ONSEMI NCP584LSN09T1G

NCP584
Tri−Mode 200 mA CMOS
LDO Regulator with Enable
The NCP584 series of low drop out regulators are designed for
portable battery powered applications which require precise output
voltage accuracy, low supply current, and high ripple rejection.
These devices feature an enable function which lowers current
consumption significantly and are offered in the SOT23−5 package.
This series of devices have three modes. Chip Enable (CE mode),
Fast Transient Mode (FT mode), and Low Power Mode (LP mode).
Both the FT and LP mode are utilized via the ECO pin.
http://onsemi.com
MARKING
DIAGRAM
5
Features
• Low Dropout Voltage of 300 mV at 200 mA, Output Voltage = 1.0 V
•
•
•
•
•
•
•
200 mV at 200 mA, Output Voltage = 1.5 V
140 mV at 200 mA, Output Voltage = 3.0 V
Excellent Line and Load Regulation
High Output Voltage Accuracy of ±2% (±3% LP mode)
Ultra−Low Supply Current of:
3.5 mA (LP mode, Output Voltage ≤ 1.5 V)
40 mA (FT mode)
Excellent Power Supply Rejection Ratio
Low Temperature Drift Coefficient on the Output Voltage
Low Quiescent Current of 0.1 mA
This is a Pb−Free Device*
SOT23−5
SN SUFFIX
CASE 1212
1
DEV
M
5
DEVM
1
= Device Code
= Date Code
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 11 of this data sheet.
Typical Applications
• Portable Equipment
• Hand−Held Instrumentation
• Camcorders and Cameras
ECO
Vin
ECO
Vout
Vin
Vout
−
+
−
+
Vref
Vref
Current Limit
CE
Current Limit
GND CE
Figure 1. Simplified Block Diagram for Active Low
GND
Figure 2. Simplified Block Diagram for Active High
*For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting
Techniques Reference Manual, SOLDERRM/D.
© Semiconductor Components Industries, LLC, 2005
July, 2005 − Rev. 2
1
Publication Order Number:
NCP584/D
NCP584
PIN FUNCTION DESCRIPTION
SOT23−5
Pin Name
Description
1
Vin
2
GND
3
CE or CE
4
ECO
Mode alternative pin.
5
Vout
Regulated output voltage.
Power supply input voltage.
Power supply ground.
Chip enable pin.
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Vin
6.5
V
Input Voltage
Input Voltage (CE or CE Pin)
VCE
−0.3 to Vin +0.3
V
VECO
−0.3 to Vin +0.3
V
Output Voltage
Vout
−0.3 to Vin +0.3
V
Output Current
Iout
250
mA
Power Dissipation
PD
250
mW
Operating Junction Temperature Range
TJ
−40 to +85
°C
Tstg
+150
°C
Input Voltage (ECO Pin)
Storage Temperature Range
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values
(not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage
may occur and reliability may be affected.
ELECTRICAL CHARACTERISTICS (Vin = Vout + 1.0 V, TA = 25°C, unless otherwise noted.)
Symbol
Min
Typ
Max
Unit
Input Voltage
Vin
1.4
−
6.0
V
Output Voltage (1.0 mA ≤ Iout ≤ 30 mA)
VECO = Vin
VECO = GND
Vout
Vout X 0.980
Vout X 0.970
−
−
Vout X 1.020
Vout X 1.030
−
−
0.05
0.10
0.20
0.30
−
−
20
10
40
40
−
−
0.40
0.30
0.20
0.10
0.70
0.50
0.30
0.20
−
40
70
−
−
3.5
4.5
6.0
8.0
200
−
−
Characteristic
Line Regulation (Iout = 30 mA, Vout + 0.5 V ≤ Vin ≤ 6.0 V)
FT Mode VECO = Vin
LP Mode VECO = GND
Regline
Load Regulation
FT Mode (1.0 mA ≤ Iout ≤ 200 mA), VECO = Vin
LP Mode (1.0 mA ≤ Iout ≤ 100 mA), VECO = GND
Regload
Dropout Voltage (Iout = 200 mA)
0.8 ≤ Vout ≤ 0.9 V
1.0 ≤ Vout ≤ 1.4 V
1.5 ≤ Vout ≤ 2.5 V
2.6 ≤ Vout ≤ 3.1 V
V
%/V
mV
VDO
V
Power Supply Current (Iout = 0 mA)
FT Mode, VECO = Vin
LP Mode, VECO = GND
Vout ≤ 1.5 V
Vout ≤ 1.6 V
Isupply
Output Current (Vin − Vout = 0.5 V)
Vin ≥ 1.5 V, Vout ≤ 1.0 V
Iout
Quiescent Current (VCE = Vin)
IQ
−
0.1
1.0
mA
Output Short Circuit Current (Vout = 0 V)
Ilim
−
50
−
mA
Vthenh
Vthenl
1.0
0
−
−
Vin
0.3
Enable Input Threshold Voltage
High, ECO Input Voltage = High
Low, ECO Input Voltage = Low
mA
mA
V
http://onsemi.com
2
NCP584
0.9
0.9
0.8
0.8
OUTPUT VOLTAGE Vout (V)
OUTPUT VOLTAGE Vout (V)
TYPICAL CHARACTERISTICS
0.7
0.6
Vin = 2.8 V
0.5
0.4
0.3
1.4 V
0.2
Vout = 0.8 V
ECO = H
0.1
0.6
Vin = 2.8 V
0.5
0.4
0.3
1.4 V
0.2
Vout = 0.8 V
ECO = L
0.1
0.0
0.0
0
100
200
300
400
0
300
400
OUTPUT CURRENT Iout (mA)
Figure 3. Output Voltage vs. Output Current
Figure 4. Output Voltage vs. Output Current
1.6
1.6
1.4
1.4
1.2
Vin = 3.5 V
1.0
0.8
1.8 V
0.6
0.4
Vout = 1.5 V
ECO = H
0.2
1.2
Vin = 3.5 V
1.0
0.8
1.8 V
0.6
0.4
Vout = 1.5 V
ECO = L
0.2
0
0
0
100
200
300
400
0
100
OUTPUT CURRENT Iout (mA)
0.9
0.9
OUTPUT VOLTAGE Vout (V)
1.0
0.8
0.7
0.6
0.5
Iout = 1.0 mA
Iout = 30 mA
0.3
Iout = 50 mA
0.2
Vout = 0.8 V
ECO = H
0.1
0.0
0.0
1.0
2.0
3.0
4.0
400
300
Figure 6. Output Voltage vs. Output Current
1.0
0.4
200
OUTPUT CURRENT Iout (mA)
Figure 5. Output Voltage vs. Output Current
OUTPUT VOLTAGE Vout (V)
200
100
OUTPUT CURRENT Iout (mA)
OUTPUT VOLTAGE Vout (V)
OUTPUT VOLTAGE Vout (V)
0.7
5.0
0.8
0.7
0.6
0.5
Iout = 1.0 mA
0.4
Iout = 30 mA
0.3
Iout = 50 mA
0.2
Vout = 0.8 V
ECO = L
0.1
0.0
0.0
6.0
INPUT VOLTAGE Vin (V)
1.0
2.0
3.0
4.0
5.0
INPUT VOLTAGE Vin (V)
Figure 7. Output Voltage vs. Input Voltage
Figure 8. Output Voltage vs. Input Voltage
http://onsemi.com
3
6.0
NCP584
1.6
1.6
1.4
1.4
OUTPUT VOLTAGE Vout (V)
OUTPUT VOLTAGE Vout (V)
TYPICAL CHARACTERISTICS
1.2
1.0
0.8
0.6
Iout = 1.0 mA
0.4
Iout = 30 mA
0.2
Vout = 1.5 V
ECO = H
Iout = 50 mA
1.0
0.8
0.6
Iout = 1.0 mA
0.4
Iout = 30 mA
0.2
0.0
0
1
2
3
4
5
6
0
1
3
4
5
INPUT VOLTAGE Vin (V)
Figure 9. Output Voltage vs. Input Voltage
Figure 10. Output Voltage vs. Input Voltage
60
7
SUPPLY CURRENT, Isupply (mA)
8
50
40
30
20
Vout = 0.8 V
ECO = H
10
1
2
3
4
5
5
4
3
2
Vout = 0.8 V
ECO = L
1
0
0
6
1
60
7
SUPPLY CURRENT, Isupply (mA)
8
50
40
30
20
Vout = 1.5 V
ECO = H
