MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 MIXED SIGNAL MICROCONTROLLER FEATURES 1 • 23 • • • • • • • • Low Supply Voltage Range: 3.6 V Down to 1.8 V Ultralow Power Consumption – Active Mode (AM): 180 µA/MHz – Standby Mode (LPM3 WDT Mode, 3 V): 1.1 µA – Off Mode (LPM4 RAM Retention, 3 V): 0.9 µA – Shutdown Mode (LPM4.5, 3 V): 0.25 µA Wake-Up From Standby Mode in Less Than 5 µs 16-Bit RISC Architecture, Extended Memory, 40-ns Instruction Cycle Time Flexible Power Management System – Fully Integrated LDO With Programmable Regulated Core Supply Voltage – Supply Voltage Supervision, Monitoring, and Brownout Unified Clock System – FLL Control Loop for Frequency Stabilization – Low-Power Low-Frequency Internal Clock Source (VLO) – Low-Frequency Trimmed Internal Reference Source (REFO) – 32-kHz Crystals (XT1) – High-Frequency Crystals up to 25 MHz (XT1) Hardware Multiplier Supporting 32-Bit Operations Three Channel DMA Up to Twelve 5-V Tolerant Digital Push/Pull I/Os With Up to 20-mA Drive Strength(1) • • • • • • • • • • (1) 16-Bit Timer TD0 With Three Capture/Compare Registers and Support of High-Resolution Mode 16-Bit Timer TD1 With Three Capture/Compare Registers and Support of High-Resolution Mode 16-Bit Timer TA0 With Three Capture/Compare Registers Universal Serial Communication Interfaces(1) – USCI_A0 Supporting – Enhanced UART Supporting AutoBaudrate Detection – IrDA Encoder and Decoder – Synchronous SPI – USCI_B0 Supporting – I2C™ – Synchronous SPI 10-Bit 200-ksps Analog-to-Digital (A/D) Converter – Internal Reference – Sample-and-Hold – Autoscan Feature – Up to Eight External Channels, Two Internal Channels, Including Temperature Sensor(1) Up to 16-Channel On-Chip Comparator Including an Ultralow-Power Mode(1) Serial Onboard Programming, No External Programming Voltage Needed Family Members are Summarized in Table 1 Available in 40-Pin QFN (RSB) and 38-Pin TSSOP (DA) Packages (See Table 2) For Complete Module Descriptions, See the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208) (1) Full functionality in the 40-pin QFN package options. For the available features of other packages see Terminal Functions. 1 2 3 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. MSP430 is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com DESCRIPTION The Texas Instruments MSP430™ family of ultralow-power microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes, is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake up from low-power modes to active mode in less than 5 µs. The MSP430F51x2 series are microcontroller configurations with two 16-bit high-resolution timers, universal serial communication interfaces (USCI_A0 and USCI_B0), 32-bit hardware multiplier, a high performance 10-bit analog-to-digital (A/D) converter, on-chip comparator, three-channel DMA, 5-V tolerant I/Os, and up to 29 I/O pins. The MSP430F51x1 series are microcontroller configurations with two 16-bit high-resolution timers, universal serial communication interfaces (USCI_A0 and USCI_B0), 32-bit hardware multiplier, on-chip comparator, threechannel DMA, 5-V tolerant I/Os, and up to 29 I/O pins. Typical applications for these devices include analog and digital sensor systems, LED lighting, digital power supply, motor control, remote controls, thermostats, digital timers, hand-held meters, etc. Family members available are summarized in Table 1. Table 1. Family Members USCI (1) (2) Device Flash (KB) SRAM (KB) MSP430F5172 32 2 3 MSP430F5152 16 2 MSP430F5132 8 MSP430F5171 ADC10_A (Ch) Comp_B (Ch) I/O 9 ext, 2 int 16 31 40 QFN 8 ext, 2 int 15 29 38 TSSOP 9 ext, 2 int 16 31 40 QFN 8 ext, 2 int 15 29 38 TSSOP 9 ext, 2 int 16 31 40 QFN 8 ext, 2 int 15 29 38 TSSOP 16 31 40 QFN 15 29 38 TSSOP 16 31 40 QFN 15 29 38 TSSOP 16 31 40 QFN 15 29 38 TSSOP Channel A: UART, IrDA, SPI Channel B: SPI, I2C 3, 3 1 1 3 3, 3 1 1 1 3 3, 3 1 1 32 2 3 3, 3 1 1 - MSP430F5151 16 2 3 3, 3 1 1 - MSP430F5131 8 1 3 3, 3 1 1 - Timer_A (1) Timer_D (2) Package Each number in the sequence represents an instantiation of Timer_A with its associated number of capture compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively. Each number in the sequence represents an instantiation of Timer_D with its associated number of capture compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_D, the first instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively. Table 2. Ordering Information (1) TA –40°C to 85°C (1) (2) 2 PACKAGED DEVICES (2) PLASTIC 38-PIN DA (TSSOP) PLASTIC 40-PIN RSB (QFN) MSP430F5132IDA MSP430F5132IRSB MSP430F5152IDA MSP430F5152IRSB MSP430F5172IDA MSP430F5172IRSB MSP430F5131IDA MSP430F5131IRSB MSP430F5151IDA MSP430F5151IRSB MSP430F5171IDA MSP430F5171IRSB For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com. Package drawings, thermal data, and symbolization are available at www.ti.com/packaging. Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 Functional Block Diagram, MSP430F51x2 DVCC AVCC RST/NMI DVSS AVSS XIN XOUT Unified Clock System ACLK SMCLK DVIO DVSS 32KB 16KB 8KB 2KB 2KB 1KB Power Management Flash RAM LDO SVM/SVS Brownout P1.x 8 P2.x 8 P3.x 8 PJ.x 7 SYS I/O Ports I/O Ports I/O Ports I/O Ports Watchdog P1 8 I/Os 2x 5V 20mA Interrupt and Wakeup Pullup/down Resistors P2 8 I/Os 8x 5V 20mA Interrupt and Wakeup Pullup/down Resistors P3 8 I/Os 2x 5V 20mA PJ 7 I/Os Pullup/down Resistors Pullup/down Resistors Port Mapping Controller MCLK CPUXV2 and Working Registers 3 DMA Channel EEM (S: 3+1) TD1 TD0 JTAG/ SBW Interface TA0 MPY32 Timer_A 3 CC Registers COMP_B USCI Timer_D Timer_D ≤256 MHz ≤256 MHz A0: UART, 3 CC 3 CC IrDA, SPI Registers Registers With Buffer With Buffer EventControl EventControl B0: SPI, I2C ADC10_A 10 Bit 200 KSPS 9 Channels 16 Channels High, Medium, and Ultralow Power Modes REF CRC16 Voltage Reference Functional Block Diagram, MSP430F51x1 DVCC AVCC RST/NMI DVSS AVSS XIN XOUT Unified Clock System ACLK SMCLK 32KB 16KB 8KB Flash DVIO DVSS 2KB 2KB 1KB Power Management RAM LDO SVM/SVS Brownout P1.x 8 P2.x 8 P3.x 8 PJ.x 7 SYS I/O Ports I/O Ports I/O Ports I/O Ports Watchdog P1 8 I/Os 2x 5V 20mA Interrupt and Wakeup Pullup/down Resistors P2 8 I/Os 8x 5V 20mA Interrupt and Wakeup Pullup/down Resistors P3 8 I/Os 2x 5V 20mA PJ 7 I/Os Pullup/down Resistors Pullup/down Resistors Port Mapping Controller MCLK CPUXV2 and Working Registers 3 DMA Channel EEM (S: 3+1) TD0 JTAG/ SBW Interface TA0 MPY32 Timer_A 3 CC Registers TD1 USCI Timer_D Timer_D ≤256 MHz ≤256 MHz A0: UART, 3 CC 3 CC IrDA, SPI Registers Registers With Buffer With Buffer EventControl EventControl B0: SPI, I2C Copyright © 2010–2013, Texas Instruments Incorporated COMP_B 16 Channels High, Medium, and Ultralow Power Modes REF CRC16 Voltage Reference Submit Documentation Feedback 3 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com AVSS PJ.5/XIN PJ.4/XOUT AVCC P3.7/PM_TA0.0/A6*/CB10 P3.6/PM_TA0.1/A7*/VEREF-*/CB11 P3.5/PM_TA0.2/A8*/VEREF+*/CB12 RST/NMI/SBWTDIO TEST/SBWTCK P3.4/PM_TD0CLK/PM_MCLK Pin Designation, MSP430F51x2IRSB and MSP430F51x1IRSB * Only MSP430F51x2 devices 4 Submit Documentation Feedback 1 39 38 37 36 35 34 33 32 2 3 4 RSB PACKAGE 5 (TOP VIEW) 6 7 8 9 12 13 14 15 16 17 18 19 29 28 27 26 25 24 23 22 P3.3/PM_TA0CLK/PM_CBOUT/CB13 P3.2/PM_TD0.0/PM_SMCLK/CB14 PJ.6/TD1CLK/TD0.1/CB15 DVCC DVSS VCORE P3.1/PM_TEC1FLT0/PM_TD1.2 P3.0/PM_TEC1FLT2/PM_TD1.1 P2.7/PM_TEC1CLR/PM_TEC1FLT1/PM_TD1.0 P2.6/PM_TEC0FLT1/PM_TD0.2 P1.6/PM_TD0.0 P1.7/PM_TD0.1 P2.0/PM_TD0.2 P2.1/PM_TD1.0 P2.2/PM_TD1.1 P2.3/PM_TD1.2 DVIO DVSS P2.4/PM_TEC0CLR/PM_TEC0FLT2/PM_TD0.0 P2.5/PM_TEC0FLT0/PM_TD0.1 P1.0/PM_UCA0CLK/PM_UCB0STE/A0*/CB0 P1.1/PM_UCA0TXD/PM_UCA0SIMO/A1*/CB1 P1.2/PM_UCA0RXD/PM_UCA0SOMI/A2*/CB2 P1.3/PM_UCB0CLK/PM_UCA0STE/A3*/CB3 P1.4/PM_UCB0SIMO/PM_UCB0SDA/A4*/CB4 P1.5/PM_UCB0SOMI/PM_UCB0SCL/A5*/CB5 PJ.0/SMCLK/TDO/CB6 PJ.1/MCLK/TDI/TCLK/CB7 PJ.2/ADC10CLK/TMS/CB8 PJ.3/ACLK/TCK/CB9 Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 Pin Designation, MSP430F51x2IDA and MSP430F51x1IDA AVCC PJ.4/XOUT PJ.5/XIN AVSS P1.0/PM_UCA0CLK/PM_UCB0STE/A0*/CB0 P1.1/PM_UCA0TXD/PM_UCA0SIMO/A1*/CB1 P1.2/PM_UCA0RXD/PM_UCA0SOMI/A2*/CB2 P1.3/PM_UCB0CLK/PM_UCA0STE/A3*/CB3 P1.4/PM_UCB0SIMO/PM_UCB0SDA/A4*/CB4 P1.5/PM_UCB0SOMI/PM_UCB0SCL/A5*/CB5 PJ.0/SMCLK/TDO/CB6 PJ.1/MCLK/TDI/TCLK/CB7 PJ.2/ADC10CLK/TMS/CB8 PJ.3/ACLK/TCK/CB9 P1.6/PM_TD0.0 P1.7/PM_TD0.1 P2.0/PM_TD0.2 P2.1/PM_TD1.0 P2.2/PM_TD1.1 * Only MSP430F51x2 Copyright © 2010–2013, Texas Instruments Incorporated 1 38 2 37 3 36 4 35 5 34 6 33 7 32 8 31 9 DA PACKAGE 30 10 (TOP VIEW) 29 11 28 12 27 13 26 14 25 15 24 16 23 17 22 18 21 19 20 P3.6/PM_TA0.1/A7*/VEREF-*-/CB11 P3.5/PM_TA0.2/A8*/VEREF+*/CB12 RST/NMI/SBWTDIO TEST/SBWTCK P3.3/PM_TA0CLK/PM_CBOUT/CB13 P3.2/PM_TD0.0/PM_SMCLK/CB14 PJ.6/TD1CLK/TD0.1/CB15 DVCC DVSS VCORE P3.1/PM_TEC1FLT0/PM_TD1.2 P3.0/PM_TEC1FLT2/PM_TD1.1 P2.7/PM_TEC1CLR/PM_TEC1FLT1/PM_TD1.0 P2.6/PM_TEC0FLT1/PM_TD0.2 P2.5/PM_TEC0FLT0/PM_TD0.1 P2.4/PM_TEC0CLR/PM_TEC0FLT2/PM_TD0.0 DVSS DVIO P2.3/PM_TD1.2 Submit Documentation Feedback 5 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com Terminal Functions Table 3. Terminal Functions TERMINAL NAME P1.0/ PM_UCA0CLK/ <br/> PM_UCB0STE/ A0/ CB0 (2) P1.1/ PM_UCA0TXD/ PM_UCA0SIMO/ A1/ CB1 (2) P1.2/ PM_UCA0RXD/ PM_UCA0SOMI/ A2/ CB2 (2) P1.3/ PM_UCB0CLK/ <br/> PM_UCA0STE/ A3/ CB3 (2) P1.4/ PM_UCB0SIMO/ PM_UCB0SDA/ A4/ CB4 (2) P1.5/ PM_UCB0SOMI/ PM_UCB0SCL/ A5/ CB5 (2) PJ.0/ SMCLK/ TDO/ CB6 PJ.1/ MCLK/ TDI/TCLK/ CB7 I/O (1) NO. RSB 1 2 3 4 5 6 7 8 DESCRIPTION DA 5 6 7 8 9 10 11 12 I/O General-purpose digital I/O Clock signal input – USCI_A0 SPI slave mode Clock signal output – USCI_A0 SPI master mode Slave transmit enable – USCI_B0 SPI mode Analog input A0 – 10-bit ADC (see ) Comparator_B Input 0 I/O General-purpose digital I/O Transmit data – USCI_A0 UART mode Slave in, master out – USCI_A0 SPI mode Analog input A1 – 10-bit ADC (2) Comparator_B Input 1 I/O General-purpose digital I/O Receive data – USCI_A0 UART mode Slave out, master in – USCI_A0 SPI mode Analog input A2 – 10-bit ADC (2) Comparator_B Input 2 I/O General-purpose digital I/O Clock signal input – USCI_B0 SPI slave mode Clock signal output – USCI_B0 SPI master mode Slave transmit enable – USCI_A0 SPI mode Analog input A3 – 10-bit ADC (2) Comparator_B Input 3 I/O General-purpose digital I/O Slave in, master out – USCI_B0 SPI mode I2C data – USCI_B0 I2C mode Analog input A4 – 10-bit ADC (2) Comparator_B Input 4 I/O General-purpose digital I/O Slave out, master in – USCI_B0 SPI mode I2C clock – USCI_B0 I2C mode Analog input A5 – 10-bit ADC (2) Comparator_B Input 5 I/O General-purpose digital I/O SMCLK clock output Test data output port Comparator_B Input 6 I/O General-purpose digital I/O MCLK clock output Test data input or test clock input Comparator_B Input 7 PJ.2/ ADC10CLK/ TMS/ CB8 9 13 I/O General-purpose digital I/O ADC10_A clock output Test mode select Comparator_B Input 8 PJ.3/ ACLK/ TCK/ CB9 10 14 I/O General-purpose digital I/O ACLK output port Test clock Comparator_B Input 9 P1.6/ PM_TD0.0 11 15 I/O, DVIO General-purpose digital I/O TD0 CCR0 compare output/capture input P1.7/ PM_TD0.1 12 16 I/O, DVIO General-purpose digital I/O TD0 CCR1 compare output/capture input P2.0/ PM_TD0.2 13 17 I/O, DVIO General-purpose digital I/O TD0 CCR2 compare output/capture input (1) (2) 6 I = input, O = output, N/A = not available on this package offering The ADC10_A module is available on MSP430F51x2 devices. The secondary pin functions Ax (ADC10_A channel x) available only in MSP430F51x2 devices. Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 Table 3. Terminal Functions (continued) TERMINAL NAME I/O (1) NO. DESCRIPTION RSB DA P2.1/ PM_TD1.0 14 18 I/O, DVIO General-purpose digital I/O TD1 CCR0 compare output/capture input P2.2/ PM_TD1.1 15 19 I/O, DVIO General-purpose digital I/O TD1 CCR1 compare output/capture input P2.3/ PM_TD1.2 16 20 I/O, DVIO General-purpose digital I/O TD1 CCR2 compare output/capture input DVIO 17 21 5V tolerant digital I/O power supply DVSS 18 22 Digital ground supply General-purpose digital I/O TD0 external clear input/TD0 fault input channel 2 (controlled by module input enable) <br/> TD0 CCR0 compare output P2.4/ PM_TEC0CLR/ PM_TEC0FLT2/ PM_TD0.0 19 23 I/O, DVIO P2.5/ PM_TEC0FLT0/ PM_TD0.1 20 24 General-purpose digital I/O I/O, DVIO TD0 fault input channel 0 TD0 CCR1 compare output P2.6/ PM_TEC0FLT1/ PM_TD0.2 21 25 General-purpose digital I/O I/O, DVIO TD0 fault input channel 1 TD0 CCR2 compare output P2.7/ PM_TEC1CLR/ PM_TEC1FLT1/ PM_TD1.0 22 26 I/O, DVIO P3.0/ PM_TEC1FLT2 / PM_TD1.1 23 27 General-purpose digital I/O I/O, DVIO TD1 fault input channel 2 TD1 CCR1 compare output P3.1/ PM_TEC1FLT0/ PM_TD1.2 24 28 General-purpose digital I/O I/O, DVIO TD1 fault input channel 0 TD1 CCR2 compare output VCORE 25 29 Regulated core power supply DVSS 26 30 Digital ground supply DVCC 27 31 Digital power supply PJ.6/ TD1CLK/ TD0.1/ CB15 28 32 I/O General-purpose digital I/O TD1 clock input TD0 CCR1 compare output Comparator_B Input 15 P3.2/ PM_TD0.0/ PM_SMCLK/ CB14 29 33 I/O General-purpose digital I/O TD0 CCR0 capture input SMCLK output Comparator_B Input 14 P3.3/ PM_TA0CLK/ PM_CBOUT/ CB13 30 34 I/O General-purpose digital I/O TA0 clock input Comparator_B output Comparator_B Input 13 P3.4/ PM_TD0CLK/ PM_MCLK 31 - I/O General-purpose digital I/O TD0 clock input MCLK output TEST/ SBWTCK 32 35 Test mode pin – select digital I/O on JTAG pins Spy-Bi-Wire input clock RST/ NMI/ SBWTDIO 33 36 Reset input active low Non-maskable interrupt input Spy-By-Wire data input/output General-purpose digital I/O TD1 external clear/TD1 fault input channel 1 (controlled by module input enable) <br/> TD1 CCR0 compare output Copyright © 2010–2013, Texas Instruments Incorporated Submit Documentation Feedback 7 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com Table 3. Terminal Functions (continued) TERMINAL NAME P3.5/ PM_TA0.2/ A8 (3) VEREF+/ CB12 I/O (1) NO. RSB 34 DESCRIPTION DA 37 I/O General-purpose digital I/O TA0 CCR2 compare output/capture input Analog input A8 – 10-bit ADC (3) Positive terminal for the ADC's reference voltage for an external applied reference voltage Comparator_B Input 12 P3.6/ PM_TA0.1/ A7 (3)/ VEREF-/ CB11 35 38 I/O General-purpose digital I/O TA0 CCR1 compare output/capture input Analog input A7 – 10-bit ADC (3) Negative terminal for the ADC's reference voltage for an external applied reference voltage Comparator_B Input 11 P3.7/ PM_TA0.0/ A6 (3)/ CB10 36 - I/O General-purpose digital I/O TA0 CCR0 compare output/capture input Analog input A6 – 10-bit ADC (3) Comparator_B Input 10 AVCC 37 1 PJ.4/ XOUT 38 2 I/O General-purpose digital I/O Output terminal of crystal oscillator PJ.5/ XIN 39 3 I/O General-purpose digital I/O Input terminal for crystal oscillator AVSS 40 4 - NA QFN pad (3) 8 Analog power supply Analog ground supply Recommended to connect to DVSS externally The ADC10_A module is available on MSP430F51x2 devices. The secondary pin functions Ax (ADC10_A channel x) available only in MSP430F51x2 devices. Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 SHORT-FORM DESCRIPTION CPU The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. Program Counter PC/R0 Stack Pointer SP/R1 Status Register SR/CG1/R2 Constant Generator CG2/R3 General-Purpose Register R4 General-Purpose Register R5 General-Purpose Register R6 General-Purpose Register R7 General-Purpose Register R8 General-Purpose Register R9 Peripherals are connected to the CPU using data, address, and control buses and can be handled with all instructions. General-Purpose Register R10 General-Purpose Register R11 Instruction Set General-Purpose Register R12 The instruction set consists of the original 51 instructions with three formats and seven address modes and additional instructions for the expanded address range. Each instruction can operate on word and byte data. Table 4 shows examples of the three types of instruction formats; Table 5 shows the address modes. General-Purpose Register R13 General-Purpose Register R14 General-Purpose Register R15 The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-toregister operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers. Table 4. Instruction Word Formats FORMAT EXAMPLE Dual operands, source-destination ADD Single operands, destination only R4 + R5 → R5 R8 PC → (TOS), R8 → PC CALL Relative jump, un/conditional OPERATION R4,R5 JNE Jump-on-equal bit = 0 Table 5. Address Mode Descriptions (1) ADDRESS MODE S (1) D (1) Register + + MOV Rs,Rd MOV R10,R11 R10 → R11 Indexed + + MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) M(2+R5) → M(6+R6) Symbolic (PC relative) + + MOV EDE,TONI Absolute + + MOV & MEM, & TCDAT Indirect + MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) → M(Tab+R6) Indirect autoincrement + MOV @Rn+,Rm MOV @R10+,R11 M(R10) → R11 R10 + 2 → R10 Immediate + MOV #X,TONI MOV #45,TONI #45 → M(TONI) SYNTAX EXAMPLE OPERATION M(EDE) → M(TONI) M(MEM) → M(TCDAT) S = source, D = destination Copyright © 2010–2013, Texas Instruments Incorporated Submit Documentation Feedback 9 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com Operating Modes The MSP430 has one active mode and six software-selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request, and restore back to the lowpower mode on return from the interrupt program. The following seven operating modes can be configured by software: • Active mode (AM) – All clocks are active • Low-power mode 0 (LPM0) – CPU is disabled – ACLK and SMCLK remain active, MCLK is disabled – FLL loop control remains active • Low-power mode 1 (LPM1) – CPU is disabled – FLL loop control is disabled – ACLK and SMCLK remain active, MCLK is disabled • Low-power mode 2 (LPM2) – CPU is disabled – MCLK and FLL loop control and DCOCLK are disabled – DCO's dc-generator remains enabled – ACLK remains active • Low-power mode 3 (LPM3) – CPU is disabled – MCLK, FLL loop control, and DCOCLK are disabled – DCO's dc-generator is disabled – ACLK remains active • Low-power mode 4 (LPM4) – CPU is disabled – ACLK is disabled – MCLK, FLL loop control, and DCOCLK are disabled – DCO's dc-generator is disabled – Crystal oscillator is stopped – Complete data retention • Low-power mode 5 (LPM4.5) – Internal regulator disabled – No data retention – Wakeup from RST/NMI, P1, and P2 10 Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 Interrupt Vector Addresses The interrupt vectors and the power-up start address are located in the address range 0FFFFh to 0FF80h. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. Table 6. Interrupt Sources, Flags, and Vectors SYSTEM INTERRUPT WORD ADDRESS PRIORITY Reset 0FFFEh 63, highest SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG, VLRLIFG, VLRHIFG, VMAIFG, JMBNIFG, JMBOUTIFG (SYSSNIV) (1) (Non)maskable 0FFFCh 62 User NMI NMI Oscillator Fault Flash Memory Access Violation NMIIFG, OFIFG, ACCVIFG (SYSUNIV) (1) (Non)maskable 0FFFAh 61 Comp_B CBIIFG, CBIFG (CBIV) (1) Maskable 0FFF8h 60 Maskable 0FFF6h 59 Maskable 0FFF4h 58 INTERRUPT SOURCE System Reset Power-Up External Reset Watchdog Timeout, Key Violation Flash Memory Key Violation System NMI PMM Vacant Memory Access JTAG Mailbox TEC0 INTERRUPT FLAG WDTIFG, KEYV (SYSRSTIV) (1) (2) (2) (3) TEC0FLTIFG, TEC0EXCLRIFG, TEC0AXCLRIFG (1) (3) TD0 TD0CCR0 CCIFG0 (3) TD0 TD0CCR1 CCIFG1, ... TD0CCR2 CCIFG2, TD0IFG, TD0HFLIFG, TD0HFHIFG, TD0HLKIFG, TD0HUNLKIFG (TD0IV) (1) (3) Maskable 0FFF2h 57 Watchdog Timer_A Interval Timer Mode WDTIFG Maskable 0FFF0h 56 USCI_A0 Receive or Transmit UCA0RXIFG, UCA0TXIFG (UCA0IV) (1) (3) Maskable 0FFEEh 55 USCI_B0 Receive or Transmit UCB0RXIFG, UCB0TXIFG, I2C Status Interrupt Flags (UCB0IV) (1) (3) Maskable 0FFECh 54 ADC10_A (MSP430F51x2 only) ADC10IFG0, ADC10INIFG, ADC10LOIFG, ADC10HIIFG, ADC10TOVIFG, ADC10OVIFG (ADC10IV) (1) (3) Maskable 0FFEAh 53 TA0 TA0CCR0 CCIFG0 (3) Maskable 0FFE8h 52 TA0 TA0CCR1 CCIFG1 ... TA0CCR2 CCIFG2, TA0IFG (TA0IV) (1) (3) Maskable 0FFE6h 51 DMA DMA0IFG, DMA1IFG, DMA2IFG (DMAIV) (1) Maskable 0FFE4h 50 TEC1 TEC1FLTIFG, TEC1EXCLRIFG, TEC1AXCLRIFG (1) (3) Maskable 0FFE2 49 TD1 TD1CCR0 CCIFG0 (3) Maskable 0FFE0h 48 TD1 TD1CCR1 CCIFG1 ... TD1CCR2 CCIFG2, TD1IFG, TD1HFLIFG, TD1HFHIFG, TD1HLKIFG, TD1HUNLKIFG (TD1IV) (1) (3) Maskable 0FFDEh 47 (3) Maskable 0FFDCh 46 (1) (3) Maskable 0FFDAh 45 0FFD8h 44 ⋮ ⋮ 0FF80h 0, lowest I/O Port P1 I/O Port P2 P1IFG.0 to P1IFG.7 (P1IV) (1) P2IFG.0 to P2IFG.7 (P2IV) Reserved (1) (2) (3) (4) (3) Reserved (4) Multiple source flags A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space. (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it. Interrupt flags are located in the module. Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain compatibility with other devices, it is recommended to reserve these locations. Copyright © 2010–2013, Texas Instruments Incorporated Submit Documentation Feedback 11 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com Memory Organization Memory Main: interrupt vector Main: code memory Size Flash Flash MSP430F5132, MSP430F5131 MSP430F5152, MSP430F5151 MSP430F5172, MSP430F5171 8KB 00FFFFh to 00FF80h 00FFFFh to 00E000h 16KB 00FFFFh to 00FF80h 00FFFFh to 00C000h 32KB 00FFFFh to 00FF80h 00FFFFh to 008000h Size RAM 1KB 2KB 2KB 001FFFh to 001C00h 0023FFh to 001C00h 0023FFh to 001C00h 512 Byte 512 Byte 512 Byte Info A 128B 0019FF to 001980h 128B 0019FF to 001980h 128B 0019FF to 001980h Info B 128B 00197F to 001900h 128B 00197F to 001900h 128B 00197F to 001900h Info C 128B 0018FF to 001880h 128B 0018FF to 001880h 128B 0018FF to 001880h Info D 128B 00187F to 001800h 128B 00187F to 001800h 128B 00187F to 001800h Sector 0 Size Information memory (Flash) Size Bootstrap loader (BSL) memory Peripherals 2K 2KB 2KB BSL 3 512B 0017FFh to 001600h 512B 0017FFh to 001600h 512B 0017FFh to 001600h BSL 2 512B 0015FFh to 001400h 512B 0015FFh to 001400h 512B 0015FFh to 001400h BSL 1 512B 0013FFh to 001200h 512B 0013FFh to 001200h 512B 0013FFh to 001200h BSL 0 512B 0011FFh to 001000h 512B 0011FFh to 001000h 512B 0011FFh to 001000h Size Flash 4KB 000FFFh to 000000h 4KB 000FFFh to 000000h 4KB 000FFFh to 000000h Bootstrap Loader (BSL) The BSL enables users to program the flash memory or RAM using a UART serial interface. Access to the device memory via the BSL is protected by user-defined password. A bootstrap loader security key is provided to disable the BSL completely or to disable the erasure of the flash if an invalid password is supplied. For complete description of the features of the BSL and its implementation, see MSP430 Programming Via the Bootstrap Loader (SLAU319). Table 7. BSL Functions DESCRIPTION 12 BSL FUNCTION 40-PIN QFN RSB PACKAGE 38-PIN TSSOP DA PACKAGE RST/NMI/SBWTDIO Entry sequence signal Entry sequence signal TEST/SBWTCK Entry sequence signal Entry sequence signal Data transmit P3.7 P3.5 Data receive P3.6 P3.6 VCC Power Supply Power Supply VSS Ground Supply Ground Supply Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 Flash Memory The flash memory can be programmed via the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the CPU. The CPU can perform single-byte, single-word, and long-word writes to the flash memory. Features of the flash memory include: • Flash memory has n segments of main memory and four segments of information memory (A to D) of 128 bytes each. Each segment in main memory is 512 bytes in size. • Segments 0 to n may be erased in one step, or each segment may be individually erased. • Segments A to D can be erased individually, or as a group with segments 0 to n. Segments A to D are also called information memory. • Segment A can be locked separately. RAM Memory The RAM memory is made up of n sectors. Each sector can be completely powered down to save leakage; however, all data is lost. Features of the RAM memory include: • RAM memory has n sectors. The size of a sector can be found in the Memory Organization section. • Each sector 0 to n can be complete disabled; however, data retention is lost. • Each sector 0 to n automatically enters low-power retention mode when possible. Peripherals Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208). Digital I/O There are up to three 8-bit I/O ports implemented. Port PJ contains seven individual I/O pins, common to all devices. • All individual I/O bits are independently programmable. • Any combination of input, output, and interrupt conditions is possible. • Programmable pullup or pulldown on all ports. • Programmable drive strength on all ports. • Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2. • Read/write access to port-control registers is supported by all instructions. • Ports can be accessed byte-wise. P1 and P2 can also be accessed word-wise (PA). • The input and output voltage levels of the pins supplied by DVIO (see Table 3) are defined by the voltage supplied by DVIO (up to 5V). Copyright © 2010–2013, Texas Instruments Incorporated Submit Documentation Feedback 13 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com Port Mapping Controller The port mapping controller allows the flexible and reconfigurable mapping of digital functions to Port P1, Port P2, and Port P3. Table 8. Port Mapping Mnemonics and Functions VALUE PxMAPy MNEMONIC 0 PM_NONE 1 2 3 4 5 6 None DVSS PM_UCA0CLK USCI_A0 clock input/output (direction controlled by USCI) PM_UCB0STE USCI_B0 SPI slave transmit enable (direction controlled by USCI) PM_UCA0TXD USCI_A0 UART TXD (Direction controlled by USCI - output) PM_UCA0SIMO USCI_A0 SPI slave in master out (direction controlled by USCI) PM_UCB0SOMI USCI_B0 SPI slave out master in (direction controlled by USCI) PM_UCB0SCL USCI_B0 I2C clock (open drain and direction controlled by USCI) PM_UCA0RXD USCI_A0 UART RXD (Direction controlled by USCI - input) PM_UCA0SOMI USCI_A0 SPI slave out master in (direction controlled by USCI) PM_UCB0SIMO USCI_B0 SPI slave in master out (direction controlled by USCI) PM_UCB0SDA USCI_B0 I2C data (open drain and direction controlled by USCI) PM_UCB0CLK USCI_B0 clock input/output (direction controlled by USCI) PM_UCA0STE USCI_A0 SPI slave transmit enable (direction controlled by USCI) PM_TD0.0 TD0 input capture channel 0 TD0 output compare channel 0 8 PM_TD0.1 TD0 input capture channel 1 TD0 output compare channel 1 9 PM_TD0.2 TD0 input capture channel 2 TD0 output compare channel 2 10 PM_TD1.0 TD1 input capture channel 0 TD1 output compare channel 0 11 PM_TD1.1 TD1 input capture channel 1 TD1 output compare channel 1 12 PM_TD1.2 TD1 input capture channel 2 TD1 output compare channel 2 PM_CLR1TD0.0 TD0 external clear input PM_FLT1_2TD0.0 TD0 fault input channel 2 14 PM_FLT1_0TD0.1 TD0 fault input channel 0 TD0 output compare channel 1 15 PM_FLT1_1TD0.2 TD0 fault input channel 1 TD0 output compare channel 2 PM_CLR2TD1.0 TD1 external clear input (controlled by module input enable) PM_FLT2_1TD1.0 TD1 fault input channel 1 (controlled by module input enable) 17 PM_FLT2_2TD1.1 TD1 fault input channel 2 TD1 output compare channel 1 18 PM_FLT2_0TD1.2 TD1 fault input channel 0 TD1 output compare channel 2 19 PM_TD0.0SMCLK TD0 input capture channel 0 SMCLK output 20 PM_TA0CLKCBOUT TA0 input clock Comparator_B output 21 PM_TD0CLKMCLK TD0 input clock MCLK output 22 PM_TA0_0 TA0 input capture channel 0 TA0 output compare channel 0 23 PM_TA0_1 TA0 input capture channel 1 TA0 output compare channel 1 24 PM_TA0_2 TA0 input capture channel 2 TA0 output compare channel 2 25 PM_DMAE0SMCLK DMAE0 input SMCLK output 26 PM_DMAE1MCLK DMAE1 input MCLK output 27 PM_DMAE2SVM DMAE2 input SVM output 28 PM_TD0OUTH TD0 3-state input ADC10CLK 29 PM_TD1OUTH TD1 3-state input ACLK None DVSS 16 30 31 (0FFh) 14 OUTPUT PIN FUNCTION 7 13 (1) INPUT PIN FUNCTION Reserved (1) PM_ANALOG TD0 output compare channel 0 TD1 output compare channel 0 Disables the output driver as well as the input Schmitt-trigger to prevent parasitic cross currents when applying analog signals. The value of the PM_ANALOG mnemonic is set to 0FFh. The port mapping registers are only 5 bits wide and the upper bits are ignored resulting in a read out value of 31. Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 Table 9. Default Mapping PIN PxMAPy MNEMONIC INPUT PIN FUNCTION OUTPUT PIN FUNCTION PM_UCA0CLK PM_UCB0STE USCI_A0 clock input/output (direction controlled by USCI) USCI_B0 SPI slave transmit enable (direction controlled by USCI) P1.1/PM_UCA0TXD/ PM_UCA0SIMO/A1/CB1 PM_UCA0TXD PM_UCA0SIMO USCI_A0 UART TXD (Direction controlled by USCI - output) USCI_A0 SPI slave in master out (direction controlled by USCI) P1.2/PM_UCA0RXD/ PM_UCA0SOMI/A2/CB2 PM_UCA0RXD PM_UCA0SOMI USCI_A0 UART RXD (Direction controlled by USCI - input) USCI_A0 SPI slave out master in (direction controlled by USCI) P1.3/PM_UCB0CLK/ PM_UCA0STE/A3/CB3 PM_UCB0CLK PM_UCA0STE USCI_B0 clock input/output (direction controlled by USCI) USCI_A0 SPI slave transmit enable (direction controlled by USCI) P1.4/PM_UCB0SIMO/ PM_UCB0SDA/A4/CB4 PM_UCB0SIMO PM_UCB0SDA USCI_B0 SPI slave in master out (direction controlled by USCI) USCI_B0 I2C data (open drain and direction controlled by USCI) P1.5/PM_UCB0SOMI/ PM_UCB0SCL/A5/CB5 PM_UCB0SOMI PM_UCB0SCL USCI_B0 SPI slave out master in (direction controlled by USCI) USCI_B0 I2C clock (open drain and direction controlled by USCI) P1.6/PM_TD0.0 PM_TD0.0 TD0 input capture channel 0 TD0 output compare channel 0 P1.7/PM_TD0.1 PM_TD0.1 TD0 input capture channel 1 TD0 output compare channel 1 P2.0/PM_TD0.2 PM_TD0.2 TD0 input capture channel 2 TD0 output compare channel 2 P2.1/PM_TD1.0 PM_TD1.0 TD1 input capture channel 0 TD1 output compare channel 0 P2.2/PM_TD1.1 PM_TD1.1 TD1 input capture channel 1 TD1 output compare channel 1 P2.3/PM_TD1.2 PM_TD1.2 TD1 input capture channel 2 TD1 output compare channel 2 P2.4/PM_TEC0CLR/ PM_TEC0FLT2/PM_TD0.0 PM_CLR1TD0.0 PM_FLT1_2TD0.0 TD0 external clear input (controlled by module input enable) TD0 fault input channel 2 (controlled by module input enable) TD0 output compare channel 0 P2.5/PM_TEC0FLT0/PM_TD0.1 PM_FLT1_0TD0.1 TD0 fault input channel 0 TD0 output compare channel 1 P2.6/PM_TEC0FLT1/PM_TD0.2 PM_FLT1_1TD0.2 TD0 fault input channel 1 TD0 output compare channel 2 P2.7/PM_TEC1CLR/ PM_TEC1FLT1/PM_TD1.0 PM_CLR2TD1.0 PM_FLT2_1TD1.0 TD1 external clear input (controlled by module input enable) TD1 fault input channel 1 (controlled by module input enable) TD1 output compare channel 0 P3.0/PM_TEC1FLT2/ PM_TD1.1 PM_FLT2_2TD1.1 TD1 fault input channel 2 TD1 output compare channel 1 P3.1/PM_TEC1FLT0/ PM_TD1.2 PM_FLT2_0TD1.2 TD1 fault input channel 0 TD1 output compare channel 2 P3.2/PM_TD0.0/ PM_SMCLK/CB14 PM_TD0.0SMCLK TD0 input capture channel 0 SMCLK output P3.3/PM_TA0CLK/ PM_CBOUT/CB13 PM_TA0CLKCBOUT TA0 input clock Comparator_B output P3.4/PM_TD0CLK/ PM_MCLK PM_TD0CLKMCLK TD0 input clock MCLK output P3.5/PM_TA0.2/ VEREF+/CB12 PM_TA3_2 TA0 input capture channel 0 TA0 output compare channel 0 P3.6/PM_TA0.1/A7 VEREF-/CB11 PM_TA3_1 TA0 input capture channel 1 TA0 output compare channel 1 P3.7/PM_TA0.0/ A6/CB10 PM_TA3_0 TA0 input capture channel 2 TA0 output compare channel 2 P1.0/PM_UCA0CLK/ PM_UCB0STE/A0/CB0 Copyright © 2010–2013, Texas Instruments Incorporated Submit Documentation Feedback 15 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com Oscillator and System Clock The clock system (Unified Clock System, UCS) module includes support for a 32-kHz watch crystal oscillator and high-frequency crystal oscillator, an internal very-low-power low-frequency oscillator (VLO), an internal trimmed low-frequency oscillator (REFO), and an integrated internal digitally controlled oscillator (DCO). The UCS module is designed to meet the requirements of both low system cost and low power consumption. The UCS module features digital frequency locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency to a programmable multiple of the watch crystal frequency. The internal DCO provides a fast turn-on clock source and stabilizes in less than 5 µs. The UCS module provides the following clock signals: • Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal or high-frequency crystal (LFXT1), the internal low-frequency oscillator (VLO), the trimmed low-frequency oscillator (REFO), or the internal digitally-controlled oscillator DCO. • Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources available to ACLK. • Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by same sources available to ACLK. • ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, ACLK/8, ACLK/16, ACLK/32. Power Management Module (PMM) The PMM includes an integrated voltage regulator that supplies the core voltage to the device and contains programmable output levels to provide for power optimization. The PMM also includes supply voltage supervisor (SVS) and supply voltage monitoring (SVM) circuitry, as well as brownout protection. The brownout circuit is implemented to provide the proper internal reset signal to the device during power-on and power-off. The SVS/SVM circuitry detects if the supply voltage drops below a user-selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (SVM, the device is not automatically reset). SVS and SVM circuitry is available on the primary supply and core supply. Hardware Multiplier The multiplication operation is supported by a dedicated peripheral module. The module performs operations with 32-bit, 24-bit, 16-bit, and 8-bit operands. The module is capable of supporting signed and unsigned multiplication as well as signed and unsigned multiply and accumulate operations Watchdog Timer (WDT_A) The primary function of the watchdog timer (WDT_A) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals. System Module (SYS) The SYS module handles many of the system functions within the device. These include power-on reset and power-up clear handling, NMI source selection and management, reset interrupt vector generators, bootstrap loader entry mechanisms, and configuration management (device descriptors). It also includes a data exchange mechanism via JTAG called a JTAG mailbox that can be used in the application. 16 Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 Table 10. System Module Interrupt Vector Registers INTERRUPT VECTOR REGISTER INTERRUPT EVENT OFFSET No interrupt pending 00h Brownout (BOR) 02h RST/NMI (POR) 04h DoBOR (BOR) 06h LPM5 wakeup (BOR) 08h Security violation (BOR) 0Ah SVSL (POR) 0Ch SVSH (POR) 0Eh SVML_OVP (POR) SYSRSTIV, System Reset WORD ADDRESS SVMH_OVP (POR) 019Eh 12h 14h WDT timeout (PUC) 16h WDT key violation (PUC) 18h KEYV flash key violation (PUC) 1Ah Reserved 1Ch Peripheral area fetch (PUC) 1Eh PMM key violation (PUC) 20h SYSSNIV, System NMI Reserved 22h to 3Eh No interrupt pending 00h SVMLIFG 02h SVMHIFG 04h DLYLIFG 06h SYSUNIV, User NMI Copyright © 2010–2013, Texas Instruments Incorporated VMAIFG Lowest Highest 08h 019Ch 0Ah JMBINIFG 0Ch JMBOUTIFG 0Eh VLRLIFG 10h VLRHIFG 12h Reserved 14h to 1Eh No interrupt pending 00h NMIFG 02h OFIFG Highest 10h DoPOR (POR) DLYHIFG PRIORITY 019Ah Lowest Highest 04h ACCVIFG 06h Reserved 08h to 1Eh Lowest Submit Documentation Feedback 17 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com DMA Controller The DMA controller allows movement of data from one memory address to another without CPU intervention. For example, the DMA controller can be used to move data from the ADC10_A conversion memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system power consumption by allowing the CPU to remain in sleep mode, without having to wake to move data to or from a peripheral. Table 11. DMA Trigger Assignments TRIGGER (1) 18 (1) CHANNEL 0 1 2 0 DMAREQ DMAREQ DMAREQ 1 TA0CCR0 CCIFG TA0CCR0 CCIFG TA0CCR0 CCIFG 2 TA0CCR2 CCIFG TA0CCR2 CCIFG TA0CCR2 CCIFG 3 TD0CCR0 CCIFG TD0CCR0 CCIFG TD0CCR0 CCIFG 4 TD0CCR2 CCIFG TD0CCR2 CCIFG TD0CCR2 CCIFG 5 TD1CCR0 CCIFG TD1CCR0 CCIFG TD1CCR0 CCIFG 6 TD1CCR2 CCIFG TD1CCR2 CCIFG TD1CCR2 CCIFG 7 Reserved Reserved Reserved 8 Reserved Reserved Reserved 9 Reserved Reserved Reserved 10 Reserved Reserved Reserved 11 Reserved Reserved Reserved 12 Reserved Reserved Reserved 13 Reserved Reserved Reserved 14 Reserved Reserved Reserved 15 Reserved Reserved Reserved 16 UCA0RXIFG UCA0RXIFG UCA0RXIFG 17 UCA0TXIFG UCA0TXIFG UCA0TXIFG 18 UCB0RXIFG UCB0RXIFG UCB0RXIFG 19 UCB0TXIFG UCB0TXIFG UCB0TXIFG 20 Reserved Reserved Reserved 21 Reserved Reserved Reserved 22 Reserved Reserved Reserved 23 Reserved Reserved Reserved 24 ADC10IFG0 ADC10IFG0 ADC10IFG0 25 Reserved Reserved Reserved 26 Reserved Reserved Reserved 27 Reserved Reserved Reserved 28 Reserved Reserved Reserved 29 MPY ready MPY ready MPY ready 30 DMA2IFG DMA0IFG DMA1IFG 31 DMAE0 DMAE0 DMAE0 Reserved DMA triggers may be used by other devices in the family. Reserved DMA triggers do not cause any DMA trigger event when selected. Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 Universal Serial Communication Interface (USCI) The USCI modules are used for serial data communication. The USCI module supports synchronous communication protocols such as SPI (3 or 4 pin) and I2C, and asynchronous communication protocols such as UART, enhanced UART with automatic baudrate detection, and IrDA. Each USCI module contains two modules, A and B. The USCI_Ax module provides support for SPI (3 or 4 pin), UART, enhanced UART, or IrDA. The USCI_Bx module provides support for SPI (3 or 4 pin) or I2C. TA0 TA0 is a 16-bit timer/counter with three capture/compare registers. TA0 can support multiple capture/compares, PWM outputs, and interval timing. TA0 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 12. TA0 Signal Connections INPUT PIN NUMBER DEVICE INPUT SIGNAL MODULE INPUT SIGNAL MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL OUTPUT PIN NUMBER RSB (40-PIN QFN) DA (38-PIN TSSOP) P3.3 - 30 P3.3 - 34 TA0CLK TACLK ACLK (internal) ACLK ACLK ACLK SMCLK (internal) SMCLK SMCLK SMCLK P3.3 - 30 P3.3 - 34 TA0CLK P3.7 - 36 - TA0.0 - - CBOUT CCI0B - - VSS GND - - VCC VCC P3.6 - 35 - TA0.1 CCI1A P3.6 - 35 P3.6 - 38 ACLK CCI1B ADC10_A (1) (internal) ADC10SHSx = 001b ADC10_A (1) (internal) ADC10SHSx = 001b (1) RSB (40-PIN QFN) DA (38-PIN TSSOP) - - - - - - TACLK - - CCI0A P3.7 - 36 - - - - - - - Timer CCR0 NA TA0 NA TA0.0 - - - - VSS GND - - - - VCC VCC - - P3.5 - 34 P3.5 - 37 TA0.2 CCI2A P3.5 - 34 P3.5 - 37 - - VSS CCI2B - - - - VSS GND - - - - VCC VCC - - CCR1 CCR2 TA1 TA2 TA0.1 TA0.2 The ADC10_A trigger is available on MSP430F51x2 devices. Copyright © 2010–2013, Texas Instruments Incorporated Submit Documentation Feedback 19 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com TD0 TD0 is a 16-bit timer/counter with three capture/compare registers supporting up to 256-MHz / 4-ns resolution. TD0 can support multiple capture/compares, PWM outputs, and interval timing. TD0 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. External fault inputs as well as a external timer counter clear is supported along with interrupt flags from the TEC0 module. Table 13. TD0 Signal Connections INPUT PIN NUMBER RSB (40-PIN QFN) DA (38-PIN TSSOP) DEVICE INPUT SIGNAL MODULE INPUT SIGNAL MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL OUTPUT PIN NUMBER RSB (40-PIN QFN) DA (38-PIN TSSOP) P3.4 - 31 - TD0CLK TDCLK - - ACLK (internal) ACLK ( internal) ACLK ACLK - - SMCLK ( internal) SMCLK ( internal) SMCLK SMCLK - - P3.4 - 31 - TD0CLK TDCLK - - - - - CLK0 - - Timer NA NA P2.4 - 19 P2.4 - 23 TEC0CLR TECXCLR - - P1.6 - 11 (1) P1.6 - 15 (1) TD0.0 CCI0A P1.6 - 11 (1) P1.6 - 15 (1) P3.2 - 29 P3.2 - 33 TD0.0 CCI0B P2.4 - 19 P2.4 - 23 - - VSS GND ADC10_A (internal) ADC10SHSx = 010b (2) ADC10_A (internal) ADC10SHSx = 010b (2) - CCR0 TD0 TD0 - - VCC VCC - P2.5 - 20 P2.5 - 24 TEC0FLT0 TECXFLT0 - - P1.7 - 12 (1) P1.7 - 16 (1) TD0.1 CCI1A P1.7 - 12 (1) P1.7 - 16 (1) CBOUT (internal) CBOUT (internal) TD0.1 CCI1B PJ.6 - 28 PJ.6 - 32 - - VSS GND CCR1 - - VCC VCC TD1 TD1 P2.5 - 20 P2.5 - 24 ADC10_A (internal) ADC10SHSx = 011b (2) ADC10_A (internal) ADC10SHSx = 011b (2) P2.6 - 21 P2.6 - 20 TEC0FLT1 TECXFLT1 - - P2.0 - 13 (1) P2.0 - 17 (1) TD0.2 CCI2A P2.0 - 13 (1) P2.0 - 17 (1) ACLK (internal) ACLK (internal) TD0.2 CCI2B P2.6 - 21 P2.6 - 25 - - VSS GND - - - - VCC VCC - - P2.4 - 19 P2.4 - 23 TEC0FLT2 TECXFLT2 - - (1) (2) 20 CCR2 TD2 TD2 Pins P1.6 for TD0.0, P1.7 for TD0.1, and P2.0 for TD0.2 are optimized for matching. The ADC10_A trigger is available on MSP430F51x2 devices. Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 TD1 TD1 is a 16-bit timer/counter with three capture/compare registers supporting up to 256-MHz / 4-ns resolution. TD1 can support multiple capture/compares, PWM outputs, and interval timing. TD1 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. External fault inputs as well as a external timer counter clear is supported along with interrupt flags from the TEC0 module. Table 14. TD1 Signal Connections INPUT PIN NUMBER DEVICE INPUT SIGNAL MODULE INPUT SIGNAL PJ.6 - 32 TD1CLK ACLK SMCLK( internal) SMCLK PJ.6 - 28 RSB (40-PIN QFN) DA (38-PIN TSSOP) PJ.6 - 28 ACLK (internal) - MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL OUTPUT PIN NUMBER RSB (40-PIN QFN) DA (38-PIN TSSOP) TDCLK - - ACLK ACLK - - SMCLK SMCLK - - PJ.6 - 32 TD1CLK TDCLK - - - from TD0 (internal) CLK0 Timer NA NA P2.7 - 22 P2.7 - 26 TEC1CLR TECxCLR - - P2.1 - 14 (1) P2.1 - 18 (1) TD1.0 CCI0A P2.1 - 14 (1) P2.1 - 18 (1) - - TD1.0 CCI0B P2.7 - 22 P2.7 - 26 - - VSS GND - - - - VCC VCC - - CCR0 TD0 TD0 P3.1 - 24 P3.1 - 28 TEC1FLT0 TECXFLT0 - - P2.2 - 15 (1) P2.2 - 19 (1) TD1.1 CCI1A P2.2 - 15 (1) P2.2 - 19 (1) CBOUT (internal) CBOUT (internal) TD1.1 CCI1B P3.0 - 23 P3.0 - 27 - - VSS GND - - - - VCC VCC - - P2.7 - 22 P2.7 - 26 TEC1FLT1 TECXFLT1 - P2.3 - 16 (1) ACLK (internal) - (1) P2.3 - 20 (1) ACLK (internal) - TD1.2 CCI2A TD1.2 CCI2B VSS GND CCR1 TD1 TD1 P2.3 - 16 (1) P3.1 - 24 CCR2 TD2 TD2 P2.3 - 20 (1) P3.1 - 28 - - - VCC VCC - - P3.0 - 23 P3.0 - 27 TEC1FLT2 TECXFLT2 - - Pins P2.1 for TD1.0, P2.2 for TD1.1, and P2.3 for TD1.2 are optimized for matching. Copyright © 2010–2013, Texas Instruments Incorporated Submit Documentation Feedback 21 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com Comparator_B The primary function of the Comparator_B module is to support precision slope analog-to-digital conversions, battery voltage supervision, and monitoring of external analog signals. ADC10_A (MSP430F51x2 Only) The ADC10_A module supports fast, 10-bit analog-to-digital conversions. The module implements a 10-bit SAR core, sample select control, reference generator and a conversion result buffer. A window comparator with a lower and upper limit allows CPU independent result monitoring with three window comparator interrupt flags. CRC16 The CRC16 module produces a signature based on a sequence of entered data values and can be used for data checking purposes. The CRC16 module signature is based on the CRC-CCITT standard. REF Voltage Reference The reference module (REF) is responsible for generation of all critical reference voltages that can be used by the various analog peripherals in the device. Embedded Emulation Module (EEM) (S Version) The Embedded Emulation Module (EEM) supports real-time in-system debugging. The S version of the EEM implemented on all devices has the following features: • Three hardware triggers or breakpoints on memory access • One hardware trigger or breakpoint on CPU register write access • Up to four hardware triggers can be combined to form complex triggers or breakpoints • One cycle counter • Clock control on module level 22 Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 Peripheral File Map Table 15. Peripherals MODULE NAME BASE ADDRESS OFFSET ADDRESS RANGE Special Functions (see Table 16) 0100h 000h-01Fh PMM (see Table 17) 0120h 000h-00Fh Flash Control (see Table 18) 0140h 000h-00Fh CRC16 (see Table 19) 0150h 000h-007h RAM Control (see Table 20) 0158h 000h-001h Watchdog (see Table 21) 015Ch 000h-001h UCS (see Table 22) 0160h 000h-01Fh SYS (see Table 23) 0180h 000h-01Fh Shared Reference (see Table 24) 01B0h 000h-001h Port Mapping Control (see Table 25) 01C0h 000h-007h Port Mapping Port P1 (see Table 26) 01C8h 000h-007h Port Mapping Port P2 (see Table 27) 01D0h 000h-007h Port Mapping Port P3 (see Table 28) 01D8h 000h-007h Port P1, P2 (see Table 29) 0200h 000h-01Fh Port P3 (see Table 30) 0220h 000h-01Fh Port PJ (see Table 31) 0320h 000h-01Fh TA0 (see Table 32) 03C0h 000h-03Fh 32-Bit Hardware Multiplier (see Table 33) 04C0h 000h-02Fh DMA General Control (see Table 34) 0500h 000h-00Fh DMA Channel 0 (see Table 35) 0500h 010h-00Ah DMA Channel 1 (see Table 36) 0500h 020h-00Ah DMA Channel 2 (see Table 37) 0500h 030h-00Ah USCI_A0 (see Table 38) 05C0h 000h-01Fh USCI_B0 (see Table 38) 05E0h 000h-01Fh ADC10_A (see Table 40) (MSP430F51x2 only) 0740h 000h-01Fh Comparator_B (see Table 41) 08C0h 000h-00Fh 000h-03Fh TD0 (see Table 42) 0B00h TEC0 (see Table 44) 0C00h 000h-007h TD1 (see Table 43) 0B40h 000h-03Fh TEC1 (see Table 45) 0C20h 000h-007h Copyright © 2010–2013, Texas Instruments Incorporated Submit Documentation Feedback 23 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com Table 16. Special Function Registers (Base Address: 0100h) REGISTER DESCRIPTION REGISTER OFFSET SFR interrupt enable SFRIE1 00h SFR interrupt flag SFRIFG1 02h SFR reset pin control SFRRPCR 04h Table 17. PMM Registers (Base Address: 0120h) REGISTER DESCRIPTION REGISTER OFFSET PMM Control 0 PMMCTL0 00h PMM control 1 PMMCTL1 02h SVS high side control SVSMHCTL 04h SVS low side control SVSMLCTL 06h PMM interrupt flags PMMIFG 0Ch PMM interrupt enable PMMIE 0Eh PMM Power Mode 5 control register 0 PMM5CTL0 10h Table 18. Flash Control Registers (Base Address: 0140h) REGISTER DESCRIPTION REGISTER OFFSET Flash control 1 FCTL1 00h Flash control 3 FCTL3 04h Flash control 4 FCTL4 06h Table 19. CRC16 Registers (Base Address: 0150h) REGISTER DESCRIPTION REGISTER OFFSET CRC data input CRC16DI 00h CRC result CRC16INIRES 04h Table 20. RAM Control Registers (Base Address: 0158h) REGISTER DESCRIPTION RAM control 0 REGISTER RCCTL0 OFFSET 00h Table 21. Watchdog Registers (Base Address: 015Ch) REGISTER DESCRIPTION Watchdog timer control REGISTER WDTCTL OFFSET 00h Table 22. UCS Registers (Base Address: 0160h) REGISTER DESCRIPTION REGISTER OFFSET UCS control 0 UCSCTL0 00h UCS control 1 UCSCTL1 02h UCS control 2 UCSCTL2 04h UCS control 3 UCSCTL3 06h UCS control 4 UCSCTL4 08h UCS control 5 UCSCTL5 0Ah UCS control 6 UCSCTL6 0Ch UCS control 7 UCSCTL7 0Eh UCS control 8 UCSCTL8 10h 24 Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 Table 23. SYS Registers (Base Address: 0180h) REGISTER DESCRIPTION REGISTER OFFSET System control SYSCTL 00h Bootstrap loader configuration area SYSBSLC 02h JTAG mailbox control SYSJMBC 06h JTAG mailbox input 0 SYSJMBI0 08h JTAG mailbox input 1 SYSJMBI1 0Ah JTAG mailbox output 0 SYSJMBO0 0Ch JTAG mailbox output 1 SYSJMBO1 0Eh Bus Error vector generator SYSBERRIV 18h User NMI vector generator SYSUNIV 1Ah System NMI vector generator SYSSNIV 1Ch Reset vector generator SYSRSTIV 1Eh Table 24. Shared Reference Registers (Base Address: 01B0h) REGISTER DESCRIPTION Shared reference control REGISTER REFCTL OFFSET 00h Table 25. Port Mapping Controller (Base Address: 01C0h) REGISTER DESCRIPTION REGISTER OFFSET Port mapping password register PMAPPWD 00h Port mapping control register PMAPCTL 02h Table 26. Port Mapper for Port P1 (Base Address: 01C8h) REGISTER DESCRIPTION REGISTER OFFSET Port P1.0 mapping register P1MAP0 00h Port P1.1 mapping register P1MAP1 01h Port P1.2 mapping register P1MAP2 02h Port P1.3 mapping register P1MAP3 03h Port P1.4 mapping register P1MAP4 04h Port P1.5 mapping register P1MAP5 05h Port P1.6 mapping register P1MAP6 06h Port P1.7 mapping register P1MAP7 07h Table 27. Port Mapper for Port P2 (Base Address: 01D0h) REGISTER DESCRIPTION REGISTER OFFSET Port P2.0 mapping register P2MAP0 00h Port P2.1 mapping register P2MAP2 01h Port P2.2 mapping register P2MAP2 02h Port P2.3 mapping register P2MAP3 03h Port P2.4 mapping register P2MAP4 04h Port P2.5 mapping register P2MAP5 05h Port P2.6 mapping register P2MAP6 06h Port P2.7 mapping register P2MAP7 07h Copyright © 2010–2013, Texas Instruments Incorporated Submit Documentation Feedback 25 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com Table 28. Port Mapper for Port P3 (Base Address: 01D8h) REGISTER DESCRIPTION REGISTER OFFSET Port P3.0 mapping register P3MAP0 00h Port P3.1 mapping register P3MAP1 01h Port P3.2 mapping register P3MAP2 02h Port P3.3 mapping register P3MAP3 03h Port P3.4 mapping register P3MAP4 04h Port P3.5 mapping register P3MAP5 05h Port P3.6 mapping register P3MAP6 06h Port P3.7 mapping register P3MAP7 07h Table 29. Port Registers Port P1, P2 (Base Addresses: 0200h) REGISTER DESCRIPTION REGISTER OFFSET Port P1 input P1IN 00h Port P1 output P1OUT 02h Port P1 direction P1DIR 04h Port P1 pullup/pulldown enable P1REN 06h Port P1 drive strength P1DS 08h Port P1 selection P1SEL 0Ah Port P1 interrupt vector word P1IV 0Eh Port P1 interrupt edge select P1IES 18h Port P1 interrupt enable P1IE 1Ah Port P1 interrupt flag P1IFG 1Ch Port P2 input P2IN 01h Port P2 output P2OUT 03h Port P2 direction P2DIR 05h Port P2 pullup/pulldown enable P2REN 07h Port P2 drive strength P2DS 09h Port P2 selection P2SEL 0Bh Port P2 interrupt vector word P2IV 1Eh Port P2 interrupt edge select P2IES 19h Port P2 interrupt enable P2IE 1Bh Port P2 interrupt flag P2IFG 1Dh Table 30. Port Registers P3 (Base Addresses: 0220h) REGISTER DESCRIPTION REGISTER OFFSET Port P3 input P3IN 00h Port P3 output P3OUT 02h Port P3 direction P3DIR 04h Port P3 pullup/pulldown enable P3REN 06h Port P3 drive strength P3DS 08h Port P3 selection P3SEL 0Ah 26 Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 Table 31. Port Registers PJ (Base Addresses: 0320h) REGISTER DESCRIPTION REGISTER OFFSET Port PJ input PJIN 00h Port PJ output PJOUT 02h Port PJ direction PJDIR 04h Port PJ pullup/pulldown enable PJREN 06h Port PJ drive strength PJDS 08h Port PJ selection PJSEL 0Ah Table 32. TA0 Registers (Base Address: 03C0h) REGISTER DESCRIPTION REGISTER OFFSET TA0 control TA0CTL 00h Capture/compare control 0 TA0CCTL0 02h Capture/compare control 1 TA0CCTL1 04h Capture/compare control 2 TA0CCTL2 06h TA0 counter register TA0R 10h Capture/compare register 0 TA0CCR0 12h Capture/compare register 1 TA0CCR1 14h Capture/compare register 2 TA0CCR2 16h TA0 expansion register 0 TA0EX0 20h TA0 interrupt vector TA0IV 2Eh Table 33. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h) REGISTER DESCRIPTION REGISTER OFFSET 16-bit operand 1 – multiply MPY 00h 16-bit operand 1 – signed multiply MPYS 02h 16-bit operand 1 – multiply accumulate MAC 04h 16-bit operand 1 – signed multiply accumulate MACS 06h 16-bit operand 2 OP2 08h 16 × 16 result low word RESLO 0Ah 16 × 16 result high word RESHI 0Ch 16 × 16 sum extension register SUMEXT 0Eh 32-bit operand 1 – multiply low word MPY32L 10h 32-bit operand 1 – multiply high word MPY32H 12h 32-bit operand 1 – signed multiply low word MPYS32L 14h 32-bit operand 1 – signed multiply high word MPYS32H 16h 32-bit operand 1 – multiply accumulate low word MAC32L 18h 32-bit operand 1 – multiply accumulate high word MAC32H 1Ah 32-bit operand 1 – signed multiply accumulate low word MACS32L 1Ch 32-bit operand 1 – signed multiply accumulate high word MACS32H 1Eh 32-bit operand 2 – low word OP2L 20h 32-bit operand 2 – high word OP2H 22h 32 × 32 result 0 – least significant word RES0 24h 32 × 32 result 1 RES1 26h 32 × 32 result 2 RES2 28h 32 × 32 result 3 – most significant word RES3 2Ah MPY32 control register 0 MPY32CTL0 2Ch Copyright © 2010–2013, Texas Instruments Incorporated Submit Documentation Feedback 27 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com Table 34. DMA General Control (Base Address: 0500h) REGISTER DESCRIPTION REGISTER OFFSET DMA module control 0 DMACTL0 00h DMA module control 1 DMACTL1 02h DMA module control 2 DMACTL2 04h DMA module control 3 DMACTL3 06h DMA module control 4 DMACTL4 08h DMA interrupt vector DMAIV 0Eh Table 35. DMA Channel 0 (Base Address: 0510h) REGISTER DESCRIPTION REGISTER OFFSET DMA channel 0 control DMA0CTL 00h DMA channel 0 source address low DMA0SAL 02h DMA channel 0 source address high DMA0SAH 04h DMA channel 0 destination address low DMA0DAL 06h DMA channel 0 destination address high DMA0DAH 08h DMA channel 0 transfer size DMA0SZ 0Ah Table 36. DMA Channel 1 (Base Address: 0520h) REGISTER DESCRIPTION REGISTER OFFSET DMA channel 1 control DMA1CTL 00h DMA channel 1 source address low DMA1SAL 02h DMA channel 1 source address high DMA1SAH 04h DMA channel 1 destination address low DMA1DAL 06h DMA channel 1 destination address high DMA1DAH 08h DMA channel 1 transfer size DMA1SZ 0Ah Table 37. DMA Channel 2 (Base Address: 0530h) REGISTER DESCRIPTION REGISTER OFFSET DMA channel 2 control DMA2CTL 00h DMA channel 2 source address low DMA2SAL 02h DMA channel 2 source address high DMA2SAH 04h DMA channel 2 destination address low DMA2DAL 06h DMA channel 2 destination address high DMA2DAH 08h DMA channel 2 transfer size DMA2SZ 0Ah 28 Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 Table 38. USCI0_A Registers (Base Address: 05C0h) REGISTER DESCRIPTION REGISTER OFFSET USCI control 0 UCA0CTL0 01h USCI control 1 UCA0CTL1 00h USCI baud rate 0 UCA0BR0 06h USCI baud rate 1 UCA0BR1 07h USCI modulation control UCA0MCTL 08h USCI status UCA0STAT 0Ah USCI receive buffer UCA0RXBUF 0Ch USCI transmit buffer UCA0TXBUF 0Eh USCI LIN control UCA0ABCTL 10h USCI IrDA transmit control UCA0IRTCTL 12h USCI IrDA receive control UCA0IRRCTL 13h USCI interrupt enable UCA0IE 1Ch USCI interrupt flags UCA0IFG 1Dh USCI interrupt vector word UCA0IV 1Eh Table 39. USCI0_B Registers (Base Address: 05E0h) REGISTER DESCRIPTION REGISTER OFFSET USCI synchronous control 0 UCB0CTL0 00h USCI synchronous control 1 UCB0CTL1 01h USCI synchronous bit rate 0 UCB0BR0 06h USCI synchronous bit rate 1 UCB0BR1 07h USCI synchronous status UCB0STAT 0Ah USCI synchronous receive buffer UCB0RXBUF 0Ch USCI synchronous transmit buffer UCB0TXBUF 0Eh USCI I2C own address UCB0I2COA 10h USCI I2C slave address UCB0I2CSA 12h USCI interrupt enable UCB0IE 1Ch USCI interrupt flags UCB0IFG 1Dh USCI interrupt vector word UCB0IV 1Eh Table 40. ADC10_A Registers (MSP430F51x2 Devices Only) (Base Address: 0740h) REGISTER DESCRIPTION REGISTER OFFSET ADC10_A Control register 0 ADC10CTL0 00h ADC10_A Control register 1 ADC10CTL1 02h ADC10_A Control register 2 ADC10CTL2 04h ADC10_A Window Comparator Low Threshold ADC10LO 06h ADC10_A Window Comparator High Threshold ADC10HI 08h ADC10_A Memory Control Register 0 ADC10MCTL0 0Ah ADC10_A Conversion Memory Register ADC10MEM0 12h ADC10_A Interrupt Enable ADC10IE 1Ah ADC10_A Interrupt Flags ADC10IGH 1Ch ADC10_A Interrupt Vector Word ADC10IV 1Eh Copyright © 2010–2013, Texas Instruments Incorporated Submit Documentation Feedback 29 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com Table 41. Comparator_B Registers (Base Address: 08C0h) REGISTER DESCRIPTION REGISTER OFFSET Comparator_B control register 0 CBCTL0 00h Comparator_B control register 1 CBCTL1 02h Comparator_B control register 2 CBCTL2 04h Comparator_B control register 3 CBCTL3 06h Comparator_B interrupt register CBINT 0Ch Comparator_B interrupt vector word CBIV 0Eh Table 42. TD0 Registers (Base Address: 0B00h) REGISTER DESCRIPTION REGISTER OFFSET TD0 Control 0 TD0CTL0 00h TD0 Control 1 TD0CTL1 02h TD0 Control 2 TD0CTL2 04h TD0 Counter Register TD0R 06h Capture/compare control 0 TD0CCTL0 08h Capture/compare register 0 TD0CCR0 0Ah Capture/compare Latch 0 TD0CL0 0Ch Capture/compare control 1 TD0CCTL1 0Eh Capture/compare register 1 TD0CCR1 10h Capture/compare Latch 1 TD0CL1 12h Capture/compare control 2 TD0CCTL2 14h Capture/compare register 2 TD0CCR2 16h Capture/compare Latch 2 TD0CL2 18h TD0 High-Resolution Control 0 TD0HCTL0 38h TD0 High-Resolution Control 1 TD0HCTL1 3Ah TD0 High-Resolution Interrupt TD0HINT 3Ch TD0 Interrupt Vector TD0IV 3Eh Table 43. TD1 Registers (Base Address: 0B40h) REGISTER DESCRIPTION REGISTER OFFSET TD1 Control 0 TD1CTL0 00h TD1 Control 1 TD1CTL1 02h TD1 Control 2 TD1CTL2 04h TD1 Counter Register TD1R 06h Capture/compare control 0 TD1CCTL0 08h Capture/compare register 0 TD1CCR0 0Ah Capture/compare Latch 0 TD1CL0 0Ch Capture/compare control 1 TD1CCTL1 0Eh Capture/compare register 1 TD1CCR1 10h Capture/compare Latch 1 TD1CL1 12h Capture/compare control 2 TD1CCTL2 14h Capture/compare register 2 TD1CCR2 16h Capture/compare Latch 2 TD1CL2 18h TD1 High-Resolution Control 0 TD1HCTL0 38h TD1 High-Resolution Control 1 TD1HCTL1 3Ah TD1 High-Resolution Interrupt TD1HINT 3Ch TD1 Interrupt Vector TD1IV 3Eh 30 Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 Table 44. TEC0 Registers (Base Address: 0C00h) REGISTER DESCRIPTION REGISTER OFFSET Timer Event Control 0 External Control 0 TEC0CTL0 00h Timer Event Control 0 External Control TEC0CTL1 02h Timer Event Control 0 External Control TEC0CTL2 04h Timer Event Control 0 Status TEC0STA 06h Timer Event Control 0 External Interrupt TEC0XINT 08h Timer Event Control 0 External Interrupt Vector TEC0IV 0Ah Table 45. TEC1 Registers (Base Address: 0C20h) REGISTER DESCRIPTION REGISTER OFFSET Timer Event Control 1 External Control 0 TEC1CTL0 00h Timer Event Control 1 External Control TEC1CTL1 02h Timer Event Control 1 External Control TEC1CTL2 04h Timer Event Control 1 Status TEC1STA 06h Timer Event Control 1 External Interrupt TEC1XINT 08h Timer Event Control 1 External Interrupt Vector TEC1IV 0Ah Copyright © 2010–2013, Texas Instruments Incorporated Submit Documentation Feedback 31 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com Absolute Maximum Ratings (1) over operating free-air temperature range (unless otherwise noted) Voltage VCC applied at DVCC to DVSS –0.3 V to 4.1 V Voltage VIO applied at VIO to DVSS –0.3 V to 6.1 V Voltage applied to any pin (excluding VCORE) (2) –0.3 V to VCC + 0.3 V Diode current at any device pin ±2 mA Storage temperature range, Tstg –55°C to 150°C Maximum operating junction temperature, TJ (1) (2) 95°C Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltages referenced to VSS. VCORE is for internal device usage only. No external DC loading or voltage should be applied. Thermal Packaging Characteristics Low-K board (JESD51-3) θJA Junction-to-ambient thermal resistance, still air High-K board (JESD51-7) θJC 32 Junction-to-case thermal resistance Submit Documentation Feedback QFN (RSB) 87°C/W TSSOP (DA) 109°C/W QFN (RSB) 35°C/W TSSOP (DA) 69°C/W QFN (RSB) 36°C/W TSSOP (DA) 19°C/W Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 Recommended Operating Conditions Typical values are specified at VCC = 3.3 V and TA = 25°C (unless otherwise noted) MIN Supply voltage during program execution and flash programming V(AVCC) = V(DVCC) = VCC (1) (2) VCC 1.8 3.6 V 2.0 3.6 V PMMCOREVx = 0, 1, 2 2.2 3.6 V PMMCOREVx = 0, 1, 2, 3 2.4 3.6 V 5.5 V 85 °C (3) Supply voltage of pins P1.6, P1.7, P2.0 to P2.7, P3.0, and P3.1 supplied by VIO Supply voltage V(AVSS) = V(DVSS) = VSS TA Operating free-air temperature –40 TJ 1.8 Operating junction temperature –40 0 C(VCORE) Recommended capacitor at VCORE Internal power dissipation PIO V 85 470 C(DVCC)/ Capacitor ratio of DVCC to VCORE C(VCORE) PINT UNIT PMMCOREVx = 0, 1 VSS Processor frequency (maximum MCLK frequency) (4) (see Figure 1) MAX PMMCOREVx = 0 VIO fSYSTEM NOM °C nF 10 (5) PMMCOREVx = 0, 1.8 V ≤ VCC ≤ 3.6 V (default condition) 0 12 PMMCOREVx = 1, 2.0 V ≤ VCC ≤ 3.6 V 0 16 PMMCOREVx = 2, 2.2 V ≤ VCC ≤ 3.6 V 0 20 PMMCOREVx = 3, 2.4 V ≤ VCC ≤ 3.6 V 0 25 MHz VCC x I(DVCC) W I/O power dissipation of the I/O pins powered by DVCC (VCC - VIOH) x IIOH + VIOL x IIOL W PIO5 I/O power dissipation of the I/O pins powered by VIO (VIO - VIOH5) x IIOH5 + VIOL5 x IIOL5 W PMAX Maximum allowed power dissipation, PMAX > PIO + PIO5 + PINT (TJ - TA)/θJA W (1) (2) (3) (4) (5) It is recommended to power AVCC and DVCC from the same source. A maximum difference of 0.3 V between V(AVCC) and V(DVCC) can be tolerated during power up and operation. The minimum supply voltage is defined by the supervisor SVS levels when it is enabled. See the PMM, SVS High Side threshold parameters for the exact values and further details. It is recommended to power DVCC and AVCC prior to DVIO. At DVCC and AVCC voltages higher than 1.8 V, the maximum difference of 0.3 V between DVIO and DVCC and AVCC can be exceeded. The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse duration of the specified maximum frequency. Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet. Copyright © 2010–2013, Texas Instruments Incorporated Submit Documentation Feedback 33 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com 25 System Frequency - MHz 3 20 2 2, 3 1 1, 2 1, 2, 3 0, 1 0, 1, 2 0, 1, 2, 3 16 12 0 0 1.8 2.0 2.2 2.4 3.6 Supply Voltage - V The numbers within the fields denote the supported PMMCOREVx settings. Figure 1. Frequency vs Supply Voltage 34 Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 Electrical Characteristics Active Mode Supply Current Into VCC Excluding External Current over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER IAM, IAM, Flash RAM EXECUTION MEMORY Flash RAM VCC 3V 3V FREQUENCY (fDCO = fMCLK = fSMCLK) PMM CORE Vx 1 MHz 8 MHz 12 MHz TYP MAX TYP MAX 0 0.24 0.27 1.48 1.60 1 0.26 - 1.66 - 2 0.28 - 1.83 - 3 0.28 - 1.83 0 0.17 0.2 0.89 1 0.18 - 1.00 2 0.20 - 3 0.20 - TYP 20 MHz 25 MHz UNIT MAX TYP MAX TYP MAX - - - - - - 2.48 2.7 - - - - 2.72 - 4.50 4.8 - - - 2.66 - 4.40 - 5.60 6.15 0.97 - - - - - - - 1.49 1.62 - - - - 1.14 - 1.68 - 2.75 3.0 - - 1.20 - 1.78 - 2.92 - 3.64 4.0 mA mA Low-Power Mode Supply Currents (Into VCC) Excluding External Current over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER ILPM0, 1MHz ILPM2 Low-power mode 0 Low-power mode 2 VCC PMM CORE Vx TYP 2.2 V 0 3V 3 2.2 V 3V 2.2 V 3V 2.2 V ILPM3, XT1LF Low-power mode 3, crystal mode 3V 2.2 V 3V 2.2 V 3V 2.2 V 3V 2.2 V ILPM3, VLO Low-power mode 3, VLO mode 3V 2.2 V 3V 2.2 V 3V ILPM4 ILPM4.5 (1) (2) Low-power mode 4 Low-power mode 4.5 3V -40°C 25°C MAX TYP 82 90 88 100 0 10 3 9 60°C TYP MAX 87 95 85 100 90 104 88 104 12 10 12.5 12.5 13 13 11 15 12 14 1.8 2.0 2.5 - 3.5 6.0 2.0 2.2 3.0 - 3.7 6.0 - 1.9 - 2.5 - 4.0 - 2.1 - 2.2 - 2.5 - 4.0 - 1.8 - 2.0 - 2.5 - 4.2 - 2.0 - 2.2 - 2.8 - 4.2 - 1.9 - 2.0 2.5 2.9 - 4.8 6.5 2.1 - 2.2 2.5 3.0 - 5.2 7.0 1.0 - 1.0 1.25 1.6 - 3.5 4.5 1.1 - 1.2 1.4 1.5 - 3.6 5.0 1.0 - 1.1 - 1.8 - 3.0 - 1.3 - 1.1 - 2.0 - 3.2 - 1.1 - 1.1 - 1.8 - 3.1 - 1.1 - 1.2 - 2.0 - 3.2 - 1.1 - 1.1 1.4 1.9 - 3.5 5.0 1.1 - 1.2 1.5 2.1 - 4.0 5.2 0 0.8 - 0.9 1.3 1.4 - 3.5 4.7 1 0.8 - 1.0 - 1.4 - 3.5 - 2 0.8 - 1.0 - 1.5 - 3.6 - 1 2 3 0 1 2 3 TYP 85 90 85 100 12.5 10 11.5 11 1.7 - 2.0 - 1.8 85°C MAX 0 MAX (2) 3 0.9 - 1.0 1.3 1.6 - 3.6 5.0 2.2 V x 0.06 - 0.20 0.26 0.33 - 0.60 0.9 3V x 0.07 - 0.25 0.29 0.37 - 0.77 0.9 UNIT µA µA µA µA µA µA All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. DVIO = DVCC = AVCC. The currents are characterized with a Micro Crystal MS1V-T1K SMD crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are chosen to closely match the required 9 pF. Copyright © 2010–2013, Texas Instruments Incorporated Submit Documentation Feedback 35 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com Schmitt-Trigger Inputs – General Purpose I/O (P1.0 to P1.5, P3.2 to P3.7, and PJ.0 to PJ.6) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VIT+ Positive-going input threshold voltage VIT– Negative-going input threshold voltage Vhys Input voltage hysteresis (VIT+ – VIT–) RPull Pullup/pulldown resistor For pullup: VIN = VSS For pulldown: VIN = VCC CI Input capacitance VIN = VSS or VCC VCC MIN 1.8 V 0.80 1.40 3V 1.50 2.10 1.8 V 0.45 1.00 3V 0.75 1.65 1.8 V 0.3 0.8 3V 0.4 1.0 20 TYP 35 MAX UNIT V V V 50 kΩ 5 pF Schmitt-Trigger Inputs – General Purpose I/O (P1.6 and P1.7, P2.0 to P2.7, and P3.0 and P3.1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VIT+ TEST CONDITIONS Positive-going input threshold voltage VIT– Negative-going input threshold voltage Vhys Input voltage hysteresis (VIT+ – VIT–) RPull Pullup/pulldown resistor For pullup: VIN = VSS For pulldown: VIN = VCC CI Input capacitance VIN = VSS or VCC VIO MIN 1.8 V 0.80 1.40 3V 1.20 2.00 5V 2.10 2.50 1.8 V 0.45 0.90 3V 0.75 1.30 5V 1.10 1.60 1.8 V 0.27 0.45 3V 0.45 0.65 5V 0.9 1.2 20 TYP 35 MAX UNIT V V V 50 kΩ 5 pF Inputs – Ports P1 and P2 (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER External interrupt timing (2) t(int) (1) (2) TEST CONDITIONS VCC or VIO Port P1.0 to P1.5, External trigger pulse duration to set interrupt flag 1.8 V to 3.6 V 20 1.8 V to 5 V 25 Port P1.6 and P1.7, and P2.0 to P2.7, External trigger pulse duration to set interrupt flag MIN MAX UNIT ns Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions. An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals shorter than t(int). Leakage Current – General Purpose I/O over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER Ilkg(Px.y) (1) (2) 36 High-impedance leakage current Port P1.0 to P1.5, P3.0 to P3.7, PJ.0 to PJ.6 Port P1.6 and P1.7, P2.0 to P2.7 TEST CONDITIONS VCC MIN TYP MAX 1.8 V to 3.6 V ±1 ±50 1.8 V to 5 V ±1 ±50 UNIT (1) (2) nA The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is disabled. Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 Outputs – Ports P1 to P3, PJ (Full Drive Strength, P1.0 to P1.5, P3.2 to P3.7, PJ.0 to PJ.6) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS I(OHmax) = –3 mA VOH High-level output voltage I(OHmax) = –10 mA (2) I(OHmax) = –5 mA (1) I(OHmax) = –15 mA (2) I(OLmax) = 3 mA VOL Low-level output voltage (2) 1.8 V 3V (1) I(OLmax) = 10 mA (2) I(OLmax) = 5 mA (1) I(OLmax) = 15 mA (2) (1) VCC (1) 1.8 V 3V MIN MAX VCC – 0.25 VCC VCC – 0.60 VCC VCC – 0.25 VCC VCC – 0.60 VCC UNIT V VSS VSS + 0.25 VSS VSS + 0.60 VSS VSS + 0.25 V VSS VSS + 0.60 The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop specified. The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage drop specified. Outputs – Ports P1 to P3 (Full Drive Strength, P1.6 and P1.7, P2.0 to P2.7, P3.0 and P3.1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS I(OH5max) = –3 mA I(OH5max) = –10 mA (2) VOH5 High-level output voltage I(OH5max) = –5 mA (1) I(OH5max) = –15 mA (2) I(OH5max) = –7 mA (1) I(OH5max) = –20 mA (2) I(OL5max) = 3 mA (1) I(OL5max) = 10 mA (2) VOL5 Low-level output voltage I(OL5max) = 5 mA (1) I(OL5max) = 15 mA (2) I(OL5max) = 7 mA (1) I(OL5max) = 20 mA (2) (1) (2) VIO (1) 1.8 V 3V 5V 1.8 V 3V 5V MIN MAX VIO – 0.25 VCC VIO – 0.60 VCC VIO – 0.25 VCC VIO – 0.60 VCC VIO – 0.25 VIO VIO – 0.60 VIO UNIT V VSS VSS + 0.25 VSS VSS + 0.60 VSS VSS + 0.25 VSS VSS + 0.60 V VSS VSS + 0.25 VSS VSS + 0.60 The maximum total current, I(OH5max) and I(OL5max), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop specified. The maximum total current, I(OH5max) and I(OL5max), for all outputs combined should not exceed ±200 mA to hold the maximum voltage drop specified. Outputs – Ports P1 to P3, PJ (Reduced Drive Strength, P1.0 to P1.5, P3.2 to P3.7, PJ.0 to PJ.6) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER TEST CONDITIONS I(OHmax) = –1 mA VOH High-level output voltage I(OHmax) = –3 mA (3) I(OHmax) = –2 mA (2) I(OHmax) = –6 mA (3) I(OLmax) = 1 mA (2) VOL Low-level output voltage I(OLmax) = 3 mA (3) I(OLmax) = 2 mA (3) 1.8 V 3V 1.8 V (2) I(OLmax) = 6 mA (3) (1) (2) VCC (2) 3V MIN MAX VCC – 0.25 VCC VCC – 0.60 VCC VCC – 0.25 VCC VCC – 0.60 VCC UNIT V VSS VSS + 0.25 VSS VSS + 0.60 VSS VSS + 0.25 V VSS VSS + 0.60 Selecting reduced drive strength may reduce EMI. The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop specified. The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage drop specified. Copyright © 2010–2013, Texas Instruments Incorporated Submit Documentation Feedback 37 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com Outputs – Ports P1 to P3 (Reduced Drive Strength, P1.6 and P1.7, P2.0 to P2.7, P3.0 and P3.1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER TEST CONDITIONS I(OH5max) = –1 mA VIO (2) 1.8 V I(OH5max) = –3 mA (3) VOH5 I(OH5max) = –2 mA (2) High-level output voltage 3V I(OH5max) = –6 mA (3) I(OH5max) = –4 mA (2) 5.0 V I(OL5max) = -12 mA (3) I(OL5max) = 1 mA (2) I(OL5max) = 2 mA (2) Low-level output voltage VCC VIO – 0.60 VCC VIO – 0.25 VCC VIO – 0.60 VCC VIO – 0.25 VIO VIO – 0.60 VIO 5.0 V I(OL5max) = 12 mA (3) (3) VIO – 0.25 3V I(OL5max) = 6 mA (3) I(OH5max) = 4 mA (2) (1) (2) MAX 1.8 V I(OL5max) = 3 mA (3) VOL5 MIN UNIT V VSS VSS + 0.25 VSS VSS + 0.60 VSS VSS + 0.25 VSS VSS + 0.60 V VSS VSS + 0.25 VSS VSS + 0.60 Selecting reduced drive strength may reduce EMI. The maximum total current, I(OH5max) and I(OL5max), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop specified. The maximum total current, I(OH5max) and I(OL5max), for all outputs combined, should not exceed ±200 mA to hold the maximum voltage drop specified. Output Frequency – Ports P1.0 to P1.5, P3.2 to P3.7, PJ.0 to PJ.6 over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER fPx.y fPort_CLK (1) (2) TEST CONDITIONS Port output frequency (with load) PJ.0/SMCLK CL = 20 pF, RL = 1 kΩ (1) Clock output frequency PJ.3/ACLK PJ.0/SMCLK PJ.1/MCLK CL = 20 pF (2) (2) MIN VCC = 1.8 V PMMCOREVx = 0 16 VCC = 3 V PMMCOREVx = 3 25 VCC = 1.8 V PMMCOREVx = 0 16 VCC = 3 V PMMCOREVx = 3 25 MAX UNIT MHz MHz A resistive divider with 2 × 0.5 kΩ between VCC and VSS is used as load. The output is connected to the center tap of the divider. The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency. Output Frequency – Ports P1.6 and P1.7, P2.0 to P2.7, P3.0 and P3.1 over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER Port output frequency (with load) fPx.y fPort_CLK (1) (2) 38 Clock output frequency TEST CONDITIONS P1.6 port mapper SMCLK from P3.4 CL = 20 pF, RL = 1 kΩ (1) (2) P1.6 port mapper SMCLK from P3.4 CL = 20 pF (2) MIN VCC = 1.8 V, VIO = 1.8 V PMMCOREVx = 0 16 VCC = 3 V, VIO = 3 V PMMCOREVx = 3 25 VCC = 3 V, VIO = 5 V PMMCOREVx = 3 25 VCC = 1.8 V, VIO = 1.8V PMMCOREVx = 0 16 VCC = 3 V, VIO = 3 V PMMCOREVx = 3 25 VCC = 3 V, VIO = 5 V PMMCOREVx = 3 25 MAX UNIT MHz MHz A resistive divider with 2 × 0.5 kΩ between VCC and VSS is used as load. The output is connected to the center tap of the divider. The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency. Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 Typical Characteristics – Outputs, Reduced Drive Strength (PxDS.y = 0), Ports P1.0 to P1.5, P3.2 to P3.7, PJ.0 to PJ.6 over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE 8.0 VCC = 3.0 V Px.y IOL – Typical Low-Level Output Current – mA IOL – Typical Low-Level Output Current – mA 25.0 TA = 25°C 20.0 TA = 85°C 15.0 10.0 5.0 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 7.0 TA = 85°C 6.0 5.0 4.0 3.0 2.0 1.0 0.0 0.0 3.5 1.5 2.0 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE 0.0 0.0 VCC = 3.0 V Px.y IOH – Typical High-Level Output Current – mA IOH – Typical High-Level Output Current – mA 1.0 Figure 3. TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE -5.0 -10.0 TA = 85°C -20.0 0.5 VOL – Low-Level Output Voltage – V VOL – Low-Level Output Voltage – V Figure 2. -15.0 TA = 25°C VCC = 1.8 V Px.y TA = 25°C VCC = 1.8 V Px.y -1.0 -2.0 -3.0 -4.0 TA = 85°C -5.0 -6.0 TA = 25°C -7.0 -8.0 -25.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 VOH – High-Level Output Voltage – V Figure 4. Copyright © 2010–2013, Texas Instruments Incorporated 3.5 0.0 0.5 1.0 1.5 VOH – High-Level Output Voltage – V 2.0 Figure 5. Submit Documentation Feedback 39 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com Typical Characteristics – Outputs, Full Drive Strength (PxDS.y = 1), Ports P1.0 to P1.5, P3.2 to P3.7, PJ.0 to PJ.6 over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE TA = 25°C VCC = 3.0 V Px.y 55.0 50.0 IOL – Typical Low-Level Output Current – mA IOL – Typical Low-Level Output Current – mA 60.0 TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE TA = 85°C 45.0 40.0 35.0 30.0 25.0 20.0 15.0 10.0 5.0 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 24 VCC = 1.8 V Px.y TA = 85°C 16 12 8 4 0 0.0 3.5 IOH – Typical High-Level Output Current – mA IOH – Typical High-Level Output Current – mA -10.0 -15.0 -20.0 -25.0 -30.0 -35.0 -40.0 -45.0 TA = 85°C -55.0 TA = 25°C 0.5 VCC = 1.8 V Px.y -4 -8 -12 TA = 85°C -16 TA = 25°C -20 1.0 1.5 2.0 2.5 3.0 VOH – High-Level Output Voltage – V Figure 8. 40 2.0 0 VCC = 3.0 V Px.y 0.0 1.5 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE 0.0 -60.0 1.0 Figure 7. TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE -50.0 0.5 VOL – Low-Level Output Voltage – V VOL – Low-Level Output Voltage – V Figure 6. -5.0 TA = 25°C 20 Submit Documentation Feedback 3.5 0.0 0.5 1.0 1.5 2.0 VOH – High-Level Output Voltage – V Figure 9. Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 Typical Characteristics – Outputs, Reduced Drive Strength (PxDS.y = 0), Ports P1.6 and P1.7, P2.0 to P2.7, P3.0 and P3.1 over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE 30 DVCC = 3.0 V DVIO = 5.0 V IOL - Typical Low-Level Output Current - mA IOL - Typical Low-Level Output Current - mA 60 TA = 25°C 50 40 TA = 85°C 30 20 10 0 25 TA = 25°C 20 TA = 85°C 15 10 5 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 0 0.5 1 1.5 2 2.5 3 3.5 V OL - Low -Level Output Voltage - V Figure 10. V OL - Low -Level Output Voltage - V Figure 11. TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE 10 0 DVCC = 1.8 V V DD = 1.8 5.5 V DVIO TA = 25°C IOH - Typical High-Level Output Current - mA IOL - Typical Low-Level Output Current - mA DVCC = 3.0 V V DD = 3.0 5.5 V DVIO 8 TA = 85°C 6 4 2 0 DVCC = 3.0 V V CC= =5.0 3.0V V DVIO -10 -20 -30 -40 TA = 85°C -50 -60 TA = 25°C -70 -80 0 0.5 1 1.5 V OL - Low -Level Output Voltage - V Figure 12. Copyright © 2010–2013, Texas Instruments Incorporated 2 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 V OH - High-Level Output Voltage - V Figure 13. Submit Documentation Feedback 41 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com Typical Characteristics – Outputs, Reduced Drive Strength (PxDS.y = 0), Ports P1.6 and P1.7, P2.0 to P2.7, P3.0 and P3.1 (continued) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE 0 DVCC = 3.0 V V DD = 5.5 DVIO 3.0 V IOH - Typical High-Level Output Current - mA IOH - Typical High-Level Output Current - mA 0 -5 -10 -15 TA = 85°C -20 -25 TA = 25°C -30 -2 -4 -6 TA = 85°C -8 TA = 25°C -10 0 0.5 1 1.5 2 2.5 3 V OH - High-Level Output Voltage - V Figure 14. 42 DVCC = 1.8 V V DD = 5.5 DVIO 1.8 V Submit Documentation Feedback 3.5 0 0.5 1 1.5 2 V OH - High-Level Output Voltage - V Figure 15. Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 Typical Characteristics – Outputs, Full Drive Strength (PxDS.y = 1), Ports P1.6 and P1.7, P2.0 to P2.7, P3.0 and P3.1 over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE DVCC = 3.0 V DVIO = 5.0 V 130 120 IOL - Typical Low-Level Output Current - mA IOL - Typical Low-Level Output Current - mA 140 TA = 25°C 110 100 TA = 85°C 90 80 70 60 50 40 30 20 10 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 TA = 25°C TA = 85°C 0.5 1 1.5 2 2.5 3 3.5 V OL - Low -Level Output Voltage - V Figure 16. V OL - Low -Level Output Voltage - V Figure 17. TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE DVCC = 1.8 V V DD = 1.8 5.5 V DVIO IOH - Typical High-Level Output Current - mA IOL - Typical Low-Level Output Current - mA DVCC = 3.0 V V DD = 3.0 5.5 V DVIO 0 30 TA = 25°C 25 20 TA = 85°C 15 10 5 0 0 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 0.5 1 1.5 V OL - Low -Level Output Voltage - V Figure 18. Copyright © 2010–2013, Texas Instruments Incorporated 2 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 DVCC = 3.0 V V CC= =5.0 3.0VV DVIO TA = 85°C TA = 25°C 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 V OH - High-Level Output Voltage - V Figure 19. Submit Documentation Feedback 43 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com Typical Characteristics – Outputs, Full Drive Strength (PxDS.y = 1), Ports P1.6 and P1.7, P2.0 to P2.7, P3.0 and P3.1 (continued) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 0 DVCC = 3.0 V V DD = 5.5 DVIO 3.0 V TA = 85°C TA = 25°C DVCC = 1.8 V V DD = 5.5 DVIO 1.8 V -5 -10 -15 TA = 85°C -20 TA = 25°C -25 -30 0 0.5 1 1.5 2 2.5 3 V OH - High-Level Output Voltage - V Figure 20. 44 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE IOH - Typical High-Level Output Current - mA IOH - Typical High-Level Output Current - mA TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE Submit Documentation Feedback 3.5 0 0.5 1 1.5 2 V OH - High-Level Output Voltage - V Figure 21. Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 Crystal Oscillator, XT1, Low-Frequency Mode over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 1, TA = 25°C IDVCC.LF Differential XT1 oscillator crystal current consumption from lowest drive setting, LF mode fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 2, TA = 25°C fXT1,LF,SW XT1 oscillator logic-level squarewave input frequency, LF mode XTS = 0, XT1BYPASS = 1 CL,eff fFault,LF tSTART,LF Integrated effective load capacitance, LF mode 0.170 32768 XTS = 0, XT1BYPASS = 0 OALF 3V 0.290 XT1 oscillator crystal frequency, LF mode MAX UNIT 0.075 fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 3, TA = 25°C fXT1,LF0 Oscillation allowance for LF crystals TYP 10 32.768 XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 0, fXT1,LF = 32768 Hz, CL,eff = 6 pF 210 XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 1, fXT1,LF = 32768 Hz, CL,eff = 12 pF 300 µA Hz 50 kHz kΩ XTS = 0, XCAPx = 0 2 XTS = 0, XCAPx = 1 5.5 XTS = 0, XCAPx = 2 8.5 XTS = 0, XCAPx = 3 12.0 pF Duty cycle, LF mode XTS = 0, Measured at ACLK, fXT1,LF = 32768 Hz 30 70 % Oscillator fault frequency, LF mode XTS = 0 10 10000 Hz Startup time, LF mode Copyright © 2010–2013, Texas Instruments Incorporated fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 0, TA = 25°C, CL,eff = 12 pF fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 3, TA = 25°C, CL,eff = 12 pF 1000 3V ms 500 Submit Documentation Feedback 45 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com Crystal Oscillator, XT1, High-Frequency Mode (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER IDVCC,HF TEST CONDITIONS Differential XT1 oscillator crystal current consumption from lowest drive setting, HF mode VCC MIN TYP fOSC = 4 MHz, XTS = 1, XOSCOFF = 0, XT1BYPASS = 0, XT1DRIVEx = 0, TA = 25°C 200 fOSC = 12 MHz, XTS = 1, XOSCOFF = 0, XT1BYPASS = 0, XT1DRIVEx = 1, TA = 25°C 260 fOSC = 20 MHz, XTS = 1, XOSCOFF = 0, XT1BYPASS = 0, XT1DRIVEx = 2, TA = 25°C MAX UNIT µA 3V 325 fOSC = 32 MHz, XTS = 1, XOSCOFF = 0, XT1BYPASS = 0, XT1DRIVEx = 3, TA = 25°C 450 fXT1,HF0 XT1 oscillator crystal frequency, HF mode 0 XTS = 1, XT1BYPASS = 0, XT1DRIVEx = 0 (2) 4 8 MHz fXT1,HF1 XT1 oscillator crystal frequency, HF mode 1 XTS = 1, XT1BYPASS = 0, XT1DRIVEx = 1 (2) 8 16 MHz fXT1,HF2 XT1 oscillator crystal frequency, HF mode 2 XTS = 1, XT1BYPASS = 0, XT1DRIVEx = 2 (2) 16 24 MHz fXT1,HF3 XT1 oscillator crystal frequency, HF mode 3 XTS = 1, XT1BYPASS = 0, XT1DRIVEx = 3 (2) 24 32 MHz fXT1,HF,SW XT1 oscillator logic-level squarewave input frequency, HF mode XTS = 1, XT1BYPASS = 1 (3) 0.7 32 MHz Oscillation allowance for HF crystals (4) OAHF tSTART,HF CL,eff (1) (2) (3) (4) (5) (6) 46 Startup time, HF mode Integrated effective load capacitance, HF mode (5) (2) XTS = 1, XT1BYPASS = 0, XT1DRIVEx = 0, fXT1,HF = 6 MHz, CL,eff = 15 pF 450 XTS = 1, XT1BYPASS = 0, XT1DRIVEx = 1, fXT1,HF = 12 MHz, CL,eff = 15 pF 320 XTS = 1, XT1BYPASS = 0, XT1DRIVEx = 2, fXT1,HF = 20 MHz, CL,eff = 15 pF 200 XTS = 1, XT1BYPASS = 0, XT1DRIVEx = 3, fXT1,HF = 32 MHz, CL,eff = 15 pF 200 fOSC = 6 MHz, XTS = 1, XT1BYPASS = 0, XT1DRIVEx = 0, TA = 25°C, CL,eff = 15 pF 0.5 fOSC = 20 MHz, XTS = 1, XT1BYPASS = 0, XT1DRIVEx = 2, TA = 25°C, CL,eff = 15 pF (6) XTS = 1 kΩ 3V ms 0.3 1 pF To improve EMI on the XT1 oscillator the following guidelines should be observed. (a) Keep the traces between the device and the crystal as short as possible. (b) Design a good ground plane around the oscillator pins. (c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. (d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. (e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. (f) If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins. Maximum frequency of operation of the entire device cannot be exceeded. When XT1BYPASS is set, the VLO, REFO, XT1 circuits are automatically powered down. Oscillation allowance is based on a safety factor of 5 for recommended crystals. Includes parasitic bond and package capacitance (approximately 2 pF per pin). Since the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal. Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 Crystal Oscillator, XT1, High-Frequency Mode(1) (continued) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER fFault,HF (7) (8) TEST CONDITIONS VCC MIN TYP MAX 50 60 % 300 kHz Duty cycle, HF mode XTS = 1, Measured at ACLK, fXT1,HF2 = 20 MHz 40 Oscillator fault frequency, HF mode (7) XTS = 1 (8) 30 UNIT Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag. Measured with logic-level input frequency but also applies to operation with crystals. Internal Very-Low-Power Low-Frequency Oscillator (VLO) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC fVLO VLO frequency Measured at ACLK 1.8 V to 3.6 V dfVLO/dT VLO frequency temperature drift Measured at ACLK (1) 1.8 V to 3.6 V Measured at ACLK (2) 1.8 V to 3.6 V Measured at ACLK 1.8 V to 3.6 V dfVLO/dVCC VLO frequency supply voltage drift Duty cycle (1) (2) MIN TYP MAX 6 9.4 14 0.5 50 kHz %/°C 4 40 UNIT %/V 60 % Calculated using the box method: (MAX(-40 to 85°C) MIN(-40 to 85°C)) / MIN(85°C (40°C)). The coefficient is negative. Calculated using the box method: (MAX(1.8 to 3.6 V) MIN(1.8 to 3.6 V)) / MIN(1.8 to 3.6 V) / (3.6 V 1.8 V). The coefficient is positive. Internal Reference, Low-Frequency Oscillator (REFO) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER IREFO fREFO TEST CONDITIONS VCC MAX 1.8 V to 3.6 V 3 REFO frequency calibrated Measured at ACLK 1.8 V to 3.6 V 32768 Full temperature range 1.8 V to 3.6 V ±3.5 3V ±1.5 REFO absolute tolerance calibrated TA = 25°C REFO frequency temperature drift Measured at ACLK (1) 1.8 V to 3.6 V dfREFO/dVCC REFO frequency supply voltage drift Measured at ACLK (2) 1.8 V to 3.6 V Duty cycle Measured at ACLK 1.8 V to 3.6 V REFO startup time 40%/60% duty cycle 1.8 V to 3.6 V (1) (2) TYP TA = 25°C dfREFO/dT tSTART MIN REFO oscillator current consumption µA Hz 0.01 50 % % %/°C 1.0 40 UNIT %/V 60 25 % µs Calculated using the box method: (MAX(-40 to 85°C) MIN(-40 to 85°C)) / MIN(85°C (40°C)) Calculated using the box method: (MAX(1.8 to 3.6 V) MIN(1.8 to 3.6 V)) / MIN(1.8 to 3.6 V) / (3.6 V 1.8 V) Copyright © 2010–2013, Texas Instruments Incorporated Submit Documentation Feedback 47 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com DCO Frequency over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS (1) MIN TYP MAX UNIT fDCO(0,0) DCO frequency (0, 0) DCORSELx = 0, DCOx = 0, MODx = 0 0.07 0.20 MHz fDCO(0,31) DCO frequency (0, 31) (1) DCORSELx = 0, DCOx = 31, MODx = 0 0.70 1.70 MHz fDCO(1,0) DCO frequency (1, 0) (1) DCORSELx = 1, DCOx = 0, MODx = 0 0.15 0.38 MHz fDCO(1,31) DCO frequency (1, 31) (1) DCORSELx = 1, DCOx = 31, MODx = 0 1.47 3.45 MHz (1) fDCO(2,0) DCO frequency (2, 0) DCORSELx = 2, DCOx = 0, MODx = 0 0.32 0.75 MHz fDCO(2,31) DCO frequency (2, 31) (1) DCORSELx = 2, DCOx = 31, MODx = 0 3.17 7.38 MHz fDCO(3,0) DCO frequency (3, 0) (1) DCORSELx = 3, DCOx = 0, MODx = 0 0.64 1.51 MHz (1) fDCO(3,31) DCO frequency (3, 31) DCORSELx = 3, DCOx = 31, MODx = 0 6.07 14.0 MHz fDCO(4,0) DCO frequency (4, 0) (1) DCORSELx = 4, DCOx = 0, MODx = 0 1.3 3.2 MHz fDCO(4,31) DCO frequency (4, 31) (1) DCORSELx = 4, DCOx = 31, MODx = 0 12.3 28.2 MHz (1) fDCO(5,0) DCO frequency (5, 0) DCORSELx = 5, DCOx = 0, MODx = 0 2.5 6.0 MHz fDCO(5,31) DCO frequency (5, 31) (1) DCORSELx = 5, DCOx = 31, MODx = 0 23.7 54.1 MHz fDCO(6,0) DCO frequency (6, 0) (1) DCORSELx = 6, DCOx = 0, MODx = 0 4.6 10.7 MHz fDCO(6,31) DCO frequency (6, 31) (1) DCORSELx = 6, DCOx = 31, MODx = 0 39.0 88.0 MHz (1) fDCO(7,0) DCO frequency (7, 0) DCORSELx = 7, DCOx = 0, MODx = 0 8.5 19.6 MHz fDCO(7,31) DCO frequency (7, 31) (1) DCORSELx = 7, DCOx = 31, MODx = 0 60 135 MHz SDCORSEL Frequency step between range DCORSEL and DCORSEL + 1 SRSEL = fDCO(DCORSEL+1,DCO)/fDCO(DCORSEL,DCO) 1.2 2.4 ratio SDCO Frequency step between tap DCO and DCO + 1 SDCO = fDCO(DCORSEL,DCO+1)/fDCO(DCORSEL,DCO) 1.02 1.12 ratio Duty cycle Measured at SMCLK dfDCO/dT DCO frequency temperature drift fDCO = 1 MHz, VCORE = 1.2 V/2.0 V 0.1 %/°C dfDCO/dVCORE DCO frequency voltage drift fDCO = 1 MHz 1.9 %/V (1) 40 50 60 % When selecting the proper DCO frequency range (DCORSELx), the target DCO frequency, fDCO, should be set to reside within the range of fDCO(n, 0),MAX ≤ fDCO ≤ fDCO(n, 31),MIN, where fDCO(n, 0),MAX represents the maximum frequency specified for the DCO frequency, range n, tap 0 (DCOx = 0) and fDCO(n,31),MIN represents the minimum frequency specified for the DCO frequency, range n, tap 31 (DCOx = 31). This ensures that the target DCO frequency resides within the range selected. It should also be noted that if the actual fDCO frequency for the selected range causes the FLL or the application to select tap 0 or 31, the DCO fault flag is set to report that the selected range is at its minimum or maximum tap setting. Typical DCO Frequency, VCC = 3.0 V, TA = 25°C 100 fDCO – MHz 10 DCOx = 31 1 0.1 DCOx = 0 0 1 2 3 4 5 6 7 DCORSEL Figure 22. Typical DCO frequency 48 Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 PMM, Brown-Out Reset (BOR) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 1.45 V 1.50 V 40 275 mV V(DVCC_BOR_IT-) BORH on voltage, DVCC falling level dDVCC/dt < 3 V/s V(DVCC_BOR_IT+) BORH off voltage, DVCC rising level dDVCC/dt < 3 V/s V(DVCC_BOR_hys) BORH hysteresis V(VCORE_BOR_IT-) BORL on voltage, VCORE falling level DVCC = 1.8 V to 3.6 V 0.69 0.87 V V(VCORE_BOR_IT+) BORL off voltage, VCORE rising level DVCC = 1.8 V to 3.6 V 0.83 1.05 V V(VCORE_BOR_hys) BORL hysteresis 200 mV tdBOR BORL reset release time 2000 µs tRESET Pulse duration required at RST/NMI pin to accept a reset 0.80 1.30 60 2 µs PMM, Core Voltage over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT VCORE3(AM) Core voltage, active mode, PMMCOREV = 3 2.4 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 25 mA 1.90 V VCORE2(AM) Core voltage, active mode, PMMCOREV = 2 2.2 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 21 mA 1.80 V VCORE1(AM) Core voltage, active mode, PMMCOREV = 1 2.0 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 17 mA 1.60 V VCORE0(AM) Core voltage, active mode, PMMCOREV = 0 1.8 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 13 mA 1.40 V VCORE3(LPM) Core voltage, active mode, PMMCOREV = 3 2.4 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 30 µA 1.94 V VCORE2(LPM) Core voltage, low-current 2.2 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA mode, PMMCOREV = 2 1.84 V VCORE1(LPM) Core voltage, low-current 2.0 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA mode, PMMCOREV = 1 1.64 V VCORE0(LPM) Core voltage, low-current 1.8 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA mode, PMMCOREV = 0 1.44 V Copyright © 2010–2013, Texas Instruments Incorporated Submit Documentation Feedback 49 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com PMM, SVS High Side over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN SVSHE = 0, DVCC = 3.6 V I(SVSH) SVS current consumption V(SVSH_IT–) V(SVSH_IT+) tpd(SVSH) t(SVSH) SVSH off voltage level SVSH propagation delay SVSH on or off delay time dVDVCC/dt 50 SVSH on voltage level DVCC rise time Submit Documentation Feedback TYP MAX 0 UNIT nA SVSHE = 1, DVCC = 3.6 V, SVSHFP = 0 200 nA SVSHE = 1, DVCC = 3.6 V, SVSHFP = 1 2 µA SVSHE = 1, SVSHRVL = 0 1.59 1.64 1.69 SVSHE = 1, SVSHRVL = 1 1.79 1.84 1.91 SVSHE = 1, SVSHRVL = 2 1.98 2.04 2.11 SVSHE = 1, SVSHRVL = 3 2.10 2.16 2.23 SVSHE = 1, SVSMHRRL = 0 1.62 1.74 1.81 SVSHE = 1, SVSMHRRL = 1 1.88 1.94 2.01 SVSHE = 1, SVSMHRRL = 2 2.07 2.14 2.21 SVSHE = 1, SVSMHRRL = 3 2.20 2.26 2.33 SVSHE = 1, SVSMHRRL = 4 2.32 2.40 2.48 SVSHE = 1, SVSMHRRL = 5 2.56 2.70 2.84 SVSHE = 1, SVSMHRRL = 6 2.85 3.00 3.15 SVSHE = 1, SVSMHRRL = 7 2.85 3.00 3.15 SVSHE = 1, dVDVCC/dt = 10 mV/µs, SVSHFP = 1 2.5 SVSHE = 1, dVDVCC/dt = ±1 mV/µs, SVSHFP = 0 25 V V µs SVSHE = 0 -> 1 SVSHFP = 1 12.5 SVSHE = 0 -> 1 SVSHFP = 0 100 µs 0 1000 V/s Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 PMM, SVM High Side over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN SVMHE = 0, DVCC = 3.6 V I(SVMH) V(SVMH) SVMH current consumption SVMH on or off voltage level t(SVMH) SVMH propagation delay SVMH on or off delay time MAX UNIT 0 nA SVMHE = 1, DVCC = 3.6 V, SVMHFP = 0 200 nA SVMHE = 1, DVCC = 3.6 V, SVMHFP = 1 2.0 µA SVMHE = 1, SVSMHRRL = 0 1.65 1.74 1.86 SVMHE = 1, SVSMHRRL = 1 1.85 1.94 2.02 SVMHE = 1, SVSMHRRL = 2 2.02 2.14 2.22 SVMHE = 1, SVSMHRRL = 3 2.18 2.26 2.35 SVMHE = 1, SVSMHRRL = 4 2.32 2.40 2.48 SVMHE = 1, SVSMHRRL = 5 2.56 2.70 2.84 SVMHE = 1, SVSMHRRL = 6 2.85 3.00 3.15 SVMHE = 1, SVSMHRRL = 7 2.85 3.00 3.15 SVMHE = 1, SVMHOVPE = 1 tpd(SVMH) TYP V 3.75 SVMHE = 1, dVDVCC/dt = 10 mV/µs, SVMHFP = 1 2.5 µs SVMHE = 1, dVDVCC/dt = 1 mV/µs, SVMHFP = 0 20 µs SVMHE = 0 -> 1, SVSHFP = 1 12.5 SVMHE = 0 -> 1, SVSHFP = 0 100 µs PMM, SVS Low Side over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN SVSLE = 0, PMMCOREV = 2 I(SVSL) t(SVSL) tpd(SVSL) SVSL current consumption SVSL on or off delay time SVSL propagation delay TYP MAX UNIT 0 nA SVSLE = 1, PMMCOREV = 2, SVSLFP = 0 200 nA SVSLE = 1, PMMCOREV = 2, SVSLFP = 1 2.0 µA SVSLE = 1, dVCORE/dt = 10 mV/µs, SVSLFP = 1 6 SVSLE = 1, dVCORE/dt = 1 mV/µs, SVSLFP = 0 50 µs SVMHE = 0 -> 1, SVSLFP = 1 12.5 SVMHE = 0 -> 1, SVSLFP = 0 100 µs PMM, SVM Low Side over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS SVMLE = 0, PMMCOREV = 2 I(SVML) tpd(SVML) t(SVML) SVML current consumption SVML propagation delay SVML on or off delay time Copyright © 2010–2013, Texas Instruments Incorporated MIN TYP MAX UNIT 0 nA SVMLE = 1, PMMCOREV = 2, SVMLFP = 0 200 nA SVMLE = 1, PMMCOREV = 2, SVMLFP = 1 2.0 µA SVMLE = 1, dVCORE/dt = 10 mV/µs, SVMLFP = 1 2.5 SVMLE = 1, dVCORE/dt = 1 mV/µs, SVMLFP = 0 30 µs SVMLE = 0 -> 1, SVSLFP = 1 12.5 SVMLE = 0 -> 1, SVSLFP = 0 100 µs Submit Documentation Feedback 51 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com Wake-Up From Low-Power Modes over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT fMCLK ≥ 4 MHz 3 6.5 1 MHz < fMCLK < 4 MHz 4 8.0 150 165 µs Wake-up time from LPM4.5 to active mode 2 3 ms Wake-up time from RST or BOR event to active mode 2 3 ms tFAST-WAKE-UP Wake-up time from LPM2, LPM3, or LPM4 to active mode PMMCOREVx = 0 = SVSMLRRLx = n (where n = 0, 1, 2, or 3), SVSLFP = 1 tSLOW-WAKE-UP Wake-up time from LPM2, LPM3, or LPM4 to active mode PMMCOREVx = 0 = SVSMLRRLx = n (where n = 0, 1, 2, or 3), SVSLFP = 0 tWAKE-UP LPM5 tWAKE-UP-RESET µs Timer_A over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC fTA Timer_A input clock frequency Internal: SMCLK, ACLK External: TACLK Duty cycle = 50% ± 10% 1.8 V, 3 V tTA,cap Timer_A capture timing All capture inputs. Minimum pulse duration required for capture. 1.8 V, 3 V MIN TYP MAX UNIT 25 MHz 20 ns USCI (UART Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER fUSCI USCI input clock frequency fmax,BITCLK Maximum BITCLK clock frequency (equals baud rate in MBaud) (1) tτ UART receive deglitch time (1) 52 TEST CONDITIONS VCC MIN TYP Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ± 10% MAX UNIT fSYSTEM MHz 1 MHz 2.2 V 50 150 200 3V 50 150 200 ns The DCO wake-up time must be considered in LPM3/4. The wake-up time must be considered in LPMx.5. Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 USCI (SPI Master Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 23 and Figure 24) PARAMETER fUSCI USCI input clock frequency TEST CONDITIONS PMMCOREV = 0 tSU,MI SOMI input data setup time PMMCOREV = 3 PMMCOREV = 0 tHD,MI SOMI input data hold time PMMCOREV = 3 tVALID,MO tHD,MO MIN 1.8 V 55 3V 38 2.4 V 30 3V 25 1.8 V 0 3V 0 2.4 V 0 3V 0 TYP MAX UNIT fSYSTEM MHz ns ns UCLK edge to SIMO valid, CL = 20 pF, PMMCOREV = 0 1.8 V 20 3V 18 UCLK edge to SIMO valid, CL = 20 pF, PMMCOREV = 3 2.4 V 16 CL = 20 pF, PMMCOREV = 0 1.8 V -10 3V -8 CL = 20 pF, PMMCOREV = 3 2.4 V -10 3V -8 SIMO output data valid time SIMO output data hold time Copyright © 2010–2013, Texas Instruments Incorporated VCC SMCLK, ACLK Duty cycle = 50% ± 10% 3V ns 15 Submit Documentation Feedback ns ns 53 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tLOW/HIGH tHD,MI tSU,MI SOMI tVALID,MO SIMO Figure 23. SPI Master Mode, CKPH = 0 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tLOW/HIGH tSU,MI tHD,MI SOMI tVALID,MO SIMO Figure 24. SPI Master Mode, CKPH = 1 54 Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 USCI (SPI Slave Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 25 and Figure 26) PARAMETER TEST CONDITIONS PMMCOREV = 0 tSTE,LEAD STE lead time, STE low to clock PMMCOREV = 3 PMMCOREV = 0 tSTE,LAG STE lag time, Last clock to STE high PMMCOREV = 3 PMMCOREV = 0 tSTE,ACC STE access time, STE low to SOMI data out PMMCOREV = 3 PMMCOREV = 0 tSTE,DIS STE disable time, STE high to SOMI high impedance PMMCOREV = 3 PMMCOREV = 0 tSU,SI SIMO input data setup time PMMCOREV = 3 PMMCOREV = 0 tHD,SI SIMO input data hold time PMMCOREV = 3 tVALID,SO tHD,SO SOMI output data valid time MIN 11 3V 8 2.4 V 7 3V 6 1.8 V 3 3V 3 2.4 V 3 3V 3 TYP MAX ns ns ns 1.8 V 66 3V 50 2.4 V 36 3V 30 1.8 V 30 3V 23 2.4 V 16 3V 13 1.8 V 5 3V 5 2.4 V 2 3V 2 1.8 V 5 3V 5 2.4 V 5 3V 5 UNIT ns ns ns ns ns ns ns ns ns UCLK edge to SOMI valid, CL = 20 pF, PMMCOREV = 0 1.8 V 76 3V 60 UCLK edge to SOMI valid, CL = 20 pF, PMMCOREV = 3 2.4 V 44 3V 40 CL = 20 pF, PMMCOREV = 0 1.8 V 18 3V 12 CL = 20 pF, PMMCOREV = 3 2.4 V 10 3V 8 SOMI output data hold time Copyright © 2010–2013, Texas Instruments Incorporated VCC 1.8 V Submit Documentation Feedback ns ns ns ns 55 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com tSTE,LAG tSTE,LEAD STE 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tSU,SIMO tLOW/HIGH tHD,SIMO SIMO tACC tDIS tVALID,SOMI SOMI Figure 25. SPI Slave Mode, CKPH = 0 tSTE,LAG tSTE,LEAD STE 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tLOW/HIGH tHD,SI tSU,SI SIMO tACC tDIS tVALID,SO SOMI Figure 26. SPI Slave Mode, CKPH = 1 56 Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 USCI (I2C Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 27) PARAMETER TEST CONDITIONS VCC MIN TYP Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ± 10% MAX UNIT fSYSTEM MHz 400 kHz fUSCI USCI input clock frequency fSCL SCL clock frequency tHD,STA Hold time (repeated) START tSU,STA Setup time for a repeated START tHD,DAT Data hold time 2.2 V, 3 V 0 ns tSU,DAT Data setup time 2.2 V, 3 V 250 ns 2.2 V, 3 V fSCL ≤ 100 kHz fSCL > 100 kHz fSCL ≤ 100 kHz fSCL > 100 kHz fSCL ≤ 100 kHz tSU,STO Setup time for STOP tSP Pulse duration of spikes suppressed by input filter fSCL > 100 kHz tSU,STA tHD,STA 2.2 V, 3 V 2.2 V, 3 V 2.2 V, 3 V 0 4.0 µs 0.6 4.7 µs 0.6 4.0 µs 0.6 2.2 V 50 600 3V 50 600 tHD,STA ns tBUF SDA tLOW tHIGH tSP SCL tSU,DAT tSU,STO tHD,DAT Figure 27. I2C Mode Timing Copyright © 2010–2013, Texas Instruments Incorporated Submit Documentation Feedback 57 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com 10-Bit ADC, Power Supply and Input Range Conditions (MSP430F51x2 Devices Only) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER TEST CONDITIONS VCC AVCC Analog supply voltage AVCC and DVCC are connected together, AVSS and DVSS are connected together, V(AVSS) = V(DVSS) = 0 V V(Ax) Analog input voltage range (2) All ADC10_A pins: P1.0 to P1.5 and P3.6 and P3.7 terminals Operating supply current into AVCC terminal, REF module and reference buffer off fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC10DIV = 0, ADC10SREF = 00 Operating supply current into AVCC terminal, REF module on, reference buffer on MIN TYP MAX UNIT 1.8 3.6 V 0 AVCC V 2.2 V 60 90 3V 75 100 fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 1, SHT0 = 0, SHT1 = 0, ADC10DIV = 0, ADC10SREF = 01 3V 113 130 µA Operating supply current into AVCC terminal, REF module off, reference buffer on fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC10DIV = 0, ADC10SREF = 10, VEREF = 2.5 V 3V 105 125 µA Operating supply current into AVCC terminal, REF module off, reference buffer off fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC10DIV = 0, ADC10SREF = 11, VEREF = 2.5 V 3V 70 95 µA CI Input capacitance Only one terminal Ax can be selected at one time from the pad to the ADC10_A capacitor array including wiring and pad. 2.2 V 3.5 RI Input MUX ON resistance IADC10_A (1) (2) µA pF AVCC > 2.0V, 0 V ≤ VAx ≤ AVCC 36 1.8V < AVCC < 2.0V, 0 V ≤ VAx ≤ AVCC 96 kΩ The leakage current is defined in the leakage current table with P6.x/Ax parameter. The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results. The external reference voltage requires decoupling capacitors. See (). 