SEMICONDUCTOR TECHNICAL DATA The MC74VHC393 is an advanced high speed CMOS dual 4–bit binary ripple counter fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation. This device consists of two independent 4–bit binary ripple counters with parallel outputs from each counter stage. A ÷256 counter can be obtained by cascading the two binary counters. Internal flip–flops are triggered by high–to–low transitions of the clock input. Reset for the counters is asynchronous and active–high. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used as clocks or as strobes except when gated with the Clock of the VHC393. The inputs tolerate voltages up to 7V, allowing the interface of 5V systems to 3V systems. • • • • • • • • • • • D SUFFIX 14–LEAD SOIC PACKAGE CASE 751A–03 DT SUFFIX 14–LEAD TSSOP PACKAGE CASE 948G–01 High Speed: fmax = 170MHz (Typ) at VCC = 5V Low Power Dissipation: ICC = 4µA (Max) at TA = 25°C High Noise Immunity: VNIH = VNIL = 28% VCC Power Down Protection Provided on Inputs Balanced Propagation Delays Designed for 2V to 5.5V Operating Range Low Noise: VOLP = 0.8V (Max) Pin and Function Compatible with Other Standard Logic Families Latchup Performance Exceeds 300mA ESD Performance: HBM > 2000V; Machine Model > 200V Chip Complexity: 236 FETs or 59 Equivalent Gates M SUFFIX 14–LEAD SOIC EIAJ PACKAGE CASE 965–01 ORDERING INFORMATION MC74VHCXXXD MC74VHCXXXDT MC74VHCXXXM SOIC TSSOP SOIC EIAJ PIN ASSIGNMENT LOGIC DIAGRAM CPn 3, 11 BINARY COUNTER 1, 13 4, 10 5, 9 6, 8 RDn Outputs H L L L L L No Change No Change No Change Next State 13 CP2 3 12 RD2 nQC 1QB 4 11 2QA nQD 1QC 5 10 2QB 1QD 6 9 2QC GND 7 8 2QD nQB 6/97 Motorola, Inc. 1997 1 VCC 2 Inputs Reset 14 RD1 FUNCTION TABLE X H L ↑ ↓ 1 1QA nQA 2, 12 Clock CP1 REV 0 MC74VHC393 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ MAXIMUM RATINGS* Symbol Value Unit DC Supply Voltage – 0.5 to + 7.0 V Vin DC Input Voltage – 0.5 to + 7.0 V Vout DC Output Voltage – 0.5 to VCC + 0.5 V IIK Input Diode Current – 20 mA IOK Output Diode Current ± 20 mA Iout DC Output Current, per Pin ± 25 mA ICC DC Supply Current, VCC and GND Pins ± 75 mA PD Power Dissipation in Still Air, 500 450 mW Tstg Storage Temperature – 65 to + 150 _C VCC Parameter SOIC Packages† TSSOP Package† This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, Vin and Vout should be constrained to the range GND (Vin or Vout) VCC. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V CC ). Unused outputs must be left open. v v * Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute–maximum–rated conditions is not implied. †Derating — SOIC Packages: – 7 mW/_C from 65_ to 125_C TSSOP Package: – 6.1 mW/_C from 65_ to 125_C ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎ ÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎ ÎÎÎ ÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎ ÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎ ÎÎÎ ÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎ RECOMMENDED OPERATING CONDITIONS Symbol VCC Parameter DC Supply Voltage Vin DC Input Voltage Vout DC Output Voltage TA Operating Temperature tr, tf Input Rise and Fall Time VCC = 3.3V VCC = 5.0V Min Max Unit 2.0 5.5 V 0 5.5 V V 0 VCC – 40 + 85 _C 0 0 100 20 ns/V DC ELECTRICAL CHARACTERISTICS S b l Symbol P Parameter T Test C Conditions di i VCC V VIH Minimum High–Level Input Voltage 2.0 3.0 to 5.5 VIL Maximum Low–Level Input Voltage 2.0 3.0 to 5.5 VOH Minimum High–Level Output Voltage VOL Maximum Low–Level Output Voltage MOTOROLA TA = 25°C Min Max 1.50 VCC x 0.7 Min 2.0 3.0 4.5 1.9 2.9 4.4 Vin = VIH or VIL IOH = – 4mA IOH = – 8mA 3.0 4.5 2.58 3.94 Vin = VIH or VIL IOL = 50µA 2.0 3.0 4.5 Vin = VIH or VIL IOL = 4mA IOL = 8mA 3.0 4.5 Max 1.50 VCC x 0.7 0.50 VCC x 0.3 Vin = VIH or VIL IOH = – 50µA 2 Typ TA = – 40 to 85°C 2.0 3.0 4.5 U i Unit V 0.50 VCC x 0.3 V V 1.9 2.9 4.4 2.48 3.80 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.36 0.36 0.44 0.44 V VHC Data – Advanced CMOS Logic DL203 — Rev 1 MC74VHC393 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎ ÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎ ÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎ ÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎ ÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎ ÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎ ÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎ ÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎ ÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎ ÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎ ÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎ DC ELECTRICAL CHARACTERISTICS Symbol Iin ICC Parameter Test Conditions VCC V TA = 25°C Min Typ TA = – 40 to 85°C Max Min Max Unit Maximum Input Leakage Current Vin = 5.5V or GND 0 to 5.5 ± 0.1 ± 1.0 µA Maximum Quiescent Supply Current Vin = VCC or GND 5.5 4.0 40.0 µA AC ELECTRICAL CHARACTERISTICS (Input tr = tf = 3.0ns) TA = 25°C S b l Symbol fmax tPLH, tPHL tPLH, tPHL tPLH, tPHL tPLH, tPHL tPHL tOSLH, tOSHL Cin P Parameter Maximum Clock Frequency (50% Duty Cycle) Maximum Propagation Delay, CP to QA Maximum Propagation Delay, CP to QB Maximum Propagation Delay, CP to QC Maximum Propagation Delay, CP to QD Maximum Propagation Delay, RD to Qn Output to Output Skew T Test C Conditions di i Min Typ TA = – 40 to 85°C Max Min Max U i Unit VCC = 3.3 ± 0.3V CL = 15pF CL = 50pF 75 45 120 65 65 35 VCC = 5.0 ± 0.5V CL = 15pF CL = 50pF 125 85 170 115 105 75 VCC = 3.3 ± 0.3V CL = 15pF CL = 50pF 8.6 11.1 13.2 16.7 1.0 1.0 15.5 19.0 VCC = 5.0 ± 0.5V CL = 15pF CL = 50pF 5.8 7.3 8.5 10.5 1.0 1.0 10.0 12.0 VCC = 3.3 ± 0.3V CL = 15pF CL = 50pF 10.2 12.7 15.8 19.3 1.0 1.0 18.5 22.0 VCC = 5.0 ± 0.5V CL = 15pF CL = 50pF 6.8 8.3 9.8 11.8 1.0 1.0 11.5 13.5 VCC = 3.3 ± 0.3V CL = 15pF CL = 50pF 11.7 14.2 18.0 21.5 1.0 1.0 21.0 24.5 VCC = 5.0 ± 0.5V CL = 15pF CL = 50pF 7.7 9.2 11.2 13.2 1.0 1.0 13.0 15.0 VCC = 3.3 ± 0.3V CL = 15pF CL = 50pF 13.0 15.5 19.7 23.2 1.0 1.0 23.0 26.5 VCC = 5.0 ± 0.5V CL = 15pF CL = 50pF 8.5 10.0 12.5 14.5 1.0 1.0 14.5 16.5 VCC = 3.3 ± 0.3V CL = 15pF CL = 50pF 7.9 10.4 12.3 15.8 1.0 1.0 14.5 18.0 VCC = 5.0 ± 0.5V CL = 15pF CL = 50pF 5.4 6.9 8.1 10.1 1.0 1.0 9.5 11.5 VCC = 3.3 ± 0.3V (Note NO TAG) CL = 50pF 1.5 1.5 pF VCC = 5.0 ± 0.5V (Note NO TAG) CL = 50pF 1.0 1.0 pF 10 10 pF Maximum Input Capacitance 4 ns ns ns ns ns ns Typical @ 25°C, VCC = 5.0V CPD P Power Dissipation Di i i Capacitance C i (N (Note NO TAG) 1. Parameter guaranteed by design. tOSLH = |tPLHm – tPLHn|, tOSHL = |tPHLm – tPHLn|. 23 pF F 2. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: ICC(OPR) = CPD VCC fin + ICC / 2 (per 4–bit counter). CPD is used to determine the no–load dynamic power consumption; PD = CPD VCC2 fin + ICC VCC. VHC Data – Advanced CMOS Logic DL203 — Rev 1 3 MOTOROLA MC74VHC393 NOISE CHARACTERISTICS (Input tr = tf = 3.0ns, CL = 50pF, VCC = 5.0V) TA = 25°C S b l Symbol P Parameter Typ Max U i Unit VOLP Quiet Output Maximum Dynamic VOL 0.5 0.8 V VOLV Quiet Output Minimum Dynamic VOL – 0.5 – 0.8 V VIHD Minimum High Level Dynamic Input Voltage 3.5 V VILD Maximum Low Level Dynamic Input Voltage 1.5 V TIMING REQUIREMENTS (Input tr = tf = 3.0ns) TA = – 40 to 85°C TA = 25°C Symbol S b l Parameter P Test Conditions T C