-6.)
When enabled, the parity function inserts a parity bit in the most
significant bit position. (See Figure 13-6.) Reset clears the PEN bit.
1 = Parity function enabled
0 = Parity function disabled
Data Sheet
270
MC68HC908LJ24/LK24 — Rev. 2
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Infrared Serial Communications Interface Module (IRSCI)
I/O Registers
PTY — Parity Bit
This read/write bit determines whether the SCI generates and checks
for odd parity or even parity. (See Table 13-6.) Reset clears the PTY
bit.
1 = Odd parity
0 = Even parity
Freescale Semiconductor, Inc...
NOTE:
Changing the PTY bit in the middle of a transmission or reception can
generate a parity error.
Table 13-6. Character Format Selection
Control Bits
Character Format
M
PEN:PTY
Start
Bits
Data
Bits
Parity
Stop
Bits
Character
Length
0
0X
1
8
None
1
10 bits
1
0X
1
9
None
1
11 bits
0
10
1
7
Even
1
10 bits
0
11
1
7
Odd
1
10 bits
1
10
1
8
Even
1
11 bits
1
11
1
8
Odd
1
11 bits
13.11.2 SCI Control Register 2
SCI control register 2:
•
Enables the following CPU interrupt requests:
– Enables the SCTE bit to generate transmitter CPU interrupt
requests
– Enables the TC bit to generate transmitter CPU interrupt
requests
– Enables the SCRF bit to generate receiver CPU interrupt
requests
– Enables the IDLE bit to generate receiver CPU interrupt
requests
•
Enables the transmitter
•
Enables the receiver
•
Enables SCI wakeup
•
Transmits SCI break characters
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
Data Sheet
271
Freescale Semiconductor, Inc.
Infrared Serial Communications
Address:
$0014
Bit 7
6
5
4
3
2
1
Bit 0
SCTIE
TCIE
SCRIE
ILIE
TE
RE
RWU
SBK
0
0
0
0
0
0
0
0
Read:
Write:
Reset:
Figure 13-13. SCI Control Register 2 (SCC2)
Freescale Semiconductor, Inc...
SCTIE — SCI Transmit Interrupt Enable Bit
This read/write bit enables the SCTE bit to generate SCI transmitter
CPU interrupt requests. Reset clears the SCTIE bit.
1 = SCTE enabled to generate CPU interrupt
0 = SCTE not enabled to generate CPU interrupt
TCIE — Transmission Complete Interrupt Enable Bit
This read/write bit enables the TC bit to generate SCI transmitter CPU
interrupt requests. Reset clears the TCIE bit.
1 = TC enabled to generate CPU interrupt requests
0 = TC not enabled to generate CPU interrupt requests
SCRIE — SCI Receive Interrupt Enable Bit
This read/write bit enables the SCRF bit to generate SCI receiver
CPU interrupt requests. Reset clears the SCRIE bit.
1 = SCRF enabled to generate CPU interrupt
0 = SCRF not enabled to generate CPU interrupt
ILIE — Idle Line Interrupt Enable Bit
This read/write bit enables the IDLE bit to generate SCI receiver CPU
interrupt requests. Reset clears the ILIE bit.
1 = IDLE enabled to generate CPU interrupt requests
0 = IDLE not enabled to generate CPU interrupt requests
TE — Transmitter Enable Bit
Setting this read/write bit begins the transmission by sending a
preamble of 10 or 11 logic 1s from the transmit shift register to the
TxD pin. If software clears the TE bit, the transmitter completes any
transmission in progress before the TxD returns to the idle condition
Data Sheet
272
MC68HC908LJ24/LK24 — Rev. 2
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Infrared Serial Communications Interface Module (IRSCI)
I/O Registers
(logic 1). Clearing and then setting TE during a transmission queues
an idle character to be sent after the character currently being
transmitted. Reset clears the TE bit.
1 = Transmitter enabled
0 = Transmitter disabled
NOTE:
Writing to the TE bit is not allowed when the enable SCI bit (ENSCI) is
clear. ENSCI is in SCI control register 1.
Freescale Semiconductor, Inc...
RE — Receiver Enable Bit
Setting this read/write bit enables the receiver. Clearing the RE bit
disables the receiver but does not affect receiver interrupt flag bits.
Reset clears the RE bit.
1 = Receiver enabled
0 = Receiver disabled
NOTE:
Writing to the RE bit is not allowed when the enable SCI bit (ENSCI) is
clear. ENSCI is in SCI control register 1.
RWU — Receiver Wakeup Bit
This read/write bit puts the receiver in a standby state during which
receiver interrupts are disabled. The WAKE bit in SCC1 determines
whether an idle input or an address mark brings the receiver out of the
standby state and clears the RWU bit. Reset clears the RWU bit.
1 = Standby state
0 = Normal operation
SBK — Send Break Bit
Setting and then clearing this read/write bit transmits a break
character followed by a logic 1. The logic 1 after the break character
guarantees recognition of a valid start bit. If SBK remains set, the
transmitter continuously transmits break characters with no logic 1s
between them. Reset clears the SBK bit.
1 = Transmit break characters
0 = No break characters being transmitted
NOTE:
Do not toggle the SBK bit immediately after setting the SCTE bit.
Toggling SBK before the preamble begins causes the SCI to send a
break character instead of a preamble.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
Data Sheet
273
Freescale Semiconductor, Inc.
Infrared Serial Communications
13.11.3 SCI Control Register 3
SCI control register 3:
•
Stores the ninth SCI data bit received and the ninth SCI data bit to
be transmitted
•
Enables the following interrupts:
– Receiver overrun interrupts
Freescale Semiconductor, Inc...
– Noise error interrupts
– Framing error interrupts
– Parity error interrupts
Address:
$0015
Bit 7
Read:
6
5
4
3
2
1
Bit 0
T8
DMARE
DMATE
ORIE
NEIE
FEIE
PEIE
U
0
0
0
0
0
0
R8
Write:
Reset:
U
= Unimplemented
U = Unaffected
Figure 13-14. SCI Control Register 3 (SCC3)
R8 — Received Bit 8
When the SCI is receiving 9-bit characters, R8 is the read-only ninth
bit (bit 8) of the received character. R8 is received at the same time
that the SCDR receives the other 8 bits.
When the SCI is receiving 8-bit characters, R8 is a copy of the eighth
bit (bit 7). Reset has no effect on the R8 bit.
T8 — Transmitted Bit 8
When the SCI is transmitting 9-bit characters, T8 is the read/write
ninth bit (bit 8) of the transmitted character. T8 is loaded into the
transmit shift register at the same time that the SCDR is loaded into
the transmit shift register. Reset has no effect on the T8 bit.
Data Sheet
274
MC68HC908LJ24/LK24 — Rev. 2
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Infrared Serial Communications Interface Module (IRSCI)
I/O Registers
DMARE — DMA Receive Enable Bit
Freescale Semiconductor, Inc...
CAUTION:
The DMA module is not included on this MCU. Writing a logic 1 to
DMARE or DMATE may adversely affect MCU performance.
1 = DMA not enabled to service SCI receiver DMA service requests
generated by the SCRF bit (SCI receiver CPU interrupt
requests enabled)
0 = DMA not enabled to service SCI receiver DMA service requests
generated by the SCRF bit (SCI receiver CPU interrupt
requests enabled)
DMATE — DMA Transfer Enable Bit
CAUTION:
The DMA module is not included on this MCU. Writing a logic 1 to
DMARE or DMATE may adversely affect MCU performance.
1 = SCTE DMA service requests enabled; SCTE CPU interrupt
requests disabled
0 = SCTE DMA service requests disabled; SCTE CPU interrupt
requests enabled
ORIE — Receiver Overrun Interrupt Enable Bit
This read/write bit enables SCI error CPU interrupt requests
generated by the receiver overrun bit, OR. Reset clears ORIE.
1 = SCI error CPU interrupt requests from OR bit enabled
0 = SCI error CPU interrupt requests from OR bit disabled
NEIE — Receiver Noise Error Interrupt Enable Bit
This read/write bit enables SCI error CPU interrupt requests
generated by the noise error bit, NE. Reset clears NEIE.
1 = SCI error CPU interrupt requests from NE bit enabled
0 = SCI error CPU interrupt requests from NE bit disabled
FEIE — Receiver Framing Error Interrupt Enable Bit
This read/write bit enables SCI error CPU interrupt requests
generated by the framing error bit, FE. Reset clears FEIE.
1 = SCI error CPU interrupt requests from FE bit enabled
0 = SCI error CPU interrupt requests from FE bit disabled
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
Data Sheet
275
Freescale Semiconductor, Inc.
Infrared Serial Communications
PEIE — Receiver Parity Error Interrupt Enable Bit
This read/write bit enables SCI error CPU interrupt
requests generated by the parity error bit, PE. (See 13.11.4 SCI
Status Register 1.) Reset clears PEIE.
1 = SCI error CPU interrupt requests from PE bit enabled
0 = SCI error CPU interrupt requests from PE bit disabled
Freescale Semiconductor, Inc...
13.11.4 SCI Status Register 1
SCI status register 1 contains flags to signal these conditions:
•
Transfer of SCDR data to transmit shift register complete
•
Transmission complete
•
Transfer of receive shift register data to SCDR complete
•
Receiver input idle
•
Receiver overrun
•
Noisy data
•
Framing error
•
Parity error
Address:
Read:
$0016
Bit 7
6
5
4
3
2
1
Bit 0
SCTE
TC
SCRF
IDLE
OR
NF
FE
PE
1
1
0
0
0
0
0
0
Write:
Reset:
= Unimplemented
Figure 13-15. SCI Status Register 1 (SCS1)
SCTE — SCI Transmitter Empty Bit
This clearable, read-only bit is set when the SCDR transfers a
character to the transmit shift register. SCTE can generate an SCI
transmitter CPU interrupt request. When the SCTIE bit in SCC2 is set,
SCTE generates an SCI transmitter CPU interrupt request. In normal
Data Sheet
276
MC68HC908LJ24/LK24 — Rev. 2
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Infrared Serial Communications Interface Module (IRSCI)
I/O Registers
operation, clear the SCTE bit by reading SCS1 with SCTE set and
then writing to SCDR. Reset sets the SCTE bit.
1 = SCDR data transferred to transmit shift register
0 = SCDR data not transferred to transmit shift register
TC — Transmission Complete Bit
Freescale Semiconductor, Inc...
This read-only bit is set when the SCTE bit is set, and no data,
preamble, or break character is being transmitted. TC generates an
SCI transmitter CPU interrupt request if the TCIE bit in SCC2 is also
set. TC is automatically cleared when data, preamble or break is
queued and ready to be sent. There may be up to 1.5 transmitter
clocks of latency between queueing data, preamble, and break and
the transmission actually starting. Reset sets the TC bit.
1 = No transmission in progress
0 = Transmission in progress
SCRF — SCI Receiver Full Bit
This clearable, read-only bit is set when the data in the receive shift
register transfers to the SCI data register. SCRF can generate an SCI
receiver CPU interrupt request. When the SCRIE bit in SCC2 is set,
SCRF generates a CPU interrupt request. In normal operation, clear
the SCRF bit by reading SCS1 with SCRF set and then reading the
SCDR. Reset clears SCRF.
1 = Received data available in SCDR
0 = Data not available in SCDR
IDLE — Receiver Idle Bit
This clearable, read-only bit is set when 10 or 11 consecutive logic 1s
appear on the receiver input. IDLE generates an SCI receiver CPU
interrupt request if the ILIE bit in SCC2 is also set. Clear the IDLE bit
by reading SCS1 with IDLE set and then reading the SCDR. After the
receiver is enabled, it must receive a valid character that sets the
SCRF bit before an idle condition can set the IDLE bit. Also, after the
IDLE bit has been cleared, a valid character must again set the SCRF
bit before an idle condition can set the IDLE bit. Reset clears the IDLE
bit.
1 = Receiver input idle
0 = Receiver input active (or idle since the IDLE bit was cleared)
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
Data Sheet
277
Freescale Semiconductor, Inc.
Infrared Serial Communications
OR — Receiver Overrun Bit
This clearable, read-only bit is set when software fails to read the
SCDR before the receive shift register receives the next character.
The OR bit generates an SCI error CPU interrupt request if the ORIE
bit in SCC3 is also set. The data in the shift register is lost, but the data
already in the SCDR is not affected. Clear the OR bit by reading SCS1
with OR set and then reading the SCDR. Reset clears the OR bit.
1 = Receive shift register full and SCRF = 1
0 = No receiver overrun
Freescale Semiconductor, Inc...
Software latency may allow an overrun to occur between reads of
SCS1 and SCDR in the flag-clearing sequence. Figure 13-16 shows
the normal flag-clearing sequence and an example of an overrun
caused by a delayed flag-clearing sequence. The delayed read of
SCDR does not clear the OR bit because OR was not set when SCS1
was read. Byte 2 caused the overrun and is lost. The next flagclearing sequence reads byte 3 in the SCDR instead of byte 2.
In applications that are subject to software latency or in which it is
important to know which byte is lost due to an overrun, the flagclearing routine can check the OR bit in a second read of SCS1 after
reading the data register.
NF — Receiver Noise Flag Bit
This clearable, read-only bit is set when the SCI detects noise on the
RxD pin. NF generates an SCI error CPU interrupt request if the NEIE
bit in SCC3 is also set. Clear the NF bit by reading SCS1 and then
reading the SCDR. Reset clears the NF bit.
1 = Noise detected
0 = No noise detected
FE — Receiver Framing Error Bit
This clearable, read-only bit is set when a logic 0 is accepted as the
stop bit. FE generates an SCI error CPU interrupt request if the FEIE
bit in SCC3 also is set. Clear the FE bit by reading SCS1 with FE set
and then reading the SCDR. Reset clears the FE bit.
1 = Framing error detected
0 = No framing error detected
Data Sheet
278
MC68HC908LJ24/LK24 — Rev. 2
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Infrared Serial Communications Interface Module (IRSCI)
I/O Registers
Freescale Semiconductor, Inc...
BYTE 1
BYTE 2
BYTE 3
SCRF = 0
SCRF = 1
SCRF = 0
SCRF = 1
SCRF = 0
SCRF = 1
NORMAL FLAG CLEARING SEQUENCE
BYTE 4
READ SCS1
SCRF = 1
OR = 0
READ SCS1
SCRF = 1
OR = 0
READ SCS1
SCRF = 1
OR = 0
READ SCDR
BYTE 1
READ SCDR
BYTE 2
READ SCDR
BYTE 3
BYTE 1
BYTE 2
BYTE 3
SCRF = 0
OR = 0
SCRF = 1
OR = 1
SCRF = 0
OR = 1
SCRF = 1
SCRF = 1
OR = 1
DELAYED FLAG CLEARING SEQUENCE
BYTE 4
READ SCS1
SCRF = 1
OR = 0
READ SCS1
SCRF = 1
OR = 1
READ SCDR
BYTE 1
READ SCDR
BYTE 3
Figure 13-16. Flag Clearing Sequence
PE — Receiver Parity Error Bit
This clearable, read-only bit is set when the SCI detects a parity error
in incoming data. PE generates an SCI error CPU interrupt request if
the PEIE bit in SCC3 is also set. Clear the PE bit by reading SCS1
with PE set and then reading the SCDR. Reset clears the PE bit.
1 = Parity error detected
0 = No parity error detected
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
Data Sheet
279
Freescale Semiconductor, Inc.
Infrared Serial Communications
13.11.5 SCI Status Register 2 (SCS2)
SCI status register 2 contains flags to signal the following conditions:
•
Break character detected
•
Incoming data
Address:
Freescale Semiconductor, Inc...
Read:
$0017
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
BKF
RPF
0
0
0
0
0
0
0
0
Write:
Reset:
= Unimplemented
Figure 13-17. SCI Status Register 2 (SCS2)
BKF — Break Flag Bit
This clearable, read-only bit is set when the SCI detects a break
character on the RxD pin. In SCS1, the FE and SCRF bits are also
set. In 9-bit character transmissions, the R8 bit in SCC3 is cleared.
BKF does not generate a CPU interrupt request. Clear BKF by
reading SCS2 with BKF set and then reading the SCDR. Once
cleared, BKF can become set again only after logic 1s again appear
on the RxD pin followed by another break character. Reset clears the
BKF bit.
1 = Break character detected
0 = No break character detected
RPF — Reception in Progress Flag Bit
This read-only bit is set when the receiver detects a logic 0 during the
RT1 time period of the start bit search. RPF does not generate an
interrupt request. RPF is reset after the receiver detects false start bits
(usually from noise or a baud rate mismatch) or when the receiver
detects an idle character. Polling RPF before disabling the SCI
module or entering stop mode can show whether a reception is in
progress.
1 = Reception in progress
0 = No reception in progress
Data Sheet
280
MC68HC908LJ24/LK24 — Rev. 2
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Infrared Serial Communications Interface Module (IRSCI)
I/O Registers
13.11.6 SCI Data Register
The SCI data register is the buffer between the internal data bus and the
receive and transmit shift registers. Reset has no effect on data in the
SCI data register.
Freescale Semiconductor, Inc...
Address:
$0018
Bit 7
6
5
4
3
2
1
Bit 0
Read:
R7
R6
R5
R4
R3
R2
R1
R0
Write:
T7
T6
T5
T4
T3
T2
T1
T0
Reset:
Unaffected by reset
Figure 13-18. SCI Data Register (SCDR)
R7/T7–R0/T0 — Receive/Transmit Data Bits
Reading the SCDR accesses the read-only received data bits,
R7–R0. Writing to the SCDR writes the data to be transmitted, T7–T0.
Reset has no effect on the SCDR.
NOTE:
Do not use read/modify/write instructions on the SCI data register.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
Data Sheet
281
Freescale Semiconductor, Inc.
Infrared Serial Communications
13.11.7 SCI Baud Rate Register
The baud rate register selects the baud rate for both the receiver and the
transmitter.
Address:
$0019
Bit 7
Read:
6
5
4
3
2
1
Bit 0
SCP1
SCP0
R
SCR2
SCR1
SCR0
0
0
0
0
0
0
R
= Reserved
0
CKS
Write:
Freescale Semiconductor, Inc...
Reset:
0
0
= Unimplemented
Figure 13-19. SCI Baud Rate Register (SCBR)
CKS — Baud Clock Input Select
This read/write bit selects the source clock for the baud rate
generator. Reset clears the CKS bit, selecting CGMXCLK.
1 = Bus clock drives the baud rate generator
0 = CGMXCLK drives the baud rate generator
SCP1 and SCP0 — SCI Baud Rate Prescaler Bits
These read/write bits select the baud rate prescaler divisor as shown
in Table 13-7. Reset clears SCP1 and SCP0.
Table 13-7. SCI Baud Rate Prescaling
SCP1 and SCP0
Prescaler Divisor (PD)
00
1
01
3
10
4
11
13
SCR2–SCR0 — SCI Baud Rate Select Bits
These read/write bits select the SCI baud rate divisor as shown in
Table 13-8. Reset clears SCR2–SCR0.
Data Sheet
282
MC68HC908LJ24/LK24 — Rev. 2
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Infrared Serial Communications Interface Module (IRSCI)
I/O Registers
Freescale Semiconductor, Inc...
Table 13-8. SCI Baud Rate Selection
SCR2, SCR1, and SCR0
Baud Rate Divisor (BD)
000
1
001
2
010
4
011
8
100
16
101
32
110
64
111
128
Use this formula to calculate the SCI baud rate:
SCI clock source
baud rate = --------------------------------------------16 × PD × BD
where:
SCI clock source = fBUS or CGMXCLK
(selected by CKS bit)
PD = prescaler divisor
BD = baud rate divisor
Table 13-9 shows the SCI baud rates that can be generated with a
4.9152-MHz bus clock when fBUS is selected as SCI clock source.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
Data Sheet
283
Freescale Semiconductor, Inc.
Infrared Serial Communications
Freescale Semiconductor, Inc...
Table 13-9. SCI Baud Rate Selection Examples
SCP1 and
SCP0
Prescaler
Divisor (PD)
SCR2, SCR1,
and SCR0
Baud Rate
Divisor (BD)
Baud Rate
(fBUS = 4.9152 MHz)
00
1
000
1
—
00
1
001
2
—
00
1
010
4
76800
00
1
011
8
38400
00
1
100
16
19200
00
1
101
32
9600
00
1
110
64
4800
00
1
111
128
2400
01
3
000
1
—
01
3
001
2
51200
01
3
010
4
25600
01
3
011
8
12800
01
3
100
16
6400
01
3
101
32
3200
01
3
110
64
1600
01
3
111
128
800
10
4
000
1
76800
10
4
001
2
38400
10
4
010
4
19200
10
4
011
8
9600
10
4
100
16
4800
10
4
101
32
2400
10
4
110
64
1200
10
4
111
128
600
11
13
000
1
23632
11
13
001
2
11816
11
13
010
4
5908
11
13
011
8
2954
11
13
100
16
1477
11
13
101
32
739
11
13
110
64
369
11
13
111
128
185
Data Sheet
284
MC68HC908LJ24/LK24 — Rev. 2
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Infrared Serial Communications Interface Module (IRSCI)
I/O Registers
13.11.8 SCI Infrared Control Register
The infrared control register contains the control bits for the infrared submodule.
•
Enables the infrared sub-module
•
Selects the infrared transmitter narrow pulse width
Address:
$001A
Freescale Semiconductor, Inc...
Bit 7
Read:
6
5
4
0
0
0
R
3
2
1
Bit 0
R
TNP1
TNP0
IREN
0
0
0
0
R
= Reserved
Write:
Reset:
0
0
0
= Unimplemented
0
Figure 13-20. SCI Infrared Control Register (SCIRCR)
TNP1 and TNP0 — Transmitter Narrow Pulse Bits
These read/write bits select the infrared transmitter narrow pulse
width as shown in Table 13-10. Reset clears TNP1 and TNP0.
Table 13-10. Infrared Narrow Pulse Selection
TNP1 and TNP0
Prescaler Divisor (PD)
00
SCI transmits a 3/16 narrow pulse
01
SCI transmits a 1/16 narrow pulse
10
SCI transmits a 1/32 narrow pulse
11
IREN — Infrared Enable Bit
This read/write bit enables the infrared sub-module for encoding and
decoding the SCI data stream. When this bit is clear, the infrared submodule is disabled. Reset clears the IREN bit.
1 = Infrared sub-module enabled
0 = Infrared sub-module disabled
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
Data Sheet
285
Freescale Semiconductor, Inc.
Freescale Semiconductor, Inc...
Infrared Serial Communications
Data Sheet
286
MC68HC908LJ24/LK24 — Rev. 2
Infrared Serial Communications Interface Module (IRSCI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Data Sheet – MC68HC908LJ24
Section 14. Serial Peripheral Interface Module (SPI)
Freescale Semiconductor, Inc...
14.1 Contents
14.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
14.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
14.4
Pin Name Conventions and I/O Register Addresses . . . . . . . 289
14.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .290
14.5.1 Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
14.5.2 Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
14.6 Transmission Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293
14.6.1 Clock Phase and Polarity Controls. . . . . . . . . . . . . . . . . . . 293
14.6.2 Transmission Format When CPHA = 0 . . . . . . . . . . . . . . . 294
14.6.3 Transmission Format When CPHA = 1 . . . . . . . . . . . . . . . 296
14.6.4 Transmission Initiation Latency . . . . . . . . . . . . . . . . . . . . . 297
14.7
Queuing Transmission Data . . . . . . . . . . . . . . . . . . . . . . . . . . 299
14.8 Error Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
14.8.1 Overflow Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
14.8.2 Mode Fault Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
14.9
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .304
14.10 Resetting the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
14.11 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
14.11.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .307
14.11.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .307
14.12 SPI During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 308
14.13 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
14.13.1 MISO (Master In/Slave Out) . . . . . . . . . . . . . . . . . . . . . . . . 309
14.13.2 MOSI (Master Out/Slave In) . . . . . . . . . . . . . . . . . . . . . . . . 309
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Serial Peripheral Interface Module (SPI)
For More Information On This Product,
Go to: www.freescale.com
287
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
14.13.3 SPSCK (Serial Clock). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
14.13.4 SS (Slave Select) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
14.13.5 CGND (Clock Ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Freescale Semiconductor, Inc...
14.14 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
14.14.1 SPI Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
14.14.2 SPI Status and Control Register . . . . . . . . . . . . . . . . . . . . 314
14.14.3 SPI Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
14.2 Introduction
This section describes the serial peripheral interface (SPI) module,
which allows full-duplex, synchronous, serial communications with
peripheral devices.
14.3 Features
Features of the SPI module include the following:
•
Full-duplex operation
•
Master and slave modes
•
Double-buffered operation with separate transmit and receive
registers
•
Four master mode frequencies (maximum = bus frequency ÷ 2)
•
Maximum slave mode frequency = bus frequency
•
Serial clock with programmable polarity and phase
•
Two separately enabled interrupts:
– SPRF (SPI receiver full)
– SPTE (SPI transmitter empty)
Data Sheet
288
•
Mode fault error flag with CPU interrupt capability
•
Overflow error flag with CPU interrupt capability
•
Programmable wired-OR mode
MC68HC908LJ24/LK24 — Rev. 2
Serial Peripheral Interface Module (SPI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
Pin Name Conventions and I/O Register Addresses
14.4 Pin Name Conventions and I/O Register Addresses
The text that follows describes the SPI. The SPI I/O pin names are SS
(slave select), SPSCK (SPI serial clock), CGND (clock ground), MOSI
(master out slave in), and MISO (master in/slave out). The SPI shares
four I/O pins with four parallel I/O ports.
Freescale Semiconductor, Inc...
The full names of the SPI I/O pins are shown in Table 14-1. The generic
pin names appear in the text that follows.
Table 14-1. Pin Name Conventions
SPI Generic
Pin Names:
MISO
MOSI
SS
SPSCK
CGND
PTD0/SS PTD3/SPSCK/
Full SPI
Pin Names: SPI PTD1/MISO PTD2/MOSI
CALIN
CALOUT
NOTE:
VSS
The SS and SPSCK pins are also shared with CALIN and CALOUT
respectively. To avoid erratic behavior, these two pins should never be
configured for use as SPI and RTC calibration simultaneously.
Figure 14-1 summarizes the SPI I/O registers.
=
Addr.
Register Name
$0010
Read:
SPI Control Register
Write:
(SPCR)
Reset:
$0011
Read:
SPI Status and Control
Register Write:
(SPSCR)
Reset:
$0012
Read:
SPI Data Register
Write:
(SPDR)
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
SPRIE
R
SPMSTR
CPOL
CPHA
SPWOM
SPE
SPTIE
0
0
1
0
1
0
0
0
OVRF
MODF
SPTE
MODFEN
SPR1
SPR0
SPRF
ERRIE
0
0
0
0
1
0
0
0
R7
R6
R5
R4
R3
R2
R1
R0
T7
T6
T5
T4
T3
T2
T1
T0
Unaffected by reset
= Unimplemented
R
= Reserved
Figure 14-1. SPI I/O Register Summary
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Serial Peripheral Interface Module (SPI)
For More Information On This Product,
Go to: www.freescale.com
289
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
14.5 Functional Description
Figure 14-2 shows the structure of the SPI module.
INTERNAL BUS
TRANSMIT DATA REGISTER
CGMOUT ÷ 2
FROM SIM
SHIFT REGISTER
7
6
5
4
3
2
1
MISO
0
Freescale Semiconductor, Inc...
÷2
MOSI
÷8
CLOCK
DIVIDER ÷ 32
RECEIVE DATA REGISTER
PIN
CONTROL
LOGIC
÷ 128
SPMSTR
SPE
CLOCK
SELECT
SPR1
SPSCK
M
CLOCK
LOGIC
S
SS
SPR0
SPMSTR
RESERVED
MODFEN
TRANSMITTER CPU INTERRUPT REQUEST
RESERVED
CPHA
CPOL
SPWOM
ERRIE
SPI
CONTROL
SPTIE
SPRIE
RECEIVER/ERROR CPU INTERRUPT REQUEST
R
SPE
SPRF
SPTE
OVRF
MODF
Figure 14-2. SPI Module Block Diagram
The SPI module allows full-duplex, synchronous, serial communication
between the MCU and peripheral devices, including other MCUs.
Software can poll the SPI status flags or SPI operation can be interruptdriven.
The following paragraphs describe the operation of the SPI module.
Data Sheet
290
MC68HC908LJ24/LK24 — Rev. 2
Serial Peripheral Interface Module (SPI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
Functional Description
14.5.1 Master Mode
The SPI operates in master mode when the SPI master bit, SPMSTR, is
set.
NOTE:
Configure the SPI modules as master or slave before enabling them.
Enable the master SPI before enabling the slave SPI. Disable the slave
SPI before disabling the master SPI. (See 14.14.1 SPI Control
Register.)
Freescale Semiconductor, Inc...
Only a master SPI module can initiate transmissions. Software begins
the transmission from a master SPI module by writing to the transmit
data register. If the shift register is empty, the byte immediately transfers
to the shift register, setting the SPI transmitter empty bit, SPTE. The byte
begins shifting out on the MOSI pin under the control of the serial clock.
(See Figure 14-3.)
MASTER MCU
SHIFT REGISTER
SLAVE MCU
MISO
MISO
MOSI
MOSI
SPSCK
BAUD RATE
GENERATOR
SS
SHIFT REGISTER
SPSCK
VDD
SS
Figure 14-3. Full-Duplex Master-Slave Connections
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Serial Peripheral Interface Module (SPI)
For More Information On This Product,
Go to: www.freescale.com
291
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
Freescale Semiconductor, Inc...
The SPR1 and SPR0 bits control the baud rate generator and determine
the speed of the shift register. (See 14.14.2 SPI Status and Control
Register.) Through the SPSCK pin, the baud rate generator of the
master also controls the shift register of the slave peripheral.
As the byte shifts out on the MOSI pin of the master, another byte shifts
in from the slave on the master’s MISO pin. The transmission ends when
the receiver full bit, SPRF, becomes set. At the same time that SPRF
becomes set, the byte from the slave transfers to the receive data
register. In normal operation, SPRF signals the end of a transmission.
Software clears SPRF by reading the SPI status and control register with
SPRF set and then reading the SPI data register. Writing to the SPI data
register clears the SPTE bit.
14.5.2 Slave Mode
The SPI operates in slave mode when the SPMSTR bit is clear. In slave
mode, the SPSCK pin is the input for the serial clock from the master
MCU. Before a data transmission occurs, the SS pin of the slave SPI
must be at logic 0. SS must remain low until the transmission is
complete. (See 14.8.2 Mode Fault Error.)
In a slave SPI module, data enters the shift register under the control of
the serial clock from the master SPI module. After a byte enters the shift
register of a slave SPI, it transfers to the receive data register, and the
SPRF bit is set. To prevent an overflow condition, slave software then
must read the receive data register before another full byte enters the
shift register.
The maximum frequency of the SPSCK for an SPI configured as a slave
is the bus clock speed (which is twice as fast as the fastest master
SPSCK clock that can be generated). The frequency of the SPSCK for
an SPI configured as a slave does not have to correspond to any SPI
baud rate. The baud rate only controls the speed of the SPSCK
generated by an SPI configured as a master. Therefore, the frequency
of the SPSCK for an SPI configured as a slave can be any frequency
less than or equal to the bus speed.
Data Sheet
292
MC68HC908LJ24/LK24 — Rev. 2
Serial Peripheral Interface Module (SPI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
Transmission Formats
Freescale Semiconductor, Inc...
When the master SPI starts a transmission, the data in the slave shift
register begins shifting out on the MISO pin. The slave can load its shift
register with a new byte for the next transmission by writing to its transmit
data register. The slave must write to its transmit data register at least
one bus cycle before the master starts the next transmission. Otherwise,
the byte already in the slave shift register shifts out on the MISO pin.
Data written to the slave shift register during a transmission remains in
a buffer until the end of the transmission.
When the clock phase bit (CPHA) is set, the first edge of SPSCK starts
a transmission. When CPHA is clear, the falling edge of SS starts a
transmission. (See 14.6 Transmission Formats.)
NOTE:
SPSCK must be in the proper idle state before the slave is enabled to
prevent SPSCK from appearing as a clock edge.
14.6 Transmission Formats
During an SPI transmission, data is simultaneously transmitted (shifted
out serially) and received (shifted in serially). A serial clock synchronizes
shifting and sampling on the two serial data lines. A slave select line
allows selection of an individual slave SPI device; slave devices that are
not selected do not interfere with SPI bus activities. On a master SPI
device, the slave select line can optionally be used to indicate multiplemaster bus contention.
14.6.1 Clock Phase and Polarity Controls
Software can select any of four combinations of serial clock (SPSCK)
phase and polarity using two bits in the SPI control register (SPCR). The
clock polarity is specified by the CPOL control bit, which selects an
active high or low clock and has no significant effect on the transmission
format.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Serial Peripheral Interface Module (SPI)
For More Information On This Product,
Go to: www.freescale.com
293
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
The clock phase (CPHA) control bit selects one of two fundamentally
different transmission formats. The clock phase and polarity should be
identical for the master SPI device and the communicating slave device.
In some cases, the phase and polarity are changed between
transmissions to allow a master device to communicate with peripheral
slaves having different requirements.
Freescale Semiconductor, Inc...
NOTE:
Before writing to the CPOL bit or the CPHA bit, disable the SPI by
clearing the SPI enable bit (SPE).
14.6.2 Transmission Format When CPHA = 0
Figure 14-4 shows an SPI transmission in which CPHA is logic 0. The
figure should not be used as a replacement for data sheet parametric
information.
Two waveforms are shown for SPSCK: one for CPOL = 0 and another
for CPOL = 1. The diagram may be interpreted as a master or slave
timing diagram since the serial clock (SPSCK), master in/slave out
(MISO), and master out/slave in (MOSI) pins are directly connected
between the master and the slave. The MISO signal is the output from
the slave, and the MOSI signal is the output from the master. The SS line
is the slave select input to the slave. The slave SPI drives its MISO
output only when its slave select input (SS) is at logic 0, so that only the
selected slave drives to the master. The SS pin of the master is not
shown but is assumed to be inactive. The SS pin of the master must be
high or must be reconfigured as general-purpose I/O not affecting the
SPI. (See 14.8.2 Mode Fault Error.) When CPHA = 0, the first SPSCK
edge is the MSB capture strobe. Therefore, the slave must begin driving
its data before the first SPSCK edge, and a falling edge on the SS pin is
used to start the slave data transmission. The slave’s SS pin must be
toggled back to high and then low again between each byte transmitted
as shown in Figure 14-5.
Data Sheet
294
MC68HC908LJ24/LK24 — Rev. 2
Serial Peripheral Interface Module (SPI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
Transmission Formats
SPSCK CYCLE #
FOR REFERENCE
1
2
3
4
5
6
7
8
MSB
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
LSB
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
LSB
SPSCK; CPOL = 0
SPSCK; CPOL =1
MOSI
FROM MASTER
MISO
FROM SLAVE
MSB
SS; TO SLAVE
Freescale Semiconductor, Inc...
CAPTURE STROBE
Figure 14-4. Transmission Format (CPHA = 0)
MISO/MOSI
BYTE 1
BYTE 2
BYTE 3
MASTER SS
SLAVE SS
CPHA = 0
SLAVE SS
CPHA = 1
Figure 14-5. CPHA/SS Timing
When CPHA = 0 for a slave, the falling edge of SS indicates the
beginning of the transmission. This causes the SPI to leave its idle state
and begin driving the MISO pin with the MSB of its data. Once the
transmission begins, no new data is allowed into the shift register from
the transmit data register. Therefore, the SPI data register of the slave
must be loaded with transmit data before the falling edge of SS. Any data
written after the falling edge is stored in the transmit data register and
transferred to the shift register after the current transmission.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Serial Peripheral Interface Module (SPI)
For More Information On This Product,
Go to: www.freescale.com
295
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
14.6.3 Transmission Format When CPHA = 1
Freescale Semiconductor, Inc...
Figure 14-6 shows an SPI transmission in which CPHA is logic 1. The
figure should not be used as a replacement for data sheet parametric
information. Two waveforms are shown for SPSCK: one for CPOL = 0
and another for CPOL = 1. The diagram may be interpreted as a master
or slave timing diagram since the serial clock (SPSCK), master in/slave
out (MISO), and master out/slave in (MOSI) pins are directly connected
between the master and the slave. The MISO signal is the output from
the slave, and the MOSI signal is the output from the master. The SS line
is the slave select input to the slave. The slave SPI drives its MISO
output only when its slave select input (SS) is at logic 0, so that only the
selected slave drives to the master. The SS pin of the master is not
shown but is assumed to be inactive. The SS pin of the master must be
high or must be reconfigured as general-purpose I/O not affecting the
SPI. (See 14.8.2 Mode Fault Error.) When CPHA = 1, the master
begins driving its MOSI pin on the first SPSCK edge. Therefore, the
slave uses the first SPSCK edge as a start transmission signal. The SS
pin can remain low between transmissions. This format may be
preferable in systems having only one master and only one slave driving
the MISO data line.
SPSCK CYCLE #
FOR REFERENCE
1
2
3
4
5
6
7
8
MOSI
FROM MASTER
MSB
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
LSB
MISO
FROM SLAVE
MSB
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
SPSCK; CPOL = 0
SPSCK; CPOL =1
LSB
SS; TO SLAVE
CAPTURE STROBE
Figure 14-6. Transmission Format (CPHA = 1)
Data Sheet
296
MC68HC908LJ24/LK24 — Rev. 2
Serial Peripheral Interface Module (SPI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
Transmission Formats
Freescale Semiconductor, Inc...
When CPHA = 1 for a slave, the first edge of the SPSCK indicates the
beginning of the transmission. This causes the SPI to leave its idle state
and begin driving the MISO pin with the MSB of its data. Once the
transmission begins, no new data is allowed into the shift register from
the transmit data register. Therefore, the SPI data register of the slave
must be loaded with transmit data before the first edge of SPSCK. Any
data written after the first edge is stored in the transmit data register and
transferred to the shift register after the current transmission.
14.6.4 Transmission Initiation Latency
When the SPI is configured as a master (SPMSTR = 1), writing to the
SPDR starts a transmission. CPHA has no effect on the delay to the start
of the transmission, but it does affect the initial state of the SPSCK
signal. When CPHA = 0, the SPSCK signal remains inactive for the first
half of the first SPSCK cycle. When CPHA = 1, the first SPSCK cycle
begins with an edge on the SPSCK line from its inactive to its active
level. The SPI clock rate (selected by SPR1:SPR0) affects the delay
from the write to SPDR and the start of the SPI transmission. (See
Figure 14-7.) The internal SPI clock in the master is a free-running
derivative of the internal MCU clock. To conserve power, it is enabled
only when both the SPE and SPMSTR bits are set. SPSCK edges occur
halfway through the low time of the internal MCU clock. Since the SPI
clock is free-running, it is uncertain where the write to the SPDR occurs
relative to the slower SPSCK. This uncertainty causes the variation in
the initiation delay shown in Figure 14-7. This delay is no longer than a
single SPI bit time. That is, the maximum delay is two MCU bus cycles
for DIV2, eight MCU bus cycles for DIV8, 32 MCU bus cycles for DIV32,
and 128 MCU bus cycles for DIV128.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Serial Peripheral Interface Module (SPI)
For More Information On This Product,
Go to: www.freescale.com
297
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
WRITE
TO SPDR
INITIATION DELAY
BUS
CLOCK
MOSI
MSB
BIT 6
1
2
BIT 5
SPSCK
CPHA = 1
SPSCK
CPHA = 0
Freescale Semiconductor, Inc...
SPSCK CYCLE
NUMBER
3
INITIATION DELAY FROM WRITE SPDR TO TRANSFER BEGIN
WRITE
TO SPDR
BUS
CLOCK
EARLIEST
LATEST
WRITE
TO SPDR
SPSCK = INTERNAL CLOCK ÷ 2;
2 POSSIBLE START POINTS
BUS
CLOCK
EARLIEST
WRITE
TO SPDR
SPSCK = INTERNAL CLOCK ÷ 8;
8 POSSIBLE START POINTS
LATEST
SPSCK = INTERNAL CLOCK ÷ 32;
32 POSSIBLE START POINTS
LATEST
SPSCK = INTERNAL CLOCK ÷ 128;
128 POSSIBLE START POINTS
LATEST
BUS
CLOCK
EARLIEST
WRITE
TO SPDR
BUS
CLOCK
EARLIEST
Figure 14-7. Transmission Start Delay (Master)
Data Sheet
298
MC68HC908LJ24/LK24 — Rev. 2
Serial Peripheral Interface Module (SPI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
Queuing Transmission Data
14.7 Queuing Transmission Data
Freescale Semiconductor, Inc...
The double-buffered transmit data register allows a data byte to be
queued and transmitted. For an SPI configured as a master, a queued
data byte is transmitted immediately after the previous transmission has
completed. The SPI transmitter empty flag (SPTE) indicates when the
transmit data buffer is ready to accept new data. Write to the transmit
data register only when the SPTE bit is high. Figure 14-8 shows the
timing associated with doing back-to-back transmissions with the SPI
(SPSCK has CPHA: CPOL = 1:0).
WRITE TO SPDR
SPTE
1
3
2
8
5
10
SPSCK
CPHA:CPOL = 1:0
MOSI
MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT
6 5 4
6 5 4 3 2 1
6 5 4 3 2 1
BYTE 1
BYTE 2
BYTE 3
4
SPRF
9
6
READ SPSCR
11
7
READ SPDR
12
1 CPU WRITES BYTE 1 TO SPDR, CLEARING SPTE BIT.
7 CPU READS SPDR, CLEARING SPRF BIT.
2 BYTE 1 TRANSFERS FROM TRANSMIT DATA
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.
8 CPU WRITES BYTE 3 TO SPDR, QUEUEING BYTE
3 AND CLEARING SPTE BIT.
9 SECOND INCOMING BYTE TRANSFERS FROM SHIFT
REGISTER TO RECEIVE DATA REGISTER, SETTING
SPRF BIT.
10 BYTE 3 TRANSFERS FROM TRANSMIT DATA
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.
11 CPU READS SPSCR WITH SPRF BIT SET.
3 CPU WRITES BYTE 2 TO SPDR, QUEUEING BYTE 2
AND CLEARING SPTE BIT.
FIRST INCOMING BYTE TRANSFERS FROM SHIFT
REGISTER TO RECEIVE DATA REGISTER, SETTING
SPRF BIT.
5 BYTE 2 TRANSFERS FROM TRANSMIT DATA
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.
6 CPU READS SPSCR WITH SPRF BIT SET.
4
12 CPU READS SPDR, CLEARING SPRF BIT.
Figure 14-8. SPRF/SPTE CPU Interrupt Timing
The transmit data buffer allows back-to-back transmissions without the
slave precisely timing its writes between transmissions as in a system
with a single data buffer. Also, if no new data is written to the data buffer,
the last value contained in the shift register is the next data word to be
transmitted.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Serial Peripheral Interface Module (SPI)
For More Information On This Product,
Go to: www.freescale.com
299
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
Freescale Semiconductor, Inc...
For an idle master or idle slave that has no data loaded into its transmit
buffer, the SPTE is set again no more than two bus cycles after the
transmit buffer empties into the shift register. This allows the user to
queue up a 16-bit value to send. For an already active slave, the load of
the shift register cannot occur until the transmission is completed. This
implies that a back-to-back write to the transmit data register is not
possible. The SPTE indicates when the next write can occur.
14.8 Error Conditions
The following flags signal SPI error conditions:
•
Overflow (OVRF) — Failing to read the SPI data register before
the next full byte enters the shift register sets the OVRF bit. The
new byte does not transfer to the receive data register, and the
unread byte still can be read. OVRF is in the SPI status and control
register.
•
Mode fault error (MODF) — The MODF bit indicates that the
voltage on the slave select pin (SS) is inconsistent with the mode
of the SPI. MODF is in the SPI status and control register.
14.8.1 Overflow Error
The overflow flag (OVRF) becomes set if the receive data register still
has unread data from a previous transmission when the capture strobe
of bit 1 of the next transmission occurs. The bit 1 capture strobe occurs
in the middle of SPSCK cycle 7. (See Figure 14-4 and Figure 14-6.) If
an overflow occurs, all data received after the overflow and before the
OVRF bit is cleared does not transfer to the receive data register and
does not set the SPI receiver full bit (SPRF). The unread data that
transferred to the receive data register before the overflow occurred can
still be read. Therefore, an overflow error always indicates the loss of
data. Clear the overflow flag by reading the SPI status and control
register and then reading the SPI data register.
OVRF generates a receiver/error CPU interrupt request if the error
interrupt enable bit (ERRIE) is also set. The SPRF, MODF, and OVRF
Data Sheet
300
MC68HC908LJ24/LK24 — Rev. 2
Serial Peripheral Interface Module (SPI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
Error Conditions
interrupts share the same CPU interrupt vector. (See Figure 14-11.) It is
not possible to enable MODF or OVRF individually to generate a
receiver/error CPU interrupt request. However, leaving MODFEN low
prevents MODF from being set.
Freescale Semiconductor, Inc...
If the CPU SPRF interrupt is enabled and the OVRF interrupt is not,
watch for an overflow condition. Figure 14-9 shows how it is possible to
miss an overflow. The first part of Figure 14-9 shows how it is possible
to read the SPSCR and SPDR to clear the SPRF without problems.
However, as illustrated by the second transmission example, the OVRF
bit can be set in between the time that SPSCR and SPDR are read.
BYTE 1
BYTE 2
BYTE 3
BYTE 4
1
4
6
8
SPRF
OVRF
READ
SPSCR
2
READ
SPDR
5
3
1
BYTE 1 SETS SPRF BIT.
2
CPU READS SPSCR WITH SPRF BIT SET
AND OVRF BIT CLEAR.
CPU READS BYTE 1 IN SPDR,
CLEARING SPRF BIT.
BYTE 2 SETS SPRF BIT.
3
4
7
5
CPU READS SPSCR WITH SPRF BIT SET
AND OVRF BIT CLEAR.
6
BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.
7
CPU READS BYTE 2 IN SPDR, CLEARING SPRF BIT,
BUT NOT OVRF BIT.
8
BYTE 4 FAILS TO SET SPRF BIT BECAUSE
OVRF BIT IS NOT CLEARED. BYTE 4 IS LOST.
Figure 14-9. Missed Read of Overflow Condition
In this case, an overflow can be missed easily. Since no more SPRF
interrupts can be generated until this OVRF is serviced, it is not obvious
that bytes are being lost as more transmissions are completed. To
prevent this, either enable the OVRF interrupt or do another read of the
SPSCR following the read of the SPDR. This ensures that the OVRF
was not set before the SPRF was cleared and that future transmissions
can set the SPRF bit. Figure 14-10 illustrates this process. Generally, to
avoid this second SPSCR read, enable the OVRF to the CPU by setting
the ERRIE bit.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Serial Peripheral Interface Module (SPI)
For More Information On This Product,
Go to: www.freescale.com
301
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
BYTE 1
SPI RECEIVE
COMPLETE
BYTE 2
5
1
BYTE 3
7
BYTE 4
11
SPRF
OVRF
READ
SPSCR
2
Freescale Semiconductor, Inc...
READ
SPDR
4
3
1
BYTE 1 SETS SPRF BIT.
2
CPU READS SPSCR WITH SPRF BIT SET
AND OVRF BIT CLEAR.
CPU READS BYTE 1 IN SPDR,
CLEARING SPRF BIT.
3
6
9
8
12
14
10
13
8
CPU READS BYTE 2 IN SPDR,
CLEARING SPRF BIT.
9
CPU READS SPSCR AGAIN
TO CHECK OVRF BIT.
10 CPU READS BYTE 2 SPDR,
CLEARING OVRF BIT.
4
CPU READS SPSCR AGAIN
TO CHECK OVRF BIT.
11 BYTE 4 SETS SPRF BIT.
5
BYTE 2 SETS SPRF BIT.
12 CPU READS SPSCR.
6
CPU READS SPSCR WITH SPRF BIT SET
AND OVRF BIT CLEAR.
13 CPU READS BYTE 4 IN SPDR,
CLEARING SPRF BIT.
7
BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.
14 CPU READS SPSCR AGAIN
TO CHECK OVRF BIT.
Figure 14-10. Clearing SPRF When OVRF Interrupt Is Not Enabled
14.8.2 Mode Fault Error
Setting the SPMSTR bit selects master mode and configures the
SPSCK and MOSI pins as outputs and the MISO pin as an input.
Clearing SPMSTR selects slave mode and configures the SPSCK and
MOSI pins as inputs and the MISO pin as an output. The mode fault bit,
MODF, becomes set any time the state of the slave select pin, SS, is
inconsistent with the mode selected by SPMSTR.
To prevent SPI pin contention and damage to the MCU, a mode fault
error occurs if:
•
The SS pin of a slave SPI goes high during a transmission
•
The SS pin of a master SPI goes low at any time
For the MODF flag to be set, the mode fault error enable bit (MODFEN)
must be set. Clearing the MODFEN bit does not clear the MODF flag but
does prevent MODF from being set again after MODF is cleared.
Data Sheet
302
MC68HC908LJ24/LK24 — Rev. 2
Serial Peripheral Interface Module (SPI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
Error Conditions
MODF generates a receiver/error CPU interrupt request if the error
interrupt enable bit (ERRIE) is also set. The SPRF, MODF, and OVRF
interrupts share the same CPU interrupt vector. (See Figure 14-11.) It is
not possible to enable MODF or OVRF individually to generate a
receiver/error CPU interrupt request. However, leaving MODFEN low
prevents MODF from being set.
Freescale Semiconductor, Inc...
In a master SPI with the mode fault enable bit (MODFEN) set, the mode
fault flag (MODF) is set if SS goes to logic 0. A mode fault in a master
SPI causes the following events to occur:
NOTE:
•
If ERRIE = 1, the SPI generates an SPI receiver/error CPU
interrupt request.
•
The SPE bit is cleared.
•
The SPTE bit is set.
•
The SPI state counter is cleared.
•
The data direction register of the shared I/O port regains control of
port drivers.
To prevent bus contention with another master SPI after a mode fault
error, clear all SPI bits of the data direction register of the shared I/O port
before enabling the SPI.
When configured as a slave (SPMSTR = 0), the MODF flag is set if SS
goes high during a transmission. When CPHA = 0, a transmission begins
when SS goes low and ends once the incoming SPSCK goes back to its
idle level following the shift of the eighth data bit. When CPHA = 1, the
transmission begins when the SPSCK leaves its idle level and SS is
already low. The transmission continues until the SPSCK returns to its
idle level following the shift of the last data bit. (See 14.6 Transmission
Formats.)
NOTE:
Setting the MODF flag does not clear the SPMSTR bit. The SPMSTR bit
has no function when SPE = 0. Reading SPMSTR when MODF = 1
shows the difference between a MODF occurring when the SPI is a
master and when it is a slave.
When CPHA = 0, a MODF occurs if a slave is selected (SS is at logic 0)
and later unselected (SS is at logic 1) even if no SPSCK is sent to that
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Serial Peripheral Interface Module (SPI)
For More Information On This Product,
Go to: www.freescale.com
303
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
slave. This happens because SS at logic 0 indicates the start of the
transmission (MISO driven out with the value of MSB) for CPHA = 0.
When CPHA = 1, a slave can be selected and then later unselected with
no transmission occurring. Therefore, MODF does not occur since a
transmission was never begun.
Freescale Semiconductor, Inc...
In a slave SPI (MSTR = 0), the MODF bit generates an SPI
receiver/error CPU interrupt request if the ERRIE bit is set. The MODF
bit does not clear the SPE bit or reset the SPI in any way. Software can
abort the SPI transmission by clearing the SPE bit of the slave.
NOTE:
A logic 1 voltage on the SS pin of a slave SPI puts the MISO pin in a high
impedance state. Also, the slave SPI ignores all incoming SPSCK
clocks, even if it was already in the middle of a transmission.
To clear the MODF flag, read the SPSCR with the MODF bit set and then
write to the SPCR register. This entire clearing mechanism must occur
with no MODF condition existing or else the flag is not cleared.
14.9 Interrupts
Four SPI status flags can be enabled to generate CPU interrupt
requests.
Table 14-2. SPI Interrupts
Flag
Data Sheet
304
Request
SPTE
Transmitter empty
SPI transmitter CPU interrupt request
(DMAS = 0, SPTIE = 1, SPE = 1)
SPRF
Receiver full
SPI receiver CPU interrupt request
(DMAS = 0, SPRIE = 1)
OVRF
Overflow
SPI receiver/error interrupt request (ERRIE = 1)
MODF
Mode fault
SPI receiver/error interrupt request (ERRIE = 1)
MC68HC908LJ24/LK24 — Rev. 2
Serial Peripheral Interface Module (SPI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
Interrupts
Reading the SPI status and control register with SPRF set and then
reading the receive data register clears SPRF. The clearing mechanism
for the SPTE flag is always just a write to the transmit data register.
The SPI transmitter interrupt enable bit (SPTIE) enables the SPTE flag
to generate transmitter CPU interrupt requests, provided that the SPI is
enabled (SPE = 1).
Freescale Semiconductor, Inc...
The SPI receiver interrupt enable bit (SPRIE) enables the SPRF bit to
generate receiver CPU interrupt requests, regardless of the state of the
SPE bit. (See Figure 14-11.)
The error interrupt enable bit (ERRIE) enables both the MODF and
OVRF bits to generate a receiver/error CPU interrupt request.
The mode fault enable bit (MODFEN) can prevent the MODF flag from
being set so that only the OVRF bit is enabled by the ERRIE bit to
generate receiver/error CPU interrupt requests.
NOT AVAILABLE
SPTE
SPTIE
SPE
SPI TRANSMITTER
CPU INTERRUPT REQUEST
R
NOT AVAILABLE
SPRIE
SPRF
SPI RECEIVER/ERROR
CPU INTERRUPT REQUEST
ERRIE
MODF
OVRF
Figure 14-11. SPI Interrupt Request Generation
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Serial Peripheral Interface Module (SPI)
For More Information On This Product,
Go to: www.freescale.com
305
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
Freescale Semiconductor, Inc...
The following sources in the SPI status and control register can generate
CPU interrupt requests:
•
SPI receiver full bit (SPRF) — The SPRF bit becomes set every
time a byte transfers from the shift register to the receive data
register. If the SPI receiver interrupt enable bit, SPRIE, is also set,
SPRF generates an SPI receiver/error CPU interrupt request.
•
SPI transmitter empty (SPTE) — The SPTE bit becomes set every
time a byte transfers from the transmit data register to the shift
register. If the SPI transmit interrupt enable bit, SPTIE, is also set,
SPTE generates an SPTE CPU interrupt request.
14.10 Resetting the SPI
Any system reset completely resets the SPI. Partial resets occur
whenever the SPI enable bit (SPE) is low. Whenever SPE is low, the
following occurs:
•
The SPTE flag is set.
•
Any transmission currently in progress is aborted.
•
The shift register is cleared.
•
The SPI state counter is cleared, making it ready for a new
complete transmission.
•
All the SPI port logic is defaulted back to being general-purpose
I/O.
These items are reset only by a system reset:
•
All control bits in the SPCR register
•
All control bits in the SPSCR register (MODFEN, ERRIE, SPR1,
and SPR0)
•
The status flags SPRF, OVRF, and MODF
By not resetting the control bits when SPE is low, the user can clear SPE
between transmissions without having to set all control bits again when
SPE is set back high for the next transmission.
Data Sheet
306
MC68HC908LJ24/LK24 — Rev. 2
Serial Peripheral Interface Module (SPI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
Low-Power Modes
By not resetting the SPRF, OVRF, and MODF flags, the user can still
service these interrupts after the SPI has been disabled. The user can
disable the SPI by writing 0 to the SPE bit. The SPI can also be disabled
by a mode fault occurring in an SPI that was configured as a master with
the MODFEN bit set.
Freescale Semiconductor, Inc...
14.11 Low-Power Modes
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.
14.11.1 Wait Mode
The SPI module remains active after the execution of a WAIT instruction.
In wait mode the SPI module registers are not accessible by the CPU.
Any enabled CPU interrupt request from the SPI module can bring the
MCU out of wait mode.
If SPI module functions are not required during wait mode, reduce power
consumption by disabling the SPI module before executing the WAIT
instruction.
To exit wait mode when an overflow condition occurs, enable the OVRF
bit to generate CPU interrupt requests by setting the error interrupt
enable bit (ERRIE). (See 14.9 Interrupts.)
14.11.2 Stop Mode
The SPI module is inactive after the execution of a STOP instruction.
The STOP instruction does not affect register conditions. SPI operation
resumes after an external interrupt. If stop mode is exited by reset, any
transfer in progress is aborted, and the SPI is reset.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Serial Peripheral Interface Module (SPI)
For More Information On This Product,
Go to: www.freescale.com
307
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
14.12 SPI During Break Interrupts
Freescale Semiconductor, Inc...
The system integration module (SIM) controls whether status bits in
other modules can be cleared during the break state. The BCFE bit in
the SIM break flag control register (SBFCR) enables software to clear
status bits during the break state. (See Section 9. System Integration
Module (SIM).)
To allow software to clear status bits during a break interrupt, write a
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it
remains cleared when the MCU exits the break state.
To protect status bits during the break state, write a logic 0 to the BCFE
bit. With BCFE at logic 0 (its default state), software can read and write
I/O registers during the break state without affecting status bits. Some
status bits have a 2-step read/write clearing procedure. If software does
the first step on such a bit before the break, the bit cannot change during
the break state as long as BCFE is at logic 0. After the break, doing the
second step clears the status bit.
Since the SPTE bit cannot be cleared during a break with the BCFE bit
cleared, a write to the transmit data register in break mode does not
initiate a transmission nor is this data transferred into the shift register.
Therefore, a write to the SPDR in break mode with the BCFE bit cleared
has no effect.
14.13 I/O Signals
The SPI module has five I/O pins and shares four of them with a parallel
I/O port. They are:
Data Sheet
308
•
MISO — Data received
•
MOSI — Data transmitted
•
SPSCK — Serial clock
•
SS — Slave select
•
CGND — Clock ground (internally connected to VSS)
MC68HC908LJ24/LK24 — Rev. 2
Serial Peripheral Interface Module (SPI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
I/O Signals
The SPI has limited inter-integrated circuit (I2C) capability (requiring
software support) as a master in a single-master environment. To
communicate with I2C peripherals, MOSI becomes an open-drain output
when the SPWOM bit in the SPI control register is set. In I2C
communication, the MOSI and MISO pins are connected to a
bidirectional pin from the I2C peripheral and through a pullup resistor to
VDD.
Freescale Semiconductor, Inc...
14.13.1 MISO (Master In/Slave Out)
MISO is one of the two SPI module pins that transmits serial data. In full
duplex operation, the MISO pin of the master SPI module is connected
to the MISO pin of the slave SPI module. The master SPI simultaneously
receives data on its MISO pin and transmits data from its MOSI pin.
Slave output data on the MISO pin is enabled only when the SPI is
configured as a slave. The SPI is configured as a slave when its
SPMSTR bit is logic 0 and its SS pin is at logic 0. To support a multipleslave system, a logic 1 on the SS pin puts the MISO pin in a highimpedance state.
When enabled, the SPI controls data direction of the MISO pin
regardless of the state of the data direction register of the shared I/O
port.
14.13.2 MOSI (Master Out/Slave In)
MOSI is one of the two SPI module pins that transmits serial data. In fullduplex operation, the MOSI pin of the master SPI module is connected
to the MOSI pin of the slave SPI module. The master SPI simultaneously
transmits data from its MOSI pin and receives data on its MISO pin.
When enabled, the SPI controls data direction of the MOSI pin
regardless of the state of the data direction register of the shared I/O
port.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Serial Peripheral Interface Module (SPI)
For More Information On This Product,
Go to: www.freescale.com
309
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
14.13.3 SPSCK (Serial Clock)
Freescale Semiconductor, Inc...
The serial clock synchronizes data transmission between master and
slave devices. In a master MCU, the SPSCK pin is the clock output. In a
slave MCU, the SPSCK pin is the clock input. In full-duplex operation,
the master and slave MCUs exchange a byte of data in eight serial clock
cycles.
When enabled, the SPI controls data direction of the SPSCK pin
regardless of the state of the data direction register of the shared I/O
port.
14.13.4 SS (Slave Select)
The SS pin has various functions depending on the current state of the
SPI. For an SPI configured as a slave, the SS is used to select a slave.
For CPHA = 0, the SS is used to define the start of a transmission. (See
14.6 Transmission Formats.) Since it is used to indicate the start of a
transmission, the SS must be toggled high and low between each byte
transmitted for the CPHA = 0 format. However, it can remain low
between transmissions for the CPHA = 1 format. See Figure 14-12.
MISO/MOSI
BYTE 1
BYTE 2
BYTE 3
MASTER SS
SLAVE SS
CPHA = 0
SLAVE SS
CPHA = 1
Figure 14-12. CPHA/SS Timing
When an SPI is configured as a slave, the SS pin is always configured
as an input. It cannot be used as a general-purpose I/O regardless of the
state of the MODFEN control bit. However, the MODFEN bit can still
prevent the state of the SS from creating a MODF error. (See 14.14.2
SPI Status and Control Register.)
NOTE:
Data Sheet
310
A logic 1 voltage on the SS pin of a slave SPI puts the MISO pin in a highimpedance state. The slave SPI ignores all incoming SPSCK clocks,
even if it was already in the middle of a transmission.
MC68HC908LJ24/LK24 — Rev. 2
Serial Peripheral Interface Module (SPI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
I/O Signals
Freescale Semiconductor, Inc...
When an SPI is configured as a master, the SS input can be used in
conjunction with the MODF flag to prevent multiple masters from driving
MOSI and SPSCK. (See 14.8.2 Mode Fault Error.) For the state of the
SS pin to set the MODF flag, the MODFEN bit in the SPSCK register
must be set. If the MODFEN bit is low for an SPI master, the SS pin can
be used as a general-purpose I/O under the control of the data direction
register of the shared I/O port. With MODFEN high, it is an input-only pin
to the SPI regardless of the state of the data direction register of the
shared I/O port.
The CPU can always read the state of the SS pin by configuring the
appropriate pin as an input and reading the port data register. (See
Table 14-3.)
Table 14-3. SPI Configuration
SPE
SPMSTR
MODFEN
SPI Configuration
State of SS Logic
0
X(1)
X
Not enabled
General-purpose I/O;
SS ignored by SPI
1
0
X
Slave
Input-only to SPI
1
1
0
Master without MODF
General-purpose I/O;
SS ignored by SPI
1
1
1
Master with MODF
Input-only to SPI
Note 1. X = Don’t care
14.13.5 CGND (Clock Ground)
CGND is the ground return for the serial clock pin, SPSCK, and the
ground for the port output buffers. It is internally connected to VSS as
shown in Table 14-1.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Serial Peripheral Interface Module (SPI)
For More Information On This Product,
Go to: www.freescale.com
311
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
14.14 I/O Registers
Three registers control and monitor SPI operation:
•
SPI control register (SPCR)
•
SPI status and control register (SPSCR)
•
SPI data register (SPDR)
Freescale Semiconductor, Inc...
14.14.1 SPI Control Register
The SPI control register:
•
Enables SPI module interrupt requests
•
Configures the SPI module as master or slave
•
Selects serial clock polarity and phase
•
Configures the SPSCK, MOSI, and MISO pins as open-drain
outputs
•
Enables the SPI module
Address: $0010
Bit 7
6
5
4
3
2
1
Bit 0
SPRIE
R
SPMSTR
CPOL
CPHA
SPWOM
SPE
SPTIE
0
0
1
0
1
0
0
0
Read:
Write:
Reset:
= Unimplemented
R
= Reserved
Figure 14-13. SPI Control Register (SPCR)
SPRIE — SPI Receiver Interrupt Enable Bit
This read/write bit enables CPU interrupt requests generated by the
SPRF bit. The SPRF bit is set when a byte transfers from the shift
register to the receive data register. Reset clears the SPRIE bit.
1 = SPRF CPU interrupt requests enabled
0 = SPRF CPU interrupt requests disabled
Data Sheet
312
MC68HC908LJ24/LK24 — Rev. 2
Serial Peripheral Interface Module (SPI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
I/O Registers
SPMSTR — SPI Master Bit
This read/write bit selects master mode operation or slave mode
operation. Reset sets the SPMSTR bit.
1 = Master mode
0 = Slave mode
CPOL — Clock Polarity Bit
Freescale Semiconductor, Inc...
This read/write bit determines the logic state of the SPSCK pin
between transmissions. (See Figure 14-4 and Figure 14-6.) To
transmit data between SPI modules, the SPI modules must have
identical CPOL values. Reset clears the CPOL bit.
CPHA — Clock Phase Bit
This read/write bit controls the timing relationship between the serial
clock and SPI data. (See Figure 14-4 and Figure 14-6.) To transmit
data between SPI modules, the SPI modules must have identical
CPHA values. When CPHA = 0, the SS pin of the slave SPI module
must be set to logic 1 between bytes. (See Figure 14-12.) Reset sets
the CPHA bit.
SPWOM — SPI Wired-OR Mode Bit
This read/write bit disables the pullup devices on pins SPSCK, MOSI,
and MISO so that those pins become open-drain outputs.
1 = Wired-OR SPSCK, MOSI, and MISO pins
0 = Normal push-pull SPSCK, MOSI, and MISO pins
SPE — SPI Enable
This read/write bit enables the SPI module. Clearing SPE causes a
partial reset of the SPI. (See 14.10 Resetting the SPI.) Reset clears
the SPE bit.
1 = SPI module enabled
0 = SPI module disabled
SPTIE— SPI Transmit Interrupt Enable
This read/write bit enables CPU interrupt requests generated by the
SPTE bit. SPTE is set when a byte transfers from the transmit data
register to the shift register. Reset clears the SPTIE bit.
1 = SPTE CPU interrupt requests enabled
0 = SPTE CPU interrupt requests disabled
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Serial Peripheral Interface Module (SPI)
For More Information On This Product,
Go to: www.freescale.com
313
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
14.14.2 SPI Status and Control Register
Freescale Semiconductor, Inc...
The SPI status and control register contains flags to signal these
conditions:
•
Receive data register full
•
Failure to clear SPRF bit before next byte is received (overflow
error)
•
Inconsistent logic level on SS pin (mode fault error)
•
Transmit data register empty
The SPI status and control register also contains bits that perform these
functions:
•
Enable error interrupts
•
Enable mode fault error detection
•
Select master SPI baud rate
Address: $0011
Bit 7
Read:
6
SPRF
5
4
3
OVRF
MODF
SPTE
ERRIE
2
1
Bit 0
MODFEN
SPR1
SPR0
0
0
0
Write:
Reset:
0
0
0
0
1
= Unimplemented
Figure 14-14. SPI Status and Control Register (SPSCR)
SPRF — SPI Receiver Full Bit
This clearable, read-only flag is set each time a byte transfers from
the shift register to the receive data register. SPRF generates a CPU
interrupt request if the SPRIE bit in the SPI control register is set also.
During an SPRF CPU interrupt, the CPU clears SPRF by reading the
SPI status and control register with SPRF set and then reading the
SPI data register. Reset clears the SPRF bit.
1 = Receive data register full
0 = Receive data register not full
Data Sheet
314
MC68HC908LJ24/LK24 — Rev. 2
Serial Peripheral Interface Module (SPI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
I/O Registers
ERRIE — Error Interrupt Enable Bit
This read/write bit enables the MODF and OVRF bits to generate
CPU interrupt requests. Reset clears the ERRIE bit.
1 = MODF and OVRF can generate CPU interrupt requests
0 = MODF and OVRF cannot generate CPU interrupt requests
OVRF — Overflow Bit
Freescale Semiconductor, Inc...
This clearable, read-only flag is set if software does not read the byte
in the receive data register before the next full byte enters the shift
register. In an overflow condition, the byte already in the receive data
register is unaffected, and the byte that shifted in last is lost. Clear the
OVRF bit by reading the SPI status and control register with OVRF set
and then reading the receive data register. Reset clears the OVRF bit.
1 = Overflow
0 = No overflow
MODF — Mode Fault Bit
This clearable, read-only flag is set in a slave SPI if the SS pin goes
high during a transmission with the MODFEN bit set. In a master SPI,
the MODF flag is set if the SS pin goes low at any time with the
MODFEN bit set. Clear the MODF bit by reading the SPI status and
control register (SPSCR) with MODF set and then writing to the SPI
control register (SPCR). Reset clears the MODF bit.
1 = SS pin at inappropriate logic level
0 = SS pin at appropriate logic level
SPTE — SPI Transmitter Empty Bit
This clearable, read-only flag is set each time the transmit data
register transfers a byte into the shift register. SPTE generates an
SPTE CPU interrupt request if the SPTIE bit in the SPI control register
is set also.
NOTE:
Do not write to the SPI data register unless the SPTE bit is high.
During an SPTE CPU interrupt, the CPU clears the SPTE bit by
writing to the transmit data register.
Reset sets the SPTE bit.
1 = Transmit data register empty
0 = Transmit data register not empty
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Serial Peripheral Interface Module (SPI)
For More Information On This Product,
Go to: www.freescale.com
315
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
MODFEN — Mode Fault Enable Bit
This read/write bit, when set to 1, allows the MODF flag to be set. If
the MODF flag is set, clearing the MODFEN does not clear the MODF
flag. If the SPI is enabled as a master and the MODFEN bit is low,
then the SS pin is available as a general-purpose I/O.
Freescale Semiconductor, Inc...
If the MODFEN bit is set, then this pin is not available as a generalpurpose I/O. When the SPI is enabled as a slave, the SS pin is not
available as a general-purpose I/O regardless of the value of
MODFEN. (See 14.13.4 SS (Slave Select).)
If the MODFEN bit is low, the level of the SS pin does not affect the
operation of an enabled SPI configured as a master. For an enabled
SPI configured as a slave, having MODFEN low only prevents the
MODF flag from being set. It does not affect any other part of SPI
operation. (See 14.8.2 Mode Fault Error.)
SPR1 and SPR0 — SPI Baud Rate Select Bits
In master mode, these read/write bits select one of four baud rates as
shown in Table 14-4. SPR1 and SPR0 have no effect in slave mode.
Reset clears SPR1 and SPR0.
Table 14-4. SPI Master Baud Rate Selection
SPR1 and SPR0
Baud Rate Divisor (BD)
00
2
01
8
10
32
11
128
Use this formula to calculate the SPI baud rate:
CGMOUT
Baud rate = -------------------------2 × BD
where:
CGMOUT = base clock output of the clock generator module (CGM)
BD = baud rate divisor
Data Sheet
316
MC68HC908LJ24/LK24 — Rev. 2
Serial Peripheral Interface Module (SPI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
I/O Registers
14.14.3 SPI Data Register
The SPI data register consists of the read-only receive data register and
the write-only transmit data register. Writing to the SPI data register
writes data into the transmit data register. Reading the SPI data register
reads data from the receive data register. The transmit data and receive
data registers are separate registers that can contain different values.
(See Figure 14-2.)
Freescale Semiconductor, Inc...
Address: $0012
Bit 7
6
5
4
3
2
1
Bit 0
Read:
R7
R6
R5
R4
R3
R2
R1
R0
Write:
T7
T6
T5
T4
T3
T2
T1
T0
Reset:
Unaffected by reset
Figure 14-15. SPI Data Register (SPDR)
R7–R0/T7–T0 — Receive/Transmit Data Bits
NOTE:
Do not use read-modify-write instructions on the SPI data register since
the register read is not the same as the register written.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Serial Peripheral Interface Module (SPI)
For More Information On This Product,
Go to: www.freescale.com
317
Freescale Semiconductor, Inc.
Freescale Semiconductor, Inc...
Serial Peripheral Interface Module (SPI)
Data Sheet
318
MC68HC908LJ24/LK24 — Rev. 2
Serial Peripheral Interface Module (SPI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Data Sheet – MC68HC908LJ24
Section 15. Multi-Master IIC Interface (MMIIC)
Freescale Semiconductor, Inc...
