MC74LCX257 Low−Voltage CMOS Quad 2−Input Multiplexer With 5.0 V−Tolerant Inputs and Outputs (3−State, Non−Inverting) http://onsemi.com The MC74LCX257 is a high performance, quad 2−input multiplexer with 3−state outputs operating from a 2.3 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A VI specification of 5.5 V allows MC74LCX257 inputs to be safely driven from 5.0 V devices. Four bits of data from two sources can be selected using the Select input. The four outputs present the selected data in the true (non−inverted) form. The outputs may be switched to a high impedance state by placing a logic HIGH on the Output Enable (OE) input. Current drive capability is 24 mA at the outputs. Features • • • • • • • • • • • MARKING DIAGRAMS 16 SOIC−16 D SUFFIX CASE 751B 16 1 1 16 16 Designed for 2.3 to 3.6 V VCC Operation 5.0 V Tolerant − Interface Capability with 5.0 V TTL Logic Supports Live Insertion and Withdrawal IOFF Specification Guarantees High Impedance When VCC = 0 V LVTTL Compatible LVCMOS Compatible 24 mA Balanced Output Sink and Source Capability Near Zero Static Supply Current in All Three Logic States (10 A) Substantially Reduces System Power Requirements Latchup Performance Exceeds 500 mA ESD Performance: Human Body Model >2000 V Machine Model >200 V Pb−Free Packages are Available* LCX257 AWLYWW 1 TSSOP−16 DT SUFFIX CASE 948F LCX 257 ALYW 1 16 SOEIAJ−16 M SUFFIX CASE 966 16 74LCX257 ALYW 1 1 A L, WL Y W, WW = = = = Assembly Location Wafer Lot Year Work Week ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet. *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. Semiconductor Components Industries, LLC, 2005 January, 2005 − Rev. 3 1 Publication Order Number: MC74LCX257/D MC74LCX257 VCC OE I0c I1c Zc I0d I1d Zd 16 15 14 13 12 11 10 9 I0a I1a I0b I1b 1 S 2 I0a 3 I1a 4 5 Za I0b 6 I1b 7 8 Zb GND I0c I1c Figure 1. Pinout: 16−Lead Plastic Package (Top View) I0d I1d OE 2 4 5 7 14 12 11 9 10 15 PIN NAMES Pins Function Source 0 Data Inputs l1n Source 1 Data Inputs OE Output Enable Input S Select Input Zn Outputs TRUTH TABLE Inputs H L X Z Outputs OE S l0n l1n Zn H X X X Z L H X L L L H X H H L L L X L L L H X H = = = = High Voltage Level Low Voltage Level High or Low Voltage Level and Transitions are Acceptable High Impedance State For ICC reasons, DO NOT FLOAT Inputs http://onsemi.com 2 Zc 13 Figure 2. Logic Diagram l0n Zb 6 1 S Za 3 Zd MC74LCX257 MAXIMUM RATINGS Symbol Parameter VCC DC Supply Voltage VI Value Condition Unit −0.5 to +7.0 V DC Input Voltage −0.5 ≤ VI ≤ +7.0 V VO DC Output Voltage −0.5 ≤ VI ≤ +7.0 Output in 3−State −0.5 ≤ VO ≤ VCC + 0.5 Output in HIGH or LOW State (Note 1) V IIK DC Input Diode Current −50 VI < GND mA IOK DC Output Diode Current −50 VO < GND mA +50 VO > VCC mA V IO DC Output Source/Sink Current ±50 mA ICC DC Supply Current Per Supply Pin ±100 mA IGND DC Ground Current Per Ground Pin ±100 mA TSTG Storage Temperature Range −65 to +150 °C Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. 1. IO absolute maximum rating must be observed. RECOMMENDED OPERATING CONDITIONS Symbol Parameter Operating Data Retention Only Min Type Max Unit 2.0 1.5 2.5, 3.3 2.5, 3.3 3.6 3.6 V 0 5.5 V 0 0 VCC 5.5 V VCC Supply Voltage VI Input Voltage VO Output Voltage (HIGH or LOW State) (3−State) IOH HIGH Level Output Current VCC = 3.0 V − 3.6 V VCC = 2.7 V − 3.0 V VCC = 2.3 V − 2.7 V −24 −12 −8 mA IOL LOW Level Output Current VCC = 3.0 V − 3.6 V VCC = 2.7 V − 3.0 V VCC = 2.3 V − 2.7 V +24 +12 +8 mA TA Operating Free−Air Temperature −40 +85 °C t/V Input Transition Rise or Fall Rate, VIN from 0.8 V to 2.0 V, VCC = 3.0 V 0 10 ns/V ORDERING INFORMATION Package Shipping† MC74LCX257DR2 SOIC−16 2500 Tape & Reel MC74LCX257DR2G SOIC−16 (Pb−Free) 2500 Tape & Reel MC74LCX257DT TSSOP−16* 96 Units / Rail MC74LCX257DTR2 TSSOP−16* 2500 Tape & Reel MC74LCX257M SOEIAJ−16 48 Units / Rail MC74LCX257MEL SOEIAJ−16 2000 Tape & Reel Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *This package is inherently Pb−Free. http://onsemi.com 3 MC74LCX257 DC ELECTRICAL CHARACTERISTICS TA = −40°C to +85°C Symbol VIH VIL VOH VOL Characteristic HIGH Level Input Voltage (Note 2) LOW Level Input Voltage (Note 2) HIGH Level Output Voltage LOW Level Output Voltage Condition Min 2.3 V ≤ VCC ≤ 2.7 V 1.7 2.7 V ≤ VCC ≤ 3.6 V 2.0 Max Unit V 2.3 V ≤ VCC ≤ 2.7 V 0.7 2.7 V ≤ VCC ≤ 3.6 V 0.8 2.3 V ≤ VCC ≤ 3.6 V; IOH = −100 A VCC − 0.2 VCC = 2.3 V; IOH = −8 mA 1.8 VCC = 2.7 V; IOH = −12 mA 2.2 VCC = 3.0 V; IOH = −18 mA 2.4 VCC = 3.0 V; IOH = −24 mA 2.2 V V 2.3 V ≤ VCC ≤ 3.6 V; IOL = 100 A 0.2 VCC = 2.3 V; IOL = 8 mA 0.6 VCC = 2.7 V; IOL = 12 mA 0.4 VCC = 3.0 V; IOL = 16 mA 0.4 VCC = 3.0 V; IOL = 24 mA 0.55 V II Input Leakage Current 2.3 V ≤ VCC ≤ 3.6 V; 0 V ≤ VI ≤ 5.5 V ±5 A IOZ 3−State Output Current 2.3 ≤ VCC ≤ 3.6 V; 0 V ≤ VO ≤ 5.5 V; VI = VIH or VIL ±5 A IOFF Power−Off Leakage Current VCC = 0 V; VI or VO = 5.5 V 10 A ICC Quiescent Supply Current 2.3 ≤ VCC ≤ 3.6 V; VI = GND or VCC 10 A 2.3 ≤ VCC ≤ 3.6 V; 3.6 ≤ VI or VO ≤ 5.5 V ±10 2.3 ≤ VCC ≤ 3.6 V; VIH = VCC − 0.6 V 500 ICC Increase in ICC per Input A 2. These values of VI are used to test DC electrical characteristics only. AC CHARACTERISTICS tR = tF = 2.5 ns; RL = 500 Limits TA = −40°C to +85°C Symbol Parameter VCC = 3.3 V ± 0.3 V VCC = 2.7 V VCC = 2.5 V ± 0.2 V CL = 50 pF CL = 50 pF CL = 30 pF Waveform Min Max Min Max Min Max Unit 1 1.5 6.0 1.5 6.5 1.5 7.2 ns 1.5 6.0 1.5 6.5 1.5 7.2 1.5 7.0 1.5 8.5 1.5 9.1 1.5 7.0 1.5 8.5 1.5 9.1 1.5 7.0 1.5 8.5 1.5 9.1 1.5 7.0 1.5 8.5 1.5 9.1 1.5 5.5 1.5 6.0 1.5 6.6 1.5 5.5 1.5 6.0 1.5 6.6 tPLH Propagation Delay tPHL In to Zn tPLH Propagation Delay tPHL S to Zn tPZH Output Enable Time to tPZL High and Low Level tPHZ Output Disable Time From tPLZ High and Low Level tOSHL Output−to−Output Skew 1.0 tOSLH (Note 3) 1.0 1, 2 3 3 ns ns ns ns 3. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH−to−LOW (tOSHL) or LOW−to−HIGH (tOSLH); parameter guaranteed by design. http://onsemi.com 4 MC74LCX257 DYNAMIC SWITCHING CHARACTERISTICS TA = +25°C Symbol Characteristic Condition Min Typ Max Unit VOLP Dynamic LOW Peak Voltage (Note 4) VCC = 3.3 V, CL = 50 pF, VIH = 3.3 V, VIL = 0 V VCC = 2.5 V, CL = 30 pF, VIH = 2.5 V, VIL = 0 V 0.8 0.6 V V VOLV Dynamic LOW Valley Voltage (Note 4) VCC = 3.3 V, CL = 50 pF, VIH = 3.3 V, VIL = 0 V VCC = 2.5 V, CL = 30 pF, VIH = 2.5 V, VIL = 0 V −0.8 −0.6 V V 4. Number of outputs defined as “n”. Measured with “n−1” outputs switching from HIGH−to−LOW or LOW−to−HIGH. The remaining output is measured in the LOW state. CAPACITIVE CHARACTERISTICS Symbol Parameter CIN Input Capacitance CI/O Input/Output Capacitance CPD Power Dissipation Capacitance Condition Typical Unit VCC = 3.3 V, VI = 0 V or VCC 7 pF VCC = 3.3 V, VI = 0 V or VCC 8 pF 10 MHz, VCC = 3.3 V, VI = 0 V or VCC 25 pF VCC VCC In, S Vmi Vmi Vmi S Vmi 0V tPLH 0V tPHL tPLH tPHL VOH Zn Vmo VOH Vmo Vmo Zn VOL VOL WAVEFORM 1 − NON−INVERTING PROPAGATION DELAYS tR = tF = 2.5 ns, 10% to 90%; f = 1.0 MHz; tW = 500 ns WAVEFORM 2 − INVERTING PROPAGATION DELAYS tR = tF = 2.5 ns, 10% to 90%; f = 1.0 MHz; tW = 500 ns VCC Vmi Vmi OE 0V tPZH tPHZ VCC VOH − 0.3 V Vmo Zn ≈0V tPZL tPLZ ≈ 3.0V Vmo Zn VOL + 0.3 V GND WAVEFORM 3 − OUTPUT ENABLE AND DISABLE TIMES tR = tF = 2.5 ns, 10% to 90%; f = 1.0 MHz; tW = 500 ns Vcc Symbol Vmo 3.3 V + 0.3 V 2.7 V 2.5 V + 0.2 V Vmi 1.5 V 1.5 V Vcc/2 Vmo 1.5 V 1.5 V Vcc/2 VHZ VOL + 0.3 V VOL + 0.3 V VOL + 0.15 V VLZ VOH − 0.3 V VOH − 0.3 V VOH − 0.15 V Figure 3. AC Waveforms http://onsemi.com 5 MC74LCX257 PACKAGE DIMENSIONS SOIC−16 D SUFFIX CASE 751B−05 ISSUE J NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. −A− 16 9 −B− 1 P 8 PL 0.25 (0.010) 8 M B S G R K DIM A B C D F G J K M P R F X 45 C −T− SEATING PLANE J M D 16 PL 0.25 (0.010) M T B S A MILLIMETERS MIN MAX 9.80 10.00 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0 7 5.80 6.20 0.25 0.50 INCHES MIN MAX 0.386 0.393 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0 7 0.229 0.244 0.010 0.019 S TSSOP−16 DT SUFFIX CASE 948F−01 ISSUE O 16X K REF 0.10 (0.004) 0.15 (0.006) T U M T U S V S S K ÉÉ ÇÇ ÇÇ ÉÉ K1 2X L/2 16 9 J1 B −U− L SECTION N−N J PIN 1 IDENT. 8 1 N 0.15 (0.006) T U S 0.25 (0.010) A −V− M N F DETAIL E −W− C 0.10 (0.004) −T− SEATING PLANE H D DETAIL E G http://onsemi.com 6 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE −W−. DIM A B C D F G H J J1 K K1 L M MILLIMETERS MIN MAX 4.90 5.10 4.30 4.50 −−− 1.20 0.05 0.15 0.50 0.75 0.65 BSC 0.18 0.28 0.09 0.20 0.09 0.16 0.19 0.30 0.19 0.25 6.40 BSC 0 8 INCHES MIN MAX 0.193 0.200 0.169 0.177 −−− 0.047 0.002 0.006 0.020 0.030 0.026 BSC 0.007 0.011 0.004 0.008 0.004 0.006 0.007 0.012 0.007 0.010 0.252 BSC 0 8 MC74LCX257 PACKAGE DIMENSIONS SOEIAJ−16 M SUFFIX CASE 966−01 ISSUE O 16 LE 9 Q1 M E HE 1 8 L DETAIL P Z D e VIEW P A DIM A A1 b c D E e HE L LE M Q1 Z A1 b 0.13 (0.005) c M NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 ( 0.018). 0.10 (0.004) http://onsemi.com 7 MILLIMETERS MIN MAX −−− 2.05 0.05 0.20 0.35 0.50 0.18 0.27 9.90 10.50 5.10 5.45 1.27 BSC 7.40 8.20 0.50 0.85 1.10 1.50 10 0 0.70 0.90 −−− 0.78 INCHES MIN MAX −−− 0.081 0.002 0.008 0.014 0.020 0.007 0.011 0.390 0.413 0.201 0.215 0.050 BSC 0.291 0.323 0.020 0.033 0.043 0.059 10 0 0.028 0.035 −−− 0.031 MC74LCX257 ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082−1312 USA Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder Japan: ON Semiconductor, Japan Customer Focus Center 2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051 Phone: 81−3−5773−3850 http://onsemi.com 8 For additional information, please contact your local Sales Representative. MC74LCX257/D