10-Bit ADC, Timing Parameters (MSP430F51x2 Devices Only) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VCC MIN TYP MAX UNIT For specified performance of ADC10_A linearity parameters 2.2 V, 3 V 0.45 5 5.5 MHz Internal ADC10_A oscillator (1) ADC10DIV = 0, fADC10CLK = fADC10OSC 2.2 V, 3 V 4.2 4.8 5.4 MHz 2.2 V, 3 V 2.4 Conversion time REFON = 0, Internal oscillator, 12 ADC10CLK cycles, 10-bit mode fADC10OSC = 4 MHz to 5 MHz fADC10CLK fADC10OSC tCONVERT TEST CONDITIONS µs External fADC10CLK from ACLK, MCLK or SMCLK, ADC10SSEL ≠ 0 tADC10ON Turn on settling time of the ADC tSample Sampling time (1) (2) (3) (4) 58 See 3.0 (2) (3) 100 ns RS = 1000 Ω, RI = 96 kΩ, CI = 3.5 pF (4) 1.8 V 3 µs RS = 1000 Ω, RI = 36 kΩ, CI = 3.5 pF (4) 3V 1 µs The ADC10OSC is sourced directly from MODOSC inside the UCS. 12 × ADC10DIV × 1/fADC10CLK The condition is that the error in a conversion started after tADC10ON is less than ±0.5 LSB. The reference and input signal are already settled. Approximately eight Tau (τ) are needed to get an error of less than ±0.5 LSB Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 10-Bit ADC, Linearity Parameters (MSP430F51x2 Devices Only) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS EI Integral linearity error 1.4 V ≤ (VEREF+ – VEREF-)min ≤ 1.6 V ±1.0 1.6 V < (VEREF+ – VEREF-)min ≤ VAVCC ±1.0 ED Differential linearity error (VEREF+ – VEREF-)min ≤ (VEREF+ – VEREF-), CVEREF+ = 20 pF ±1.0 LSB EO Offset error (VEREF+ – VEREF-)min ≤ (VEREF+ – VEREF-), Internal impedance of source RS < 100 Ω, CVEREF+ = 20 pF ±1.0 LSB ±1.0 LSB ±1.5 LSB Gain error, external reference Gain error, external reference, buffered EG Gain error, internal reference MIN Total unadjusted error, internal reference TYP (VEREF+ – VEREF-)min ≤ (VEREF+ – VEREF-), CVEREF+ = 20 pF See (1) See MAX UNIT LSB ±1.5% VREF Total unadjusted error, external (VEREF+ – VEREF-)min ≤ (VEREF+ – VEREF-), buffered and CVEREF+ = 20 pF unbuffered reference ET (1) VCC ±1.0 (1) ±2.0 LSB ±1.5% VREF Dominated by the absolute voltage of the integrated reference voltage. REF, External Reference (MSP430F51x2 Devices Only) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER VEREF+ Positive external reference voltage input VEREFVEREF+ – VEREF- I(VEREF+) I(VEREF-) C(VEREF+/-) (1) (2) (3) (4) (5) TEST CONDITIONS MAX UNIT 1.4 AVCC V (3) 0 1.2 V (4) 1.4 AVCC V ±26 µA ±1 µA VEREF+ > VEREF- (2) Negative external reference voltage input VEREF+ > VEREF- Differential external reference voltage input VEREF+ > VEREF- Static input current Capacitance at VEREF+/- terminal VCC 1.4 V ≤ VEREF+ ≤ V(AVCC), VEREF- = 0 V, fADC10CLK = 5 MHz, ADC10SHTx = 0x0001, Conversion rate 200 ksps 2.2 V, 3 V 1.4 V ≤ VEREF+ ≤ V(AVCC), VEREF- = 0 V, fADC10CLK = 5 MHZ, ADC10SHTX = 0x1000, Conversion rate 20 ksps 2.2 V, 3 V See (5) MIN TYP ±8.5 10 µF The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, CI, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements. The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements. Two decoupling capacitors, 10 µF and 100 nF, should be connected to VEREF to decouple the dynamic current required for an external reference source if it is used for the ADC10_A. See also the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208). Copyright © 2010–2013, Texas Instruments Incorporated Submit Documentation Feedback 59 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com REF, Built-In Reference (MSP430F51x2 Devices Only) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER Positive built-in reference voltage VREF+ AVCC(min) AVCC minimum voltage, Positive built-in reference active Operating supply current into AVCC terminal (2) IREF+ TEST CONDITIONS VCC MIN TYP MAX REFVSEL = {2} for 2.5 V, REFON = 1 3V 2.51 ±1.5% REFVSEL = {1} for 2.0 V, REFON = 1 3V 1.99 ±1.5% REFVSEL = {0} for 1.5 V, REFON = 1 2.2 V, 3 V 1.5 ±1.5% REFVSEL = {0} for 1.5 V 1.8 REFVSEL = {1} for 2.0 V 2.3 REFVSEL = {2} for 2.5 V 2.8 UNIT V V fADC10CLK = 5 MHz, REFON = 1, REFBURST = 0, REFVSEL = {0} for 1.5 V 3V 15.5 19 µA fADC10CLK = 5 MHz, REFON = 1, REFBURST = 0, REFVSEL = {1} for 2.0 V 3V 18 24 µA fADC10CLK = 5 MHz, REFON = 1, REFBURST = 0, REFVSEL = {2} for 2.5 V 3V 21 30 µA 30 50 ppm/ °C 2.2 V 150 180 3V 150 190 REFON = 1, INCH = 0Ah, ADC10ON = 1, TA = 30°C 2.2 V 765 3V 765 2.2 V 1.06 1.1 1.14 3V 1.46 1.5 1.54 TCREF+ Temperature coefficient of builtin reference (3) REFVSEL = (0, 1, 2}, REFON = 1 ISENSOR Operating supply current into AVCC terminal (4) REFON = 1, INCH = 0Ah, ADC10ON = 1, TA = 30°C VSENSOR See VMID AVCC divider at channel 11 ADC10ON = 1, INCH = 0Bh, VMID is approximately 0.5 × VAVCC tSENSOR Sample time required if channel 10 is selected (6) ADC10ON = 1, INCH = 0Ah, Error of conversion result ≤ 1 LSB 30 µs Sample time required if channel 11 is selected (7) ADC10ON = 1, INCH = 0Bh, Error of conversion result ≤ 1 LSB 1 µs PSRR_DC Power supply rejection ratio (dc) AVCC = AVCC (min) - AVCC(max), TA = 25°C, REFVSEL = (0, 1, 2}, REFON = 1 120 PSRR_AC Power supply rejection ratio (ac) AVCC = AVCC (min) - AVCC(max), TA = 25°C, f = 1 kHz, ΔVpp = 100 mV, REFVSEL = (0, 1, 2}, REFON = 1 6.4 tSETTLE AVCC = AVCC (min) - AVCC(max) Settling time of (8) REFVSEL = (0, 1, 2}, reference voltage REFON = 0 → 1 (sample) tVMID (sample) (1) (2) (3) (4) (5) (6) (7) (8) 60 (5) µA mV 300 V µV/V mV/V TA = -40°C to 85°C 23 125 TA = 25°C 23 50 TA = 85°C 16 25 µs The leakage current is defined in the leakage current table with P6.x/Ax parameter. The internal reference current is supplied via terminal AVCC. Consumption is independent of the ADC10ON control bit, unless a conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion. Calculated using the box method: (MAX(-40 to 85°C) – MIN(-40 to 85°C)) / MIN(-40 to 85°C)/(85°C – (–40°C)). The sensor current ISENSOR is consumed if (ADC10ON = 1 and REFON = 1) or (ADC10ON = 1 and INCH = 0Ah and sample signal is high). When REFON = 1, ISENSOR is already included in IREF+. The temperature sensor offset can be as much as ±20°C. A single-point calibration is recommended in order to minimize the offset error of the built-in temperature sensor. The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on). The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed. The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB. Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 Comparator_B over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VCC TEST CONDITIONS VCC MIN Supply voltage TYP 1.8 3.6 1.8 V IAVCC_COMP VREF IAVCC_REF CBPWRMD = 00, CBON = 1, CBRSx = 00 Comparator operating supply current into AVCC, Excludes CBPWRMD = 01, CBON = 1, CBRSx = 00 reference resistor ladder Reference voltage level Quiescent current of resistor ladder into AVCC, Including REF module current VIC Common mode input range VOFFSET Input offset voltage CIN Input capacitance RSIN tPD tPD,filter Series input resistance Propagation delay, response time Propagation delay with filter active tEN_CMP Comparator enable time tEN_REF Resistor reference enable time TCCB_REF Temperature coefficient reference of VCB_REF VCB_REF Reference voltage for a given tap MAX UNIT V 38 2.2 V 31 38 3V 32 39 2.2 V, 3V 10 17 CBPWRMD = 10, CBON = 1, CBRSx = 00 2.2 V, 3V 0.2 0.85 CBREFLx = 01, CBREFACC = 0 ≥1.8 V 1.5 ±1.5% CBREFLx = 10, CBREFACC = 0 ≥2.2 V 2.0 ±1.5% CBREFLx = 11, CBREFACC = 0 ≥3.0 V 2.5 ±1.5% CBREFACC = 0, CBREFLx = 01, CBRSx = 10, REFON = 0, CBON = 0 2.2 V, 3V 10 17 µA CBREFACC = 1, CBREFLx = 01, CBRSx = 10, REFON = 0, CBON = 0 2.2 V, 3V 33 40 µA VCC-1 V µA 0 CBPWRMD = 00 CBPWRMD = 01, 10 ±20 mV ±10 mV 4 kΩ 5 ON - switch closed OFF - switch opened 3 V pF 50 MΩ CBPWRMD = 00, CBF = 0 450 CBPWRMD = 01, CBF = 0 600 ns ns CBPWRMD = 10, CBF = 0 50 µs CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 00 0.35 0.6 1.5 µs CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 01 0.6 1.0 1.8 µs CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 10 1.0 1.8 3.4 µs CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 11 1.8 3.4 6.5 µs CBON = 0 to CBON = 1, CBPWRMD = 00, 01 1 CBON = 0 to CBON = 1, CBPWRMD = 10 CBON = 0 to CBON = 1 VIN = reference into resistor ladder, n = 0 to 31 Copyright © 2010–2013, Texas Instruments Incorporated 1.0 VIN × (n+0.5) / 32 VIN × (n+1) / 32 2 µs 1.5 µs 1.5 µs 50 ppm/ °C VIN × (n+1.5) / 32 Submit Documentation Feedback V 61 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com Timer_D, Power Supply and Reference Clock Conditions over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER DVCC Digital supply voltage fREF,DCO Timer_D input reference clock frequency I(DVCC) at 64-MHz Timer_D clock, clock generator only TEST CONDITIONS VCC V(DVSS) = 0 V MIN TYP MAX UNIT 1.8 3.6 PMMCOREVx = 0 1.8 V ≤ VCC ≤ 3.6 V 8 12.0 PMMCOREVx = 1 2.0 V ≤ VCC ≤ 3.6 V 8 16.0 PMMCOREVx = 2 2.2 V ≤ VCC ≤ 3.6 V 8 20.0 PMMCOREVx = 3 2.4 V ≤ VCC ≤ 3.6 V 8 25.5 V MHz freference = 8 MHz, MCx = 0, TDHREGEN = 1, TDHMx = 0, TDHCLKCR = 0 253 320 µA I(DVCC) at 128-MHz I(128MHz) Timer_D clock, clock generator only freference = 16 MHz, MCx = 0, TDHREGEN = 1, TDHMx = 0, TDHCLKCR = 0 285 360 µA I(DVCC) at 200-MHz I(200MHz) Timer_D clock, clock generator only freference = 25 MHz, MCx = 0, TDHREGEN = 1, TDHMx = 0, TDHCLKCR = 1 280 345 µA I(DVCC) at 256-MHz I(256MHz) Timer_D clock, clock generator only freference = 16 MHz, MCx = 0, TDHREGEN = 1, TDHMx = 1, TDHCLKCR = 1 265 330 µA I(0,16,64) I(DVCC) TDHCLKRx = 0, TDHCLKSRx = 16, TDHCLKTRIM = 64 I(1,16,64) I(DVCC) TDHCLKRx = 1, TDHCLKSRx = 16, TDHCLKTRIM = 64 I(2,16,64) I(DVCC) TDHCLKRx = 2, TDHCLKSRx = 16, TDHCLKTRIM = 64 I(64MHz) (1) 62 2.2 V 244 3.0 V 295 2.2 V 282 3.0 V 300 2.2 V 358 3.0 V 414 325 400 470 µA µA µA The leakage current is defined in the leakage current table with P6.x/Ax parameter. Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 Timer_D, Local Clock Generator Frequency over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER fHRCG(0,0,64) fHRCG(0,7,64) fHRCG(0,15,64) fHRCG(0,23,64) fHRCG(0,31,0) fHRCG(0,31,64) fHRCG(0,31,128) fHRCG(1,0,64) fHRCG(1,7,64) HRCG frequency (0, 0, 64) HRCG frequency (0, 7, 64) HRCG frequency (0, 15, 64) HRCG frequency (0, 23, 64) HRCG frequency (0, 31, 0) HRCG frequency (0, 31, 64) HRCG frequency (0, 31, 128) HRCG frequency (1, 0, 64) HRCG frequency (1, 7, 64) Copyright © 2010–2013, Texas Instruments Incorporated TEST CONDITIONS MIN TYP MAX UNIT TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 1, TDHCLKRx = 0, TDHCLKSRx = 0, TDHCLKTRIM = 64 39 56 73 MHz TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 1, TDHCLKRx = 0, TDHCLKSRx = 0, TDHCLKTRIM = 64 78 112 146 MHz TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 1, TDHCLKRx = 0, TDHCLKSRx = 7, TDHCLKTRIM = 64 46 66 86 MHz TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 1, TDHCLKRx = 0, TDHCLKSRx = 7, TDHCLKTRIM = 64 92 132 172 MHz TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 1, TDHCLKRx = 0, TDHCLKSRx = 15, TDHCLKTRIM = 64 55 78 101 MHz TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 1, TDHCLKRx = 0, TDHCLKSRx = 15, TDHCLKTRIM = 64 110 156 202 MHz TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 1, TDHCLKRx = 0, TDHCLKSRx = 23, TDHCLKTRIM = 64 61 87 113 MHz TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 1, TDHCLKRx = 0, TDHCLKSRx = 23, TDHCLKTRIM = 64 122 174 226 MHz TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 1, TDHCLKRx = 0, TDHCLKSRx = 31, TDHCLKTRIM = 0 36 56 73 MHz TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 1, TDHCLKRx = 0, TDHCLKSRx = 31, TDHCLKTRIM = 0 72 112 146 MHz TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 1, TDHCLKRx = 0, TDHCLKSRx = 31, TDHCLKTRIM = 64 68 98 128 MHz TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 1, TDHCLKRx = 0, TDHCLKSRx = 31, TDHCLKTRIM = 64 136 196 256 MHz TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 1, TDHCLKRx = 0, TDHCLKSRx = 31, TDHCLKTRIM = 128 97 138 180 MHz TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 1, TDHCLKRx = 0, TDHCLKSRx = 31, TDHCLKTRIM = 128 196 176 360 MHz TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 0, TDHCLKRx = 1, TDHCLKSRx = 0, TDHCLKTRIM = 64 71 101 131 MHz TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 0, TDHCLKRx = 1, TDHCLKSRx = 0, TDHCLKTRIM = 64 142 202 262 MHz TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 0, TDHCLKRx = 1, TDHCLKSRx = 7, TDHCLKTRIM = 64 84 120 156 MHz TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 0, TDHCLKRx = 1, TDHCLKSRx = 7, TDHCLKTRIM = 64 168 240 312 MHz Submit Documentation Feedback 63 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com Timer_D, Local Clock Generator Frequency (continued) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER fHRCG(1,15,64) fHRCG(1,23,64) fHRCG(1,31,0) fHRCG(1,31,64) fHRCG(1,31,128) fHRCG(2,0,64) fHRCG(2,7,64) fHRCG(2,15,64) fHRCG(2,23,64) 64 HRCG frequency (1, 15, 64) HRCG frequency (1, 23, 64) HRCG frequency (1, 31, 0) HRCG frequency (1, 31, 64) HRCG frequency (1, 31, 128) HRCG frequency (2, 0, 64) HRCG frequency (2, 7, 64) HRCG frequency (2, 15, 64) HRCG frequency (2, 23, 64) Submit Documentation Feedback TEST CONDITIONS MIN TYP MAX UNIT TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 0, TDHCLKRx = 1, TDHCLKSRx = 15, TDHCLKTRIM = 64 97 139 182 MHz TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 0, TDHCLKRx = 1, TDHCLKSRx = 15, TDHCLKTRIM = 64 196 278 364 MHz TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 0, TDHCLKRx = 1, TDHCLKSRx = 23, TDHCLKTRIM = 64 108 154 200 MHz TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 0, TDHCLKRx = 1, TDHCLKSRx = 23, TDHCLKTRIM = 64 216 308 400 MHz TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 0, TDHCLKRx = 1, TDHCLKSRx = 31, TDHCLKTRIM = 0 68 97 126 MHz TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 0, TDHCLKRx = 1, TDHCLKSRx = 31, TDHCLKTRIM = 0 136 194 252 MHz TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 0, TDHCLKRx = 1, TDHCLKSRx = 31, TDHCLKTRIM = 64 123 175 227 MHz TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 0, TDHCLKRx = 1, TDHCLKSRx = 31, TDHCLKTRIM = 64 246 350 454 MHz TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 0, TDHCLKRx = 1, TDHCLKSRx = 31, TDHCLKTRIM = 128 169 241 313 MHz TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 0, TDHCLKRx = 1, TDHCLKSRx = 31, TDHCLKTRIM = 128 338 482 616 MHz TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 1, TDHCLKRx = 2, TDHCLKSRx = 0, TDHCLKTRIM = 64 126 180 234 MHz TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 1, TDHCLKRx = 1, TDHCLKSRx = 0, TDHCLKTRIM = 64 252 360 468 MHz TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 1, TDHCLKRx = 2, TDHCLKSRx = 7, TDHCLKTRIM = 64 138 208 270 MHz TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 1, TDHCLKRx = 2, TDHCLKSRx = 7, TDHCLKTRIM = 6 276 416 540 MHz TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 1, TDHCLKRx = 2, TDHCLKSRx = 15, TDHCLKTRIM = 64 168 240 312 MHz TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 1, TDHCLKRx = 2, TDHCLKSRx = 15, TDHCLKTRIM = 64 336 480 624 MHz TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 1, TDHCLKRx = 2, TDHCLKSRx = 23, TDHCLKTRIM = 64 189 270 351 MHz TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 1, TDHCLKRx = 2, TDHCLKSRx = 23, TDHCLKTRIM = 64 378 540 702 MHz Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 Timer_D, Local Clock Generator Frequency (continued) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER fHRCG(2,31,0) fHRCG(2,31,64) fHRCG(2,31,128) HRCG frequency (2, 31, 0) HRCG frequency (2, 31, 64) HRCG frequency (2, 31, 128) TEST CONDITIONS MIN TYP MAX UNIT TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 1, TDHCLKRx = 2, TDHCLKSRx = 31, TDHCLKTRIM = 0 119 170 221 MHz TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 1, TDHCLKRx = 2, TDHCLKSRx = 31, TDHCLKTRIM = 0 238 340 442 MHz TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 1, TDHCLKRx = 2, DHCLKSRx = 31, TDHCLKTRIM = 64 212 303 394 MHz TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 1, TDHCLKRx = 2, DHCLKSRx = 31, TDHCLKTRIM = 64 424 606 788 MHz TDHREGEN = 0, TDHMx = 0, TDHCLKCR = 1, TDHCLKRx =2, TDHCLKSRx = 31, TDHCLKTRIM = 128 290 413 537 MHz TDHREGEN = 0, TDHMx = 1, TDHCLKCR = 1, TDHCLKRx = 2, TDHCLKSRx = 31, TDHCLKTRIM = 128 580 826 1074 MHz SHRCG,0,SR TDHCLKSRx step size in range 0 SHRCGSR = fHRCGSR(HRCGSR+1) - fHRCG(HRCGSR) 120 185 225 kHz SHRCG,1,SR TDHCLKSRx step size in range 1 SHRCGSR = fHRCGSR(HRCGSR+1) - fHRCG(HRCGSR) 220 325 395 kHz SHRCG,2,SR TDHCLKSRx step size in range 2 SHRCGSR = fHRCGSR(HRCGSR+1) - fHRCG(HRCGSR) 400 555 700 kHz 55 85 120 kHz 40 85 130 kHz 48 < TDHCLKTRIMx < 64, step size in range 2 40 85 120 kHz 0 > = TDHCLKTRIMx < 16, step size in range 0 90 160 230 kHz 80 160 230 kHz 48 < TDHCLKTRIMx < 64, step size in range 2 80 160 230 kHz 0 > = TDHCLKTRIMx < 16, step size in range 0 150 230 360 kHz 130 230 350 kHz 100 230 340 kHz fHRCG = 8 MHz, TDHREGEN = 0 ±0.17 %/°C fHRCG = 16 MHz, TDHREGEN = 0 ±0.16 %/°C ±0.16 %/°C 0 > = TDHCLKTRIMx < 16, step size in range 0 SHRCG,0,TRIM SHRCG,1,TRIM SHRCG,2,TRIM 15 < TDHCLKTRIMx < 49, step size in range 1 15 < TDHCLKTRIMx < 49, step size in range 1 15 < TDHCLKTRIMx < 49, step size in range 1 SHRCGSR = fHRCGSR(HRCGTRIM+1) fHRCG(HRCGTRIM), TDHCLKSRx = X, Y, Z SHRCGSR = fHRCGSR(HRCGTRIM+1) fHRCG(HRCGTRIM), TDHCLKSRx = X, Y, Z SHRCGSR = fHRCGSR(HRCGTRIM+1) fHRCG(HRCGTRIM), TDHCLKSRx = X, Y, Z 48 < TDHCLKTRIMx < 32, step size in range 2 dfHRCG/dT HRCG frequency temperature drift fHRCG = 25 MHz, TDHREGEN = 0 fHRCG = 8/16/25 MHz, TDHREGEN = 1 dfHRCG/dVCORE tSETTLE HRCG frequency voltage drift fHRCG = 8/16/25 MHz, TDHREGEN = 0 0 fHRCG = 8/16/25 MHz, TDHREGEN = 1 Settling time TDHEN = 0 -> 1, TDHFW = 0 Settling time, fast wake-up TDHEN = 0 -> 1, TDHFW = 1 Copyright © 2010–2013, Texas Instruments Incorporated 0 %/°C 5 0 3 5 %/V %/V 9 µs 1.5 µs Submit Documentation Feedback 65 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com Timer_D, Trimmed Clock Frequencies over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS Frequency tolerance during trimming MIN TYP -0.5 MAX UNIT +0.5 % fTRIM(64MHz) TDHMx = 0, TDHREGEN = 0, TDHCLKCR = 0, TDHxCTL1 = TDHxCTL1_64 TA = 25°C, VCC = 1.8 V 63 64 65 MHz fTRIM(128MHz) TDHMx = 0, TDHREGEN = 0, TDHCLKCR = 1, TDHxCTL1 = TDHxCTL1_128 TA = 25°C, VCC = 2.0 V 126 128 130 MHz fTRIM(200MHz) TDHMx = 0, TDHREGEN = 0, TDHCLKCR = 1, TDHxCTL1 = TDHxCTL1_200 TA = 25°C, VCC = 2.4 V 197 200 203 MHz fTRIM(256MHz) TDHMx = 1, TDHREGEN = 0, TDHCLKCR = 1, TDHxCTL1 = TDHxCTL1_256 TA = 25°C, VCC = 2.2 V 250 256 262 MHz TYP MAX UNIT Timer_D, Frequency Multiplication Mode over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN External frequency tolerance 0 % E(TDHREGEN = 1,64) freference = 8 MHz, TDHMx = 0, TDHREGEN = 1, TDHCLKCR = 0, TDHCLKRx = 0 TA = 25°C, VCC = 1.8 V -1 +1 % E(TDHREGEN = 1,128) freference = 16 MHz, TDHMx = 0, TDHREGEN = 1, TDHCLKCR = 1, TDHCLKRx = 0 TA = 25°C, VCC = 2.0 V -1 +1 % E(TDHREGEN = 1,200) freference = 25 MHz, TDHMx = 0, TDHREGEN = 1, TDHCLKCR = 1, TDHCLKRx = 0 TA = 25°C, VCC = 2.4 V -1 +1 % E(TDHREGEN = 1,256) freference = 16 MHz, TDHMx = 1, TDHREGEN = 1, TDHCLKCR = 1, TDHCLKRx = 0 TA = 25°C, VCC =2.2 V -1 +1 % 66 Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 Timer_D, Input Capture and Output Compare Timing