15.1 Contents
15.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
15.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
15.4
I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
15.5 Multi-Master IIC Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
15.5.1 Multi-Master IIC Address Register (MMADR) . . . . . . . . . . 321
15.5.2 Multi-Master IIC Control Register (MMCR) . . . . . . . . . . . . 323
15.5.3 Multi-Master IIC Master Control Register (MIMCR) . . . . . . 324
15.5.4 Multi-Master IIC Status Register (MMSR) . . . . . . . . . . . . . 326
15.5.5 Multi-Master IIC Data Transmit Register (MMDTR) . . . . . . 328
15.5.6 Multi-Master IIC Data Receive Register (MMDRR) . . . . . . 329
15.6
Programming Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 330
15.2 Introduction
This Multi-master IIC (MMIIC) Interface is designed for internal serial
communication between the MCU and other IIC devices. A hardware
circuit generates "start" and "stop" signal, while byte by byte data
transfer is interrupt driven by the software algorithm. Therefore, it can
greatly help the software in dealing with other devices to have higher
system efficiency in a typical digital monitor system.
This module not only can be applied in internal communications, but can
also be used as a typical command reception serial bus for factory setup
and alignment purposes. It also provides the flexibility of hooking
additional devices to an existing system for future expansion without
adding extra hardware.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Multi-Master IIC Interface (MMIIC)
For More Information On This Product,
Go to: www.freescale.com
319
Freescale Semiconductor, Inc.
Multi-Master IIC Interface (MMIIC)
Freescale Semiconductor, Inc...
This Multi-master IIC module uses the SCL clock line and the SDA data
line to communicate with external DDC host or IIC interface. These two
pins are shared with port pins PTD6/KBI6 and PTD7/KBI7 respectively.
The outputs of SCL and SDA pins are open-drain type — no clamping
diode is connected between the pin and internal VDD. The maximum
data rate typically is 750k-bps. The maximum communication length and
the number of devices that can be connected are limited by a maximum
bus capacitance of 400pF.
15.3 Features
•
Compatibility with multi-master IIC bus standard
•
Software controllable acknowledge bit generation
•
Interrupt driven byte by byte data transfer
•
Calling address identification interrupt
•
Auto detection of R/W bit and switching of transmit or receive
mode
•
Detection of START, repeated START, and STOP signals
•
Auto generation of START and STOP condition in master mode
•
Arbitration loss detection and No-ACK awareness in master mode
•
8 selectable baud rate master clocks
•
Automatic recognition of the received acknowledge bit
15.4 I/O Pins
The MMIIC module uses two I/O pins, shared with standard port I/O pins.
The full name of the MMIIC I/O pins are listed in Table 15-1. The generic
pin name appear in the text that follows.
Table 15-1. Pin Name Conventions
MMIIC
Generic Pin Names:
Full MCU Pin Names:
Pin Selected for
IIC Function By:
SDA
PTD7/KBI7/SDA (1)
MMEN bit in MMCR ($006C)
SCL
PTD6/KBI6/SCL (1)
MMEN bit in MMCR ($006C)
Notes:
1. Do not enable the MMIIC function if the pin is used for KBI.
Data Sheet
320
MC68HC908LJ24/LK24 — Rev. 2
Multi-Master IIC Interface (MMIIC)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Multi-Master IIC Interface (MMIIC)
Multi-Master IIC Registers
Addr.
$006A
$006B
Freescale Semiconductor, Inc...
$006C
Register Name
$006F
6
4
3
2
1
Bit 0
MMAST
MMRW
MMBR2
MMBR1
MMBR0
0
0
0
0
0
0
MMAD6
MMAD5
MMAD4
MMAD3
MMAD2
0
1
0
0
0
0
0
0
0
Read: MMALIF MMNAKIF
Multi-Master IIC
0
0
Master Control Register Write:
(MIMCR) Reset:
0
0
Read:
Multi-Master IIC Address
MMAD7
Register Write:
(MMADR) Reset:
1
Read:
Multi-Master IIC Control
Register Write:
(MMCR)
Reset:
MMEN
MMIEN
0
0
Read: MMRXIF
Multi-Master IIC
0
Status Register Write:
(MMSR) Reset:
0
$006D
$006E
Bit 7
Read:
Multi-Master IIC
MMTD7
Data Transmit Register Write:
(MMDTR) Reset:
1
Multi-Master IIC Read: MMRD7
Data Receive Register
Write:
(MMDRR)
Reset:
0
MMTXIF
5
MMBB
MMTXAK REPSEN
0
MMATCH MMSRW MMRXAK
0
0
MMAD1 MMEXTAD
0
0
0
0
0
0
MMTXBE MMRXBF
0
0
0
0
1
0
1
0
MMTD6
MMTD5
MMTD4
MMTD3
MMTD2
MMTD1
MMTD0
1
1
1
1
1
1
1
MMRD6
MMRD5
MMRD4
MMRD3
MMRD2
MMRD1
MMRD0
0
0
0
0
0
0
0
= Unimplemented
Figure 15-1. MMIIC I/O Register Summary
15.5 Multi-Master IIC Registers
Six registers are associated with the Multi-master IIC module, they are
outlined in the following sections.
15.5.1 Multi-Master IIC Address Register (MMADR)
Address:
$006B
Bit 7
6
5
4
3
2
MMAD7
MMAD6
MMAD5
MMAD4
MMAD3
MMAD2
1
0
1
0
0
0
1
Bit 0
Read:
MMAD1 MMEXTAD
Write:
Reset:
0
0
Figure 15-2. Multi-Master IIC Address Register (MMADR)
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Multi-Master IIC Interface (MMIIC)
For More Information On This Product,
Go to: www.freescale.com
321
Freescale Semiconductor, Inc.
Multi-Master IIC Interface (MMIIC)
MMAD[7:1] — Multi-Master Address
These seven bits represent the MMIIC interface’s own specific slave
address when in slave mode, and the calling address when in master
mode. Software must update MMAD[7:1] as the calling address while
entering master mode and restore its own slave address after master
mode is relinquished. This register is cleared as $A0 upon reset.
MMEXTAD — Multi-Master Expanded Address
Freescale Semiconductor, Inc...
This bit is set to expand the address of the MMIIC in slave mode.
When set, the MMIIC will acknowledge the following addresses from
a calling master: $MMAD[7:1], 0000000, and 0001100.
Reset clears this bit.
1 = MMIIC responds to the following calling addresses:
$MMAD[7:1], 0000000, and 0001100.
0 = MMIIC responds to address $MMAD[7:1]
For example, when MMADR is configured as:
MMAD7
MMAD6
MMAD5
MMAD4
MMAD3
MMAD2
1
1
0
1
0
1
MMAD1 MMEXTAD
0
1
The MMIIC module will respond to the calling address:
Bit 7
6
5
4
3
2
Bit 1
1
1
0
1
0
1
0
0
0
0
0
0
0
1
1
0
0
or the general calling address:
0
0
or the calling address:
0
NOTE:
Data Sheet
322
0
bit-0 of the 8-bit calling address is the MMRW bit from the calling master.
MC68HC908LJ24/LK24 — Rev. 2
Multi-Master IIC Interface (MMIIC)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Multi-Master IIC Interface (MMIIC)
Multi-Master IIC Registers
15.5.2 Multi-Master IIC Control Register (MMCR)
Address:
$006C
Bit 7
6
MMEN
MMIEN
0
0
Read:
5
4
0
0
3
2
1
Bit 0
0
0
0
0
MMTXAK REPSEN
Write:
Reset:
0
0
0
0
= Unimplemented
Freescale Semiconductor, Inc...
Figure 15-3. Multi-Master IIC Control Register (MMCR)
MMEN — Multi-Master IIC Enable
This bit is set to enable the Multi-master IIC module. When
MMEN = 0, module is disabled and all flags will restore to its poweron default states. Reset clears this bit.
1 = MMIIC module enabled
0 = MMIIC module disabled
MMIEN — Multi-Master IIC Interrupt Enable
When this bit is set, the MMTXIF, MMRXIF, MMALIF, and MMNAKIF
flags are enabled to generate an interrupt request to the CPU. When
MMIEN is cleared, the these flags are prevented from generating an
interrupt request. Reset clears this bit.
1 = MMTXIF, MMRXIF, MMALIF, and/or MMNAKIF bit set will
generate interrupt request to CPU
0 = MMTXIF, MMRXIF, MMALIF, and/or MMNAKIF bit set will not
generate interrupt request to CPU
MMTXAK — Transmit Acknowledge Enable
This bit is set to disable the MMIIC from sending out an acknowledge
signal to the bus at the 9th clock bit after receiving 8 data bits. When
MMTXAK is cleared, an acknowledge signal will be sent at the 9th
clock bit. Reset clears this bit.
1 = MMIIC does not send acknowledge signals at 9th clock bit
0 = MMIIC sends acknowledge signal at 9th clock bit
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Multi-Master IIC Interface (MMIIC)
For More Information On This Product,
Go to: www.freescale.com
323
Freescale Semiconductor, Inc.
Multi-Master IIC Interface (MMIIC)
REPSEN — Repeated Start Enable
Freescale Semiconductor, Inc...
This bit is set to enable repeated START signal to be generated when
in master mode transfer (MMAST = 1). The REPSEN bit is cleared by
hardware after the completion of repeated START signal or when the
MMAST bit is cleared. Reset clears this bit.
1 = Repeated START signal will be generated if MMAST bit is set
0 = No repeated START signal will be generated
15.5.3 Multi-Master IIC Master Control Register (MIMCR)
Address:
$006A
Bit 7
6
Read: MMALIF MMNAKIF
Write:
0
0
Reset:
0
0
5
4
3
2
1
Bit 0
MMAST
MMRW
MMBR2
MMBR1
MMBR0
0
0
0
0
0
MMBB
0
= Unimplemented
Figure 15-4. Multi-Master IIC Master Control Register (MIMCR)
MMALIF — Multi-Master Arbitration Lost Interrupt Flag
This flag is set when software attempt to set MMAST but the MMBB
has been set by detecting the start condition on the lines or when the
MMIIC is transmitting a "1" to SDA line but detected a "0" from SDA
line in master mode – an arbitration loss. This bit generates an
interrupt request to the CPU if the MMIEN bit in MMCR is also set.
This bit is cleared by writing "0" to it or by reset.
1 = Lost arbitration in master mode
0 = No arbitration lost
MMNAKIF — No Acknowledge Interrupt Flag
This flag is only set in master mode (MMAST = 1) when there is no
acknowledge bit detected after one data byte or calling address is
transferred. This flag also clears MMAST. MMNAKIF generates an
interrupt request to CPU if the MMIEN bit in MMCR is also set. This
bit is cleared by writing "0" to it or by reset.
1 = No acknowledge bit detected
0 = Acknowledge bit detected
Data Sheet
324
MC68HC908LJ24/LK24 — Rev. 2
Multi-Master IIC Interface (MMIIC)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Multi-Master IIC Interface (MMIIC)
Multi-Master IIC Registers
MMBB — Bus Busy Flag
This flag is set after a start condition is detected (bus busy), and is
cleared when a stop condition (bus idle) is detected.
Reset clears this bit.
1 = Start condition detected
0 = Stop condition detected or MMIIC is disabled
MMAST — Master Control Bit
Freescale Semiconductor, Inc...
This bit is set to initiate a master mode transfer. In master mode, the
module generates a start condition to the SDA and SCL lines,
followed by sending the calling address stored in MMADR.
When the MMAST bit is cleared by MMNAKIF set (no acknowledge)
or by software, the module generates the stop condition to the lines
after the current byte is transmitted.
If an arbitration loss occurs (MMALIF = 1), the module reverts to slave
mode by clearing MMAST, and releasing SDA and SCL lines
immediately.
This bit is cleared by writing "0" to it or by reset.
1 = Master mode operation
0 = Slave mode operation
MMRW — Master Read/Write
This bit will be transmitted out as bit 0 of the calling address when the
module sets the MMAST bit to enter master mode. The MMRW bit
determines the transfer direction of the data bytes that follows. When
it is "1", the module is in master receive mode. When it is "0", the
module is in master transmit mode. Reset clears this bit.
1 = Master mode receive
0 = Master mode transmit
MMBR2–MMBR0 — Baud Rate Select
These three bits select one of eight clock rates as the master clock
when the module is in master mode.
Since this master clock is derived the CPU bus clock, the user
program should not execute the WAIT instruction when the MMIIC
module in master mode. This will cause the SDA and SCL lines to
hang, as the WAIT instruction places the MCU in wait mode, with CPU
clock is halted. These bits are cleared upon reset.
(See Table 15-2 . Baud Rate Select.)
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Multi-Master IIC Interface (MMIIC)
For More Information On This Product,
Go to: www.freescale.com
325
Freescale Semiconductor, Inc.
Multi-Master IIC Interface (MMIIC)
Freescale Semiconductor, Inc...
Table 15-2. Baud Rate Select
MMBR2
MMBR1
MMBR0
Baud Rate
0
0
0
Internal bus clock ÷ 8
0
0
1
Internal bus clock ÷ 16
0
1
0
Internal bus clock ÷ 32
0
1
1
Internal bus clock ÷ 64
1
0
0
Internal bus clock ÷ 128
1
0
1
Internal bus clock ÷ 256
1
1
0
Internal bus clock ÷ 512
1
1
1
Internal bus clock ÷ 1024
15.5.4 Multi-Master IIC Status Register (MMSR)
Address:
$006D
Bit 7
Read: MMRXIF
6
MMTXIF
Write:
0
0
Reset:
0
0
5
4
3
2
MMATCH MMSRW MMRXAK
0
0
1
0
0
1
Bit 0
MMTXBE MMRXBF
1
0
= Unimplemented
Figure 15-5. Multi-Master IIC Status Register (MMSR)
MMRXIF — Multi-Master IIC Receive Interrupt Flag
This flag is set after the data receive register (MMDRR) is loaded with
a new received data. Once the MMDRR is loaded with received data,
no more received data can be loaded to the MMDRR register until the
CPU reads the data from the MMDRR to clear MMRXBF flag.
MMRXIF generates an interrupt request to CPU if the MMIEN bit in
MMCR is also set. This bit is cleared by writing "0" to it or by reset; or
when the MMEN = 0.
1 = New data in data receive register (MMDRR)
0 = No data received
Data Sheet
326
MC68HC908LJ24/LK24 — Rev. 2
Multi-Master IIC Interface (MMIIC)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Multi-Master IIC Interface (MMIIC)
Multi-Master IIC Registers
MMTXIF — Multi-Master Transmit Interrupt Flag
This flag is set when data in the data transmit register (MMDTR) is
downloaded to the output circuit, and that new data can be written to
the MMDTR. MMTXIF generates an interrupt request to CPU if the
MMIEN bit in MMCR is also set. This bit is cleared by writing "0" to it
or when the MMEN = 0.
1 = Data transfer completed
0 = Data transfer in progress
Freescale Semiconductor, Inc...
MMATCH — Multi-Master Address Match
This flag is set when the received data in the data receive register
(MMDRR) is an calling address which matches with the address or its
extended addresses (MMEXTAD=1) specified in the MMADR
register.
1 = Received address matches MMADR
0 = Received address does not match
MMSRW — Multi-Master Slave Read/Write
This bit indicates the data direction when the module is in slave mode.
It is updated after the calling address is received from a master
device. MMSRW = 1 when the calling master is reading data from the
module (slave transmit mode). MMSRW = 0 when the master is
writing data to the module (receive mode).
1 = Slave mode transmit
0 = Slave mode receive
MMRXAK — Multi-Master Receive Acknowledge
When this bit is cleared, it indicates an acknowledge signal has been
received after the completion of 8 data bits transmission on the bus.
When MMRXAK is set, it indicates no acknowledge signal has been
detected at the 9th clock; the module will release the SDA line for the
master to generate "stop" or "repeated start" condition. Reset sets this
bit.
1 = No acknowledge signal received at 9th clock bit
0 = Acknowledge signal received at 9th clock bit
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Multi-Master IIC Interface (MMIIC)
For More Information On This Product,
Go to: www.freescale.com
327
Freescale Semiconductor, Inc.
Multi-Master IIC Interface (MMIIC)
MMTXBE — Multi-Master Transmit Buffer Empty
This flag indicates the status of the data transmit register (MMDTR).
When the CPU writes the data to the MMDTR, the MMTXBE flag will
be cleared. MMTXBE is set when MMDTR is emptied by a transfer of
its data to the output circuit. Reset sets this bit.
1 = Data transmit register empty
0 = Data transmit register full
Freescale Semiconductor, Inc...
MMRXBF — Multi-Master Receive Buffer Full
This flag indicates the status of the data receive register (MMDRR).
When the CPU reads the data from the MMDRR, the MMRXBF flag
will be cleared. MMRXBF is set when MMDRR is full by a transfer of
data from the input circuit to the MMDRR. Reset clears this bit.
1 = Data receive register full
0 = Data receive register empty
15.5.5 Multi-Master IIC Data Transmit Register (MMDTR)
Address:
$006E
Bit 7
6
5
4
3
2
1
Bit 0
MMTD7
MMTD6
MMTD5
MMTD4
MMTD3
MMTD2
MMTD1
MMTD0
1
1
1
1
1
1
1
1
Read:
Write:
Reset:
Figure 15-6. Multi-Master IIC Data Transmit Register (MMDTR)
When the MMIIC module is enabled, MMEN = 1, data written into this
register depends on whether module is in master or slave mode.
In slave mode, the data in MMDTR will be transferred to the output circuit
when:
Data Sheet
328
•
the module detects a matched calling address (MMATCH = 1),
with the calling master requesting data (MMSRW = 1); or
•
the previous data in the output circuit has be transmitted and the
receiving master returns an acknowledge bit, indicated by a
received acknowledge bit (MMRXAK = 0).
MC68HC908LJ24/LK24 — Rev. 2
Multi-Master IIC Interface (MMIIC)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Multi-Master IIC Interface (MMIIC)
Multi-Master IIC Registers
If the calling master does not return an acknowledge bit (MMRXAK = 1),
the module will release the SDA line for master to generate a "stop" or
"repeated start" condition. The data in the MMDTR will not be transferred
to the output circuit until the next calling from a master. The transmit
buffer empty flag remains cleared (MMTXBE = 0).
Freescale Semiconductor, Inc...
In master mode, the data in MMDTR will be transferred to the output
circuit when:
•
the module receives an acknowledge bit (MMRXAK = 0), after
setting master transmit mode (MMRW = 0), and the calling
address has been transmitted; or
•
the previous data in the output circuit has be transmitted and the
receiving slave returns an acknowledge bit, indicated by a
received acknowledge bit (MMRXAK = 0).
If the slave does not return an acknowledge bit (MMRXAK = 1), the
master will generate a "stop" or "repeated start" condition. The data in
the MMDTR will not be transferred to the output circuit. The transmit
buffer empty flag remains cleared (MMTXBE = 0).
The sequence of events for slave transmit and master transmit are
illustrated in Figure 15-8.
15.5.6 Multi-Master IIC Data Receive Register (MMDRR)
Address:
$006F
Bit 7
Read: MMRD7
6
5
4
3
2
1
Bit 0
MMRD6
MMRD5
MMRD4
MMRD3
MMRD2
MMRD1
MMRD0
0
0
0
0
0
0
0
Write:
Reset:
0
= Unimplemented
Figure 15-7. Multi-Master IIC Data Receive Register (MMDRR)
When the MMIIC module is enabled, MMEN = 1, data in this read-only
register depends on whether module is in master or slave mode.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Multi-Master IIC Interface (MMIIC)
For More Information On This Product,
Go to: www.freescale.com
329
Freescale Semiconductor, Inc.
Multi-Master IIC Interface (MMIIC)
In slave mode, the data in MMDRR is:
•
the calling address from the master when the address match flag
is set (MMATCH = 1); or
•
the last data received when MMATCH = 0.
In master mode, the data in the MMDRR is:
Freescale Semiconductor, Inc...
•
the last data received.
When the MMDRR is read by the CPU, the receive buffer full flag is
cleared (MMRXBF = 0), and the next received data is loaded to the
MMDRR. Each time when new data is loaded to the MMDRR, the
MMRXIF interrupt flag is set, indicating that new data is available in
MMDRR.
The sequence of events for slave receive and master receive are
illustrated in Figure 15-8.
15.6 Programming Considerations
When the MMIIC module detects an arbitration loss in master mode, it
will release both SDA and SCL lines immediately. But if there are no
further STOP conditions detected, the module will hang up. Therefore, it
is recommended to have time-out software to recover from such ill
condition. The software can start the time-out counter by looking at the
MMBB (Bus Busy) flag in the MIMCR and reset the counter on the
completion of one byte transmission. If a time-out occur, software can
clear the MMEN bit (disable MMIIC module) to release the bus, and
hence clearing the MMBB flag. This is the only way to clear the MMBB
flag by software if the module hangs up due to a no STOP condition
received. The MMIIC can resume operation again by setting the MMEN
bit.
Data Sheet
330
MC68HC908LJ24/LK24 — Rev. 2
Multi-Master IIC Interface (MMIIC)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Multi-Master IIC Interface (MMIIC)
Programming Considerations
(a) Master Transmit Mode
START
Address
MMTXBE=0
MMRW=0
MMAST=1
Data1 → MMDTR
0
ACK
TX Data1
ACK
MMTXBE=1
MMTXIF=1
Data3 → MMDTR
MMTXBE=1
MMTXIF=1
Data2 → MMDTR
TX DataN
ACK
STOP
MMTXBE=1 MMNAKIF=1
MMTXIF=1 MMAST=0
DataN+2 → MMDTR MMTXBE=0
Freescale Semiconductor, Inc...
(b) Master Receive Mode
START
Address
1
ACK
RX Data1
ACK
Data1 → MMDRR
MMRXIF=1
MMRXBF=1
MMRXBF=0
MMRW=1
MMAST=1
MMTXBE=0
(dummy data → MMDTR)
RX DataN
NAK
STOP
DataN → MMDRR MMNAKIF=1
MMRXIF=1 MMAST=0
MMRXBF=1
(c) Slave Transmit Mode
START
Address
1
ACK
TX Data1
MMRXIF=1
MMRXBF=1
MMATCH=1
MMSRW=1
Data1 → MMDTR
MMTXBE=1
MMRXBF=0
ACK
MMTXBE=1
MMTXIF=1
Data2 → MMDTR
TX DataN
NAK
STOP
MMTXBE=1 MMNAKIF=1
MMTXIF=1 MMTXBE=0
DataN+2 → MMDTR
(d) Slave Receive Mode
START
Address
MMTXBE=0
MMRXBF=0
0
ACK
RX Data1
MMRXIF=1
MMRXBF=1
MMATCH=1
MMSRW=0
ACK
Data1 → MMDRR
MMRXIF=1
MMRXBF=1
RX DataN
ACK
STOP
DataN → MMDRR
MMRXIF=1
MMRXBF=1
Shaded data packets indicate transmissions by the MCU
Figure 15-8. Data Transfer Sequences for Master/Slave Transmit/Receive Modes
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Multi-Master IIC Interface (MMIIC)
For More Information On This Product,
Go to: www.freescale.com
331
Freescale Semiconductor, Inc.
Freescale Semiconductor, Inc...
Multi-Master IIC Interface (MMIIC)
Data Sheet
332
MC68HC908LJ24/LK24 — Rev. 2
Multi-Master IIC Interface (MMIIC)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Data Sheet – MC68HC908LJ24
Section 16. Analog-to-Digital Converter (ADC)
Freescale Semiconductor, Inc...
16.1 Contents
16.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
16.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
16.4 Functional Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
16.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
16.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337
16.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
16.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
16.4.5 Result Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
16.4.6 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
16.5
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340
16.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
16.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340
16.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340
16.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
16.7.1 ADC Voltage In (VADIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
16.7.2 ADC Analog Power Pin (VDDA) . . . . . . . . . . . . . . . . . . . . . 341
16.7.3 ADC Analog Ground Pin (VSSA). . . . . . . . . . . . . . . . . . . . . 341
16.7.4 ADC Voltage Reference High Pin (VREFH). . . . . . . . . . . . . 341
16.7.5 ADC Voltage Reference Low Pin (VREFL) . . . . . . . . . . . . . 341
16.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
16.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . .342
16.8.2 ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
16.8.3 ADC Clock Control Register. . . . . . . . . . . . . . . . . . . . . . . . 346
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Analog-to-Digital Converter (ADC)
For More Information On This Product,
Go to: www.freescale.com
333
Freescale Semiconductor, Inc.
Analog-to-Digital Converter (ADC)
16.2 Introduction
This section describes the analog-to-digital convert (ADC). The ADC is
a 6-channel 10-bit linear successive approximation ADC.
16.3 Features
Freescale Semiconductor, Inc...
Features of the ADC module include:
•
Six channels with multiplexed input
•
High impedance buffered input
•
Linear successive approximation with monotonicity
•
10-Bit resolution
•
Single or continuous conversion
•
Conversion complete flag or conversion complete interrupt
•
Selectable ADC clock
•
Conversion result justification
– 8-bit truncated mode
– Right justified mode
– Left justified mode
– Left justified sign mode
Data Sheet
334
MC68HC908LJ24/LK24 — Rev. 2
Analog-to-Digital Converter (ADC)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Analog-to-Digital Converter (ADC)
Functional Descriptions
Addr.
$003C
Freescale Semiconductor, Inc...
$003D
$003E
Register Name
Bit 7
5
4
3
2
1
Bit 0
AIEN
ADCO
ADCH4
ADCH3
ADCH2
ADCH1
ADCH0
Read:
ADC Status and Control
Register Write:
(ADSCR)
Reset:
COCO
0
0
0
1
1
1
1
1
Read:
ADC Data Register High
Write:
(ADRH)
Reset:
ADx
ADx
ADx
ADx
ADx
ADx
ADx
ADx
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Read:
ADC Data Register Low
(ADRL) Write:
ADx
ADx
ADx
ADx
ADx
ADx
ADx
ADx
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
ADIV2
ADIV1
ADIV0
ADICLK
MODE1
MODE0
0
0
0
0
0
0
0
1
Reset:
$003F
6
Read:
ADC Clock Register
(ADCLK) Write:
Reset:
= Unimplemented
R
R
0
0
= Reserved
Figure 16-1. ADC I/O Register Summary
16.4 Functional Descriptions
The ADC provides six pins for sampling external sources at pins
PTA4/ADC0–PTA7/ADC3 and PTB6/ADC4–PTB7/ADC5. An analog
multiplexer allows the single ADC converter to select one of ten ADC
channels as ADC voltage in (VADIN). VADIN is converted by the
successive approximation register-based analog-to-digital converter.
When the conversion is completed, ADC places the result in the ADC
data register, high and low byte (ADRH and ADRL), and sets a flag or
generates an interrupt.
Figure 16-2 shows the structure of the ADC module.
16.4.1 ADC Port I/O Pins
PTA4–PTA7 and PTB6–PTB7 are general-purpose I/O pins that are
shared with the ADC channels. The channel select bits, ADCH[4:0],
define which ADC channel/port pin will be used as the input signal. The
ADC overrides the port I/O logic by forcing that pin as input to the ADC.
The remaining ADC channels/port pins are controlled by the port I/O
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Analog-to-Digital Converter (ADC)
For More Information On This Product,
Go to: www.freescale.com
335
Freescale Semiconductor, Inc.
Analog-to-Digital Converter (ADC)
logic and can be used as general-purpose I/O pins. Writes to the port
data register or data direction register will not have any affect on the port
pin that is selected by the ADC. Read of a port pin which is in use by the
ADC will return the pin condition if the corresponding DDR bit is at
logic 0. If the DDR bit is at logic 1, the value in the port data latch is read.
INTERNAL
DATA BUS
Freescale Semiconductor, Inc...
READ DDRAx/DDRBx
WRITE DDRAx/DDRBx
DISABLE
DDRAx/DDRBx
RESET
WRITE PTAx/PTBx
PTAx/PTBx
PTAx/PTBx
READ PTAx/PTBx
ADC0–ADC5
(6 CHANNELS)
DISABLE
ADC DATA REGISTERS
ADRH
VLCD
ADRL
VREFH
VREFL
INTERRUPT
LOGIC
AIEN
CONVERSION
COMPLETE
ADC
ADC
VOLTAGE IN
(VADIN)
ADC CLOCK
COCO
CGMXCLK
BUS CLOCK
1.2V
BANDGAP
REFERENCE
CHANNEL
SELECT
ADCH[4:0]
CLOCK
GENERATOR
ADIV[2:0]
ADICLK
Figure 16-2. ADC Block Diagram
Data Sheet
336
MC68HC908LJ24/LK24 — Rev. 2
Analog-to-Digital Converter (ADC)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Analog-to-Digital Converter (ADC)
Functional Descriptions
16.4.2 Voltage Conversion
When the input voltage to the ADC equals VREFH, the ADC converts the
signal to $3FF (full scale). If the input voltage equals VREFL, the ADC
converts it to $000. Input voltages between VREFH and VREFL are
straight-line linear conversions. All other input voltages will result in
$3FF if greater than VREFH and $000 if less than VREFL.
Freescale Semiconductor, Inc...
NOTE:
Input voltage should not exceed the analog supply voltages.
16.4.3 Conversion Time
Conversion starts after a write to the ADSCR. A conversion is between
16 and 17 ADC clock cycles, therefore:
Conversion time =
16 to17 ADC cycles
ADC frequency
Number of bus cycles = conversion time × bus frequency
The ADC conversion time is determined by the clock source chosen and
the divide ratio selected. The clock source is either the bus clock or
CGMXCLK and is selectable by the ADICLK bit located in the ADC clock
control register. The divide ratio is selected by the ADIV[2:0] bits.
For example, if a 4MHz CGMXCLK is selected as the ADC input clock
source, with a divide-by-2 prescale, and the bus speed is set at 8MHz:
Conversion time =
16 to 17 ADC cycles
= 8 to 8.5 µs
4MHz ÷ 2
Number of bus cycles = 8µs x 8MHz = 64 to 68 cycles
NOTE:
The ADC frequency must be between fADIC minimum and fADIC
maximum to meet ADC specifications. See 24.12 5V ADC Electrical
Characteristics and 24.13 3.3V ADC Electrical Characteristics.
Since an ADC cycle may be comprised of several bus cycles (eight in the
previous example) and the start of a conversion is initiated by a bus cycle
write to the ADSCR, from zero to four additional bus cycles may occur
before the start of the initial ADC cycle. This results in a fractional ADC
cycle and is represented as the 17th cycle.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Analog-to-Digital Converter (ADC)
For More Information On This Product,
Go to: www.freescale.com
337
Freescale Semiconductor, Inc.
Analog-to-Digital Converter (ADC)
16.4.4 Continuous Conversion
Freescale Semiconductor, Inc...
In the continuous conversion mode, the ADC continuously converts the
selected channel, filling the ADC data register (ADRH:ADRL) with new
data after each conversion. Data from the previous conversion will be
overwritten whether that data has been read or not. Conversions will
continue until the ADCO bit is cleared. The COCO bit is set after each
conversion and can be cleared by writing to the ADC status and control
register or reading of the ADRL data register.
16.4.5 Result Justification
The conversion result may be formatted in four different ways.
•
Left justified
•
Right justified
•
Left justified sign data mode
•
8-bit truncation
All four of these modes are controlled using MODE0 and MODE1 bits
located in the ADC clock control register (ADCLK).
Left justification will place the eight most significant bits (MSB) in the
ADC data register high (ADRH). This may be useful if the result is to be
treated as an 8-bit result where the least significant two bits, located in
the ADC data register low (ADRL) can be ignored. However, ADRL must
be read after ADRH or else the interlocking will prevent all new
conversions from being stored.
Right justification will place only the two MSBs in the corresponding ADC
data register high (ADRH) and the eight LSB bits in ADC data register
low (ADRL). This mode of operation typically is used when a 10-bit
unsigned result is desired.
Left justified sign data mode is similar to left justified mode with one
exception. The MSB of the 10-bit result, AD9 located in ADRH is
complemented. This mode of operation is useful when a result,
represented as a signed magnitude from mid-scale, is needed.
Data Sheet
338
MC68HC908LJ24/LK24 — Rev. 2
Analog-to-Digital Converter (ADC)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Analog-to-Digital Converter (ADC)
Functional Descriptions
Finally, 8-bit truncation mode will place the eight MSBs in ADC data
register low (ADRL). The two LSBs are dropped. This mode of operation
is used when compatibility with 8-bit ADC designs are required. No
interlocking between ADRH and ADRL is present.
NOTE:
Quantization error is affected when only the most significant eight bits
are used as a result. See Figure 16-3.
Freescale Semiconductor, Inc...
8-BIT 10-BIT
RESULT RESULT
IDEAL 8-BIT CHARACTERISTIC
WITH QUANTIZATION = ±1/2
10-BIT TRUNCATED
TO 8-BIT RESULT
003
00B
00A
009
002
IDEAL 10-BIT CHARACTERISTIC
WITH QUANTIZATION = ±1/2
008
007
006
005
001
004
WHEN TRUNCATION IS USED,
ERROR FROM IDEAL 8-BIT = 3/8 LSB
DUE TO NON-IDEAL QUANTIZATION.
003
002
001
000
000
1/2
2 1/2
1 1/2
1/2
4 1/2
3 1/2
6 1/2
5 1/2
8 1/2
7 1/2
9 1/2
1 1/2
2 1/2
INPUT VOLTAGE
REPRESENTED AS 10-BIT
INPUT VOLTAGE
REPRESENTED AS 8-BIT
Figure 16-3. 8-Bit Truncation Mode Error
16.4.6 Monotonicity
The conversion process is monotonic and has no missing codes.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Analog-to-Digital Converter (ADC)
For More Information On This Product,
Go to: www.freescale.com
339
Freescale Semiconductor, Inc.
Analog-to-Digital Converter (ADC)
16.5 Interrupts
When the AIEN bit is set, the ADC module is capable of generating a
CPU interrupt after each ADC conversion. A CPU interrupt is generated
if the COCO bit is at logic 0. The COCO bit is not used as a conversion
complete flag when interrupts are enabled. The interrupt vector is
defined in Table 2-1 . Vector Addresses.
Freescale Semiconductor, Inc...
16.6 Low-Power Modes
The STOP and WAIT instructions put the MCU in low powerconsumption standby modes.
16.6.1 Wait Mode
The ADC continues normal operation in wait mode. Any enabled CPU
interrupt request from the ADC can bring the MCU out of wait mode. If
the ADC is not required to bring the MCU out of wait mode, power down
the ADC by setting the ADCH[4:0] bits to logic 1’s before executing the
WAIT instruction.
16.6.2 Stop Mode
The ADC module is inactive after the execution of a STOP instruction.
Any pending conversion is aborted. ADC conversions resume when the
MCU exits stop mode. Allow one conversion cycle to stabilize the analog
circuitry before attempting a new ADC conversion after exiting stop
mode.
16.7 I/O Signals
The ADC module has ten channels, six channels are shared with port A
and port B I/O pins; two channels are the ADC voltage reference inputs,
VREFH and VREFL; one channel is the VLCD input; and one channel is the
1.2V bandgap reference voltage.
Data Sheet
340
MC68HC908LJ24/LK24 — Rev. 2
Analog-to-Digital Converter (ADC)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Analog-to-Digital Converter (ADC)
I/O Signals
16.7.1 ADC Voltage In (VADIN)
VADIN is the input voltage signal from one of the ten channels to the ADC
module.
Freescale Semiconductor, Inc...
16.7.2 ADC Analog Power Pin (VDDA)
The ADC analog portion uses VDDA as its power pin. Connect the VDDA
pin to the same voltage potential as VDD. External filtering may be
necessary to ensure clean VDDA for good results.
NOTE:
Route VDDA carefully for maximum noise immunity and place bypass
capacitors as close as possible to the package.
16.7.3 ADC Analog Ground Pin (VSSA)
The ADC analog portion uses VSSA as its ground pin. Connect the VSSA
pin to the same voltage potential as VSS.
NOTE:
On the 64-pin and 80-pin MC68HC908LJ24, VSSA is internally bonded
to VSS.
16.7.4 ADC Voltage Reference High Pin (VREFH)
VREFH is the power supply for setting the reference voltage VREFH.
Connect the VREFH pin to the same voltage potential as VDDA. There will
be a finite current associated with VREFH (see 24.12 5V ADC Electrical
Characteristics).
