MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 D Low Supply-Voltage Range, 1.8 V . . . 3.6 V D Ultralow-Power Consumption: D D D D D D D D – Active Mode: 280 µA at 1 MHz, 2.2V – Standby Mode: 1.6 µA – Off Mode (RAM Retention): 0.1 µA Five Power-Saving Modes Wake-Up From Standby Mode in 6 µs 16-Bit RISC Architecture, 125-ns Instruction Cycle Time 12-Bit A/D Converter With Internal Reference, Sample-and-Hold and Autoscan Feature 16-Bit Timer_B With Seven Capture/Compare-With-Shadow Registers 16-Bit Timer_A With Three Capture/Compare Registers On-Chip Comparator Serial Onboard Programming, No External Programming Voltage Needed Programmable Code Protection by Security Fuse D Serial Communication Interface (USART), D D D Functions as Asynchronous UART or Synchronous SPI Interface – Two USARTs (USART0, USART1) — MSP430x14x Devices – One USART (USART0) — MSP430x13x Devices Family Members Include: – MSP430F133: 8KB+256B Flash Memory, 256B RAM – MSP430F135: 16KB+256B Flash Memory, 512B RAM – MSP430F147: 32KB+256B Flash Memory, 1KB RAM – MSP430F148: 48KB+256B Flash Memory, 2KB RAM – MSP430F149: 60KB+256B Flash Memory, 2KB RAM Available in 64-Pin Quad Flat Pack (QFP) For Complete Module Descriptions, See the MSP430x1xx Family User’s Guide, Literature Number SLAU049 description The Texas Instruments MSP430 family of ultralow-power microcontrollers consist of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low power modes is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that attribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 6 µs. The MSP430x13x and the MSP430x14x series are microcontroller configurations with two built-in 16-bit timers, a fast 12-bit A/D converter, one or two universal serial synchronous/asynchronous communication interfaces (USART), and 48 I/O pins. Typical applications include sensor systems that capture analog signals, convert them to digital values, and process and transmit the data to a host system. The timers make the configurations ideal for industrial control applications such as ripple counters, digital motor control, EE-meters, hand-held meters, etc. The hardware multiplier enhances the performance and offers a broad code and hardware-compatible family solution. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 2000 – 2003, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 AVAILABLE OPTIONS PACKAGED DEVICES TA PLASTIC 64-PIN QFP (PM) MSP430F133IPM MSP430F135IPM MSP430F147IPM MSP430F148IPM MSP430F149IPM –40°C to 85°C pin designation, MSP430F133, MSP430F135 1 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 2 47 3 46 4 45 5 44 6 43 7 42 8 41 9 40 10 39 11 38 12 37 13 36 14 35 15 34 33 16 1718 19 20 21 22 23 24 25 26 27 28 29 30 31 32 P1.5/TA0 P1.6/TA1 P1.7/TA2 P2.0/ACLK P2.1/TAINCLK P2.2/CAOUT/TA0 P2.3/CA0/TA1 P2.4/CA1/TA2 P2.5/Rosc P2.6/ADC12CLK P2.7/TA0 P3.0/STE0 P3.1/SIMO0 P3.2/SOMI0 P3.3/UCLK0 P3.4/UTXD0 DVCC P6.3/A3 P6.4/A4 P6.5/A5 P6.6/A6 P6.7/A7 VREF+ XIN XOUT/TCLK VeREF+ VREF–/VeREF– P1.0/TACLK P1.1/TA0 P1.2/TA1 P1.3/TA2 P1.4/SMCLK P5.6/ACLK P5.5/SMCLK AVCC DVSS AV SS P6.2/A2 P6.1/A1 P6.0/A0 RST/NMI TCK TMS TDI TDO/TDI XT2IN XT2OUT P5.7/TBoutH PM PACKAGE (TOP VIEW) 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P5.4/MCLK P5.3 P5.2 P5.1 P5.0 P4.7/TBCLK P4.6 P4.5 P4.4 P4.3 P4.2/TB2 P4.1/TB1 P4.0/TB0 P3.7 P3.6 P3.5/URXD0 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 pin designation, MSP430F147, MSP430F148, MSP430F149 1 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 2 47 3 46 4 45 5 44 6 43 7 42 8 41 9 40 10 39 11 38 12 37 13 36 14 35 15 34 33 16 1718 19 20 21 22 23 24 25 26 27 28 29 30 31 32 P5.4/MCLK P5.3/UCLK1 P5.2/SOMI1 P5.1/SIMO1 P5.0/STE1 P4.7/TBCLK P4.6/TB6 P4.5/TB5 P4.4/TB4 P4.3/TB3 P4.2/TB2 P4.1/TB1 P4.0/TB0 P3.7/URXD1 P3.6/UTXD1 P3.5/URXD0 P1.5/TA0 P1.6/TA1 P1.7/TA2 P2.0/ACLK P2.1/TAINCLK P2.2/CAOUT/TA0 P2.3/CA0/TA1 P2.4/CA1/TA2 P2.5/Rosc P2.6/ADC12CLK P2.7/TA0 P3.0/STE0 P3.1/SIMO0 P3.2/SOMI0 P3.3/UCLK0 P3.4/UTXD0 DVCC P6.3/A3 P6.4/A4 P6.5/A5 P6.6/A6 P6.7/A7 VREF+ XIN XOUT/TCLK VeREF+ VREF–/VeREF– P1.0/TACLK P1.1/TA0 P1.2/TA1 P1.3/TA2 P1.4/SMCLK P5.6/ACLK P5.5/SMCLK AVCC DVSS AVSS P6.2/A2 P6.1/A1 P6.0/A0 RST/NMI TCK TMS TDI TDO/TDI XT2IN XT2OUT P5.7/TBoutH PM PACKAGE (TOP VIEW) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 functional block diagrams MSP430x13x XIN Rosc XOUT/TCLK Oscillator XT2IN System Clock XT2OUT DVCC DVSS AVCC ACLK SMCLK AVSS RST/NMI 12 Bit ADC 16 kB Flash 8 kB Flash 512B RAM 256B RAM 8 Channels P1 P2 P3 P4 P5 P6 I/O Port 1/2 I/O Port 3/4 I/O Port 5 I/O Port 6 16 I/Os, With 16 I/Os 8 I/Os 8 I/Os Interrupt <10 µs Conv. Capability MCLK Test MAB, 16 Bit MAB, 4 Bit JTAG CPU MCB Emulation Module Incl. 16 Reg. Bus Conv MDB, 16 Bit MDB, 8 Bit 4 TMS Watchdog Timer TCK TDI ACLK TDO/TDI SMCLK Timer_B3 3 CC-Reg. Shadow Reg. 15 / 16 Bit Timer_A3 USART0 Power on Reset 3 CC-Reg. Comparator A UART Mode SPI Mode MSP430x14x XIN Rosc XT2IN XT2OUT XOUT/TCLK Oscillator System Clock DVCC DVSS AVCC AVSS RST/NMI ACLK 60 kB Flash 2 kB RAM 12 Bit ADC SMCLK 48 kB Flash 2 kB RAM 8 Channels 32 kB Flash 1 kB RAM P1 P2 P3 P4 P5 P6 I/O Port 1/2 I/O Port 3/4 I/O Port 5 I/O Port 6 16 I/Os, With 16 I/Os 8 I/Os 8 I/Os Interrupt <10 µs Conv. Capability MCLK Test MAB, 16 Bit MAB, 4 Bit JTAG CPU MCB Emulation Module Incl. 16 Reg. Bus Conv MDB, 16 Bit MDB, 8 Bit 4 TMS Multiply TCK MPY, MPYS MAC,MACS 8×8 Bit 8×16 Bit 16×8 Bit 16×16 Bit TDI TDO/TDI 4 Watchdog Timer ACLK SMCLK 15 / 16 Bit Timer_B7 7 CC-Reg. Shadow Reg. Timer_A3 3 CC-Reg. POST OFFICE BOX 655303 Power on Reset • DALLAS, TEXAS 75265 Comparator A USART0 USART1 UART Mode SPI Mode UART Mode SPI Mode MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 Terminal Functions TERMINAL NAME NO. DESCRIPTION I/O AVCC AVSS 64 Analog supply voltage, positive terminal. Supplies only the analog portion of the analog-to-digital converter. 62 Analog supply voltage, negative terminal. Supplies only the analog portion of the analog-to-digital converter. DVCC 1 Digital supply voltage, positive terminal. Supplies all digital parts. DVSS 63 P1.0/TACLK 12 I/O General digital I/O pin/Timer_A, clock signal TACLK input P1.1/TA0 13 I/O General digital I/O pin/Timer_A, capture: CCI0A input, compare: Out0 output P1.2/TA1 14 I/O General digital I/O pin/Timer_A, capture: CCI1A input, compare: Out1 output P1.3/TA2 15 I/O General digital I/O pin/Timer_A, capture: CCI2A input, compare: Out2 output P1.4/SMCLK 16 I/O General digital I/O pin/SMCLK signal output P1.5/TA0 17 I/O General digital I/O pin/Timer_A, compare: Out0 output P1.6/TA1 18 I/O General digital I/O pin/Timer_A, compare: Out1 output P1.7/TA2 19 I/O General digital I/O pin/Timer_A, compare: Out2 output/ P2.0/ACLK 20 I/O General digital I/O pin/ACLK output P2.1/TAINCLK 21 I/O General digital I/O pin/Timer_A, clock signal at INCLK P2.2/CAOUT/TA0 22 I/O General digital I/O pin/Timer_A, capture: CCI0B input/Comparator_A output P2.3/CA0/TA1 23 I/O General digital I/O pin/Timer_A, compare: Out1 output/Comparator_A input P2.4/CA1/TA2 24 I/O General digital I/O pin/Timer_A, compare: Out2 output/Comparator_A input P2.5/Rosc 25 I/O General-purpose digital I/O pin, input for external resistor defining the DCO nominal frequency P2.6/ADC12CLK 26 I/O General digital I/O pin, conversion clock – 12-bit ADC P2.7/TA0 27 I/O General digital I/O pin/Timer_A, compare: Out0 output P3.0/STE0 28 I/O General digital I/O, slave transmit enable – USART0/SPI mode P3.1/SIMO0 29 I/O General digital I/O, slave in/master out of USART0/SPI mode P3.2/SOMI0 30 I/O General digital I/O, slave out/master in of USART0/SPI mode P3.3/UCLK0 31 I/O General digital I/O, external clock input – USART0/UART or SPI mode, clock output – USART0/SPI mode P3.4/UTXD0 32 I/O General digital I/O, transmit data out – USART0/UART mode P3.5/URXD0 P3.6/UTXD1† 33 I/O General digital I/O, receive data in – USART0/UART mode 34 I/O General digital I/O, transmit data out – USART1/UART mode P3.7/URXD1† 35 I/O General digital I/O, receive data in – USART1/UART mode P4.0/TB0 36 I/O General-purpose digital I/O, capture I/P or PWM output port – Timer_B7 CCR0 P4.1/TB1 37 I/O General-purpose digital I/O, capture I/P or PWM output port – Timer_B7 CCR1 P4.2/TB2 P4.3/TB3† 38 I/O General-purpose digital I/O, capture I/P or PWM output port – Timer_B7 CCR2 39 I/O General-purpose digital I/O, capture I/P or PWM output port – Timer_B7 CCR3 P4.4/TB4† P4.5/TB5† 40 I/O General-purpose digital I/O, capture I/P or PWM output port – Timer_B7 CCR4 41 I/O General-purpose digital I/O, capture I/P or PWM output port – Timer_B7 CCR5 P4.6/TB6† 42 I/O General-purpose digital I/O, capture I/P or PWM output port – Timer_B7 CCR6 P4.7/TBCLK P5.0/STE1† 43 I/O General-purpose digital I/O, input clock TBCLK – Timer_B7 44 I/O General-purpose digital I/O, slave transmit enable – USART1/SPI mode P5.1/SIMO1† P5.2/SOMI1† 45 I/O General-purpose digital I/O slave in/master out of USART1/SPI mode 46 I/O General-purpose digital I/O, slave out/master in of USART1/SPI mode P5.3/UCLK1† 47 I/O General-purpose digital I/O, external clock input – USART1/UART or SPI mode, clock output – USART1/SPI mode P5.4/MCLK 48 I/O General-purpose digital I/O, main system clock MCLK output 49 I/O General-purpose digital I/O, submain system clock SMCLK output P5.5/SMCLK † 14x devices only Digital supply voltage, negative terminal. Supplies all digital parts. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 Terminal Functions (Continued) TERMINAL NAME NO. DESCRIPTION I/O P5.6/ACLK 50 I/O General-purpose digital I/O, auxiliary clock ACLK output P5.7/TboutH 51 I/O General-purpose digital I/O, switch all PWM digital output ports to high impedance – Timer_B7 TB0 to TB6 P6.0/A0 59 I/O General digital I/O, analog input a0 – 12-bit ADC P6.1/A1 60 I/O General digital I/O, analog input a1 – 12-bit ADC P6.2/A2 61 I/O General digital I/O, analog input a2 – 12-bit ADC P6.3/A3 2 I/O General digital I/O, analog input a3 – 12-bit ADC P6.4/A4 3 I/O General digital I/O, analog input a4 – 12-bit ADC P6.5/A5 4 I/O General digital I/O, analog input a5 – 12-bit ADC P6.6/A6 5 I/O General digital I/O, analog input a6 – 12-bit ADC P6.7/A7 6 I/O General digital I/O, analog input a7 – 12-bit ADC RST/NMI 58 I Reset input, nonmaskable interrupt input port, or bootstrap loader start (in Flash devices). TCK 57 I Test clock. TCK is the clock input port for device programming test and bootstrap loader start (in Flash devices). TDI 55 I Test data input. TDI is used as a data input port. The device protection fuse is connected to TDI. TDO/TDI 54 I/O TMS 56 I VeREF+ VREF+ 10 I/P Input for an external reference voltage to the ADC 7 O Output of positive terminal of the reference voltage in the ADC VREF–/VeREF– 11 O Negative terminal for the ADC’s reference voltage for both sources, the internal reference voltage, or an external applied reference voltage XIN 8 I Input port for crystal oscillator XT1. Standard or watch crystals can be connected. XOUT/TCLK 9 I/O XT2IN 53 I Input port for crystal oscillator XT2. Only standard crystals can be connected. XT2OUT 52 O Output terminal of crystal oscillator XT2 6 Test data output port. TDO/TDI data output or programming data input terminal Test mode select. TMS is used as an input port for device programming and test. Output terminal of crystal oscillator XT1 or test clock input POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 short-form description CPU The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. Program Counter PC/R0 Stack Pointer SP/R1 SR/CG1/R2 Status Register Constant Generator The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator respectively. The remaining registers are general-purpose registers. Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions. instruction set The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 1 shows examples of the three types of instruction formats; the address modes are listed in Table 2. CG2/R3 General-Purpose Register R4 General-Purpose Register R5 General-Purpose Register R6 General-Purpose Register R7 General-Purpose Register R8 General-Purpose Register R9 General-Purpose Register R10 General-Purpose Register R11 General-Purpose Register R12 General-Purpose Register R13 General-Purpose Register R14 General-Purpose Register R15 Table 1. Instruction Word Formats Dual operands, source-destination e.g. ADD R4,R5 R4 + R5 –––> R5 Single operands, destination only e.g. CALL PC ––>(TOS), R8––> PC Relative jump, un/conditional e.g. JNE R8 Jump-on-equal bit = 0 Table 2. Address Mode Descriptions ADDRESS MODE S D Register n n MOV Rs,Rd MOV R10,R11 Indexed n n MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) Symbolic (PC relative) n n MOV EDE,TONI M(EDE) ––> M(TONI) n n MOV and MEM,and TCDAT M(MEM) ––> M(TCDAT) Absolute SYNTAX EXAMPLE OPERATION R10 ––> R11 M(2+R5)––> M(6+R6) Indirect n MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) ––> M(Tab+R6) Indirect autoincrement n MOV @Rn+,Rm MOV @R10+,R11 M(R10) ––> R11 R10 + 2––> R10 n MOV #X,TONI MOV #45,TONI Immediate NOTE: S = source #45 ––> M(TONI) D = destination POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 operating modes The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request and restore back to the low-power mode on return from the interrupt program. The following six operating modes can be configured by software: D Active mode AM; – All clocks are active D Low-power mode 0 (LPM0); – CPU is disabled ACLK and SMCLK remain active. MCLK is disabled D Low-power mode 1 (LPM1); – CPU is disabled ACLK and SMCLK remain active. MCLK is disabled DCO’s dc-generator is disabled if DCO not used in active mode D Low-power mode 2 (LPM2); – CPU is disabled MCLK and SMCLK are disabled DCO’s dc-generator remains enabled ACLK remains active D Low-power mode 3 (LPM3); – CPU is disabled MCLK and SMCLK are disabled DCO’s dc-generator is disabled ACLK remains active D Low-power mode 4 (LPM4); – 8 CPU is disabled ACLK is disabled MCLK and SMCLK are disabled DCO’s dc-generator is disabled Crystal oscillator is stopped POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 interrupt vector addresses The interrupt vectors and the power-up starting address are located in the address range 0FFFFh – 0FFE0h. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT WORD ADDRESS PRIORITY Power-up External Reset Watchdog Flash memory WDTIFG KEYV (see Note 1) Reset 0FFFEh 15, highest NMI Oscillator Fault Flash memory access violation NMIIFG (see Notes 1 & 4) OFIFG (see Notes 1 & 4) ACCVIFG (see Notes 1 & 4) (Non)maskable (Non)maskable (Non)maskable 0FFFCh 14 Timer_B7 (see Note 5) TBCCR0 CCIFG (see Note 2) Maskable 0FFFAh 13 Timer_B7 (see Note 5) TBCCR1 to 6 CCIFGs, TBIFG (see Notes 1 & 2) Maskable 0FFF8h 12 Comparator_A CAIFG Maskable 0FFF6h 11 Watchdog timer WDTIFG Maskable 0FFF4h 10 USART0 receive URXIFG0 Maskable 0FFF2h 9 USART0 transmit UTXIFG0 Maskable 0FFF0h 8 ADC12 ADC12IFG (see Notes 1 & 2) Maskable 0FFEEh 7 Timer_A3 TACCR0 CCIFG (see Note 2) Maskable 0FFECh 6 Timer_A3 TACCR1 CCIFG, TACCR2 CCIFG, TAIFG (see Notes 1 & 2) Maskable 0FFEAh 5 I/O port P1 (eight flags) P1IFG.0 (see Notes 1 & 2) To P1IFG.7 (see Notes 1 & 2) Maskable 0FFE8h 4 Maskable 0FFE6h 3 0FFE4h 2 0FFE2h 1 0FFE0h 0, lowest USART1 receive URXIFG1 USART1 transmit UTXIFG1 I/O port P2 (eight flags) P2IFG.0 (see Notes 1 & 2) To P2IFG.7 (see Notes 1 & 2) Maskable NOTES: 1. 2. 3. 4. Multiple source flags Interrupt flags are located in the module. Nonmaskable: neither the individual nor the general interrupt-enable bit will disable an interrupt event. (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable can not disable it. 5. Timer_B7 in MSP430x14x family has 7 CCRs; Timer_B3 in MSP430x13x family has 3 CCRs. In Timer_B3 there are only interrupt flags TBCCR0, 1, and 2 CCIFGs and the interrupt-enable bits TBCCTL0, 1, and 2 CCIEs. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 special function registers Most interrupt and module-enable bits are collected in the lowest address space. Special-function register bits not allocated to a functional purpose are not physically present in the device. This arrangement provides simple software access. interrupt enable 1 and 2 7 Address 0h 6 UTXIE0 rw-0 URXIE0 rw-0 5 4 ACCVIE NMIIE rw-0 3 2 1 OFIE rw-0 rw-0 0 WDTIE rw-0 WDTIE: Watchdog-timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog timer is configured in interval timer mode. OFIE: Oscillator-fault-interrupt enable NMIIE: Nonmaskable-interrupt enable ACCVIE: Flash access violation interrupt enable URXIE0: USART0, UART, and SPI receive-interrupt enable UTXIE0: USART0, UART, and SPI transmit-interrupt enable 7 Address 6 01h 5 4 UTXIE1 URXIE1 rw-0 3 2 1 0 rw-0 URXIE1: USART1, UART, and SPI receive-interrupt enable UTXIE1: USART1, UART, and SPI transmit-interrupt enable interrupt flag register 1 and 2 7 Address 02h 6 UTXIFG0 rw-1 5 URXIFG0 3 2 rw-0 1 OFIFG rw-0 rw-1 0 WDTIFG rw-0 WDTIFG: Set on watchdog timer overflow (in watchdog mode) or security key violation. Reset on VCC power up or a reset condition at the RST/NMI pin in reset mode. OFIFG: Flag set on oscillator fault NMIIFG: Set via RST/NMI pin URXIFG0: USART0, UART, and SPI receive flag UTXIFG0: USART0, UART, and SPI transmit flag Address 03h 7 6 5 4 UTXIFG1 URXIFG1 rw-1 10 4 NMIIFG 3 rw-0 URXIFG1: USART1, UART, and SPI receive flag UTXIFG1: USART1, UART, and SPI transmit flag POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2 1 0 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 module enable registers 1 and 2 7 UTXE0 Address 04h rw-0 6 URXE0 USPIE0 5 4 3 2 1 rw-0 URXE0: USART0, UART receive enable UTXE0: USART0, UART transmit enable USPIE0: USART0, SPI (synchronous peripheral interface) transmit and receive enable Address 0 7 6 05h 5 UTXE1 rw-0 4 URXE1 USPIE1 3 2 1 0 rw-0 URXE1: USART1, UART receive enable UTXE1: USART1, UART transmit enable USPIE1: USART1, SPI (synchronous peripheral interface) transmit and receive enable Bit Can Be Read and Written Bit Can Be Read and Written. It Is Reset by PUC. SFR Bit Not Present in Device Legend: rw: rw-0: memory organization MSP430F133 MSP430F135 MSP430F147 MSP430F148 MSP430F149 Memory Main: interrupt vector Main: code memory Size Flash Flash 8kB 0FFFFh – 0FFE0h 0FFFFh – 0E000h 16kB 0FFFFh – 0FFE0h 0FFFFh – 0C000h 32kB 0FFFFh – 0FFE0h 0FFFFh – 08000h 48kB 0FFFFh – 0FFE0h 0FFFFh – 04000h 60kB 0FFFFh – 0FFE0h 0FFFFh – 01100h Information memory Size Flash 256 Byte 010FFh – 01000h 256 Byte 010FFh – 01000h 256 Byte 010FFh – 01000h 256 Byte 010FFh – 01000h 256 Byte 010FFh – 01000h Boot memory Size ROM 1kB 0FFFh – 0C00h 1kB 0FFFh – 0C00h 1kB 0FFFh – 0C00h 1kB 0FFFh – 0C00h 1kB 0FFFh – 0C00h Size 256 Byte 02FFh – 0200h 512 Byte 03FFh – 0200h 1kB 05FFh – 0200h 2kB 09FFh – 0200h 2kB 09FFh – 0200h 16-bit 8-bit 8-bit SFR 01FFh – 0100h 0FFh – 010h 0Fh – 00h 01FFh – 0100h 0FFh – 010h 0Fh – 00h 01FFh – 0100h 0FFh – 010h 0Fh – 00h 01FFh – 0100h 0FFh – 010h 0Fh – 00h 01FFh – 0100h 0FFh – 010h 0Fh – 00h RAM Peripherals bootstrap loader (BSL) The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the features of the BSL and its implementation, see the Application report Features of the MSP430 Bootstrap Loader, Literature Number SLAA089. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 flash memory The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include: D Flash memory has n segments of main memory and two segments of information memory (A and B) of 128 bytes each. Each segment in main memory is 512 bytes in size. D Segments 0 to n may be erased in one step, or each segment may be individually erased. D Segments A and B can be erased individually, or as a group with segments 0–n. Segments A and B are also called information memory. D New devices may have some bytes programmed in the information memory (needed for test during manufacturing). The user should perform an erase of the information memory prior to the first use. 8 kB 16 kB 32 kB 48 kB 60 kB 0FFFFh 0FFFFh 0FFFFh 0FFFFh 0FFFFh 0FE00h 0FDFFh 0FE00h 0FDFFh 0FE00h 0FDFFh 0FE00h 0FDFFh 0FE00h 0FDFFh Segment 1 0FC00h 0FBFFh 0FC00h 0FBFFh 0FC00h 0FBFFh 0FC00h 0FBFFh 0FC00h 0FBFFh Segment 2 0FA00h 0F9FFh 0FA00h 0F9FFh 0FA00h 0F9FFh 0FA00h 0F9FFh 0FA00h 0F9FFh 0E400h 0E3FFh 0C400h 0C3FFh 08400h 083FFh 04400h 043FFh 01400h 013FFh 0E200h 0E1FFh 0C200h 0C1FFh 08200h 081FFh 04200h 041FFh 01200h 011FFh 0E000h 010FFh 0C000h 010FFh 08000h 010FFh 04000h 010FFh 01100h 010FFh 01080h 0107Fh 01080h 0107Fh 01080h 0107Fh 01080h 0107Fh 01080h 0107Fh 01000h 01000h 01000h 01000h 01000h Segment 0 w/ Interrupt Vectors Main Memory Segment n-1 Segment n Segment A Information Memory Segment B 12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 peripherals Peripherals are connected to the CPU through data, address, and control busses and can be handled using all instructions. digital I/O There are six 8-bit I/O ports implemented—ports P1 through P6: D D D D All individual I/O bits are independently programmable. Any combination of input, output, and interrupt conditions is possible. Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2. Read/write access to port-control registers is supported by all instructions. oscillator and system clock The clock system in the MSP430x13x and MSP43x14x family of devices is supported by the basic clock module that includes support for a 32768-Hz watch crystal oscillator, an internal digitally-controlled oscillator (DCO) and a high frequency crystal oscillator. The basic clock module is designed to meet the requirements of both low system cost and low-power consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 µs. The basic clock module provides the following clock signals: D Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high frequency crystal. D Main clock (MCLK), the system clock used by the CPU. D Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules. watchdog timer The primary function of the watchdog timer (WDT) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals. multiplication (MSP430x14x Only) The multiplication operation is supported by a dedicated peripheral module. The module performs 16 16, 16 8, 8 16, and 8 8 bit operations. The module is capable of supporting signed and unsigned multiplication as well as signed and unsigned multiply and accumulate operations. The result of an operation can be accessed immediately after the operands have been loaded into the peripheral registers. No additional clock cycles are required. USART0 The MSP430x13x and the MSP430x14x have one hardware universal synchronous/asynchronous receive transmit (USART0) peripheral module that is used for serial data communication. The USART supports synchronous SPI (3 or 4 pin) and asynchronous UART communication protocols, using double-buffered transmit and receive channels. USART1 (MSP430x14x Only) The MSP430x14x has a second hardware universal synchronous/asynchronous receive transmit (USART1) peripheral module that is used for serial data communication. The USART supports synchronous SPI (3 or 4 pin) and asynchronous UART communication protocols, using double-buffered transmit and receive channels. Operation of USART1 is identical to USART0. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 timer_A3 Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. timer_B7 (MSP430x14x Only) Timer_B7 is a 16-bit timer/counter with seven capture/compare registers. Timer_B7 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B7 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. timer_B3 (MSP430x13x Only) Timer_B3 is a 16-bit timer/counter with three capture/compare registers. Timer_B3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. comparator_A The primary function of the comparator_A module is to support precision slope analog–to–digital conversions, battery–voltage supervision, and monitoring of external analog signals. ADC12 The ADC12 module supports fast, 12-bit analog-to-digital conversions. The module implements a 12-bit SAR core, sample select control, reference generator and a 16 word conversion-and-control buffer. The conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored without any CPU intervention. 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 peripheral file map PERIPHERALS WITH WORD ACCESS Watchdog Watchdog Timer control WDTCTL 0120h Timer_B7 Timer_B3 (see Note 1) Timer_B interrupt vector TBIV 011Eh Timer_B control TBCTL 0180h Capture/compare control 0 TBCCTL0 0182h Capture/compare control 1 TBCCTL1 0184h Capture/compare control 2 TBCCTL2 0186h Capture/compare control 3 TBCCTL3 0188h Capture/compare control 4 TBCCTL4 018Ah Capture/compare control 5 TBCCTL5 018Ch Capture/compare control 6 TBCCTL6 018Eh Timer_B register TBR 0190h Capture/compare register 0 TBCCR0 0192h Capture/compare register 1 TBCCR1 0194h Capture/compare register 2 TBCCR2 0196h Capture/compare register 3 TBCCR3 0198h Capture/compare register 4 TBCCR4 019Ah Capture/compare register 5 TBCCR5 019Ch Capture/compare register 6 TBCCR6 019Eh Timer_A interrupt vector TAIV 012Eh Timer_A control TACTL 0160h Capture/compare control 0 TACCTL0 0162h Capture/compare control 1 TACCTL1 0164h Capture/compare control 2 TACCTL2 0166h Timer_A3 Reserved 0168h Reserved 016Ah Reserved 016Ch Reserved 016Eh Timer_A register TAR 0170h Capture/compare register 0 TACCR0 0172h Capture/compare register 1 TACCR1 0174h Capture/compare register 2 TACCR2 0176h Reserved 0178h Reserved 017Ah Reserved 017Ch Reserved Multiply (MSP430x14x only) 017Eh Sum extend SUMEXT 013Eh Result high word RESHI 013Ch Result low word RESLO 013Ah Second operand OP2 0138h Multiply signed +accumulate/operand1 MACS 0136h Multiply+accumulate/operand1 MAC 0134h Multiply signed/operand1 MPYS 0132h Multiply unsigned/operand1 MPY 0130h NOTE 1: Timer_B7 in MSP430x14x family has 7 CCR, Timer_B3 in MSP430x13x family has 3 CCR. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 peripheral file map (continued) PERIPHERALS WITH WORD ACCESS (CONTINUED) Flash ADC12 16 Flash control 3 FCTL3 012Ch Flash control 2 FCTL2 012Ah Flash control 1 FCTL1 0128h Conversion memory 15 ADC12MEM15 015Eh Conversion memory 14 ADC12MEM14 015Ch Conversion memory 13 ADC12MEM13 015Ah Conversion memory 12 ADC12MEM12 0158h Conversion memory 11 ADC12MEM11 0156h Conversion memory 10 ADC12MEM10 0154h Conversion memory 9 ADC12MEM9 0152h Conversion memory 8 ADC12MEM8 0150h Conversion memory 7 ADC12MEM7 014Eh Conversion memory 6 ADC12MEM6 014Ch Conversion memory 5 ADC12MEM5 014Ah Conversion memory 4 ADC12MEM4 0148h Conversion memory 3 ADC12MEM3 0146h Conversion memory 2 ADC12MEM2 0144h Conversion memory 1 ADC12MEM1 0142h Conversion memory 0 ADC12MEM0 0140h Interrupt-vector-word register ADC12IV 01A8h Inerrupt-enable register ADC12IE 01A6h Inerrupt-flag register ADC12IFG 01A4h Control register 1 ADC12CTL1 01A2h Control register 0 ADC12CTL0 01A0h ADC memory-control register15 ADC12MCTL15 08Fh ADC memory-control register14 ADC12MCTL14 08Eh ADC memory-control register13 ADC12MCTL13 08Dh ADC memory-control register12 ADC12MCTL12 08Ch ADC memory-control register11 ADC12MCTL11 08Bh ADC memory-control register10 ADC12MCTL10 08Ah ADC memory-control register9 ADC12MCTL9 089h ADC memory-control register8 ADC12MCTL8 088h ADC memory-control register7 ADC12MCTL7 087h ADC memory-control register6 ADC12MCTL6 086h ADC memory-control register5 ADC12MCTL5 085h ADC memory-control register4 ADC12MCTL4 084h ADC memory-control register3 ADC12MCTL3 083h ADC memory-control register2 ADC12MCTL2 082h ADC memory-control register1 ADC12MCTL1 081h ADC memory-control register0 ADC12MCTL0 080h POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 peripheral file map (continued) PERIPHERALS WITH BYTE ACCESS USART1 (Only in ‘x14x) USART0 Comparator_A Basic Clock Port P6 Port P5 Port P4 Port P3 Port P2 Transmit buffer U1TXBUF 07Fh Receive buffer U1RXBUF 07Eh Baud rate U1BR1 07Dh Baud rate U1BR0 07Ch Modulation control U1MCTL 07Bh Receive control U1RCTL 07Ah Transmit control U1TCTL 079h USART control U1CTL 078h Transmit buffer U0TXBUF 077h Receive buffer U0RXBUF 076h Baud rate U0BR1 075h Baud rate U0BR0 074h Modulation control U0MCTL 073h Receive control U0RCTL 072h Transmit control U0TCTL 071h USART control U0CTL 070h Comparator_A port disable CAPD 05Bh Comparator_A control2 CACTL2 05Ah Comparator_A control1 CACTL1 059h Basic clock system control2 BCSCTL2 058h Basic clock system control1 BCSCTL1 057h DCO clock frequency control DCOCTL 056h Port P6 selection P6SEL 037h Port P6 direction P6DIR 036h Port P6 output P6OUT 035h Port P6 input P6IN 034h Port P5 selection P5SEL 033h Port P5 direction P5DIR 032h Port P5 output P5OUT 031h Port P5 input P5IN 030h Port P4 selection P4SEL 01Fh Port P4 direction P4DIR 01Eh Port P4 output P4OUT 01Dh Port P4 input P4IN 01Ch Port P3 selection P3SEL 01Bh Port P3 direction P3DIR 01Ah Port P3 output P3OUT 019h Port P3 input P3IN 018h Port P2 selection P2SEL 02Eh Port P2 interrupt enable P2IE 02Dh Port P2 interrupt-edge select P2IES 02Ch Port P2 interrupt flag P2IFG 02Bh Port P2 direction P2DIR 02Ah Port P2 output P2OUT 029h Port P2 input P2IN 028h POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 peripheral file map (continued) PERIPHERALS WITH BYTE ACCESS Port P1 Special Functions Port P1 selection P1SEL 026h Port P1 interrupt enable P1IE 025h Port P1 interrupt-edge select P1IES 024h Port P1 interrupt flag P1IFG 023h Port P1 direction P1DIR 022h Port P1 output P1OUT 021h Port P1 input P1IN 020h SFR module enable 2 ME2 005h SFR module enable 1 ME1 004h SFR interrupt flag2 IFG2 003h SFR interrupt flag1 IFG1 002h SFR interrupt enable2 IE2 001h SFR interrupt enable1 IE1 000h absolute maximum ratings over operating free-air temperature (unless otherwise noted)† Voltage applied at VCC to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to + 4.1 V Voltage applied to any pin (referenced to VSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to VCC+0.3 V Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 mA Storage temperature (unprogrammed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 150°C Storage temperature (programmed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE: All voltages referenced to VSS. 18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 recommended operating conditions PARAMETER MIN Supply voltage during program execution, VCC (AVCC = DVCC = VCC) Supply voltage during flash memory programming, VCC (AVCC = DVCC = VCC) Supply voltage, VSS (AVSS = DVSS = VSS) LFXT1 crystal frequency, f(LFXT1) (see Notes 1 and 2) 3.6 V MSP430F13x, MSP430F14x 2.7 3.6 V 0.0 0.0 V –40 85 °C Watch crystal XT1 selected, XTS=1 Ceramic resonator XT1 selected, XTS=1 Crystal Ceramic resonator Crystal Processor frequency (signal MCLK), f(System) VCC = 1.8 V VCC = 3.6 V Flash-timing-generator frequency, f(FTG) MSP430F13x, MSP430F14x Cumulative program time, t(CPT) (see Note 3) VCC = 2.7 V/3.6 V MSP430F13x MSP430F14x Mass erase time, t(MEras) (See also the flash memory, timing generator, control register FCTL2 section, see Note 4) VCC = 2.7 V/3.6 V Low-level input voltage (TCK, TMS, TDI, RST/NMI), VIL (excluding Xin, Xout) VCC = 2.2 V/3 V High-level input voltage (TCK, TMS, TDI, RST/NMI), VIH VCC = 2.2 V/3 V (excluding Xin, Xout) VIL(Xin, Xout) VIH(Xin, Xout) 2. 3. 4. 32768 Hz 450 8000 kHz 1000 8000 kHz 450 8000 1000 8000 DC 4.15 DC 8 257 476 kHz 3 ms 200 kHz MHz ms VSS VSS +0.6 V 0.8VCC VCC V VSS 0.2×VCC V 0.8×VCC VCC In LF mode, the LFXT1 oscillator requires a watch crystal and the LFXT1 oscillator requires a 5.1-MΩ resistor from XOUT to VSS when VCC < 2.5 V. In XT1 mode, the LFXT1. and XT2 oscillators accept a ceramic resonator or a 4-MHz crystal frequency at VCC ≥ 2.2 V. In XT1 mode, the LFXT1 and XT2 oscillators accept a ceramic resonator or an 8-MHz crystal frequency at VCC ≥ 2.8 V. In LF mode, the LFXT1 oscillator requires a watch crystal. In XT1 mode, FXT1 accepts a ceramic resonator or a crystal. The cumulative program time must not be exceeded during a block-write operation. This parameter is only relevant if segment write option is used. The mass erase duration generated by the flash timing generator is at least 11.1 ms. The cummulative mass erase time needed is 200 ms. This can be achieved by repeating the mass erase operation until the cumulative mass erase time is met (a minimum of 19 cycles may be required). Input levels at Xin and Xout NOTES: 1. UNITS 1.8 LF selected, XTS=0 XT2 crystal frequency, f(XT2) MAX MSP430F13x, MSP430F14x MSP430x13x MSP430x14x Operating free-air temperature range, TA NOM f (MHz) 8.0 MHz VCC = 2.2 V/3 V ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ Supply voltage range, ’F13x/’F14x, during program execution 4.15 MHz 1.8 V 2.7 V 3 V Supply Voltage – V Supply voltage range, ’F13x/’F14x, during flash memory programming 3.6 V Figure 1. Frequency vs Supply Voltage, MSP430F13x or MSP430F14x POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 19 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) supply current into AVCC + DVCC excluding external current PARAMETER TEST CONDITIONS Active mode, (see Note 1) f(MCLK) = f(SMCLK) = 1 MHz, f(ACLK) = 32,768 Hz XTS=0, SELM=(0,1) F13x, F14x Active mode, (see Note 1) f(MCLK) = f(SMCLK) = 4 096 Hz, f(ACLK) = 4,096 Hz XTS=0, SELM=(0,1) XTS=0, SELM=3 F13x, F14x TA = –40°C ° to 85°C ° I(LPM0) Low-power mode, (LPM0) (see Note 1) F13x, F14x TA = –40°C ° to 85°C ° I(LPM2) Low-power mode, (LPM2), f(MCLK) = f (SMCLK) = 0 MHz, f(ACLK) = 32.768 Hz, SCG0 = 0 I(AM) I(AM) ° to 85°C ° TA = –40°C TA = –40°C TA = 25°C I(LPM3) I(LPM4) Low-power mode, (LPM3) f(MCLK) = f(SMCLK) = 0 MHz, f(ACLK) = 32,768 Hz, SCG0 = 1 (see Note 2) Low-power mode, (LPM4) f(MCLK) = 0 MHz, f(SMCLK) = 0 MHz, f(ACLK) = 0 Hz, SCG0 = 1 NOM MAX VCC = 2.2 V 280 350 VCC = 3 V 420 560 VCC = 2.2 V 2.5 7 9 20 VCC = 2.2 V VCC = 3 V 32 45 55 70 VCC = 2.2 V 11 14 VCC = 3 V 17 22 0.8 1.5 0.9 1.5 1.6 2.8 1.8 2.2 1.6 1.9 2.3 3.9 0.1 0.5 0.1 0.5 0.8 2.5 0.1 0.5 0.1 0.5 VCC = 2.2 V TA = 85°C TA = –40°C TA = 25°C TA = 85°C TA = –40°C VCC = 3 V TA = 25°C TA = 85°C VCC = 2.2 V TA = –40°C TA = 25°C UNIT µA µA VCC = 3 V ° to 85°C ° TA = –40°C MIN VCC = 3 V µA µA µA µA µA µA TA = 85°C 0.8 2.5 NOTES: 1. Timer_B is clocked by f(DCOCLK) = 1 MHz. All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. 2. Timer_B is clocked by f(ACLK) = 32,768 Hz. All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. The current consumption in LPM2 and LPM3 are measured with ACLK selected. 20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) Current consumption of active mode versus system frequency, F-version I(AM) = I(AM) [1 MHz] × f(System) [MHz] Current consumption of active mode versus supply voltage, F-version I(AM) = I(AM) [3 V] + 175 µA/V × (VCC – 3 V) SCHMITT-trigger inputs – Ports P1, P2, P3, P4, P5, and P6 PARAMETER TEST CONDITIONS VIT+ Positive-going input threshold voltage VIT– Negative-going input threshold voltage Vhys Input voltage hysteresis (VIT+ – VIT–) MIN TYP MAX VCC = 2.2 V VCC = 3 V VCC = 2.2 V 1.1 1.5 1.5 1.9 0.4 0.9 VCC = 3 V VCC = 2.2 V 0.90 1.3 0.3 1.1 0.5 1 VCC = 3 V UNIT V V V standard inputs – RST/NMI; JTAG: TCK, TMS, TDI, TDO/TDI PARAMETER VIL VIH TEST CONDITIONS Low-level input voltage VCC = 2.2 V / 3 V High-level input voltage MIN TYP VSS 0.8×VCC MAX VSS+0.6 VCC UNIT V V outputs – Ports P1, P2, P3, P4, P5, and P6 PARAMETER VOH VOL High-level output voltage Low-level output voltage TEST CONDITIONS MIN IOH(max) = –1 mA, IOH(max) = –3.4 mA, VCC = 2.2 V, VCC = 2.2 V, See Note 1 IOH(max) = –1 mA, IOH(max) = –3.4 mA, VCC = 3 V, VCC = 3 V, See Note 1 IOL(max) = 1.5 mA, IOL(max) = 6 mA, VCC = 2.2 V, VCC = 2.2 V, See Note 1 IOL(max) = 1.5 mA, IOL(max) = 6 mA, VCC = 3 V, VCC = 3 V, See Note 1 See Note 2 See Note 2 See Note 2 See Note 2 TYP MAX VCC–0.25 VCC–0.6 VCC VCC VCC–0.25 VCC–0.6 VCC VCC VSS VSS VSS+0.25 VSS+0.6 VSS VSS VSS+0.25 VSS+0.6 UNIT V V NOTES: 1. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±6 mA to satisfy the maximum specified voltage drop. 2. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±24 mA to satisfy the maximum specified voltage drop. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 21 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 outputs – Ports P1, P2, P3, P4, P5, and P6 (continued) TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE 25 TA = 25°C VCC = 2.2 V P2.7 14 12 I OL – Low-Level Output Current – mA I OL – Low-Level Output Current – mA 16 TA = 85°C 10 8 6 4 2 0 0.0 0.5 1.0 1.5 2.0 VCC = 3 V P2.7 20 TA = 85°C 15 10 5 0 0.0 2.5 TA = 25°C 0.5 VOL – Low-Level Output Voltage – V 1.0 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE 2.5 3.0 3.5 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE 0 0 VCC = 2.2 V P2.7 I OH – High-Level Output Current – mA I OH – High-Level Output Current – mA 2.0 Figure 3 Figure 2 –2 1.5 VOL – Low-Level Output Voltage – V –4 –6 –8 –10 TA = 85°C –12 VCC = 3 V P2.7 –5 –10 –15 –20 TA = 85°C –25 TA = 25°C TA = 25°C –14 0.0 0.5 1.0 1.5 2.0 2.5 –30 0.0 VOH – High-Level Output Voltage – V 1.0 1.5 Figure 5 POST OFFICE BOX 655303 2.0 2.5 3.0 VOH – High-Level Output Voltage – V Figure 4 22 0.5 • DALLAS, TEXAS 75265 3.5 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) output frequency PARAMETER fTAx fACLK, fMCLK, fSMCLK TEST CONDITIONS TA0..2, TB0–TB6, Internal clock source, SMCLK signal applied (see Note 1) CL = 20 pF TYP DC MAX UNIT fSystem MHz P5.6/ACLK, P5.4/MCLK, P5.5/SMCLK CL = 20 pF fSystem P2.0/ACLK CL = 20 pF, VCC = 2.2 V / 3 V tXdc MIN Duty cycle of output frequency, P1.4/SMCLK, CL = 20 pF, VCC = 2.2 V / 3 V fACLK = fLFXT1 = fXT1 fACLK = fLFXT1 = fLF 40% 60% 30% 70% fACLK = fLFXT1/n fSMCLK = fLFXT1 = fXT1 50% 40% fSMCLK = fLFXT1 = fLF 35% 65% fSMCLK = fLFXT1/n 50%– 15 ns 50% 50%– 15 ns fSMCLK = fDCOCLK 50%– 15 ns 50% 50%– 15 ns 60% NOTE 1: The limits of the system clock MCLK has to be met; the system (MCLK) frequency should not exceed the limits. MCLK and SMCLK frequencies can be different. inputs Px.x, TAx, TBx PARAMETER t(int) External interrupt timing TEST CONDITIONS VCC 2.2 V/3 V Port P1, P2: P1.x to P2.x, external trigger signal for the interrupt flag, (see Note 1) TA0, TA1, TA2 (see Note 2) t(cap) f(TAext) f(TBext) Timer_A, Timer_B capture timing Timer_A, Timer_B clock frequency externally applied to pin MIN 2.2 V 62 3V 50 2.2 V/3 V 1.5 2.2 V 62 3V 50 TB0, TB1, TB2, TB3, TB4, TB5, TB6 (see Note 3) TACLK, TBCLK, INCLK: t(H) = t(L) TYP MAX 1.5 UNIT cycle ns cycle ns 2.2 V 8 3V 10 MHz f(TAint) 2.2 V 8 Timer_A, Timer_B clock SMCLK or ACLK signal selected MHz f(BTAint) frequency 3V 10 NOTES: 1. The external signal sets the interrupt flag every time the minimum t(int) cycle and time parameters are met. It may be set even with trigger signals shorter than t(int). Both the cycle and timing specifications must be met to ensure the flag is set. t(int) is measured in MCLK cycles. 2. The external capture signal triggers the capture event every time the minimum t(cap) cycle and time parameters are met. A capture may be triggered with capture signals even shorter than t(cap). Both the cycle and timing specifications must be met to ensure a correct capture of the 16-bit timer value and to ensure the flag is set. 3. Seven capture/compare registers in ’x14x and three capture/compare registers in ’x13x. wake-up LPM3 PARAMETER TEST CONDITIONS f = 1 MHz t(LPM3) Delay time f = 2 MHz TYP MAX UNIT 6 VCC = 2.2 V/3 V f = 3 MHz POST OFFICE BOX 655303 MIN • DALLAS, TEXAS 75265 6 µs 6 23 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) leakage current (see Note 1) PARAMETER Ilkg(P1.x) Ilkg(P2.x) TEST CONDITIONS Leakage current (see Note 1) MIN TYP MAX UNIT ±50 Port P1 Port 1: V(P1.x) (see Note 2) Port P2 Port 2: V(P2.3) V(P2.4) (see Note 2) ±50 VCC = 2.2 V/3 V nA Ilkg(P6.x) Port P6 Port 6: V(P6.x) (see Note 2) ±50 NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted. 2. The port pin must be selected as input and there must be no optional pullup or pulldown resistor. RAM PARAMETER TEST CONDITIONS VRAMh CPU HALTED (see Note 1) MIN TYP MAX 1.6 UNIT V NOTE 1: This parameter defines the minimum supply voltage when the data in program memory RAM remain unchanged. No program execution should take place during this supply voltage condition. Comparator_A (see Note 1) PARAMETER TEST CONDITIONS MIN TYP MAX VCC = 2.2 V VCC = 3 V 25 40 45 60 UNIT µ µA I(DD) CAON=1, CARSEL=0, CAREF=0 CAON=1, CARSEL=0, CAREF=1/2/3, no load at P2.3/CA0/TA1 and P2.4/CA1/TA2 VCC = 2.2 V 30 50 I(Refladder/Refdiode) VCC = 3 V 45 71 CAON =1 VCC = 2.2 V/3 V 0 PCA0=1, CARSEL=1, CAREF=1, no load at P2.3/CA0/TA1 and P2.4/CA1/TA2, See Figure 6 VCC = 2.2 V/3 V 0.23 0.24 0.25 PCA0=1, CARSEL=1, CAREF=2, no load at P2.3/CA0/TA1 and P2.4/CA1/TA2, See Figure 6 VCC = 2.2 V/3 V 0.47 0.48 0.5 PCA0=1, CARSEL=1, CAREF=3, no load at P2.3/CA0/TA1 and P2.4/CA1/TA2 TA = 85°C VCC = 2.2 V 390 480 540 VCC = 3 V 400 490 550 Offset voltage See Note 2 30 mV CAON=1 VCC = 2.2 V/3 V VCC = 2.2 V/3 V –30 Input hysteresis 0 0.7 1.4 mV TA = 25 25°C, C, Overdrive 10 mV, Without filter: CAF=0 VCC = 2.2 V VCC = 3 V 130 210 300 80 150 240 TA = 25 25°C, C, Overdrive 10 mV, With filter: CAF=1 VCC = 2.2 V VCC = 3 V 1.4 1.9 3.4 0.9 1.5 2.6 TA = 25°C, Overdrive 10 mV, without filter: CAF=0 VCC = 2.2 V 130 210 300 VCC = 3 V 80 150 240 TA = 25 25°C, C, Overdrive 10 mV, with filter: CAF=1 VCC = 2.2 V VCC = 3 V 1.4 1.9 3.4 0.9 1.5 2.6 V(IC) Common-mode input voltage V(Ref025) See Figure 6 Voltage @ 0.25 V V(Ref050) See Figure 6 Voltage @ 0.5V V V t(response LH) t(response HL) node CC CC CC V(RefVT) V(offset) Vhys CC node VCC–1 µ µA V mV ns µ µs ns µ µs NOTES: 1. The leakage current for the Comparator_A terminals is identical to Ilkg(Px.x) specification. 2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements. The two successive measurements are then summed together. 24 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 650 650 VCC = 2.2 V V(REFVT) – Reference Volts –mV V(REFVT) – Reference Volts –mV VCC = 3 V 600 Typical 550 500 450 400 –45 –25 –5 15 35 55 75 600 Typical 550 500 450 400 –45 95 –25 –5 15 35 55 75 95 TA – Free-Air Temperature – °C TA – Free-Air Temperature – °C Figure 7. V(RefVT) vs Temperature, VCC = 2.2 V Figure 6. V(RefVT) vs Temperature, VCC = 3 V 0 V VCC 0 1 CAF CAON Low Pass Filter V+ V– + _ 0 0 1 1 To Internal Modules CAOUT Set CAIFG Flag τ ≈ 2.0 µs Figure 8. Block Diagram of Comparator_A Module VCAOUT Overdrive V– 400 mV V+ t(response) Figure 9. Overdrive Definition POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 25 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) POR PARAMETER CONDITIONS t(POR_Delay) VPOR VPOR VPOR POR V(min) t(Reset) PUC/POR VCC 2.2 V/3 V MIN NOM MAX 150 UNIT 250 µs TA = –40°C TA = +25°C 1.4 1.8 V 1.1 1.5 V TA = +85°C 0.8 1.2 V 0 0.4 V Reset is accepted internally 2.2 V/3 V µs 2 V VCC V POR No POR POR V (min) POR t Figure 10. Power-On Reset (POR) vs Supply Voltage 2 1.8 1.8 1.5 V POR – V 1.6 1.4 1.2 1.4 1.2 1 1.2 0.8 0.8 0.6 0.4 25°C 0.2 0 –40 –20 0 20 40 TA – Temperature – °C Figure 11. VPOR vs Temperature 26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 60 80 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) DCO (see Note 1) PARAMETER f(DCO03) f(DCO13) f(DCO23) f(DCO33) f(DCO43) f(DCO53) f(DCO63) f(DCO73) TEST CONDITIONS MIN Rsel = 0, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C Rsel = 1, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C Rsel = 2, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C Rsel = 3, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C Rsel = 4, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C Rsel = 5, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C Rsel = 6, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C MAX UNIT VCC = 2.2 V VCC = 3 V 0.08 0.12 0.15 0.08 0.13 0.16 VCC = 2.2 V VCC = 3 V 0.14 0.19 0.23 0.14 0.18 0.22 VCC = 2.2 V VCC = 3 V 0.22 0.30 0.36 0.22 0.28 0.34 VCC = 2.2 V VCC = 3 V 0.37 0.49 0.59 0.37 0.47 0.56 VCC = 2.2 V VCC = 3 V 0.61 0.77 0.93 0.61 0.75 0.90 VCC = 2.2 V VCC = 3 V 1 1.2 1.5 1 1.3 1.5 VCC = 2.2 V VCC = 3 V Rsel = 7, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C NOM 1.6 1.9 2.2 1.69 2.0 2.29 2.4 2.9 3.4 2.7 3.2 3.65 fDCO40 × 1.7 fDCO40 × 2.1 fDCO40 × 2.5 4 4.5 4.9 4.4 4.9 5.4 1.35 1.65 2 1.07 1.12 1.16 –0.31 –0.36 –0.40 –0.33 –0.38 –0.43 0 5 10 VCC = 2.2 V VCC = 3 V f(DCO47) Rsel = 4, DCO = 7, MOD = 0, DCOR = 0, TA = 25°C VCC = 2.2 V/3 V f(DCO77) ° Rsel = 7, DCO = 7, MOD = 0, DCOR = 0, TA = 25°C VCC = 2.2 V VCC = 3 V S(Rsel) S(DCO) SR = fRsel+1 / fRsel SDCO = fDCO+1 / fDCO VCC = 2.2 V/3 V VCC = 2.2 V/3 V Dt Temperature drift, Rsel = 4, DCO = 3, MOD = 0 (see Note 2) VCC = 2.2 V VCC = 3 V DV Drift with VCC variation, Rsel = 4, DCO = 3, MOD = 0 (see Note 2) VCC = 2.2 V/3 V MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz ° %/°C %/V Frequency Variance NOTES: 1. The DCO frequency may not exceed the maximum system frequency defined by parameter processor frequency, f(System). 2. This parameter is not production tested. Max f DCO_7 Min Max f DCO_0 Min ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ 1 f DCOCLK ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ 2.2 3 VCC – V 0 1 2 3 4 5 6 7 DCO Figure 12. DCO Characteristics POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 27 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) main DCO characteristics D Individual devices have a minimum and maximum operation frequency. The specified parameters for fDCOx0 to fDCOx7 are valid for all devices. D All ranges selected by Rsel(n) overlap with Rsel(n+1): Rsel0 overlaps with Rsel1, ... Rsel6 overlaps with Rsel7. D DCO control bits DCO0, DCO1, and DCO2 have a step size as defined by parameter SDCO. D Modulation control bits MOD0 to MOD4 select how often fDCO+1 is used within the period of 32 DCOCLK cycles. The frequency f(DCO) is used for the remaining cycles. The frequency is an average equal to f(DCO) × (2MOD/32 ). crystal oscillator, LFXT1 oscillator (see Note 1) PARAMETER XCIN XCOUT XINL XINH Integrated input capacitance Integrated output capacitance Input levels at XIN, XOUT TEST CONDITIONS MIN NOM XTS=0; LF oscillator selected VCC = 2.2 V/3 V UNIT 12 pF XTS=1; XT1 oscillator selected VCC = 2.2 V/3 V XTS=0; LF oscillator selected VCC = 2.2 V/3 V 2 12 pF XTS=1; XT1 oscillator selected VCC = 2.2 V/3 V VCC = 2.2 V/3 V VCC = 2.2 V/3 V MAX 2 VSS 0.8 × VCC 0.2 × VCC V VCC V MAX UNIT NOTE 1: The oscillator needs capacitors at both terminals, with values specified by the crystal manufacturer. crystal oscillator, XT2 oscillator (see Note 1) PARAMETER XCIN XCOUT Integrated input capacitance XINL XINH Input levels at XIN, XOUT Integrated output capacitance TEST CONDITIONS MIN NOM VCC = 2.2 V/3 V VCC = 2.2 V/3 V 2 pF 2 VCC = 2.2 V/3 V VCC = 2.2 V/3 V VSS 0.8 × VCC pF 0.2 × VCC V VCC V NOTE 1: The oscillator needs capacitors at both terminals, with values specified by the crystal manufacturer. USART0, USART1 (see Note 1) PARAMETER t(τ) USART0/1: deglitch time TEST CONDITIONS VCC = 2.2 V VCC = 3 V MIN NOM MAX 200 430 800 150 280 500 UNIT ns NOTE 1: The signal applied to the USART0/1 receive signal/terminal (URXD0/1) should meet the timing requirements of t(t) to ensure that the URXS flip-flop is set. The URXS flip-flop is set with negative pulses meeting the minimum-timing condition of t(t). The operating conditions to set the flag must be met independently from this timing constraint. The deglitch circuitry is active only on negative transitions on the URXD0/1 line. 28 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit ADC, power supply and input range conditions (see Note 1) PARAMETER AVCC VREF+ IVREF+ IL(VREF)+ † TEST CONDITIONS MIN Analog supply voltage AVCC and DVCC are connected together AVSS and DVSS are connected together V(AVSS) = V(DVSS) = 0 V Positive built-in reference voltage output REF2_5 V = 1 for 2.5 V built-in reference REF2_5 V = 0 for 1.5 V built-in reference IV(REF+) ≤ I(VREF+)max Load current out of VREF+ terminal Load-current regulation VREF+ terminal 3V NOM 2.2 2.4 MAX 3.6 2.5 UNIT V 2.6 V 2.2 V/3 V 1.44 2.2 V 0.01 1.5 1.56 –0.5 mA 3V –1 2.2 V ±2 3V ±2 IV(REF)+ = 500 µA ± 100 µA Analog input voltage ~1.25 V; REF2_5 V = 1 3V ±2 LSB CVREF+=5 µF 20 ns IV(REF)+ = 500 µA +/– 100 µA Analog input voltage ~0.75 V; REF2_5 V = 0 LSB IDL(VREF) +‡ Load current regulation VREF+ terminal IV(REF)+ =100 µA → 900 µA, VCC=3 V, ax ~0.5 x VREF+ Error of conversion result ≤ 1 LSB VeREF+ Positive external reference voltage input VeREF+ > VREF–/VeREF– (see Note 2) 1.4 VAVCC V VREF– /VeREF– Negative external reference voltage input VeREF+ > VREF–/VeREF– (see Note 3) 0 1.2 V (VeREF+ – VREF–/VeREF–) Differential external reference voltage input VeREF+ > VREF–/VeREF– (see Note 4) 1.4 VAVCC V V(P6.x/Ax) Analog input voltage range (see Note 5) All P6.0/A0 to P6.7/A7 terminals. Analog inputs selected in ADC12MCTLx register and P6Sel.x=1 0 ≤ x ≤ 7; V(AVSS) ≤ VP6.x/Ax ≤ V(AVCC) 0 VAVCC V IADC12 Operating supply current into AVCC terminal (see Note 6) fADC12CLK = 5.0 MHz ADC12ON = 1, REFON = 0 SHT0=0, SHT1=0, ADC12DIV=0 IREF+ Operating supply current into AVCC terminal (see Note 7) fADC12CLK = 5.0 MHz ADC12ON = 0, REFON = 1, REF2_5V = 1 IREF+ Operating supply current (see Note 7) fADC12CLK = 5.0 MHz ADC12ON = 0, REFON = 1, REF2_5V = 0 2.2 V 0.65 1.3 3V 0.8 1.6 3V 0.5 0.8 2.2 V 0.5 0.8 3V 0.5 0.8 mA mA mA † Not production tested, limits characterized ‡ Not production tested, limits verified by design NOTES: 1. The leakage current is defined in the leakage current table with P6.x/Ax parameter. 2. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements. 3. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements. 4. The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements. 5. The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results. 6. The internal reference supply current is not included in current consumption parameter IADC12. 7. The internal reference current is supplied via terminal AVCC. Consumption is independent of the ADC12ON control bit, unless a conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 29 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit ADC, built-in reference (see Note 1) PARAMETER TEST CONDITIONS MIN NOM MAX UNIT IVeREF+ Static input current (see Note 2) 0V ≤VeREF+ ≤ VAVCC 2.2 V/3 V ±1 µA IVREF–/VeREF– Static input current (see Note 2) 0V ≤ VeREF– ≤ VAVCC 2.2 V/3 V ±1 µA CVREF+ Capacitance at pin VREF+ (see Note 3) REFON =1, 0 mA ≤ IVREF+ ≤ IV(REF)+(max) 2.2 V/3 V Ci ‡ Input capacitance (see Note 4) Only one terminal can be selected at one time, P6.x/Ax 2.2 V Zi‡ Input MUX ON resistance (see Note 4) 0V ≤ VAx ≤ VAVCC TREF+† Temperature coefficient of built-in reference IV(REF)+ is a constant in the range of 0 mA ≤ IV(REF)+ ≤ 1 mA 5 µF 10 40 pF 3V 2000 Ω 2.2 V/3 V ±100 ppm/°C † Not production tested, limits characterized ‡ Not production tested, limits verified by design NOTES: 1. The voltage source on VeREF+ and VREF–/VeREF–) needs to have low dynamic impedance for 12-bit accuracy to allow the charge to settle for this accuracy. 2. The external reference is used during conversion to charge and discharge the capacitance array. The dynamic impedance should follow the recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy. 3. The internal buffer operational amplifier and the accuracy specifications require an external capacitor. 4. The input capacitance is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy. All INL and DNL tests uses two capacitors between pins VREF+ and AVSS and VREF–/VeREF– and AVSS: 10 µF tantalum and 100 nF ceramic. 30 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit ADC, timing parameters PARAMETER Settle time of internal reference voltage (see Figure 13 and Note 1) tREF(ON)† TEST CONDITIONS MIN NOM IV(REF)+ = 0.5 mA, CV(REF)+ = 10 µF, VREF+ = 1.5 V, VAVCC = 2.2 V MAX UNIT 17 ms f(ADC12CLK) Error of conversion result ≤ ±2 LSB 2.2V/ 3V f(ADC12OSC) ADC12DIV=0 [f(ADC12CLK) =f(ADC12OSC)] 2.2 V/ 3V 3.7 6.3 MHz Conversion time AVCC(min) ≤ VAVCC ≤ AVCC(max), CVREF+ ≥ 5 µF, Internal oscillator, fOSC = 3.7 MHz to 6.3 MHz 2.2 V/ 3V 2.06 3.51 µs Conversion time AVCC(min) ≤ VAVCC ≤ AVCC(max), External fADC12CLK from ACLK or MCLK or SMCLK: ADC12SSEL ≠ 0 tCONVERT tADC12ON‡ Settle time of the ADC tSample‡ Sampling time AVCC(min) ≤ VAVCC ≤ AVCC(max) (see Note 2) VAVCC(min) < VAVCC <VAVCC(max) 3V Ri(source) = 400 Ω, Zi = 1000 Ω, Ci = 30 pF 2.2 V τ = [Ri(source) x+ Zi] x Ci;(see Note 3) 5 MHz 13×ADC12DIV× 1/fADC12CLK µs 100 ns 1220 ns 1400 † Not production tested, limits characterized ‡ Not production tested, limits verified by design NOTES: 1. The condition is that the error in a conversion started after tREF(ON) is less than ±0.5 LSB. The settling time depends on the external capacitive load. 2. The condition is that the error in a conversion started after tADC12ON is less than ±0.5 LSB. The reference and input signal are already settled. 3. Ten Tau (τ) are needed to get an error of less than ±0.5 LSB. tSample = 10 x (Ri + Zi) x Ci+ 800 ns CVREF+ 100 µF t[REF(ON) ~ 0.66 x CVREF+ [ms] With C[VREF+] in µF 10 µF 1 µF 0 1 ms 10 ms 100 ms tREF(ON) Figure 13. Typical Settling Time of Internal Reference tREF(ON) vs External Capacitor on VREF+ POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 31 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit ADC, linearity parameters PARAMETER TEST CONDITIONS 1.4 V ≤ (VeREF+ – VREF–/VeREF–) min ≤ 1.6 V E(I) Integral linearity error 1.6 V < (VeREF+ – VREF–/VeREF–) min ≤ [V(AVCC)] ED Differential linearity error EO MIN NOM MAX ±2 UNIT 2.2 V/3 V ±1.7 LSB (VeREF+ – VREF–/VeREF–)min ≤ (VeREF+ – VREF–/VeREF–), C(VREF+) = 10 µF (tantalum) and 100 nF (ceramic) 2.2 V/3 V ±1 LSB Offset error (VeREF+ – VREF–/VeREF–)min ≤ (VeREF+ – VREF–/VeREF–), Internal impedance of source Ri < 100 Ω, C(VREF+) = 10 µF (tantalum) and 100 nF (ceramic) 2.2 V/3 V ±2 ±4 LSB EG Gain error (VeREF+ – VREF–/VeREF–)min ≤ (VeREF+ – VREF–/VeREF–), C(VREF+) = 10 µF (tantalum) and 100 nF (ceramic) 2.2 V/3 V ±1.1 ±2 LSB ET Total unadjusted error (VeREF+ – VREF–/VeREF–)min ≤ (VeREF+ – VREF–/VeREF–), C(VREF+) = 10 µF (tantalum) and 100 nF (ceramic) 2.2 V/3 V ±2 ±5 LSB 32 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 DVCC From Power Supply + – 10 µ F DVSS 100 nF AVCC + – 10 µ F Apply External Reference [VeREF+] or Use Internal Reference [VREF+] AVSS 10 µ F VREF+ or VeREF+ 100 nF VREF–/VeREF– + – 10 µ F MSP430F14x 100 nF + – Apply External Reference MSP430F13x 100 nF Figure 14. Supply Voltage and Reference Voltage Design V(REF–)/V(eREF–) External Supply From Power Supply DVCC + – 10 µ F DVSS 100 nF AVCC + – Apply External Reference [VeREF+] or Use Internal Reference [VREF+] 10 µ F AVSS MSP430F14x 100 nF VREF+ or VeREF+ + – 10 µ F MSP430F13x 100 nF Reference Is Internally Switched to AVSS VREF–/VeREF– Figure 15. Supply Voltage and Reference Voltage Design VREF–/VeREF– =AVSS, Internally Connected POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 33 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit ADC, temperature sensor and built-in Vmid PARAMETER TEST CONDITIONS MIN NOM MAX VREFON = 0, INCH = 0Ah, ADC12ON=NA, TA = 25_C 2.2 V 40 120 3V 60 160 VSENSOR† ADC12ON = 1, INCH = 0Ah, TA = 0°C 2.2 V 986 986±5% 3V 986 986±5% TCSENSOR† 2.2 V 3.55 3.55±3% ADC12ON = 1, INCH = 0Ah 3V 3.55 3.55±3% Operating supply current into AVCC terminal (see Note 1) ISENSOR tSENSOR(sample)† Sample time required if channel 10 is selected (see Note 2) ADC12ON = 1, INCH = 0Ah, Error of conversion result ≤ 1 LSB 2.2 V 30 3V 30 NA Current into divider at channel 11 ADC12ON = 1, INCH = 0Bh, (see Note 3) 2.2 V IVMID 3V NA 1.1 1.1±0.04 AVCC divider at channel 11 ADC12ON = 1, INCH = 0Bh, VMID is ~0.5 x VAVCC 2.2 V VMID 3V 1.5 1.50±0.04 tON(VMID) On-time if channel 11 is selected (see Note 4) ADC12ON = 1, INCH = 0Bh, Error of conversion result ≤ 1 LSB 2.2 V NA 3V NA UNIT µA mV ° mV/°C µs µA V ns † Not production tested, limits characterized ‡ Not production tested, limits verified by design NOTES: 1. The sensor current ISENSOR is consumed if (ADC12ON = 1 and VREFON=1), or (ADC12ON=1 AND INCH=0Ah and sample signal is high). Therefore it includes the constant current through the sensor and the reference. 2. The typical equivalent impedance of the sensor is 51 kΩ. The sample time needed is the sensor-on time tSENSOR(ON) 3. No additional current is needed. The VMID is used during sampling. 4. The on-time tON(VMID) is identical to sampling time tSample; no additional on time is needed. JTAG, program memory and fuse PARAMETER f(TCK) JTAG/Test (see Note 4) VCC(FB) VFB JTAG/fuse (see Note 2) IFB I(DD-PGM) I(DD-Erase) t(retention) NOTES: 1. 2. 3. 4. 34 TEST CONDITIONS TCK frequency Pullup resistors on TMS, TCK, TDI (see Note 1) VCC 2.2 V MIN DC 5 3V DC 10 2.2 V/ 3V 25 Supply voltage during fuse-blow condition, T(A) = 25°C 2.5 Fuse-blow voltage, F versions (see Note 3) 6.0 NOM 60 Time to blow the fuse F-versions only (see Note 4) F-versions only 2.7 V/3.6 V Current from DVCC when erase is active 2.7 V/3.6 V Write/erase cycles 104 Data retention TJ = 25°C 100 90 UNIT MHz kΩ V Supply current on TDI with fuse blown Current from DVCC when programming is active MAX 7.0 V 100 mA 1 ms 3 5 mA 3 5 10 5 mA cycles years TMS, TDI, and TCK pull-up resistors are implemented in all F versions. Once the fuse is blown, no further access to the MSP430 JTAG/test feature is possible. The JTAG block is switched to bypass mode. The supply voltage to blow the fuse is applied to the TDI pin. f(TCK) may be restricted to meet the timing requirements of the module selected. Duration of the program/erase cycle is determined by f(FTG) applied to the flash timing controller. It can be calculated as follows: t(word write) = 35 1/f(FTG) t(block write, byte 0) = 30 1/f(FTG) t(block write, bytes 1–63) = 20 1/f(FTG) t(block write end sequence) = 6 1/f(FTG) t(mass erase) = 5297 1/f(FTG) t(segment erase) = 4819 1/f(FTG) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 input/output schematic port P1, P1.0 to P1.7, input/output with Schmitt-trigger P1SEL.x 0 P1DIR.x Direction Control From Module 1 Pad Logic P1.0/TACLK .. 0 P1OUT.x Module X OUT 1 P1.7/TA2 P1IN.x EN Module X IN D P1IRQ.x P1IE.x Q P1IFG.x EN Set Interrupt Flag Interrupt Edge Select P1IES.x P1SEL.x PnSel.x PnDIR.x Dir. CONTROL FROM MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN PnIE.x PnIFG.x PnIES.x P1Sel.0 P1DIR.0 P1DIR.0 P1OUT.0 DVSS P1IN.0 P1IE.0 P1IFG.0 P1IES.0 P1IN.1 TACLK† CCI0A† P1IE.1 P1IFG.1 P1IES.1 P1IE.2 P1IFG.2 P1IES.2 P1Sel.1 P1DIR.1 P1DIR.1 P1OUT.1 Out0 signal† P1Sel.2 P1DIR.2 P1DIR.2 P1OUT.2 P1IN.2 P1Sel.3 P1DIR.3 P1DIR.3 P1OUT.3 Out1 signal† Out2 signal† P1IN.3 CCI1A† CCI2A† P1IE.3 P1IFG.3 P1IES.3 P1Sel.4 P1DIR.4 P1DIR.4 P1OUT.4 SMCLK P1IN.4 unused P1IE.4 P1IFG.4 P1IES.4 P1Sel.5 P1DIR.5 P1DIR.5 P1OUT.5 P1IN.5 unused P1IE.5 P1IFG.5 P1IES.5 P1Sel.6 P1DIR.6 P1DIR.6 P1OUT.6 Out0 signal† Out1 signal† P1IN.6 unused P1IE.6 P1IFG.6 P1IES.6 P1Sel.7 P1DIR.7 P1DIR.7 P1OUT.7 Out2 signal† P1IN.7 unused P1IE.7 P1IFG.7 P1IES.7 † Signal from or to Timer_A POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 35 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 input/output schematic (continued) port P2, P2.0 to P2.2, P2.6, and P2.7 input/output with Schmitt-trigger P2SEL.x 0 P2DIR.x Direction Control From Module 0: Input 1: Output 1 0 P2OUT.x Module X OUT 1 P2.0/ACLK P2.1/TAINCLK P2.2/CAOUT/TA0 Pad Logic P2.6/ADC12CLK P2.7/TA0 P2IN.x EN Module X IN P2IRQ.x Bus Keeper D P2IE.x P2IFG.x Set Interrupt Flag CAPD.X Interrupt Edge Select EN Q P2IES.x P2SEL.x x: Bit Identifier 0 to 2, 6, and 7 for Port P2 PnSel.x PnDIR.x Dir. CONTROL FROM MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN PnIE.x PnIFG.x PnIES.x P2Sel.0 P2DIR.0 P2DIR.0 P2OUT.0 ACLK P2IN.0 P2IE.0 P2IFG.0 P2IES.0 P2Sel.1 P2DIR.1 P2DIR.1 P2OUT.1 P2IN.1 P2IE.1 P2IFG.1 P2IES.1 P2Sel.2 P2DIR.2 P2DIR.2 P2OUT.2 DVSS CAOUT† unused INCLK‡ P2IN.2 CCI0B‡ P2IE.2 P2IFG.2 P2IES.2 ADC12CLK¶ Out0 signal§ P2IN.6 unused P2IE.6 P2IFG.6 P2IES.6 P2IN.7 unused P2IE.7 P2IFG.7 P2IES.7 P2Sel.6 P2DIR.6 P2DIR.6 P2OUT.6 P2Sel.7 P2DIR.7 P2DIR.7 P2OUT.7 † Signal from Comparator_A ‡ Signal to Timer_A § Signal from Timer_A ¶ ADC12CLK signal is output of the 12-bit ADC module 36 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 input/output schematic (continued) port P2, P2.3 to P2.4, input/output with Schmitt-trigger P2SEL.3 0: Input 1: Output 0 P2DIR.3 Direction Control From Module 1 Pad Logic P2.3/CA0/TA1 0 P2OUT.3 Module X OUT 1 P2IN.3 EN Module X IN Bus Keeper D P2IRQ.3 P2IE.3 P2IFG.3 EN Set Q Interrupt Flag Interrupt Edge Select CAPD.3 Comparator_A CAEX P2CA P2IES.3 P2SEL.3 CAREF CAF + CCI1B To Timer_A3 – CAREF P2SEL.4 Interrupt P2IES.4 Flag P2IFG.4 P2IRQ.4 Set EN Q P2IE.4 Reference Block Edge Select Interrupt CAPD.4 D Module X IN Bus Keeper EN P2IN.4 Module X OUT P2OUT.4 From Module Direction Control P2DIR.4 1 0 1 P2.4/CA1/TA2 Pad Logic 1: Output 0: Input 0 P2SEL.4 PnSel.x PnDIR.x DIRECTION CONTROL FROM MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN PnIE.x PnIFG.x PnIES.x P2Sel.3 P2DIR.3 P2DIR.3 P2OUT.3 P2IN.3 unused P2IE.3 P2IFG.3 P2IES.3 P2Sel.4 P2DIR.4 † Signal from Timer_A P2DIR.4 P2OUT.4 Out1 signal† Out2 signal† P2IN.4 unused P2IE.4 P2IFG.4 P2IES.4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 37 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 input/output schematic (continued) port P2, P2.5, input/output with Schmitt-trigger and Rosc function for the basic clock module 0: Input 1: Output P2SEL.5 0 P2DIR.5 Direction Control From Module Pad Logic 1 P2.5/Rosc 0 P2OUT.5 Module X OUT 1 Bus Keeper P2IN.5 EN Module X IN P2IRQ.5 D P2IE.5 Q P2IFG.5 EN Set Interrupt Flag VCC Edge Select Interrupt Internal to Basic Clock Module 0 1 to P2IES.5 P2SEL.5 DCOR DC Generator CAPD.5 DCOR: Control Bit From Basic Clock Module If it Is Set, P2.5 Is Disconnected From P2.5 Pad PnSel.x PnDIR.x DIRECTION CONTROL FROM MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN PnIE.x PnIFG.x PnIES.x P2Sel.5 P2DIR.5 P2DIR.5 P2OUT.5 DVSS P2IN.5 unused P2IE.5 P2IFG.5 P2IES.5 38 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 input/output schematic (continued) port P3, P3.0 and P3.4 to P3.7, input/output with Schmitt-trigger P3SEL.x 0: Input 1: Output 0 P3DIR.x Direction Control From Module 1 Pad Logic P3OUT.x Module X OUT 0 P3.0/STE0 1 P3.4/UTXD0 P3.5/URXD0 P3.6/UTXD1‡ P3.7/URXD1¶ P3IN.x EN D Module X IN x: Bit Identifier, 0 and 4 to 7 for Port P3 PnSel.x PnDIR.x P3Sel.0 P3DIR.0 P3Sel.4 P3DIR.4 P3Sel.5 P3DIR.5 P3Sel.6 P3DIR.6 P3Sel.7 P3DIR.7 DIRECTION CONTROL FROM MODULE PnOUT.x MODULE X OUT PnIN.x DVSS DVCC DVSS P3OUT.0 DVSS UTXD0† P3IN.0 STE0 P3IN.4 P3IN.5 DVCC DVSS P3OUT.6 DVSS UTXD1‡ Unused URXD0§ P3OUT.7 DVSS P3IN.7 P3OUT.4 P3OUT.5 P3IN.6 MODULE X IN Unused URXD1¶ † Output from USART0 module ‡ Output from USART1 module in x14x configuration, DVSS in x13x configuration § Input to USART0 module ¶ Input to USART1 module in x14x configuration, unused in x13x configuration port P3, P3.1, input/output with Schmitt-trigger P3SEL.1 SYNC MM STC STE 0 P3DIR.1 0: Input 1: Output 1 DCM_SIMO Pad Logic P3.1/SIMO0 0 P3OUT1 (SI)MO0 From USART0 1 P3IN.1 EN SI(MO)0 To USART0 D POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 39 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 input/output schematic (continued) port P3, P3.2, input/output with Schmitt-trigger P3SEL.2 SYNC MM STC STE 0 P3DIR.2 0: Input 1: Output 1 DCM_SOMI Pad Logic P3.2/SOMI0 0 P3OUT.2 SO(MI)0 From USART0 1 P3IN.2 EN (SO)MI0 To USART0 D port P3, P3.3, input/output with Schmitt-trigger P3SEL.3 SYNC MM STC STE 0 P3DIR.3 0: Input 1: Output 1 DCM_UCLK Pad Logic P3.3/UCLK0 0 P3OUT.3 UCLK.0 From USART0 1 P3IN.3 EN UCLK0 D To USART0 NOTE: UART mode: The UART clock can only be an input. If UART mode and UART function are selected, the P3.3/UCLK0 is always an input. SPI, slave mode: The clock applied to UCLK0 is used to shift data in and out. SPI, master mode: The clock to shift data in and out is supplied to connected devices on pin P3.3/UCLK0 (in slave mode). 40 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 input/output schematic (continued) port P4, P4.0 to P4.6, input/output with Schmitt-trigger P4SEL.x 0 P4DIR.x Direction Control From Module 0: Input 1: Output 1 Module X IN Pad Logic P5SEL.7 P4OUT.x Module X OUT 0 P4.0/TB0 .. 1 P4.6/TB6 TBoutHiZ Bus Keeper P4IN.x EN Module X IN D x: bit identifier, 0 to 6 for Port P4 PnSel.x PnDIR.x DIRECTION CONTROL FROM MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN P4Sel.0 P4DIR.0 P4DIR.0 P4OUT.0 P4DIR.1 P4DIR.1 P4OUT.1 Out0 signal† Out1 signal† P4IN.0 P4Sel.1 P4IN.1 CCI0A / CCI0B‡ CCI1A / CCI1B‡ P4Sel.2 P4DIR.2 P4DIR.2 P4OUT.2 Out2 signal† P4IN.2 CCI2A / CCI2B‡ P4Sel.3 P4DIR.3 P4DIR.3 P4OUT.3 P4IN.3 P4Sel.4 P4DIR.4 P4DIR.4 P4OUT.4 Out3 signal† Out4 signal† CCI3A / CCI3B‡ CCI4A / CCI4B‡ P4Sel.5 P4DIR.5 P4DIR.5 P4OUT.5 P4IN.5 P4DIR.6 P4DIR.6 P4OUT.6 Out5 signal† Out6 signal† P4Sel.6 † Signal from Timer_B ‡ Signal to Timer_B POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P4IN.4 P4IN.6 CCI5A / CCI5B‡ CCI6A / CCI6B‡ 41 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 input/output schematic (continued) port P4, P4.7, input/output with Schmitt-trigger P4SEL.7 0: Input 1: Output 0 P4DIR.7 1 Pad Logic P4.7/TBCLK 0 P4OUT.7 DVSS 1 P4IN.7 EN Timer_B, D TBCLK port P5, P5.0 and P5.4 to P5.7, input/output with Schmitt-trigger P5SEL.x 0: Input 1: Output 0 P5DIR.x Direction Control From Module 1 Pad Logic P5OUT.x Module X OUT 0 P5.0/STE1 1 P5.4/MCLK P5.5/SMCLK P5.6/ACLK P5.7/TBOutH P5IN.x EN Module X IN D x: Bit Identifier, 0 and 4 to 7 for Port P5 PnSel.x PnDIR.x Dir. CONTROL FROM MODULE PnOUT.x MODULE X OUT PnIN.x P5Sel.0 P5DIR.0 P5OUT.0 DVSS P5IN.0 STE.1 P5Sel.4 P5DIR.4 DVSS DVCC MODULE X IN P5OUT.4 MCLK P5IN.4 unused P5Sel.5 P5DIR.5 SMCLK P5IN.5 unused P5DIR.6 DVCC DVCC P5OUT.5 P5Sel.6 P5OUT.6 ACLK P5IN.6 unused P5Sel.7 P5DIR.7 DVSS P5OUT.7 DVSS P5IN.7 TBoutHiZ NOTE: TBoutHiZ signal is used by port module P4, pins P4.0 to P4.6. The function of TboutHiZ is mainly useful when used with Timer_B7. 42 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 input/output schematic (continued) port P5, P5.1, input/output with Schmitt-trigger P5SEL.1 SYNC MM 0 P5DIR.1 1 DCM_SIMO STC STE 0: Input 1: Output Pad Logic P5.1/SIMO1 0 P5OUT.1 (SI)MO1 From USART1 1 P5IN.1 EN SI(MO)1 To USART1 D port P5, P5.2, input/output with Schmitt-trigger P5SEL.2 SYNC MM STC STE 0 P5DIR.2 0: Input 1: Output 1 DCM_SOMI Pad Logic P5.2/SOMI1 0 P5OUT.2 SO(MI)1 From USART1 1 P5IN.2 EN (SO)MI1 To USART1 D POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 43 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 input/output schematic (continued) port P5, P5.3, input/output with Schmitt-trigger P5SEL.3 SYNC MM STC STE 0 P5DIR.3 0: Input 1: Output 1 DCM_SIMO Pad Logic P5.3/UCLK1 0 P5OUT.3 UCLK1 From USART1 1 P5IN.3 EN D UCLK1 To USART1 NOTE: UART mode: The UART clock can only be an input. If UART mode and UART function are selected, the P5.3/UCLK1 direction is always input. SPI, slave mode: The clock applied to UCLK1 is used to shift data in and out. SPI, master mode: The clock to shift data in and out is supplied to connected devices on pin P5.3/UCLK1 (in slave mode). 44 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 input/output schematic (continued) port P6, P6.0 to P6.7, input/output with Schmitt-trigger P6SEL.x 0 P6DIR.x Direction Control From Module 0: Input 1: Output 1 Pad Logic P6.0 .. P6.7 0 P6OUT.x Module X OUT 1 Bus Keeper P6IN.x EN Module X IN D From ADC To ADC x: Bit Identifier, 0 to 7 for Port P6 NOTE: Analog signals applied to digital gates can cause current flow from the positive to the negative terminal. The throughput current flows if the analog signal is in the range of transitions 0→1 or 1←0. The value of the throughput current depends on the driving capability of the gate. For MSP430, it is approximately 100 µA. Use P6SEL.x=1 to prevent throughput current. P6SEL.x should be set, even if the signal at the pin is not being used by the ADC12. PnSel.x PnDIR.x DIR. CONTROL FROM MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN P6Sel.0 P6DIR.0 P6DIR.0 P6OUT.0 DVSS P6IN.0 unused P6Sel.1 P6DIR.1 P6DIR.1 P6OUT.1 DVSS P6IN.1 unused P6Sel.2 P6DIR.2 P6DIR.2 P6OUT.2 DVSS P6IN.2 unused P6Sel.3 P6DIR.3 P6DIR.3 P6OUT.3 DVSS P6IN.3 unused P6Sel.4 P6DIR.4 P6DIR.4 P6OUT.4 DVSS P6IN.4 unused P6Sel.5 P6DIR.5 P6DIR.5 P6OUT.5 DVSS P6IN.5 unused P6Sel.6 P6DIR.6 P6DIR.6 P6OUT.6 DVSS P6IN.6 unused P6Sel.7 P6DIR.7 P6DIR.7 P6OUT.7 DVSS P6IN.7 unused NOTE: The signal at pins P6.x/Ax is used by the 12-bit ADC module. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 45 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 input/output schematic (continued) JTAG pins TMS, TCK, TDI, TDO/TDI, input/output with Schmitt-trigger TDO Controlled by JTAG Controlled by JTAG JTAG TDO/TDI Controlled by JTAG DVCC DVCC TDI Fuse Burn & Test Fuse Test TDI & DVCC Emulation Module TMS TMS DVCC During Programming Activity and During Blowing of the Fuse, Pin TDO/TDI Is Used to Apply the Test Input Data for JTAG Circuitry TCK TCK JTAG fuse check mode MSP430 devices that have the fuse on the TDI terminal have a fuse check mode that tests the continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check current, ITF , of 1 mA at 3 V, 2.5 mA at 5 V can flow from the TDI pin to ground if the fuse is not burned. Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption. Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse check mode has the potential to be activated. The fuse check current will only flow when the fuse check mode is active and the TMS pin is in a low state (see Figure 16). Therefore, the additional current flow can be prevented by holding the TMS pin high (default condition). Time TMS Goes Low After POR TMS ITDI ITF Figure 16. Fuse Check Mode Current, MSP430F13x, MSP430F14x 46 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER SLAS272D – JULY 2000 – REVISED MARCH 2003 MECHANICAL DATA PM (S-PQFP-G64) PLASTIC QUAD FLATPACK 0,27 0,17 0,50 0,08 M 33 48 49 32 64 17 0,13 NOM 1 16 7,50 TYP Gage Plane 10,20 SQ 9,80 12,20 SQ 11,80 0,25 0,05 MIN 0°–ā7° 0,75 0,45 1,45 1,35 Seating Plane 0,08 1,60 MAX 4040152 / C 11/96 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Falls within JEDEC MS-026 May also be thermally enhanced plastic with leads connected to the die pads. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 47