di i Typ Limit Limit Unit U i tw Minimum Pulse Width, CP VCC = 3.3 ± 0.3 V VCC = 5.0 ± 0.5 V 5.0 5.0 5.0 5.0 ns tw Minimum Pulse Width, RD VCC = 3.3 ± 0.3 V VCC = 5.0 ± 0.5 V 5.0 5.0 5.0 5.0 ns trec Minimum Recovery Time, RD to CP VCC = 3.3 ± 0.3 V VCC = 5.0 ± 0.5 V 5.0 4.0 5.0 4.0 ns tr, tf Minimum Input Rise and Fall Times VCC = 3.3 ± 0.3 V VCC = 5.0 ± 0.5 V 330 100 330 100 ns SWITCHING WAVEFORMS tw VCC CP 50% 50% GND GND tw tPHL 1/fmax tPLH tPHL Qn VCC RD Qn 50% VCC trec 50% VCC VCC 50% CP Figure 1. GND Figure 2. TEST POINT OUTPUT DEVICE UNDER TEST CL* * Includes all probe and jig capacitance Figure 3. Test Circuit MOTOROLA 4 VHC Data – Advanced CMOS Logic DL203 — Rev 1 MC74VHC393 EXPANDED LOGIC DIAGRAM CP 1, 13 C Q D Q C Q C 4, 10 QB Q D Q C 5, 9 QC Q D VHC Data – Advanced CMOS Logic DL203 — Rev 1 QA Q D RD 3, 11 Q 6, 8 QD 2, 12 5 MOTOROLA MC74VHC393 TIMING DIAGRAM 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 CP RD QA QB QC QD COUNT SEQUENCE Outputs MOTOROLA C Count QD QC QB QA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 L L L L L L L L H H H H H H H H L L L L H H H H L L L L H H H H L L H H L L H H L L H H L L H H L H L H L H L H L H L H L H L H 6 VHC Data – Advanced CMOS Logic DL203 — Rev 1 MC74VHC393 OUTLINE DIMENSIONS D SUFFIX PLASTIC SOIC PACKAGE CASE 751A–03 ISSUE F NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. –A– 14 8 P 7 PL –B– 1 0.25 (0.010) 7 G D 0.25 (0.010) T M F J M K 14 PL M R X 45° C SEATING PLANE B M B S A S DIM A B C D F G J K M P R MILLIMETERS MIN MAX 8.75 8.55 4.00 3.80 1.75 1.35 0.49 0.35 1.25 0.40 1.27 BSC 0.25 0.19 0.25 0.10 7° 0° 5.80 6.20 0.25 0.50 INCHES MIN MAX 0.337 0.344 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 7° 0° 0.228 0.244 0.010 0.019 DT SUFFIX PLASTIC TSSOP PACKAGE CASE 948G–01 ISSUE O 14X K REF 0.10 (0.004) 0.15 (0.006) T U M T U V S NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W–. S S N 2X 14 L/2 0.25 (0.010) 8 M B –U– L PIN 1 IDENT. F 7 1 0.15 (0.006) T U N S DETAIL E K A –V– ÉÉÉ ÇÇÇ ÇÇÇ ÉÉÉ K1 J J1 SECTION N–N –W– C 0.10 (0.004) –T– SEATING PLANE D VHC Data – Advanced CMOS Logic DL203 — Rev 1 G H DETAIL E 7 DIM A B C D F G H J J1 K K1 L M MILLIMETERS MIN MAX 4.90 5.10 4.30 4.50 ––– 1.20 0.05 0.15 0.50 0.75 0.65 BSC 0.50 0.60 0.09 0.20 0.09 0.16 0.19 0.30 0.19 0.25 6.40 BSC 0_ 8_ INCHES MIN MAX 0.193 0.200 0.169 0.177 ––– 0.047 0.002 0.006 0.020 0.030 0.026 BSC 0.020 0.024 0.004 0.008 0.004 0.006 0.007 0.012 0.007 0.010 0.252 BSC 0_ 8_ MOTOROLA MC74VHC393 OUTLINE DIMENSIONS M SUFFIX PLASTIC SOIC EIAJ PACKAGE CASE 965–01 ISSUE O 14 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 ( 0.018). LE 8 Q1 E HE L 7 1 M_ DETAIL P Z D VIEW P A e c A1 b 0.13 (0.005) M 0.10 (0.004) DIM A A1 b c D E e HE 0.50 LE M Q1 Z MILLIMETERS MIN MAX ––– 2.05 0.05 0.20 0.35 0.50 0.18 0.27 9.90 10.50 5.10 5.45 1.27 BSC 7.40 8.20 0.50 0.85 1.10 1.50 10 _ 0_ 0.70 0.90 ––– 1.42 INCHES MIN MAX ––– 0.081 0.002 0.008 0.014 0.020 0.007 0.011 0.390 0.413 0.201 0.215 0.050 BSC 0.291 0.323 0.020 0.033 0.043 0.059 10 _ 0_ 0.028 0.035 ––– 0.056 Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. Mfax is a trademark of Motorola, Inc. How to reach us: USA / EUROPE / Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447 JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4–32–1, Nishi–Gotanda, Shinagawa–ku, Tokyo 141, Japan. 81–3–5487–8488 Mfax: [email protected] – TOUCHTONE 602–244–6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, – US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298 INTERNET: http://motorola.com/sps MOTOROLA ◊ 8 MC74VHC393/D VHC Data – Advanced CMOS Logic DL203 — Rev 1