PC810 High Speed Under High Load Resistance Photocoupler PC810 ❈ Lead forming type ( I type ) and taping reel type ( P type ) are also available. ( PC810I/PC810P ) ■ Features ■ Outline Dimensions 1. High speed response under high resistance load ( t off : MAX. 1ms at I F = 1mA, VCC = 5V, R L = 110k Ω ) 2. High current transfer ratio under low input current ( CTR : MIN. 60% at I F = 1mA, V CE = 0.4V) 3. High isolation voltage between input and output ( Viso : 5 000V rms ) 4. Compact dual-in-line package 5. Recognized by UL, file No. E64380 2.54 ± 0.25 0.9 ± 0.2 1.2 ± 0.3 1 1 2 2 7.62 ± 0.3 0.5TYP. 3.5 ± 0.5 4.58 3.0 ± 0.5 2.7 ± 0.5 ■ Absolute Maximum Ratings Output 3 Anode mark 1. Solid state relays 2. Motor-control equipment 3. Signal transmission between circuits of different potentials and impedances Input diagram 4 3 6.5 ± 0.5 CTR rank mark Internal connection PC810 4 ■ Applications Parameter Forward current *1 Peak forward current Reverse voltage Power dissipation Collector-emitter voltage Emitter-collector voltage Collector current Collector power dissipation Total power dissipation *2 Isolation voltage Operating temperature Storage temperature *3 Soldering temperature (Unit : mm) 0.5 ± 0.1 θ θ θ = 0 to 13 ˚ 1 Anode 3 Emitter 2 Cathode 4 Collector ( Ta = 25˚C ) Symbol IF I FM VR P V CEO V ECO IC PC P tot V iso T opr T stg T sol Rating 50 1 6 70 35 6 50 150 200 5 000 - 30 to + 100 - 55 to + 125 260 Unit mA A V mW V V mA mW mW V rms ˚C ˚C ˚C *1 Pulse width<=100 µs, Duty ratio : 0.001 *2 40 to 60% RH, AC for 1 minute *3 For 10 seconds “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ” 0.26 PC810 ■ Electro-optical Characteristics ( Ta = 25˚C ) Parameter Forward voltage Peak forward voltage Reverse current Terminal capacitance Collector dark current *5 Current transfer ratio Collector-emitter saturation voltage Isolation resistance Floating capacitance Cut-off frequency Rise time *5 Response time Fall time *5 Turn-off time Input Output Transfer characteristics Symbol VF V FM IR Ct I CEO CTR V CE ( sat ) R ISO Cf fc tr tf t off Conditions I F = 20mA I FM = 0.5A V R = 4V V = 0, f = 1kHz V CE = 20V, I F = 0 I F = 1mA, V CE = 0.4V I F = 20mA, I C = 1mA DC500V, 40 to 60% RH V = 0, f = 1MHz V CE = 5V, I C = 2mA, R L = 1k Ω, - 3dB MIN. 60 5 x 1010 6 - V CE = 2V, I C = 2mA, R L = 1k Ω V CC = 5V, I F = 1mA, R L = 110k Ω TYP. 1.2 30 0.1 1011 0.6 60 10 10 0.5 MAX. 1.4 3.0 10 250 10 - 7 200 0.2 1.0 50 50 1.0 Unit V V µA pF A % V Ω pF kHz µs µs ms *5 Classification table of current transfer ratio and response time is shown below Rank mark CTR ( % ) PC810A PC810B A B 60 to 120 100 to 200 A or B, or 60 to 200 no marking PC810 Measurement conditions I F = 1mA VCE = 0.4V T a = 25˚C tr ( µ s) tf ( µ s) TYP. MAX. TYP. MAX. 4 15 3 15 10 50 10 50 - 50 - 50 VCE = 2V I C = 2mA RL = 1k Ω T a = 25˚C t off ( µ s ) TYP. MAX. 350 500 500 1 000 - 1 000 I F = 1mA VCC = 5V RL = 110k Ω T a = 25˚C Fig. 1 Forward Current vs. Ambient Temperature 60 50 Forward current I F ( mA ) Model No. 40 30 20 10 0 - 30 0 25 50 75 100 125 Ambient temperature T a ( ˚C ) Fig. 2 Collector Power Dissipation vs. Ambient Temperature Fig. 3 Paek Foward Current vs. Duty Ratio 10 000 Pulse width <=100 µ s ( mA ) 5 000 T a = 25˚C 2 000 1 000 FM 150 Peak forward current I Collector power dissipation P C ( mW ) 200 100 50 500 200 100 50 20 10 0 - 30 5 0 25 50 75 100 Ambient temperature T a ( ˚C ) 125 5 10 - 3 2 5 10 -2 2 5 Duty ratio 10 -1 2 5 1 PC810 Fig. 5 Current Transfer Ratio vs. Forward Current Fig. 4 Forward Current vs. Forward Voltage 240 500 T a = 75˚C 100 25˚C 0˚C 50 - 25˚C Current transfer ratio CTR ( % ) Forward current I T a = 25˚C 220 50˚C F ( mA ) 200 20 10 5 2 200 180 V CE = 5V 160 140 120 0.4V 100 80 60 40 20 1 0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.1 0.5 0.2 1 2 Forward current I Forward voltage V F ( V ) Fig. 6 Collector Current vs. Collector-emitter Voltage 5 F T a = 25˚C Relative current transfer ratio ( % ) Collector current I C ( mA ) 7 6 5 2mA 4 3 1mA 1 0 0 100 50 0.5mA 1 2 3 4 5 6 7 8 9 0 - 30 10 0.16 10 -6 10 -7 (A) I C = 1mA CEO 0.12 0.10 0.08 0.06 0.04 0.02 0 40 60 80 100 10 -8 10 -9 V CE = 20V I F = 20mA 0 - 30 20 Fig. 9 Collector Dark Current vs. Ambient Temperature Collector dark current I Collector-emitter saturation voltage V CE(sat) ( V ) Fig. 8 Collector-emitter Saturation Voltage vs. Ambient Temperature 0 Ambient temperature T a ( ˚C ) Collector-emitter voltage V CE ( V ) 0.14 I F = 1mA VCE = 0.4V I F = 3mA 2 20 Fig. 7 Relative Current Transfer Ratio vs. Ambient Temperature 150 8 10 ( mA ) 20 40 60 80 100 Ambient temperature T a ( ˚C ) 10 - 10 10 - 11 10 - 12 10 - 13 - 30 20 0 40 60 80 Ambient temperature T a ( ˚C ) 100 50 PC810 Fig.10 Response Time vs. Load Resistance 50 2 400 VCE = 2V I C = 2mA T a = 25˚C 20 ( µs ) 10 tr td 2 1 1 600 off tf 5 I F = 1mA Vcc = 5V T a = 25˚C 2 000 Turn-off time t Response time ( µs ) Fig.11 Turn-off Time vs. Load Resistance ts 1 200 800 400 0.5 0.01 0.02 0.05 0.1 0.2 0.5 1 Load resistance R L 2 5 20 50 100 200 500 1 000 Load resistance R L ( k Ω ) (kΩ ) Fig.12 Turn-off Time vs. Ambient Temperature Fig.13 Frequency Response 800 I F = 1mA VCC = 5V RL = 110k Ω 700 VCE = 5V I C = 2mA T a = 25˚C 0 600 Voltage gain A v ( dB ) Turn-off time t off ( µ s ) 0 10 10 500 400 300 -5 - 10 100 Ω RL = 10k Ω 200 - 15 1k Ω 100 0 - 30 0 20 40 60 80 100 - 20 0.5 120 1 2 Ambient temperature T a ( ˚C ) Input RL Output 10% 90% td ts tr Test Circuit for Frepuency Response VCC RD RL Output tf Collector-emitter saturation voltage V CE(sat) ( V ) Input Output RD 10 20 50 100 200 500 Fig.14 Collector-emitter Saturation Voltage vs. Forward Current Test Circuit for Response Time VCC 5 Frequency f ( kHz ) 6 I C = 0.5mA 1.0mA 5 T a = 25˚C 2.0mA 3.0mA 4 5.0mA 3 7.0mA 2 1 0 0 2 4 6 8 10 12 14 Forward current I F ( mA ) ● Please refer to the chapter “Precautions for Use ” 16 18 20