2
3
4
3
4
5
6
Figure 12. Power Supply Current vs. Input Voltage
70
1
2
INPUT VOLTAGE Vin (V)
Figure 11. Power Supply Current vs. Input Voltage
10
6
6
INPUT VOLTAGE Vin (V)
0
0
2
INPUT VOLTAGE Vin (V)
70
0
0
SUPPLY CURRENT, Isupply (mA)
Vout = 1.5 V
ECO = L
Iout = 50 mA
0.0
SUPPLY CURRENT, Isupply (mA)
1.2
5
6
5
4
3
2
0
0
6
Vout = 1.5 V
ECO = L
1
INPUT VOLTAGE Vin (V)
1
2
3
4
5
6
INPUT VOLTAGE Vin (V)
Figure 13. Power Supply Current vs. Input Voltage
Figure 14. Power Supply Current vs. Input Voltage
http://onsemi.com
4
NCP584
TYPICAL CHARACTERISTICS
0.83
OUTPUT VOLTAGE, Vout (V)
OUTPUT VOLTAGE, Vout (V)
0.83
0.82
0.81
0.80
0.79
0.78
Vout = 0.8 V
ECO = H
0.77
−50
−25
0
25
50
75
0.82
0.81
0.80
0.79
0.78
Vout = 0.8 V
ECO = L
0.77
−50
100
−25
0
TEMPERATURE (°C)
1.52
1.52
OUTPUT VOLTAGE, Vout (V)
OUTPUT VOLTAGE, Vout (V)
1.53
1.51
1.50
1.49
1.48
Vout = 1.5 V
ECO = H
−25
0
25
100
50
75
1.51
1.50
1.49
1.48
Vout = 1.5 V
ECO = L
1.47
1.46
−50
100
−25
0
25
50
75
TEMPERATURE (°C)
TEMPERATURE (°C)
Figure 17. Output Voltage vs. Temperature
Figure 18. Output Voltage vs. Temperature
100
0.6
DROPOUT VOLTAGE, VDO (V)
0.6
DROPOUT VOLTAGE, VDO (V)
75
Figure 16. Output Voltage vs. Temperature
1.53
1.46
−50
50
TEMPERATURE (°C)
Figure 15. Output Voltage vs. Temperature
1.47
25
0.5
85°C
25°C
0.4
0.3
−40°C
0.2
0.1
Vout = 0.8 V
ECO = H
0.0
0
25
50
75
100
125
150
175
0.5
25°C
−40°C
0.3
0.2
0.1
Vout = 0.8 V
ECO = L
0.0
0
200
85°C
0.4
25
50
75
100
125
150
175
200
OUTPUT CURRENT Iout (mA)
OUTPUT CURRENT Iout (mA)
Figure 19. Dropout Voltage vs. Output Current
Figure 20. Dropout Voltage vs. Output Current
http://onsemi.com
5
NCP584
0.40
0.40
0.35
0.35
0.30
DROPOUT VOLTAGE, VDO (V)
DROPOUT VOLTAGE, VDO (V)
TYPICAL CHARACTERISTICS
85°C
25°C
0.25
0.20
0.15
−40°C
0.10
Vout = 1.0 V
ECO = H
0.05
0.00
0
25
50
75
100
125
150
175
85°C
0.30
25°C
0.25
0.20
−40°C
0.15
0.10
Vout = 1.0 V
ECO = L
0.05
0.00
0
200
25
OUTPUT CURRENT Iout (mA)
100
125
150
175
200
Figure 22. Dropout Voltage vs. Output Current
0.30
DROPOUT VOLTAGE, VDO (V)
0.30
DROPOUT VOLTAGE, VDO (V)
75
OUTPUT CURRENT Iout (mA)
Figure 21. Dropout Voltage vs. Output Current
0.25
85°C
0.20
25°C
0.15
0.10
−40°C
0.05
0.00
0
Vout = 1.5 V
ECO = H
25
50
75
100
125
150
175
0.25
85°C
0.20
25°C
0.15
0.10
−40°C
0.05
Vout = 1.5 V
ECO = L
0.00
0
200
25
OUTPUT CURRENT Iout (mA)
RIPPLE REJECTION, RR (dB)
Iout = 30 mA
70
60
50
Iout = 1.0 mA
40
30
0
0.1
100
125
150
175
200
90
80
10
75
Figure 24. Dropout Voltage vs. Output Current
90
20
50
OUTPUT CURRENT Iout (mA)
Figure 23. Dropout Voltage vs. Output Current
RIPPLE REJECTION, RR (dB)
50
Vout = 0.8 V
Vin = 1.8 V + 0.2 Vp−p
Cout = 2.2 mF, ECO = H
1
10
80
70
60
50
Iout = 1.0 mA
40
Iout = 30 mA
30
20
10
0
0.1
100
Vout = 0.8 V
Vin = 1.8 V + 0.2 Vp−p
Cout = 2.2 mF, ECO = L
Iout = 50 mA
1
10
FREQUENCY, f (kHz)
FREQUENCY, f (kHz)
Figure 25. Ripple Rejection vs. Frequency
Figure 26. Ripple Rejection vs. Frequency
http://onsemi.com
6
100
NCP584
TYPICAL CHARACTERISTICS
90
90
Iout = 30 mA
50
40
Iout = 1.0 mA
30
20
Vout = 1.5 V
Vin = 2.5 V + 0.2 Vp−p
Cout = 2.2 mF, ECO = H
10
0
0.1
10
1
Iout = 30 mA
30
20
10
Iout = 50 mA
0
0.1
5
4
Input Voltage
3
ECO = H, Iout = 30 mA
tr = tf = 5 ms, Cout = 1.0 mF
2
1
Output Voltage
5.0
0
10
20
30
40
50
60
70
80
90
5
Input Voltage
4.5
4.0
3.5
3.0
0
0.4
0.8
1.2
1.6
1
INPUT VOLTAGE, Vin (V)
2
Output Voltage
0
20
30
40
50
60
2.0
2.4
2.8
3.2
3.6
5.0
70
80
90
OUTPUT VOLTAGE, Vout (V)
OUTPUT VOLTAGE, Vout (V)
3
ECO = H, Iout = 30 mA
tr = tf = 5 ms, Cout = 2.2 mF
10
1
Output Voltage
2.0
0.0
100
4
Input Voltage
2.58
2.56
0
2
2.5
5
2.60
3
4.0
TIME, t (ms)
2.68
2.66
4
ECO = L, Iout = 10 mA
tr = tf = 5 ms, Cout = 1.0 mF
TIME, t (ms)
2.62
100
Figure 28. Ripple Rejection vs. Frequency
2.58
2.64
10
1
Figure 27. Ripple Rejection vs. Frequency
INPUT VOLTAGE, Vin (V)
OUTPUT VOLTAGE, Vout (V)
40
FREQUENCY, f (kHz)
2.60
2.56
0
Iout = 1.0 mA
FREQUENCY, f (kHz)
2.66
2.62
50
100
2.68
2.64
60
5
4.5
4.0
3.5
3
ECO = L, Iout = 10 mA
tr = tf = 5 ms, Cout = 2.2 mF
2
1
3.0
2.5
2.0
0.0
100
4
Input Voltage
0.4
0.8
1.2
1.6
TIME, t (ms)
2.0
2.4
TIME, t (ms)
Figure 29. Input Transient Response (Vout = 2.6 V)
http://onsemi.com
7
0
Output Voltage
2.8
3.2
3.6
4.0
INPUT VOLTAGE, Vin (V)
60
INPUT VOLTAGE, Vin (V)
RIPPLE REJECTION, RR (dB)
70
Vout = 1.5 V
80 V = 2.5 V + 0.2 V
in
p−p
70 Cout = 2.2 mF, ECO = L
OUTPUT VOLTAGE, Vout (V)
RIPPLE REJECTION, RR (dB)
80
NCP584
TYPICAL CHARACTERISTICS
2.64
3
ECO = H, Iout = 30 mA
tr = tf = 5 ms, Cout = 4.7 mF
2.62
2.60
2
1
Output Voltage
2.58
0
2.56
0
10
20
30
40
50
60
70
80
90
OUTPUT VOLTAGE, Vout (V)
4
Input Voltage
INPUT VOLTAGE, Vin (V)
2.66
5.0
5
Input Voltage
4.5
4.0
3.5
4
3
ECO = L, Iout = 10 mA
tr = tf = 5 ms, Cout = 4.7 mF
3.0
2
1
Output Voltage
2.5
2.0
0.0
100
INPUT VOLTAGE, Vin (V)
5
OUTPUT VOLTAGE, Vout (V)
2.68
0
0.4
0.8
1.2
1.6
TIME, t (ms)
2.0
2.4
2.8
3.2
3.6
4.0
TIME, t (ms)
Figure 29. (continued) Input Transient Response (Vout = 2.6 V)
2.9
100
Load Current
2.8
ECO = H, Vin = 3.6 V
Cin = 1.0 mF, Cout = 1.0 mF
0
10
4.0
Load Current
0
3.5
ECO = L, Vin = 3.6 V
3.0 Cin = 1.0 mF, Cout = 1.0 mF
2.5
2.6
Output Voltage
2.5
2.4
−2
20
0
2
4
6
8
10
Output Voltage
2.0
12
14
16
1.5
0.0
18
1.0
2.0
3.0
TIME, t (ms)
6.0
100
Load Current
2.8
50
ECO = H, Vin = 3.6 V
Cin = 1.0 mF, Cout = 2.2 mF
0
4.5
7.0
20
LOAD CURRENT, Iout (mA)
OUTPUT VOLTAGE, Vout (V)
OUTPUT VOLTAGE, Vout (V)
150
2.9
10
4.0
Load Current
0
3.5
ECO = L, Vin = 3.6 V
3.0 Cin = 1.0 mF, Cout = 2.2 mF
2.5
2.6
Output Voltage
2.5
2.4
−2
5.0
TIME, t (ms)
3.0
2.7
4.0
0
2
4
6
8
10
Output Voltage
2.0
12
14
16
1.5
0.0
18
1.0
2.0
TIME, t (ms)
3.0
4.0
TIME, t (ms)
Figure 30. Load Transient Response (Vout = 2.6 V)
http://onsemi.com
8
5.0
6.0
7.0
LOAD CURRENT, Iout (mA)
2.7
50
4.5
LOAD CURRENT, Iout (mA)
150
LOAD CURRENT, Iout (mA)
OUTPUT VOLTAGE, Vout (V)
OUTPUT VOLTAGE, Vout (V)
3.0
NCP584
TYPICAL CHARACTERISTICS
2.9
100
Load Current
2.8
2.7
50
ECO = H, Vin = 3.6 V
Cin = 1.0 mF, Cout = 4.7 mF
0
20
10
4.0
Load Current
0
3.5
ECO = L, Vin = 3.6 V
3.0 Cin = 1.0 mF, Cout = 4.7 mF
2.5
2.6
Output Voltage
2.5
2.4
−2
4.5
0
2
4
6
8
Output Voltage
2.0
10
12
14
16
1.5
0.0
18
1.0
2.0
TIME, t (ms)
3.0
4.0
5.0
6.0
LOAD CURRENT, Iout (mA)
150
LOAD CURRENT, Iout (mA)
OUTPUT VOLTAGE, Vout (V)
OUTPUT VOLTAGE, Vout (V)
3.0
7.0
TIME, t (ms)
Figure 30. (continued) Load Transient Response (Vout = 2.6 V)
1.8
2.0
ECO = H, Vin = 1.8 V,
Cin = 1.0 mF,
Cout = 2.2 mF
1.2
1.5
0.6
1.0
0.0
0.5
Iout = 200 mA
0.0
0
10
20
30
40
50
60
2.5
2.4
VCE = 0 V to 1.8 V
OUTPUT VOLTAGE, Vout (V)
CE INPUT VOLTAGE, VCE (V)
CE INPUT VOLTAGE, VCE (V)
VCE = 0 V to 1.8 V
1.8
2.0
ECO = L, Vin = 1.8 V,
Cin = 1.0 mF,
Cout = 2.2 mF
1.2
0.6
1.0
0.0
70
1.5
Iout = 200 mA
0.5
0.0
0
TIME, t (ms)
OUTPUT VOLTAGE, Vout (V)
2.5
2.4
100 200 300 400 500 600 700
TIME, t (ms)
Figure 31. Turn−On/Off Speed with CE Pin (Vout = 0.8 V)
2.5
3.2
1.6
1.5
Iout = 200 mA
1.0
0.0
0.5
ECO = H, Vin = 2.5 V,
Cin = 1.0 mF,
Cout = 2.2 mF
0
10
20
30
40
50
0.0
60
2.4
2.0
1.6
1.5
0.8
Iout = 200 mA
0.0
70
0.5
ECO = L, Vin = 2.5 V,
Cin = 1.0 mF,
Cout = 2.2 mF
0
TIME, t (ms)
Figure 32. Turn−On/Off Speed with CE Pin (Vout = 1.5 V)
9
0.0
100 200 300 400 500 600 700
TIME, t (ms)
http://onsemi.com
1.0
OUTPUT VOLTAGE, Vout (V)
2.0
OUTPUT VOLTAGE, Vout (V)
CE INPUT VOLTAGE, VCE (V)
CE INPUT VOLTAGE, VCE (V)
2.4
0.8
2.5
3.2
VCE = 0 V to 2.5 V
VCE = 0 V to 2.5 V
NCP584
Vout = 1.3 V
Iout = 0 mA
1.01
1.00
0.99
Iout = 1 mA
1.01
1.00
0.99
Iout = 10 mA
Iout = 50 mA
1.00
0.99
0.98
1.00
0.99
0.98
Iout = 100 mA
1.01
1.00
0.99
Iout = 200 mA
0.0
3.0
2.0
1.0
0.0
VECO−0 V to 1.3 V
ECO INPUT VOLTAGE, ECO−IN (V)
OUTPUT VOLTAGE, Vout (V)
1.05
1.04
1.03
1.02
1.01
1.00
0.99
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
TIME, t (ms)
Vout = 2.0 V
1.05
1.04
1.03
1.02
1.01
1.00
0.99
VECO−0 V to 2.0 V
1.01
1.00
0.99
Iout = 10 mA
OUTPUT VOLTAGE, Vout (V)
Iout = 1 mA
ECO INPUT VOLTAGE, ECO−IN (V)
Iout = 0 mA
1.01
1.00
0.99
Iout = 50 mA
1.00
0.99
0.98
Iout = 100 mA
1.00
0.99
0.98
1.01
1.00
0.99
0.98
0.0
3.0
2.0
1.0
0.0
Iout = 200 mA
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
TIME, t (ms)
Figure 33. Output Voltage at Mode Alternative Point
(Cin = 1.0 mF, Cout = 2.2 mF, 8.0 V, Vout = 1.0 V)
http://onsemi.com
10
NCP584
APPLICATION INFORMATION
Input Decoupling
Output Decoupling
A 1.0 mF tantalum capacitor is the recommended value
to be connected between Vin and GND. For PCB layout
considerations, the traces of Vin and GND should be
sufficiently wide in order to minimize noise and prevent
unstable operation.
It is recommended to use a 2.2 mF or higher tantalum
capacitor on the Vout pin. For better performance, select a
capacitor with low Equivalent Series Resistance (ESR).
For PCB layout considerations, place the output capacitor
close to the output pin and keep the leads short as possible.
ORDERING INFORMATION
Nominal
Output Voltage
Marking
Package
Shipping†
Active High,
LP and FT Mode
0.9
109
SOT23−5
(Pb−Free)
3000 Tape & Reel
NCP584HSN12T1G
Active High,
LP and FT Mode
1.2
112
SOT23−5
(Pb−Free)
3000 Tape & Reel
NCP584HSN15T1G
Active High,
LP and FT Mode
1.5
115
SOT23−5
(Pb−Free)
3000 Tape & Reel
NCP584HSN18T1G
Active High,
LP and FT Mode
1.8
118
SOT23−5
(Pb−Free)
3000 Tape & Reel
NCP584HSN26T1G
Active High,
LP and FT Mode
2.6
126
SOT23−5
(Pb−Free)
3000 Tape & Reel
NCP584HSN31T1G
Active High,
LP and FT Mode
3.1
131
SOT23−5
(Pb−Free)
3000 Tape & Reel
NCP584LSN09T1G
Active Low,
LP and FT Mode
0.9
009
SOT23−5
(Pb−Free)
3000 Tape & Reel
NCP584LSN12T1G
Active Low,
LP and FT Mode
1.2
012
SOT23−5
(Pb−Free)
3000 Tape & Reel
NCP584LSN18T1G
Active Low,
LP and FT Mode
1.8
018
SOT23−5
(Pb−Free)
3000 Tape & Reel
Device
Output Type / Features
NCP584HSN09T1G
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification
Brochure, BRD8011/D.
http://onsemi.com
11
NCP584
PACKAGE DIMENSIONS
SOT23−5
SN SUFFIX
CASE 1212−01
ISSUE O
A
5
E
1
A2
0.05 S
B
D
A1
4
2
NOTES:
1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES
PER ASME Y14.5M, 1994.
3. DATUM C IS A SEATING PLANE.
L
3
E1
L1
B
e
e1
C
5X
0.10
M
C B
S
A
S
C
DIM
A1
A2
B
C
D
E
E1
e
e1
L
L1
MILLIMETERS
MIN
MAX
0.00
0.10
1.00
1.30
0.30
0.50
0.10
0.25
2.80
3.00
2.50
3.10
1.50
1.80
0.95 BSC
1.90 BSC
0.20
−−−
0.45
0.75
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental
damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over
time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under
its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees,
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part.
SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
N. American Technical Support: 800−282−9855 Toll Free
Literature Distribution Center for ON Semiconductor
USA/Canada
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Phone: 81−3−5773−3850
Email: [email protected]
http://onsemi.com
12
ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
For additional information, please contact your
local Sales Representative.
NCP584/D