over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER tTD,cap tTD0,cap,matching tTD1,cap,matching tTD01,cap,matching tTD0,comp,matching tTD1,comp,matching tTD01,comp,matching TEST CONDITIONS MIN TYP MAX UNIT Timer_D input capture timing, minimum pulse duration to trigger input capture event fMAX = 262 MHz 4 Timer0_D input capture timing, matching between input capture channels P1.6 to P1.7 and P2.0. fMAX = 262 MHz 1 2 LSB Timer0_D input capture timing, matching between input capture channels. P2.4 to P2.5 and P2.6. fMAX = 262 MHz 3 4 LSB Timer1_D input capture timing, matching between input capture channels P2.1 to P2.2 and P2.3. fMAX = 262 MHz 2 3 LSB Timer1_D input capture timing, matching between input capture channels. P2.7 to P3.0 and P3.1. fMAX = 262 MHz 2 4 LSB Timer0_D and Timer1_D input capture timing, matching between input capture channels. Timer0_D is the highresolution clock generator source. fMAX = 262 MHz 4 8 LSB Rising edges, fMAX = 262 MHz 4 ns Falling edges, fMAX = 262 MHz 4 ns Rising and falling edges, fMAX = 262 MHz 8 ns Rising edges, fMAX = 262 MHz 4 ns Falling edges, fMAX = 262 MHz 4 ns Rising and falling edges, fMAX = 262 MHz 8 ns All edges, fMAX = 262 MHz 8 LSB Timer0_D output compare timing, matching between output capture compare channels for pins P1.6, P1.7, and P2.0 Timer1_D output compare timing, matching between output capture compare channels for pins P2.1, P2.2, and P2.3 Timer0_D and Timer1_D output compare timing, matching between output compare channels. Timer0_D is the high-resolution clock generator source Copyright © 2010–2013, Texas Instruments Incorporated ns Submit Documentation Feedback 67 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com Flash Memory over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) TEST CONDITIONS PARAMETER DVCC(PGM/ERASE) Program and erase supply voltage MIN TYP 1.8 MAX 3.6 UNIT V IPGM Supply current from DVCC during program 3 5 mA IERASE Supply current from DVCC during erase 2 6.5 mA IMERASE, IBANK Supply current from DVCC during mass erase or bank erase 2 6.5 mA tCPT Cumulative program time See (1) 16 104 Program and erase endurance ms cycles tRetention Data retention duration tWord Word or byte program time See (2) 64 85 µs tBlock, 0 Block program time for first byte or word See (2) 49 65 µs 1–(N–1) Block program time for each additional byte or word, except for last byte or word See (2) 37 49 µs tBlock, TJ = 25°C 105 100 years Block program time for last byte or word See (2) 55 73 µs tMass Erase Mass erase time See (2) 23 32 ms tSeg Erase Segment erase time See (2) 23 32 ms fMCLK,MGR MCLK frequency in marginal read mode (FCLK4.MGR0 = 1 or FCTL4.MGR1 = 1) 0 1 MHz tBlock, (1) (2) N The cumulative program time must not be exceeded when writing to a 128-byte flash block. This parameter applies to all programming methods: individual word or byte write and block write modes. These values are hardwired into the flash controller's state machine. JTAG and Spy-Bi-Wire Interface over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) TEST CONDITIONS PARAMETER MIN TYP MAX UNIT fSBW Spy-Bi-Wire input frequency 2.2 V, 3 V 0 20 MHz tSBW,Low Spy-Bi-Wire low clock pulse duration 2.2 V, 3 V 0.025 15 µs 1 µs 15 100 0 5 MHz 10 MHz 80 kΩ tSBW, En tSBW,Rst Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge) TCK input frequency, 4-wire JTAG (2) Rinternal Internal pull-down resistance on TEST (2) 68 2.2 V, 3 V Spy-Bi-Wire return to normal operation time fTCK (1) (1) 2.2 V 3V 0 2.2 V, 3 V 45 60 µs Tools accessing the Spy-Bi-Wire interface need to wait for the minimum tSBW,En time after pulling the TEST/SBWTCK pin high before applying the first SBWTCK clock edge. fTCK may be restricted to meet the timing requirements of the module selected. Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 INPUT/OUTPUT SCHEMATICS Port P1, P1.0 to P1.5, Input/Output With Schmitt Trigger Pad Logic To ADC10 INCHx = x Pad Logic To Comparator_B From Comparator_B CBPD.y Pad Logic P1REN.x P1MAP.x = PMAP_ANALOG P1DIR.x 0 From Port Mapping 1 P1OUT.x 0 From Port Mapping 1 DVSS 0 DVCC 1 Direction 0: Input 1: Output P1DS.x 0: Low drive 1: High drive P1SEL.x P1IN.x P1.0/PM_UCA0CLK/PM_UCB0STE/A0/CB0 P1.1/PM_UCA0TXD/PM_UCA0SIMO/A1/CB1 P1.2/PM_UCA0RXD/PM_UCA0SOMI/A2/CB2 P1.3/PM_UCB0CLK/PM_UCA0STE/A3/CB3 P1.4/PM_UCB0SIMO/PM_UCB0SDA/A4/CB4 P1.5/PM_UCB0SOMI/PM_UCB0SCL/A5/CB5 Bus Holder EN To Port Mapping 1 D P1IE.x EN P1IRQ.x Q P1IFG.x P1SEL.x P1IES.x Set Interrupt Edge Select Copyright © 2010–2013, Texas Instruments Incorporated Submit Documentation Feedback 69 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com Table 46. Port P1 (P1.0 to P1.5) Pin Functions PIN NAME (P1.x) P1.0/ x 0 P1.x (I/O) PM_UCA0CLK/ PM_UCB0STE/ UCA0CLK/UCB0STE A0/ A0 (4) CB0 CONTROL BITS/SIGNALS (1) FUNCTION (2) (3) CB0 P1.1/ 1 P1.x (I/O) P1DIR.x P1SEL.x P1MAP.x CBPD.y I: 0; O: 1 0 X 0 0 1 default 0 X 1 31 INCHx = 0 X X X X 1 (y = 0) I: 0; O: 1 0 X 0 PM_UCA0TXD/ PM_UCA0SIMO/ PM_UCA0TXD/PM_UCA0SIMO (2) 0 1 default 0 A1/ A1 (4) X 1 31 INCHx = 1 X CB1 CB1 P1.2/ 2 P1.x (I/O) X X X 1 (y = 1) I: 0; O: 1 0 X 0 PM_UCA0RXD/ PM_UCA0SOMI/ PM_UCA0RXD/PM_UCA0SOMI (2) 0 1 default 0 A2/ A2 (4) X 1 31 INCHx = 2 X CB2 CB2 X X X 1 (y = 2) I: 0; O: 1 0 X 0 0 1 default 0 X 1 31 INCHx = 3 X P1.3/ 3 P1.x (I/O) PM_UCB0CLK/ PM_UCA0STE/ UCB0CLK/UCA0STE A3/ A3 (4) CB3 (2) CB3 P1.4/ 4 P1.x (I/O) PM_UCB0SIMO/ PM_UCB0SDA/ PM_UCB0SIMO/PM_UCB0SDA (2) A4/ A4 (4) CB4 CB4 P1.5/ 5 P1.x (I/O) PM_UCB0SOMI/ PM_UCB0SCL/ PM_UCB0SOMI/PM_UCB0SCL (2) A5/ A5 (4) CB5 CB5 (1) (2) (3) (4) (5) 70 (5) (5) X X X 1 (y = 3) I: 0; O: 1 0 X 0 0 1 default 0 X 1 31 INCHx = 4 X X X X 1 (y = 4) I: 0; O: 1 0 X 0 0 1 default 0 X 1 31 INCHx = 5 X X X X 1 (y = 5) X = Don't care The pin direction is controlled by the USCI module. UCA0CLK function takes precedence over UCB0STE function. If the pin is required as UCA0CLK input or output, USCI B0 is forced to 3-wire SPI mode if 4-wire SPI mode is selected. MSP430F51x2 device only. If the I2C functionality is selected, the output drives only the logical 0 to VSS level. Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 Port P1, P1.6 to P1.7, Input/Output With Schmitt Trigger Pad Logic P1REN.x P1DIR.x 0 From Port Mapping 1 P1OUT.x 0 From Port Mapping 1 DVSS 0 DVIO 1 1 Direction 0: Input 1: Output P1.6/PM_TD0_0 P1.7/PM_TD0_1 P1DS.x 0: Low drive 1: High drive P1SEL.x P1IN.x EN To Port Mapping D P1IE.x EN P1IRQ.x Q P1IFG.x P1SEL.x P1IES.x Set Interrupt Edge Select Table 47. Port P1 (P1.6 and P1.7) Pin Functions PIN NAME (P1.x) P1.6/ x 6 PM_TD0.0 P1.7/ PM_TD0.1 (1) FUNCTION P1DIR.x P1SEL.x I: 0; O: 1 0 X 0 1 default TD0.TA0 1 1 default P1.x (I/O) I: 0; O: 1 0 X TD0.CCI1A 0 1 default TD0.TA1 1 1 default P1.x (I/O) TD0.CCI0A 7 CONTROL BITS/SIGNALS (1) P1MAP.x X = Don't care Copyright © 2010–2013, Texas Instruments Incorporated Submit Documentation Feedback 71 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com Port P2, P2.0 to P2.7, Input/Output With Schmitt Trigger Pad Logic P2REN.x P2DIR.x 0 From Port Mapping 1 P2OUT.x 0 From Port Mapping 1 0 DVIO 1 1 Direction 0: Input 1: Output P2DS.x 0: Low drive 1: High drive P2SEL.x P2IN.x EN To Port Mapping DVSS P2.0/PM_TD0_2 P2.1/PM_TD1_0 P2.2/PM_TD1_1 P2.3/PM_TD1_2 P2.4/PM_TEC0CLR/PM_TEC0FLT2/PM_TD0_0 P2.5/PM_TEC0FLT0/PM_TD0_1 P2.6/PM_TEC0FLT1/PM_TD0_2 P2.7/PM_TEC1CLR/PM_TEC1FLT1/PM_TD1_0 D P2IE.x EN P2IRQ.x Q P2IFG.x P2SEL.x P2IES.x 72 Submit Documentation Feedback Set Interrupt Edge Select Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 Table 48. Port P2 (P2.0 to P2.7) Pin Functions PIN NAME (P2.x) P2.0/ x 0 PM_TD0.2 P2.1/ 1 2 PM_TD1.1 P2.3/ 3 PM_TD1.2 P2.4/ 4 CONTROL BITS/SIGNALS P2DIR.x P2SEL.x I: 0; O: 1 0 X 0 1 default TD0.TA2 1 1 default P2.x (I/O) I: 0; O: 1 0 X TD1.CCI0A 0 1 default TD1.TA0 1 1 default P2.x (I/O) I: 0; O: 1 0 X TD1.CCI1A 0 1 default TD1.TA1 1 1 default P2.x (I/O) I: 0; O: 1 0 0 TD1.CCI2A 0 1 default TD1.TA2 1 1 default P2.x (I/O) I: 0; O: 1 0 X P2.x (I/O) TD0.CCI2A PM_TD1.0 P2.2/ FUNCTION P2MAP.x PM_TEC0CLR/ TD0.TECEXTCLR, controlled by enable signals in the TEC0 module 0 1 default PM_TEC0FLT2/ TD0.TECXFLT2, controlled by enable signals in the TEC0 module 0 1 default PM_TD0.0 TD0.TA0 1 1 default P2.x (I/O) I: 0; O: 1 0 x P2.5/ 5 PM_TEC0FLT0/ TD0.TECXFLT0, controlled by enable signals in the TEC0 module 0 1 default PM_TD0.1 TD0.TA1 1 1 default P2.x (I/O) I: 0; O: 1 0 X P2.6/ 6 PM_TEC0FLT1/ TD0.TECXFLT1, controlled by enable signals in the TEC0 module 0 1 default PM_TD0.2 TD0.TA2 1 1 default P2.x (I/O) I: 0; O: 1 0 X P2.7/ 7 PM_TEC1CLR/ TD1.TECEXTCLR, controlled by enable signals in the TEC1 module 0 1 default PM_TEC1FLT1/ TD1.TECXFLT1, controlled by enable signals in the TEC1 module 0 1 default PM_TD1.0 TD1.TA0 1 1 default Copyright © 2010–2013, Texas Instruments Incorporated Submit Documentation Feedback 73 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com Port P3, P3.0 and P3.1, Input/Output With Schmitt Trigger Pad Logic P3REN.x P3DIR.x 0 From Port Mapping 1 P3OUT.x 0 From Port Mapping 1 DVSS 0 DVIO 1 1 Direction 0: Input 1: Output P3.0/PM_TEC1FLT2/PM_TD1_1 P3.1/PM_TEC1FLT0/PM_TD1_2 P3DS.x 0: Low drive 1: High drive P3SEL.x P3IN.x EN To Port Mapping D Table 49. Port P3 (P3.0 and P3.1) Pin Functions PIN NAME (P3.x) P3.0/ x 0 CONTROL BITS/SIGNALS FUNCTION P3SEL.x P3MAP.x I: 0; O: 1 0 X PM_TEC1FLT2/ TD1.TECXFLT2, controlled by enable signals in the TEC1 module 0 1 default PM_TD1.1 TD1.TA1 1 1 default P3.x (I/O) P3.1/ I: 0; O: 1 0 X PM_TEC1FLT0/ TD1.TECXFLT0, controlled by enable signals in the TEC1 module 0 1 default PM_TD1.2 TD1.TA2 1 1 default 74 1 P3.x (I/O) P3DIR.x Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 Port P3, P3.2 and P3.3, Input/Output With Schmitt Trigger Pad Logic To Comparator_B From Comparator_B CBPD.y P3REN.x P3MAP.x = PMAP_ANALOG P3DIR.x 0 From Port Mapping 1 P3OUT.x 0 From Port Mapping 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P3.2/PM_TD0_0/PM_SMCLK/CB14 P3.3/PM_TA0CLK/PM_CBOUT/CB13 P3DS.x 0: Low drive 1: High drive P3SEL.x P3IN.x Bus Holder EN To Port Mapping D Table 50. Port P3 (P3.2 and P3.3) Pin Functions PIN NAME (P3.x) P3.2/ x 2 FUNCTION P3.x (I/O) CONTROL BITS/SIGNALS (1) P3DIR.x P3SEL.x P3MAP.x CBPD.y I: 0; O: 1 0 X 0 0 PM_TD0.0/ TD0.CCI0A 0 1 default PM_SMCLK/ SMCLK output 1 1 default 0 CB14 CB14 X X X 1 (y = 14) I: 0; O: 1 0 X 0 0 P3.3/ 3 P3.x (I/O) PM_TA0CLK/ TA0.TA0CLK 0 1 default PM_CBOUT/ CBOUT 1 1 default 0 CB13 CB13 X X X 1 (y = 13) (1) X = Don't care Copyright © 2010–2013, Texas Instruments Incorporated Submit Documentation Feedback 75 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com Port P3, P3.4, Input/Output With Schmitt Trigger Pad Logic To DCO CBPD.y P3REN.x P3MAP.x = PMAP_ANALOG P3DIR.x 0 From Port Mapping 1 P3OUT.x 0 From Port Mapping 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P3.4/PM_TD0CLK/PM_MCLK P3DS.x 0: Low drive 1: High drive P3SEL.x P3IN.x Bus Holder EN To Port Mapping D Table 51. Port P3 (P3.4) Pin Functions PIN NAME (P3.x) P3.4/ x 4 FUNCTION P3.x (I/O) CONTROL BITS/SIGNALS (1) P3DIR.x P3SEL.x P3MAP.x I: 0; O: 1 0 X 0 PM_TD0CLK/ TD0 clock input 0 1 default 0 PM_MCLK MCLK output 1 1 default 0 (1) 76 X = Don't care Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 Port P3, P3.5, Input/Output With Schmitt Trigger Pad Logic To ADC10 reference VREF- To ADC10 INCHx = x To Comparator_B From Comparator_B CBPD.y P3REN.x P3MAP.x = PMAP_ANALOG P3DIR.x 0 From Port Mapping 1 P3OUT.x 0 From Port Mapping 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P3.5/PM_TA0_2/A8/VREF+/CB12 P3DS.x 0: Low drive 1: High drive P3SEL.x P3IN.x Bus Holder EN To Port Mapping D Table 52. Port P3 (P3.5) Pin Functions PIN NAME (P3.x) x FUNCTION CONTROL BITS/SIGNALS (1) P3DIR.x P3SEL.x P3MAP.x CBPD.y I: 0; O: 1 0 X 0 TA0.CCI2A 0 1 default 0 TA0.TA2 1 1 default 0 VEREF+/ VEREF+ (2) X 1 31 X A8/ A8 (2) X 1 INCHx=8 X CB12 CB12 X X X 1 (y = 12) P3.5/ PM_TA0.2/ (1) (2) 5 P3.x (I/O) X = Don't care MSP430F51x2 devices only. Copyright © 2010–2013, Texas Instruments Incorporated Submit Documentation Feedback 77 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com Port P3, P3.6, Input/Output With Schmitt Trigger Pad Logic To ADC10 reference VREF- To ADC10 INCHx = x To Comparator_B From Comparator_B CBPD.y P3REN.x P3MAP.x = PMAP_ANALOG P3DIR.x 0 From Port Mapping 1 P3OUT.x 0 From Port Mapping 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P3.6/PM_TA0_1/A7/VREF-/CB11 P3DS.x 0: Low drive 1: High drive P3SEL.x P3IN.x Bus Holder EN To Port Mapping D Table 53. Port P3 (P3.6) Pin Functions PIN NAME (P3.x) P3.6/ 6 PM_TA0.1/ VEREF-/ A7/ 78 FUNCTION P3.x (I/O) (2) CONTROL BITS/SIGNALS (1) P3DIR.x P3SEL.x P3MAP.x CBPD.y I: 0; O: 1 0 X 0 TA0.CCR0 0 1 default 0 TA0.TA1 1 1 default 0 X 1 31 X X 1 31 INCHx = 7 X X X 0 1 (y = 11) VEREFA7 CB11 (1) (2) (3) x (3) (3) CB11 X = Don't care Default condition. MSP430F51x2 devices only. Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 Port P3, P3.7, Input/Output With Schmitt Trigger Pad Logic To ADC10 INCHx = x Pad Logic To Comparator_B From Comparator_B CBPD.y Pad Logic P3REN.x P3MAP.x = PMAP_ANALOG P3DIR.x 0 From Port Mapping 1 P3OUT.x 0 From Port Mapping 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P3.7/PM_TA0_0/A6/CB10 P3DS.x 0: Low drive 1: High drive P3SEL.x P3IN.x Bus Holder EN To Port Mapping D Table 54. Port P3 (P3.7) Pin Functions PIN NAME (P3.x) P3.7/ x P3DIR.x P3SEL.2 P3MAP.x CBPD.y I: 0; O: 1 0 X 0 0 1 default 0 TA0.TA0 1 1 default 0 A6/ A6 (2) X 1 31 INCHx = 6 X CB10 CB10 X X 0 1 (y = 10) (1) (2) P3.x (I/O) (1) CONTROL BITS/SIGNALS (1) TA0.CCR0 PM_TA0.0/ 7 FUNCTION X = Don't care MSP430F51x2 devices only. Copyright © 2010–2013, Texas Instruments Incorporated Submit Documentation Feedback 79 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com Port J, J.0 JTAG pin TDO, Input/Output With Schmitt Trigger or Output Pad Logic To Comparator_B From Comparator_B CBPD.x PJREN.x PJDIR.x 0 DVCC 1 PJOUT.x 00 From JTAG 01 SMCLK 10 DVSS 0 DVCC 1 PJDS.0 0: Low drive 1: High drive 11 1 PJ.0/SMCLK/TDO/CB6 PJSEL.x From JTAG PJIN.x EN Bus Holder D 80 Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 Port J, J.1 to J.3 JTAG pins TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or Output Pad Logic To Comparator_B From Comparator_B CBPD.x PJREN.x PJDIR.x DVSS PJOUT.x DVSS 0 DVCC 1 1 0 1 00 From JTAG 01 MCLK/ADC10CLK/ACLK 10 PJDS.x 0: Low drive 1: High drive 11 PJ.1/MCLK/TDI/TCLK/CB7 PJ.2/ADC10CLK/TMSCB8 PJ.3/ACLK/TCK/CB9 PJSEL.x From JTAG PJIN.x EN To JTAG Bus Holder D Copyright © 2010–2013, Texas Instruments Incorporated Submit Documentation Feedback 81 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com Table 55. Port PJ (PJ.0 to PJ.3) Pin Functions CONTROL BITS/ SIGNALS (1) PIN NAME (PJ.x) PJ.0/ x 0 FUNCTION PJ.x (I/O) (2) PJDIR.x PJSEL.x JTAG MODE CBPD.y 0 I: 0; O: 1 0 0 SMCLK/ SMCLK 1 1 0 0 TDO/ TDO (3) X X 1 X CB6 CB6 PJ.1/ 1 MCLK/ PJ.x (I/O) (2) MCLK TDI/TCLK/ TDI/TCLK CB7 CB7 PJ.2/ 2 ADC10CLK/ PJ.x (I/O) (2) ADC10CLK (See TMS/ TMS CB8 CB8 PJ.3/ 3 (3) (4) PJ.x (I/O) (2) ACLK/ ACLK TCK/ TCK (3) CB9 CB9 (1) (2) (3) (4) (5) 82 (3) (4) (4) (5) ) X X 0 1 (y = 6) I: 0; O: 1 0 0 0 1 1 0 0 X X 1 X 0 X 0 1 (y = 7) I: 0; O: 1 0 0 0 1 1 0 0 X X 1 X X X 0 1 (y = 8) I: 0; O: 1 0 0 0 1 1 0 0 X X 1 X X X 0 1 (y = 9) X = Don't care Default condition The pin direction is controlled by the JTAG module. In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are do not care. MSP430F51x2 device only. Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 Port PJ.4, Input/Output With Schmitt Trigger Pad Logic From XT1 PJREN.4 PJDIR.4 DVSS 0 DVCC 1 1 0 1 PJOUT.4 0 DVSS 1 PJDS.x 0: Low drive 1: High drive PJSEL.5 XT1BYPASS PJ.4/XOUT PJIN.4 EN Module X IN Bus Keeper D Copyright © 2010–2013, Texas Instruments Incorporated Submit Documentation Feedback 83 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com Port PJ.5, Input/Output With Schmitt Trigger Pad Logic To XT1 PJREN.5 PJDIR.5 DVSS 0 DVCC 1 1 0 1 PJOUT.5 0 Module X OUT 1 PJ.5/XIN PJDS.0 0: Low drive 1: High drive PJSEL.5 PJIN.5 Bus Keeper EN Module X IN D Table 56. Port PJ (PJ.4 and PJ.5) Pin Functions CONTROL BITS/SIGNALS (1) PIN NAME (PJ.x) PJ.4/ x 4 XOUT PJ.5/ XIN (1) (2) (3) (4) 84 5 FUNCTION PJDIR.x PJSEL.4 I: 0; O: 1 X XOUT crystal mode (2) X (3) PJ.x (I/O) PJ.x (I/O) PJSEL.5 XT1BYPAS S 0 x 1 1 X 1 0 I: 0; O: 1 X 0 x XIN crystal mode (4) X X 1 0 XIN bypass mode (4) X X 1 1 X = Don't care Setting PJSEL.5 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, PJ.4 can be used as general-purpose I/O. Setting PJSEL.5 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, PJ.4 can be used as general-purpose I/O. Setting PJSEL.5 causes the general-purpose I/O to be disabled. Pending the setting of XT1BYPASS, PJ.5 is configured for crystal mode or bypass mode. Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 Port PJ.6, Input/Output With Schmitt Trigger Pad Logic To Comparator_B From Comparator_B CBPD..x PJREN.x PJDIR.x 0 From Module 1 PJOUT.x 0 From Module 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output PJ.6/TD1CLK/TD0_1/CB15 PJDS.x 0: Low drive 1: High drive PJSEL.x PJIN.x Bus Holder EN To Port Mapping D Table 57. Port PJ (PJ.6) Pin Functions PIN NAME (PJ.x) PJ.6/ x 6 FUNCTION PJ.x (I/O) CONTROL BITS/SIGNALS (1) PJDIR.x PJSEL.x CBPD.y I: 0; O: 1 0 0 TD1CLK/ TD1 clock input 0 1 0 TD0.1/ TD0.TA1 1 1 0 CB15 CB15 X X 1 (y = 15) (1) X = Don't care Copyright © 2010–2013, Texas Instruments Incorporated Submit Documentation Feedback 85 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com DEVICE DESCRIPTORS Table 58 list the complete contents of the device descriptor tag-length-value (TLV) structure for each device type. Table 58. 'F51x2 Device Descriptor Table (1) 'F5172 RSB 'F5172 DA 'F5152 RSB 'F5152 DA 'F5132 RSB 'F5132 DA Value Value Value Value Value Value 0x06 0x06 0x06 0x06 0x06 0x06 1 0x06 0x06 0x06 0x06 0x06 0x06 0x1A02 2 per unit per unit per unit per unit per unit per unit Device ID 0x1A04 1 0x30 0x30 0x2C 0x2C 0x28 0x28 Device ID 0x1A05 1 0x80 0x80 0x80 0x80 0x80 0x80 Hardware revision 0x1A06 1 0x30 030 0x30 0x30 0x30 0x30 Firmware revision 0x1A07 1 0x10 0x10 0x10 0x10 0x10 0x10 Die Record Tag 0x1A08 1 0x08 08 0x08 08 0x08 08 Die Record length 0x1A09 1 0x0A 0A 0x0A 0A 0x0A 0A Info Block Die Record ADC10 Calibration Size bytes Info length 0x1A00 1 CRC length 0x1A01 CRC value Lot/Wafer ID 0x1A0A 4 per unit per unit per unit per unit per unit per unit 0x1A0Eh 2 per unit per unit per unit per unit per unit per unit Die Y position 0x1A10 2 per unit per unit per unit per unit per unit per unit Test results 0x1A12 2 per unit per unit per unit per unit per unit per unit ADC10 Calibration Tag 0x1A14 1 0x13 0x13 0x13 0x13 0x13 0x13 ADC10 Calibration length 0x1A15 1 0x10 0x10 0x10 0x10 0x10 0x10 ADC Gain Factor 0x1A16 2 per unit per unit per unit per unit per unit per unit ADC Offset 0x1A18 2 per unit per unit per unit per unit per unit per unit ADC 1.5-V Reference Temp. Sensor 30°C 0x1A1A 2 per unit per unit per unit per unit per unit per unit ADC 1.5-V Reference Temp. Sensor 85°C 0x1A1C 2 per unit per unit per unit per unit per unit per unit ADC 2.0-V Reference Temp. Sensor 30°C 0x1A1Eh 2 per unit per unit per unit per unit per unit per unit ADC 2.0-V Reference Temp. Sensor 85°C 0x1A20 2 per unit per unit per unit per unit per unit per unit ADC 2.5-V Reference Temp. Sensor 30°C 0x1A22 2 per unit per unit per unit per unit per unit per unit ADC 2.5-V Reference Temp. Sensor 85°C 0x1A24 2 per unit per unit per unit per unit per unit per unit REF Tag 0x1A26 1 0x12 0x12 0x12 0x12 0x12 0x12 REF length 0x1A27 1 0x06 0x06 0x06 0x06 0x06 0x06 REF 1.5-V Reference 0x1A28 2 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF REF 2.0-V Reference 0x1A2A 2 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF REF 2.5-V Reference 0x1A2C 2 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF Timer_D Tag 0x1A2E 1 0x15 0x15 0x15 0x15 0x15 0x15 Timer_D0 Calibration Timer_D length 0x1A2F 1 0x08 0x08 0x08 0x08 0x08 0x08 Timer_D 64-MHz frequency 0x1A30 2 per unit per unit per unit per unit per unit per unit Timer_D 128-MHz frequency 0x1A32 2 per unit per unit per unit per unit per unit per unit Timer_D 200-MHz frequency 0x1A34 2 per unit per unit per unit per unit per unit per unit Timer_D 256-MHz frequency 0x1A36 2 per unit per unit per unit per unit per unit per unit Timer_D Tag 0x1A38 1 0x15 0x15 0x15 0x15 0x15 0x15 Timer_D1 Calibration 86 Address Die X position REF User Calibration (1) Description Timer_D length 0x1A39 1 0x08 0x08 0x08 0x08 0x08 0x08 Timer_D 64-MHz frequency 0x1A3A 2 per unit per unit per unit per unit per unit per unit Timer_D 128-MHz frequency 0x1A3C 2 per unit per unit per unit per unit per unit per unit NA = Not applicable Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 Table 58. 'F51x2 Device Descriptor Table(1) (continued) Peripheral Descriptor Interrupts 'F5172 RSB 'F5172 DA 'F5152 RSB 'F5152 DA 'F5132 RSB 'F5132 DA Description Address Size bytes Value Value Value Value Value Value Timer_D 200-MHz frequency 0x1A3E 2 per unit per unit per unit per unit per unit per unit Timer_D 256-MHz frequency 0x1A40 2 per unit per unit per unit per unit per unit per unit Peripheral Descriptor Tag 0x1A42 1 0x02 0x02 0x02 0x02 0x02 0x02 Peripheral Descriptor Length 0x1A43 1 0x53 0x53 0x53 0x53 0x53 0x53 BSL Memory 0x1A44 2 0x8A08 0x8A08 0x8A08 0x8A08 0x8A08 0x8A08 Information Memory 0x1A46 2 0x860C 0x860C 0x860C 0x860C 0x860C 0x860C RAM 0x1A48 2 0x2A0E 0x2A0E 0x2A0E 0x2A0E 0x280E 0x280E Main Memory 0x1A4A 2 0x9240 0x9240 0x9060 0x9060 0x8E70 0x8E70 Delimiter 0x1A4C 1 0x00 0x00 0x00 0x00 0x00 0x00 Peripheral count 0x1A4D 1 0x1C 0x1C 0x1B 0x1B 0x1B 0x1B MSP430CPUXV2 0x1A4E 2 0x2300 0x2300 0x2300 0x2300 0x2300 0x2300 SBW 0x1A50 2 0x0F00 0x0F00 0x0F00 0x0F00 0x0F00 0x0F00 EEM-S 0x1A52 2 0x0300 0x0300 0x0300 0x0300 0x0300 0x0300 TI BSL 0x1A54 2 0xFC00 0xFC00 0xFC00 0xFC00 0xFC00 0xFC00 SFR 0x1A56 2 0x4110 0x4110 0x4110 0x4110 0x4110 0x4110 PMM 0x1A58 2 0x3002 0x3002 0x3002 0x3002 0x3002 0x3002 FCTL 0x1A5A 2 0x3802 0x3802 0x3802 0x3802 0x3802 0x3802 CRC16 0x1A5C 2 0x3C01 0x3C01 0x3C01 0x3C01 0x3C01 0x3C01 CRC16_RB 0x1A5E 2 0x3D00 0x3D00 0x3D00 0x3D00 0x3D00 0x3D00 RAMCTL 0x1A60 2 0x4400 0x4400 0x4400 0x4400 0x4400 0x4400 WDT_A 0x1A62 2 0x4000 0x4000 0x4000 0x4000 0x4000 0x4000 UCS 0x1A64 2 0x4801 0x4801 0x4801 0x4801 0x4801 0x4801 SYS 0x1A66 2 0x4202 0x4202 0x4202 0x4202 0x4202 0x4202 Shared REF 0x1A68 2 0xA003 0xA003 0xA003 0xA003 0xA003 0xA003 Port Mapping 0x1A6A 2 0x1001 0x1001 0x1001 0x1001 0x1001 0x1001 Port 1/2 0x1A6C 2 0x5104 0x5104 0x5104 0x5104 0x5104 0x5104 Port 3/4 0x1A6E 2 0x5202 0x5202 0x5202 0x5202 0x5202 0x5202 Port J 0x1A70 2 0x5F10 0x5F10 0x5F10 0x5F10 0x5F10 0x5F10 TA0 0x1A72 2 0x610A 0x610A 0x610A 0x610A 0x610A 0x610A MPY32 0x1A74 2 0x8510 0x8510 0x8510 0x8510 0x8510 0x8510 DMA with 3 channels 0x1A76 2 0x4704 0x4704 0x4704 0x4704 0x4704 0x4704 USCI_A0/B0 0x1A78 2 0x900C 0x900C 0x900C 0x900C 0x900C 0x900C ADC10_A 0x1A7A 2 0xD318 0xD318 0xD318 0xD318 0xD318 0xD318 COMP_B 0x1A7C 2 0xA818 0xA818 0x1A919 0xA818 0x1A919 0xA818 TIMER_D0 0x1A7E 2 0xD624 0xD624 0xD624 0xD624 0xD624 0xD624 TIMER_D1 0x1A80 2 0x6D04 0x6D04 0x6D04 0x6D04 0x6D04 0x6D04 TEC_0 0x1A82 2 0x700C 0x700C 0x700C 0x700C 0x700C 0x700C TEC_1 0x1A84 2 0x7002 0x7002 0x7002 0x7002 0x7002 0x7002 COMP_B 0x1A86 1 0xA8 0xA8 0xA8 0xA8 0xA8 0xA8 TEC_0 0x1A87 1 0x6D 0x6D 0x6D 0x6D 0x6D 0x6D TIMER_D0 0x1A88 1 0x62 0x62 0x62 0x62 0x62 0x62 TIMER_D0 0x1A89 1 0x63 0x63 0x63 0x63 0x63 0x63 WDTIFG 0x1A8A 1 0x40 0x40 0x40 0x40 0x40 0x40 USCI_A0 0x1A8B 1 0x90 0x90 0x90 0x90 0x90 0x90 USCI_B0 0x1A8C 1 0x91 0x91 0x91 0x91 0x91 0x91 ADC10_A 0x1A8D 1 0xD0 0xD0 0xD0 0xD0 0xD0 0xD0 TA0.CCIFG0 0x1A8E 1 0x60 0x60 0x60 0x60 0x60 0x60 TA0.CCIFG1..4 0x1A8F 1 0x61 0x61 0x61 0x61 0x61 0x61 DMA 0x1A90 1 0x46 0x46 0x46 0x46 0x46 0x46 Copyright © 2010–2013, Texas Instruments Incorporated Submit Documentation Feedback 87 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com Table 58. 'F51x2 Device Descriptor Table(1) (continued) Empty 'F5172 RSB 'F5172 DA 'F5152 RSB 'F5152 DA 'F5132 RSB 'F5132 DA Value Value Value Value Value Value 0x6E 0x6E 0x6E 0x6E 0x6E 0x6E 1 0x64 0x64 0x64 0x64 0x64 0x64 0x1A93 1 0x65 0x65 0x65 0x65 0x65 0x65 Port P1 0x1A94 1 0x50 0x50 0x50 0x50 0x50 0x50 Port P2 0x1A95 1 0x51 0x51 0x51 0x51 0x51 0x51 delimiter 0x1A96 1 0x00 0x00 0x00 0x00 0x00 0x00 Unused Memory 0x1A97 0x1AB9 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF Description Address Size bytes TEC_1 0x1A91 1 TIMER_D1 0x1A92 TIMER_D1 Table 59. 'F51x1 Device Descriptor Table (1) 'F5171 RSB 'F5171 DA 'F5151 RSB 'F5151 DA 'F5131 RSB 'F5131 DA Value Value Value Value Value Value 0x06 0x06 0x06 0x06 0x06 0x06 1 0x06 0x06 0x06 0x06 0x06 0x06 0x1A02 2 per unit per unit per unit per unit per unit per unit Device ID 0x1A04 1 0x2E 0x2E 0x2A 0x2A 0x26 0x26 Device ID 0x1A05 1 0x80 0x80 0x80 0x80 0x80 0x80 Hardware revision 0x1A06 1 0x30 0x30 0x30 0x30 0x30 0x30 Firmware revision 0x1A07 1 0x10 0x10 0x10 0x10 0x10 0x10 Die Record Tag 0x1A08 1 0x08 08 0x08 08 0x08 08 Die Record length 0x1A09 1 0x0A 0A 0x0A 0A 0x0A 0A Info Block Die Record ADC10 Calibration Size bytes Info length 0x1A00 1 CRC length 0x1A01 CRC value Lot/Wafer ID 0x1A0A 4 per unit per unit per unit per unit per unit per unit 0x1A0Eh 2 per unit per unit per unit per unit per unit per unit Die Y position 0x1A10 2 per unit per unit per unit per unit per unit per unit Test results 0x1A12 2 per unit per unit per unit per unit per unit per unit ADC10 Calibration Tag 0x1A14 1 0x05 0x05 0x05 0x05 0x05 0x05 ADC10 Calibration length 0x1A15 1 0x10 0x10 0x10 0x10 0x10 0x10 ADC Gain Factor 0x1A16 2 per unit per unit per unit per unit per unit per unit ADC Offset 0x1A18 2 per unit per unit per unit per unit per unit per unit ADC 1.5-V Reference Temp. Sensor 30°C 0x1A1A 2 per unit per unit per unit per unit per unit per unit ADC 1.5-V Reference Temp. Sensor 85°C 0x1A1C 2 per unit per unit per unit per unit per unit per unit ADC 2.0-V Reference Temp. Sensor 30°C 0x1A1Eh 2 per unit per unit per unit per unit per unit per unit ADC 2.0-V Reference Temp. Sensor 85°C 0x1A20 2 per unit per unit per unit per unit per unit per unit ADC 2.5-V Reference Temp. Sensor 30°C 0x1A22 2 per unit per unit per unit per unit per unit per unit ADC 2.5-V Reference Temp. Sensor 85°C 0x1A24 2 per unit per unit per unit per unit per unit per unit REF Tag 0x1A26 1 0x12 0x12 0x12 0x12 0x12 0x12 REF length 0x1A27 1 0x06 0x06 0x06 0x06 0x06 0x06 REF 1.5-V Reference 0x1A28 2 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF REF 2.0-V Reference 0x1A2A 2 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF REF 2.5-V Reference 0x1A2C 2 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF Timer_D Tag 0x1A2E 1 0x15 0x15 0x15 0x15 0x15 0x15 Timer_D0 Calibration 88 Address Die X position REF User Calibration (1) Description NA = Not applicable Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 Table 59. 'F51x1 Device Descriptor Table(1) (continued) Timer_D1 Calibration Peripheral Descriptor Interrupts 'F5171 RSB 'F5171 DA 'F5151 RSB 'F5151 DA 'F5131 RSB 'F5131 DA Value Value Value Value Value Value 0x08 0x08 0x08 0x08 0x08 0x08 2 per unit per unit per unit per unit per unit per unit 0x1A32 2 per unit per unit per unit per unit per unit per unit 0x1A34 2 per unit per unit per unit per unit per unit per unit Timer_D 256-MHz frequency 0x1A36 2 per unit per unit per unit per unit per unit per unit Timer_D Tag 0x1A38 1 0x15 0x15 0x15 0x15 0x15 0x15 Description Address Size bytes Timer_D length 0x1A2F 1 Timer_D 64-MHz frequency 0x1A30 Timer_D 128-MHz frequency Timer_D 200-MHz frequency Timer_D length 0x1A39 1 0x08 0x08 0x08 0x08 0x08 0x08 Timer_D 64-MHz frequency 0x1A3A 2 per unit per unit per unit per unit per unit per unit Timer_D 128-MHz frequency 0x1A3C 2 per unit per unit per unit per unit per unit per unit Timer_D 200-MHz frequency 0x1A3E 2 per unit per unit per unit per unit per unit per unit Timer_D 256-MHz frequency 0x1A40 2 per unit per unit per unit per unit per unit per unit Peripheral Descriptor Tag 0x1A42 1 0x02 0x02 0x02 0x02 0x02 0x02 Peripheral Descriptor Length 0x1A43 1 0x51 0x51 0x51 0x51 0x51 0x51 BSL Memory 0x1A44 2 0x8A08 0x8A08 0x8A08 0x8A08 0x8A08 0x8A08 Information Memory 0x1A46 2 0x860C 0x860C 0x860C 0x860C 0x860C 0x860C RAM 0x1A48 2 0x2A0E 0x2A0E 0x2A0E 0x2A0E 0x280E 0x280E Main Memory 0x1A4A 2 0x9240 0x9240 0x9060 0x9060 0x8E70 0x8E70 Delimiter 0x1A4C 1 0x00 0x00 0x00 0x00 0x00 0x00 Peripheral count 0x1A4D 1 0x1B 0x1B 0x1B 0x1B 0x1B 0x1B MSP430CPUXV2 0x1A4E 2 0x2300 0x2300 0x2300 0x2300 0x2300 0x2300 SBW 0x1A50 2 0x0F00 0x0F00 0x0F00 0x0F00 0x0F00 0x0F00 EEM-S 0x1A52 2 0x0300 0x0300 0x0300 0x0300 0x0300 0x0300 TI BSL 0x1A54 2 0xFC00 0xFC00 0xFC00 0xFC00 0xFC00 0xFC00 SFR 0x1A56 2 0x4110 0x4110 0x4110 0x4110 0x4110 0x4110 PMM 0x1A58 2 0x3002 0x3002 0x3002 0x3002 0x3002 0x3002 FCTL 0x1A5A 2 0x3802 0x3802 0x3802 0x3802 0x3802 0x3802 CRC16 0x1A5C 2 0x3C01 0x3C01 0x3C01 0x3C01 0x3C01 0x3C01 CRC16_RB 0x1A5E 2 0x3D00 0x3D00 0x3D00 0x3D00 0x3D00 0x3D00 RAMCTL 0x1A60 2 0x4400 0x4400 0x4400 0x4400 0x4400 0x4400 WDT_A 0x1A62 2 0x4000 0x4000 0x4000 0x4000 0x4000 0x4000 UCS 0x1A64 2 0x4801 0x4801 0x4801 0x4801 0x4801 0x4801 SYS 0x1A66 2 0x4202 0x4202 0x4202 0x4202 0x4202 0x4202 Shared REF 0x1A68 2 0xA003 0xA003 0xA003 0xA003 0xA003 0xA003 Port Mapping 0x1A6A 2 0x1001 0x1001 0x1001 0x1001 0x1001 0x1001 Port 1/2 0x1A6C 2 0x5104 0x5104 0x5104 0x5104 0x5104 0x5104 Port 3/4 0x1A6E 2 0x5202 0x5202 0x5202 0x5202 0x5202 0x5202 Port J 0x1A70 2 0x5F10 0x5F10 0x5F10 0x5F10 0x5F10 0x5F10 TA0 0x1A72 2 0x610A 0x610A 0x610A 0x610A 0x610A 0x610A MPY32 0x1A74 2 0x8510 0x8510 0x8510 0x8510 0x8510 0x8510 DMA with 3 channels 0x1A76 2 0x4704 0x4704 0x4704 0x4704 0x4704 0x4704 USCI_A0/B0 0x1A78 2 0x900C 0x900C 0x900C 0x900C 0x900C 0x900C COMP_B 0x1A7A 2 0xA830 0xA830 0xA830 0xA830 0xA830 0xA830 TIMER_D0 0x1A7C 2 0xD624 0xD624 0xD624 0xD624 0xD624 0xD624 TIMER_D1 0x1A7E 2 0x6D04 0x6D04 0x6D04 0x6D04 0x6D04 0x6D04 TEC_0 0x1A80 2 0x700C 0x700C 0x700C 0x700C 0x700C 0x700C TEC_1 0x1A82 2 0x7002 0x7002 0x7002 0x7002 0x7002 0x7002 COMP_B 0x1A83 1 0xA8 0xA8 0xA8 0xA8 0xA8 0xA8 TEC_0 0x1A84 1 0x6D 0x6D 0x6D 0x6D 0x6D 0x6D Copyright © 2010–2013, Texas Instruments Incorporated Submit Documentation Feedback 89 MSP430F51x1 MSP430F51x2 SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 www.ti.com Table 59. 'F51x1 Device Descriptor Table(1) (continued) Empty 90 'F5171 RSB 'F5171 DA 'F5151 RSB 'F5151 DA 'F5131 RSB 'F5131 DA Value Value Value Value Value Value 0x62 0x62 0x62 0x62 0x62 0x62 1 0x63 0x63 0x63 0x63 0x63 0x63 0x1A87 1 0x40 0x40 0x40 0x40 0x40 0x40 USCI_A0 0x1A88 1 0x90 0x90 0x90 0x90 0x90 0x90 USCI_B0 0x1A89 1 0x91 0x91 0x91 0x91 0x91 0x91 ADC10_A 0x1A8A 1 0xD0 0xD0 0xD0 0xD0 0xD0 0xD0 Description Address Size bytes TIMER_D0 0x1A85 1 TIMER_D0 0x1A86 WDTIFG TA0.CCIFG0 0x1A8B 1 0x60 0x60 0x60 0x60 0x60 0x60 TA0.CCIFG1..4 0x1A8C 1 0x61 0x61 0x61 0x61 0x61 0x61 DMA 0x1A8D 1 0x46 0x46 0x46 0x46 0x46 0x46 TEC_1 0x1A8E 1 0x6E 0x6E 0x6E 0x6E 0x6E 0x6E TIMER_D1 0x1A8F 1 0x64 0x64 0x64 0x64 0x64 0x64 TIMER_D1 0x1A90 1 0x65 0x65 0x65 0x65 0x65 0x65 Port P1 0x1A91 1 0x50 0x50 0x50 0x50 0x50 0x50 Port P2 0x1A92 1 0x51 0x51 0x51 0x51 0x51 0x51 delimiter 0x1A93 1 0x00 0x00 0x00 0x00 0x00 0x00 Unused Memory 0x1A94 0x1AB9 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF Submit Documentation Feedback Copyright © 2010–2013, Texas Instruments Incorporated MSP430F51x1 MSP430F51x2 www.ti.com SLAS619I – AUGUST 2010 – REVISED FEBRUARY 2013 REVISION HISTORY REVISION COMMENTS SLAS619 Product Preview release SLAS619A Production Data release SLAS619B Changed Table 7. SLAS619C Changed Comparator_B VREF MAX from ±1% to ±1.5% for all test conditions in Comparator_B. SLAS619D Table 1, Corrected number of I/Os for all entries. Functional Block Diagram, MSP430F51x2 and Functional Block Diagram, MSP430F51x1, Corrected typo on P2 port name. Recommended Operating Conditions, Corrected typo in fSYSTEM VCC conditions on VCORE = 3 row. PMM, Brown-Out Reset (BOR), Changed parameter descriptions for V(DVCC_BOR_IT-) and V(VCORE_BOR_IT-). SLAS619E Table 10, changed "SYSRSTIV, System Reset" interrupt event at offset 1Ch to Reserved. Low-Power Mode Supply Currents (Into VCC) Excluding External Current, Changed some typical and maximum current numbers at 85°C. Table 46, Corrected note regarding USCI CLK function taking precedence over USCI STE function. SLAS619F Removed all occurrences of ROSC; does not apply to this device. SLAS619G Recommended Operating Conditions, Added note regarding interaction between minimum VCC and SVSH. Internal Reference, Low-Frequency Oscillator (REFO), Corrected tSTART UNIT (changed from µA to µs). SLAS619H Recommended Operating Conditions, Added test conditions for typical characteristics. DCO Frequency, Added note (1). Table 58 and Table 59, Corrected addresses of the Timer_D0 and Timer_D1 device descriptors. SLAS619I REF, External Reference (MSP430F51x2 Devices Only), Changed note (1) from "12-bit accuracy" to "10-bit accuracy". Comparator_B, Changed description and symbol for TCCB_REF. Flash Memory, Changed IMERASE, IBANK values. Copyright © 2010–2013, Texas Instruments Incorporated Submit Documentation Feedback 91 PACKAGE OPTION ADDENDUM www.ti.com 11-Feb-2013 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Qty Drawing Eco Plan Lead/Ball Finish (2) MSL Peak Temp Op Temp (°C) Top-Side Markings (3) (4) MSP430F5131IDA ACTIVE TSSOP DA 38 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR M430F5131 MSP430F5131IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR M430F5131 MSP430F5131IRSBR ACTIVE WQFN RSB 40 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR M430 F5131 MSP430F5131IRSBT ACTIVE WQFN RSB 40 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR M430 F5131 MSP430F5132IDA ACTIVE TSSOP DA 38 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR M430F5132 MSP430F5132IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR M430F5132 MSP430F5132IRHAR OBSOLETE VQFN RHA 40 TBD Call TI Call TI MSP430F5132IRHAT OBSOLETE VQFN RHA 40 TBD Call TI Call TI MSP430F5132IRSBR ACTIVE WQFN RSB 40 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR M430 F5132 MSP430F5132IRSBT ACTIVE WQFN RSB 40 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR M430 F5132 MSP430F5151IDA ACTIVE TSSOP DA 38 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR M430F5151 MSP430F5151IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR M430F5151 MSP430F5151IRSBR ACTIVE WQFN RSB 40 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR M430 F5151 MSP430F5151IRSBT ACTIVE WQFN RSB 40 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR M430 F5151 MSP430F5152IDA ACTIVE TSSOP DA 38 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR M430F5152 MSP430F5152IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR M430F5152 MSP430F5152IRHAR OBSOLETE VQFN RHA 40 TBD Call TI Call TI MSP430F5152IRHAT OBSOLETE VQFN RHA 40 TBD Call TI Call TI MSP430F5152IRSBR ACTIVE WQFN RSB 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR 3000 Addendum-Page 1 M430 F5152 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 11-Feb-2013 Status (1) Package Type Package Pins Package Qty Drawing Eco Plan Lead/Ball Finish (2) MSL Peak Temp Op Temp (°C) Top-Side Markings (3) (4) MSP430F5152IRSBT ACTIVE WQFN RSB 40 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR M430 F5152 MSP430F5171IDA ACTIVE TSSOP DA 38 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR M430F5171 MSP430F5171IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR M430F5171 MSP430F5171IRSBR ACTIVE WQFN RSB 40 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR M430 F5171 MSP430F5171IRSBT ACTIVE WQFN RSB 40 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR M430 F5171 MSP430F5172IDA ACTIVE TSSOP DA 38 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR M430F5172 MSP430F5172IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR M430F5172 MSP430F5172IRSBR ACTIVE WQFN RSB 40 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR M430 F5172 MSP430F5172IRSBT ACTIVE WQFN RSB 40 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR M430 F5172 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Addendum-Page 2 Samples PACKAGE OPTION ADDENDUM www.ti.com (4) 11-Feb-2013 Only one of markings shown within the brackets will appear on the physical device. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 3 PACKAGE MATERIALS INFORMATION www.ti.com 12-Feb-2013 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant MSP430F5131IDAR TSSOP DA 38 2000 330.0 24.4 8.6 13.0 1.8 12.0 24.0 Q1 MSP430F5131IRSBR WQFN RSB 40 3000 330.0 12.4 5.3 5.3 1.5 8.0 12.0 Q2 MSP430F5131IRSBT WQFN RSB 40 250 180.0 12.4 5.3 5.3 1.5 8.0 12.0 Q2 MSP430F5132IDAR TSSOP DA 38 2000 330.0 24.4 8.6 13.0 1.8 12.0 24.0 Q1 MSP430F5132IRSBR WQFN RSB 40 3000 330.0 12.4 5.3 5.3 1.5 8.0 12.0 Q2 MSP430F5132IRSBT WQFN RSB 40 250 180.0 12.4 5.3 5.3 1.5 8.0 12.0 Q2 MSP430F5151IDAR TSSOP DA 38 2000 330.0 24.4 8.6 13.0 1.8 12.0 24.0 Q1 MSP430F5151IRSBR WQFN RSB 40 3000 330.0 12.4 5.3 5.3 1.5 8.0 12.0 Q2 MSP430F5151IRSBT WQFN RSB 40 250 180.0 12.4 5.3 5.3 1.5 8.0 12.0 Q2 MSP430F5152IDAR TSSOP DA 38 2000 330.0 24.4 8.6 13.0 1.8 12.0 24.0 Q1 MSP430F5152IRSBR WQFN RSB 40 3000 330.0 12.4 5.3 5.3 1.5 8.0 12.0 Q2 MSP430F5152IRSBT WQFN RSB 40 250 180.0 12.4 5.3 5.3 1.5 8.0 12.0 Q2 MSP430F5171IDAR TSSOP DA 38 2000 330.0 24.4 8.6 13.0 1.8 12.0 24.0 Q1 MSP430F5171IRSBR WQFN RSB 40 3000 330.0 12.4 5.3 5.3 1.5 8.0 12.0 Q2 MSP430F5171IRSBT WQFN RSB 40 250 180.0 12.4 5.3 5.3 1.5 8.0 12.0 Q2 MSP430F5172IDAR TSSOP DA 38 2000 330.0 24.4 8.6 13.0 1.8 12.0 24.0 Q1 MSP430F5172IRSBR WQFN RSB 40 3000 330.0 12.4 5.3 5.3 1.5 8.0 12.0 Q2 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 12-Feb-2013 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) MSP430F5131IDAR MSP430F5131IRSBR TSSOP DA 38 2000 367.0 367.0 45.0 WQFN RSB 40 3000 367.0 367.0 35.0 MSP430F5131IRSBT WQFN RSB 40 250 210.0 185.0 35.0 MSP430F5132IDAR TSSOP DA 38 2000 367.0 367.0 45.0 MSP430F5132IRSBR WQFN RSB 40 3000 367.0 367.0 35.0 MSP430F5132IRSBT WQFN RSB 40 250 210.0 185.0 35.0 MSP430F5151IDAR TSSOP DA 38 2000 367.0 367.0 45.0 MSP430F5151IRSBR WQFN RSB 40 3000 367.0 367.0 35.0 MSP430F5151IRSBT WQFN RSB 40 250 210.0 185.0 35.0 MSP430F5152IDAR TSSOP DA 38 2000 367.0 367.0 45.0 MSP430F5152IRSBR WQFN RSB 40 3000 367.0 367.0 35.0 MSP430F5152IRSBT WQFN RSB 40 250 210.0 185.0 35.0 MSP430F5171IDAR TSSOP DA 38 2000 367.0 367.0 45.0 MSP430F5171IRSBR WQFN RSB 40 3000 367.0 367.0 35.0 MSP430F5171IRSBT WQFN RSB 40 250 210.0 185.0 35.0 MSP430F5172IDAR TSSOP DA 38 2000 367.0 367.0 45.0 MSP430F5172IRSBR WQFN RSB 40 3000 367.0 367.0 35.0 Pack Materials-Page 2 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated