PC733H High Input Current, AC Input Type Photocoupler PC733H ❈ Lead forming type ( I type ) and taping reel type ( P type ) are also available. ( PC733HI/PC733HP ) ■ Features ■ Outline Dimensions 1. AC input response 2. High input current ( I F : MAX. 150mA ) 3. High isolation voltage between input and output ( Viso : 5 000 Vrms ) 4. Low collector dark current ( I CEO : MAX. 10 - 7A at VCE = 20V) 5. TTL compatible output 6. Recognized by UL, file No. E64380 1 Output *2 *3 2 6.5 ± 0.5 1 3 3.7 ± 0.5 3.5 ± 0.5 0.5TYP. 2 7.62 ± 0.3 3.4 ± 0.5 2.54 ± 0.25 θ 0.26 ± 0.1 θ = 0 to 13 ˚ 1 2 Anode, cathode Anode, cathode 4 5 Emitter Collector 3 NC 6 Base ( Ta = 25˚C ) Symbol IF I FM P V CEO V ECO V CBO V EBO IC PC P tot V iso T opr T stg T sol Rating ± 150 ±1 230 35 6 35 6 80 160 320 5 000 - 25 to + 100 - 55 to + 125 260 3 9.22 ± 0.5 0.5 ± 0.1 ■ Absolute Maximum Ratings *1 4 Primary side mark (Sunken place ) 1. Telephone sets 2. System appliances, measuring instruments 3. Signal transmission between circuits of different potentials and impedances Input 5 PC733H ■ Aapplications Parameter Forward current Peak forward current Power dissipation Collector-emitter voltage Emitter-collector voltage Collector-base voltage Emitter-base voltage Collector current Collector power dissipation Total power dissipation Isolation voltage Operating temperature Storage temperature Soldering temperature Internal connection diagram 6 5 4 1.2 ± 0.3 6 ( Unit : mm ) Unit mA A mW V V V V mA mW mW V rms ˚C ˚C ˚C *1 Pulse width<= 100µs, Duty ratio : 0.001 *2 40 to 60% RH, AC for 1 minute *3 For 10 seconds “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ” θ PC733H ■ Electro-optical Characteristics Parameter Forward voltage Peak forward voltage Terminal capacitance Collector dark current Current transfer ratio Collector-emitter saturation voltage Isolation resistance Floating capacitance Cut-off frequency Rise time Response time Fall time Input Output Transfer characteristics ( Ta = 25˚C ) Symbol VF VFM Ct I CEO CTR VCE (sat) R ISO Cf fc tr tf Fig. 1 Forward Current vs. Ambient Temperature Conditions I F = ±100mA I FM = ± 0.5A V = 0, f = 1kHz VCE = 20V, I F = 0, R BE = I F = ±100mA, V CE = 2V, R BE = I F = ±100mA, I C = 1mA, R BE = DC500V, 40 to 60% RH V = 0, f = 1MHz V CE = 5V, I C = 2mA, R L = 100 Ω, R BE = , - 3dB VCE = 2V, I C = 2mA, RL = 100 Ω , R BE = MAX. 1.7 3.0 400 10 - 7 80 0.2 1.0 18 18 Unit V V pF A % V Ω pF kHz µs µs Collector power dissipation P C ( mW ) 200 150 Forward current I F ( mA ) TYP. 1.4 50 0.1 10 11 0.6 80 4 3 Fig. 2 Collector Power Dissipation vs. Ambient Temperature 200 100 50 0 - 25 0 25 50 75 100 160 150 100 50 0 - 25 125 Fig. 3 Peak Forward Current vs. Duty Ratio 10 000 25 50 75 100 125 ( ˚C) Fig. 4 Forward Current vs. Forward Voltage 500 Pulse width<=100 µ s T a = 25˚C 5 000 0 Ambient temperature T a Ambient temperature T a ( ˚C ) T a = 75˚C 200 25˚C 50˚C 0˚C 2 000 Forward current I F ( mA ) Peak forward current I FM ( mA ) MIN. 20 5 x 10 10 15 - 1 000 500 200 100 50 100 - 25˚C 50 20 10 5 20 2 10 1 5 10 -3 2 5 10 -2 2 5 Duty ratio 10 -1 2 5 1 0 0.5 1.0 1.5 2.0 2.5 Forward voltage V F ( V ) 3.0 PC733H Fig. 6 Collector Current vs. Collector-emitter Voltage Fig. 5 Current Transfer Ratio vs. Forward Current 50 80 R BE = T a = 25˚C 40 Collector current I C ( mA ) 70 Current transfer ratio CTR ( % ) P C ( MAX. ) V CE = 2V R BE = T a = 25˚C 60 50 40 30 20 I F = 150mA 100mA 30 20 50mA 10 20mA 10 0 0.1 0 0.2 0.5 1 2 5 Forward current I 10 F 20 Relative current transfer ratio ( % ) I F = 100mA R BE = V CE = 2V 100 50 25 50 75 120 100 80 60 40 20 0 - 25 -7 10 -8 10 -9 10 - 10 10 - 11 0 25 50 75 100 Ambient temperature T a ( ˚C ) Fig. 9-b Collector-base Dark Current vs. Ambient Temperature 10 -8 V CB = 30V R BE = 5 (A) 10 2 10 -9 5 2 10 - 10 5 2 - 25 0 25 50 75 Ambient temperature T a ( ˚C ) 100 10 IF = 100mA I C = 1mA RBE = 140 CBO 10 -6 8 160 100 -5 V CE = 20V R BE = 6 Fig. 8 Collector-emitter Saturation Voltage vs. Ambient Temperature Collector-base dark current I Collector dark current I CEO ( A ) 10 10mA 4 Collector-emitter voltage V CE ( V ) Ambient temperature T a ( ˚C ) Fig. 9-a Collector Dark Current vs. Ambient Temperature 2 0 Collector-emitter saturation voltage VCE (sat) ( mV ) 150 0 200 ( mA ) Fig. 7 Relative Current Transfer Ratio vs. Ambient Temperature 0 - 25 50 100 10 - 11 0 25 50 75 Ambient temperature T a 100 ( ˚C ) 125 PC733H Fig.10 Response Time vs. Load Resistance Fig.11 Frequency Response 200 V CE = 2V I C = 2mA 100 I C = 2mA 0 R BE = R BE = T a = 25˚C T a = 25˚C 20 10 Voltage gain A v ( dB ) Response time ( µs ) 50 V CE = 5V tf 5 tr 2 td 1 0.5 -5 RL = 10k Ω 100 Ω 1k Ω - 10 - 15 - 20 ts 0.1 0.2 0.5 1 2 Load resistance R L ( k Ω ) 5 0.5 1 10 Input RL 10% Output RD 90% td ts tr Test Circuit for Frequency Response VCC 50 tf RL Output ● Please refer to the chapter “Precautions for Use ”. I C = 1mA 9 100 200 RBE = T a = 25˚C 2mA 8 3mA 7 5mA 6 7mA 5 40mA 10mA 4 30mA 3 20mA 2 1 0 RD 20 10 Output Input 10 5 500 1 000 Fig.12 Collector-emitter Saturation Voltage vs. Forward Current Test Circuit for Response Time VCC 2 Frequency f ( kHz ) Collector-emitter saturation voltage VCE(sat) ( V ) 0.2 0.1 0.03 0 10 20 30 40 50 60 Forward current I F 70 ( mA ) 80 90 100