NOTE:
Route VREFH carefully for maximum noise immunity and place bypass
capacitors as close as possible to the package.
16.7.5 ADC Voltage Reference Low Pin (VREFL)
VREFL is the lower reference supply for the ADC. Connect the VREFL pin
to the same voltage potential as VSSA. There will be a finite current
associated with VREFL(see 24.12 5V ADC Electrical Characteristics).
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Analog-to-Digital Converter (ADC)
For More Information On This Product,
Go to: www.freescale.com
341
Freescale Semiconductor, Inc.
Analog-to-Digital Converter (ADC)
16.8 I/O Registers
These I/O registers control and monitor operation of the ADC:
•
ADC status and control register, (ADSCR)
•
ADC data register (ADRH:ADRL)
•
ADC clock control register (ADCLK)
Freescale Semiconductor, Inc...
16.8.1 ADC Status and Control Register
This section describes the function of the ADC status and control
register (ADSCR). Writing ADSCR aborts the current conversion and
initiates a new conversion.
Address:
$003C
Read:
COCO
AIEN
ADCO
ADCH4
ADCH3
ADCH2
ADCH1
ADCH0
0
0
1
1
1
1
1
Write:
Reset:
0
= Unimplemented
Figure 16-4. ADC Status and Control Register (ADSCR)
COCO — Conversions Complete Bit
When the AIEN bit is a logic 0, the COCO is a read-only bit which is
set each time a conversion is completed. This bit is cleared whenever
the ADSCR is written, or whenever the ADC clock control register is
written, or whenever the ADC data register low, ADRL, is read.
If the AIEN bit is logic 1, the COCO bit always read as logic 0, CPU to
service the ADC interrupt will be generated at the end if an ADC
conversion. Reset clears the COCO bit.
1 = Conversion completed (AIEN = 0)
0 = Conversion not completed (AIEN = 0)/CPU interrupt (AIEN=1)
AIEN — ADC Interrupt Enable Bit
When this bit is set, an interrupt is generated at the end of an ADC
conversion. The interrupt signal is cleared when the data register,
ADR0, is read or the ADSCR is written. Reset clears the AIEN bit.
1 = ADC interrupt enabled
0 = ADC interrupt disabled
Data Sheet
342
MC68HC908LJ24/LK24 — Rev. 2
Analog-to-Digital Converter (ADC)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Analog-to-Digital Converter (ADC)
I/O Registers
ADCO — ADC Continuous Conversion Bit
When set, the ADC will convert samples continuously and update the
ADC data register at the end of each conversion. Only one conversion
is allowed when this bit is cleared. Reset clears the ADCO bit.
1 = Continuous ADC conversion
0 = One ADC conversion
Freescale Semiconductor, Inc...
ADCH[4:0] — ADC Channel Select Bits
ADCH[4:0] form a 5-bit field which is used to select one of the ADC
channels when not in auto-scan mode. The five channel select bits
are detailed in Table 16-1.
NOTE:
Care should be taken when using a port pin as both an analog and a
digital input simultaneously to prevent switching noise from corrupting
the analog signal.
Recovery from the disabled state requires one conversion cycle to
stabilize.
Table 16-1. MUX Channel Select
ADCH4
ADCH3
ADCH2
ADCH1
ADCH0
ADC Channel
Input Select
0
0
0
0
0
ADC0
PTA4
0
0
0
0
1
ADC1
PTA5
0
0
0
1
0
ADC2
PTA6
0
0
0
1
1
ADC3
PTA7
0
0
1
0
0
ADC4
PTB6
0
0
1
0
1
ADC5
PTB7
0
0
1
1
0
ADC6
1.2V Bandgap reference
0
0
1
1
1
ADC7
VLCD
0
1
0
0
0
ADC8
↓
↓
↓
↓
↓
↓
1
1
1
0
0
ADC28
1
1
1
0
1
ADC29
VREFH (see Note 2)
1
1
1
1
0
ADC30
VREFL (see Note 2)
1
1
1
1
1
ADC powered-off
—
Reserved
NOTES:
1. If any reserved channels are selected, the resulting ADC conversion will be unknown.
2. The voltage levels supplied from internal reference nodes as specified in the table are used to verify the operation of
the ADC converter both in production test and for user applications.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Analog-to-Digital Converter (ADC)
For More Information On This Product,
Go to: www.freescale.com
343
Freescale Semiconductor, Inc.
Analog-to-Digital Converter (ADC)
16.8.2 ADC Data Register
Freescale Semiconductor, Inc...
The ADC data register consist of a pair of 8-bit registers: high byte
(ADRH), and low byte (ADRL). This pair form a 16-bit register to store
the 10-bit ADC result for the selected ADC result justification mode.
In 8-bit truncated mode, the ADRL holds the eight most significant bits
(MSBs) of the 10-bit result. The ADRL is updated each time an ADC
conversion completes. In 8-bit truncated mode, ADRL contains no
interlocking with ADRH. (See Figure 16-5 . ADRH and ADRL in 8-Bit
Truncated Mode.)
Addr.
$003D
$003E
Register Name
Read:
ADC Data Register High
Write:
(ADRH)
Reset:
Read:
ADC Data Register Low
Write:
(ADRL)
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
AD9
AD8
AD7
AD6
AD5
AD4
AD3
AD2
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Figure 16-5. ADRH and ADRL in 8-Bit Truncated Mode
In right justified mode the ADRH holds the two MSBs, and the ADRL
holds the eight least significant bits (LSBs), of the 10-bit result. ADRH
and ADRL are updated each time a single channel ADC conversion
completes. Reading ADRH latches the contents of ADRL. Until ADRL is
read all subsequent ADC results will be lost.
(See Figure 16-6 . ADRH and ADRL in Right Justified Mode.)
Addr.
$003D
$003E
Register Name
Read:
ADC Data Register High
Write:
(ADRH)
Reset:
Read:
ADC Data Register Low
Write:
(ADRL)
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
AD9
AD8
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
AD7
AD6
AD5
AD4
AD3
AD2
AD1
AD0
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Figure 16-6. ADRH and ADRL in Right Justified Mode
Data Sheet
344
MC68HC908LJ24/LK24 — Rev. 2
Analog-to-Digital Converter (ADC)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Analog-to-Digital Converter (ADC)
I/O Registers
In left justified mode the ADRH holds the eight most significant bits
(MSBs), and the ADRL holds the two least significant bits (LSBs), of the
10-bit result. The ADRH and ADRL are updated each time a single
channel ADC conversion completes. Reading ADRH latches the
contents of ADRL. Until ADRL is read all subsequent ADC results will be
lost. (See Figure 16-7 . ADRH and ADRL in Left Justified Mode.)
Freescale Semiconductor, Inc...
Addr.
$003D
$003E
Register Name
Bit 7
6
5
4
3
2
1
Bit 0
Read:
ADC Data Register High
Write:
(ADRH)
Reset:
AD9
AD8
AD7
AD6
AD5
AD4
AD3
AD2
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Read:
ADC Data Register Low
Write:
(ADRL)
Reset:
AD1
AD0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Figure 16-7. ADRH and ADRL in Left Justified Mode
In left justified sign mode the ADRH holds the eight MSBs with the MSB
complemented, and the ADRL holds the two least significant bits (LSBs),
of the 10-bit result. The ADRH and ADRL are updated each time a single
channel ADC conversion completes. Reading ADRH latches the
contents of ADRL. Until ADRL is read all subsequent ADC results will be
lost. (See Figure 16-8 . ADRH and ADRL in Left Justified Sign Data
Mode.)
Addr.
$003D
$003E
Register Name
Bit 7
6
5
4
3
2
1
Bit 0
Read:
ADC Data Register High
Write:
(ADRH)
Reset:
AD9
AD8
AD7
AD6
AD5
AD4
AD3
AD2
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Read:
ADC Data Register Low
Write:
(ADRL)
Reset:
AD1
AD0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Figure 16-8. ADRH and ADRL in Left Justified Sign Data Mode
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Analog-to-Digital Converter (ADC)
For More Information On This Product,
Go to: www.freescale.com
345
Freescale Semiconductor, Inc.
Analog-to-Digital Converter (ADC)
16.8.3 ADC Clock Control Register
The ADC clock control register (ADCLK) selects the clock frequency for
the ADC.
Address:
$003F
Read:
0
ADIV2
ADIV1
ADIV0
ADICLK
MODE1
0
MODE0
Write:
Reset:
R
0
0
0
0
Freescale Semiconductor, Inc...
= Unimplemented
0
1
R
0
0
= Reserved
Figure 16-9. ADC Clock Control Register (ADCLK)
ADIV[2:0] — ADC Clock Prescaler Bits
ADIV2, ADIV1, and ADIV0 form a 3-bit field which selects the divide
ratio used by the ADC to generate the internal ADC clock.
Table 16-2 shows the available clock configurations. The ADC clock
should be set to between 32kHz and 2MHz.
Table 16-2. ADC Clock Divide Ratio
ADIV2
ADIV1
ADIV0
ADC Clock Rate
0
0
0
ADC input clock ÷ 1
0
0
1
ADC input clock ÷ 2
0
1
0
ADC input clock ÷ 4
0
1
1
ADC input clock ÷ 8
1
X
X
ADC input clock ÷ 16
X = don’t care
ADICLK — ADC Input Clock Select Bit
ADICLK selects either bus clock or CGMXCLK as the input clock
source to generate the internal ADC clock. Reset selects CGMXCLK
as the ADC clock source.
Data Sheet
346
MC68HC908LJ24/LK24 — Rev. 2
Analog-to-Digital Converter (ADC)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Analog-to-Digital Converter (ADC)
I/O Registers
If the external clock (CGMXCLK) is equal to or greater than 1MHz,
CGMXCLK can be used as the clock source for the ADC. If
CGMXCLK is less than 1MHz, use the PLL-generated bus clock as
the clock source. As long as the internal ADC clock is at fADIC, correct
operation can be guaranteed.
1 = Internal bus clock
0 = External clock, CGMXCLK
CGMXCLK or bus frequency
ADIV[2:0]
Freescale Semiconductor, Inc...
fADIC =
MODE1 and MODE0 — Modes of Result Justification
MODE1 and MODE0 selects between four modes of operation. The
manner in which the ADC conversion results will be placed in the ADC
data registers is controlled by these modes of operation. Reset
returns right-justified mode.
Table 16-3. ADC Mode Select
MODE1
MODE0
ADC Clock Rate
0
0
8-bit truncated mode
0
1
Right justified mode
1
0
Left justified mode
1
1
Left justified sign data mode
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Analog-to-Digital Converter (ADC)
For More Information On This Product,
Go to: www.freescale.com
347
Freescale Semiconductor, Inc.
Freescale Semiconductor, Inc...
Analog-to-Digital Converter (ADC)
Data Sheet
348
MC68HC908LJ24/LK24 — Rev. 2
Analog-to-Digital Converter (ADC)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Data Sheet – MC68HC908LJ24
Section 17. Liquid Crystal Display (LCD) Driver
Freescale Semiconductor, Inc...
17.1 Contents
17.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
17.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
17.4
Pin Name Conventions and I/O Register Addresses . . . . . . . 350
17.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .354
17.5.1 LCD Duty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
17.5.2 LCD Voltages (VLCD, VLCD1, VLCD2, VLCD3) . . . . . . . . . . . 356
17.5.3 LCD Cycle Frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
17.5.4 Fast Charge and Low Current . . . . . . . . . . . . . . . . . . . . . . 357
17.5.5 Contrast Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
17.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
17.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .359
17.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .359
17.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
17.7.1 BP0–BP3 (Backplane Drivers) . . . . . . . . . . . . . . . . . . . . . . 360
17.7.2 FP0–FP32 (Frontplane Drivers) . . . . . . . . . . . . . . . . . . . . . 362
17.8
Seven Segment Display Connection . . . . . . . . . . . . . . . . . . . 366
17.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
17.9.1 LCD Control Register (LCDCR) . . . . . . . . . . . . . . . . . . . . . 369
17.9.2 LCD Clock Register (LCDCLK) . . . . . . . . . . . . . . . . . . . . . 371
17.9.3 LCD Data Registers (LDAT1–LDAT17) . . . . . . . . . . . . . . . 373
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Liquid Crystal Display (LCD) Driver
For More Information On This Product,
Go to: www.freescale.com
349
Freescale Semiconductor, Inc.
Liquid Crystal Display (LCD) Driver
17.2 Introduction
This section describes the liquid crystal display (LCD) driver module.
The LCD driver module can drive a maximum of 33 frontplanes and 4
backplanes, depending on the LCD duty selected.
17.3 Features
Freescale Semiconductor, Inc...
Features of the LCD driver module include the following:
•
Software programmable driver segment configurations:
– 32 frontplanes × 4 backplanes (128 segments)
– 33 frontplanes × 3 backplanes (99 segments)
– 33 frontplanes × 1 backplane (33 segments)
•
LCD bias voltages generated by internal resistor ladder
•
Software programmable contrast control
17.4 Pin Name Conventions and I/O Register Addresses
Three dedicated I/O pins are for the backplanes, BP0–BP2; sixteen
dedicated I/O pins are for the frontplanes, FP1–FP10 and FP27–FP32;
and the sixteen frontplanes, FP11–FP26, are shared with port C and E
pins. FP0 and BP3 shares the same pin and configured by the
DUTY[1:0] bits in the LCD clock register.
The full names of the LCD output pins are shown in Table 17-1. The
generic pin names appear in the text that follows.
Table 17-1. Pin Name Conventions
LCD Generic Pin Name
Full MCU Pin Name
Pin Selected for LCD Function by:
FP0/BP3
FP0/BP3
—
BP0–BP2
BP0–BP2
—
FP1–FP10
FP1–FP10
—
FP11–FP18
PTE0/FP11–PTE7/FP18
PEE in CONFIG2
FP19–FP26
PTC0/FP19–PTC7/FP26
PCEL:PCEH in CONFIG2
FP27–FP32
FP27–FP32
—
Data Sheet
350
MC68HC908LJ24/LK24 — Rev. 2
Liquid Crystal Display (LCD) Driver
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Liquid Crystal Display (LCD) Driver
Pin Name Conventions and I/O Register Addresses
Addr.
$004F
Freescale Semiconductor, Inc...
$0051
$0052
$0053
$0054
$0055
$0056
$0057
$0058
$0059
Register Name
Bit 7
Read:
LCD Clock Register
Write:
(LCDCLK)
Reset:
Read:
LCD Control Register
Write:
(LCDCR)
Reset:
Read:
LCD Data Register 1
Write:
(LDAT1)
Reset:
Read:
LCD Data Register 2
Write:
(LDAT2)
Reset:
Read:
LCD Data Register 3
Write:
(LDAT3)
Reset:
Read:
LCD Data Register 4
Write:
(LDAT4)
Reset:
Read:
LCD Data Register 5
Write:
(LDAT5)
Reset:
Read:
LCD Data Register 6
Write:
(LDAT6)
Reset:
Read:
LCD Data Register 7
Write:
(LDAT7)
Reset:
Read:
LCD Data Register 8
Write:
(LDAT8)
Reset:
0
6
5
4
3
2
1
Bit 0
FCCTL1
FCCTL0
DUTY1
DUTY0
LCLK2
LCLK1
LCLK0
0
0
0
0
0
0
0
FC
LC
LCCON3
LCCON2
LCCON1
LCCON0
0
0
LCDE
0
0
0
0
0
0
0
0
F1B3
F1B2
F1B1
F1B0
F0B3
F0B2
F0B1
F0B0
U
U
U
U
U
U
U
U
F3B3
F3B2
F3B1
F3B0
F2B3
F2B2
F2B1
F2B0
U
U
U
U
U
U
U
U
F5B3
F5B2
F5B1
F5B0
F4B3
F4B2
F4B1
F4B0
U
U
U
U
U
U
U
U
F7B3
F7B2
F7B1
F7B0
F6B3
F6B2
F6B1
F6B0
U
U
U
U
U
U
U
U
F9B3
F9B2
F9B1
F9B0
F8B3
F8B2
F8B1
F8B0
U
U
U
U
U
U
U
U
F11B3
F11B2
F11B1
F11B0
F10B3
F10B2
F10B1
F10B0
U
U
U
U
U
U
U
U
F13B3
F13B2
F13B1
F13B0
F12B3
F12B2
F12B1
F12B0
U
U
U
U
U
U
U
U
F15B3
F15B2
F15B1
F15B0
F14B3
F14B2
F14B1
F14B0
U
U
U
U
U
U
U
U
U = Unaffected
= Unimplemented
Figure 17-1. LCD I/O Register Summary
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Liquid Crystal Display (LCD) Driver
For More Information On This Product,
Go to: www.freescale.com
351
Freescale Semiconductor, Inc.
Liquid Crystal Display (LCD) Driver
Read:
LCD Data Register 9
Write:
(LDAT9)
Reset:
$005A
$005B
Freescale Semiconductor, Inc...
$005C
$005D
$005E
$005F
$0060
$0061
$0062
Read:
LCD Data Register 10
Write:
(LDAT10)
Reset:
Read:
LCD Data Register 11
Write:
(LDAT11)
Reset:
Read:
LCD Data Register 12
Write:
(LDAT12)
Reset:
Read:
LCD Data Register 13
Write:
(LDAT13)
Reset:
Read:
LCD Data Register 14
Write:
(LDAT14)
Reset:
Read:
LCD Data Register 15
Write:
(LDAT15)
Reset:
Read:
LCD Data Register 16
Write:
(LDAT16)
Reset:
F17B3
F17B2
F17B1
F17B0
F16B3
F16B2
F16B1
F16B0
U
U
U
U
U
U
U
U
F19B3
F19B2
F19B1
F19B0
F18B3
F18B2
F18B1
F18B0
U
U
U
U
U
U
U
U
F21B3
F21B2
F21B1
F21B0
F20B3
F20B2
F20B1
F20B0
U
U
U
U
U
U
U
U
F23B3
F23B2
F23B1
F23B0
F22B3
F22B2
F22B1
F22B0
U
U
U
U
U
U
U
U
F25B3
F25B2
F25B1
F25B0
F24B3
F24B2
F24B1
F24B0
U
U
U
U
U
U
U
U
F27B3
F27B2
F27B1
F27B0
F26B3
F26B2
F26B1
F26B0
U
U
U
U
U
U
U
U
F29B3
F29B2
F29B1
F29B0
F28B3
F28B2
F28B1
F28B0
U
U
U
U
U
U
U
U
F31B3
F31B2
F31B1
F31B0
F30B3
F30B2
F30B1
F30B0
U
U
U
U
U
U
U
U
F32B3
F32B2
F32B1
F32B0
U
U
U
U
Read:
LCD Data Register 17
Write:
(LDAT17)
Reset:
U = Unaffected
= Unimplemented
Figure 17-1. LCD I/O Register Summary
Data Sheet
352
MC68HC908LJ24/LK24 — Rev. 2
Liquid Crystal Display (LCD) Driver
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Liquid Crystal Display (LCD) Driver
Functional Description
17.5 Functional Description
Figure 17-2 shows a block diagram of the LCD driver module, and
Figure 17-3 shows a simplified schematic of the LCD system.
The LCD driver module uses a 1/3 biasing method. The LCD power is
supplied by the VLCD pin. Voltages VLCD1, VLCD2, and VLCD3 are
generated by an internal resistor ladder.
Freescale Semiconductor, Inc...
The LCD data registers, LDAT1–LDAT17, control the LCD segments’
ON/OFF, with each data register controlling two frontplanes. When a
logic 1 is written to a FxBx bit in the data register, the corresponding
frontplane-backplane segment will turn ON. When a logic 0 is written, the
the segment will turn OFF.
PTE7/FP18
PTE6/FP17
PTE5/FP16
PTE4/FP15
PTE3/FP14
PTE2/FP13
PTE1/FP12
PTE0/FP11
FP10
FP9
FP8
FP7
FP6
FP5
When the LCD driver module is disabled (LCDE = 0), the LCD display
will be OFF, all backplane and frontplane drivers have the same
potential as VDD. The resistor ladder is disconnected from VDD to reduce
power consumption.
PORT-E LOGIC
PTC0/FP19
FP4
FP3
FP2
BP1
BP0
PTC3/FP22
PTC4/FP23
PTC5/FP24
PTC7/FP26
FP27
STATE
CONTROL
1/1 1/3 1/4
INTERNAL BUS
BP2
PTC2/FP21
PTC6/FP25
LCDE (LCDC)
1/4
DRIVER
FP0/BP3
1/3
BACKPLANE
FP1
PTC1/FP20
PORT-C LOGIC
LCD FRONTPLANE DRIVER AND DATA LATCH
FP28
FP29
FP30
FP31
FP32
Figure 17-2. LCD Block Diagram
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Liquid Crystal Display (LCD) Driver
For More Information On This Product,
Go to: www.freescale.com
353
Freescale Semiconductor, Inc.
Liquid Crystal Display (LCD) Driver
Freescale Semiconductor, Inc...
LCD
FP0
FP1
RFP
RFP
FP24
RFP
BP0
BP1
RBP
RBP
BP2
RBP
VLCD
VLCD
RLCD
RLCD
RLCD
VLCD1
VLCD2
VLCD3
Vbias
VR
BIAS
CONTROL
LCCON[3:0]
Figure 17-3. Simplified LCD Schematic (1/3 Duty, 1/3 Bias)
Data Sheet
354
MC68HC908LJ24/LK24 — Rev. 2
Liquid Crystal Display (LCD) Driver
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Liquid Crystal Display (LCD) Driver
Functional Description
17.5.1 LCD Duty
Freescale Semiconductor, Inc...
The setting of the LCD output waveform duty is dependent on the
number of backplane drivers required. Three LCD duties are available:
•
Static duty — BP0 is used only
•
1/3 duty — BP0, BP1, and BP3 are used
•
1/4 duty — BP0, BP1, BP2, and BP3 are used
When the LCD driver module is enabled the backplane waveforms for
the selected duty are driven out of the backplane pins. The backplane
waveforms are periodic and are shown are shown in Figure 17-5,
Figure 17-6, and Figure 17-7.
17.5.2 LCD Voltages (VLCD, VLCD1, VLCD2, VLCD3)
The voltage VLCD is from the VLCD pin and must not exceed VDD. VLCD1,
VLCD2, and VLCD3 are internal bias voltages for the LCD driver
waveforms. They are derived from VLCD using a resistor ladder (see
Figure 17-3).
The relative potential of the LCD voltages are:
•
VLCD = VDD
•
VLCD1 = 2/3 × (VLCD – Vbias)
•
VLCD2 = 1/3 × (VLCD – Vbias)
•
VLCD3 = Vbias
The VLCD3 bias voltage, Vbias, is controlled by the LCD contrast control
bits, LCCON[2:0].
17.5.3 LCD Cycle Frame
The LCD driver module uses the CGMXCLK (see Section 7. Oscillator
(OSC))as the input reference clock. This clock is divided to produce the
LCD waveform base clock, LCDCLK, by configuring the LCLK[2:0] bits
in the LCD clock register. The LCDCLK clocks the backplane and the
frontplane output waveforms.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Liquid Crystal Display (LCD) Driver
For More Information On This Product,
Go to: www.freescale.com
355
Freescale Semiconductor, Inc.
Liquid Crystal Display (LCD) Driver
The LCD cycle frame is determined by the equation:
LCD CYCLE FRAME =
1
LCD WAVEFORM BASE CLOCK × DUTY
For example, for 1/3 duty and 256Hz waveform base clock:
Freescale Semiconductor, Inc...
LCD CYCLE FRAME =
1
256 × (1/3)
= 11.72 ms
17.5.4 Fast Charge and Low Current
The default value for each of the bias resistors (see Figure 17-3), RLCD,
in the resistor ladder is approximately 37kΩ at VLCD = 3V. The relatively
high current drain through the 37kΩ resistor ladder may not be suitable
for some LCD panel connections. Lowering this current is possible by
setting the LC bit in the LCD control register, switching the RLCD value
to 146kΩ.
Although the lower current drain is desirable, but in some LCD panel
connections, the higher current is required to drive the capacitive load of
the LCD panel. In most cases, the higher current is only required when
the LCD waveforms change state (the rising and falling edges in the LCD
output waveforms). The fast charge option is designed to have the high
current for the switching and the low current for the steady state. Setting
the FC bit in the LCD control register selects the fast charge option. The
RLCD value is set to 37kΩ (for high current) for a fraction of time for each
LCD waveform switching edge, and then back to 146kΩ for the steady
state period. The duration of the fast charge time is set by configuring the
FCCTL[1:0] bits in the LCD clock register, and can be LCDCLK/32,
LCDCLK/64, or LCDCLK/128. Figure 17-4 shows the fast charge clock
relative to the BP0 waveform.
Data Sheet
356
MC68HC908LJ24/LK24 — Rev. 2
Liquid Crystal Display (LCD) Driver
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Liquid Crystal Display (LCD) Driver
Low-Power Modes
LCDCLK
LCD WAVEFORM
EXAMPLE: BP0
Freescale Semiconductor, Inc...
FAST CHARGE CLOCK
HIGH CURRENT SELECTED BEFORE SWITCHING EDGE,
PERIOD IS DEFINED BY FCCTL[1:0]
Figure 17-4. Fast Charge Timing
17.5.5 Contrast Control
The contrast of the connected LCD panel can be adjusted by configuring
the LCCON[3:0] bits in the LCD control register. The LCCON[3:0] bits
provide a 16-step contrast control, which adjusts the bias voltage in the
resistor ladder for LCD voltage, VLCD3. The relative voltages, VLCD1 and
VLCD2, are altered accordingly. For example, setting LCCON[3:0] = $F,
the relative panel potential voltage (VLCD – VLCD3) is reduced from
maximum 3.3V to approximate 2.45V.
The VLCD voltage can be monitored by the ADC channel, ADC7, and
then adjustments to the bias voltage by the user software to provide
automatic contrast control.
17.6 Low-Power Modes
The STOP and WAIT instructions put the MCU in low powerconsumption standby modes.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Liquid Crystal Display (LCD) Driver
For More Information On This Product,
Go to: www.freescale.com
357
Freescale Semiconductor, Inc.
Liquid Crystal Display (LCD) Driver
17.6.1 Wait Mode
The LCD driver module continues normal operation in wait mode. If the
LCD is not required in wait mode, power down the LCD module by
clearing the LCDE bit before executing the WAIT instruction.
Freescale Semiconductor, Inc...
17.6.2 Stop Mode
For continuous LCD module operation in stop mode, the oscillator stop
mode enable bit (STOP_XCLKEN in CONFIG2 register) must be set
before executing the STOP instruction. When STOP_XCLKEN is set,
CGMXCLK continues to drive the LCD module.
If STOP_XCLKEN bit is cleared, the LCD module is inactive after the
execution of a STOP instruction. The STOP instruction does not affect
LCD register states. LCD module operation resumes after an external
interrupt. To further reduce power consumption, the LCD module should
be powered-down by clearing the LCDE bit before executing the STOP
instruction.
17.7 I/O Signals
The LCD driver module has thirty-six (36) output pins and shares eight
of them with port C I/O pins and eight with port E I/O pins.
Data Sheet
358
•
FP0/BP3 (multiplexed; selected as FP0 or BP3 by DUTY[1:0])
•
BP0–BP2
•
FP1–FP10
•
FP11–FP18 (shared with port E)
•
FP19–FP26 (shared with port C)
•
FP27–FP32
MC68HC908LJ24/LK24 — Rev. 2
Liquid Crystal Display (LCD) Driver
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Liquid Crystal Display (LCD) Driver
I/O Signals
17.7.1 BP0—BP3 (Backplane Drivers)
BP0–BP3 are the backplane driver output pins. These are connected to
the backplane of the LCD panel. Depending on the LCD duty selected,
the voltage waveforms in Figure 17-5, Figure 17-6, and Figure 17-7
appear on the backplane pins.
Freescale Semiconductor, Inc...
BP3 pin is only used when 1/4 duty is selected. The pin becomes FP0
for static and 1/3 duty operations.
DUTY = STATIC
1FRAME
VLCD
VLCD1
VLCD2
BP0
VLCD3
NOTES:
1. BP1, BP2, and BP3 are not used.
2. At static duty, 1FRAME is equal to the cycle of LCD waveform base clock.
Figure 17-5. Static LCD Backplane Driver Waveform
DUTY = 1/3
1FRAME
VLCD
VLCD1
VLCD2
BP0
VLCD3
BP1
VLCD
VLCD1
VLCD2
VLCD3
BP2
VLCD
VLCD1
VLCD2
VLCD3
NOTES:
1. BP3 is not used.
2. At 1/3 duty, 1FRAME has three times the cycle of LCD waveform base clock.
Figure 17-6. 1/3 Duty LCD Backplane Driver Waveforms
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Liquid Crystal Display (LCD) Driver
For More Information On This Product,
Go to: www.freescale.com
359
Freescale Semiconductor, Inc.
Liquid Crystal Display (LCD) Driver
DUTY = 1/4
1FRAME
VLCD
VLCD1
VLCD2
BP0
Freescale Semiconductor, Inc...
VLCD3
BP1
VLCD
VLCD1
VLCD2
VLCD3
BP2
VLCD
VLCD1
VLCD2
VLCD3
BP3
VLCD
VLCD1
VLCD2
VLCD3
Figure 17-7. 1/4 Duty LCD Backplane Driver Waveforms
Data Sheet
360
MC68HC908LJ24/LK24 — Rev. 2
Liquid Crystal Display (LCD) Driver
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Liquid Crystal Display (LCD) Driver
I/O Signals
17.7.2 FP0—FP32 (Frontplane Drivers)
FP0–FP32 are the frontplane driver output pins. These are connected to
the frontplane of the LCD panel. Depending on LCD duty selected and
the contents in the LCD data registers, the voltage waveforms in Figure
17-8, Figure 17-9, Figure 17-10 and Figure 17-11 appear on the
frontplane pins.
Freescale Semiconductor, Inc...
FP11–FP18 are shared with port E I/O pins. These pins are configured
for standard I/O or LCD use by the PEE bit in CONFIG2 register.
FP19–FP26 are shared with port C I/O pins. These pins are configured
for standard I/O or LCD use by the PCEL and PCEH bits in CONFIG2
register.
DUTY = STATIC
FPx OUTPUT
1FRAME
DATA LATCH: 1 = ON, 0 = OFF
FxB0
—
—
—
0
VLCD
VLCD1
VLCD2
VLCD3
FxB0
—
—
—
1
VLCD
VLCD1
VLCD2
VLCD3
Figure 17-8. Static LCD Frontplane Driver Waveforms
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Liquid Crystal Display (LCD) Driver
For More Information On This Product,
Go to: www.freescale.com
361
Freescale Semiconductor, Inc.
Liquid Crystal Display (LCD) Driver
DUTY = 1/3
DATA LATCH: 1 = ON, 0 = OFF
FPx OUTPUT
1FRAME
—
FxB2
FxB1
FxB0
0
0
0
VLCD
VLCD1
VLCD2
VLCD3
Freescale Semiconductor, Inc...
—
—
—
—
—
—
—
FxB2
FxB1
FxB0
0
0
1
FxB2
FxB1
FxB0
0
1
0
FxB2
FxB1
FxB0
1
0
0
FxB2
FxB1
FxB0
0
1
1
FxB2
FxB1
FxB0
1
1
0
FxB2
FxB1
FxB0
1
0
1
FxB2
FxB1
FxB0
1
1
1
VLCD
VLCD1
VLCD2
VLCD3
VLCD
VLCD1
VLCD2
VLCD3
VLCD
VLCD1
VLCD2
VLCD3
VLCD
VLCD1
VLCD2
VLCD3
VLCD
VLCD1
VLCD2
VLCD3
VLCD
VLCD1
VLCD2
VLCD3
VLCD
VLCD1
VLCD2
VLCD3
Figure 17-9. 1/3 Duty LCD Frontplane Driver Waveforms
Data Sheet
362
MC68HC908LJ24/LK24 — Rev. 2
Liquid Crystal Display (LCD) Driver
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Liquid Crystal Display (LCD) Driver
I/O Signals
FPx OUTPUT
DUTY = 1/4
DATA LATCH: 1 = ON, 0 = OFF
1FRAME
FxB3
FxB2
FxB1
FxB0
0
0
0
0
VLCD
VLCD1
VLCD2
Freescale Semiconductor, Inc...
VLCD3
FxB3
FxB2
FxB1
FxB0
0
0
0
1
FxB3
FxB2
FxB1
FxB0
0
0
1
0
FxB3
FxB2
FxB1
FxB0
0
0
1
1
FxB3
FxB2
FxB1
FxB0
0
1
0
0
FxB3
FxB2
FxB1
FxB0
0
1
0
1
FxB3
FxB2
FxB1
FxB0
0
1
1
0
FxB3
FxB2
FxB1
FxB0
0
1
1
1
Figure 17-10. 1/4 Duty LCD Frontplane Driver Waveforms
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Liquid Crystal Display (LCD) Driver
For More Information On This Product,
Go to: www.freescale.com
363
Freescale Semiconductor, Inc.
Liquid Crystal Display (LCD) Driver
FPx OUTPUT
DUTY = 1/4
DATA LATCH: 1 = ON, 0 = OFF
1FRAME
FxB3
FxB2
FxB1
FxB0
1
0
0
0
VLCD
VLCD1
VLCD2
Freescale Semiconductor, Inc...
VLCD3
FxB3
FxB2
FxB1
FxB0
1
0
0
1
FxB3
FxB2
FxB1
FxB0
1
0
1
0
FxB3
FxB2
FxB1
FxB0
1
0
1
1
FxB3
FxB2
FxB1
FxB0
1
1
0
0
FxB3
FxB2
FxB1
FxB0
1
1
0
1
FxB3
FxB2
FxB1
FxB0
1
1
1
0
FxB3
FxB2
FxB1
FxB0
1
1
1
1
Figure 17-11. 1/4 Duty LCD Frontplane Driver Waveforms (continued)
Data Sheet
364
MC68HC908LJ24/LK24 — Rev. 2
Liquid Crystal Display (LCD) Driver
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Liquid Crystal Display (LCD) Driver
Seven Segment Display Connection
17.8 Seven Segment Display Connection
The following shows an example for connecting a 7-segment LCD
display to the LCD driver.
The example uses 1/3 duty cycle, with pins BP0, BP1, BP2, FP0, FP1,
and FP2 connected as shown in Figure 17-12. The output waveforms
are shown in Figure 17-13.
Freescale Semiconductor, Inc...
FP CONNECTION
a
f
e
g
d
BP CONNECTION
a
b
f
c
e
BP0 (a, b COMMONED)
b
g
BP1 (c, f, g COMMONED)
c
d
BP2 (d, e COMMONED)
FP2 (b, c COMMONED)
FP1 (a, d, g COMMONED)
FP0 (e, f COMMONED)
The segment assignments for each bit in the data registers are:
LDAT1
$0052
F1B3
F1B2
F1B1
F1B0
F0B3
F0B2
F0B1
F0B0
—
d
g
a
—
e
f
—
FP1
LDAT2
$0053
FP0
F3B3
F3B2
F3B1
F3B0
F2B3
F2B2
F2B1
F2B0
—
—
—
—
—
—
c
b
FP2
To display the character "4": LDAT1 = X010X01X, LDAT2 = XXXXXX11
a
LDAT1
$0052
X
0
1
0
X
0
1
X
LDAT2
$0053
X
X
X
X
X
X
1
1
f
g
e
d
b
c
X = don’t care
Figure 17-12. 7-Segment Display Example
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Liquid Crystal Display (LCD) Driver
For More Information On This Product,
Go to: www.freescale.com
365
Freescale Semiconductor, Inc.
Liquid Crystal Display (LCD) Driver
DUTY = 1/3
1FRAME
VLCD
VLCD1
VLCD2
BP0
Freescale Semiconductor, Inc...
VLCD3
F0B2
F0B1
F0B0
0
1
0
F1B2
F1B1
F1B0
0
1
0
F2B2
F2B1
F2B0
0
1
1
—
—
—
BP1
VLCD
VLCD1
VLCD2
VLCD3
BP2
VLCD
VLCD1
VLCD2
VLCD3
FP0
VLCD
VLCD1
VLCD2
VLCD3
FP1
VLCD
VLCD1
VLCD2
VLCD3
FP2
VLCD
VLCD1
VLCD2
VLCD3
Figure 17-13. BP0–BP2 and FP0–FP2 Output Waveforms for
7-Segment Display Example
Data Sheet
366
MC68HC908LJ24/LK24 — Rev. 2
Liquid Crystal Display (LCD) Driver
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Liquid Crystal Display (LCD) Driver
Seven Segment Display Connection
The voltage waveform across the "f" segment of the LCD (between BP1
and FP0) is illustrated in Figure 17-14. As shown in the waveform, the
voltage peaks reach the LCD-ON voltage, VLCD, therefore, the segment
will be ON.
+VLCD
+VLCD1
+VLCD2
Freescale Semiconductor, Inc...
BP1–FP0
0
–VLCD2
–VLCD1
–VLCD
Figure 17-14. "f" Segment Voltage Waveform
The voltage waveform across the "e" segment of the LCD (between BP2
and FP0) is illustrated in Figure 17-15. As shown in the waveform, the
voltage peaks do not reach the LCD-ON voltage, VLCD, therefore, the
segment will be OFF.
+VLCD
+VLCD1
+VLCD2
0
–VLCD2
–VLCD1
–VLCD
BP2–FP0
Figure 17-15. "e" Segment Voltage Waveform
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Liquid Crystal Display (LCD) Driver
For More Information On This Product,
Go to: www.freescale.com
367
Freescale Semiconductor, Inc.
Liquid Crystal Display (LCD) Driver
17.9 I/O Registers
Freescale Semiconductor, Inc...
Nineteen (19) registers control LCD driver module operation:
•
LCD control register (LCDCR)
•
LCD clock register (LCDCLK)
•
LCD data registers (LDAT1–LDAT17)
17.9.1 LCD Control Register (LCDCR)
The LCD control register (LCDCR):
•
Enables the LCD driver module
•
Selects bias resistor value and fast-charge control
•
Selects LCD contrast
Address:
$0051
Bit 7
Read:
Write:
Reset:
LCDE
0
6
0
0
5
4
3
2
1
Bit 0
FC
LC
LCCON3
LCCON2
LCCON1
LCCON0
0
0
0
0
0
0
= Unimplemented
Figure 17-16. LCD Control Register (LCDCR)
LCDE — LCD Enable
This read/write bit enables the LCD driver module; the backplane and
frontplane drive LCD waveforms out of BPx and FPx pins. Reset
clears the LCDE bit.
1 = LCD driver module enabled
0 = LCD driver module disabled
FC — Fast Charge
LC — Low Current
These read/write bits are used to select the value of the resistors in
resistor ladder for LCD voltages. Reset clears the FC and LC bits.
Data Sheet
368
MC68HC908LJ24/LK24 — Rev. 2
Liquid Crystal Display (LCD) Driver
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Liquid Crystal Display (LCD) Driver
I/O Registers
Table 17-2. Resistor Ladder Selection
FC
LC
Action
X
0
Each resistor is approximately 37 kΩ (default)
0
1
Each resistor is approximately 146 kΩ
1
1
Fast charge mode
LCCON[3:0] — LCD Contrast Control
Freescale Semiconductor, Inc...
These read/write bits select the bias voltage, Vbias. This voltage
controls the contrast of the LCD.
Maximum contrast is set when LCCON[3:0] =%0000;
minimum contrast is set when LCCON[3:0] =%1111.
Table 17-3. LCD Bias Voltage Control
LCCON3
LCCON2
LCCON1
LCCON0
Bias Voltage
(% of VDD)
0
0
0
0
0.6
0
0
0
1
2.9
0
0
1
0
5.2
0
0
1
1
7.4
0
1
0
0
9.6
0
1
0
1
11.6
0
1
1
0
13.5
0
1
1
1
15.3
1
0
0
0
17.2
1
0
0
1
18.8
1
0
1
0
20.5
1
0
1
1
22.0
1
1
0
0
23.6
1
1
0
1
25.0
1
1
1
0
26.4
1
1
1
1
27.7
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Liquid Crystal Display (LCD) Driver
For More Information On This Product,
Go to: www.freescale.com
369
Freescale Semiconductor, Inc.
Liquid Crystal Display (LCD) Driver
17.9.2 LCD Clock Register (LCDCLK)
The LCD clock register (LCDCLK):
•
Selects the fast charge duty cycle
•
Selects LCD driver duty cycle
•
Selects LCD waveform base clock
Address:
$004F
Freescale Semiconductor, Inc...
Bit 7
Read:
0
Write:
Reset:
6
5
4
3
2
1
Bit 0
FCCTL1
FCCTL0
DUTY1
DUTY0
LCLK2
LCLK1
LCLK0
0
0
0
0
0
0
0
0
= Unimplemented
Figure 17-17. LCD Clock Register (LCDCLK)
FCCTL[1:0] — Fast Charge Duty Cycle Select
These read/write bits select the duty cycle of the fast charge duration.
Reset clears these bits. (See 17.5.4 Fast Charge and Low Current)
Table 17-4. Fast Charge Duty Cycle Selection
Data Sheet
370
FCCTL1:FCCTL0
Fast Charge Duty Cycle
00
In each LCDCLK/2 period, each bias resistor is reduced to
37 kΩ for a duration of LCDCLK/32.
01
In each LCDCLK/2 period, each bias resistor is reduced to
37 kΩ for a duration of LCDCLK/64.
10
In each LCDCLK/2 period, each bias resistor is reduced to
37 kΩ for a duration of LCDCLK/128.
11
Not used
MC68HC908LJ24/LK24 — Rev. 2
Liquid Crystal Display (LCD) Driver
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Liquid Crystal Display (LCD) Driver
I/O Registers
DUTY[1:0] — Duty Cycle Select
These read/write bits select the duty cycle of the LCD driver output
waveforms. The multiplexed FP0/BP3 pin is controlled by the duty
cycle selected. Reset clears these bits.
Table 17-5. LCD Duty Cycle Selection
Freescale Semiconductor, Inc...
DUTY1:DUTY0
Description
00
Static selected; FP0/BP3 pin function as FP0.
01
1/3 duty cycle selected; FP0/BP3 pin functions as FP0.
10
1/4 duty cycle selected; FP0/BP3 pin functions as BP3.
11
Not used
LCLK[2:0] — LCD Waveform Base Clock Select
These read/write bits selects the LCD waveform base clock. Reset
clears these bits.
Table 17-6. LCD Waveform Base Clock Selection
LCLK2
LCLK1
LCLK0
Divide
Ratio
LCD Waveform Base
Clock Frequency
LCDCLK (Hz)
LCD Frame Rate
fXTAL(1) =
32.768kHz
LCD Frame Rate
fXTAL =
4.9152MHz
fXTAL =
32.768kHz
fXTAL =
4.9152MHz
1/3
duty
1/4
duty
1/3
duty
1/4
duty
0
0
0
128
256
—
85.3
64
—
—
0
0
1
256
128
—
42.7
32
—
—
0
1
0
512
64
—
21.3
16
—
—
0
1
1
1024
32
—
10.7
8
—
—
1
0
0
16384
—
300
—
—
100
75
1
0
1
32768
—
150
—
—
50
37.5
1
1
0
65536
—
75
—
—
25
18.75
1
1
1
Reserved
Notes:
1. fXTAL is the same as CGMXCLK (see Section 7. Oscillator (OSC)).
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Liquid Crystal Display (LCD) Driver
For More Information On This Product,
Go to: www.freescale.com
371
Freescale Semiconductor, Inc.
Liquid Crystal Display (LCD) Driver
17.9.3 LCD Data Registers (LDAT1—LDAT17)
Freescale Semiconductor, Inc...
The seventeen (17) LCD data registers enable and disable the drive to
the corresponding LCD segments.
Addr.
Register Name
$0052
Read:
LCD Data Register 1
Write:
(LDAT1)
Reset:
$0053
$0054
$0055
$0056
$0057
$0058
$0059
$005A
Read:
LCD Data Register 2
Write:
(LDAT2)
Reset:
Read:
LCD Data Register 3
Write:
(LDAT3)
Reset:
Read:
LCD Data Register 4
Write:
(LDAT4)
Reset:
Read:
LCD Data Register 5
Write:
(LDAT5)
Reset:
Read:
LCD Data Register 6
Write:
(LDAT6)
Reset:
Read:
LCD Data Register 7
Write:
(LDAT7)
Reset:
Read:
LCD Data Register 8
Write:
(LDAT8)
Reset:
Read:
LCD Data Register 9
Write:
(LDAT9)
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
F1B3
F1B2
F1B1
F1B0
F0B3
F0B2
F0B1
F0B0
U
U
U
U
U
U
U
U
F3B3
F3B2
F3B1
F3B0
F2B3
F2B2
F2B1
F2B0
U
U
U
U
U
U
U
U
F5B3
F5B2
F5B1
F5B0
F4B3
F4B2
F4B1
F4B0
U
U
U
U
U
U
U
U
F7B3
F7B2
F7B1
F7B0
F6B3
F6B2
F6B1
F6B0
U
U
U
U
U
U
U
U
F9B3
F9B2
F9B1
F9B0
F8B3
F8B2
F8B1
F8B0
U
U
U
U
U
U
U
U
F11B3
F11B2
F11B1
F11B0
F10B3
F10B2
F10B1
F10B0
U
U
U
U
U
U
U
U
F13B3
F13B2
F13B1
F13B0
F12B3
F12B2
F12B1
F12B0
U
U
U
U
U
U
U
U
F15B3
F15B2
F15B1
F15B0
F14B3
F14B2
F14B1
F14B0
U
U
U
U
U
U
U
U
F17B3
F17B2
F17B1
F17B0
F16B3
F16B2
F16B1
F16B0
U
U
U
U
U
U
U
U
U = Unaffected
= Unimplemented
Figure 17-18. LCD Data Registers 1–17 (LDAT1–LDAT17)
Data Sheet
372
MC68HC908LJ24/LK24 — Rev. 2
Liquid Crystal Display (LCD) Driver
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Liquid Crystal Display (LCD) Driver
I/O Registers
$005B
$005C
Freescale Semiconductor, Inc...
$005D
$005E
$005F
$0060
$0061
$0062
Read:
LCD Data Register 10
Write:
(LDAT10)
Reset:
Read:
LCD Data Register 11
Write:
(LDAT11)
Reset:
Read:
LCD Data Register 12
Write:
(LDAT12)
Reset:
Read:
LCD Data Register 13
Write:
(LDAT13)
Reset:
Read:
LCD Data Register 14
Write:
(LDAT14)
Reset:
Read:
LCD Data Register 15
Write:
(LDAT15)
Reset:
Read:
LCD Data Register 16
Write:
(LDAT16)
Reset:
F19B3
F19B2
F19B1
F19B0
F18B3
F18B2
F18B1
F18B0
U
U
U
U
U
U
U
U
F21B3
F21B2
F21B1
F21B0
F20B3
F20B2
F20B1
F20B0
U
U
U
U
U
U
U
U
F23B3
F23B2
F23B1
F23B0
F22B3
F22B2
F22B1
F22B0
U
U
U
U
U
U
U
U
F25B3
F25B2
F25B1
F25B0
F24B3
F24B2
F24B1
F24B0
U
U
U
U
U
U
U
U
F27B3
F27B2
F27B1
F27B0
F26B3
F26B2
F26B1
F26B0
U
U
U
U
U
U
U
U
F29B3
F29B2
F29B1
F29B0
F28B3
F28B2
F28B1
F28B0
U
U
U
U
U
U
U
U
F31B3
F31B2
F31B1
F31B0
F30B3
F30B2
F30B1
F30B0
U
U
U
U
U
U
U
U
F32B3
F32B2
F32B1
F32B0
U
U
U
U
Read:
LCD Data Register 17
Write:
(LDAT17)
Reset:
U = Unaffected
= Unimplemented
Figure 17-18. LCD Data Registers 1–17 (LDAT1–LDAT17)
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Liquid Crystal Display (LCD) Driver
For More Information On This Product,
Go to: www.freescale.com
373
Freescale Semiconductor, Inc.
Freescale Semiconductor, Inc...
Liquid Crystal Display (LCD) Driver
Data Sheet
374
MC68HC908LJ24/LK24 — Rev. 2
Liquid Crystal Display (LCD) Driver
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Data Sheet – MC68HC908LJ24
Section 18. Input/Output (I/O) Ports
18.1 Contents
Freescale Semiconductor, Inc...
18.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
18.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
18.3.1 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . 380
18.3.2 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . 381
18.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
18.4.1 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . 383
18.4.2 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . 385
18.4.3 Port B LED Control Register (LEDB) . . . . . . . . . . . . . . . . . 386
18.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
18.5.1 Port C Data Register (PTC) . . . . . . . . . . . . . . . . . . . . . . . . 387
18.5.2 Data Direction Register C (DDRC). . . . . . . . . . . . . . . . . . . 388
18.5.3 Port C LED Control Register (LEDC) . . . . . . . . . . . . . . . . . 389
18.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
18.6.1 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . . 390
18.6.2 Data Direction Register D (DDRD). . . . . . . . . . . . . . . . . . . 392
18.7 Port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
18.7.1 Port E Data Register (PTE) . . . . . . . . . . . . . . . . . . . . . . . . 394
18.7.2 Data Direction Register E (DDRE) . . . . . . . . . . . . . . . . . . . 395
18.7.3 Port E LED Control Register (LEDE) . . . . . . . . . . . . . . . . . 396
18.8 Port F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
18.8.1 Port F Data Register (PTF) . . . . . . . . . . . . . . . . . . . . . . . . 397
18.8.2 Data Direction Register F (DDRF) . . . . . . . . . . . . . . . . . . . 398
18.8.3 Port F LED Control Register (LEDF) . . . . . . . . . . . . . . . . . 399
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Input/Output (I/O) Ports
For More Information On This Product,
Go to: www.freescale.com
375
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
18.2 Introduction
Forty-eight (48) bidirectional input-output (I/O) pins form six parallel
ports. All I/O pins are programmable as inputs or outputs.
Freescale Semiconductor, Inc...
NOTE:
Connect any unused I/O pins to an appropriate logic level, either VDD or
VSS. Although the I/O ports do not require termination for proper
operation, termination reduces excess current consumption and the
possibility of electrostatic damage.
Addr.
Register Name
$0000
Read:
Port A Data Register
Write:
(PTA)
Reset:
$0001
$0002
$0003
Read:
Port B Data Register
Write:
(PTB)
Reset:
Read:
Port C Data Register
Write:
(PTC)
Reset:
Read:
Port D Data Register
Write:
(PTD)
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
PTA7
PTA6
PTA5
PTA4
PTA3
PTA2
PTA1
PTA0
PTB2
PTB1
PTB0
PTC2
PTC1
PTC0
PTD2
PTD1
PTD0
Unaffected by reset
PTB7
PTB6
PTB5
PTB4
PTB3
Unaffected by reset
PTC7
PTC6
PTC5
PTC4
PTC3
Unaffected by reset
PTD7
Read:
DDRA7
Data Direction Register A
$0004
Write:
(DDRA)
Reset:
0
Read:
DDRB7
Data Direction Register B
$0005
Write:
(DDRB)
Reset:
0
Read:
DDRC7
Data Direction Register C
$0006
Write:
(DDRC)
Reset:
0
Read:
DDRD7
Data Direction Register D
$0007
Write:
(DDRD)
Reset:
0
PTD6
PTD5
PTD4
PTD3
Unaffected by reset
DDRA6
DDRA5
DDRA4
DDRA3
DDRA2
DDRA1
DDRA0
0
0
0
0
0
0
0
DDRB6
DDRB5
DDRB4
DDRB3
DDRB2
DDRB1
DDRB0
0
0
0
0
0
0
0
DDRC6
DDRC5
DDRC4
DDRC3
DDRC2
DDRC1
DDRC0
0
0
0
0
0
0
0
DDRD6
DDRD5
DDRD4
DDRD3
DDRD2
DDRD1
DDRD0
0
0
0
0
0
0
0
Figure 18-1. I/O Port Register Summary
Data Sheet
376
MC68HC908LJ24/LK24 — Rev. 2
Input/Output (I/O) Ports
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
Introduction
Addr.
Register Name
$0008
Read:
Port E Data Register
Write:
(PTE)
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
PTE7
PTE6
PTE5
PTE4
PTE3
PTE2
PTE1
PTE0
U
U
U
U
U
U
U
U
DDRE6
DDRE5
DDRE4
DDRE3
DDRE2
DDRE1
DDRE0
0
0
0
0
0
0
0
PTF7
PTF6
PTF5
PTF4
PTF3
PTF2
PTF1
PTF0
U
U
U
U
U
U
U
U
DDRF6
DDRF5
DDRF4
DDRF3
DDRF2
DDRF1
DDRF0
0
0
0
0
0
0
0
LEDB5
LEDB4
LEDB3
LEDB2
LEDB1
LEDB0
Freescale Semiconductor, Inc...
Read:
DDRE7
Data Direction Register E
$0009
Write:
(DDRE)
Reset:
0
$000A
Read:
Port F Data Register
Write:
(PTF)
Reset:
Read:
DDRF7
Data Direction Register F
$000B
Write:
(DDRF)
Reset:
0
$000C
$000D
$000E
$000F
Read:
Port-B LED Control
Register Write:
(LEDB)
Reset:
Read:
Port-C LED Control
Register Write:
(LEDC)
Reset:
Read:
Port-E LED Control
Register Write:
(LEDE)
Reset:
Read:
Port-F LED Control
Register Write:
(LEDF)
Reset:
0
0
0
0
0
0
0
0
0
0
LEDC7
LEDC6
LEDC5
LEDC4
LEDC3
LEDC2
LEDC1
LEDC0
0
0
0
0
0
0
0
0
LEDE7
LEDE6
LEDE5
LEDE4
LEDE3
LEDE2
LEDE1
LEDE0
0
0
0
0
0
0
0
0
LEDF7
LEDF6
LEDF5
LEDF4
LEDF3
LEDF2
LEDF1
LEDF0
0
0
0
0
0
0
0
0
Figure 18-1. I/O Port Register Summary
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Input/Output (I/O) Ports
For More Information On This Product,
Go to: www.freescale.com
377
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
Table 18-1. Port Control Register Bits Summary (Sheet 1 of 2)
Port
Freescale Semiconductor, Inc...
A
B
C
Data Sheet
378
Bit
DDR
0
DDRA0
1
DDRA1
2
DDRA2
3
DDRA3
4
DDRA4
5
DDRA5
6
DDRA6
7
DDRA7
0
DDRB0
1
DDRB1
2
DDRB2
3
DDRB3
4
DDRB4
5
DDRB5
6
DDRB6
7
DDRB7
0
DDRC0
1
DDRC1
2
DDRC2
3
DDRC3
4
DDRC4
5
DDRC5
6
DDRC6
7
DDRC7
Module Control
Module
KBI
Register
KBIER ($001C)
Control Bit
Pin
KBIE0
PTA0/KBI0
KBIE1
PTA1/KBI1
KBIE2
PTA2/KBI2
KBIE3
PTA3/KBI3
PTA4/ADC0
ADC
ADSCR ($003C)
ADCH[4:0]
PTA5/ADC1
PTA6/ADC2
PTA7/ADC3
SCI
TIM1
TIM2
ADC
PTB0/TxD
SCC1 ($0013)
ENSCI
T1SC0 ($0025)
ELS0B:ELS0A
PTB2/T1CH0
T1SC1 ($0028)
ELS1B:ELS1A
PTB3/T1CH1
T2SC0 ($0030)
ELS0B:ELS0A
PTB4/T2CH0
T2SC1 ($0033)
ELS1B:ELS1A
PTB5/T2CH1
ADSCR ($003C)
ADCH[4:0]
PTB1/RxD
PTB6/ADC4
PTB7/ADC5
PTC0/FP19
PCEL
LCD
PTC1/FP20
PTC2/FP21
PTC3/FP22
CONFIG2 ($001D)
PTC4/FP23
PCEH
PTC5/FP24
PTC6/FP25
PTC7/FP26
MC68HC908LJ24/LK24 — Rev. 2
Input/Output (I/O) Ports
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
Introduction
Table 18-1. Port Control Register Bits Summary (Sheet 2 of 2)
Freescale Semiconductor, Inc...
Port
D (1)
Bit
DDR
0
DDRD0
1
DDRD1
2
DDRD2
3
DDRD3
4
DDRD4
Module Control
Module
SPI
RTC
KBI
TIM
5
DDRD5
6
DDRD6
KBI
MMIIC
E
F
Register
Control Bit
SPCR ($0010)
SPE
RTCCOMR ($0040)
CAL
SPCR ($0010)
SPE
SPCR ($0010)
SPE
RTCCOMR ($0040)
CAL
KBIER ($001C)
KBIE4
T1SC ($0020)
PS[2:0]
KBIER ($001C)
KBIE5
T2SC ($002B)
PS[2:0]
KBIER ($001C)
KBIE6
MMCR ($006C)
MMEN
KBIER ($001C)
KBIE7
MMCR ($006C)
MMEN
Pin
PTD0/SS/CALIN
PTD1/MISO
PTD2/MOSI
PTD3/SPSCK/CALOUT
PTD4/KBI4/T1CLK
PTD5/KBI5/T2CLK
PTD6/KBI6/SCL
7
DDRD7
0
DDRE0
PTE0/FP11
1
DDRE1
PTE1/FP12
2
DDRE2
PTE2/FP13
3
DDRE3
4
DDRE4
5
DDRE5
PTE5/FP16
6
DDRE6
PTE6/FP17
7
DDRE7
PTE7/FP18
0
DDRF0
PTF0
1
DDRF1
PTF1
2
DDRF2
PTF2
3
DDRF3
4
DDRF4
5
DDRF5
PTF5
6
DDRF6
PTF6
7
DDRF7
PTF7
LCD
—
CONFIG2 ($001D)
—
PEE
—
PTD7/KBI7/SDA
PTE3/FP14
PTE4/FP15
PTF3
PTF4
Notes:
1. In addition to the standard I/O function on PTD0 and PTD3–PTD7 pins, these pins are shared with two other modules.
For each of the pins, ONLY enable ONE module at any one time to avoid pin contention.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Input/Output (I/O) Ports
For More Information On This Product,
Go to: www.freescale.com
379
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
18.3 Port A
Port A is an 8-bit special function port that shares four of its port pins with
the analog-to-digital converter (ADC) module and four of its port pins
with the keyboard interrupt module (KBI).
18.3.1 Port A Data Register (PTA)
Freescale Semiconductor, Inc...
The port A data register contains a data latch for each of the eight port A
pins.
Address:
$0000
Bit 7
6
5
4
3
2
1
Bit 0
PTA7
PTA6
PTA5
PTA4
PTA3
PTA2
PTA1
PTA0
KBI2
KBI1
KBI0
Read:
Write:
Reset:
Alternative Function:
Unaffected by Reset
ADC3
ADC2
ADC1
ADC0
KBI3
Figure 18-2. Port A Data Register (PTA)
PTA[7:0] — Port A Data Bits
These read/write bits are software programmable. Data direction of
each port A pin is under the control of the corresponding bit in data
direction register A. Reset has no effect on port A data.
KBI[3:0] — Keyboard Interrupt Channels 3 to 0
KBI[3:0] are pins used for the keyboard interrupt input. The
corresponding input, KBI[3:0], can be enabled in the keyboard
interrupt enable register, KBIER. Port pins used as KBI input will
override any control from the port I/O logic. See Section 20.
Keyboard Interrupt Module (KBI).
Data Sheet
380
MC68HC908LJ24/LK24 — Rev. 2
Input/Output (I/O) Ports
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
Port A
ADC[3:0] — ADC channels 0 to 3
ADC[3:0] are pins used for the input channels to the analog-to-digital
converter module. The channel select bits, ADCH[4:0], in the ADC
status and control register define which port pin will be used as an
ADC input and overrides any control from the port I/O logic. See
Section 16. Analog-to-Digital Converter (ADC).
Freescale Semiconductor, Inc...
NOTE:
Care must be taken when reading port A while applying analog voltages
to ADC[3:0] pins. If the appropriate ADC channel is not enabled,
excessive current drain may occur if analog voltages are applied to the
PTAx/ADCx pin, while PTA is read as a digital input. Those ports not
selected as analog input channels are considered digital I/O ports.
18.3.2 Data Direction Register A (DDRA)
Data direction register A determines whether each port A pin is an input
or an output. Writing a logic 1 to a DDRA bit enables the output buffer for
the corresponding port A pin; a logic 0 disables the output buffer.
Address:
$0004
Bit 7
6
5
4
3
2
1
Bit 0
DDRA7
DDRA6
DDRA5
DDRA4
DDRA3
DDRA2
DDRA1
DDRA0
0
0
0
0
0
0
0
0
Read:
Write:
Reset:
Figure 18-3. Data Direction Register A (DDRA)
DDRA[7:0] — Data Direction Register A Bits
These read/write bits control port A data direction. Reset clears
DDRA[7:0], configuring all port A pins as inputs.
1 = Corresponding port A pin configured as output
0 = Corresponding port A pin configured as input
NOTE:
Avoid glitches on port A pins by writing to the port A data register before
changing data direction register A bits from 0 to 1. Figure 18-4 shows
the port A I/O logic.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Input/Output (I/O) Ports
For More Information On This Product,
Go to: www.freescale.com
381
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
READ DDRA ($0004)
INTERNAL DATA BUS
WRITE DDRA ($0004)
RESET
DDRAx
WRITE PTA ($0000)
PTAx
PTAx
Freescale Semiconductor, Inc...
READ PTA ($0000)
Figure 18-4. Port A I/O Circuit
When DDRAx is a logic 1, reading address $0000 reads the PTAx data
latch. When DDRAx is a logic 0, reading address $0000 reads the
voltage level on the pin. The data latch can always be written, regardless
of the state of its data direction bit.
Table 18-2 summarizes the operation of the port A pins.
Table 18-2. Port A Pin Functions
Accesses to DDRA
DDRA
Bit
PTA Bit
0
X(1)
1
X
Accesses to PTA
I/O Pin Mode
Read/Write
Read
Write
Input, Hi-Z(2)
DDRA[7:0]
Pin
PTA[7:0](3)
Output
DDRA[7:0]
PTA[7:0]
PTA[7:0]
Notes:
1. X = don’t care.
2. Hi-Z = high impedance.
3. Writing affects data register, but does not affect input.
Data Sheet
382
MC68HC908LJ24/LK24 — Rev. 2
Input/Output (I/O) Ports
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
Port B
18.4 Port B
Port B is a 8-bit special function port that shares two of its port pins with
the infrared serial communication interface (IRSCI) module, two of its
port pins with the timer interface module 1 (TIM1) module, two of its port
pins with the timer interface module 2 (TIM2), and two of its port pins with
the ADC module.
Freescale Semiconductor, Inc...
Port pins PTB0–PTB5 can be configured for direct LED drive.
18.4.1 Port B Data Register (PTB)
The port B data register contains a data latch for each of the eight port B
pins.
Address:
$0001
Bit 7
6
5
4
3
2
1
Bit 0
PTB7
PTB6
PTB5
PTB4
PTB3
PTB2
PTB1
PTB0
T1CH0
RxD
TxD
Read:
Write:
Reset:
Alternative Function:
Additional Function:
Unaffected by reset
ADC5
ADC4
T2CH1
T2CH0
T1CH1
LED drive LED drive LED drive LED drive LED drive LED drive
Figure 18-5. Port B Data Register (PTB)
PTB[7:0] — Port B Data Bits
These read/write bits are software programmable. Data direction of
each port B pin is under the control of the corresponding bit in data
direction register B. Reset has no effect on port B data.
TxD, RxD — SCI Data I/O Pins
The TxD and RxD pins are the transmit data output and receive data
input for the IRSCI module. The enable SCI bit, ENSCI, in the SCI
control register 1 enables the PTB0/TxD and PTB1/RxD pins as SCI
TxD and RxD pins and overrides any control from the port I/O. See
Section 13. Infrared Serial Communications Interface Module
(IRSCI).
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Input/Output (I/O) Ports
For More Information On This Product,
Go to: www.freescale.com
383
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
T1CH[1:0] — Timer 1 Channel I/O Bits
The T1CH1 and T1CH0 pins are the TIM1 input capture/output
compare pins. The edge/level select bits, ELSxB:ELSxA, determine
whether the PTB2/T1CH0 and PTB3/T1CH1 pins are timer channel
I/O pins or general-purpose I/O pins. See Section 11. Timer
Interface Module (TIM).
T2CH[1:0] — Timer 2 Channel I/O Bits
Freescale Semiconductor, Inc...
The T2CH1 and T2CH0 pins are the TIM1 input capture/output
compare pins. The edge/level select bits, ELSxB:ELSxA, determine
whether the PTB4/T2CH0 and PTB5/T2CH1 pins are timer channel
I/O pins or general-purpose I/O pins. See Section 11. Timer
Interface Module (TIM).
ADC[5:4] — ADC Channels 5 and 4
ADC[5:4] are pins used for the input channels to the analog-to-digital
converter module. The channel select bits, ADCH[4:0], in the ADC
status and control register define which port pin will be used as an
ADC input and overrides any control from the port I/O logic. See
Section 16. Analog-to-Digital Converter (ADC).
NOTE:
Care must be taken when reading port B while applying analog voltages
to ADC[5:4] pins. If the appropriate ADC channel is not enabled,
excessive current drain may occur if analog voltages are applied to the
PTBx/ADCx pin, while PTB is read as a digital input. Those ports not
selected as analog input channels are considered digital I/O ports.
LED Drive — Direct LED Drive Pins
PTB0–PTB5 pins can be configured for direct LED drive. See 18.4.3
Port B LED Control Register (LEDB).
Data Sheet
384
MC68HC908LJ24/LK24 — Rev. 2
Input/Output (I/O) Ports
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
Port B
18.4.2 Data Direction Register B (DDRB)
Data direction register B determines whether each port B pin is an input
or an output. Writing a logic 1 to a DDRB bit enables the output buffer for
the corresponding port B pin; a logic 0 disables the output buffer.
Address:
$0005
Bit 7
6
5
4
3
2
1
Bit 0
DDRB7
DDRB6
DDRB5
DDRB4
DDRB3
DDRB2
DDRB1
DDRB0
0
0
0
0
0
0
0
0
Read:
Freescale Semiconductor, Inc...
Write:
Reset:
Figure 18-6. Data Direction Register B (DDRB)
DDRB[7:0] — Data Direction Register B Bits
These read/write bits control port B data direction. Reset clears
DDRB[7:0], configuring all port B pins as inputs.
1 = Corresponding port B pin configured as output
0 = Corresponding port B pin configured as input
NOTE:
Avoid glitches on port B pins by writing to the port B data register before
changing data direction register B bits from 0 to 1. Figure 18-7 shows
the port B I/O logic.
READ DDRB ($0005)
INTERNAL DATA BUS
WRITE DDRB ($0005)
RESET
DDRBx
WRITE PTB ($0001)
PTBx
PTBx
READ PTB ($0001)
Figure 18-7. Port B I/O Circuit
When DDRBx is a logic 1, reading address $0001 reads the PTBx data
latch. When DDRBx is a logic 0, reading address $0001 reads the
voltage level on the pin. The data latch can always be written, regardless
of the state of its data direction bit.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Input/Output (I/O) Ports
For More Information On This Product,
Go to: www.freescale.com
385
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
Table 18-3 summarizes the operation of the port B pins.
Freescale Semiconductor, Inc...
Table 18-3. Port B Pin Functions
Accesses to DDRB
DDRB
Bit
PTB Bit
0
X(1)
1
X
Accesses to PTB
I/O Pin Mode
Read/Write
Read
Write
Input, Hi-Z(2)
DDRB[7:0]
Pin
PTB[7:0](3)
Output
DDRB[7:0]
PTB[7:0]
PTB[7:0]
Notes:
1. X = don’t care.
2. Hi-Z = high impedance.
3. Writing affects data register, but does not affect input.
18.4.3 Port B LED Control Register (LEDB)
The port-B LED control register (LEDB) controls the direct LED drive
capability on PTB5–PTB0 pins. Each bit is individually configurable and
requires that the data direction register, DDRB, bit be configured as an
output.
When the IRSCI is enabled, setting the LEDB0 bit also enables high
current (15mA) sink capability for the TxD pin.
Address:
Read:
$000C
Bit 7
6
0
0
5
4
3
2
1
Bit 0
LEDB5
LEDB4
LEDB3
LEDB2
LEDB1
LEDB0
0
0
0
0
0
0
Write:
Reset:
0
0
Figure 18-8. Port B LED Control Register (LEDB)
LEDB[5:0] — Port B LED Drive Enable Bits
These read/write bits are software programmable to enable the direct
LED drive on an output port pin.
1 = Corresponding port B pin is configured for direct LED drive,
with 15mA current sinking capability
0 = Corresponding port B pin is configured for standard drive
Data Sheet
386
MC68HC908LJ24/LK24 — Rev. 2
Input/Output (I/O) Ports
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
Port C
18.5 Port C
Port C is an 8-bit special function port that shares all of its port pins with
the liquid crystal display (LCD) driver module.
Port pins PTC0–PTC7 can be configured for direct LED drive.
18.5.1 Port C Data Register (PTC)
Freescale Semiconductor, Inc...
The port C data register contains a data latch for each of the eight port C
pins.
Address:
$0002
Bit 7
6
5
4
3
2
1
Bit 0
PTC7
PTC6
PTC5
PTC4
PTC3
PTC2
PTC1
PTC0
FP21
FP20
FP19
Read:
Write:
Reset:
Alternative Function:
Unaffected by reset
FP26
FP25
FP24
FP23
FP22
Additional Function: LED drive LED drive LED drive LED drive LED drive LED drive LED drive LED drive
Figure 18-9. Port C Data Register (PTC)
PTC[7:0] — Port C Data Bits
These read/write bits are software programmable. Data direction of
each port C pin is under the control of the corresponding bit in data
direction register C. Reset has no effect on port C data.
FP[26:19] — LCD Driver Frontplanes 26–19
FP[26:19] are pins used for the frontplane output of the LCD driver
module. The enable bits, PCEH and PCEL, in the CONFIG2 register,
determine whether the PTC7/FP26–PTC4/FP23 and
PTC3/FP22–PTC0/FP19 pins are LCD frontplane driver pins or
general-purpose I/O pins. See Section 17. Liquid Crystal Display
(LCD) Driver.
LED drive — Direct LED Drive Pins
PTC0–PTC7 pins can be configured for direct LED drive. See 18.5.3
Port C LED Control Register (LEDC).
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Input/Output (I/O) Ports
For More Information On This Product,
Go to: www.freescale.com
387
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
18.5.2 Data Direction Register C (DDRC)
Data direction register C determines whether each port C pin is an input
or an output. Writing a logic 1 to a DDRC bit enables the output buffer for
the corresponding port C pin; a logic 0 disables the output buffer.
Address:
$0006
Bit 7
6
5
4
3
2
1
Bit 0
DDRC7
DDRC6
DDRC5
DDRC4
DDRC3
DDRC2
DDRC1
DDRC0
0
0
0
0
0
0
0
0
Freescale Semiconductor, Inc...
Read:
Write:
Reset:
Figure 18-10. Data Direction Register C (DDRC)
DDRC[7:0] — Data Direction Register C Bits
These read/write bits control port C data direction. Reset clears
DDRC[7:0], configuring all port C pins as inputs.
1 = Corresponding port C pin configured as output
0 = Corresponding port C pin configured as input
NOTE:
Avoid glitches on port C pins by writing to the port C data register before
changing data direction register C bits from 0 to 1. Figure 18-11 shows
the port C I/O logic.
READ DDRC ($0006)
INTERNAL DATA BUS
WRITE DDRC ($0006)
RESET
DDRCx
WRITE PTC ($0002)
PTCx
PTCx
READ PTC ($0002)
Figure 18-11. Port C I/O Circuit
Data Sheet
388
MC68HC908LJ24/LK24 — Rev. 2
Input/Output (I/O) Ports
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
Port C
When DDRCx is a logic 1, reading address $0002 reads the PTCx data
latch. When DDRCx is a logic 0, reading address $0002 reads the
voltage level on the pin. The data latch can always be written, regardless
of the state of its data direction bit.
Table 18-4 summarizes the operation of the port C pins.
Freescale Semiconductor, Inc...
Table 18-4. Port C Pin Functions
Accesses to DDRC
DDRC
Bit
PTC Bit
0
X(1)
1
X
Accesses to PTC
I/O Pin Mode
Read/Write
Read
Write
Input, Hi-Z(2)
DDRC[7:0]
Pin
PTC[7:0](3)
Output
DDRC[7:0]
PTC[7:0]
PTC[7:0]
Notes:
1. X = don’t care.
2. Hi-Z = high impedance.
3. Writing affects data register, but does not affect input.
18.5.3 Port C LED Control Register (LEDC)
Port-C LED control register (LEDC) controls the direct LED drive
capability on PTC7–PTC0 pins. Each bit is individually configurable and
requires that the data direction register, DDRC, bit be configured as an
output.
Address:
$000D
Bit 7
6
5
4
3
2
1
Bit 0
LEDC7
LEDC6
LEDC5
LEDC4
LEDC3
LEDC2
LEDC1
LEDC0
0
0
0
0
0
0
0
0
Read:
Write:
Reset:
Figure 18-12. Port C LED Control Register (LEDC)
LEDC[7:0] — Port C LED Drive Enable Bits
These read/write bits are software programmable to enable the direct
LED drive on an output port pin.
1 = Corresponding port C pin is configured for direct LED drive,
with 15mA current sinking capability
0 = Corresponding port C pin is configured for standard drive
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Input/Output (I/O) Ports
For More Information On This Product,
Go to: www.freescale.com
389
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
18.6 Port D
Port D is an 8-bit special function port that shares its pins with the serial
peripheral interface (SPI) module, keyboard interrupt module, RTC
module, MMIIC module, and timer modules.
18.6.1 Port D Data Register (PTD)
Freescale Semiconductor, Inc...
The port D data register contains a data latch for each of the eight port D
pins.
Address:
$0003
Bit 7
6
5
4
3
2
1
Bit 0
PTD7
PTD6
PTD5
PTD4
PTD3
PTD2
PTD1
PTD0
MOSI
MISO
SS/
CALIN*
Read:
Write:
Reset:
Alternative Function:
Unaffected by reset
KBI7/
SDA*
KBI6/
SCL*
KBI5/
T2CLK*
KBI4/
T1CLK*
SPSCK/
CALOUT*
* These port pins are shared with two other modules. For each of the pins, ONLY enable ONE module at any one
time to avoid pin contention.
Figure 18-13. Port D Data Register (PTD)
PTD[7:0] — Port D Data Bits
These read/write bits are software programmable. Data direction of
each port D pin is under the control of the corresponding bit in data
direction register D. Reset has no effect on port D data.
KBI[7:4] — Keyboard Interrupt Channels 7 to 4
KBI[7:4] are pins used for the keyboard interrupt input. The
corresponding input, KBI[7:4], can be enabled in the keyboard
interrupt enable register, KBIER. Port pins used as KBI input will
override any control from the port I/O logic. See Section 20.
Keyboard Interrupt Module (KBI).
Data Sheet
390
MC68HC908LJ24/LK24 — Rev. 2
Input/Output (I/O) Ports
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
Port D
SDA, SCL — Multi-Master IIC Data and Clock Pins
The SDA and SCL pins are multi-master IIC data and clock opendrain pins, enabled by setting the MMEN bit in the MMIIC control
register (MMCR). Port pins used as MMIIC will override any control
from the port I/O logic. See Section 15. Multi-Master IIC Interface
(MMIIC).
T2CLK — TIM2 Clock Input Pin
Freescale Semiconductor, Inc...
The T2CLK pin is the external clock input for TIM2, enabled by setting
the prescaler select bits, PS[2:0] to %111, in the TIM2 status and
control register (T2SC). Port pin used as T2CLK will override any
control from the port I/O logic. See Section 11. Timer Interface
Module (TIM).
T1CLK — TIM1 Clock Input Pin
The T1CLK pin is the external clock input for TIM1, enabled by setting
the prescaler select bits, PS[2:0] to %111, in the TIM1 status and
control register (T1SC). Port pin used as T1CLK will override any
control from the port I/O logic. See Section 11. Timer Interface
Module (TIM).
SPSCK, MOSI, MISO, and SS — SPI Functional Pins
These four pins are the SPI clock, master-output-slave-input, masterinput-slave-output, and slave select pins; enabled by setting the SPI
enable bit, SPE, in the SPI control register (SPCR). Port pins used as
SPI will override any control from the port I/O logic. See Section 14.
Serial Peripheral Interface Module (SPI).
CALOUT, CALIN — RTC Calibration Pins
The CALOUT and CALIN pins are RTC calibration pins, enabled by
setting the CAL bit in the RTC calibration register (RTCCOMR). Port
pins used for RTC calibration will override any control from the port
I/O logic. See Section 12. Real Time Clock (RTC).
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Input/Output (I/O) Ports
For More Information On This Product,
Go to: www.freescale.com
391
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
18.6.2 Data Direction Register D (DDRD)
Data direction register D determines whether each port D pin is an input
or an output. Writing a logic 1 to a DDRD bit enables the output buffer for
the corresponding port D pin; a logic 0 disables the output buffer.
Address:
$0007
Bit 7
6
5
4
3
2
1
Bit 0
DDRD7
DDRD6
DDRD5
DDRD4
DDRD3
DDRD2
DDRD1
DDRD0
0
0
0
0
0
0
0
0
Freescale Semiconductor, Inc...
Read:
Write:
Reset:
Figure 18-14. Data Direction Register D (DDRD)
DDRD[7:0] — Data Direction Register D Bits
These read/write bits control port D data direction. Reset clears
DDRD[7:0], configuring all port D pins as inputs.
1 = Corresponding port D pin configured as output
0 = Corresponding port D pin configured as input
NOTE:
Avoid glitches on port D pins by writing to the port D data register before
changing data direction register D bits from 0 to 1. Figure 18-15 shows
the port D I/O logic.
READ DDRD ($0007)
INTERNAL DATA BUS
WRITE DDRD ($0007)
RESET
DDRDx
WRITE PTD ($0003)
PTDx
PTDx
READ PTD ($0003)
Figure 18-15. Port D I/O Circuit
Data Sheet
392
MC68HC908LJ24/LK24 — Rev. 2
Input/Output (I/O) Ports
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
Port D
When DDRDx is a logic 1, reading address $0003 reads the PTDx data
latch. When DDRDx is a logic 0, reading address $0003 reads the
voltage level on the pin. The data latch can always be written, regardless
of the state of its data direction bit.
Table 18-5 summarizes the operation of the port D pins.
Freescale Semiconductor, Inc...
Table 18-5. Port D Pin Functions
Accesses to DDRD
DDRD
Bit
PTD Bit
0
X(1)
1
X
Accesses to PTD
I/O Pin Mode
Read/Write
Read
Write
Input, Hi-Z(2)
DDRD[7:0]
Pin
PTD[7:0](3)
Output
DDRD[7:0]
PTD[7:0]
PTD[7:0]
Notes:
1. X = don’t care.
2. Hi-Z = high impedance.
3. Writing affects data register, but does not affect input.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Input/Output (I/O) Ports
For More Information On This Product,
Go to: www.freescale.com
393
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
18.7 Port E
Port E is an 8-bit special function port that shares all of its port pins with
the liquid crystal display (LCD) driver module.
Port pins PTE0–PTE7 can be configured for direct LED drive.
18.7.1 Port E Data Register (PTE)
Freescale Semiconductor, Inc...
The port E data register contains a data latch for each of the eight port E
pins.
Address:
$0008
Bit 7
6
5
4
3
2
1
Bit 0
PTE7
PTE6
PTE5
PTE4
PTE3
PTE2
PTE1
PTE0
FP13
FP12
FP11
Read:
Write:
Reset:
Alternative Function:
Unaffected by reset
FP18
FP17
FP16
FP15
FP14
Additional Function: LED drive LED drive LED drive LED drive LED drive LED drive LED drive LED drive
Figure 18-16. Port E Data Register (PTE)
PTE[7:0] — Port E Data Bits
These read/write bits are software programmable. Data direction of
each port E pin is under the control of the corresponding bit in data
direction register E. Reset has no effect on port E data.
FP[18:11] — LCD Driver Frontplanes 18–11
FP[18:11] are pins used for the frontplane output of the LCD driver
module. The enable bit, PEE, in the CONFIG2 register, determines
whether the PTE7/FP18–PTE0/FP11 pins are LCD frontplane driver
pins or general-purpose I/O pins. See Section 17. Liquid Crystal
Display (LCD) Driver.
LED drive — Direct LED Drive Pins
PTE0–PTE7 pins can be configured for direct LED drive. See 18.7.3
Port E LED Control Register (LEDE).
Data Sheet
394
MC68HC908LJ24/LK24 — Rev. 2
Input/Output (I/O) Ports
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
Port E
18.7.2 Data Direction Register E (DDRE)
Data direction register E determines whether each port E pin is an input
or an output. Writing a logic 1 to a DDRE bit enables the output buffer for
the corresponding port E pin; a logic 0 disables the output buffer.
Address:
$0009
Bit 7
6
5
4
3
2
1
Bit 0
DDRE7
DDRE6
DDRE5
DDRE4
DDRE3
DDRE2
DDRE1
DDRE0
0
0
0
0
0
0
0
0
Freescale Semiconductor, Inc...
Read:
Write:
Reset:
Figure 18-17. Data Direction Register E (DDRE)
DDRE[7:0] — Data Direction Register E Bits
These read/write bits control port E data direction. Reset clears
DDRE[7:0], configuring all port E pins as inputs.
1 = Corresponding port E pin configured as output
0 = Corresponding port E pin configured as input
NOTE:
Avoid glitches on port E pins by writing to the port E data register before
changing data direction register E bits from 0 to 1. Figure 18-18 shows
the port E I/O logic.
READ DDRE ($0009)
INTERNAL DATA BUS
WRITE DDRE ($0009)
RESET
DDREx
WRITE PTE ($0008)
PTEx
PTEx
READ PTE ($0008)
Figure 18-18. Port E I/O Circuit
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Input/Output (I/O) Ports
For More Information On This Product,
Go to: www.freescale.com
395
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
When DDREx is a logic 1, reading address $0008 reads the PTEx data
latch. When DDREx is a logic 0, reading address $0008 reads the
voltage level on the pin. The data latch can always be written, regardless
of the state of its data direction bit.
Table 18-6 summarizes the operation of the port E pins.
Freescale Semiconductor, Inc...
Table 18-6. Port E Pin Functions
Accesses to DDRE
DDRE
Bit
PTE Bit
0
X(1)
1
X
Accesses to PTE
I/O Pin Mode
Read/Write
Read
Write
Input, Hi-Z(2)
DDRE[7:0]
Pin
PTE[7:0](3)
Output
DDRE[7:0]
PTE[7:0]
PTE[7:0]
Notes:
1. X = don’t care; except.
2. Hi-Z = high impedance.
3. Writing affects data register, but does not affect input.
18.7.3 Port E LED Control Register (LEDE)
The port-E LED control register (LEDE) controls the direct LED drive
capability on PTE7–PTE0 pins. Each bit is individually configurable and
requires that the data direction register, DDRE, bit be configured as an
output.
Address:
$000E
Bit 7
6
5
4
3
2
1
Bit 0
LEDE7
LEDE6
LEDE5
LEDE4
LEDE3
LEDE2
LEDE1
LEDE0
0
0
0
0
0
0
0
0
Read:
Write:
Reset:
Figure 18-19. Port E LED Control Register (LEDE)
LEDE[7:0] — Port E LED Drive Enable Bits
These read/write bits are software programmable to enable the direct
LED drive on an output port pin.
1 = Corresponding port E pin is configured for direct LED drive,
with 15mA current sinking capability
0 = Corresponding port E pin is configured for standard drive
Data Sheet
396
MC68HC908LJ24/LK24 — Rev. 2
Input/Output (I/O) Ports
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
Port F
18.8 Port F
Port F is an 8-bit general-purpose I/O port.
Port pins PTF0–PTF7 can be configured for direct LED drive.
NOTE:
PTF0–PTF7 are not available in the 64-pin packages.
18.8.1 Port F Data Register (PTF)
Freescale Semiconductor, Inc...
The port F data register contains a data latch for each of the eight port F
pins.
Address:
$000A
Bit 7
6
5
4
3
2
1
Bit 0
PTF7
PTF6
PTF5
PTF4
PTF3
PTF2
PTF1
PTF0
Read:
Write:
Reset:
Unaffected by Reset
Additional Function: LED drive LED drive LED drive LED drive LED drive LED drive LED drive LED drive
Figure 18-20. Port F Data Register (PTF)
PTF[7:0] — Port F Data Bits
These read/write bits are software programmable. Data direction of
each port F pin is under the control of the corresponding bit in data
direction register F. Reset has no effect on port F data.
LED drive — Direct LED Drive Pins
PTF0–PTF7 pins can be configured for direct LED drive. See 18.8.3
Port F LED Control Register (LEDF).
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Input/Output (I/O) Ports
For More Information On This Product,
Go to: www.freescale.com
397
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
18.8.2 Data Direction Register F (DDRF)
Data direction register F determines whether each port F pin is an input
or an output. Writing a logic 1 to a DDRF bit enables the output buffer for
the corresponding port F pin; a logic 0 disables the output buffer.
NOTE:
For those devices packaged in a 64-pin package, PTF0–PTF7 are
connected to ground internally. DDRF0–DDRF7 should be set to a 0 to
configure PTF0–PTF7 as inputs.
Freescale Semiconductor, Inc...
Address:
$000B
Bit 7
6
5
4
3
2
1
Bit 0
DDRF7
DDRF6
DDRF5
DDRF4
DDRF3
DDRF2
DDRF1
DDRF0
0
0
0
0
0
0
0
0
Read:
Write:
Reset:
Figure 18-21. Data Direction Register F (DDRF)
DDRF[7:0] — Data Direction Register F Bits
These read/write bits control port F data direction. Reset clears
DDRF[7:0], configuring all port F pins as inputs.
1 = Corresponding port F pin configured as output
0 = Corresponding port F pin configured as input
NOTE:
Avoid glitches on port F pins by writing to the port F data register before
changing data direction register F bits from 0 to 1. Figure 18-22 shows
the port F I/O logic.
READ DDRF ($000B)
INTERNAL DATA BUS
WRITE DDRF ($000B)
RESET
DDRFx
WRITE PTF ($000A)
PTFx
PTFx
READ PTF ($000A)
Figure 18-22. Port F I/O Circuit
Data Sheet
398
MC68HC908LJ24/LK24 — Rev. 2
Input/Output (I/O) Ports
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
Port F
When DDRFx is a logic 1, reading address $000A reads the PTFx data
latch. When DDRFx is a logic 0, reading address $000A reads the
voltage level on the pin. The data latch can always be written, regardless
of the state of its data direction bit.
Table 18-7 summarizes the operation of the port F pins.
Freescale Semiconductor, Inc...
Table 18-7. Port F Pin Functions
Accesses to DDRF
DDRF
Bit
PTF Bit
0
X(1)
1
X
Accesses to PTF
I/O Pin Mode
Read/Write
Read
Write
Input, Hi-Z(2)
DDRF[7:0]
Pin
PTF[7:0](3)
Output
DDRF[7:0]
PTF[7:0]
PTF[7:0]
Notes:
1. X = don’t care; except.
2. Hi-Z = high impedance.
3. Writing affects data register, but does not affect input.
18.8.3 Port F LED Control Register (LEDF)
Port-F LED control register (LEDF) controls the direct LED drive
capability on PTF7–PTF0 pins. Each bit is individually configurable and
requires that the data direction register, DDRF, bit be configured as an
output.
Address:
$000F
Bit 7
6
5
4
3
2
1
Bit 0
LEDF7
LEDF6
LEDF5
LEDF4
LEDF3
LEDF2
LEDF1
LEDF0
0
0
0
0
0
0
0
0
Read:
Write:
Reset:
Figure 18-23. Port F LED Control Register (LEDF)
LEDF[7:0] — Port F LED Drive Enable Bits
These read/write bits are software programmable to enable the direct
LED drive on an output port pin.
1 = Corresponding port F pin is configured for direct LED drive,
with 15mA current sinking capability
0 = Corresponding port F pin is configured for standard drive
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Input/Output (I/O) Ports
For More Information On This Product,
Go to: www.freescale.com
399
Freescale Semiconductor, Inc.
Freescale Semiconductor, Inc...
Input/Output (I/O) Ports
Data Sheet
400
MC68HC908LJ24/LK24 — Rev. 2
Input/Output (I/O) Ports
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Data Sheet – MC68HC908LJ24
Section 19. External Interrupt (IRQ)
Freescale Semiconductor, Inc...
19.1 Contents
19.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
19.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
19.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .402
19.4.1 IRQ Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
19.5
IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . 405
19.6
IRQ Status and Control Register (INTSCR) . . . . . . . . . . . . . . 405
19.2 Introduction
The external interrupt (IRQ) module provides a maskable interrupt input.
19.3 Features
Features of the IRQ module include the following:
•
A dedicated external interrupt pin (IRQ)
•
IRQ interrupt control bits
•
Hysteresis buffer
•
Programmable edge-only or edge and level interrupt sensitivity
•
Automatic interrupt acknowledge
•
Internal pullup resistor
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
External Interrupt (IRQ)
For More Information On This Product,
Go to: www.freescale.com
401
Freescale Semiconductor, Inc.
External Interrupt (IRQ)
19.4 Functional Description
A logic 0 applied to the external interrupt pin can latch a CPU interrupt
request. Figure 19-1 shows the structure of the IRQ module.
Freescale Semiconductor, Inc...
Interrupt signals on the IRQ pin are latched into the IRQ latch. An
interrupt latch remains set until one of the following actions occurs:
•
Vector fetch — A vector fetch automatically generates an interrupt
acknowledge signal that clears the IRQ latch.
•
Software clear — Software can clear the interrupt latch by writing
to the acknowledge bit in the interrupt status and control register
(INTSCR). Writing a logic 1 to the ACK bit clears the IRQ latch.
•
Reset — A reset automatically clears the interrupt latch.
The external interrupt pin is falling-edge-triggered and is softwareconfigurable to be either falling-edge or low-level-triggered. The MODE
bit in the INTSCR controls the triggering sensitivity of the IRQ pin.
When the interrupt pin is edge-triggered only, the CPU interrupt request
remains set until a vector fetch, software clear, or reset occurs.
When the interrupt pin is both falling-edge and low-level-triggered, the
CPU interrupt request remains set until both of the following occur:
•
Vector fetch or software clear
•
Return of the interrupt pin to logic 1
The vector fetch or software clear may occur before or after the interrupt
pin returns to logic 1. As long as the pin is low, the interrupt request
remains pending. A reset will clear the latch and the MODE control bit,
thereby clearing the interrupt even if the pin stays low.
When set, the IMASK bit in the INTSCR mask all external interrupt
requests. A latched interrupt request is not presented to the interrupt
priority logic unless the IMASK bit is clear.
NOTE:
Data Sheet
402
The interrupt mask (I) in the condition code register (CCR) masks all
interrupt requests, including external interrupt requests.
MC68HC908LJ24/LK24 — Rev. 2
External Interrupt (IRQ)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
External Interrupt (IRQ)
Functional Description
RESET
ACK
TO CPU FOR
BIL/BIH
INSTRUCTIONS
INTERNAL ADDRESS BUS
VECTOR
FETCH
DECODER
VDD
VDD
INTERNAL
PULLUP
DEVICE
IRQF
D
Q
IRQ
INTERRUPT
REQUEST
SYNCHRONIZER
CK
IRQ
Freescale Semiconductor, Inc...
CLR
IMASK
MODE
TO MODE
SELECT
LOGIC
HIGH
VOLTAGE
DETECT
Figure 19-1. IRQ Module Block Diagram
Addr.
$001E
Register Name
IRQ Status and Control
Register
(INTSCR)
Read:
Bit 7
6
5
4
3
2
0
0
0
0
IRQF
0
Bit 0
IMASK
MODE
0
0
ACK
Write:
Reset:
1
0
0
0
0
0
0
= Unimplemented
Figure 19-2. IRQ I/O Port Register Summary
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
External Interrupt (IRQ)
For More Information On This Product,
Go to: www.freescale.com
403
Freescale Semiconductor, Inc.
External Interrupt (IRQ)
19.4.1 IRQ Pin
A logic 0 on the IRQ pin can latch an interrupt request into the IRQ latch.
A vector fetch, software clear, or reset clears the IRQ latch.
Freescale Semiconductor, Inc...
If the MODE bit is set, the IRQ pin is both falling-edge-sensitive and lowlevel-sensitive. With MODE set, both of the following actions must occur
to clear IRQ:
•
Vector fetch or software clear — A vector fetch generates an
interrupt acknowledge signal to clear the latch. Software may
generate the interrupt acknowledge signal by writing a logic 1 to
the ACK bit in the interrupt status and control register (INTSCR).
The ACK bit is useful in applications that poll the IRQ pin and
require software to clear the IRQ latch. Writing to the ACK bit prior
to leaving an interrupt service routine can also prevent spurious
interrupts due to noise. Setting ACK does not affect subsequent
transitions on the IRQ pin. A falling edge that occurs after writing
to the ACK bit latches another interrupt request. If the IRQ mask
bit, IMASK, is clear, the CPU loads the program counter with the
vector address at locations $FFFA and $FFFB.
•
Return of the IRQ pin to logic 1 — As long as the IRQ pin is at
logic 0, IRQ remains active.
The vector fetch or software clear and the return of the IRQ pin to logic 1
may occur in any order. The interrupt request remains pending as long
as the IRQ pin is at logic 0. A reset will clear the latch and the MODE
control bit, thereby clearing the interrupt even if the pin stays low.
If the MODE bit is clear, the IRQ pin is falling-edge-sensitive only. With
MODE clear, a vector fetch or software clear immediately clears the IRQ
latch.
The IRQF bit in the INTSCR register can be used to check for pending
interrupts. The IRQF bit is not affected by the IMASK bit, which makes it
useful in applications where polling is preferred.
Use the BIH of BIL instruction to read the logic level on the IRQ pin.
NOTE:
Data Sheet
404
When using the level-sensitive interrupt trigger, avoid false interrupts by
masking interrupt requests in the interrupt routine.
MC68HC908LJ24/LK24 — Rev. 2
External Interrupt (IRQ)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
External Interrupt (IRQ)
IRQ Module During Break Interrupts
19.5 IRQ Module During Break Interrupts
The system integration module (SIM) controls whether the IRQ latch can
be cleared during the break state. The BCFE bit in the break flag control
register (BFCR) enables software to clear the latches during the break
state. (See Section 23. Break Module (BRK).)
Freescale Semiconductor, Inc...
To allow software to clear the IRQ latch during a break interrupt, write a
logic 1 to the BCFE bit. If a latch is cleared during the break state, it
remains cleared when the MCU exits the break state.
To protect the latches during the break state, write a logic 0 to the BCFE
bit. With BCFE at logic 0 (its default state), writing to the ACK bit in the
IRQ status and control register during the break state has no effect on
the IRQ latch.
19.6 IRQ Status and Control Register (INTSCR)
The IRQ status and control register (INTSCR) controls and monitors
operation of the IRQ module. The INTSCR has the following functions:
•
Shows the state of the IRQ flag
•
Clears the IRQ latch
•
Masks IRQ and interrupt request
•
Controls triggering sensitivity of the IRQ interrupt pin
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
External Interrupt (IRQ)
For More Information On This Product,
Go to: www.freescale.com
405
Freescale Semiconductor, Inc.
External Interrupt (IRQ)
Address:
Read:
$001E
Bit 7
6
5
4
3
2
0
0
0
0
IRQF
0
Write:
Reset:
1
Bit 0
IMASK
MODE
0
0
ACK
0
0
0
0
0
0
= Unimplemented
Figure 19-3. IRQ Status and Control Register (INTSCR)
Freescale Semiconductor, Inc...
IRQF — IRQ Flag Bit
This read-only status bit is high when the IRQ interrupt is pending.
1 = IRQ interrupt pending
0 = IRQ interrupt not pending
ACK — IRQ Interrupt Request Acknowledge Bit
Writing a logic 1 to this write-only bit clears the IRQ latch. ACK always
reads as logic 0. Reset clears ACK.
IMASK — IRQ Interrupt Mask Bit
Writing a logic 1 to this read/write bit disables IRQ interrupt requests.
Reset clears IMASK.
1 = IRQ interrupt requests disabled
0 = IRQ interrupt requests enabled
MODE — IRQ Edge/Level Select Bit
This read/write bit controls the triggering sensitivity of the IRQ pin.
Reset clears MODE.
1 = IRQ interrupt requests on falling edges and low levels
0 = IRQ interrupt requests on falling edges only
Data Sheet
406
MC68HC908LJ24/LK24 — Rev. 2
External Interrupt (IRQ)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Data Sheet – MC68HC908LJ24
Section 20. Keyboard Interrupt Module (KBI)
Freescale Semiconductor, Inc...
20.1 Contents
20.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
20.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
20.4
I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
20.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .409
20.5.1 Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
20.6 Keyboard Interrupt Registers . . . . . . . . . . . . . . . . . . . . . . . . . 412
20.6.1 Keyboard Status and Control Register. . . . . . . . . . . . . . . . 412
20.6.2 Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . . . 413
20.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
20.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .414
20.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .414
20.8
Keyboard Module During Break Interrupts . . . . . . . . . . . . . . . 414
20.2 Introduction
The keyboard interrupt module (KBI) provides eight independently
maskable external interrupts which are accessible via PTA0–PTA3 and
PTD4–PTD7. When a port pin is enabled for keyboard interrupt function
(except PTD6 and PTD7), an internal 30kΩ pullup device is also enabled
on the pin.
NOTE:
PTD6/KBI6/SCL–PTD7/KBI7/SDA pins do not have internal pullup
devices. These two pins are open-drain when configured as outputs.
User should connect pullup devices when using these two pins for KBI
function.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Keyboard Interrupt Module (KBI)
For More Information On This Product,
Go to: www.freescale.com
407
Freescale Semiconductor, Inc.
Keyboard Interrupt Module (KBI)
20.3 Features
Freescale Semiconductor, Inc...
Features of the keyboard interrupt module include the following:
•
Eight keyboard interrupt pins with pullup devices
•
Separate keyboard interrupt enable bits and one keyboard
interrupt mask
•
Programmable edge-only or edge- and level- interrupt sensitivity
•
Exit from low-lower modes
Addr.
Register Name
$001B
Read:
Keyboard Status and
Control Register Write:
(KBSCR)
Reset:
Read:
Keyboard Interrupt
Enable Register Write:
(KBIER)
Reset:
$001C
Bit 7
6
5
4
3
2
0
0
0
0
KEYF
0
1
Bit 0
IMASKK
MODEK
ACKK
0
0
0
0
0
0
0
0
KBIE7
KBIE6
KBIE5
KBIE4
KBIE3
KBIE2
KBIE1
KBIE0
0
0
0
0
0
0
0
0
= Unimplemented
Figure 20-1. KBI I/O Register Summary
20.4 I/O Pins
The eight keyboard interrupt pins are shared with standard port I/O pins.
The full name of the KBI pins are listed in Table 20-1. The generic pin
name appear in the text that follows.
Table 20-1. Pin Name Conventions
KBI
Generic Pin Name
Full MCU Pin Name
Pin Selected for KBI Function by
KBIEx Bit in KBIER
KBI0–KBI3
PTA0/KBI0–PTA3/KBI3
KBIE0–KBIE3
KBI4
PTD4/KBI4/T1CLK (1)
KBIE4
KBI5
PTD5/KBI5/T2CLK (1)
KBIE5
KBI6
PTD6/KBI6/SCL (1)
KBIE6
KBI7
PTD7/KBI7/SDA (1)
KBIE7
Notes:
1. Do not enable the KBI function if the pin is used for TIM / MMIIC function.
Data Sheet
408
MC68HC908LJ24/LK24 — Rev. 2
Keyboard Interrupt Module (KBI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Keyboard Interrupt Module (KBI)
Functional Description
20.5 Functional Description
INTERNAL BUS
KBI0
ACKK
VDD
VECTOR FETCH
DECODER
KEYF
RESET
.
Freescale Semiconductor, Inc...
KBIE0
D
CLR
Q
SYNCHRONIZER
.
CK
TO PULLUP ENABLE
.
KEYBOARD
INTERRUPT FF
KBI7
KEYBOARD
INTERRUPT
REQUEST
IMASKK
MODEK
KBIE7
TO PULLUP ENABLE
Figure 20-2. Keyboard Interrupt Block Diagram
Writing to the KBIE7–KBIE0 bits in the keyboard interrupt enable register
independently enables or disables a port A or port D pin as a keyboard
interrupt pin. Enabling a keyboard interrupt pin in port A or port D also
enables its internal pullup device. A logic 0 applied to an enabled
keyboard interrupt pin latches a keyboard interrupt request.
A keyboard interrupt is latched when one or more keyboard pins goes
low after all were high. The MODEK bit in the keyboard status and
control register controls the triggering mode of the keyboard interrupt.
•
If the keyboard interrupt is edge-sensitive only, a falling edge on a
keyboard pin does not latch an interrupt request if another
keyboard pin is already low. To prevent losing an interrupt request
on one pin because another pin is still low, software can disable
the latter pin while it is low.
•
If the keyboard interrupt is falling edge- and low level-sensitive, an
interrupt request is present as long as any keyboard pin is low.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Keyboard Interrupt Module (KBI)
For More Information On This Product,
Go to: www.freescale.com
409
Freescale Semiconductor, Inc.
Keyboard Interrupt Module (KBI)
Freescale Semiconductor, Inc...
If the MODEK bit is set, the keyboard interrupt pins are both falling edgeand low level-sensitive, and both of the following actions must occur to
clear a keyboard interrupt request:
•
Vector fetch or software clear — A vector fetch generates an
interrupt acknowledge signal to clear the interrupt request.
Software may generate the interrupt acknowledge signal by
writing a logic 1 to the ACKK bit in the keyboard status and control
register KBSCR. The ACKK bit is useful in applications that poll
the keyboard interrupt pins and require software to clear the
keyboard interrupt request. Writing to the ACKK bit prior to leaving
an interrupt service routine can also prevent spurious interrupts
due to noise. Setting ACKK does not affect subsequent transitions
on the keyboard interrupt pins. A falling edge that occurs after
writing to the ACKK bit latches another interrupt request. If the
keyboard interrupt mask bit, IMASKK, is clear, the CPU loads the
program counter with the vector address at locations $FFDC and
$FFDD.
•
Return of all enabled keyboard interrupt pins to logic 1 — As long
as any enabled keyboard interrupt pin is at logic 0, the keyboard
interrupt remains set.
The vector fetch or software clear and the return of all enabled keyboard
interrupt pins to logic 1 may occur in any order.
If the MODEK bit is clear, the keyboard interrupt pin is falling-edgesensitive only. With MODEK clear, a vector fetch or software clear
immediately clears the keyboard interrupt request.
Reset clears the keyboard interrupt request and the MODEK bit, clearing
the interrupt request even if a keyboard interrupt pin stays at logic 0.
The keyboard flag bit (KEYF) in the keyboard status and control register
can be used to see if a pending interrupt exists. The KEYF bit is not
affected by the keyboard interrupt mask bit (IMASKK) which makes it
useful in applications where polling is preferred.
To determine the logic level on a keyboard interrupt pin, use the data
direction register to configure the pin as an input and read the data
register.
Data Sheet
410
MC68HC908LJ24/LK24 — Rev. 2
Keyboard Interrupt Module (KBI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Keyboard Interrupt Module (KBI)
Functional Description
NOTE:
Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding
keyboard interrupt pin to be an input, overriding the data direction
register. However, the data direction register bit must be a logic 0 for
software to read the pin.
20.5.1 Keyboard Initialization
Freescale Semiconductor, Inc...
When a keyboard interrupt pin is enabled, it takes time for the internal
pullup to reach a logic 1. Therefore a false interrupt can occur as soon
as the pin is enabled.
To prevent a false interrupt on keyboard initialization:
1. Mask keyboard interrupts by setting the IMASKK bit in the
keyboard status and control register.
2. Enable the KBI pins by setting the appropriate KBIEx bits in the
keyboard interrupt enable register.
3. Write to the ACKK bit in the keyboard status and control register
to clear any false interrupts.
4. Clear the IMASKK bit.
An interrupt signal on an edge-triggered pin can be acknowledged
immediately after enabling the pin. An interrupt signal on an edge- and
level-triggered interrupt pin must be acknowledged after a delay that
depends on the external load.
Another way to avoid a false interrupt:
1. Configure the keyboard pins as outputs by setting the appropriate
DDR bits in data direction register.
2. Write logic 1s to the appropriate data register bits.
3. Enable the KBI pins by setting the appropriate KBIEx bits in the
keyboard interrupt enable register.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Keyboard Interrupt Module (KBI)
For More Information On This Product,
Go to: www.freescale.com
411
Freescale Semiconductor, Inc.
Keyboard Interrupt Module (KBI)
20.6 Keyboard Interrupt Registers
Two registers control the operation of the keyboard interrupt module:
•
Keyboard status and control register (KBSCR)
•
Keyboard interrupt enable register (KBIER)
Freescale Semiconductor, Inc...
20.6.1 Keyboard Status and Control Register
•
Flags keyboard interrupt requests
•
Acknowledges keyboard interrupt requests
•
Masks keyboard interrupt requests
•
Controls keyboard interrupt triggering sensitivity
Address:
Read:
$001B
Bit 7
6
5
4
3
2
0
0
0
0
KEYF
0
Bit 0
IMASKK
MODEK
0
0
ACKK
Write:
Reset:
1
0
0
0
0
0
0
= Unimplemented
Figure 20-3. Keyboard Status and Control Register (KBSCR)
KEYF — Keyboard Flag Bit
This read-only bit is set when a keyboard interrupt is pending.
Reset clears the KEYF bit.
1 = Keyboard interrupt pending
0 = No keyboard interrupt pending
ACKK — Keyboard Acknowledge Bit
Writing a logic 1 to this write-only bit clears the keyboard interrupt
request. ACKK always reads as logic 0. Reset clears ACKK.
Data Sheet
412
MC68HC908LJ24/LK24 — Rev. 2
Keyboard Interrupt Module (KBI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Keyboard Interrupt Module (KBI)
Keyboard Interrupt Registers
IMASKK — Keyboard Interrupt Mask Bit
Writing a logic 1 to this read/write bit prevents the output of the
keyboard interrupt mask from generating interrupt requests. Reset
clears the IMASKK bit.
1 = Keyboard interrupt requests masked
0 = Keyboard interrupt requests not masked
Freescale Semiconductor, Inc...
MODEK — Keyboard Triggering Sensitivity Bit
This read/write bit controls the triggering sensitivity of the keyboard
interrupt pins. Reset clears MODEK.
1 = Keyboard interrupt requests on falling edges and low levels
0 = Keyboard interrupt requests on falling edges only
20.6.2 Keyboard Interrupt Enable Register
The keyboard interrupt enable register individually enables or disables
the PTA0/KBI0–PTA3/KBI3 and PTD4/KBI4–PTD7/KBI7 pins to operate
as a keyboard interrupt pin.
Address:
$001C
Bit 7
6
5
4
3
2
1
Bit 0
KBIE7
KBIE6
KBIE5
KBIE4
KBIE3
KBIE2
KBIE1
KBIE0
0
0
0
0
0
0
0
0
Read:
Write:
Reset:
Figure 20-4. Keyboard Interrupt Enable Register (KBIER)
KBIE7–KBIE0 — Keyboard Interrupt Enable Bits
Each of these read/write bits enables the corresponding keyboard
interrupt pin to latch interrupt requests. Reset clears the keyboard
interrupt enable register.
1 = KBIx pin enabled as keyboard interrupt pin
0 = KBIx pin not enabled as keyboard interrupt pin
NOTE:
KBI5–KBI0 pin has an internal pullup device when KBIEx is set.
KBI7–KBI6 pin does not have an internal pullup device.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Keyboard Interrupt Module (KBI)
For More Information On This Product,
Go to: www.freescale.com
413
Freescale Semiconductor, Inc.
Keyboard Interrupt Module (KBI)
20.7 Low-Power Modes
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.
Freescale Semiconductor, Inc...
20.7.1 Wait Mode
The keyboard interrupt module remains active in wait mode. Clearing the
IMASKK bit in the keyboard status and control register enables keyboard
interrupt requests to bring the MCU out of wait mode.
20.7.2 Stop Mode
The keyboard interrupt module remains active in stop mode. Clearing
the IMASKK bit in the keyboard status and control register enables
keyboard interrupt requests to bring the MCU out of stop mode.
20.8 Keyboard Module During Break Interrupts
The system integration module (SIM) controls whether the keyboard
interrupt latch can be cleared during the break state. The BCFE bit in the
SIM break flag control register (BFCR) enables software to clear status
bits during the break state.
To allow software to clear the keyboard interrupt latch during a break
interrupt, write a logic 1 to the BCFE bit. If a latch is cleared during the
break state, it remains cleared when the MCU exits the break state.
To protect the latch during the break state, write a logic 0 to the BCFE
bit. With BCFE at logic 0 (its default state), writing to the keyboard
acknowledge bit (ACKK) in the keyboard status and control register
during the break state has no effect.
Data Sheet
414
MC68HC908LJ24/LK24 — Rev. 2
Keyboard Interrupt Module (KBI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Data Sheet – MC68HC908LJ24
Section 21. Computer Operating Properly (COP)
Freescale Semiconductor, Inc...
21.1 Contents
21.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
21.3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .416
21.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
21.4.1 ICLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
21.4.2 STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
21.4.3 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .417
21.4.4 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
21.4.5 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
21.4.6 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
21.4.7 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
21.4.8 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . 418
21.5
COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
21.6
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .419
21.7
Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .419
21.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
21.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .420
21.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .420
21.9
COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . . 420
21.2 Introduction
The computer operating properly (COP) module contains a free-running
counter that generates a reset if allowed to overflow. The COP module
helps software recover from runaway code. Prevent a COP reset by
clearing the COP counter periodically. The COP module can be disabled
through the COPD bit in the configuration register 1 (CONFIG1).
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Computer Operating Properly (COP)
For More Information On This Product,
Go to: www.freescale.com
415
Freescale Semiconductor, Inc.
Computer Operating Properly (COP)
21.3 Functional Description
Figure 21-1 shows the structure of the COP module.
RESET STATUS REGISTER
COP TIMEOUT
CLEAR STAGES 5–12
STOP INSTRUCTION
INTERNAL RESET SOURCES
RESET VECTOR FETCH
RESET CIRCUIT
12-BIT COP PRESCALER
CLEAR ALL STAGES
Freescale Semiconductor, Inc...
ICLK
COPCTL WRITE
COP CLOCK
6-BIT COP COUNTER
COPEN (FROM SIM)
COP DISABLE
(COPD FROM CONFIG1)
RESET
COPCTL WRITE
CLEAR
COP COUNTER
COP RATE SEL
(COPRS FROM CONFIG1)
Figure 21-1. COP Block Diagram
The COP counter is a free-running 6-bit counter preceded by a 12-bit
prescaler counter. If not cleared by software, the COP counter overflows
and generates an asynchronous reset after 218 – 24 or 213 – 24 ICLK
cycles, depending on the state of the COP rate select bit, COPRS, in the
CONFIG1 register. With a 213 – 24 ICLK cycle overflow option, a 47-kHz
ICLK gives a COP timeout period of 174ms. Writing any value to location
$FFFF before an overflow occurs prevents a COP reset by clearing the
COP counter and stages 12 through 5 of the prescaler.
NOTE:
Data Sheet
416
Service the COP immediately after reset and before entering or after
exiting STOP Mode to guarantee the maximum time before the first COP
counter overflow.
MC68HC908LJ24/LK24 — Rev. 2
Computer Operating Properly (COP)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Computer Operating Properly (COP)
I/O Signals
A COP reset pulls the RST pin low for 32 ICLK cycles and sets the COP
bit in the SIM reset status register (SRSR).
In monitor mode, the COP is disabled if the RST pin or the IRQ is held
at VTST. During the break state, VTST on the RST pin disables the COP.
Freescale Semiconductor, Inc...
NOTE:
Place COP clearing instructions in the main program and not in an
interrupt subroutine. Such an interrupt subroutine could keep the COP
from generating a reset even while the main program is not working
properly.
21.4 I/O Signals
The following paragraphs describe the signals shown in Figure 21-1.
21.4.1 ICLK
ICLK is the internal oscillator output signal. ICLK frequency is
approximately equal to 47-kHz. See Section 24. Electrical
Specifications for ICLK parameters.
21.4.2 STOP Instruction
The STOP instruction clears the COP prescaler.
21.4.3 COPCTL Write
Writing any value to the COP control register (COPCTL) (see 21.5 COP
Control Register) clears the COP counter and clears bits 12 through 5
of the prescaler. Reading the COP control register returns the low byte
of the reset vector.
21.4.4 Power-On Reset
The power-on reset (POR) circuit clears the COP prescaler 4096 ICLK
cycles after power-up.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Computer Operating Properly (COP)
For More Information On This Product,
Go to: www.freescale.com
417
Freescale Semiconductor, Inc.
Computer Operating Properly (COP)
21.4.5 Internal Reset
An internal reset clears the COP prescaler and the COP counter.
21.4.6 Reset Vector Fetch
Freescale Semiconductor, Inc...
A reset vector fetch occurs when the vector address appears on the data
bus. A reset vector fetch clears the COP prescaler.
21.4.7 COPD (COP Disable)
The COPD signal reflects the state of the COP disable bit (COPD) in the
CONFIG1 register. (See Figure 21-2 and Section 5. Configuration
Registers (CONFIG).)
21.4.8 COPRS (COP Rate Select)
The COPRS signal reflects the state of the COP rate select bit (COPRS)
in the CONFIG1 register.
Address:
$001F
Bit 7
6
5
4
Read:
3
2
1
Bit 0
SSREC
STOP
COPD
0
0
0
0
COPRS
LVISTOP LVIRSTD LVIPWRD
Write:
Reset:
0
0
0
†† Reset by POR only.
0††
0
= Unimplemented
Figure 21-2. Configuration Register 1 (CONFIG1)
COPRS — COP Rate Select
COPRS selects the COP time-out period. Reset clears COPRS.
1 = COP time out period = 213 – 24 ICLK cycles
0 = COP time out period = 218 – 24 ICLK cycles
COPD — COP Disable Bit
COPD disables the COP module.
1 = COP module disabled
0 = COP module enabled
Data Sheet
418
MC68HC908LJ24/LK24 — Rev. 2
Computer Operating Properly (COP)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Computer Operating Properly (COP)
COP Control Register
21.5 COP Control Register
The COP control register is located at address $FFFF and overlaps the
reset vector. Writing any value to $FFFF clears the COP counter and
starts a new timeout period. Reading location $FFFF returns the low
byte of the reset vector.
Address:
$FFFF
Freescale Semiconductor, Inc...
Bit 7
6
5
4
3
Read:
Low byte of reset vector
Write:
Clear COP counter
Reset:
Unaffected by reset
2
1
Bit 0
Figure 21-3. COP Control Register (COPCTL)
21.6 Interrupts
The COP does not generate CPU interrupt requests.
21.7 Monitor Mode
When monitor mode is entered with VTST on the IRQ pin, the COP is
disabled as long as VTST remains on the IRQ pin or the RST pin. When
monitor mode is entered by having blank reset vectors and not having
VTST on the IRQ pin, the COP is automatically disabled until a POR
occurs.
21.8 Low-Power Modes
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Computer Operating Properly (COP)
For More Information On This Product,
Go to: www.freescale.com
419
Freescale Semiconductor, Inc.
Computer Operating Properly (COP)
21.8.1 Wait Mode
The COP remains active during wait mode. To prevent a COP reset
during wait mode, periodically clear the COP counter in a CPU interrupt
routine.
Freescale Semiconductor, Inc...
21.8.2 Stop Mode
Stop mode turns off the ICLK input to the COP and clears the COP
prescaler. Service the COP immediately before entering or after exiting
stop mode to ensure a full COP timeout period after entering or exiting
stop mode.
To prevent inadvertently turning off the COP with a STOP instruction, a
configuration option is available that disables the STOP instruction.
When the STOP bit in the configuration register has the STOP
instruction is disabled, execution of a STOP instruction results in an
illegal opcode reset.
21.9 COP Module During Break Mode
The COP is disabled during a break interrupt when VTST is present on
the RST pin.
Data Sheet
420
MC68HC908LJ24/LK24 — Rev. 2
Computer Operating Properly (COP)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Data Sheet – MC68HC908LJ24
Section 22. Low-Voltage Inhibit (LVI)
Freescale Semiconductor, Inc...
22.1 Contents
22.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
22.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
22.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .422
22.4.1 Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
22.4.2 Forced Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . .424
22.4.3 Voltage Hysteresis Protection . . . . . . . . . . . . . . . . . . . . . . 424
22.4.4 LVI Trip Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
22.5
LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
22.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
22.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .426
22.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .426
22.2 Introduction
This section describes the low-voltage inhibit (LVI) module, which
monitors the voltage on the VDD pin and can force a reset when the VDD
voltage falls below the LVI trip falling voltage, VTRIPF.
22.3 Features
Features of the LVI module include:
•
Programmable LVI interrupt and reset
•
Selectable LVI trip voltage
•
Programmable stop mode operation
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Low-Voltage Inhibit (LVI)
For More Information On This Product,
Go to: www.freescale.com
421
Freescale Semiconductor, Inc.
Low-Voltage Inhibit (LVI)
Addr.
Register Name
Bit 7
6
Read: LVIOUT
Low-Voltage Inhibit Status
$FE0F
Register Write:
(LVISR)
Reset:
0
LVIIE
5
4
3
2
1
Bit 0
LVIIF
0
0
0
0
0
0
0
0
0
LVIIACK
0
0
0
= Unimplemented
Figure 22-1. LVI I/O Register Summary
Freescale Semiconductor, Inc...
22.4 Functional Description
Figure 22-2 shows the structure of the LVI module.
VDD
STOP INSTRUCTION
LVISTOP
FROM CONFIG1
DEFAULT
ENABLED
FROM CONFIG1
LVIRSTD
LVIPWRD
FROM CONFIG1
LOW VDD
DETECTOR
VDD > VTRIPR = 0
LVI RESET
VDD ≤ VTRIPF = 1
FROM LVISR
LVIIE
LVISEL[1:0]
FROM CONFIG2
LVI
INTERRUPT
REQUEST
EDGE
DETECT
LATCH CLR
LVIOUT
LVIIACK
LVIIF
TO LVISR
FROM LVISR
TO LVISR
Figure 22-2. LVI Module Block Diagram
The LVI is enabled out of reset. The LVI module contains a bandgap
reference circuit and comparator. Clearing the LVI power disable bit,
LVIPWRD, enables the LVI to monitor VDD voltage. Clearing the LVI
reset disable bit, LVIRSTD, enables the LVI module to generate a reset
when VDD falls below a voltage, VTRIPF. Setting the LVI enable in stop
mode bit, LVISTOP, enables the LVI to operate in stop mode.
Data Sheet
422
MC68HC908LJ24/LK24 — Rev. 2
Low-Voltage Inhibit (LVI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Low-Voltage Inhibit (LVI)
Functional Description
The LVI trip point selection bits, LVISEL[1:0], select the trip point
voltage, VTRIPF, to be configured for 5V or 3V operation. The actual trip
points are shown in Section 24. Electrical Specifications.
Setting LVI interrupt enable bit, LVIIE, enables LVI interrupts whenever
the LVIOUT bit toggles (from logic 0 to logic 1, or from logic 1 to logic 0).
Freescale Semiconductor, Inc...
NOTE:
After a power-on reset (POR) the LVI’s default mode of operation is 3V.
If a 5V system is used, the user must modified the LVISEL[1:0] bits to
raise the trip point to 5V operation. Note that this must be done after
every power-on reset since the default will revert back to 3V mode after
each power-on reset. If the VDD supply is below the 3V mode trip voltage
when POR is released, the MCU will immediately go into reset. The LVI
in this case will hold the MCU in reset until either VDD goes above the
rising 3V trip point, VTRIPR, which will release reset or VDD decreases to
approximately 0V which will re-trigger the power-on reset.
LVISTOP, LVIPWRD, LVIRSTD, and LVISEL[1:0] are in the
configuration registers. See Section 5. Configuration Registers
(CONFIG) for details of the LVI’s configuration bits. Once an LVI reset
occurs, the MCU remains in reset until VDD rises above a voltage,
VTRIPR, which causes the MCU to exit reset. See 9.4.2.5 Low-Voltage
Inhibit (LVI) Reset for details of the interaction between the SIM and the
LVI. The output of the comparator controls the state of the LVIOUT flag
in the LVI status register (LVISR). The LVIIE, LVIIF, and LVIIACK bits in
the LVISR control LVI interrupt functions.
An LVI reset also drives the RST pin low to provide low-voltage
protection to external peripheral devices.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Low-Voltage Inhibit (LVI)
For More Information On This Product,
Go to: www.freescale.com
423
Freescale Semiconductor, Inc.
Low-Voltage Inhibit (LVI)
22.4.1 Polled LVI Operation
Freescale Semiconductor, Inc...
In applications that can operate at VDD levels below the VTRIPF level,
software can monitor VDD by polling the LVIOUT bit, or by setting the LVI
interrupt enable bit, LVIIE, to enable interrupt requests. In the
configuration register 1 (CONFIG1), the LVIPWRD bit must be at logic 0
to enable the LVI module, and the LVIRSTD bit must be at logic 1 to
disable LVI resets.
The LVI interrupt flag, LVIIF, is set whenever the LVIOUT bit changes
state (toggles). When LVIF is set, a CPU interrupt request is generated
if the LVIIE is also set. In the LVI interrupt service subroutine, LVIIF bit
can be cleared by writing a logic 1 to the LVI interrupt acknowledge bit,
LVIIACK.
22.4.2 Forced Reset Operation
In applications that require VDD to remain above the VTRIPF level,
enabling LVI resets allows the LVI module to reset the MCU when VDD
falls below the VTRIPF level. In the configuration register 1 (CONFIG1),
the LVIPWRD and LVIRSTD bits must be at logic 0 to enable the LVI
module and to enable LVI resets.
If LVIIE is set to enable LVI interrupts when LVIRSTD is cleared, LVI
reset has a higher priority over LVI interrupt. In this case, when VDD falls
below the VTRIPF level, an LVI reset will occur, and the LVIIE bit will be
cleared.
22.4.3 Voltage Hysteresis Protection
Once the LVI has triggered (by having VDD fall below VTRIPF), the LVI
will maintain a reset condition until VDD rises above the rising trip point
voltage, VTRIPR. This prevents a condition in which the MCU is
continually entering and exiting reset if VDD is approximately equal to
VTRIPF. VTRIPR is greater than VTRIPF by the hysteresis voltage, VHYS.
Data Sheet
424
MC68HC908LJ24/LK24 — Rev. 2
Low-Voltage Inhibit (LVI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Low-Voltage Inhibit (LVI)
LVI Status Register
22.4.4 LVI Trip Selection
The trip point selection bits, LVISEL[1:0], in the CONFIG2 register select
whether the LVI is configured for 5V or 3 V operation. (See Section 5.
Configuration Registers (CONFIG).)
Freescale Semiconductor, Inc...
NOTE:
The MCU is guaranteed to operate at a minimum supply voltage. The trip
point (VTRIPF [5V] or VTRIPF [3V]) may be lower than this. (See
Section 24. Electrical Specifications for the actual trip point voltages.)
22.5 LVI Status Register
The LVI status register (LVISR) controls LVI interrupt functions and
indicates if the VDD voltage was detected below the VTRIPF level.
Address:
$FE0F
Bit 7
Read:
6
LVIOUT
5
4
3
2
1
Bit 0
LVIIF
0
0
0
0
0
0
0
0
0
LVIIE
Write:
Reset:
LVIIACK
0
0
0
0
= Unimplemented
Table 22-1. LVI Status Register (LVISR)
LVIOUT — LVI Output Bit
This read-only flag becomes set when the VDD voltage falls below the
VTRIPF trip voltage (see Table 22-2). Reset clears the LVIOUT bit.
Table 22-2. LVIOUT Bit Indication
VDD
LVIOUT
VDD > VTRIPR
0
VDD < VTRIPF
1
VTRIPF < VDD < VTRIPR
Previous value
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Low-Voltage Inhibit (LVI)
For More Information On This Product,
Go to: www.freescale.com
425
Freescale Semiconductor, Inc.
Low-Voltage Inhibit (LVI)
LVIIE — LVI Interrupt Enable Bit
This read/write bit enables the LVIIF bit to generate CPU interrupt
requests. Reset clears the LVIIE bit.
1 = LVIIF can generate CPU interrupt requests
0 = LVIIF cannot generate CPU interrupt requests
Freescale Semiconductor, Inc...
LVIIF — LVI Interrupt Flag
This clearable, read-only flag is set whenever the LVIOUT bit toggles.
Reset clears the LVIIF bit.
1 = LVIOUT has toggled
0 = LVIOUT has not toggled
LVIIACK — LVI Interrupt Acknowledge Bit
Writing a logic 1 to this write-only bit clears the LVI interrupt flag,
LVIIF. LVIIACK always reads as logic 0.
1 = Clears LVIIF bit
0 = No effect
22.6 Low-Power Modes
The STOP and WAIT instructions put the MCU in low powerconsumption standby modes.
22.6.1 Wait Mode
If enabled, the LVI module remains active in wait mode. If enabled to
generate resets or interrupts, the LVI module can generate a reset or an
interrupt and bring the MCU out of wait mode.
22.6.2 Stop Mode
If enabled in stop mode (LVISTOP = 1), the LVI module remains active
in stop mode. If enabled to generate resets or interrupts, the LVI module
can generate a reset or an interrupt and bring the MCU out of stop mode.
NOTE:
Data Sheet
426
If enabled to generate both resets and interrupts, there will be no LVI
interrupts, as resets have a higher priority.
MC68HC908LJ24/LK24 — Rev. 2
Low-Voltage Inhibit (LVI)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Data Sheet – MC68HC908LJ24
Section 23. Break Module (BRK)
Freescale Semiconductor, Inc...
23.1 Contents
23.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
23.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
23.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .428
23.4.1 Flag Protection During Break Interrupts . . . . . . . . . . . . . . . 430
23.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .430
23.4.3 TIM1 and TIM2 During Break Interrupts. . . . . . . . . . . . . . . 430
23.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . 430
23.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
23.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .430
23.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .431
23.6 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
23.6.1 Break Status and Control Register. . . . . . . . . . . . . . . . . . . 431
23.6.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 432
23.6.3 SIM Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . 432
23.6.4 SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . . 434
23.2 Introduction
This section describes the break module. The break module can
generate a break interrupt that stops normal program flow at a defined
address to enter a background program.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Break Module (BRK)
For More Information On This Product,
Go to: www.freescale.com
427
Freescale Semiconductor, Inc.
Break Module (BRK)
23.3 Features
Freescale Semiconductor, Inc...
Features of the break module include:
•
Accessible input/output (I/O) registers during the break interrupt
•
CPU-generated break interrupts
•
Software-generated break interrupts
•
COP disabling during break interrupts
23.4 Functional Description
When the internal address bus matches the value written in the break
address registers, the break module issues a breakpoint signal to the
CPU. The CPU then loads the instruction register with a software
interrupt instruction (SWI) after completion of the current CPU
instruction. The program counter vectors to $FFFC and $FFFD ($FEFC
and $FEFD in monitor mode).
The following events can cause a break interrupt to occur:
•
A CPU-generated address (the address in the program counter)
matches the contents of the break address registers.
•
Software writes a logic 1 to the BRKA bit in the break status and
control register.
When a CPU-generated address matches the contents of the break
address registers, the break interrupt begins after the CPU completes its
current instruction. A return-from-interrupt instruction (RTI) in the break
routine ends the break interrupt and returns the MCU to normal
operation. Figure 23-1 shows the structure of the break module.
Data Sheet
428
MC68HC908LJ24/LK24 — Rev. 2
Break Module (BRK)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Break Module (BRK)
Functional Description
IAB15–IAB8
BREAK ADDRESS REGISTER HIGH
8-BIT COMPARATOR
IAB15–IAB0
BREAK
CONTROL
8-BIT COMPARATOR
Freescale Semiconductor, Inc...
BREAK ADDRESS REGISTER LOW
IAB7–IAB0
Figure 23-1. Break Module Block Diagram
Addr.
Register Name
Read:
SIM Break Status Register
$FE00
Write:
(SBSR)
Reset:
$FE03
Read:
SIM Break Flag Control
Register Write:
(SBFCR)
Reset:
$FE0C
$FE0D
Read:
Break Address
Register High Write:
(BRKH)
Reset:
Read:
Break Address
Register Low Write:
(BRKL)
Reset:
Read:
Break Status and Control
$FE0E
Register Write:
(BRKSCR)
Reset:
Note: Writing a logic 0 clears SBSW.
Bit 7
6
5
4
3
2
R
R
R
R
R
R
1
SBSW
Note
Bit 0
R
0
BCFE
R
R
R
R
R
R
R
Bit 15
14
13
12
11
10
9
Bit 8
0
0
0
0
0
0
0
0
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
BRKE
BRKA
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
= Unimplemented
R
= Reserved
Figure 23-2. Break Module I/O Register Summary
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Break Module (BRK)
For More Information On This Product,
Go to: www.freescale.com
429
Freescale Semiconductor, Inc.
Break Module (BRK)
23.4.1 Flag Protection During Break Interrupts
The BCFE bit in the SIM break flag control register (SBFCR) enables
software to clear status bits during the break state.
23.4.2 CPU During Break Interrupts
Freescale Semiconductor, Inc...
The CPU starts a break interrupt by:
•
Loading the instruction register with the SWI instruction
•
Loading the program counter with $FFFC and $FFFD
($FEFC and $FEFD in monitor mode)
The break interrupt begins after completion of the CPU instruction in
progress. If the break address register match occurs on the last cycle of
a CPU instruction, the break interrupt begins immediately.
23.4.3 TIM1 and TIM2 During Break Interrupts
A break interrupt stops the timer counters.
23.4.4 COP During Break Interrupts
The COP is disabled during a break interrupt when VTST is present on
the RST pin.
23.5 Low-Power Modes
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.
23.5.1 Wait Mode
If enabled, the break module is active in wait mode. In the break routine,
the user can subtract one from the return address on the stack if SBSW
is set (see Section 9. System Integration Module (SIM)). Clear the
SBSW bit by writing logic 0 to it.
Data Sheet
430
MC68HC908LJ24/LK24 — Rev. 2
Break Module (BRK)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Break Module (BRK)
Break Module Registers
23.5.2 Stop Mode
A break interrupt causes exit from stop mode and sets the SBSW bit in
the break status register.
23.6 Break Module Registers
Freescale Semiconductor, Inc...
These registers control and monitor operation of the break module:
•
Break status and control register (BRKSCR)
•
Break address register high (BRKH)
•
Break address register low (BRKL)
•
SIM break status register (SBSR)
•
SIM break flag control register (SBFCR)
23.6.1 Break Status and Control Register
The break status and control register (BRKSCR) contains break module
enable and status bits.
Address:
$FE0E
Bit 7
6
BRKE
BRKA
0
0
Read:
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
0
0
0
0
Write:
Reset:
= Unimplemented
Figure 23-3. Break Status and Control Register (BRKSCR)
BRKE — Break Enable Bit
This read/write bit enables breaks on break address register matches.
Clear BRKE by writing a logic 0 to bit 7. Reset clears the BRKE bit.
1 = Breaks enabled on 16-bit address match
0 = Breaks disabled on 16-bit address match
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Break Module (BRK)
For More Information On This Product,
Go to: www.freescale.com
431
Freescale Semiconductor, Inc.
Break Module (BRK)
BRKA — Break Active Bit
Freescale Semiconductor, Inc...
This read/write status and control bit is set when a break address
match occurs. Writing a logic 1 to BRKA generates a break interrupt.
Clear BRKA by writing a logic 0 to it before exiting the break routine.
Reset clears the BRKA bit.
1 = (When read) Break address match
0 = (When read) No break address match
23.6.2 Break Address Registers
The break address registers (BRKH and BRKL) contain the high and low
bytes of the desired breakpoint address. Reset clears the break address
registers.
Address:
$FE0C
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
0
0
0
0
0
0
0
0
Read:
Write:
Reset:
Figure 23-4. Break Address Register High (BRKH)
Address:
$FE0D
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
Read:
Write:
Reset:
Figure 23-5. Break Address Register Low (BRKL)
23.6.3 SIM Break Status Register
The SIM break status register (SBSR) contains a flag to indicate that a
break caused an exit from wait mode. The flag is useful in applications
requiring a return to wait mode after exiting from a break interrupt.
Data Sheet
432
MC68HC908LJ24/LK24 — Rev. 2
Break Module (BRK)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Break Module (BRK)
Break Module Registers
Address:
$FE00
Bit 7
6
5
4
3
2
R
R
R
R
R
R
Read:
Bit 0
SBSW
Write:
Reset:
1
R
Note
0
0
Note: Writing a logic 0 clears SBSW.
0
0
R
= Reserved
0
0
0
0
Freescale Semiconductor, Inc...
Figure 23-6. SIM Break Status Register (SBSR)
SBSW — Break Wait Bit
This status bit is set when a break interrupt causes an exit from wait
mode or stop mode. Clear SBSW by writing a logic 0 to it. Reset clears
SBSW.
1 = Stop mode or wait mode was exited by break interrupt
0 = Stop mode or wait mode was not exited by break interrupt
SBSW can be read within the break interrupt routine. The user can
modify the return address on the stack by subtracting 1 from it. The
following code is an example.
; This code works if the H register has been pushed onto the stack in the break
; service routine software. This code should be executed at the end of the break
; service routine software.
HIBYTE
EQU
5
LOBYTE
EQU
6
;
If not SBSW, do RTI
BRCLR
SBSW,SBSR, RETURN
; See if wait mode or stop mode was exited by
; break.
TST
LOBYTE,SP
;If RETURNLO is not zero,
BNE
DOLO
;then just decrement low byte.
DEC
HIBYTE,SP
;Else deal with high byte, too.
DOLO
DEC
LOBYTE,SP
;Point to WAIT/STOP opcode.
RETURN
PULH
RTI
;Restore H register.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Break Module (BRK)
For More Information On This Product,
Go to: www.freescale.com
433
Freescale Semiconductor, Inc.
Break Module (BRK)
23.6.4 SIM Break Flag Control Register
The SIM break flag control register (SBFCR) contains a bit that enables
software to clear status bits while the MCU is in a break state.
Address:
$FE03
Bit 7
6
5
4
3
2
1
Bit 0
BCFE
R
R
R
R
R
R
R
Read:
Write:
Freescale Semiconductor, Inc...
Reset:
0
R
= Reserved
Figure 23-7. SIM Break Flag Control Register (SBFCR)
BCFE — Break Clear Flag Enable Bit
This read/write bit enables software to clear status bits by accessing
status registers while the MCU is in a break state. To clear status bits
during the break state, the BCFE bit must be set.
1 = Status bits clearable during break
0 = Status bits not clearable during break
Data Sheet
434
MC68HC908LJ24/LK24 — Rev. 2
Break Module (BRK)
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Data Sheet – MC68HC908LJ24
Section 24. Electrical Specifications
Freescale Semiconductor, Inc...
24.1 Contents
24.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
24.3
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 436
24.4
Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . 437
24.5
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
24.6
5V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . 438
24.7
3.3V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . 439
24.8
5V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .440
24.9
3.3V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
24.10 5V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 441
24.11 3.3V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 442
24.12 5V ADC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . 443
24.13 3.3V ADC Electrical Characteristics . . . . . . . . . . . . . . . . . . . .444
24.14 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . . 445
24.15 CGM Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . 445
24.16 5V SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
24.17 3.3V SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
24.18 FLASH Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . 450
24.2 Introduction
This section contains electrical and timing specifications.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Electrical Specifications
For More Information On This Product,
Go to: www.freescale.com
435
Freescale Semiconductor, Inc.
Electrical Specifications
24.3 Absolute Maximum Ratings
Maximum ratings are the extreme limits to which the MCU can be
exposed without permanently damaging it.
NOTE:
This device is not guaranteed to operate properly at the maximum
ratings. Refer to DC Electrical Characteristics for guaranteed
operating conditions.
Table 24-1. Absolute Maximum Ratings
Freescale Semiconductor, Inc...
Characteristic(1)
Symbol
Value
Unit
Supply voltage
VDD
–0.3 to +6.0
V
Input voltage
All pins (except IRQ)
IRQ pin
VIN
VSS – 0.3 to VDD + 0.3
VSS – 0.3 to 8.5
V
I
±25
mA
Maximum current out of VSS
IMVSS
100
mA
Maximum current into VDD
IMVDD
100
mA
Storage temperature
TSTG
–55 to +150
°C
Maximum current per pin
excluding VDD and VSS
Notes:
1. Voltages referenced to VSS.
This device contains circuitry to protect the inputs against damage due
to high static voltages or electric fields; however, it is advised that normal
precautions be taken to avoid application of any voltage higher than
maximum-rated voltages to this high-impedance circuit. For proper
operation, it is recommended that VIN and VOUT be constrained to the
range VSS ≤ (VIN or VOUT) ≤ VDD. Reliability of operation is enhanced if
unused inputs are connected to an appropriate logic voltage level (for
example, either VSS or VDD.)
Data Sheet
436
MC68HC908LJ24/LK24 — Rev. 2
Electrical Specifications
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Electrical Specifications
Functional Operating Range
24.4 Functional Operating Range
Table 24-2. Functional Operating Range
Characteristic
Operating temperature range
Freescale Semiconductor, Inc...
Operating voltage range
Symbol
Value
Unit
TA
– 40 to +85
°C
VDD
3.3 ± 10%
5 ± 10%
V
24.5 Thermal Characteristics
Table 24-3. Thermal Characteristics
Characteristic
Symbol
Value
Unit
Thermal resistance
64-pin LQFP
64-pin QFP
80-pin LQFP
80-pin QFP
θJA
72
67
85
75
°C/W
I/O pin power dissipation
PI/O
User determined
W
Power dissipation(1)
PD
PD = (IDD × VDD) + PI/O =
K/(TJ + 273 °C)
W
Constant(2)
K
Average junction temperature
TJ
PD x (TA + 273 °C)
+ PD2 × θJA
W/°C
TA + (PD × θJA)
°C
Notes:
1. Power dissipation is a function of temperature.
2. K constant unique to the device. K can be determined for a known TA and measured PD.
With this value of K, PD and TJ can be determined for any value of TA.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Electrical Specifications
For More Information On This Product,
Go to: www.freescale.com
437
Freescale Semiconductor, Inc.
Electrical Specifications
24.6 5V DC Electrical Characteristics
Table 24-4. 5V DC Electrical Characteristics
Freescale Semiconductor, Inc...
Characteristic(1)
Symbol
Min
Typ(2)
Max
Unit
Output high voltage (ILOAD = –2.0 mA)
All ports
VOH
VDD –0.8
—
—
V
Output low voltage
(ILOAD = 1.6mA) All ports
(ILOAD = 15.0 mA) PTB0–PTB5, PTC0–PTC7,
PTE0–PTE7, PTF0–PTF7
VOL
—
—
0.4
V
Input high voltage
All ports, RST, IRQ, OSC1
VIH
0.7 × VDD
—
VDD
V
Input low voltage
All ports, RST, IRQ, OSC1
VIL
VSS
—
0.3 × VDD
V
—
—
—
15
13
10.5
20
18
14
mA
mA
mA
—
5
8
mA
—
—
—
—
300
20
7
—
400
30
12
1
µA
µA
µA
µA
VDD supply current
Run(3), fOP = 8 MHz
with all modules on
with ADC on
with ADC off
Wait(4), fOP = 8 MHz (all modules off)
IDD
(5)
Stop, fOP = 8 kHz
with OSC, RTC, LCD(6), LVI on
with OSC, RTC, LCD(6) on
with OSC, RTC on
all modules off
Digital I/O ports Hi-Z leakage current
All ports, RST
IIL
—
—
± 10
µA
Input current
IRQ
IIN
—
—
±1
µA
Capacitance
Ports (as input or output)
COUT
CIN
—
—
—
—
12
8
pF
POR re-arm voltage(7)
VPOR
0
—
100
mV
POR rise-time ramp rate(8)
RPOR
0.035
—
—
V/ms
Monitor mode entry voltage (at IRQ pin)
VTST
1.5 × VDD
—
8
V
Pullup resistors(9)
PTA0–PTA3 and PTD4–PTD7 as KBI0–KBI7
RST, IRQ
RPU1
RPU2
21
21
30
30
39
39
kΩ
kΩ
Low-voltage inhibit, trip falling voltage
VTRIPF
3.6
—
4.6
V
Low-voltage inhibit, trip rising voltage
VTRIPR
3.7
—
4.7
V
Data Sheet
438
MC68HC908LJ24/LK24 — Rev. 2
Electrical Specifications
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Electrical Specifications
3.3V DC Electrical Characteristics
Freescale Semiconductor, Inc...
Notes:
1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.
2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.
3. Run (operating) IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than
100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run IDD.
4. Wait IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on
all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait IDD.
5. The 8kHz clock is from a 32kHz external square wave clock input at OSC1, for the driving the RTC. Due to loading effects,
the IDD values will be larger when a 32kHz crystal circuit is connected.
6. LCD driver configured for low current mode.
7. Maximum is highest voltage that POR is guaranteed.
8. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum
VDD is reached.
9. RPU1 and RPU2 are measured at VDD = 5.0V
24.7 3.3V DC Electrical Characteristics
Table 24-5. 3.3V DC Electrical Characteristics
Characteristic(1)
Symbol
Min
Typ(2)
Max
Unit
Output high voltage (ILOAD = –1.0 mA)
All ports
VOH
VDD –0.4
—
—
V
Output low voltage
(ILOAD = 0.8mA) All ports
(ILOAD = 10.0 mA) PTB0–PTB5, PTC0–PTC7,
PTE0–PTE7, PTF0–PTF7
VOL
—
—
0.4
V
Input high voltage
All ports, RST, IRQ, OSC1
VIH
0.7 × VDD
—
VDD
V
Input low voltage
All ports, RST, IRQ, OSC1
VIL
VSS
—
0.3 × VDD
V
—
—
—
5.5
4.5
3
8
6
5
mA
mA
mA
—
1.5
2.5
mA
—
—
—
—
180
15
2.5
—
250
20
4
1
µA
µA
µA
µA
VDD supply current
Run(3), fOP = 4 MHz
with all modules on
with ADC on
with ADC off
Wait(4), fOP = 4 MHz (all modules off)
IDD
Stop, fOP = 8 kHz(5)
with OSC, RTC, LCD(6), LVI on
with OSC, RTC, LCD(6) on
with OSC, RTC on
all modules off
Digital I/O ports Hi-Z leakage current
All ports, RST
IIL
—
—
± 10
µA
Input current
IRQ
IIN
—
—
±1
µA
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Electrical Specifications
For More Information On This Product,
Go to: www.freescale.com
439
Freescale Semiconductor, Inc.
Electrical Specifications
Table 24-5. 3.3V DC Electrical Characteristics
Characteristic(1)
Symbol
Min
Typ(2)
Max
Unit
Capacitance
Ports (as input or output)
COUT
CIN
—
—
—
—
12
8
pF
POR re-arm voltage(7)
VPOR
0
—
100
mV
POR rise-time ramp rate(8)
RPOR
0.02
—
—
V/ms
VHI
1.5 × VDD
—
8
V
RPU1
RPU2
21
21
30
30
39
39
kΩ
kΩ
Low-voltage inhibit, trip falling voltage
VTRIPF
2.1
—
2.8
V
Low-voltage inhibit, trip rising voltage
VTRIPR
2.2
—
2.9
V
Freescale Semiconductor, Inc...
Monitor mode entry voltage (at IRQ pin)
Pullup resistors(9)
PTA0–PTA3 and PTD4–PTD7 as KBI0–KBI7
RST, IRQ
Notes:
1. VDD = 3.0 to 3.6 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.
2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.
3. Run (operating) IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than
100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run IDD.
4. Wait IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on
all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait IDD.
5. The 8kHz clock is from a 32kHz external square wave clock input at OSC1, for the driving the RTC. Due to loading effects,
the IDD values will be larger when a 32kHz crystal circuit is connected.
6. LCD driver configured for low current mode.
7. Maximum is highest voltage that POR is guaranteed.
8. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum
VDD is reached.
9. RPU1 and RPU2 are measured at VDD = 3.3V.
24.8 5V Control Timing
Table 24-6. 5V Control Timing
Characteristic(1)
Symbol
Min
Max
Unit
Internal operating frequency(2)
fOP
—
8
MHz
RST input pulse width low(3)
tIRL
750
—
ns
Notes:
1. VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD, unless otherwise noted.
2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this
information.
3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.
Data Sheet
440
MC68HC908LJ24/LK24 — Rev. 2
Electrical Specifications
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Electrical Specifications
3.3V Control Timing
24.9 3.3V Control Timing
Table 24-7. 3.3V Control Timing
Freescale Semiconductor, Inc...
Characteristic(1)
Symbol
Min
Max
Unit
Internal operating frequency(2)
fOP
—
4
MHz
RST input pulse width low(3)
tIRL
1.5
—
µs
Notes:
1. VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD, unless otherwise noted.
2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this
information.
3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.
24.10 5V Oscillator Characteristics
Table 24-8. 5V Oscillator Specifications
Characteristic
Symbol
Min
Typ
Max
Unit
50k(1)
Internal oscillator clock frequency
fICLK
External reference clock to OSC1(2)
fOSC
dc
—
20M
Hz
Crystal reference frequency(3)
fXCLK
—
32.768k
4.9152M
Hz
Crystal load capacitance(4)
CL
—
—
—
Crystal fixed capacitance
C1
—
2 × CL (27p)
—
F
Crystal tuning capacitance
C2
—
2 × CL (33p)
—
F
Feedback bias resistor
RB
—
20M
—
Ω
Series resistor(5)
RS
—
100k
—
Ω
Hz
Notes:
1. Typical value reflect average measurements at midpoint of voltage range, 25 ×C only. See Figure 24-1 for plot.
2. No more than 10% duty cycle deviation from 50%.
3. Fundamental mode crystals only.
4. Consult crystal manufacturer’s data.
5. Not Required for high frequency crystals.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Electrical Specifications
For More Information On This Product,
Go to: www.freescale.com
441
Freescale Semiconductor, Inc.
Electrical Specifications
24.11 3.3V Oscillator Characteristics
Table 24-9. 3.3V Oscillator Specifications
Symbol
Min
Typ
Max
47k(1)
Unit
Internal oscillator clock frequency
fICLK
External reference clock to OSC1(2)
fOSC
dc
—
16M
Hz
Crystal reference frequency(3)
fXCLK
—
32.768k
4.9152M
Hz
Crystal load capacitance(4)
CL
—
—
—
Crystal fixed capacitance
C1
—
2 × CL (27p)
—
F
Crystal tuning capacitance
C2
—
2 × CL (33p)
—
F
Feedback bias resistor
RB
—
20M
—
Ω
Series resistor(5)
RS
—
100k
—
Ω
Hz
Notes:
1. Typical value reflect average measurements at midpoint of voltage range, 25 ×C only. See Figure 24-1 for plot.
2. No more than 10% duty cycle deviation from 50%.
3. Fundamental mode crystals only.
4. Consult crystal manufacturer’s data.
5. Not Required for high frequency crystals.
Internal OSC frequency, fICLK (kHz)
Freescale Semiconductor, Inc...
Characteristic
65
–40°C
60
55
+25°C
50
45
+85°C
40
35
2
3
4
5
Supply Voltage, VDD (V)
6
Figure 24-1. Typical Internal Oscillator Frequency
Data Sheet
442
MC68HC908LJ24/LK24 — Rev. 2
Electrical Specifications
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Electrical Specifications
5V ADC Electrical Characteristics
24.12 5V ADC Electrical Characteristics
Table 24-10. 5V ADC Electrical Characteristics
Freescale Semiconductor, Inc...
Characteristic
Symbol
Min
Max
Unit
Notes
Supply voltage
VDDA
4.5
5.5
V
VDDA is an dedicated pin and
should be tied to VDD on the
PCB with proper decoupling.
Input range
VADIN
0
VDDA
V
VADIN ≤ VDDA
Resolution
BAD
10
10
bits
Absolute accuracy
AAD
—
± 1.5
LSB
ADC internal clock
fADIC
32 k
2M
Hz
Conversion range
RAD
VREFL
VREFH
V
ADC voltage
reference high
VREFH
—
VDDA + 0.1
V
ADC voltage
reference low
VREFL
VSSA – 0.1
—
V
Conversion time
tADC
16
17
tADIC
cycles
Sample time
tADS
5
—
tADIC
cycles
Monotonically
MAD
Zero input reading
ZADI
000
001
HEX
VADIN = VREFL
Full-scale reading
FADI
3FC
3FF
HEX
VADIN = VREFH
Input capacitance
CADI
—
20
pF
Input impedance
RADI
20M
—
Ω
VREFH/VREFL
IVREF
—
1.6
mA
Includes quantization.
±0.5 LSB = ±1 ADC count.
tADIC = 1/fADIC
VSSA is tied to VSS internally.
Guaranteed
Not tested.
Not tested.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Electrical Specifications
For More Information On This Product,
Go to: www.freescale.com
443
Freescale Semiconductor, Inc.
Electrical Specifications
24.13 3.3V ADC Electrical Characteristics
Table 24-11. 3.3V ADC Electrical Characteristics
Freescale Semiconductor, Inc...
Characteristic
Symbol
Min
Max
Unit
Notes
Supply voltage
VDDA
3.0
3.6
V
VDDA is an dedicated pin and
should be tied to VDD on the
PCB with proper decoupling.
Input range
VADIN
0
VDDA
V
VADIN ≤ VDDA
Resolution
BAD
10
10
bits
Absolute accuracy
AAD
—
± 1.5
LSB
ADC internal clock
fADIC
32 k
2M
Hz
Conversion range
RAD
VREFL
VREFH
V
ADC voltage
reference high
VREFH
—
VDDA + 0.1
V
ADC voltage
reference low
VREFL
VSSA – 0.1
—
V
Conversion time
tADC
16
17
tADIC
cycles
Sample time
tADS
5
—
tADIC
cycles
Monotonically
MAD
Zero input reading
ZADI
000
001
HEX
VADIN = VREFL
Full-scale reading
FADI
3FC
3FF
HEX
VADIN = VREFH
Input capacitance
CADI
—
20
pF
Not tested.
Input impedance
RADI
20M
—
Ω
Measured at 5V
VREFH/VREFL
IVREF
—
1.6
mA
Data Sheet
444
Includes quantization.
±0.5 LSB = ±1 ADC count.
tADIC = 1/fADIC
VSSA is tied to VSS internally.
Guaranteed
Not tested.
MC68HC908LJ24/LK24 — Rev. 2
Electrical Specifications
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Electrical Specifications
Timer Interface Module Characteristics
24.14 Timer Interface Module Characteristics
Table 24-12. Timer Interface Module Characteristics
Characteristic
Input capture pulse width
Symbol
Min
Max
Unit
tTIH, tTIL
1
—
tCYC
Freescale Semiconductor, Inc...
24.15 CGM Electrical Specifications
Table 24-13. CGM Electrical Specifications
Characteristic
Symbol
Min
Typ
Max
Unit
Reference frequency
fRDV
30
32.768
100
kHz
Range nominal multiplies
fNOM
—
38.4
—
kHz
VCO center-of-range frequency
fVRS
38.4k
—
40.0M
Hz
VCO range linear range multiplier
L
1
—
255
VCO power-of-two-range multiplier
2E
1
—
4
VCO multiply factor
N
1
—
4095
VCO prescale multiplier
2P
1
—
8
Reference divider factor
R
1
1
15
VCO operating frequency
fVCLK
38.4k
—
40.0M
Hz
Manual acquisition time
tLOCK
—
—
50
ms
Automatic lock time
tLOCK
—
—
50
ms
—
fRCLK ×
0.025% ×
2P N/4
Hz
PLL jitter
(1)
fJ
0
Notes:
1. Deviation of average bus frequency over 2ms. N = VCO multiplier.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Electrical Specifications
For More Information On This Product,
Go to: www.freescale.com
445
Freescale Semiconductor, Inc.
Electrical Specifications
24.16 5V SPI Characteristics
Table 24-14. 5V SPI Characteristics
Freescale Semiconductor, Inc...
Diagram
Number(1)
Characteristic(2)
Symbol
Min
Max
Unit
Operating frequency
Master
Slave
fOP(M)
fOP(S)
fOP/128
dc
fOP/2
fOP
MHz
MHz
1
Cycle time
Master
Slave
tCYC(M)
tCYC(S)
2
1
128
—
tCYC
tCYC
2
Enable lead time
tLead(S)
1
—
tCYC
3
Enable lag time
tLag(S)
1
—
tCYC
4
Clock (SPSCK) high time
Master
Slave
tSCKH(M)
tSCKH(S)
tCYC –25
1/2 tCYC –25
64 tCYC
—
ns
ns
5
Clock (SPSCK) low time
Master
Slave
tSCKL(M)
tSCKL(S)
tCYC –25
1/2 tCYC –25
64 tCYC
—
ns
ns
6
Data setup time (inputs)
Master
Slave
tSU(M)
tSU(S)
30
30
—
—
ns
ns
7
Data hold time (inputs)
Master
Slave
tH(M)
tH(S)
30
30
—
—
ns
ns
8
Access time, slave(3)
CPHA = 0
CPHA = 1
tA(CP0)
tA(CP1)
0
0
40
40
ns
ns
9
Disable time, slave(4)
tDIS(S)
—
40
ns
10
Data valid time, after enable edge
Master
Slave(5)
tV(M)
tV(S)
—
—
50
50
ns
ns
11
Data hold time, outputs, after enable edge
Master
Slave
tHO(M)
tHO(S)
0
0
—
—
ns
ns
Notes:
1. Numbers refer to dimensions in Figure 24-2 and Figure 24-3.
2. All timing is shown with respect to 20% VDD and 70% VDD, unless noted; 100 pF load on all SPI pins.
3. Time to data active from high-impedance state
4. Hold time to high-impedance state
5. With 100 pF on all SPI pins
Data Sheet
446
MC68HC908LJ24/LK24 — Rev. 2
Electrical Specifications
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Electrical Specifications
3.3V SPI Characteristics
24.17 3.3V SPI Characteristics
Table 24-15. 3.3V SPI Characteristics
Freescale Semiconductor, Inc...
Diagram
Number(1)
Characteristic(2)
Symbol
Min
Max
Unit
Operating frequency
Master
Slave
fOP(M)
fOP(S)
fOP/128
dc
fOP/2
fOP
MHz
MHz
1
Cycle time
Master
Slave
tCYC(M)
tCYC(S)
2
1
128
—
tCYC
tCYC
2
Enable lead time
tLead(s)
1
—
tCYC
3
Enable lag time
tLag(s)
1
—
tCYC
4
Clock (SPSCK) high time
Master
Slave
tSCKH(M)
tSCKH(S)
tCYC –35
1/2 tCYC –35
64 tCYC
—
ns
ns
5
Clock (SPSCK) low time
Master
Slave
tSCKL(M)
tSCKL(S)
tCYC –35
1/2 tCYC –35
64 tCYC
—
ns
ns
6
Data setup time (inputs)
Master
Slave
tSU(M)
tSU(S)
40
40
—
—
ns
ns
7
Data hold time (inputs)
Master
Slave
tH(M)
tH(S)
40
40
—
—
ns
ns
8
Access time, slave(3)
CPHA = 0
CPHA = 1
tA(CP0)
tA(CP1)
0
0
50
50
ns
ns
9
Disable time, slave(4)
tDIS(S)
—
50
ns
10
Data valid time, after enable edge
Master
Slave(5)
tV(M)
tV(S)
—
—
60
60
ns
ns
11
Data hold time, outputs, after enable edge
Master
Slave
tHO(M)
tHO(S)
0
0
—
—
ns
ns
Notes:
1. Numbers refer to dimensions in Figure 24-2 and Figure 24-3.
2. All timing is shown with respect to 20% VDD and 70% VDD, unless noted; 100 pF load on all SPI pins.
3. Time to data active from high-impedance state
4. Hold time to high-impedance state
5. With 100 pF on all SPI pins
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Electrical Specifications
For More Information On This Product,
Go to: www.freescale.com
447
Freescale Semiconductor, Inc.
Electrical Specifications
SS
INPUT
SS PIN OF MASTER HELD HIGH
1
SPSCK OUTPUT
CPOL = 0
NOTE
SPSCK OUTPUT
CPOL = 1
NOTE
5
4
5
4
6
Freescale Semiconductor, Inc...
MISO
INPUT
MSB IN
BITS 6–1
11
MOSI
OUTPUT
MASTER MSB OUT
7
LSB IN
10
11
BITS 6–1
MASTER LSB OUT
Note: This first clock edge is generated internally, but is not seen at the SPSCK pin.
a) SPI Master Timing (CPHA = 0)
SS
INPUT
SS PIN OF MASTER HELD HIGH
1
SPSCK OUTPUT
CPOL = 0
5
NOTE
4
SPSCK OUTPUT
CPOL = 1
5
NOTE
4
6
MISO
INPUT
MSB IN
10
MOSI
OUTPUT
BITS 6–1
11
MASTER MSB OUT
7
LSB IN
10
BITS 6–1
MASTER LSB OUT
Note: This last clock edge is generated internally, but is not seen at the SPSCK pin.
b) SPI Master Timing (CPHA = 1)
Figure 24-2. SPI Master Timing
Data Sheet
448
MC68HC908LJ24/LK24 — Rev. 2
Electrical Specifications
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Electrical Specifications
3.3V SPI Characteristics
SS
INPUT
3
1
SPSCK INPUT
CPOL = 0
5
4
2
SPSCK INPUT
CPOL = 1
5
4
9
8
Freescale Semiconductor, Inc...
MISO
INPUT
SLAVE
MSB OUT
6
MOSI
OUTPUT
BITS 6–1
7
NOTE
11
11
10
MSB IN
SLAVE LSB OUT
BITS 6–1
LSB IN
Note: Not defined but normally MSB of character just received
a) SPI Slave Timing (CPHA = 0)
SS
INPUT
1
SPSCK INPUT
CPOL = 0
5
4
2
3
SPSCK INPUT
CPOL = 1
8
MISO
OUTPUT
5
4
10
NOTE
MOSI
INPUT
9
SLAVE
MSB OUT
6
7
BITS 6–1
11
10
MSB IN
SLAVE LSB OUT
BITS 6–1
LSB IN
Note: Not defined but normally LSB of character previously transmitted
b) SPI Slave Timing (CPHA = 1)
Figure 24-3. SPI Slave Timing
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Electrical Specifications
For More Information On This Product,
Go to: www.freescale.com
449
Freescale Semiconductor, Inc.
Electrical Specifications
24.18 FLASH Memory Characteristics
Table 24-16. FLASH Memory Electrical Characteristics
Characteristic
Freescale Semiconductor, Inc...
RAM data retention voltage
Symbol
Min.
Max.
Unit
VRDR
1.3
—
V
Number of rows per page
2
Rows
Number of bytes per page
128
Bytes
Read bus clock frequency
fread(1)
32k
8M
Hz
Page erase time
terase(2)
1
—
ms
Mass erase time
tmerase(3)
4
—
ms
PGM/ERASE to HVEN setup time
tnvs
10
—
µs
High-voltage hold time
tnvh
5
—
µs
High-voltage hold time (mass erase)
tnvhl
100
—
µs
Program hold time
tpgs
5
—
µs
Program time
tprog
30
40
µs
Address/data setup time
tads
—
30
ns
Address/data hold time
tadh
—
30
ns
Recovery time
trcv(4)
1
—
µs
Cumulative HV period
thv(5)
—
25
ms
Row erase endurance(6)
—
10k
—
Cycles
Row program endurance(7)
—
10k
—
Cycles
Data retention time(8)
—
10
—
Years
Notes:
1. fread is defined as the frequency range for which the FLASH memory can be read.
2. If the page erase time is longer than terase (Min.), there is no erase-disturb, but it reduces the endurance of the FLASH
memory.
3. If the mass erase time is longer than tmerase (Min.), there is no erase-disturb, but is reduces the endurance of the FLASH
memory.
4. It is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump, by clearing
HVEN to logic 0.
5. thv is the cumulative high voltage programming time to the same row before next erase, and the same address can not be
programmed twice before next erase.
6. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many
erase/program cycles.
7. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many
erase/program cycle.
8. The FLASH is guaranteed to retain data over the entire operating temperature range for at least the minimum time
specified.
Data Sheet
450
MC68HC908LJ24/LK24 — Rev. 2
Electrical Specifications
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Data Sheet – MC68HC908LJ24
Section 25. Mechanical Specifications
Freescale Semiconductor, Inc...
25.1 Contents
25.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
25.3
64-Pin Low-Profile Quad Flat Pack (LQFP) . . . . . . . . . . . . . . 452
25.4
64-Pin Quad Flat Pack (QFP). . . . . . . . . . . . . . . . . . . . . . . . . 453
25.5
80-Pin Low-Profile Quad Flat Pack (LQFP) . . . . . . . . . . . . . . 454
25.6
80-Pin Quad Flat Pack (QFP). . . . . . . . . . . . . . . . . . . . . . . . . 455
25.2 Introduction
This section gives the dimensions for:
•
64-pin low-profile quad flat pack (case no. 840F)
•
64-pin quad flat pack (case no. 840B)
•
80-pin low-profile quad flat pack (case no. 917)
•
80-pin quad flat pack (case no. 841B)
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Mechanical Specifications
For More Information On This Product,
Go to: www.freescale.com
451
Freescale Semiconductor, Inc.
Mechanical Specifications
25.3 64-Pin Low-Profile Quad Flat Pack (LQFP)
4X
4X 16 TIPS
0.2 H A–B D
0.2 C A–B D
A2
0.05
S
49
64
(S)
1
48
θ1
A
0.25
B
θ
E
E1
Freescale Semiconductor, Inc...
E1/2
VIEW Y
16
E/2
VIEW AA
NOTES:
1. ALL DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DATUM PLANE H IS COINCIDENT WITH THE
BOTTOM OF THE LEAD WHERE THE LEAD EXITS
THE PLASTIC BODY AT THE BOTTOM OF THE
PARTING LINE.
4. DATUMS A, B AND D TO BE DETERMINED AT
DATUM PLANE H.
5. DIMENSIONS D AND E TO BE DETERMINED AT
SEATING PLANE C.
6. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD
PROTRUSION. ALLOWABLE PROTRUSION IS 0.25
PER SIDE. DIMENSIONS D1 AND E1 DO INCLUDE
MOLD MISMATCH AND ARE DETERMINED AT
DATUM PLANE H.
7. DIMENSION b DOES NOT INCLUDE DAMBAR
PROTRUSION. THE DAMBAR PROTRUSION
SHALL NOT CAUSE THE b DIMENSION TO
EXCEED 0.35. MINIMUM SPACE BETWEEN
PROTRUSION AND ADJACENT LEAD OR
PROTRUSION 0.07.
32
D
D1/2
D/2
D1
D
4X
A
(θ2)
0.08 C
C
L
(L)
33
17
H
GAGE PLANE
(L2)
A1
3X
2X R R1
4X
SEATING
PLANE
(θ3)
VIEW AA
BASE METAL
b1
X
X=A, B OR D
c
c1
CL
AB
e/2
AB
60X
VIEW Y
e
PLATING
b
0.08
M
C A–B D
DIM
A
A1
A2
b
b1
c
c1
D
D1
e
E
E1
L
L1
L2
R1
S
θ
θ1
θ2
θ3
MILLIMETERS
MIN
MAX
—
1.60
0.05
0.15
1.35
1.45
0.17
0.27
0.17
0.23
0.09
0.20
0.09
0.16
12.00 BSC
10.00 BSC
0.50 BSC
12.00 BSC
10.00 BSC
0.45
0.75
1.00 REF
0.50 REF
0.10
0.20
0.20 REF
0°
7°
—
0°
12° REF
12° REF
SECTION AB–AB
ROTATED 90° CLOCKWISE
Figure 25-1. 64-Pin Low-Profile Quad Flat Pack (Case No. 840F)
Data Sheet
452
MC68HC908LJ24/LK24 — Rev. 2
Mechanical Specifications
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Mechanical Specifications
64-Pin Quad Flat Pack (QFP)
25.4 64-Pin Quad Flat Pack (QFP)
L
48
33
DETAIL A
S
D
S
V
P
B
M
C A–B
S
0.20 (0.008)
Freescale Semiconductor, Inc...
M
B
B
0.20 (0.008)
L
0.05 (0.002) A–B
–B–
S
–A–
D
32
H A–B
49
–A–, –B–, –D–
DETAIL A
64
17
F
1
16
–D–
A
0.20 (0.008)
H A–B
S
D
S
0.05 (0.002) A–B
S
0.20 (0.008) M C A–B
S
D
S
M
N
J
M
C
M
H
0.20 (0.008)
DATUM
PLANE
M
C A–B
S
D
S
SECTION B–B
VIEW ROTATED 90°
0.10 (0.004)
G
U
T
R
–H–
DETAIL C
–H–
–C–
SEATING
PLANE
BASE
METAL
D
E
DATUM
PLANE
Q
K
W
X
DETAIL C
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DATUM PLANE –H– IS LOCATED AT BOTTOM OF
LEAD AND IS COINCIDENT WITH THE LEAD
WHERE THE LEAD EXITS THE PLASTIC BODY AT
THE BOTTOM OF THE PARTING LINE.
4. DATUMS –A–, –B– AND –D– TO BE DETERMINED
AT DATUM PLANE –H–.
5. DIMENSIONS S AND V TO BE DETERMINED AT
SEATING PLANE –C–.
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD
PROTRUSION. ALLOWABLE PROTRUSION IS 0.25
(0.010) PER SIDE. DIMENSIONS A AND B DO
INCLUDE MOLD MISMATCH AND ARE
DETERMINED AT DATUM PLANE –H–.
7. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN
EXCESS OF THE D DIMENSION AT MAXIMUM
MATERIAL CONDITION. DAMBAR CANNOT BE
LOCATED ON THE LOWER RADIUS OR THE FOOT.
DIM
A
B
C
D
E
F
G
H
J
K
L
M
N
P
Q
R
S
T
U
V
W
X
MILLIMETERS
MIN
MAX
13.90
14.10
13.90
14.10
2.15
2.45
0.30
0.45
2.00
2.40
0.30
0.40
0.80 BSC
—
0.25
0.13
0.23
0.65
0.95
12.00 REF
5°
10°
0.13
0.17
0.40 BSC
0°
7°
0.13
0.30
16.95
17.45
0.13
—
0°
—
16.95
17.45
0.35
0.45
1.6 REF
INCHES
MIN
MAX
0.547
0.555
0.547
0.555
0.085
0.096
0.012
0.018
0.079
0.094
0.012
0.016
0.031 BSC
—
0.010
0.005
0.009
0.026
0.037
0.472 REF
5°
10°
0.005
0.007
0.016 BSC
0°
7°
0.005
0.012
0.667
0.687
0.005
—
0°
—
0.667
0.687
0.014
0.018
0.063 REF
Figure 25-2. 64-Pin Quad Flat Pack (Case No. 840B)
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Mechanical Specifications
For More Information On This Product,
Go to: www.freescale.com
453
Freescale Semiconductor, Inc.
Mechanical Specifications
25.5 80-Pin Low-Profile Quad Flat Pack (LQFP)
B
D
B
D/2
D1
D1/2
PIN 1
IDEx
80
VIEW Y
e/2
61
1
X
60
X=A, B, or D
VIEW Y
3 PLACES
Freescale Semiconductor, Inc...
E/2
b1
E
c
PLATING
c1
E1
A
B
E1/2
20
41
21
SECTION B–B
0.200 H A–B D
4X
0.200 C A–B D
A2
8X
θ2
VIEW P
H
0.1 C
A
A1
76X
BASE
METAL
80 PLACES
ROTATED 90° CLOCKWISE
40
D
4X
b
0.08 M C A–B D
e
C
SEATING
PLANE
NOTES:
1. ALL DIMENSIONS AND TOLERANCES TO
CONFORM TO ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DATUM PLANE H IS COINCIDENT WITH THE
BOTTOM OF THE LEAD WHERE THE LEAD
EXITS THE PLASTIC BODY AT THE BOTTOM OF
THE PARTING LINE.
4. DATUMS A, B AND D TO BE DETERMINED AT
DATUM PLANE H.
5. DIMENSIONS D AND E TO BE DETERMINED AT
SEATING PLANE C.
6. DIMENSIONS D1 AND E1 DO NOT INCLUDE
MOLD PROTRUSION. ALLOWABLE
PROTRUSION IS 0.25 PER SIDE. DIMENSIONS
D1 AND E1 DO INCLUDE MOLD MISMATCH AND
ARE DETERMINED AT DATUM PLANE H.
7. DIMENSION b DOES NOT INCLUDE DAMBAR
PROTRUSION. THE DAMBAR PROTRUSION
SHALL NOT CAUSE THE b DIMENSION TO
EXCEED 0.35.
DIM
A
A1
A2
D
D1
E
E1
L
L1
L2
R1
R2
S
b
b1
c
c1
e
θ
θ1
θ2
S
θ1
R
(R1)
R
(R2)
GAGE
PLANE
θ
(L2)
0.25
L
(L1)
MILLIMETERS
MIN
MAX
—
1.60
0.05
0.15
1.35
1.45
14.00 BSC
12.00 BSC
14.00 BSC
12.00 BSC
0.45
0.75
1.00 REF
0.50 REF
0.20 REF
0.20 REF
0.17 REF
0.17
0.27
0.17
0.23
0.12
0.20
0.12
0.16
0.50 BSC
0°
7°
0°
—
10°
14°
VIEW P
Figure 25-3. 80-Pin Low-Profile Quad Flat Pack (Case No. 917)
Data Sheet
454
MC68HC908LJ24/LK24 — Rev. 2
Mechanical Specifications
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Mechanical Specifications
80-Pin Quad Flat Pack (QFP)
25.6 80-Pin Quad Flat Pack (QFP)
L
41
60
61
D
S
P
B
M
–A–,–B–,–D–
0.20
V
B
C A–B
D
S
H A–B
M
B
0.20
Freescale Semiconductor, Inc...
L
0.05 D
–B–
–A–
S
S
40
DETAIL A
DEATIL A
21
80
1
0.20
A
H A–B
M
S
F
20
–D–
D
S
0.05 A–B
J
S
0.20
C A–B
M
S
D
S
D
M
E
DETAIL C
C
–H–
–C–
SEATING
PLANE
N
DATUM
PLANE
0.20
M
C A–B
S
D
S
SECTION B–B
VIEW ROTATED 90°
0.10
H
M
G
U
T
DATUM
PLANE
–H–
R
K
W
X
DETAIL C
Q
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DATUM PLANE –H– IS LOCATED AT BOTTOM OF
LEAD AND IS COINCIDENT WITH THE LEAD WHERE
THE LEAD EXITS THE PLASTIC BODY AT THE
BOTTOM OF THE PARTING LINE.
4. DATUMS –A–, –B– AND –D– TO BE DETERMINED AT
DATUM PLANE –H–.
5. DIMENSIONS S AND V TO BE DETERMINED AT
SEATING PLANE –C–.
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD
PROTRUSION. ALLOWABLE PROTRUSION IS 0.25
PER SIDE. DIMENSIONS A AND B DO INCLUDE
MOLD MISMATCH AND ARE DETERMINED AT
DATUM PLANE –H–.
7. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION
SHALL BE 0.08 TOTAL IN EXCESS OF THE D
DIMENSION AT MAXIMUM MATERIAL CONDITION.
DAMBAR CANNOT BE LOCATED ON THE LOWER
RADIUS OR THE FOOT.
DIM
A
B
C
D
E
F
G
H
J
K
L
M
N
P
Q
R
S
T
U
V
W
X
MILLIMETERS
MIN
MAX
13.90
14.10
13.90
14.10
2.15
2.45
0.22
0.38
2.00
2.40
0.22
0.33
0.65 BSC
—
0.25
0.13
0.23
0.65
0.95
12.35 REF
5°
10°
0.13
0.17
0.325 BSC
0°
7°
0.13
0.30
16.95
17.45
0.13
—
0°
—
16.95
17.45
0.35
0.45
1.6 REF
Figure 25-4. 80-Pin Quad Flat Pack (Case No. 841B)
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Mechanical Specifications
For More Information On This Product,
Go to: www.freescale.com
455
Freescale Semiconductor, Inc.
Freescale Semiconductor, Inc...
Mechanical Specifications
Data Sheet
456
MC68HC908LJ24/LK24 — Rev. 2
Mechanical Specifications
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Data Sheet – MC68HC908LJ24
Section 26. Ordering Information
Freescale Semiconductor, Inc...
26.1 Contents
26.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
26.3
MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
26.2 Introduction
This section contains ordering numbers for the MC68HC908LJ24.
26.3 MC Order Numbers
Table 26-1. MC Order Numbers
Package
Operating
Temperature Range
MC68HC908LJ24CPB
64-pin LQFP
–40 to +85 °C
MC68HC908LJ24CFU
64-pin QFP
–40 to +85 °C
MC68HC908LJ24CPK
80-pin LQFP
–40 to +85 °C
MC68HC908LJ24CFQ
80-pin QFP
–40 to +85 °C
MC Order Number
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
Ordering Information
For More Information On This Product,
Go to: www.freescale.com
457
Freescale Semiconductor, Inc.
Freescale Semiconductor, Inc...
Ordering Information
Data Sheet
458
MC68HC908LJ24/LK24 — Rev. 2
Ordering Information
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Data Sheet – MC68HC908LJ24
Appendix A. MC68HC908LK24
Freescale Semiconductor, Inc...
A.1 Contents
A.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
A.3
Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .460
A.4
Low-Voltage Inhibit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
A.5 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
A.5.1
5V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . 461
A.5.2
3.3V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . 461
A.5.3
5V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . .462
A.5.4
3.3V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . 462
A.6
MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
A.2 Introduction
The MC68HC908LK24 is a MC68HC908LJ24 with a low-power
oscillator that supports a 32.768kHz crystal only.
The entire data book apply to the MC68HC908LK24 device, with
exceptions outlined in this appendix.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
MC68HC908LK24
For More Information On This Product,
Go to: www.freescale.com
459
Freescale Semiconductor, Inc.
MC68HC908LK24
A.3 Oscillator
The low-power oscillator supports a reference frequency of 32.768kHz
only; either from a crystal oscillator circuit (Figure A-1) or a direct clock
input to the OSC1 pin.
MCU
OSC1
OSC2
Freescale Semiconductor, Inc...
RB
RS
32.768kHz
C1
X1
C2
Figure A-1. MC68HC908LK24 Crystal Oscillator Connection
A.4 Low-Voltage Inhibit
The LVIPWRD bit in CONFIG1 register is logic 1 after any reset.
Address:
$001F
Bit 7
6
5
4
Read:
3
2
1
Bit 0
SSREC
STOP
COPD
0
COPRS
LVISTOP LVIRSTD LVIPWRD
Write:
MC68HC908LK24
Reset:
0
0
0
1
0
0
0
0
MC68HC908LJ24
Reset:
0
0
0
0††
0
0
0
0
†† Reset by POR only.
= Unimplemented
Figure A-2. MC68HC908LK24 Configuration Register 1 (CONFIG1)
LVIPWRD — LVI Power Disable Bit
LVIPWRD disables the LVI module.
1 = LVI module power disabled
0 = LVI module power enabled
Data Sheet
460
MC68HC908LJ24/LK24 — Rev. 2
MC68HC908LK24
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
MC68HC908LK24
A.5 Electrical Specifications
Electrical specifications for the MC68HC908LJ24 apply to the
MC68HC908LK24, except for the parameters indicated below.
A.5.1 5V DC Electrical Characteristics
Table A-1. 5V DC Electrical Characteristics
Freescale Semiconductor, Inc...
Characteristic(1)
Symbol
Min
Typ(2)
Max
Unit
—
5.5
7.5
µA
3.7
3.62
—
—
4.7
4.62
V
V
VDD supply current
IDD
Stop, fOP = 8 kHz(3)
with OSC, RTC on
Low-voltage inhibit, trip rising voltage
LVI reset disabled (LVIRSTD = 1)
LVI reset enabled (LVIRSTD = 0)
VTRIPR
Notes:
1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.
2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.
3. The 8kHz clock is from a 32kHz external square wave clock input at OSC1, for the driving the RTC. Due to loading effects,
the IDD values will be larger when a 32kHz crystal circuit is connected.
A.5.2 3.3V DC Electrical Characteristics
Table A-2. 3.3V DC Electrical Characteristics
Characteristic(1)
Low-voltage inhibit, trip rising voltage
LVI disabled (LVIRSTD = 1)
LVI enabled (LVIRSTD = 0)
Symbol
Min
Typ(2)
Max
Unit
VTRIPR
2.2
2.12
—
—
2.9
2.82
V
V
Notes:
1. VDD = 3.0 to 3.6 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.
2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.
MC68HC908LJ24/LK24 — Rev. 2
MOTOROLA
Data Sheet
MC68HC908LK24
For More Information On This Product,
Go to: www.freescale.com
461
Freescale Semiconductor, Inc.
MC68HC908LK24
A.5.3 5V Oscillator Characteristics
Table A-3. 5V Oscillator Specifications
Characteristic
Symbol
Min
Typ
Max
Unit
External reference clock to OSC1(1)
fOSC
dc
32.768k
—
Hz
Crystal reference frequency(2)
fXCLK
—
32.768k
—
Hz
Freescale Semiconductor, Inc...
Notes:
1. No more than 10% duty cycle deviation from 50%.
2. Fundamental mode crystals only.
A.5.4 3.3V Oscillator Characteristics
Table A-4. 3.3V Oscillator Specifications
Characteristic
Symbol
Min
Typ
Max
Unit
External reference clock to OSC1(1)
fOSC
dc
32.768k
—
Hz
Crystal reference frequency(2)
fXCLK
—
32.768k
—
Hz
Notes:
1. No more than 10% duty cycle deviation from 50%.
2. Fundamental mode crystals only.
A.6 MC Order Numbers
Table A-5 shows the ordering numbers for the MC68HC908LK24.
Table A-5. MC68HC908LK24 Order Numbers
Package
Operating
Temperature Range
MC68HC908LK24CPB
64-pin LQFP
–40 to +85 °C
MC68HC908LK24CFU
64-pin QFP
–40 to +85 °C
MC68HC908LK24CPK
80-pin LQFP
–40 to +85 °C
MC68HC908LK24CFQ
80-pin QFP
–40 to +85 °C
MC Order Number
Data Sheet
462
MC68HC908LJ24/LK24 — Rev. 2
MC68HC908LK24
For More Information On This Product,
Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc...
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
Freescale Semiconductor, Inc.
HOW TO REACH US:
USA/EUROPE/LOCATIONS NOT LISTED:
Motorola Literature Distribution
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 480-768-2130
Freescale Semiconductor, Inc...
JAPAN:
Motorola Japan Ltd.
SPS, Technical Information Center
3-20-1, Minami-Azabu, Minato-ku
Tokyo 106-8573, Japan
81-3-3440-3569
ASIA/PACIFIC:
Motorola Semiconductors H.K. Ltd.
Silicon Harbour Centre
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
852-26668334
HOME PAGE:
http://motorola.com/semiconductors
Information in this document is provided solely to enable system and software implementers to use Motorola products.
There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty,
representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume
any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed,
intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising
out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even
if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
MOTOROLA and the Stylized M Logo are registered in the US Patent and Trademark Office. All other product or service
names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
© Motorola Inc. 2003
MC68HC908LJ24/D
Rev. 2
8/2003
For More Information On This Product,
Go to: www.freescale.com
This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.