MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com MIXED SIGNAL MICROCONTROLLER FEATURES • • • 23 • • • • • • • Qualified for Automotive Applications Low Supply Voltage Range: 1.8 V to 3.6 V Ultra-Low Power Consumption – Active Mode: 270 µA at 1 MHz, 2.2 V – Standby Mode: 0.7 µA – Off Mode (RAM Retention): 0.1 µA Ultra-Fast Wake-Up From Standby Mode in Less Than 1 µs 16-Bit RISC Architecture, 62.5-ns Instruction Cycle Time Basic Clock Module Configurations – Internal Frequencies up to 16 MHz With Four Calibrated Frequencies to ±1% – Internal Very-Low-Power Low-Frequency Oscillator – 32-kHz Crystal – High-Frequency (HF) Crystal up to 16 MHz – Resonator – External Digital Clock Source – External Resistor 16-Bit Timer_A With Three Capture/Compare Registers 16-Bit Timer_B With Three Capture/Compare Registers Universal Serial Communication Interface – Enhanced UART Supporting Auto-Baudrate Detection (LIN) – IrDA Encoder and Decoder – Synchronous SPI – I2C™ 10-Bit 200-ksps Analog-to-Digital (A/D) Converter With Internal Reference, Sample-and-Hold, Autoscan, and Data Transfer Controller • • • • • • • • Two Configurable Operational Amplifiers (MSP430F22x4 Only) Brownout Detector Serial Onboard Programming, No External Programming Voltage Needed, Programmable Code Protection by Security Fuse Bootstrap Loader On-Chip Emulation Module Family Members Include: – MSP430F2232 – 8KB + 256B Flash Memory – 512B RAM – MSP430F2252 – 16KB + 256B Flash Memory – 512B RAM – MSP430F2272 – 32KB + 256B Flash Memory – 1KB RAM – MSP430F2234 – 8KB + 256B Flash Memory – 512B RAM – MSP430F2254 – 16KB + 256B Flash Memory – 512B RAM – MSP430F2274 – 32KB + 256B Flash Memory – 1KB RAM Available in a 38-Pin Thin Shrink Small-Outline Package (TSSOP) (DA), 40-Pin QFN Package (RHA) (See Table 1) For Complete Module Descriptions, See the MSP430x2xx Family User's Guide (SLAU144) 1 2 3 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. MSP430 is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice. Copyright © 2011, Texas Instruments Incorporated PRODUCT PREVIEW 1 MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. DESCRIPTION The Texas Instruments MSP430™ family of ultra-low-power microcontrollers consist of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 1 µs. The MSP430F22x4/MSP430F22x2 series is an ultra-low-power mixed signal microcontroller with two built-in 16-bit timers, a universal serial communication interface, 10-bit A/D converter with integrated reference and data transfer controller (DTC), two general-purpose operational amplifiers in the MSP430F22x4 devices, and 32 I/O pins. Typical applications include sensor systems that capture analog signals, convert them to digital values, and then process the data for display or for transmission to a host system. Stand-alone radio-frequency (RF) sensor front ends are another area of application. Table 1. Ordering Information PRODUCT PREVIEW PACKAGED DEVICES (1) (2) TA -40°C to 105°C (1) (2) PLASTIC 38-PIN TSSOP (DA) PLASTIC 40-PIN QFN (RHA) MSP430F2232TDAQ1 MSP430F2232TRHATQ1 MSP430F2252TDAQ1 MSP430F2252TRHATQ1 MSP430F2272TDAQ1 MSP430F2272TRHATQ1 MSP430F2234TDAQ1 MSP430F2234TRHATQ1 MSP430F2254TDAQ1 MSP430F2254TRHATQ1 MSP430F2274TDAQ1 MSP430F2274TRHATQ1 For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com. Package drawings, thermal data, and symbolization are available at www.ti.com/packaging. Development Tool Support All MSP430™ microcontrollers include an Embedded Emulation Module (EEM) that allows advanced debugging and programming through easy-to-use development tools. Recommended hardware options include: • Debugging and Programming Interface – MSP-FET430UIF (USB) – MSP-FET430PIF (Parallel Port) • Debugging and Programming Interface with Target Board – MSP-FET430U38 (DA package) • Production Programmer – MSP-GANG430 2 Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com TEST/SBWTCK 1 38 P1.7/TA2/TDO/TDI DVCC 2 37 P1.6/TA1/TDI P2.5/ROSC 3 36 P1.5/TA0/TMS DVSS 4 35 P1.4/SMCLK/TCK XOUT/P2.7 5 34 P1.3/TA2 XIN/P2.6 6 33 P1.2/TA1 RST/NMI/SBWTDIO 7 32 P1.1/TA0 P2.0/ACLK/A0 8 31 P1.0/TACLK/ADC10CLK P2.1/TAINCLK/SMCLK/A1 9 30 P2.4/TA2/A4/VREF+/VeREF+ P2.2/TA0/A2 10 29 P2.3/TA1/A3/VREF−/VeREF− P3.0/UCB0STE/UCA0CLK/A5 11 28 P3.7/A7 P3.1/UCB0SIMO/UCB0SDA 12 27 P3.6/A6 P3.2/UCB0SOMI/UCB0SCL 13 26 P3.5/UCA0RXD/UCA0SOMI P3.3/UCB0CLK/UCA0STE 14 25 P3.4/UCA0TXD/UCA0SIMO AVSS 15 24 P4.7/TBCLK AVCC 16 23 P4.6/TBOUTH/A15 P4.0/TB0 17 22 P4.5/TB2/A14 P4.1/TB1 18 21 P4.4/TB1/A13 P4.2/TB2 19 20 P4.3/TB0/A12 PRODUCT PREVIEW MSP430F22x2 Device Pinout, DA Package MSP430F22x4 Device Pinout, DA Package TEST/SBWTCK 1 38 P1.7/TA2/TDO/TDI DVCC 2 37 P1.6/TA1/TDI P2.5/ROSC 3 36 P1.5/TA0/TMS DVSS 4 35 P1.4/SMCLK/TCK XOUT/P2.7 5 34 P1.3/TA2 XIN/P2.6 6 33 P1.2/TA1 RST/NMI/SBWTDIO 7 32 P1.1/TA0 P2.0/ACLK/A0/OA0I0 8 31 P1.0/TACLK/ADC10CLK P2.1/TAINCLK/SMCLK/A1/OA0O 9 30 P2.4/TA2/A4/VREF+/VeREF+/OA1I0 P2.2/TA0/A2/OA0I1 10 29 P2.3/TA1/A3/VREF−/VeREF−/OA1I1/OA1O P3.0/UCB0STE/UCA0CLK/A5 11 28 P3.7/A7/OA1I2 P3.1/UCB0SIMO/UCB0SDA 12 27 P3.6/A6/OA0I2 P3.2/UCB0SOMI/UCB0SCL 13 26 P3.5/UCA0RXD/UCA0SOMI P3.3/UCB0CLK/UCA0STE 14 25 P3.4/UCA0TXD/UCA0SIMO AVSS 15 24 P4.7/TBCLK AVCC 16 23 P4.6/TBOUTH/A15/OA1I3 P4.0/TB0 17 22 P4.5/TB2/A14/OA0I3 P4.1/TB1 18 21 P4.4/TB1/A13/OA1O P4.2/TB2 19 20 P4.3/TB0/A12/OA0O Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback 3 MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com P1.2/TA1 P1.3/TA2 P1.4/SMCLK/TCK P1.5/TA0/TMS P1.6/TA1/TDI/TCLK P1.7/TA2/TDO/TDI TEST/SBWTCK DVCC DVCC P2.5/ROSC MSP430F22x2 Device Pinout, RHA Package 39 38 37 36 35 34 33 32 DVSS 1 30 P1.1/TA0 XOUT/P2.7 2 29 P1.0/TACLK/ADC10CLK XIN/P2.6 3 28 P2.4/TA2/A4/VREF+/VeREF+ DVSS 4 27 P2.3/TA1/A3/VREF−/VeREF− RST/NMI/SBWTDIO 5 26 P3.7/A7 P2.0/ACLK/A0 6 25 P3.6/A6 P2.1/TAINCLK/SMCLK/A1 7 24 P3.5/UCA0RXD/UCA0SOMI P2.2/TA0/A2 8 23 P3.4/UCA0TXD/UCA0SIMO P3.0/UCB0STE/UCA0CLK/A5 9 22 P4.7/TBCLK 10 21 P4.6/TBOUTH/A15 P3.1/UCB0SIMO/UCB0SDA 4 Submit Documentation Feedback P4.5/TB2/A14 P4.4/TB1/A13 P4.3/TB0/A12 P4.2/TB2 P4.1/TB1 P4.0/TB0 AVCC AVSS P3.3/UCB0CLK/UCA0STE P3.2/UCB0SOMI/UCB0SCL PRODUCT PREVIEW 12 13 14 15 16 17 18 19 Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com P1.2/TA1 P1.3/TA2 P1.4/SMCLK/TCK P1.5/TA0/TMS P1.6/TA1/TDI/TCLK P1.7/TA2/TDO/TDI TEST/SBWTCK DVCC DVCC P2.5/ROSC MSP430F22x4 Device Pinout, RHA Package 39 38 37 36 35 34 33 32 P1.1/TA0 DVSS 1 30 XOUT/P2.7 2 29 P1.0/TACLK/ADC10CLK XIN/P2.6 3 28 P2.4/TA2/A4/VREF+/VeREF+/OA1I0 DVSS 4 27 P2.3/TA1/A3/VREF−/VeREF−/OA1I1/OA1O RST/NMI/SBWTDIO 5 26 P3.7/A7/OA1I2 P2.0/ACLK/A0/OA0I0 6 25 P3.6/A6/OA0I2 P2.1/TAINCLK/SMCLK/A1/OA0O 7 24 P3.5/UCA0RXD/UCA0SOMI P2.2/TA0/A2/OA0I1 8 23 P3.4/UCA0TXD/UCA0SIMO P3.0/UCB0STE/UCA0CLK/A5 9 22 P4.7/TBCLK 10 21 P4.6/TBOUTH/A15/OA1I3 P3.1/UCB0SIMO/UCB0SDA PRODUCT PREVIEW P4.5/TB2/A14/OA0I3 P4.4/TB1/A13/OA1O P4.3/TB0/A12/OA0O P4.2/TB2 P4.1/TB1 P4.0/TB0 AVCC AVSS P3.3/UCB0CLK/UCA0STE P3.2/UCB0SOMI/UCB0SCL 12 13 14 15 16 17 18 19 MSP430F22x2 Functional Block Diagram VCC P1.x/P2.x VSS 2x8 XIN P3.x/P4.x 2x8 XOUT Basic Clock System+ ACLK SMCLK MCLK 16MHz CPU incl. 16 Registers Flash RAM 32kB 16kB 8kB 1kB 512B 512B ADC10 10−Bit Ports P1/P2 Ports P3/P4 2x8 I/O Interrupt capability, pull−up/down resistors 12 Channels, Autoscan, DTC MAB MDB Emulation (2BP) JTAG Interface 2x8 I/O pull−up/down resistors Timer_B3 Brownout Protection Watchdog WDT+ 15/16−Bit Spy−Bi Wire Timer_A3 3 CC Registers 3 CC Registers, Shadow Reg USCI_A0: UART/LIN, IrDA, SPI USCI_B0: SPI, I2C RST/NMI Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback 5 MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com MSP430F22x4 Functional Block Diagram VCC P1.x/P2.x VSS 2x8 XIN P3.x/P4.x 2x8 XOUT Basic Clock System+ ACLK Flash RAM 32kB 16kB 8kB 1kB 512B 512B ADC10 10−Bit Ports P1/P2 Ports P3/P4 OA0, OA1 SMCLK MCLK 16MHz CPU incl. 16 Registers 12 Channels, Autoscan, DTC 2 Op Amps 2x8 I/O pull−up/down resistors MAB MDB Emulation (2BP) JTAG Interface 2x8 I/O Interrupt capability, pull−up/down resistors Timer_B3 Brownout Protection Watchdog WDT+ 15/16−Bit Spy−Bi Wire Timer_A3 3 CC Registers 3 CC Registers, Shadow Reg USCI_A0: UART/LIN, IrDA, SPI USCI_B0: SPI, I2C PRODUCT PREVIEW RST/NMI 6 Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Table 2. Terminal Functions, MSP430F22x2 TERMINAL NAME NO. I/O DA RHA 31 29 DESCRIPTION General-purpose digital I/O pin P1.0/TACLK/ADC10CLK I/O Timer_A, clock signal TACLK input ADC10, conversion clock 32 30 I/O P1.2/TA1 33 31 I/O P1.3/TA2 34 32 I/O P1.4/SMCLK/TCK 35 33 I/O P1.5/TA0/TMS 36 34 I/O P1.6/TA1/TDI/TCLK 37 35 I/O P1.7/TA2/TDO/TDI (1) 38 36 I/O P2.0/ACLK/A0 8 6 I/O P2.1/TAINCLK/SMCLK/A1 9 7 I/O General-purpose digital I/O pin Timer_A, capture: CCI0A input, compare: OUT0 output/BSL transmit General-purpose digital I/O pin Timer_A, capture: CCI1A input, compare: OUT1 output General-purpose digital I/O pin Timer_A, capture: CCI2A input, compare: OUT2 output General-purpose digital I/O pin / SMCLK signal output Test Clock input for device programming and test General-purpose digital I/O pin / Timer_A, compare: OUT0 output Test Mode Select input for device programming and test General-purpose digital I/O pin / Timer_A, compare: OUT1 output PRODUCT PREVIEW P1.1/TA0 Test Data Input or Test Clock Input for programming and test General-purpose digital I/O pin / Timer_A, compare: OUT2 output Test Data Output or Test Data Input for programming and test General-purpose digital I/O pin / ACLK output ADC10, analog input A0 General-purpose digital I/O pin Timer_A, clock signal at INCLK, SMCLK signal output ADC10, analog input A1 General-purpose digital I/O pin P2.2/TA0/A2 10 8 I/O Timer_A, capture: CCI0B input/BSL receive, compare: OUT0 output ADC10, analog input A2 General-purpose digital I/O pin P2.3/TA1/A3/VREF-/ VeREF- 29 27 I/O Timer_A, capture CCI1B input, compare: OUT1 output ADC10, analog input A3 / negative reference voltage output/input P2.4/TA2/A4/VREF+/ VeREF+ 30 28 I/O P2.5/ROSC 3 40 I/O XIN/P2.6 6 3 I/O XOUT/P2.7 5 2 I/O P3.0/UCB0STE/UCA0CLK/ A5 11 9 I/O General-purpose digital I/O pin / Timer_A, compare: OUT2 output ADC10, analog input A4 / positive reference voltage output/input General-purpose digital I/O pin Input for external DCO resistor to define DCO frequency Input terminal of crystal oscillator General-purpose digital I/O pin Output terminal of crystal oscillator General-purpose digital I/O pin (2) General-purpose digital I/O pin USCI_B0 slave transmit enable / USCI_A0 clock input/output ADC10, analog input A5 P3.1/UCB0SIMO/ UCB0SDA 12 10 I/O P3.2/UCB0SOMI/UCB0SCL 13 11 I/O (1) (2) General-purpose digital I/O pin USCI_B0 slave in/master out in SPI mode, SDA I2C data in I2C mode General-purpose digital I/O pin USCI_B0 slave out/master in SPI mode, SCL I2C clock in I2C mode TDO or TDI is selected via JTAG instruction. If XOUT/P2.7 is used as an input, excess current flows until P2SEL.7 is cleared. This is due to the oscillator output driver connection to this pad after reset. Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback 7 MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Table 2. Terminal Functions, MSP430F22x2 (continued) TERMINAL NAME NO. I/O PRODUCT PREVIEW DA RHA P3.3/UCB0CLK/UCA0STE 14 12 I/O P3.4/UCA0TXD/ UCA0SIMO 25 23 I/O P3.5/UCA0RXD/ UCA0SOMI 26 24 I/O P3.6/A6 27 25 I/O P3.7/A7 28 26 I/O P4.0/TB0 17 15 I/O P4.1/TB1 18 16 I/O P4.2/TB2 19 17 I/O P4.3/TB0/A12 20 18 I/O DESCRIPTION General-purpose digital I/O pin USCI_B0 clock input/output / USCI_A0 slave transmit enable General-purpose digital I/O pin USCI_A0 transmit data output in UART mode, slave in/master out in SPI mode General-purpose digital I/O pin USCI_A0 receive data input in UART mode, slave out/master in SPI mode General-purpose digital I/O pin ADC10 analog input A6 General-purpose digital I/O pin ADC10 analog input A7 General-purpose digital I/O pin Timer_B, capture: CCI0A input, compare: OUT0 output General-purpose digital I/O pin Timer_B, capture: CCI1A input, compare: OUT1 output General-purpose digital I/O pin Timer_B, capture: CCI2A input, compare: OUT2 output General-purpose digital I/O pin Timer_B, capture: CCI0B input, compare: OUT0 output ADC10 analog input A12 General-purpose digital I/O pin P4.4/TB1/A13 21 19 I/O Timer_B, capture: CCI1B input, compare: OUT1 output ADC10 analog input A13 General-purpose digital I/O pin P4.5/TB2/A14 22 20 I/O Timer_B, compare: OUT2 output ADC10 analog input A14 General-purpose digital I/O pin P4.6/TBOUTH/A15 23 21 I/O Timer_B, switch all TB0 to TB3 outputs to high impedance ADC10 analog input A15 P4.7/TBCLK 24 22 I/O RST/NMI/SBWTDIO 7 5 I TEST/SBWTCK 1 37 I General-purpose digital I/O pin Timer_B, clock signal TBCLK input Reset or nonmaskable interrupt input Spy-Bi-Wire test data input/output during programming and test Selects test mode for JTAG pins on Port 1. The device protection fuse is connected to TEST. Spy-Bi-Wire test clock input during programming and test DVCC 2 38, 39 Digital supply voltage AVCC 16 14 Analog supply voltage DVSS 4 1, 4 Digital ground reference AVSS 15 13 Analog ground reference QFN Pad NA Pad 8 Submit Documentation Feedback NA QFN package pad; connection to DVSS recommended. Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Table 3. Terminal Functions, MSP430F22x4 TERMINAL NAME NO. I/O DA RHA 31 29 DESCRIPTION General-purpose digital I/O pin P1.0/TACLK/ADC10CLK I/O Timer_A, clock signal TACLK input ADC10, conversion clock 32 30 I/O P1.2/TA1 33 31 I/O P1.3/TA2 34 32 I/O P1.4/SMCLK/TCK 35 33 I/O P1.5/TA0/TMS 36 34 I/O P1.6/TA1/TDI/TCLK 37 35 I/O P1.7/TA2/TDO/TDI (1) 38 36 I/O P2.0/ACLK/A0/OA0I0 8 6 I/O P2.1/TAINCLK/SMCLK/ A1/OA0O 9 7 I/O General-purpose digital I/O pin Timer_A, capture: CCI0A input, compare: OUT0 output/BSL transmit General-purpose digital I/O pin Timer_A, capture: CCI1A input, compare: OUT1 output General-purpose digital I/O pin Timer_A, capture: CCI2A input, compare: OUT2 output General-purpose digital I/O pin / SMCLK signal output Test Clock input for device programming and test General-purpose digital I/O pin / Timer_A, compare: OUT0 output Test Mode Select input for device programming and test General-purpose digital I/O pin / Timer_A, compare: OUT1 output PRODUCT PREVIEW P1.1/TA0 Test Data Input or Test Clock Input for programming and test General-purpose digital I/O pin / Timer_A, compare: OUT2 output Test Data Output or Test Data Input for programming and test General-purpose digital I/O pin / ACLK output ADC10, analog input A0 / OA0, analog input IO General-purpose digital I/O pin / Timer_A, clock signal at INCLK SMCLK signal output ADC10, analog input A1 / OA0, analog output General-purpose digital I/O pin P2.2/TA0/A2/OA0I1 10 8 I/O Timer_A, capture: CCI0B input/BSL receive, compare: OUT0 output ADC10, analog input A2 / OA0, analog input I1 General-purpose digital I/O pin P2.3/TA1/A3/ VREF-/VeREF-/ OA1I1/OA1O 29 27 I/O Timer_A, capture CCI1B input, compare: OUT1 output ADC10, analog input A3 / negative reference voltage output/input OA1, analog input I1 / OA1, analog output General-purpose digital I/O pin / Timer_A, compare: OUT2 output P2.4/TA2/A4/ VREF+/VeREF+/OA1I0 30 28 I/O ADC10, analog input A4 / positive reference voltage output/input OA1, analog input I/O P2.5/ROSC 3 40 I/O XIN/P2.6 6 3 I/O XOUT/P2.7 5 2 I/O General-purpose digital I/O pin Input for external DCO resistor to define DCO frequency Input terminal of crystal oscillator General-purpose digital I/O pin Output terminal of crystal oscillator General-purpose digital I/O pin (2) General-purpose digital I/O pin P3.0/UCB0STE/UCA0CLK/ A5 11 9 I/O USCI_B0 slave transmit enable / USCI_A0 clock input/output ADC10, analog input A5 P3.1/UCB0SIMO/ UCB0SDA (1) (2) 12 10 I/O General-purpose digital I/O pin USCI_B0 slave in/master out in SPI mode, SDA I2C data in I2C mode TDO or TDI is selected via JTAG instruction. If XOUT/P2.7 is used as an input, excess current flows until P2SEL.7 is cleared. This is due to the oscillator output driver connection to this pad after reset. Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback 9 MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Table 3. Terminal Functions, MSP430F22x4 (continued) TERMINAL NAME NO. I/O PRODUCT PREVIEW DA RHA P3.2/UCB0SOMI/UCB0SCL 13 11 I/O P3.3/UCB0CLK/UCA0STE 14 12 I/O P3.4/UCA0TXD/ UCA0SIMO 25 23 I/O P3.5/UCA0RXD/ UCA0SOMI 26 24 I/O P3.6/A6/OA0I2 27 25 I/O P3.7/A7/OA1I2 28 26 I/O P4.0/TB0 17 15 I/O P4.1/TB1 18 16 I/O P4.2/TB2 19 17 I/O DESCRIPTION General-purpose digital I/O pin USCI_B0 slave out/master in SPI mode, SCL I2C clock in I2C mode General-purpose digital I/O pin USCI_B0 clock input/output / USCI_A0 slave transmit enable General-purpose digital I/O pin USCI_A0 transmit data output in UART mode, slave in/master out in SPI mode General-purpose digital I/O pin USCI_A0 receive data input in UART mode, slave out/master in SPI mode General-purpose digital I/O pin ADC10 analog input A6 / OA0 analog input I2 General-purpose digital I/O pin ADC10 analog input A7 / OA1 analog input I2 General-purpose digital I/O pin Timer_B, capture: CCI0A input, compare: OUT0 output General-purpose digital I/O pin Timer_B, capture: CCI1A input, compare: OUT1 output General-purpose digital I/O pin Timer_B, capture: CCI2A input, compare: OUT2 output General-purpose digital I/O pin P4.3/TB0/A12/OA0O 20 18 I/O Timer_B, capture: CCI0B input, compare: OUT0 output ADC10 analog input A12 / OA0 analog output General-purpose digital I/O pin P4.4/TB1/A13/OA1O 21 19 I/O Timer_B, capture: CCI1B input, compare: OUT1 output ADC10 analog input A13 / OA1 analog output General-purpose digital I/O pin P4.5/TB2/A14/OA0I3 22 20 I/O Timer_B, compare: OUT2 output ADC10 analog input A14 / OA0 analog input I3 General-purpose digital I/O pin P4.6/TBOUTH/A15/OA1I3 23 21 I/O Timer_B, switch all TB0 to TB3 outputs to high impedance ADC10 analog input A15 / OA1 analog input I3 General-purpose digital I/O pin P4.7/TBCLK 24 22 I/O RST/NMI/SBWTDIO 7 5 I TEST/SBWTCK 1 37 I DVCC 2 38, 39 Digital supply voltage AVCC 16 14 Analog supply voltage DVSS 4 1, 4 Digital ground reference AVSS 15 13 QFN Pad NA Pad Timer_B, clock signal TBCLK input Reset or nonmaskable interrupt input Spy-Bi-Wire test data input/output during programming and test Selects test mode for JTAG pins on Port 1. The device protection fuse is connected to TEST. Spy-Bi-Wire test clock input during programming and test 10 Submit Documentation Feedback Analog ground reference NA QFN package pad; connection to DVSS recommended. Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com SHORT-FORM DESCRIPTION The MSP430™ CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. Program Counter PC/R0 Stack Pointer SP/R1 SR/CG1/R2 Status Register Constant Generator CG2/R3 General-Purpose Register R4 General-Purpose Register R5 General-Purpose Register R6 General-Purpose Register R7 General-Purpose Register R8 General-Purpose Register R9 General-Purpose Register R10 Instruction Set General-Purpose Register R11 The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 4 shows examples of the three types of instruction formats; Table 5 shows the address modes. General-Purpose Register R12 General-Purpose Register R13 General-Purpose Register R14 General-Purpose Register R15 The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator respectively. The remaining registers are general-purpose registers. Peripherals are connected to the CPU using data, address, and control buses and can be handled with all instructions. PRODUCT PREVIEW CPU Table 4. Instruction Word Formats EXAMPLE OPERATION Dual operands, source-destination INSTRUCTION FORMAT ADD R4,R5 R4 + R5 → R5 Single operands, destination only CALL R8 PC → (TOS), R8 → PC JNE Jump-on-equal bit = 0 Relative jump, unconditional/conditional Table 5. Address Mode Descriptions ADDRESS MODE D (2) SYNTAX EXAMPLE Register ✓ ✓ MOV Rs,Rd MOV R10,R11 R10 → R11 Indexed ✓ ✓ MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) M(2+R5) → M(6+R6) Symbolic (PC relative) ✓ ✓ MOV EDE,TONI M(EDE) → M(TONI) Absolute ✓ ✓ MOV &MEM,&TCDAT M(MEM) → M(TCDAT) Indirect ✓ MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) → M(Tab+R6) Indirect autoincrement ✓ MOV @Rn+,Rm MOV @R10+,R11 M(R10) → R11 R10 + 2 → R10 Immediate ✓ MOV #X,TONI MOV #45,TONI #45 → M(TONI) (1) (2) S (1) OPERATION S = source D = destination Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback 11 MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Operating Modes The MSP430 microcontrollers have one active mode and five software-selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program. PRODUCT PREVIEW The following six operating modes can be configured by software: • Active mode (AM) – All clocks are active. • Low-power mode 0 (LPM0) – CPU is disabled. – ACLK and SMCLK remain active. MCLK is disabled. • Low-power mode 1 (LPM1) – CPU is disabled ACLK and SMCLK remain active. MCLK is disabled. – DCO dc-generator is disabled if DCO not used in active mode. • Low-power mode 2 (LPM2) – CPU is disabled. – MCLK and SMCLK are disabled. – DCO dc-generator remains enabled. – ACLK remains active. • Low-power mode 3 (LPM3) – CPU is disabled. – MCLK and SMCLK are disabled. – DCO dc-generator is disabled. – ACLK remains active. • Low-power mode 4 (LPM4) – CPU is disabled. – ACLK is disabled. – MCLK and SMCLK are disabled. – DCO dc-generator is disabled. – Crystal oscillator is stopped. 12 Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Interrupt Vector Addresses The interrupt vectors and the power-up starting address are located in the address range of 0FFFFh to 0FFC0h. The vector contains the 16-bit address of the appropriate interrupt handler instruction sequence. If the reset vector (located at address 0FFFEh) contains 0FFFFh (for example, if flash is not programmed), the CPU goes into LPM4 immediately after power up. INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT WORD ADDRESS PRIORITY Power-up External reset Watchdog Flash key violation PC out-of-range (1) PORIFG RSTIFG WDTIFG KEYV (2) Reset 0FFFEh 31, highest NMI Oscillator fault Flash memory access violation NMIIFG OFIFG ACCVIFG (2) (3) (non)-maskable, (non)-maskable, (non)-maskable 0FFFCh 30 Timer_B3 TBCCR0 CCIFG (4) maskable 0FFFAh 29 Timer_B3 TBCCR1 and TBCCR2 CCIFGs, TBIFG (2) (4) maskable 0FFF8h 28 0FFF6h 27 Watchdog Timer WDTIFG maskable 0FFF4h 26 Timer_A3 TACCR0 CCIFG (see Note 3) maskable 0FFF2h 25 Timer_A3 TACCR1 CCIFG TACCR2 CCIFG TAIFG (2) (4) maskable 0FFF0h 24 USCI_A0/USCI_B0 Receive UCA0RXIFG, UCB0RXIFG (2) maskable 0FFEEh 23 USCI_A0/USCI_B0 Transmit UCA0TXIFG, UCB0TXIFG (2) maskable 0FFECh 22 ADC10 ADC10IFG (4) maskable 0FFEAh 21 0FFE8h 20 (1) (2) (3) (4) (5) (6) I/O Port P2 (eight flags) P2IFG.0 to P2IFG.7 (2) (4) maskable 0FFE6h 19 I/O Port P1 (eight flags) P1IFG.0 to P1IFG.7 (2) (4) maskable 0FFE4h 18 0FFE2h 17 0FFE0h 16 (5) 0FFDEh 15 (6) 0FFDCh to 0FFC0h 14 to 0, lowest PRODUCT PREVIEW Table 6. Interrupt Vector Addresses A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh) or from within unused address range. Multiple source flags (non)-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot. Nonmaskable: neither the individual nor the general interrupt-enable bit will disable an interrupt event. Interrupt flags are located in the module. This location is used as bootstrap loader security key (BSLSKEY). A 0AA55h at this location disables the BSL completely. A zero (0h) disables the erasure of the flash if an invalid password is supplied. The interrupt vectors at addresses 0FFDCh to 0FFC0h are not used in this device and can be used for regular program code if necessary. Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback 13 MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Special Function Registers Most interrupt and module enable bits are collected into the lowest address space. Special function register bits not allocated to a functional purpose are not physically present in the device. Simple software access is provided with this arrangement. Legend rw rw-0, 1 rw-(0), (1) Bit can be read and written. Bit can be read and written. It is Reset or Set by PUC. Bit can be read and written. It is Reset or Set by POR. SFR bit is not present in device. Table 7. Interrupt Enable 1 Address 7 6 00h WDTIE PRODUCT PREVIEW OFIE NMIIE ACCVIE 5 4 1 0 ACCVIE NMIIE 3 2 OFIE WDTIE rw-0 rw-0 rw-0 rw-0 Watchdog timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog timer is configured in interval timer mode. Oscillator fault interrupt enable (Non)maskable interrupt enable Flash access violation interrupt enable Table 8. Interrupt Enable 2 Address 7 6 5 4 01h UCA0RXIE UCA0TXIE UCB0RXIE UCB0TXIE 3 2 1 0 UCB0TXIE UCB0RXIE UCA0TXIE UCA0RXIE rw-0 rw-0 rw-0 rw-0 USCI_A0 receive-interrupt enable USCI_A0 transmit-interrupt enable USCI_B0 receive-interrupt enable USCI_B0 transmit-interrupt enable Table 9. Interrupt Flag Register 1 Address 7 6 5 02h WDTIFG OFIFG RSTIFG PORIFG NMIIFG 4 3 2 1 0 NMIIFG RSTIFG PORIFG OFIFG WDTIFG rw-0 rw-(0) rw-(1) rw-1 rw-(0) Set on watchdog timer overflow (in watchdog mode) or security key violation. Reset on VCC power-up or a reset condition at RST/NMI pin in reset mode. Flag set on oscillator fault External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset on VCC power up. Power-on reset interrupt flag. Set on VCC power up. Set via RST/NMI pin Table 10. Interrupt Flag Register 2 Address 7 6 03h UCA0RXIFG UCA0TXIFG UCB0RXIFG UCB0TXIFG 14 5 4 3 2 1 0 UCB0TXIFG UCB0RXIFG UCA0TXIFG UCA0RXIFG rw-1 rw-0 rw-1 rw-0 USCI_A0 receive-interrupt flag USCI_A0 transmit-interrupt flag USCI_B0 receive-interrupt flag USCI_B0 transmit-interrupt flag Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Memory Organization Table 11. Memory Organization MSP430F223x MSP430F225x MSP430F227x Memory Main: interrupt vector Main: code memory Size Flash Flash 8KB Flash 0FFFFh-0FFC0h 0FFFFh-0E000h 16KB Flash 0FFFFh-0FFC0h 0FFFFh-0C000h 32KB Flash 0FFFFh-0FFC0h 0FFFFh-08000h Information memory Size Flash 256 Byte 010FFh-01000h 256 Byte 010FFh-01000h 256 Byte 010FFh-01000h Boot memory Size ROM 1KB 0FFFh-0C00h 1KB 0FFFh-0C00h 1KB 0FFFh-0C00h Size 512 Byte 03FFh-0200h 512 Byte 03FFh-0200h 1KB 05FFh-0200h 16-bit 8-bit 8-bit SFR 01FFh-0100h 0FFh-010h 0Fh-00h 01FFh-0100h 0FFh-010h 0Fh-00h 01FFh-0100h 0FFh-010h 0Fh-00h RAM Peripherals The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the features of the BSL and its implementation, see the MSP430 Programming Via the Bootstrap Loader User’s Guide (SLAU319). Table 12. BSL Function Pins BSL FUNCTION DA PACKAGE PINS RHA PACKAGE PINS Data transmit 32 - P1.1 30 - P1.1 Data receive 10 - P2.2 8 - P2.2 Flash Memory The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include: • Flash memory has n segments of main memory and four segments of information memory (A to D) of 64 bytes each. Each segment in main memory is 512 bytes in size. • Segments 0 to n may be erased in one step, or each segment may be individually erased. • Segments A to D can be erased individually, or as a group with segments 0 to n. Segments A to D are also called information memory. • Segment A contains calibration data. After reset, segment A is protected against programming and erasing. It can be unlocked, but care should be taken not to erase this segment if the device-specific calibration data is required. Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback 15 PRODUCT PREVIEW Bootstrap Loader (BSL) MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Peripherals Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the MSP430x2xx Family User's Guide (SLAU144). Oscillator and System Clock The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal oscillator, an internal very-low-power low-frequency oscillator, an internal digitally-controlled oscillator (DCO), and a high-frequency crystal oscillator. The basic clock module is designed to meet the requirements of both low system cost and low power consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 1 µs. The basic clock module provides the following clock signals: • Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal, a high-frequency crystal, or the internal very-low-power LF oscillator. • Main clock (MCLK), the system clock used by the CPU. • Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules. Table 13. DCO Calibration Data (Provided From Factory in Flash Information Memory Segment A) DCO FREQUENCY PRODUCT PREVIEW 1 MHz 8 MHz 12 MHz 16 MHz CALIBRATION REGISTER SIZE ADDRESS CALBC1_1MHZ byte 010FFh CALDCO_1MHZ byte 010FEh CALBC1_8MHZ byte 010FDh CALDCO_8MHZ byte 010FCh CALBC1_12MHZ byte 010FBh CALDCO_12MHZ byte 010FAh CALBC1_16MHZ byte 010F9h CALDCO_16MHZ byte 010F8h Brownout The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and power off. Digital I/O There are four 8-bit I/O ports implemented—ports P1, P2, P3, and P4: • All individual I/O bits are independently programmable. • Any combination of input, output, and interrupt condition is possible. • Edge-selectable interrupt input capability for all eight bits of port P1 and P2. • Read/write access to port-control registers is supported by all instructions. • Each I/O has an individually programmable pullup/pulldown resistor. Because there are only three I/O pins implemented from port P2, bits [5:1] of all port P2 registers read as 0, and write data is ignored. Watchdog Timer (WDT+) The primary function of the WDT+ module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be disabled or configured as an interval timer and can generate interrupts at selected time intervals. 16 Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Timer_A3 Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 14. Timer_A3 Signal Connections MODULE INPUT NAME MODULE BLOCK MODULE OUTPUT SIGNAL Timer NA CCR0 TA0 DA RHA DEVICE INPUT SIGNAL 31 - P1.0 29 - P1.0 TACLK TACLK ACLK ACLK OUTPUT PIN NUMBER DA RHA SMCLK SMCLK 9 - P2.1 7 - P2.1 TAINCLK INCLK 32 - P1.1 30 - P1.1 TA0 CCI0A 32 - P1.1 30 - P1.1 10 - P2.2 8 - P2.2 TA0 CCI0B 10 - P2.2 8 - P2.2 36 - P1.5 34 - P1.5 33 - P1.2 31 - P1.2 VSS GND VCC VCC 33 - P1.2 31 - P1.2 TA1 CCI1A 29 - P2.3 27 - P2.3 TA1 CCI1B 29 - P2.3 27 - P2.3 VSS GND 37 - P1.6 35 - P1.6 VCC VCC 34 - P1.3 32 - P1.3 CCR1 TA2 CCI2A 34 - P1.3 32 - P1.3 ACLK (internal) CCI2B 30 - P2.4 28 - P2.4 VSS GND 38 - P1.7 36 - P1.7 VCC VCC Copyright © 2011, Texas Instruments Incorporated CCR2 TA1 TA2 Submit Documentation Feedback PRODUCT PREVIEW INPUT PIN NUMBER 17 MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Timer_B3 Timer_B3 is a 16-bit timer/counter with three capture/compare registers. Timer_B3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 15. Timer_B3 Signal Connections INPUT PIN NUMBER MODULE INPUT NAME MODULE BLOCK MODULE OUTPUT SIGNAL Timer NA CCR0 TB0 DA RHA DEVICE INPUT SIGNAL 24 - P4.7 22 - P4.7 TBCLK TBCLK ACLK ACLK SMCLK SMCLK 24 - P4.7 22 - P4.7 TBCLK INCLK 17 - P4.0 15 - P4.0 TB0 CCI0A 20 - P4.3 18 - P4.3 TB0 CCI0B VSS GND VCC VCC PRODUCT PREVIEW 18 - P4.1 16 - P4.1 TB1 CCI1A 21 - P4.4 19 - P4.4 TB1 CCI1B VSS GND VCC VCC 19 - P4.2 17 - P4.2 TB2 CCI2A ACLK (internal) CCI2B VSS GND VCC VCC CCR1 CCR2 TB1 TB2 OUTPUT PIN NUMBER DA RHA 17 - P4.0 15 - P4.0 20 - P4.3 18 - P4.3 18 - P4.1 16 - P4.1 21 - P4.4 19 - P4.4 19 - P4.2 17 - P4.2 22 - P4.5 20 - P4.5 Universal Serial Communications Interface (USCI) The USCI module is used for serial data communication. The USCI module supports synchronous communication protocols like SPI (3 or 4 pin), I2C and asynchronous communication protocols such as UART, enhanced UART with automatic baudrate detection (LIN), and IrDA. USCI_A0 provides support for SPI (3 or 4 pin), UART, enhanced UART, and IrDA. USCI_B0 provides support for SPI (3 or 4 pin) and I2C. ADC10 The ADC10 module supports fast, 10-bit analog-to-digital conversions. The module implements a 10-bit SAR core, sample select control, reference generator and data transfer controller, or DTC, for automatic conversion result handling allowing ADC samples to be converted and stored without any CPU intervention. 18 Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Operational Amplifier (OA) (MSP430F22x4 only) The MSP430F22x4 has two configurable low-current general-purpose operational amplifiers. Each OA input and output terminal is software-selectable and offer a flexible choice of connections for various applications. The OA op amps primarily support front-end analog signal conditioning prior to analog-to-digital conversion. Table 16. OA0 Signal Connections ANALOG INPUT PIN NUMBER DEVICE INPUT SIGNAL MODULE INPUT NAME DA RHA 8 - A0 6 - A0 OA0I0 OAxI0 10 - A2 8 - A2 OA0I1 OA0I1 10 - A2 8 - A2 OA0I1 OAxI1 27 - A6 25 - A6 OA0I2 OAxIA 22 - A14 20 - A14 OA0I3 OAxIB Table 17. OA1 Signal Connections DEVICE INPUT SIGNAL MODULE INPUT NAME DA RHA 30 - A4 28 - A4 OA1I0 OAxI0 10 - A2 8 - A2 OA0I1 OA0I1 29 - A3 27 - A3 OA1I1 OAxI1 28 - A7 26 - A7 OA1I2 OAxIA 23 - A15 21 - A15 OA1I3 OAxIB Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback PRODUCT PREVIEW ANALOG INPUT PIN NUMBER 19 MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Peripheral File Map Table 18. Peripherals With Word Access MODULE ADC10 REGISTER NAME SHORT NAME ADDRESS OFFSET ADC10SA 1BCh ADC memory ADC10MEM 1B4h ADC control register 1 ADC10CTL1 1B2h ADC control register 0 ADC10CTL0 1B0h ADC analog enable 0 ADC10AE0 04Ah ADC data transfer start address ADC analog enable 1 Timer_B ADC10AE1 04Bh ADC data transfer control register 1 ADC10DTC1 049h ADC data transfer control register 0 ADC10DTC0 048h Capture/compare register TBCCR2 0196h Capture/compare register TBCCR1 0194h Capture/compare register TBCCR0 0192h Timer_B register PRODUCT PREVIEW TBR 0190h Capture/compare control TBCCTL2 0186h Capture/compare control TBCCTL1 0184h Capture/compare control TBCCTL0 0182h Timer_B control Timer_A TBCTL 0180h Timer_B interrupt vector TBIV 011Eh Capture/compare register TACCR2 0176h Capture/compare register TACCR1 0174h Capture/compare register TACCR0 0172h TAR 0170h Capture/compare control TACCTL2 0166h Capture/compare control TACCTL1 0164h Capture/compare control TACCTL0 0162h TACTL 0160h Timer_A register Timer_A control Timer_A interrupt vector Flash Memory TAIV 012Eh Flash control 3 FCTL3 012Ch Flash control 2 FCTL2 012Ah FCTL1 0128h WDTCTL 0120h Flash control 1 Watchdog Timer+ 20 Submit Documentation Feedback Watchdog/timer control Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com MODULE OA1 (MSP430F22x4 only) OA0 (MSP430F22x4 only) USCI_B0 REGISTER NAME SHORT NAME ADDRESS OFFSET Operational Amplifier 1 control register 1 OA1CTL1 0C3h Operational Amplifier 1 control register 1 OA1CTL0 0C2h Operational Amplifier 0 control register 1 OA0CTL1 0C1h Operational Amplifier 0 control register 1 OA0CTL0 0C0h USCI_B0 transmit buffer UCB0TXBUF 06Fh USCI_B0 receive buffer UCB0RXBUF 06Eh UCB0STAT 06Dh USCI_B0 bit rate control 1 UCB0BR1 06Bh USCI_B0 bit rate control 0 UCB0BR0 06Ah USCI_B0 control 1 UCB0CTL1 069h USCI_B0 control 0 UCB0CTL0 068h USCI_B0 I2C slave address UCB0SA 011Ah USCI_B0 I2C own address UCB0OA 0118h USCI_A0 transmit buffer UCA0TXBUF 067h USCI_A0 receive buffer USCI_B0 status USCI_A0 Basic Clock System+ Port P4 UCA0RXBUF 066h USCI_A0 status UCA0STAT 065h USCI_A0 modulation control UCA0MCTL 064h USCI_A0 baud rate control 1 UCA0BR1 063h USCI_A0 baud rate control 0 UCA0BR0 062h USCI_A0 control 1 UCA0CTL1 061h USCI_A0 control 0 UCA0CTL0 060h USCI_A0 IrDA receive control UCA0IRRCTL 05Fh USCI_A0 IrDA transmit control UCA0IRTCTL 05Eh USCI_A0 auto baud rate control UCA0ABCTL 05Dh Basic clock system control 3 BCSCTL3 053h Basic clock system control 2 BCSCTL2 058h Basic clock system control 1 BCSCTL1 057h DCO clock frequency control DCOCTL 056h Port P4 resistor enable P4REN 011h Port P4 selection P4SEL 01Fh Port P4 direction P4DIR 01Eh Port P4 output P4OUT 01Dh P4IN 01Ch Port P3 resistor enable P3REN 010h Port P3 selection P3SEL 01Bh Port P3 direction P3DIR 01Ah Port P3 output P3OUT 019h Port P4 input Port P3 Port P3 input Port P2 P3IN 018h Port P2 resistor enable P2REN 02Fh Port P2 selection P2SEL 02Eh P2IE 02Dh Port P2 interrupt edge select P2IES 02Ch Port P2 interrupt flag P2IFG 02Bh Port P2 direction P2DIR 02Ah Port P2 output P2OUT 029h P2IN 028h Port P2 interrupt enable Port P2 input Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback PRODUCT PREVIEW Table 19. Peripherals With Byte Access 21 MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Table 19. Peripherals With Byte Access (continued) MODULE Port P1 REGISTER NAME SHORT NAME ADDRESS OFFSET Port P1 resistor enable P1REN 027h Port P1 selection P1SEL 026h P1IE 025h Port P1 interrupt edge select P1IES 024h Port P1 interrupt flag P1IFG 023h Port P1 direction P1DIR 022h Port P1 output Port P1 interrupt enable Special Function P1OUT 021h Port P1 input P1IN 020h SFR interrupt flag 2 IFG2 003h SFR interrupt flag 1 IFG1 002h SFR interrupt enable 2 IE2 001h SFR interrupt enable 1 IE1 000h PRODUCT PREVIEW 22 Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Absolute Maximum Ratings (1) Voltage applied at VCC to VSS Voltage applied to any pin -0.3 V to 4.1 V (2) -0.3 V to VCC + 0.3 V ±2 mA Diode current at any device terminal Storage temperature, Tstg (1) (3) Unprogrammed device -55°C to 150°C Programmed device -55°C to 150°C Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is applied to the TEST pin when blowing the JTAG fuse. Higher temperature may be applied during board soldering process according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels. (2) (3) Recommended Operating Conditions (1) (2) VCC Supply voltage VSS Operating free-air temperature fSYSTEM Processor frequency (maximum MCLK frequency) (1) (2) (see Figure 1) (1) (2) UNIT 1.8 3.6 V During program/erase flash memory 2.2 3.6 V I version -40 85 T version -40 105 VCC = 1.8 V, Duty cycle = 50% ±10% dc 4.15 VCC = 2.7 V, Duty cycle = 50% ±10% dc 12 VCC ≥ 3.3 V, Duty cycle = 50% ±10% dc 16 AVSS = DVSS = VSS TA MAX During program execution AVCC = DVCC = VCC Supply voltage NOM 0 V °C MHz The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse width of the specified maximum frequency. Modules might have a different maximum input clock specification. See the specification of the respective module in this data sheet. Legend : System Frequency −MHz 16 MHz Supply voltage range, during flash memory programming 12 MHz Supply voltage range, during program execution 7.5 MHz 4.15 MHz 1.8 V 2.2 V 2.7 V 3.3 V 3.6 V Supply Voltage −V NOTE: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum VCC of 2.2 V. Figure 1. Operating Area Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback 23 PRODUCT PREVIEW MIN MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Active Mode Supply Current (into DVCC + AVCC) Excluding External Current (1) (2) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER IAM,1MHz IAM,1MHz IAM,4kHz PRODUCT PREVIEW IAM,100kHz TEST CONDITIONS TA 24 MIN TYP MAX 2.2 V 270 390 Active mode (AM) current (1 MHz) fDCO = fMCLK = fSMCLK = 1 MHz, fACLK = 32768 Hz, Program executes in flash, BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0 3V 390 550 2.2 V 240 Active mode (AM) current (1 MHz) fDCO = fMCLK = fSMCLK = 1 MHz, fACLK = 32768 Hz, Program executes in RAM, BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0 3.3 V 340 Active mode (AM) current (4 kHz) fMCLK = fSMCLK = fACLK = 32768 Hz/8 = 4096 Hz, fDCO = 0 Hz, Program executes in flash, SELMx = 11, SELS = 1, DIVMx = DIVSx = DIVAx = 11, CPUOFF = 0, SCG0 = 1, SCG1 = 0, OSCOFF = 0 Active mode (AM) current (100 kHz) fMCLK = fSMCLK = fDCO(0, 0) ≈ 100 kHz, fACLK = 0 Hz, Program executes in flash, RSELx = 0, DCOx = 0, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 1 -40°C to 85°C 2.2 V 5 105°C -40°C to 85°C -40°C to 85°C µA µA 9 µA 6 10 3V 20 2.2 V 60 105°C -40°C to 85°C UNIT 18 105°C 105°C (1) (2) VCC 85 95 3V 72 µA 95 105 All inputs are tied to 0 V or VCC . Outputs do not source or sink any current. The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance is chosen to closely match the required 9 pF. Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Typical Characteristics - Active-Mode Supply Current (Into DVCC + AVCC) ACTIVE-MODE CURRENT vs SUPPLY VOLTAGE TA = 25°C ACTIVE-MODE CURRENT vs DCO FREQUENCY 5.0 8.0 f DCO = 16 MHz 7.0 TA = 85 °C Active Mode Current − mA Active Mode Current − mA 4.0 6.0 f DCO = 12 MHz 5.0 4.0 f DCO = 8 MHz 3.0 2.0 TA = 25 °C 3.0 VCC = 3 V 2.0 TA = 85 °C TA = 25 °C 1.0 0.0 1.5 VCC = 2.2 V f DCO = 1 MHz 2.0 2.5 3.0 3.5 VCC − Supply Voltage − V Figure 2. Copyright © 2011, Texas Instruments Incorporated 4.0 0.0 0.0 4.0 8.0 12.0 PRODUCT PREVIEW 1.0 16.0 f DCO − DCO Frequency − MHz Figure 3. Submit Documentation Feedback 25 MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Low-Power-Mode Supply Currents (Into VCC ) Excluding External Current (1) (2) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER ILPM0,1MHz ILPM0,100kHz ILPM2 PRODUCT PREVIEW ILPM3,LFXT1 TEST CONDITIONS TA (1) (2) (3) (4) (5) 26 TYP MAX 2.2 V 75 90 Low-power mode 0 (LPM0) current (3) 3V 90 120 2.2 V 37 48 Low-power mode 0 (LPM0) current (3) fMCLK = 0 MHz, fSMCLK = fDCO(0, 0) ≈ 100 kHz, fACLK = 0 Hz, RSELx = 0, DCOx = 0, CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 1 3V 41 65 22 29 Low-power mode 2 (LPM2) current (4) fMCLK = fSMCLK = 0 MHz, fDCO = 1 MHz, fACLK = 32768 Hz, BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 Low-power mode 3 (LPM3) current (4) fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32768 Hz, CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 -40°C to 85°C Low-power mode 3 current, (LPM3) (4) fDCO = fMCLK = fSMCLK = 0 MHz, fACLK from internal LF oscillator (VLO), CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 Low-power mode 4 (LPM4) current (5) fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 0 Hz, CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 2.2 V 105°C -40°C to 85°C 31 3V 25 105°C 0.7 1.4 0.7 1.4 2.4 3.3 105°C 5 10 -40°C 0.9 1.5 0.9 1.5 2.6 3.8 105°C 6 12 -40°C 0.4 1 25°C 0.5 1 1.8 2.9 25°C 85°C 2.2 V 3V 2.2 V 105°C 4.5 9 -40°C 0.5 1.2 0.6 1.2 2.1 3.3 25°C 3V 105°C 5.5 11 -40°C 0.1 0.5 0.1 0.5 1.5 3 4.5 9 25°C 85°C 105°C µA µA µA 34 25°C 85°C UNIT 32 -40°C 85°C ILPM4 MIN fMCLK = 0 MHz, fSMCLK = fDCO = 1 MHz, fACLK = 32768 Hz, BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 85°C ILPM3,VLO VCC 2.2 V/ 3V µA µA µA All inputs are tied to 0 V or VCC . Outputs do not source or sink any current. The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance is chosen to closely match the required 9 pF. Current for brownout and WDT clocked by SMCLK included. Current for brownout and WDT clocked by ACLK included. Current for brownout included. Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Schmitt-Trigger Inputs (Ports P1, P2, P3, P4, and RST/NMI) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VIT+ TEST CONDITIONS Positive-going input threshold voltage VCC MIN Negative-going input threshold voltage Vhys Input voltage hysteresis (VIT+ - VIT- ) RPull Pullup/pulldown resistor For pullup: VIN = VSS, For pulldown: VIN = VCC CI Input capacitance VIN = VSS or VCC MAX 0.45 VCC 0.75 VCC 1 1.65 1.35 2.25 0.25 VCC 0.55 VCC 2.2 V 0.55 1.20 3V 0.75 1.65 2.2 V 0.1 1 3V 0.3 1 3V 20 2.2 V 3V VIT- TYP 35 50 5 UNIT V V V kΩ pF Inputs (Ports P1, P2) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) t(int) (1) External interrupt timing TEST CONDITIONS Port P1, P2: P1.x to P2.x, External trigger pulse width to set interrupt flag (1) VCC 2.2 V/3 V MIN TYP MAX 20 UNIT ns An external signal sets the interrupt flag every time the minimum interrupt pulse width t(int) is met. It may be set even with trigger signals shorter than t(int) . Leakage Current (Ports P1, P2, P3, and P4) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER Ilkg(Px.y) (1) (2) High-impedance leakage current TEST CONDITIONS (1) (2) VCC 2.2 V/3 V MIN TYP MAX UNIT ±50 nA The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is disabled. Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback 27 PRODUCT PREVIEW PARAMETER MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Outputs (Ports P1, P2, P3, and P4) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS IOH(max) = -1.5 mA VOH High-level output voltage IOH(max) = -6 mA (2) IOH(max) = -1.5 mA (1) IOH(max) = -6 mA (2) IOL(max) = 1.5 mA VOL Low-level output voltage (2) 2.2 V 3V (1) 2.2 V IOL(max) = 6 mA (2) IOL(max) = 1.5 mA (1) IOL(max) = 6 mA (2) (1) VCC (1) 3V MIN MAX VCC - 0.25 VCC VCC - 0.6 VCC VCC - 0.25 VCC VCC - 0.6 VCC VSS VSS + 0.25 VSS VSS + 0.6 VSS VSS + 0.25 VSS VSS + 0.6 UNIT V V The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±12 mA to hold the maximum voltage drop specified. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop specified. Output Frequency (Ports P1, P2, P3, and P4) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS PRODUCT PREVIEW fPx.y Port output frequency (with load) P1.4/SMCLK, CL = 20 pF, RL = 1 kΩ against VCC/2 (1) (2) fPort_CLK Clock output frequency P2.0/ACLK, P1.4/SMCLK, CL = 20 pF (2) (1) (2) 28 VCC MIN TYP MAX 2.2 V 10 3V 12 2.2 V 12 3V 16 UNIT MHz MHz Alternatively, a resistive divider with two 2-kΩ resistors between VCC and VSS is used as load. The output is connected to the center tap of the divider. The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency. Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Typical Characteristics - Outputs One output loaded at a time. TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE 50.0 TA = 25°C 20.0 TA = 85°C 15.0 10.0 5.0 0.0 0.0 0.5 1.0 1.5 2.0 VCC = 3 V P4.5 40.0 TA = 85°C 30.0 20.0 10.0 0.0 0.0 2.5 VOL − Low-Level Output V oltage − V 0.5 1.0 1.5 2.0 2.5 3.0 Figure 4. Figure 5. TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE 0.0 I OH − Typical High-Level Output Current − mA VCC = 2.2 V P4.5 −5.0 −10.0 −15.0 −20.0 −25.0 0.0 3.5 VOL − Low-Level Output V oltage − V 0.0 I OH − Typical High-Level Output Current − mA TA = 25°C PRODUCT PREVIEW VCC = 2.2 V P4.5 I OL − Typical Low-Level Output Current − mA I OL − Typical Low-Level Output Current − mA 25.0 TA = 85°C TA = 25°C 0.5 1.0 1.5 2.0 VOH − High-Level Output V oltage − V Figure 6. Copyright © 2011, Texas Instruments Incorporated 2.5 VCC = 3 V P4.5 −10.0 −20.0 −30.0 −40.0 −50.0 0.0 TA = 85°C TA = 25°C 0.5 1.0 1.5 2.0 2.5 3.0 3.5 VOH − High-Level Output V oltage − V Figure 7. Submit Documentation Feedback 29 MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com POR/Brownout Reset (BOR) (1) (2) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC(start) See Figure 8 dVCC /dt ≤ 3 V/s V(B_IT-) See Figure 8 through Figure 10 dVCC /dt ≤ 3 V/s Vhys(B_IT-) See Figure 8 dVCC /dt ≤ 3 V/s td(BOR) See Figure 8 t(reset) Pulse length needed at RST/NMI pin to accepted reset internally (1) (2) VCC MIN TYP MAX 0.7 × V(B_IT-) 70 3V 2 130 UNIT V 1.71 V 210 mV 2000 µs µs The current consumption of the brownout module is already included in the ICC current consumption data. The voltage level V(B_IT-) + Vhys(B_IT-) is ≤ 1.8 V. During power up, the CPU begins code execution following a period of td(BOR) after VCC = V(B_IT-) + Vhys(B_IT-) . The default DCO settings must not be changed until VCC ≥ VCC(min), where VCC(min) is the minimum supply voltage for the desired operating frequency. VCC Vhys(B_IT−) PRODUCT PREVIEW V(B_IT−) VCC(start) 1 0 t d(BOR) Figure 8. POR/Brownout Reset (BOR) vs Supply Voltage 30 Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Typical Characteristics - POR/Brownout Reset (BOR) VCC 3V 2 VCC(drop) − V VCC = 3 V Typical Conditions t pw 1.5 1 VCC(drop) 0.5 0 0.001 1 1000 1 ns t pw − Pulse Width − µs 1 ns t pw − Pulse Width − µs Figure 9. VCC(drop) Level With a Square Voltage Drop to Generate a POR/Brownout Signal VCC 2 t pw 3V Typical Conditions PRODUCT PREVIEW VCC(drop) − V VCC = 3 V 1.5 1 VCC(drop) 0.5 0 0.001 t f = tr 1 t pw − Pulse Width − µs 1000 tf tr t pw − Pulse Width − µs Figure 10. VCC(drop) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback 31 MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Main DCO Characteristics • • • All ranges selected by RSELx overlap with RSELx + 1: RSELx = 0 overlaps RSELx = 1, ... RSELx = 14 overlaps RSELx = 15. DCO control bits DCOx have a step size as defined by parameter SDCO . Modulation control bits MODx select how often fDCO(RSEL,DCO+1) is used within the period of 32 DCOCLK cycles. The frequency fDCO(RSEL,DCO) is used for the remaining cycles. The frequency is an average equal to: faverage = 32 × fDCO(RSEL,DCO) × fDCO(RSEL,DCO+1) MOD × fDCO(RSEL,DCO) + (32 – MOD) × fDCO(RSEL,DCO+1) DCO Frequency over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN TYP MAX RSELx < 14 1.8 3.6 RSELx = 14 2.2 3.6 UNIT VCC Supply voltage range 3.0 3.6 fDCO(0,0) DCO frequency (0, 0) RSELx = 0, DCOx = 0, MODx = 0 2.2 V/3 V 0.06 0.14 MHz fDCO(0,3) DCO frequency (0, 3) RSELx = 0, DCOx = 3, MODx = 0 2.2 V/3 V 0.07 0.17 MHz fDCO(1,3) DCO frequency (1, 3) RSELx = 1, DCOx = 3, MODx = 0 2.2 V/3 V 0.10 0.20 MHz fDCO(2,3) DCO frequency (2, 3) RSELx = 2, DCOx = 3, MODx = 0 2.2 V/3 V 0.14 0.28 MHz fDCO(3,3) DCO frequency (3, 3) RSELx = 3, DCOx = 3, MODx = 0 2.2 V/3 V 0.20 0.40 MHz fDCO(4,3) DCO frequency (4, 3) RSELx = 4, DCOx = 3, MODx = 0 2.2 V/3 V 0.28 0.54 MHz fDCO(5,3) DCO frequency (5, 3) RSELx = 5, DCOx = 3, MODx = 0 2.2 V/3 V 0.39 0.77 MHz fDCO(6,3) DCO frequency (6, 3) RSELx = 6, DCOx = 3, MODx = 0 2.2 V/3 V 0.54 1.06 MHz fDCO(7,3) DCO frequency (7, 3) RSELx = 7, DCOx = 3, MODx = 0 2.2 V/3 V 0.80 1.50 MHz fDCO(8,3) DCO frequency (8, 3) RSELx = 8, DCOx = 3, MODx = 0 2.2 V/3 V 1.10 2.10 MHz fDCO(9,3) DCO frequency (9, 3) RSELx = 9, DCOx = 3, MODx = 0 2.2 V/3 V 1.60 3.00 MHz fDCO(10,3) DCO frequency (10, 3) RSELx = 10, DCOx = 3, MODx = 0 2.2 V/3 V 2.50 4.30 MHz fDCO(11,3) DCO frequency (11, 3) RSELx = 11, DCOx = 3, MODx = 0 2.2 V/3 V 3.00 5.50 MHz fDCO(12,3) DCO frequency (12, 3) RSELx = 12, DCOx = 3, MODx = 0 2.2 V/3 V 4.30 7.30 MHz fDCO(13,3) DCO frequency (13, 3) RSELx = 13, DCOx = 3, MODx = 0 2.2 V/3 V 6.00 9.60 MHz fDCO(14,3) DCO frequency (14, 3) RSELx = 14, DCOx = 3, MODx = 0 2.2 V/3 V 8.60 13.9 MHz fDCO(15,3) DCO frequency (15, 3) RSELx = 15, DCOx = 3, MODx = 0 3V 12.0 18.5 MHz fDCO(15,7) DCO frequency (15, 7) RSELx = 15, DCOx = 7, MODx = 0 3V 16.0 26.0 MHz SRSEL Frequency step between range RSEL and RSEL+1 SRSEL = fDCO(RSEL+1,DCO) /fDCO(RSEL,DCO) 2.2 V/3 V 1.55 ratio SDCO Frequency step between tap DCO and DCO+1 SDCO = fDCO(RSEL,DCO+1) /fDCO(RSEL,DCO) 2.2 V/3 V 1.05 1.08 1.12 ratio Duty cycle Measured at P1.4/SMCLK 2.2 V/3 V 40 50 60 RSELx = 15 PRODUCT PREVIEW 32 Submit Documentation Feedback V % Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Calibrated DCO Frequencies - Tolerance at Calibration over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS Frequency tolerance at calibration TA VCC MIN TYP MAX UNIT 25°C 3V -1 ±0.2 +1 25°C 3V 0.990 1 1.010 MHz % fCAL(1MHz) 1-MHz calibration value BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, Gating time: 5 ms fCAL(8MHz) 8-MHz calibration value BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, Gating time: 5 ms 25°C 3V 7.920 8 8.080 MHz fCAL(12MHz) 12-MHz calibration value BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, Gating time: 5 ms 25°C 3V 11.88 12 12.12 MHz fCAL(16MHz) 16-MHz calibration value BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, Gating time: 2 ms 25°C 3V 15.84 16 16.16 MHz MAX UNIT Calibrated DCO Frequencies - Tolerance Over Temperature 0°C to 85°C PARAMETER fCAL(1MHz) fCAL(8MHz) fCAL(12MHz) fCAL(16MHz) TA VCC 1-MHz tolerance over temperature 0°C to 85°C 3V -2.5 ±0.5 +2.5 % 8-MHz tolerance over temperature 0°C to 85°C 3V -2.5 ±1.0 +2.5 % 12-MHz tolerance over temperature 0°C to 85°C 3V -2.5 ±1.0 +2.5 % 16-MHz tolerance over temperature 0°C to 85°C 3V -3 ±2.0 +3 % 2.2 V 0.97 1 1.03 3V 0.975 1 1.025 3.6 V 0.97 1 1.03 2.2 V 7.76 8 8.4 3V 7.8 8 8.2 3.6 V 7.6 8 8.24 2.2 V 11.7 12 12.3 3V 11.7 12 12.3 3.6 V 11.7 12 12.3 3V 15.52 16 16.48 15 16 16.48 1-MHz calibration value 8-MHz calibration value 12-MHz calibration value 16-MHz calibration value TEST CONDITIONS BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, Gating time: 5 ms 0°C to 85°C BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, Gating time: 5 ms 0°C to 85°C BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, Gating time: 5 ms 0°C to 85°C BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, Gating time: 2 ms 0°C to 85°C Copyright © 2011, Texas Instruments Incorporated 3.6 V MIN TYP Submit Documentation Feedback MHz MHz MHz MHz 33 PRODUCT PREVIEW over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Calibrated DCO Frequencies - Tolerance Over Supply Voltage VCC over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS TA VCC MIN TYP MAX 1-MHz tolerance over VCC 25°C 8-MHz tolerance over VCC 25°C 12-MHz tolerance over VCC 16-MHz tolerance over VCC UNIT 1.8 V to 3.6 V -3 ±2 +3 % 1.8 V to 3.6 V -3 ±2 +3 % 25°C 2.2 V to 3.6 V -3 ±2 +3 % 25°C 3 V to 3.6 V -6 ±2 +3 % PRODUCT PREVIEW fCAL(1MHz) 1-MHz calibration value BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, Gating time: 5 ms 25°C 1.8 V to 3.6 V 0.97 1 1.03 MHz fCAL(8MHz) 8-MHz calibration value BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, Gating time: 5 ms 25°C 1.8 V to 3.6 V 7.76 8 8.24 MHz fCAL(12MHz) 12-MHz calibration value BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, Gating time: 5 ms 25°C 2.2 V to 3.6 V 11.64 12 12.36 MHz fCAL(16MHz) 16-MHz calibration value BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, Gating time: 2 ms 25°C 3 V to 3.6 V 15 16 16.48 MHz MIN TYP MAX UNIT Calibrated DCO Frequencies - Overall Tolerance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TA VCC 1-MHz tolerance overall I: -40°C to 85°C T: -40°C to 105°C 1.8 V to 3.6 V -5 ±2 +5 % 8-MHz tolerance overall I: -40°C to 85°C T: -40°C to 105°C 1.8 V to 3.6 V -5 ±2 +5 % 12-MHz tolerance overall I: -40°C to 85°C T: -40°C to 105°C 2.2 V to 3.6 V -5 ±2 +5 % 16-MHz tolerance overall I: -40°C to 85°C T: -40°C to 105°C 3 V to 3.6 V -6 ±3 +6 % fCAL(1MHz) BCSCTL1 = CALBC1_1MHZ, 1-MHz DCOCTL = CALDCO_1MHZ, calibration value Gating time: 5 ms I: -40°C to 85°C T: -40°C to 105°C 1.8 V to 3.6 V 0.95 1 1.05 MHz fCAL(8MHz) BCSCTL1 = CALBC1_8MHZ, 8-MHz DCOCTL = CALDCO_8MHZ, calibration value Gating time: 5 ms I: -40°C to 85°C T: -40°C to 105°C 1.8 V to 3.6 V 7.6 8 8.4 MHz fCAL(12MHz) BCSCTL1 = CALBC1_12MHZ, 12-MHz DCOCTL = CALDCO_12MHZ, calibration value Gating time: 5 ms I: -40°C to 85°C T: -40°C to 105°C 2.2 V to 3.6 V 11.4 12 12.6 MHz fCAL(16MHz) BCSCTL1 = CALBC1_16MHZ, 16-MHz DCOCTL = CALDCO_16MHZ, calibration value Gating time: 2 ms I: -40°C to 85°C T: -40°C to 105°C 3 V to 3.6 V 15 16 17 MHz 34 TEST CONDITIONS Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Typical Characteristics - Calibrated 1-MHz DCO Frequency CALIBRATED 1-MHz FREQUENCY vs TEMPERATURE CALIBRATED 1-MHz FREQUENCY vs SUPPLY VOLTAGE 1.03 1.03 1.02 1.02 VCC = 2.2 V VCC = 3.0 V 0.99 TA = 105 °C 1.01 TA = 85 °C 1.00 TA = 25 °C 0.99 TA = −40 °C VCC = 3.6 V 0.98 0.98 0.97 −50.0 −25.0 0.0 25.0 50.0 TA − Temperature − °C Figure 11. Copyright © 2011, Texas Instruments Incorporated 75.0 100.0 0.97 1.5 2.0 2.5 3.0 3.5 PRODUCT PREVIEW Frequency − MHz 1.00 Frequency − MHz VCC = 1.8 V 1.01 4.0 VCC − Supply Voltage − V Figure 12. Submit Documentation Feedback 35 MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Wake-Up From Lower-Power Modes (LPM3/4) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN TYP BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ tDCO,LPM3/4 BCSCTL1 = CALBC1_8MHZ, DCO clock wake-up time DCOCTL = CALDCO_8MHZ from LPM3/4 (1) BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ (1) (2) UNIT 2 2.2 V/3 V 1.5 µs 1 BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ tCPU,LPM3/4 MAX 3V 1 CPU wake-up time from LPM3/4 (2) 1 / fMCLK + tClock,LPM3/4 The DCO clock wake-up time is measured from the edge of an external wake-up signal (for example, a port interrupt) to the first clock edge observable externally on a clock pin (MCLK or SMCLK). Parameter applicable only if DCOCLK is used for MCLK. Typical Characteristics - DCO Clock Wake-Up Time From LPM3/4 PRODUCT PREVIEW CLOCK WAKE-UP TIME FROM LPM3 vs DCO FREQUENCY DCO Wake-Up Time − µs 10.00 RSELx = 0...11 RSELx = 12...15 1.00 0.10 0.10 1.00 10.00 DCO Frequency − MHz Figure 13. 36 Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com DCO With External Resistor ROSC (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS fDCO,ROSC DCO output frequency with ROSC DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0, TA = 25°C DT Temperature drift DV Drift with VCC (1) VCC MIN TYP MAX UNIT 2.2 V 1.8 3V 1.95 DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0 2.2 V/3 V ±0.1 %/°C DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0 2.2 V/3 V 10 %/V MHz ROSC = 100 kΩ. Metal film resistor, type 0257, 0.6 W with 1% tolerance and TK = ±50 ppm/°C. Typical Characteristics - DCO With External Resistor ROSC DCO FREQUENCY vs ROSC VCC = 2.2 V, TA = 25°C DCO FREQUENCY vs ROSC VCC = 3 V, TA = 25°C 1.00 0.10 RSELx = 4 0.01 10.00 100.00 1000.00 1.00 0.10 RSELx = 4 0.01 10.00 10000.00 ROSC − External Resistor − kW Figure 15. DCO FREQUENCY vs TEMPERATURE VCC = 3 V DCO FREQUENCY vs SUPPLY VOLTAGE TA = 25°C 10000.00 2.50 2.25 ROSC = 100k 2.00 1.75 1.50 1.25 1.00 ROSC = 270k 0.75 DCO Frequency − MHz 2.25 DCO Frequency − MHz 1000.00 Figure 14. 2.50 ROSC = 100k 2.00 1.75 1.50 1.25 1.00 ROSC = 270k 0.75 0.50 0.50 ROSC = 1M 0.25 0.00 −50.0 100.00 ROSC − External Resistor − kW −25.0 0.0 25.0 50.0 TA − Temperature − C Figure 16. Copyright © 2011, Texas Instruments Incorporated 75.0 ROSC = 1M 0.25 100.0 0.00 2.0 2.5 3.0 3.5 4.0 VCC − Supply Voltage − V Figure 17. Submit Documentation Feedback 37 PRODUCT PREVIEW 10.00 DCO Frequency − MHz DCO Frequency − MHz 10.00 MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Crystal Oscillator LFXT1, Low-Frequency Mode (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS fLFXT1,LF LFXT1 oscillator crystal frequency, LF mode 0, 1 fLFXT1,LF,logic LFXT1 oscillator logic level square wave input frequency, XTS = 0, LFXT1Sx = 3 LF mode OALF Oscillation allowance for LF crystals Integrated effective load capacitance, LF mode (2) CL,eff fFault,LF PRODUCT PREVIEW (1) (2) (3) (4) XTS = 0, LFXT1Sx = 0 or 1 VCC MIN TYP 1.8 V to 3.6 V 1.8 V to 3.6 V MAX 32768 10000 32768 XTS = 0, LFXT1Sx = 0, fLFXT1,LF = 32768 Hz, CL,eff = 6 pF 500 XTS = 0, LFXT1Sx = 0, fLFXT1,LF = 32768 Hz, CL,eff = 12 pF 200 UNIT Hz 50000 Hz kΩ XTS = 0, XCAPx = 0 1 XTS = 0, XCAPx = 1 5.5 XTS = 0, XCAPx = 2 8.5 XTS = 0, XCAPx = 3 11 Duty cycle, LF mode XTS = 0, Measured at P2.0/ACLK, fLFXT1,LF = 32768 Hz 2.2 V/3 V 30 Oscillator fault frequency, LF mode (3) XTS = 0, LFXT1Sx = 3 (4) 2.2 V/3 V 10 50 pF 70 % 10000 Hz To improve EMI on the XT1 oscillator, the following guidelines should be observed. (a) Keep the trace between the device and the crystal as short as possible. (b) Design a good ground plane around the oscillator pins. (c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. (d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. (e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. (f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. (g) Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter. Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the crystal that is used. Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag. Measured with logic-level input frequency but also applies to operation with crystals. Internal Very-Low-Power Low-Frequency Oscillator (VLO) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER fVLO VLO frequency dfVLO/dT VLO frequency temperature drift dfVLO/dVCC (1) (2) 38 TA -40°C to 85°C 105°C (1) VLO frequency supply voltage drift (2) VCC 2.2 V/3 V I: -40°C to 85°C T: -40°C to 105°C 2.2 V/3 V 25°C 1.8 V to 3.6 V MIN TYP MAX 4 12 20 22 UNIT kHz 0.5 %/°C 4 %/V Calculated using the box method: I version: [MAX(-40...85°C) - MIN(-40...85°C)]/MIN(-40...85°C)/[85°C - (-40°C)] T version: [MAX(-40...105°C) - MIN(-40...105°C)]/MIN(-40...105°C)/[105°C - (-40°C)] Calculated using the box method: [MAX(1.8...3.6 V) - MIN(1.8...3.6 V)]/MIN(1.8...3.6 V)/(3.6 V - 1.8 V) Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Crystal Oscillator LFXT1, High-Frequency Mode (1) VCC MIN XTS = 1, LFXT1Sx = 0 1.8 V to 3.6 V LFXT1 oscillator crystal frequency, HF mode 1 XTS = 1, LFXT1Sx = 1 LFXT1 oscillator crystal frequency, HF mode 2 XTS = 1, LFXT1Sx = 2 fLFXT1,HF0 fLFXT1,HF1 fLFXT1,HF2 TEST CONDITIONS MAX UNIT 0.4 1 MHz 1.8 V to 3.6 V 1 4 MHz 1.8 V to 3.6 V 2 10 2.2 V to 3.6 V 2 12 3 V to 3.6 V fLFXT1,HF,logic OAHF CL,eff LFXT1 oscillator logic-level square-wave input frequency, HF XTS = 1, LFXT1Sx = 3 mode Oscillation allowance for HF crystals (see Figure 18 and Figure 19) Integrated effective load capacitance, HF mode (2) Duty cycle, HF mode fFault,HF (1) (2) (3) (4) (5) Oscillator fault frequency (4) TYP 2 16 1.8 V to 3.6 V 0.4 10 2.2 V to 3.6 V 0.4 12 3 V to 3.6 V 0.4 16 XTS = 1, LFXT1Sx = 0, fLFXT1,HF = 1 MHz, CL,eff = 15 pF 2700 XTS = 1, LFXT1Sx = 1, fLFXT1,HF = 4 MHz, CL,eff = 15 pF 800 XTS = 1, LFXT1Sx = 2, fLFXT1,HF = 16 MHz, CL,eff = 15 pF 300 XTS = 1 (3) XTS = 1, Measured at P2.0/ACLK, fLFXT1,HF = 10 MHz XTS = 1, Measured at P2.0/ACLK, fLFXT1,HF = 16 MHz XTS = 1, LFXT1Sx = 3 (5) 50 pF 60 2.2 V/3 V % 40 2.2 V/3 V MHz Ω 1 40 MHz 30 50 60 300 kHz To improve EMI on the XT1 oscillator the following guidelines should be observed: (a) Keep the trace between the device and the crystal as short as possible. (b) Design a good ground plane around the oscillator pins. (c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. (d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. (e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. (f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. (g) Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter. Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal. Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag, and frequencies in between might set the flag. Measured with logic-level input frequency, but also applies to operation with crystals. Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback 39 PRODUCT PREVIEW PARAMETER LFXT1 oscillator crystal frequency, HF mode 0 MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Typical Characteristics - LFXT1 Oscillator in HF Mode (XTS = 1) OSCILLATION ALLOWANCE vs CRYSTAL FREQUENCY CL,eff = 15 pF, TA = 25°C OSCILLATOR SUPPLY CURRENT vs CRYSTAL FREQUENCY CL,eff = 15 pF, TA = 25°C 800.0 100000.00 LFXT1Sx = 3 10000.00 1000.00 LFXT1Sx = 3 100.00 LFXT1Sx = 1 LFXT1Sx = 2 XT Oscillator Supply Current − uA Oscillation Allowance − Ohms 700.0 600.0 500.0 400.0 300.0 LFXT1Sx = 2 200.0 100.0 LFXT1Sx = 1 PRODUCT PREVIEW 10.00 0.10 1.00 10.00 100.00 0.0 0.0 Crystal Frequency − MHz 4.0 8.0 12.0 16.0 20.0 Crystal Frequency − MHz Figure 18. Figure 19. Timer_A over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS fTA Timer_A clock frequency Internal: SMCLK, ACLK External: TACLK, INCLK Duty cycle = 50% ± 10% tTA,cap Timer_A capture timing TA0, TA1, TA2 VCC MIN TYP MAX 2.2 V 10 3V 16 2.2 V/3 V 20 UNIT MHz ns Timer_B over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS fTB Timer_B clock frequency Internal: SMCLK, ACLK External: TACLK, INCLK Duty cycle = 50% ± 10% tTB,cap Timer_B capture timing TB0, TB1, TB2 40 Submit Documentation Feedback VCC MIN TYP MAX 2.2 V 10 3V 16 2.2 V/3 V 20 UNIT MHz ns Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com USCI (UART Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER fUSCI USCI input clock frequency fBITCLK BITCLK clock frequency (equals baud rate in MBaud) tτ UART receive deglitch time (1) (1) CONDITIONS VCC MIN TYP Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ± 10% 2.2 V/3 V MAX UNIT fSYSTEM MHz 1 MHz 2.2 V 50 150 600 3V 50 100 600 ns Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are correctly recognized their width should exceed the maximum specification of the deglitch time. USCI (SPI Master Mode) (1) PARAMETER fUSCI USCI input clock frequency tSU,MI SOMI input data setup time tHD,MI SOMI input data hold time tVALID,MO SIMO output data valid time (1) TEST CONDITIONS VCC MIN TYP SMCLK, ACLK Duty cycle = 50% ± 10% UCLK edge to SIMO valid, CL = 20 pF 2.2 V 110 3V 75 2.2 V 0 3V 0 MAX UNIT fSYSTEM MHz ns ns 2.2 V 30 3V 20 ns fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(USCI) + tSU,SI(Slave), tSU,MI(USCI) + tVALID,SO(Slave)). For the slave's parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave. USCI (SPI Slave Mode) (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 22 and Figure 23) PARAMETER TEST CONDITIONS VCC MIN TYP MAX tSTE,LEAD STE lead time, STE low to clock 2.2 V/3 V tSTE,LAG STE lag time, Last clock to STE high 2.2 V/3 V tSTE,ACC STE access time, STE low to SOMI data out 2.2 V/3 V 50 ns tSTE,DIS STE disable time, STE high to SOMI high impedance 2.2 V/3 V 50 ns tSU,SI SIMO input data setup time tHD,SI SIMO input data hold time tVALID,SO SOMI output data valid time (1) UCLK edge to SOMI valid, CL = 20 pF 50 UNIT ns 10 2.2 V 20 3V 15 2.2 V 10 3V 10 ns ns ns 2.2 V 75 110 3V 50 75 ns fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(Master) + tSU,SI(USCI), tSU,MI(Master) + tVALID,SO(USCI)). For the master's parameters tSU,MI(Master) and tVALID,MO(Master) refer to the SPI parameters of the attached slave. Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback 41 PRODUCT PREVIEW over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 20 and Figure 21) MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLO/HI tLO/HI tSU,MI tHD,MI SOMI tVALID,MO SIMO Figure 20. SPI Master Mode, CKPH = 0 1/fUCxCLK PRODUCT PREVIEW CKPL=0 UCLK CKPL=1 tLO/HI tLO/HI tSU,MI tHD,MI SOMI tVALID,MO SIMO Figure 21. SPI Master Mode, CKPH = 1 42 Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com tSTE,LEAD tSTE,LAG STE 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLO/HI tLO/HI tSU,SI tHD,SI SIMO tSTE,ACC tVALID,SO tSTE,DIS PRODUCT PREVIEW SOMI Figure 22. SPI Slave Mode, CKPH = 0 tSTE,LEAD tSTE,LAG STE 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLO/HI tLO/HI tSU,SI tHD,SI SIMO tSTE,ACC tVALID,SO tSTE,DIS SOMI Figure 23. SPI Slave Mode, CKPH = 1 Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback 43 MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com USCI (I2C Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 24) PARAMETER TEST CONDITIONS VCC MIN TYP Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ± 10% MAX UNIT fSYSTEM MHz 400 kHz fUSCI USCI input clock frequency fSCL SCL clock frequency tHD,STA Hold time (repeated) START tSU,STA Setup time for a repeated START tHD,DAT Data hold time 2.2 V/3 V 0 tSU,DAT Data setup time 2.2 V/3 V 250 ns tSU,STO Setup time for STOP 2.2 V/3 V 4 µs tSP Pulse width of spikes suppressed by input filter 2.2 V 50 150 600 3V 50 100 600 2.2 V/3 V fSCL ≤ 100 kHz fSCL > 100 kHz fSCL ≤ 100 kHz fSCL > 100 kHz tHD,STA 2.2 V/3 V 2.2 V/3 V 0 4 µs 0.6 4.7 µs 0.6 ns ns tSU,STA tHD,STA PRODUCT PREVIEW SDA 1/fSCL tSP SCL tSU,DAT tSU,STO tHD,DAT Figure 24. I2C Mode Timing 44 Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com 10-Bit ADC, Power Supply and Input Range Conditions (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) TEST CONDITIONS VCC Analog supply voltage range VSS = 0 V VAx Analog input voltage range (2) All Ax terminals, Analog inputs selected in ADC10AE register ADC10 supply current (3) fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 0, ADC10SHT0 = 1, ADC10SHT1 = 0, ADC10DIV = 0 IADC10 IREF+ Reference supply current, reference buffer disabled (4) fADC10CLK = 5 MHz, ADC10ON = 0, REF2_5V = 0, REFON = 1, REFOUT = 0 fADC10CLK = 5 MHz, ADC10ON = 0, REF2_5V = 1, REFON = 1, REFOUT = 0 TA I: -40°C to 85°C T: -40°C to 105°C VCC TYP MAX UNIT 2.2 3.6 V 0 VCC V 2.2 V 0.52 1.05 3V 0.6 1.2 2.2 V/3 V 0.25 0.4 I: -40°C to 85°C T: -40°C to 105°C mA mA 3V 0.25 0.4 1.1 1.4 Reference buffer supply IREFB,0 current with ADC10SR = 0 (4) fADC10CLK = 5 MHz ADC10ON = 0, REFON = 1, REF2_5V = 0, REFOUT = 1, ADC10SR = 0 -40°C to 85°C 2.2 V/3 V 105°C 2.2 V/3 V Reference buffer supply IREFB,1 current with ADC10SR = 1 (4) fADC10CLK = 5 MHz, ADC10ON = 0, REFON = 1, REF2_5V = 0, REFOUT = 1, ADC10SR = 1 -40°C to 85°C 2.2 V/3 V 105°C 2.2 V/3 V CI Input capacitance Only one terminal Ax selected at a time I: -40°C to 85°C T: -40°C to 105°C RI Input MUX ON resistance 0 V ≤ VAx ≤ VCC I: -40°C to 85°C T: -40°C to 105°C (1) (2) (3) (4) MIN 2.2 V/3 V 1.8 0.5 mA PRODUCT PREVIEW PARAMETER 0.7 0.8 mA 27 pF 2000 Ω The leakage current is defined in the leakage current table with Px.x/Ax parameter. The analog input voltage range must be within the selected reference voltage range VR+ to VR- for valid conversion results. The internal reference supply current is not included in current consumption parameter IADC10. The internal reference current is supplied via terminal VCC. Consumption is independent of the ADC10ON control bit, unless a conversion is active. The REFON bit enables the built-in reference to settle before starting an A/D conversion. Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback 45 MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com 10-Bit ADC, Built-In Voltage Reference over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VCC,REF+ TEST CONDITIONS VCC IVREF+ ≤ 1 mA, REF2_5V = 0 Positive built-in reference analog IVREF+ ≤ 0.5 mA, REF2_5V = 1 supply voltage range IVREF+ ≤ 1 mA, REF2_5V = 1 VREF+ Positive built-in reference voltage ILD,VREF+ Maximum VREF+ load current VREF+ load regulation MIN TYP MAX UNIT 2.2 2.8 V 2.9 IVREF+ ≤ IVREF+max, REF2_5V = 0 2.2 V/3 V 1.41 1.5 1.59 IVREF+ ≤ IVREF+max, REF2_5V = 1 3V 2.35 2.5 2.65 2.2 V ±0.5 3V ±1 IVREF+ = 500 µA ± 100 µA, Analog input voltage VAx ≈ 0.75 V, REF2_5V = 0 2.2 V/3 V ±2 IVREF+ = 500 µA ± 100 µA, Analog input voltage VAx ≈ 1.25 V, REF2_5V = 1 3V V mA LSB ±2 PRODUCT PREVIEW VREF+ load regulation response time IVREF+ = 100 µA to 900 µA, VAx ≈ 0.5 x VREF+, Error of conversion result ≤1 LSB CVREF+ Maximum capacitance at pin VREF+ (1) IVREF+ ≤ ±1 mA, REFON = 1, REFOUT = 1 2.2 V/3 V 100 pF TCREF+ Temperature coefficient IVREF+ = constant with 0 mA ≤ IVREF+ ≤ 1 mA 2.2 V/3 V ±100 ppm/°C tREFON Settling time of internal reference voltage (2) IVREF+ = 0.5 mA, REF2_5V = 0, REFON = 0 to 1 tREFBURST (1) (2) 46 Settling time of reference buffer (2) ADC10SR = 0 ADC10SR = 1 IVREF+ = 0.5 mA, REF2_5V = 0, REFON = 1, REFBURST = 1 ADC10SR = 0 IVREF+ = 0.5 mA, REF2_5V = 1, REFON = 1, REFBURST = 1 ADC10SR = 0 ADC10SR = 1 ADC10SR = 1 400 3V 3.6 V 2000 30 ns µs 1 2.2 V 2.5 2 3V µs 4.5 The capacitance applied to the internal buffer operational amplifier, if switched to terminal P2.4/TA 2/A4/VREF+/ VeREF+ (REFOUT = 1), must be limited; the reference buffer may become unstable otherwise. The condition is that the error in a conversion started after tREFON or tRefBuf is less than ±0.5 LSB. Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com 10-Bit ADC, External Reference (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) VeREF+ TEST CONDITIONS Positive external reference input voltage range (2) MIN MAX VeREF+ > VeREF-, SREF1 = 1, SREF0 = 0 1.4 VCC VeREF- ≤ VeREF+ ≤ VCC - 0.15 V, SREF1 = 1, SREF0 = 1 (3) 1.4 3 0 1.2 V 1.4 VCC V VeREF- Negative external reference input voltage range (4) VeREF+ > VeREF- ΔVeREF Differential external reference input voltage range ΔVeREF = VeREF+ - VeREF- VeREF+ > VeREF- (5) IVeREF+ IVeREF(1) (2) (3) (4) (5) Static input current into VeREF+ Static input current into VeREF- 0 V ≤ VeREF+ ≤ VCC, SREF1 = 1, SREF0 = 0 VCC UNIT V ±1 0 V ≤ VeREF+ ≤ VCC - 0.15 V ≤ 3 V, SREF1 = 1, SREF0 = 1 (3) 0 V ≤ VeREF- ≤ VCC µA 2.2 V/3 V 0 ±1 2.2 V/3 V µA The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, CI, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements. Under this condition, the external reference is internally buffered. The reference buffer is active and requires the reference buffer supply current IREFB. The current consumption can be limited to the sample and conversion period with REBURST = 1. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements. The accuracy limits the minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements. 10-Bit ADC, Timing Parameters over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS ADC10SR = 0 fADC10CLK ADC10 input clock frequency For specified performance of ADC10 linearity parameters fADC10OSC ADC10 built-in oscillator frequency ADC10DIVx = 0, ADC10SSELx = 0, fADC10CLK = fADC10OSC ADC10 built-in oscillator, ADC10SSELx = 0, fADC10CLK = fADC10OSC tCONVERT Conversion time tADC10ON Turn on settling time of the ADC (1) (1) ADC10SR = 1 fADC10CLK from ACLK, MCLK or SMCLK, ADC10SSELx ≠ 0 VCC MIN TYP MAX 0.45 6.3 0.45 1.5 2.2 V/3 V 3.7 6.3 2.2 V/3 V 2.06 3.51 2.2 V/3 V 13 × ADC10DIVx × 1 / fADC10CLK 100 UNIT MHz MHz µs ns The condition is that the error in a conversion started after tADC10ON is less than ±0.5 LSB. The reference and input signal are already settled. Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback 47 PRODUCT PREVIEW PARAMETER MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com 10-Bit ADC, Linearity Parameters over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT EI Integral linearity error 2.2 V/3 V ±1 LSB ED Differential linearity error 2.2 V/3 V ±1 LSB EO Offset error 2.2 V/3 V ±1 LSB EG Gain error ET PRODUCT PREVIEW (1) Total unadjusted error Source impedance RS < 100 Ω SREFx = 010, unbuffered external reference, VeREF+ = 1.5 V 2.2 V ±1.1 ±2 SREFx = 010, unbuffered external reference, VeREF+ = 2.5 V 3V ±1.1 ±2 SREFx = 011, buffered external reference (1), VeREF+ = 1.5 V 2.2 V ±1.1 ±4 SREFx = 011, buffered external reference (1), VeREF+ = 2.5 V 3V ±1.1 ±3 SREFx = 010, unbuffered external reference, VeREF+ = 1.5 V 2.2 V ±2 ±5 SREFx = 010, unbuffered external reference, VeREF+ = 2.5 V 3V ±2 ±5 SREFx = 011, buffered external reference (1), VeREF+ = 1.5 V 2.2 V ±2 ±7 SREFx = 011, buffered external reference (1), VeREF+ = 2.5 V 3V ±2 ±6 TYP MAX 2.2 V 40 120 3V 60 160 LSB LSB The reference buffer offset adds to the gain and total unadjusted error. 10-Bit ADC, Temperature Sensor and Built-In VMID (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER ISENSOR Temperature sensor supply current (1) REFON = 0, INCHx = 0Ah, TA = 25°C ADC10ON = 1, INCHx = 0Ah (2) TCSENSOR VOffset,Sensor TEST CONDITIONS Sensor offset voltage ADC10ON = 1, INCHx = 0Ah VCC 2.2 V/3 V (2) Sensor output voltage (3) 3.44 3.55 -100 Temperature sensor voltage at TA = 105°C (T version only) VSENSOR MIN 100 1365 1465 1195 1295 1395 Temperature sensor voltage at TA = 25°C 985 1085 1185 Temperature sensor voltage at TA = 0°C 895 995 1095 2.2 V/3 V tSENSOR(sample) Sample time required if channel 10 is selected (4) ADC10ON = 1, INCHx = 0Ah, Error of conversion result ≤ 1 LSB IVMID Current into divider at channel 11 (4) ADC10ON = 1, INCHx = 0Bh VMID VCC divider at channel 11 ADC10ON = 1, INCHx = 0Bh, VMID ≈ 0.5 × VCC 2.2 V 1.06 1.1 1.14 3V 1.46 1.5 1.54 tVMID(sample) Sample time required if channel 11 is selected (5) ADC10ON = 1, INCHx = 0Bh, Error of conversion result ≤ 1 LSB 2.2 V 1400 3V 1220 (1) (2) (3) (4) (5) 48 2.2 V/3 V µA 3.66 mV/°C 1265 Temperature sensor voltage at TA = 85°C UNIT mV mV µs 30 2.2 V N/A 3V N/A µA V ns The sensor current ISENSOR is consumed if (ADC10ON = 1 and REFON = 1), or (ADC10ON = 1 and INCH = 0Ah and sample signal is high).When REFON = 1, ISENSOR is included in IREF+.When REFON = 0, ISENSOR applies during conversion of the temperature sensor input (INCH = 0Ah). The following formula can be used to calculate the temperature sensor output voltage: VSensor,typ = TCSensor ( 273 + T [°C] ) + VOffset,sensor [mV] or VSensor,typ = TCSensor T [°C] + VSensor(TA = 0°C) [mV] Results based on characterization and/or production test, not TCSensor or VOffset,sensor. No additional current is needed. The VMID is used during sampling. The on time, tVMID(on), is included in the sampling time, tVMID(sample); no additional on time is needed. Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Operational Amplifier (OA) Supply Specifications (MSP430F22x4 Only) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VCC TEST CONDITIONS VCC MIN Supply voltage range Supply current (1) Medium Mode 2.2 V/3 V Slow Mode PSRR (1) MAX 180 290 110 190 50 80 2.2 Fast Mode ICC TYP Power-supply rejection ratio Noninverting 2.2 V/3 V UNIT 3.6 V µA 70 dB Corresponding pins configured as OA inputs and outputs, respectively. Operational Amplifier (OA) Input/Output Specifications (MSP430F22x4 Only) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) TEST CONDITIONS VCC Input voltage range Input leakage current (1) (2) TA = +55 to +85°C 2.2 V/3 V TA = +85 to +105°C Medium Mode Voltage noise density, I/P ±0.5 5 -20 ±5 20 -50 fV(I/P) = 1 kHz 140 30 fV(I/P) = 10 kHz 65 Offset temperature drift, I/P (3) 2.2 V/3 V 0.3 V ≤ VIN ≤ VCC - 1.0 V ΔVCC ≤ ±10%, TA = 25°C VOH High-level output voltage, O/P Fast Mode, ISOURCE ≤ -500 µA VOL Low-level output voltage, O/P Fast Mode, ISOURCE ≤ 500 µA Slow Mode, ISOURCE ≤ -150 µA Slow Mode, ISOURCE ≤ 150 µA RLoad = 3 kΩ, CLoad = 50 pF, VO/P(OAx) > VCC - 1.2 V 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V RLoad = 3 kΩ, CLoad = 50 pF, 0.2 V ≤ VO/P(OAx) ≤ VCC - 0.2 V CMRR (1) (2) (3) (4) Common-mode rejection ratio Noninverting ±10 ±10 2.2 V/3 V mV µV/°C ±1.5 2.2 V/3 V RLoad = 3 kΩ, CLoad = 50 pF, VO/P(OAx) < 0.2 V Output resistance (see Figure 25) nV/√Hz 50 2.2 V/3 V Offset voltage drift with supply, I/P RO/P(OAx) nA 50 Fast Mode Offset voltage, I/P (4) V 80 Slow Mode VIO UNIT 50 Slow Mode Medium Mode MAX VCC - 1.2 -5 Fast Mode Vn TYP -0.1 TA = -40 to +55°C Ilkg MIN PRODUCT PREVIEW PARAMETER VI/P VCC - 0.2 VCC VCC - 0.1 VCC VSS 0.2 VSS 0.1 150 250 150 250 0.1 4 mV/V 70 V V Ω dB ESD damage can degrade input current leakage. The input bias current is overridden by the input leakage current. Calculated using the box method Specification valid for voltage-follower OAx configuration Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback 49 MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com RO/P(OAx) Max R Load ILoad AV CC OAx 2 CLoad O/P(OAx) Min AV CC −0.2VAV 0.2V V CC OUT Figure 25. OAx Output Resistance Tests Operational Amplifier (OA) Dynamic Specifications (MSP430F22x4 Only) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER SR TEST CONDITIONS Slew rate VCC MIN Fast Mode 1.2 Medium Mode 0.8 Slow Mode 0.3 Open-loop voltage gain GBW MAX UNIT V/µs 100 dB Phase margin CL = 50 pF 60 deg Gain margin CL = 50 pF 20 dB Noninverting, Fast Mode, RL = 47 kΩ, CL = 50 pF 2.2 Gain-bandwidth product (see Figure 26 and Figure 27) Noninverting, Medium Mode, RL = 300 kΩ, CL = 50 pF 2.2 V/3 V 1.4 Noninverting, Slow Mode, RL = 300 kΩ, CL = 50 pF ten(on) Enable time on ten(off) Enable time off MHz 0.5 ton, noninverting, Gain = 1 2.2 V/3 V 10 2.2 V/3 V TYPICAL OPEN-LOOP GAIN vs FREQUENCY 20 µs 1 µs TYPICAL PHASE vs FREQUENCY 140 0 120 100 −50 Fast Mode 80 Fast Mode Phase − degrees 60 Gain − dB PRODUCT PREVIEW φm TYP 40 Medium Mode 20 0 Slow Mode −100 Medium Mode −150 −20 Slow Mode −40 −200 −60 −80 1 10 100 1000 Input Frequency − kHz Figure 26. 50 Submit Documentation Feedback 10000 100000 −250 1 10 100 1000 10000 100000 Input Frequency − kHz Figure 27. Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Operational Amplifier OA Feedback Network, Resistor Network (MSP430F22x4 Only) (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT Rtotal Total resistance of resistor string 76 96 128 kΩ Runit Unit resistor of resistor string (2) 4.8 6 8 kΩ (1) (2) A single resistor string is composed of 4 Runit + 4 Runit + 2 Runit + 2 Runit + 1 Runit + 1 Runit + 1 Runit + 1 Runit = 16 Runit = Rtotal. For the matching (that is, the relative accuracy) of the unit resistors on a device, see the gain and level specifications of the respective configurations. Operational Amplifier (OA) Feedback Network, Comparator Mode (OAFCx = 3) (MSP430F22x4 Only) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) VLevel Comparator level MIN TYP MAX OAFBRx = 1, OARRIP = 0 TEST CONDITIONS VCC 0.245 0.25 0.255 OAFBRx = 2, OARRIP = 0 0.495 0.5 0.505 OAFBRx = 3, OARRIP = 0 0.619 0.625 0.631 OAFBRx = 4, OARRIP = 0 N/A (1) OAFBRx = 5, OARRIP = 0 N/A (1) OAFBRx = 6, OARRIP = 0 N/A (1) OAFBRx = 7, OARRIP = 0 OAFBRx = 1, OARRIP = 1 2.2 V/3 V 0.065 0.122 0.125 0.128 0.184 0.1875 0.192 OAFBRx = 4, OARRIP = 1 0.245 0.25 0.255 OAFBRx = 5, OARRIP = 1 0.367 0.375 0.383 OAFBRx = 6, OARRIP = 1 0.495 0.5 0.505 Fast Mode, Overdrive 10 mV 40 Fast Mode, Overdrive 100 mV 4 Medium Mode, Overdrive 100 mV VCC N/A (1) 3 Medium Mode, Overdrive 10 mV 60 2.2 V/3 V Medium Mode, Overdrive 500 mV (1) 0.0625 OAFBRx = 3, OARRIP = 1 Fast Mode, Overdrive 500 mV Propagation delay (low-high and high-low) 0.061 OAFBRx = 2, OARRIP = 1 OAFBRx = 7, OARRIP = 1 tPLH, tPHL N/A (1) UNIT 6 µs 5 Slow Mode, Overdrive 10 mV 160 Slow Mode, Overdrive 100 mV 20 Slow Mode, Overdrive 500 mV 15 The level is not available due to the analog input voltage range of the operational amplifier. Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback 51 PRODUCT PREVIEW PARAMETER MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Operational Amplifier (OA) Feedback Network, Noninverting Amplifier Mode (OAFCx = 4) (MSP430F22x4 Only) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER G Gain MIN TYP MAX OAFBRx = 0 TEST CONDITIONS 0.998 1 1.002 OAFBRx = 1 1.328 1.334 1.340 OAFBRx = 2 1.985 2.001 2.017 OAFBRx = 3 2.638 2.667 2.696 3.94 4 4.06 OAFBRx = 5 5.22 5.33 5.44 OAFBRx = 6 7.76 7.97 8.18 OAFBRx = 7 15 15.8 16.6 OAFBRx = 4 THD Total harmonic distortion/nonlinearity All gains tSettle Settling time (1) All power modes (1) VCC 2.2 V/3 V 2.2 V -60 3V -70 2.2 V/3 V 7 UNIT dB 12 µs The settling time specifies the time until an ADC result is stable. This includes the minimum required sampling time of the ADC. The settling time of the amplifier itself might be faster. PRODUCT PREVIEW Operational Amplifier (OA) Feedback Network, Inverting Amplifier Mode (OAFCx = 6) (MSP430F22x4 Only) (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER G Gain MIN TYP MAX OAFBRx = 1 TEST CONDITIONS -0.345 -0.335 -0.325 OAFBRx = 2 -1.023 -1.002 -0.979 OAFBRx = 3 -1.712 -1.668 -1.624 -3.1 -3 -2.9 OAFBRx = 5 -4.51 -4.33 -4.15 OAFBRx = 6 -7.37 -6.97 -6.57 OAFBRx = 7 -16.3 -14.8 -13.1 OAFBRx = 4 THD Total harmonic distortion/nonlinearity All gains tSettle Settling time (2) All power modes (1) (2) 52 VCC 2.2 V/3 V 2.2 V -60 3V -70 2.2 V/3 V 7 UNIT dB 12 µs This includes the 2 OA configuration "inverting amplifier with input buffer". Both OA needs to be set to the same power mode OAPMx. The settling time specifies the time until an ADC result is stable. This includes the minimum required sampling time of the ADC. The settling time of the amplifier itself might be faster. Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Flash Memory over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) TEST CONDITIONS VCC MIN TYP MAX UNIT VCC (PGM/ERASE) Program and erase supply voltage 2.2 3.6 V fFTG Flash timing generator frequency 257 476 kHz IPGM Supply current from VCC during program 2.2 V/3.6 V 1 5 mA IERASE Supply current from VCC during erase 2.2 V/3.6 V 1 7 mA 10 ms (1) tCPT Cumulative program time tCMErase Cumulative mass erase time 2.2 V/3.6 V 2.2 V/3.6 V 20 104 Program/Erase endurance ms 105 cycles tRetention Data retention duration TJ = 25°C tWord Word or byte program time (2) 30 tFTG tBlock, 0 Block program time for first byte or word (2) 25 tFTG tBlock, 1-63 Block program time for each additional byte or word (2) 18 tFTG Block program end-sequence wait time (2) 6 tFTG Mass erase time (2) 10593 tFTG Segment erase time (2) 4819 tFTG tBlock, End tMass Erase tSeg Erase (1) (2) 15 years The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming methods: individual word/byte write and block write modes. These values are hardwired into the flash controller's state machine (tFTG = 1/fFTG). RAM over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER V(RAMh) (1) RAM retention supply voltage (1) TEST CONDITIONS CPU halted MIN MAX UNIT 1.6 V This parameter defines the minimum supply voltage VCC when the data in RAM remains unchanged. No program execution should happen during this supply voltage condition. Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback 53 PRODUCT PREVIEW PARAMETER MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com JTAG and Spy-Bi-Wire Interface over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT fSBW Spy-Bi-Wire input frequency 2.2 V/3 V 0 20 MHz tSBW,Low Spy-Bi-Wire low clock pulse length 2.2 V/3 V 0.025 15 µs tSBW,En Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge (1)) 2.2 V/3 V 1 µs tSBW,Ret Spy-Bi-Wire return to normal operation time 2.2 V/3 V 15 100 2.2 V 0 5 MHz 3V 0 10 MHz 2.2 V/3 V 25 90 kΩ fTCK TCK input frequency (2) RInternal Internal pulldown resistance on TEST (1) (2) 60 µs Tools accessing the Spy-Bi-Wire interface need to wait for the maximum tSBW,En time after pulling the TEST/SBWCLK pin high before applying the first SBWCLK clock edge. fTCK may be restricted to meet the timing requirements of the module selected. JTAG Fuse (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER PRODUCT PREVIEW VCC(FB) Supply voltage during fuse-blow condition VFB Voltage level on TEST for fuse blow IFB Supply current into TEST during fuse blow tFB Time to blow fuse (1) 54 TEST CONDITIONS TA = 25°C MIN MAX 2.5 6 UNIT V 7 V 100 mA 1 ms Once the fuse is blown, no further access to the JTAG/Test, Spy-Bi-Wire, and emulation feature is possible, and JTAG is switched to bypass mode. Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com APPLICATION INFORMATION Port P1 Pin Schematic: P1.0 to P1.3, Input/Output With Schmitt Trigger Pad Logic P1REN.x P1DIR.x 0 0 Module X OUT 1 0 1 1 Direction 0: Input 1: Output 1 P1OUT.x DVSS DVCC P1.0/TACLK/ADC10CLK P1.1/TA0 P1.2/TA1 P1.3/TA2 P1SEL.x P1IN.x Module X IN PRODUCT PREVIEW EN D P1IE.x P1IRQ.x EN Q Set P1IFG.x Interrupt Edge Select P1SEL.x P1IES.x Table 20. Port P1 (P1.0 to P1.3) Pin Functions PIN NAME (P1.x) x FUNCTION P1DIR.x P1SEL.x I: 0; O: 1 0 Timer_A3.TACLK 0 1 ADC10CLK 1 1 P1.1 (1) (I/O) I: 0; O: 1 0 0 1 P1.0 (1) P1.0/TACLK/ADC10CLK P1.1/TA0 0 1 Timer_A3.CCI0A Timer_A3.TA0 P1.2 (1) (I/O) P1.2/TA1 2 Timer_A3.CCI1A Timer_A3.TA1 (1) 3 1 1 I: 0; O: 1 0 0 1 1 1 I: 0; O: 1 0 Timer_A3.CCI2A 0 1 Timer_A3.TA2 1 1 P1.3 (1) (I/O) P1.3/TA2 CONTROL BITS/SIGNALS Default after reset (PUC/POR) Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback 55 MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Port P1 Pin Schematic: P1.4 to P1.6, Input/Output With Schmitt Trigger and In-System Access Features Pad Logic P1REN.x P1DIR.x 0 P1OUT.x 0 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 Module X OUT DVSS P1.4/SMCLK/TCK P1.5/TA0/TMS P1.6/TA1/TDI Bus Keeper P1SEL.x EN P1IN.x EN PRODUCT PREVIEW Module X IN D P1IE.x P1IRQ.x EN Q P1IFG.x P1SEL.x P1IES.x Set Interrupt Edge Select To JTAG From JTAG Table 21. Port P1 (P1.4 to P1.6) Pin Functions PIN NAME (P1.x) x FUNCTION P1.4 P1.4/SMCLK/TCK 4 (2) (I/O) 5 (1) (2) (3) 56 6 P1SEL.x 4-Wire JTAG I: 0; O: 1 0 0 1 1 0 TCK X X 1 I: 0; O: 1 0 0 Timer_A3.TA0 1 1 0 TMS X X 1 I: 0; O: 1 0 0 P1.6 (2) (I/O) P1.6/TA1/TDI/TCLK P1DIR.x SMCLK P1.5 (2) (I/O) P1.5/TA0/TMS CONTROL BITS/SIGNALS (1) Timer_A3.TA1 1 1 0 TDI/TCLK (3) X X 1 X = Don't care Default after reset (PUC/POR) Function controlled by JTAG Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Port P1 Pin Schematic: P1.7, Input/Output With Schmitt Trigger and In-System Access Features Pad Logic P1REN.7 P1DIR.7 0 0 Module X OUT 1 0 1 1 Direction 0: Input 1: Output 1 P1OUT.7 DVSS DVCC P1.7/TA2/TDO/TDI Bus Keeper P1SEL.7 EN P1IN.7 EN Module X IN P1IE.7 P1IRQ.7 PRODUCT PREVIEW D EN Q P1IFG.7 Set Interrupt Edge Select P1SEL.7 P1IES.7 To JTAG From JTAG From JTAG From JTAG (TDO) Table 22. Port P1 (P1.7) Pin Functions PIN NAME (P1.x) x FUNCTION P1.7 (2) (I/O) P1.7/TA2/TDO/TDI 7 Timer_A3.TA2 TDO/TDI (1) (2) (3) (3) CONTROL BITS/SIGNALS (1) P1DIR.x P1SEL.x 4-Wire JTAG I: 0; O: 1 0 0 1 1 0 X X 1 X = Don't care Default after reset (PUC/POR) Function controlled by JTAG Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback 57 MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Port P2 Pin Schematic: P2.0, P2.2, Input/Output With Schmitt Trigger Pad Logic To ADC 10 INCHx = y ADC10AE0.y P2REN.x P2DIR.x 0 P2OUT.x 0 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 Module X OUT DVSS P2.0/ACLK/A0/OA0I0 P2.2/TA0/A2/OA0I1 Bus Keeper PRODUCT PREVIEW P2SEL.x EN P2IN.x EN Module X IN D P2IE.x EN P2IRQ.x Q Set P2IFG.x Interrupt Edge Select P2SEL.x P2IES.x + OA0 − Table 23. Port P2 (P2.0, P2.2) Pin Functions Pin Name (P2.x) x y FUNCTION P2.0 (2) (I/O) P2.0/ACLK/A0/OA0I0 0 0 ACLK A0/OA0I0 (3) P2.2 (2) (I/O) P2.2/TA0/A2/OA0I1 (1) (2) (3) 58 2 2 Timer_A3.CCI0B CONTROL BITS/SIGNALS (1) P2DIR.x P2SEL.x ADC10AE0.y I: 0; O: 1 0 0 1 1 0 X X 1 I: 0; O: 1 0 0 0 1 0 Timer_A3.TA0 1 1 0 A2/OA0I1 (3) X X 1 X = Don't care Default after reset (PUC/POR) Setting the ADC10AE0.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Port P2 Pin Schematic: P2.1, Input/Output With Schmitt Trigger Pad Logic To ADC 10 INCHx = 1 ADC10AE0.1 P2REN.1 0 P2OUT.1 0 1 DVCC 1 1 Direction 0: Input 1: Output 1 Module X OUT 0 P2.1/TAINCLK/SMCLK/ A1/OA0O Bus Keeper P2SEL.1 PRODUCT PREVIEW P2DIR.1 DVSS EN P2IN.1 EN Module X IN D P2IE.1 P2IRQ.1 EN Q Set P2IFG.1 + 1 OA0 P2SEL.1 P2IES.1 OAADCx OAFCx OAPMx Interrupt Edge Select − (OAADCx = 10 or OAFCx = 000) and OAPMx > 00 To OA0 Feedback Network 1 Table 24. Port P2 (P2.1) Pin Functions PIN NAME (P2.x) x y FUNCTION P2.1 (2) (I/O) P2.1/TAINCLK/SMCLK/ A1/OA0O (1) (2) (3) 1 1 Timer_A3.INCLK CONTROL BITS/SIGNALS (1) P2DIR.x P2SEL.x ADC10AE0.y I: 0; O: 1 0 0 0 1 0 SMCLK 1 1 0 A1/OA0O (3) X X 1 X = Don't care Default after reset (PUC/POR) Setting the ADC10AE0.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback 59 MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Port P2 Pin Schematic: P2.3, Input/Output With Schmitt Trigger SREF2 Pad Logic VSS 0 To ADC 10 VR− 1 To ADC 10 INCHx = 3 ADC10AE0.3 P2REN.3 P2DIR.3 0 PRODUCT PREVIEW 0 Module X OUT 1 0 1 1 Direction 0: Input 1: Output 1 P2OUT.3 DVSS DVCC P2.3/TA1/ A3/VREF−/VeREF−/ OA1I1/OA1O Bus Keeper P2SEL.3 EN P2IN.3 EN Module X IN D P2IE.3 P2IRQ.3 P2IFG.3 P2SEL.3 P2IES.3 OAADCx OAFCx OAPMx EN Q Set Interrupt Edge Select OA1 1 − (OAADCx = 10 or OAFCx = 000) and OAPMx > 00 To OA1 Feedback Network 60 + Submit Documentation Feedback 1 Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Table 25. Port P2 (P2.3) Pin Functions PIN NAME (P2.x) x y FUNCTION P2.3 P2.3/TA1/A3/VREF/VeREF-/ OA1I1/OA1O 3 (I/O) P2DIR.x P2SEL.x ADC10AE0.y I: 0; O: 1 0 0 Timer_A3.CCI1B 0 1 0 Timer_A3.TA1 1 1 0 A3/VREF-/VeREF-/OA1I1/OA1O (3) X X 1 X = Don't care Default after reset (PUC/POR) Setting the ADC10AE0.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. PRODUCT PREVIEW (1) (2) (3) 3 (2) CONTROL BITS/SIGNALS (1) Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback 61 MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Port P2 Pin Schematic: P2.4, Input/Output With Schmitt Trigger Pad Logic To /from ADC10 positive reference To ADC 10 INCHx = 4 ADC10AE0.4 P2REN.4 P2DIR.4 0 PRODUCT PREVIEW 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P2OUT.4 DVSS P2.4/TA2/ A4/VREF+/VeREF+/ OA1I0 Bus Keeper P2SEL.4 EN P2IN.4 EN Module X IN D P2IE.4 P2IRQ.4 EN Q P2IFG.4 P2SEL.4 P2IES.4 Set Interrupt Edge Select + OA1 − Table 26. Port P2 (P2.4) Pin Functions PIN NAME (P2.x) x y FUNCTION P2.4 (2) (I/O) P2.4/TA2/A4/VREF+/ VeREF+/ OA1I0 4 4 Timer_A3.TA2 A4/VREF+/VeREF+/OA1I0 (1) (2) (3) 62 (3) CONTROL BITS/SIGNALS (1) P2DIR.x P2SEL.x ADC10AE0.y I: 0; O: 1 0 0 1 1 0 X X 1 X = Don't care Default after reset (PUC/POR) Setting the ADC10AE0.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Port P2 Pin Schematic: P2.5, Input/Output With Schmitt Trigger and External ROSC for DCO Pad Logic To DCO DCOR P2REN.x 0 0 Module X OUT 1 1 1 Direction 0: Input 1: Output 1 P2OUT.x 0 P2.5/ROSC Bus Keeper P2SEL.x EN P2IN.x PRODUCT PREVIEW P2DIR.x DVSS DVCC EN Module X IN D P2IE.x P2IRQ.x EN Q P2IFG.x P2SEL.x P2IES.x Set Interrupt Edge Select Table 27. Port P2 (P2.5) Pin Functions PIN NAME (P2.x) x FUNCTION P2.5 P2.5/ROSC (1) (2) (3) 5 (2) (I/O) CONTROL BITS/SIGNALS (1) P2DIR.x P2SEL.x DCOR I: 0; O: 1 0 0 N/A (3) 0 1 0 DVSS 1 1 0 ROSC X X 1 X = Don't care Default after reset (PUC/POR) N/A = Not available or not applicable Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback 63 MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Port P2 Pin Schematic: P2.6, Input/Output With Schmitt Trigger and Crystal Oscillator Input BCSCTL3.LFXT1Sx = 11 LFXT1 Oscillator P2.7/XOUT LFXT1 off 0 LFXT1CLK 1 Pad Logic P2SEL.7 P2REN.6 P2DIR.6 0 PRODUCT PREVIEW 0 Module X OUT 1 0 1 1 Direction 0: Input 1: Output 1 P2OUT.6 DVSS DVCC P2.6/XIN Bus Keeper P2SEL.6 EN P2IN.6 EN Module X IN D P2IE.6 P2IRQ.6 EN Q P2IFG.6 P2SEL.6 P2IES.6 Set Interrupt Edge Select Table 28. Port P2 (P2.6) Pin Functions PIN NAME (P2.x) P2.6/XIN (1) (2) 64 x 6 FUNCTION P2.6 (I/O) XIN (2) CONTROL BITS/SIGNALS (1) P2DIR.x P2SEL.x I: 0; O: 1 0 X 1 X = Don't care Default after reset (PUC/POR) Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Port P2 Pin Schematic: P2.7, Input/Output With Schmitt Trigger and Crystal Oscillator Output BCSCTL3.LFXT1Sx = 11 LFXT1 Oscillator LFXT1 off 0 LFXT1CLK From P2.6/XIN 1 P2.6/XIN Pad Logic P2SEL.6 P2REN.7 0 0 Module X OUT 1 1 1 Direction 0: Input 1: Output 1 P2OUT.7 0 PRODUCT PREVIEW P2DIR.7 DVSS DVCC P2.7/XOUT Bus Keeper P2SEL.7 EN P2IN.7 EN Module X IN D P2IE.7 P2IRQ.7 EN Q P2IFG.7 P2SEL.7 P2IES.7 Set Interrupt Edge Select Table 29. Port P2 (P2.7) Pin Functions PIN NAME (P2.x) XOUT/P2.7 (1) (2) (3) x 7 FUNCTION CONTROL BITS/SIGNALS (1) P2DIR.x P2SEL.x P2.7 (I/O) I: 0; O: 1 0 XOUT (2) X 1 (3) X = Don't care Default after reset (PUC/POR) If the pin XOUT/P2.7 is used as an input a current can flow until P2SEL.7 is cleared due to the oscillator output driver connection to this pin after reset. Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback 65 MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Port P3 Pin Schematic: P3.0, Input/Output With Schmitt Trigger Pad Logic To ADC 10 INCHx = 5 ADC10AE0.5 P3REN.0 P3DIR.0 USCI Direction Control 0 P3OUT.0 0 Module X OUT 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output 1 P3.0/UCB0STE/UCA0CLK/A5 PRODUCT PREVIEW Bus Keeper P3SEL.0 EN P3IN.0 EN Module X IN D Table 30. Port P3 (P3.0) Pin Functions PIN NAME (P1.x) x y FUNCTION P3.0 (2) (I/O) P3.0/UCB0STE/ UCA0CLK/A5 0 5 UCB0STE/UCA0CLK (3) A5 (1) (2) (3) (4) (5) 66 (5) (4) CONTROL BITS/SIGNALS (1) P3DIR.x P3SEL.x ADC10AE0.y I: 0; O: 1 0 0 X 1 0 X X 1 X = Don't care Default after reset (PUC/POR) The pin direction is controlled by the USCI module. UCA0CLK function takes precedence over UCB0STE function. If the pin is required as UCA0CLK input or output, USCI_B0 is forced to 3-wire SPI mode if 4-wire SPI mode is selected. Setting the ADC10AE0.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Port P3 Pin Schematic: P3.1 to P3.5, Input/Output With Schmitt Trigger Pad Logic DVSS P3REN.x P3DIR.x USCI Direction Control 0 P3OUT.x 0 Module X OUT 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output 1 P3.1/UCB0SIMO/UCB0SDA P3.2/UCB0SOMI/UCB0SCL P3.3/UCB0CLK/UCA0STE P3.4/UCA0TXD/UCA0SIMO P3.5/UCA0RXD/UCA0SOMI Bus Keeper P3SEL.x EN P3IN.x EN D PRODUCT PREVIEW Module X IN Table 31. Port P3 (P3.1 to P3.5) Pin Functions PIN NAME (P3.x) P3.1/UCB0SIMO/UCB0SDA P3.2/UCB0SOMI/UCB0SCL P3.3/UCB0CLK/UCA0STE P3.4/UCA0TXD/UCA0SIMO P3.5/UCA0RXD/UCA0SOMI (1) (2) (3) (4) x 1 2 3 4 5 FUNCTION P3.1 (2) (I/O) UCB0SIMO/UCB0SDA (3) P3.2 (2) (I/O) UCB0SOMI/UCB0SCL (3) P3.3 (2) (I/O) UCB0CLK/UCA0STE (3) P3.4 (2) (4) (I/O) UCA0TXD/UCA0SIMO (3) P3.5 (2) (I/O) UCA0RXD/UCA0SOMI (3) CONTROL BITS/SIGNALS (1) P3DIR.x P3SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 X = Don't care Default after reset (PUC/POR) The pin direction is controlled by the USCI module. UCB0CLK function takes precedence over UCA0STE function. If the pin is required as UCB0CLK input or output, USCI_A0 is forced to 3-wire SPI mode even if 4-wire SPI mode is selected. Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback 67 MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Port P3 Pin Schematic: P3.6 to P3.7, Input/Output With Schmitt Trigger Pad Logic To ADC 10 INCHx = y ADC10AE0.y P3REN.x P3DIR.x 0 DVSS 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P3OUT.x DVSS P3.6/A6/OA0I2 P3.7/A7/OA1I2 Bus Keeper PRODUCT PREVIEW P3SEL.x EN P3IN.x EN Module X IN D + OA0/1 − Table 32. Port P3 (P3.6, P3.7) Pin Functions PIN NAME (P3.x) P3.6/A6/OA0I2 P3.7/A7/OA1I2 (1) (2) (3) 68 x 6 7 y 6 7 FUNCTION P3.6 (2) (I/O) CONTROL BITS/SIGNALS (1) P3DIR.x P3SEL.x ADC10AE0.y I: 0; O: 1 0 0 A6/OA0I2 (3) X X 1 P3.7 (2) (I/O) I: 0; O: 1 0 0 X X 1 A7/OA1I2 (3) X = Don't care Default after reset (PUC/POR) Setting the ADC10AE0.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Port P4 Pin Schematic: P4.0 to P4.2, Input/Output With Schmitt Trigger Timer_B Output Tristate Logic P4.6/TBOUTH/A15/OA1I3 P4SEL.6 P4DIR.6 ADC10AE1.7 Pad Logic P4REN.x 0 0 Module X OUT 1 1 1 Direction 0: Input 1: Output 1 P4OUT.x 0 DVCC P4.0/TB0 P4.1/TB1 P4.2/TB2 Bus Keeper P4SEL.x PRODUCT PREVIEW P4DIR.x DVSS EN P4IN.x EN Module X IN D Table 33. Port P4 (P4.0 to P4.2) Pin Functions PIN NAME (P4.x) x FUNCTION P4.0 (1) (I/O) P4.0/TB0 0 Timer_B3.CCI0A Timer_B3.TB0 P4.1 (1) (I/O) P4.1/TB1 1 Timer_B3.CCI1A Timer_B3.TB1 (1) 2 P4DIR.x P4SEL.x I: 0; O: 1 0 0 1 1 1 I: 0; O: 1 0 0 1 1 1 I: 0; O: 1 0 Timer_B3.CCI2A 0 1 Timer_B3.TB2 1 1 P4.2 (1) (I/O) P4.2/TB2 CONTROL BITS/SIGNALS Default after reset (PUC/POR) Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback 69 MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Port P4 Pin Schematic: P4.3 to P4.4, Input/Output With Schmitt Trigger Timer_B Output Tristate Logic P4.6/TBOUTH/A15/OA1I3 P4SEL.6 P4DIR.6 ADC10AE1.7 Pad Logic To ADC 10 † INCHx = 8+y ADC10AE1.y P4REN.x PRODUCT PREVIEW P4DIR.x 0 0 Module X OUT 1 0 1 1 Direction 0: Input 1: Output 1 P4OUT.x DVSS DVCC P4.3/TB0/A12/OA0O P4.4/TB1/A13/OA1O Bus Keeper P4SEL.x EN P4IN.x EN Module X IN D + OA0/1 − OAADCx OAPMx 1 OAADCx = 01 and OAPMx > 00 To OA0/1 Feedback Network 1 † If OAADCx = 11 and not OAFCx = 000, the ADC input A12 or A13 is internally connected to the OA0 or OA1 output, respectively, and the connections from the ADC and the operational amplifiers to the pad are disabled. 70 Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Table 34. Port P4 (P4.3 to P4.4) Pin Functions PIN NAME (P4.x) x y FUNCTION P4.3 P4.3/TB0/A12/OA0O 3 4 4 5 ADC10AE1.y 0 0 0 1 0 Timer_B3.TB0 1 1 0 A12/OA0O (3) X X 1 I: 0; O: 1 0 0 Timer_B3.CCI1B (I/O) 0 1 0 Timer_B3.TB1 1 1 0 X X 1 A13/OA1O (3) X = Don't care Default after reset (PUC/POR) Setting the ADC10AE1.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. PRODUCT PREVIEW (1) (2) (3) P4SEL.x I: 0; O: 1 (2) (I/O) P4DIR.x Timer_B3.CCI0B P4.4 P4.4/TB1/A13/OA1O (2) CONTROL BITS/SIGNALS (1) Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback 71 MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Port P4 Pin Schematic: P4.5, Input/Output With Schmitt Trigger Timer_B Output Tristate Logic P4.6/TBOUTH/A15/OA1I3 P4SEL.6 P4DIR.6 ADC10AE1.7 Pad Logic To ADC 10 INCHx = 14 ADC10AE1.6 P4REN.5 PRODUCT PREVIEW P4DIR.5 0 0 Module X OUT 1 0 1 1 Direction 0: Input 1: Output 1 P4OUT.5 DVSS DVCC P4.5/TB3/A14/OA0I3 Bus Keeper P4SEL.5 EN P4IN.5 EN Module X IN D + OA0 − Table 35. Port P4 (P4.5) Pin Functions PIN NAME (P4.x) x y FUNCTION P4.5 P4.5/TB3/A14/OA0I3 (1) (2) (3) 72 5 6 (2) (I/O) CONTROL BITS/SIGNALS (1) P4DIR.x P4SEL.x ADC10AE1.y I: 0; O: 1 0 0 Timer_B3.TB2 1 1 0 A14/OA0I3 (3) X X 1 X = Don't care Default after reset (PUC/POR) Setting the ADC10AE1.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Port P4 Pin Schematic: P4.6, Input/Output With Schmitt Trigger Pad Logic To ADC 10 INCHx = 15 ADC10AE1.7 P4REN.6 0 P4OUT.6 0 1 DVCC 1 1 Direction 0: Input 1: Output 1 Module X OUT 0 P4.6/TBOUTH/ A15/OA1I3 Bus Keeper P4SEL.6 PRODUCT PREVIEW P4DIR.6 DVSS EN P4IN.6 EN Module X IN D + OA1 − Table 36. Port P4 (P4.6) Pin Functions PIN NAME (P4.x) x y FUNCTION P4.6 P4.6/TBOUTH/A15/OA1I3 (1) (2) (3) 6 7 (2) (I/O) CONTROL BITS/SIGNALS (1) P4DIR.x P4SEL.x ADC10AE1.y I: 0; O: 1 0 0 TBOUTH 0 1 0 DVSS 1 1 0 A15/OA1I3 (3) X X 1 X = Don't care Default after reset (PUC/POR) Setting the ADC10AE1.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback 73 MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com Port P4 Pin Schematic: P4.7, Input/Output With Schmitt Trigger Pad Logic DVSS P4REN.x P4DIR.x 0 P4OUT.x 0 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 Module X OUT DVSS P4.7/TBCLK Bus Keeper P4SEL.x EN P4IN.x EN PRODUCT PREVIEW Module X IN D Table 37. Port P4 (Pr.7) Pin Functions PIN NAME (P4.x) x FUNCTION P4.7 P4.7/TBCLK (1) 74 7 (1) (I/O) CONTROL BITS/SIGNALS P4DIR.x P4SEL.x I: 0; O: 1 0 Timer_B3.TBCLK 0 1 DVSS 1 1 Default after reset (PUC/POR) Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com JTAG Fuse Check Mode MSP430 devices that have the fuse on the TEST terminal have a fuse check mode that tests the continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check current, ITF , of 1 mA at 3 V, 2.5 mA at 5 V can flow from the TEST pin to ground if the fuse is not burned. Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption. When the TEST pin is again taken low after a test or programming session, the fuse check mode and sense currents are terminated. Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse check mode has the potential to be activated. The fuse check current flows only when the fuse check mode is active and the TMS pin is in a low state (see Figure 28). Therefore, the additional current flow can be prevented by holding the TMS pin high (default condition). Time TMS Goes Low After POR PRODUCT PREVIEW TMS ITF ITEST Figure 28. Fuse Check Mode Current NOTE The CODE and RAM data protection is ensured if the JTAG fuse is blown and the 256-bit bootloader access key is used. Also, see the Bootstrap Loader section for more information. Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback 75 MSP430F22x2-Q1 MSP430F22x4-Q1 SLAS770 – NOVEMBER 2011 www.ti.com REVISION HISTORY Literature Number SLAS770 Summary Product Preview release PRODUCT PREVIEW 76 Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated PACKAGE OPTION ADDENDUM www.ti.com 14-Oct-2011 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/ Ball Finish MSL Peak Temp (3) Samples (Requires Login) MSP430F2232TDAQ1 PREVIEW TSSOP DA 38 1000 TBD Call TI Call TI MSP430F2232TRHATQ1 PREVIEW VQFN RHA 40 250 TBD Call TI Call TI MSP430F2234TDAQ1 PREVIEW TSSOP DA 38 40 TBD Call TI Call TI MSP430F2234TRHATQ1 PREVIEW VQFN RHA 40 250 TBD Call TI Call TI MSP430F2252TDAQ1 PREVIEW TSSOP DA 38 40 TBD Call TI Call TI MSP430F2252TRHATQ1 PREVIEW VQFN RHA 40 250 TBD Call TI Call TI MSP430F2254TDAQ1 PREVIEW TSSOP DA 38 1000 TBD Call TI Call TI MSP430F2254TRHATQ1 PREVIEW VQFN RHA 40 250 TBD Call TI Call TI MSP430F2272TDAQ1 PREVIEW TSSOP DA 38 1000 TBD Call TI Call TI MSP430F2272TRHATQ1 PREVIEW VQFN RHA 40 250 TBD Call TI Call TI MSP430F2274TDAQ1 PREVIEW TSSOP DA 38 1000 TBD Call TI Call TI MSP430F2274TRHATQ1 PREVIEW VQFN RHA 40 250 TBD Call TI Call TI (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com 14-Oct-2011 continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF MSP430F2232-Q1, MSP430F2234-Q1, MSP430F2252-Q1, MSP430F2254-Q1, MSP430F2272-Q1, MSP430F2274-Q1 : • Catalog: MSP430F2232, MSP430F2234, MSP430F2252, MSP430F2254, MSP430F2272, MSP430F2274 • Enhanced Product: MSP430F2274-EP NOTE: Qualified Version Definitions: • Catalog - TI's standard catalog product • Enhanced Product - Supports Defense, Aerospace and Medical Applications Addendum-Page 2 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Audio www.ti.com/audio Communications and Telecom www.ti.com/communications Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive Microcontrollers microcontroller.ti.com Video and Imaging RFID www.ti-rfid.com OMAP Mobile Processors www.ti.com/omap Wireless Connectivity www.ti.com/wirelessconnectivity TI E2E Community Home Page www.ti.com/video e2e.ti.com Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated