PIC18F23K20/24K20/25K20/ 26K20/43K20/44K20/45K20/ 46K20 Data Sheet 28/40/44-Pin Flash Microcontrollers with 10-Bit A/D and nanoWatt Technology © 2007 Microchip Technology Inc. Advance Information DS41303B Note the following details of the code protection feature on Microchip devices: • Microchip products meet the specification contained in their particular Microchip Data Sheet. • Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. • There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. • Microchip is willing to work with the customer who is concerned about the integrity of their code. • Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.” Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. Trademarks The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. AmpLab, FilterLab, Linear Active Thermistor, Migratable Memory, MXDEV, MXLAB, PS logo, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2007, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona, Gresham, Oregon and Mountain View, California. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified. DS41303B-page ii Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 28/40/44-Pin Flash Microcontrollers with 10-Bit A/D and nanoWatt Technology Power-Managed Modes: Flexible Oscillator Structure: • • • • • • • • • Four Crystal modes, up to 64 MHz • 4X Phase Lock Loop (available for crystal and internal oscillators) • Two External RC modes, up to 4 MHz • Two External Clock modes, up to 64 MHz • Internal oscillator block: - 8 user selectable frequencies, from 31 kHz to 16 MHz - Provides a complete range of clock speeds from 31 kHz to 64 MHz when used with PLL - User tunable to compensate for frequency drift • Secondary oscillator using Timer1 @ 32 kHz • Fail-Safe Clock Monitor: - Allows for safe shutdown if primary or secondary oscillator stops Run: CPU on, peripherals on Idle: CPU off, peripherals on Sleep: CPU off, peripherals off Idle mode currents down to 1.0 μA, typical Sleep mode current down to 0.1 μA, typical Timer1 Oscillator: 1.0 μA, 32 kHz, 1.8V, typical Watchdog Timer: 2.0 μA, 1.8V, typical Two-Speed Oscillator Start-up Peripheral Highlights: • • • • • • • • • • • • High-current sink/source 25 mA/25 mA Three programmable external interrupts Four independent input-change interrupts 8 independent weak pull-ups Programmable slew rate Capture/Compare/PWM (CCP) module Enhanced Capture/Compare/PWM (ECCP) module: - One, two or four PWM outputs - Selectable polarity - Programmable dead time - Auto-Shutdown and Auto-Restart Master Synchronous Serial Port (MSSP) module supporting 3-wire SPI (all 4 modes) and I2C™ Master and Slave modes with address mask Enhanced Addressable USART module: - Supports RS-485, RS-232 and LIN 2.0 - RS-232 operation using internal oscillator block (no external crystal required) - Auto-Wake-up on Break - Auto-Baud Detect 10-bit, up to 14-channel Analog-to-Digital Converter module (ADC): - Auto-acquisition capability - Conversion available during Sleep - Internal 1.2V Fixed Voltage Reference (FVR) channel - Independent input multiplexing Dual analog comparators - Rail-to-rail operation - Independent input multiplexing Programmable On-Chip Voltage Reference (CVREF) module (% of VDD) © 2007 Microchip Technology Inc. Special Microcontroller Features: • C compiler optimized architecture: - Optional extended instruction set designed to optimize re-entrant code • Self-programmable under software control • Priority levels for interrupts • 8 x 8 Single-Cycle Hardware Multiplier • Extended Watchdog Timer (WDT): - Programmable period from 4 ms to 131s • Single-supply 3V In-Circuit Serial Programming™ (ICSP™) via two pins • In-Circuit Debug (ICD) via two pins • Operating voltage range: 1.8V to 3.6V • Programmable 16-level High/Low-Voltage Detection (HLVD) module: - Supports interrupt on High/Low-Voltage Detection • Programmable Brown-out Reset (BOR) - With software enable option Advance Information DS41303B-page 1 PIC18F2XK20/4XK20 Program Memory Data Memory (1) Flash # Single-Word SRAM EEPROM I/O (bytes) Instructions (bytes) (bytes) Device 10-bit A/D (ch)(2) CCP/ ECCP (PWM) MSSP SPI Master I2C™ EUSART - Comp. Timers 8/16-bit PIC18F23K20 8K 4096 512 256 25 11 1/1 Y Y 1 2 1/3 PIC18F24K20 16K 8192 768 256 25 11 1/1 Y Y 1 2 1/3 PIC18F25K20 32K 16384 1536 256 25 11 1/1 Y Y 1 2 1/3 PIC18F26K20 64k 32768 3936 1024 25 11 1/1 Y Y 1 2 1/3 PIC18F43K20 8K 4096 512 256 36 14 1/1 Y Y 1 2 1/3 PIC18F44K20 16K 8192 768 256 36 14 1/1 Y Y 1 2 1/3 PIC18F45K20 32K 16384 1536 256 36 14 1/1 Y Y 1 2 1/3 PIC18F46K20 64k 32768 3936 1024 36 14 1/1 Y Y 1 2 1/3 Note 1: 2: One pin is input only. Channel count includes internal fixed voltage reference channel. DS41303B-page 2 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 Pin Diagrams 28-pin PDIP, SOIC, SSOP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 RA1/AN1/C12IN1RA0/AN0/C12IN0- MCLR/VPP/RE3 RA0/AN0/C12IN0RA1/AN1/C12IN1RA2/AN2/VREF-/CVREF/C2IN+ RA3/AN3/VREF+/C1IN+ RA4/T0CKI/C1OUT RA5/AN4/SS/HLVDIN/C2OUT RE0/RD/AN5 RE1/WR/AN6 RE2/CS/AN7 VDD VSS OSC1/CLKIN/RA7 OSC2/CLKOUT/RA6 RC0/T1OSO/T13CKI RC1/T1OSI/CCP2(1) RC2/CCP1/P1A RC3/SCK/SCL RD0/PSP0 RD1/PSP1 PIC18F43K20 PIC18F44K20 PIC18F45K20 PIC18F46K20 40-pin PDIP 28-pin QFN 28 27 26 25 24 23 22 21 20 19 18 17 16 15 PIC18F23K20 PIC18F24K20 PIC18F25K20 PIC18F26K20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 RB7/KBI3/PGD RB6//KBI2/PGC RB5/KBI1/PGM RB4/KBI0/AN11/P1D RB3/AN9/C12IN3-/CCP2(1) RB2/INT2/AN8/P1B RB1/INT1/AN10/C12IN2-/P1C RB0/INT0/FLT0/AN12 VDD VSS RC7/RX/DT RC6/TX/CK RC5/SDO RC4/SDI/SDA RB7/KBI3/PGD RB6/KBI2/PGC RB5/KBI1/PGM RB4/KBI0/AN11 RB3/AN9/C12IN3-/CCP2(1) RB2/INT2/AN8 RB1/INT1/AN10/C12IN2RB0/INT0/FLT0/AN12 VDD VSS RD7/PSP7/P1D RD6/PSP6/P1C RD5/PSP5/P1B RD4/PSP4 RC7/RX/DT RC6/TX/CK RC5/SDO RC4/SDI/SDA RD3/PSP3 RD2/PSP2 MCLR/VPP/RE3 RB7/KBI3/PGD RB6/KBI2/PGC RB5/KBI1/PGM RB4/KBI0/AN11/P1D MCLR/VPP/RE3 RA0/AN0/C12IN0RA1/AN1/C12IN1RA2/AN2/VREF-/CVREF/C2IN+ RA3/AN3/VREF+/C1IN+ RA4/T0CKI/C1OUT RA5/AN4/SS/HLVDIN/C2OUT VSS OSC1/CLKIN/RA7 OSC2/CLKOUT/RA6 RC0/T1OSO/T13CKI RC1/T1OSI/CCP2(1) RC2/CCP1/P1A RC3/SCK/SCL 28 27 26 25 24 23 22 RA2/AN2/VREF-/CVREF/C2IN+ RA3/AN3/VREF+/C1IN+ RA4/T0CKI/C1OUT RA5/AN4/SS/HLVDIN/C2OUT VSS OSC1/CLKIN/RA7 OSC2/CLKOUT/RA6 1 2 3 4 5 6 7 PIC18F23K20 PIC18F24K20 PIC18F25K20 PIC18F26K20 21 20 19 18 17 16 15 RB3/AN9/C12IN3-/CCP2(1) RB2/INT2/AN8/P1B RB1/INT1/AN10/C12IN2-/P1C RB0/INT0/FLT0/AN12 VDD VSS RC7/RX/DT Note 1: RB3 is the alternate pin for CCP2 multiplexing. © 2007 Microchip Technology Inc. RC0/T1OSO/T13CKI RC1/T1OSI/CCP2(1) RC2/CCP1/P1A RC3/SCK/SCL RC4/SDI/SDA RC5/SDO RC6/TX/CK 8 9 10 11 12 13 14 Advance Information DS41303B-page 3 PIC18F2XK20/4XK20 RC6/TX/CK RC5/SDO RC4/SDI/SDA RD3/PSP3 RD2/PSP2 RD1/PSP1 RD0/PSP0 RC3/SCK/SCL RC2/CCP1/P1A RC1/T1OSI/CCP2(1) NC Pin Diagrams (Cont.’d) 44 43 42 41 40 39 38 37 36 35 34 44-pin TQFP 12 13 14 15 16 17 18 19 20 21 22 PIC18F43K20 PIC18F44K20 PIC18F45K20 PIC18F46K20 NC RC0/T1OSO/T13CKI OSC2/CLKOUT/RA6 OSC1/CLKIN/RA7 VSS VDD RE2/CS/AN7 RE1/WR/AN6 RE0/RD/AN5 RA5/AN4/SS/HLVDIN/C2OUT RA4/T0CKI/C1OUT 33 32 31 30 29 28 27 26 25 24 23 44 43 42 41 40 39 38 37 36 35 34 44-pin QFN 1 2 3 4 5 6 7 8 9 10 11 NC NC RC6/TX/CK RB4/KBI0/AN11 RC5/SDO RB5/KBI1/PGM RC4/SDI/SDA RB6/KBI2/PGC RD3/PSP3 RB7/KBI3/PGD RD2/PSP2 MCLR/VPP/RE3 RD1/PSP1 RA0/AN0/C12IN0RD0/PSP0 RA1/AN1/C12IN1RC3/SCK/SCL RA2/AN2/VREF-/CVREF/C2IN+ RC2/CCP1/P1A RA3/AN3/VREF+/C1IN+ RC1/T1OSI/CCP2(1) RC0/T1OSO/T13CKI RC7/RX/DT RD4/PSP4 RD5/PSP5/P1B RD6/PSP6/P1C RD7/PSP7/P1D VSS VDD RB0/INT0/FLT0/AN12 RB1/INT1/AN10/C12IN2RB2/INT2/AN8 RB3/AN9/C12IN3-/CCP2(1) Note 1: RB3 is the alternate pin for CCP2 multiplexing. DS41303B-page 4 PIC18F43K20 PIC18F44K20 PIC18F45K20 PIC18F46K20 33 32 31 30 29 28 27 26 25 24 23 12 13 14 15 16 17 18 19 20 21 22 1 2 3 4 5 6 7 8 9 10 11 OSC2/CLKOUT/RA6 OSC1/CLKIN/RA7 VSS VSS VDD VDD RE2/CS/AN7 RE1/WR/AN6 RE0/RD/AN5 RA5/AN4/SS/HLVDIN/C2OUT RA4/T0CKI/C1OUT RB3/AN9/C12IN3-/CCP2(1) NC RB4/KBI0/AN11 RB5/KBI1/PGM RB6/KBI2/PGC RB7/KBI3/PGD MCLR/VPP/RE3 RA0/AN0/C12IN0RA1/AN1/C12IN1RA2/AN2/VREF-/CVREF/C2IN+ RA3/AN3/VREF+/C1IN+ RC7/RX/DT RD4/PSP4 RD5/PSP5/P1B RD6/PSP6/P1C RD7/PSP7/P1D VSS VDD VDD RB0/INT0/FLT0/AN12 RB1/INT1/AN10/C12IN2RB2/INT2/AN8 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 21 RA2 AN2 C2IN+ VREF-/ CVREF 5 22 22 RA3 AN3 6 23 23 RA4 C1IN+ VREF+ C1OUT — DIL Pin 7 24 24 RA5 AN4 C2OUT HLVDIN 14 31 33 RA6 — — — 13 30 32 RA7 — 33 8 9 RB0 AN12 — — 34 9 10 RB1 AN10 C12IN2- 35 10 11 RB2 AN8 — 36 11 12 RB3 AN9 C12IN3- 37 14 14 RB4 AN11 38 15 15 RB5 39 16 16 RB6 40 17 17 RB7 15 32 34 RC0 — — — — — — — — — — — — — — — — — — — Basic 21 Pull-up 4 Interrupts — — Slave C12IN1- Timers C12IN0- AN1 MSSP AN0 RA1 EUSART RA0 20 ECCP Reference 19 20 I/O 19 3 QFN Pin 2 TQFP Pin Comparator PIC18F4XK20 PIN SUMMARY Analog TABLE 1: — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — T0CKI — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — T1OSI — FLT0 — — CCP2(1) — — — — — — — SS — — — — — — — — — — T1OSO/ T13CKI — — — — — — — — — — OSC2/ CLKOUT — — OSC1/CLKIN INT0 Yes INT1 Yes INT2 Yes — Yes KBI0 Yes — — — — — KBI1 Yes PGM KBI2 Yes PGC KBI3 Yes PGD — — — — — — — — — — — 16 35 35 RC1 36 36 RC2 — — — — — — CCP2(2) 17 18 37 37 RC3 — — — — — SCK/ SCL — — — — — 23 42 42 RC4 — — — — — SDI/ SDA — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — SDO TX/CK — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — 26 1 1 RC7 19 38 38 RD0 20 39 39 RD1 21 40 40 RD2 22 41 41 RD3 27 2 2 RD4 28 3 3 RD5 29 4 4 RD6 30 5 5 RD7 — — — — — — — — — — — 8 25 25 RE0 AN5 9 26 26 RE1 AN6 10 27 27 RE2 AN7 1 18 18 RE3(3) 11 7 7 32 28 28 12 6 6 31 29 30 – NC 8 – NC 29 –- NC 31 — — — — — — — — — — — — — — — 24 43 43 RC5 25 44 44 RC6 Note 1: 2: 3: CCP1/ P1A P1B P1C P1D — — — — — — — — — — — RX/DT — — — — — — — — — — — — — — — — — — — PSP0 PSP1 PSP2 PSP3 PSP4 PSP5 PSP6 PSP7 RD WR CS — — — — — — — — MCLR/VPP VDD VDD VSS VSS VDD VDD VSS CCP2 multiplexed with RB3 when CONFIG3H<0> = 0 CCP2 multiplexed with RC1 when CONFIG3H<0> = 1 Input only. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 5 PIC18F2XK20/4XK20 Pull-up Interrupts EUSART Reference C12IN0- AN1 C12IN1- 4 1 RA2 AN2 C2IN+ VREF-/ CVREF 5 2 RA3 AN3 C1IN+ VREF+ 6 3 RA4 7 4 RA5 10 7 RA6 OSC2/ CLKOUT 9 6 RA7 OSC1/ CLKIN 21 18 RB0 AN12 22 19 RB1 AN10 23 20 RB2 AN8 24 21 RB3 AN9 25 22 RB4 AN11 26 23 27 C1OUT AN4 C2OUT C12IN2C12IN3- Basic AN0 RA1 Slave RA0 28 Timers 27 3 MSSP 2 ECCP Analog Comparator PIC18F2XK20 PIN SUMMARY I/O Pin QUAD Pin DIL TABLE 2: T0CKI HLVDIN SS FLT0 INT0 P1C INT1 Yes P1B INT2 Yes CCP2(1) Yes Yes P1D KBI0 Yes RB5 KBI1 Yes 24 RB6 KBI2 Yes PGC 28 25 RB7 KBI3 Yes PGD 11 8 RC0 PGM T1OSO/ T13CKI 12 9 RC1 CCP2(2) 13 10 RC2 CCP1/ P1A 14 11 RC3 SCK/ SCL 15 12 RC4 SDI/ SDA T1OSI 16 13 RC5 17 14 RC6 TX/CK SDO 18 15 RC7 RX/DT 1 26 RE3(3) MCLR/ VPP 8 5 VSS 19 16 VSS 20 17 VDD Note 1: 2: 3: CCP2 multiplexed with RB3 when CONFIG3H<0> = 0 CCP2 multiplexed with RC1 when CONFIG3H<0> = 1 Input only DS41303B-page 6 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 Table of Contents 1.0 Device Overview .......................................................................................................................................................................... 9 2.0 Oscillator Module (With Fail-Safe Clock Monitor)....................................................................................................................... 25 3.0 Power-Managed Modes ............................................................................................................................................................. 41 4.0 Reset .......................................................................................................................................................................................... 49 5.0 Memory Organization ................................................................................................................................................................. 63 6.0 Flash Program Memory.............................................................................................................................................................. 87 7.0 Data EEPROM Memory ............................................................................................................................................................. 97 8.0 8 x 8 Hardware Multiplier.......................................................................................................................................................... 101 9.0 Interrupts .................................................................................................................................................................................. 103 10.0 I/O Ports ................................................................................................................................................................................... 117 11.0 Timer0 Module ......................................................................................................................................................................... 137 12.0 Timer1 Module ......................................................................................................................................................................... 141 13.0 Timer2 Module ......................................................................................................................................................................... 147 14.0 Timer3 Module ......................................................................................................................................................................... 149 15.0 Capture/Compare/PWM (CCP) Modules ................................................................................................................................. 153 16.0 Enhanced Capture/Compare/PWM (ECCP) Module................................................................................................................ 165 17.0 Master Synchronous Serial Port (MSSP) Module .................................................................................................................... 185 18.0 Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) ............................................................... 227 19.0 Analog-to-Digital Converter (ADC) Module .............................................................................................................................. 255 20.0 Comparator Module.................................................................................................................................................................. 269 21.0 Voltage References.................................................................................................................................................................. 279 22.0 High/Low-Voltage Detect (HLVD)............................................................................................................................................. 283 23.0 Special Features of the CPU.................................................................................................................................................... 289 24.0 Instruction Set Summary .......................................................................................................................................................... 305 25.0 Development Support............................................................................................................................................................... 355 26.0 Electrical Characteristics .......................................................................................................................................................... 359 27.0 DC and AC Characteristics Graphs and Tables....................................................................................................................... 393 28.0 Packaging Information.............................................................................................................................................................. 395 Appendix A: Revision History............................................................................................................................................................. 403 Appendix B: Device Differences ........................................................................................................................................................ 403 The Microchip Web Site ..................................................................................................................................................................... 415 Customer Change Notification Service .............................................................................................................................................. 415 Customer Support .............................................................................................................................................................................. 415 Reader Response .............................................................................................................................................................................. 416 Product Identification System ............................................................................................................................................................ 417 © 2007 Microchip Technology Inc. Advance Information DS41303B-page 7 PIC18F2XK20/4XK20 TO OUR VALUED CUSTOMERS It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced. If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@mail.microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We welcome your feedback. Most Current Data Sheet To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at: http://www.microchip.com You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000). Errata An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies. To determine if an errata sheet exists for a particular device, please check with one of the following: • Microchip’s Worldwide Web site; http://www.microchip.com • Your local Microchip sales office (see last page) • The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277 When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using. Customer Notification System Register on our web site at www.microchip.com/cn to receive the most current information on all of our products. DS41303B-page 8 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 1.0 DEVICE OVERVIEW 1.1.2 This document contains device specific information for the following devices: • PIC18F23K20 • PIC18F43K20 • PIC18F24K20 • PIC18F44K20 • PIC18F25K20 • PIC18F45K20 • PIC18F26K20 • PIC18F46K20 This family offers the advantages of all PIC18 microcontrollers – namely, high computational performance at an economical price – with the addition of high-endurance, Flash program memory. On top of these features, the PIC18F2XK20/4XK20 family introduces design enhancements that make these microcontrollers a logical choice for many highperformance, power sensitive applications. 1.1 1.1.1 New Core Features nanoWatt TECHNOLOGY All of the devices in the PIC18F2XK20/4XK20 family incorporate a range of features that can significantly reduce power consumption during operation. Key items include: • Alternate Run Modes: By clocking the controller from the Timer1 source or the internal oscillator block, power consumption during code execution can be reduced by as much as 90%. • Multiple Idle Modes: The controller can also run with its CPU core disabled but the peripherals still active. In these states, power consumption can be reduced even further, to as little as 4% of normal operation requirements. • On-the-fly Mode Switching: The powermanaged modes are invoked by user code during operation, allowing the user to incorporate powersaving ideas into their application’s software design. • Low Consumption in Key Modules: The power requirements for both Timer1 and the Watchdog Timer are minimized. See Section 26.0 “Electrical Characteristics” for values. © 2007 Microchip Technology Inc. MULTIPLE OSCILLATOR OPTIONS AND FEATURES All of the devices in the PIC18F2XK20/4XK20 family offer ten different oscillator options, allowing users a wide range of choices in developing application hardware. These include: • Four Crystal modes, using crystals or ceramic resonators • Two External Clock modes, offering the option of using two pins (oscillator input and a divide-by-4 clock output) or one pin (oscillator input, with the second pin reassigned as general I/O) • Two External RC Oscillator modes with the same pin options as the External Clock modes • An internal oscillator block which contains a 16 MHz HFINTOSC oscillator and a 31 kHz LFINTOSC oscillator which together provide 8 user selectable clock frequencies, from 31 kHz to 16 MHz. This option frees the two oscillator pins for use as additional general purpose I/O. • A Phase Lock Loop (PLL) frequency multiplier, available to both the high-speed crystal and internal oscillator modes, which allows clock speeds of up to 64 MHz. Used with the internal oscillator, the PLL gives users a complete selection of clock speeds, from 31 kHz to 64 MHz – all without using an external crystal or clock circuit. Besides its availability as a clock source, the internal oscillator block provides a stable reference source that gives the family additional features for robust operation: • Fail-Safe Clock Monitor: This option constantly monitors the main clock source against a reference signal provided by the LFINTOSC. If a clock failure occurs, the controller is switched to the internal oscillator block, allowing for continued operation or a safe application shutdown. • Two-Speed Start-up: This option allows the internal oscillator to serve as the clock source from Power-on Reset, or wake-up from Sleep mode, until the primary clock source is available. Advance Information DS41303B-page 9 PIC18F2XK20/4XK20 1.2 Other Special Features 1.3 • Memory Endurance: The Flash cells for both program memory and data EEPROM are rated to last for many thousands of erase/write cycles – up to 10K for program memory and 100K for EEPROM. Data retention without refresh is conservatively estimated to be greater than 40 years. • Self-programmability: These devices can write to their own program memory spaces under internal software control. By using a bootloader routine located in the protected Boot Block at the top of program memory, it becomes possible to create an application that can update itself in the field. • Extended Instruction Set: The PIC18F2XK20/ 4XK20 family introduces an optional extension to the PIC18 instruction set, which adds 8 new instructions and an Indexed Addressing mode. This extension, enabled as a device configuration option, has been specifically designed to optimize re-entrant application code originally developed in high-level languages, such as C. • Enhanced CCP module: In PWM mode, this module provides 1, 2 or 4 modulated outputs for controlling half-bridge and full-bridge drivers. Other features include: - Auto-Shutdown, for disabling PWM outputs on interrupt or other select conditions - Auto-Restart, to reactivate outputs once the condition has cleared - Output steering to selectively enable one or more of 4 outputs to provide the PWM signal. • Enhanced Addressable USART: This serial communication module is capable of standard RS-232 operation and provides support for the LIN bus protocol. Other enhancements include automatic baud rate detection and a 16-bit Baud Rate Generator for improved resolution. When the microcontroller is using the internal oscillator block, the USART provides stable operation for applications that talk to the outside world without using an external crystal (or its accompanying power requirement). • 10-bit A/D Converter: This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period and thus, reduce code overhead. • Extended Watchdog Timer (WDT): This enhanced version incorporates a 16-bit postscaler, allowing an extended time-out range that is stable across operating voltage and temperature. See Section 26.0 “Electrical Characteristics” for time-out periods. DS41303B-page 10 Details on Individual Family Members Devices in the PIC18F2XK20/4XK20 family are available in 28-pin and 40/44-pin packages. Block diagrams for the two groups are shown in Figure 1-1 and Figure 1-2. The devices are differentiated from each other in five ways: 1. 2. 3. 4. Flash program memory (8 Kbytes for PIC18F23K20/43K20 devices, 16 Kbytes for PIC18F24K20/44K20 devices, 32 Kbytes for PIC18F25K20/45K20 AND 64 Kbytes for PIC18F26K20/46K20). A/D channels (11 for 28-pin devices, 14 for 40/44-pin devices). I/O ports (3 bidirectional ports on 28-pin devices, 5 bidirectional ports on 40/44-pin devices). Parallel Slave Port (present only on 40/44-pin devices). All other features for devices in this family are identical. These are summarized in Table 1-1. The pinouts for all devices are listed in the pin summary tables: Table 1 and Table 2, and I/O description tables: Table 1-2 and Table 1-3. Advance Information © 2007 Microchip Technology Inc. © 2007 Microchip Technology Inc. 1 1 4 1 1 Timers Capture/Compare/PWM Modules Enhanced Capture/Compare/PWM Modules Advance Information Yes Programmable Brown-out Reset Note 1: Packages 1 internal plus 10 Input Channels No MSSP, Enhanced USART 1 1 4 1 internal plus 10 Input Channels No MSSP, Enhanced USART 1 1 4 A, B, C, (E)(1) 19 1024 3936 32768 65536 DC – 64 MHz PIC18F26K20 1 internal plus 13 Input Channels Yes MSSP, Enhanced USART 1 1 4 A, B, C, D, E 20 256 512 4096 8192 DC – 64 MHz PIC18F43K20 1 internal plus 13 Input Channels Yes MSSP, Enhanced USART 1 1 4 A, B, C, D, E 20 256 768 8192 16384 DC – 64 MHz PIC18F44K20 1 internal plus 13 Input Channels Yes MSSP, Enhanced USART 1 1 4 A, B, C, D, E 20 256 1536 16384 32768 DC – 64 MHz PIC18F45K20 1 internal plus 13 Input Channels Yes MSSP, Enhanced USART 1 1 4 A, B, C, D, E 20 1024 3936 32768 65536 DC – 64 MHz PIC18F46K20 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 28-pin PDIP 28-pin SOIC 28-pin QFN 28-pin SSOP 28-pin PDIP 28-pin SOIC 28-pin QFN 28-pin SSOP 28-pin PDIP 28-pin SOIC 28-pin QFN 28-pin SSOP 40-pin PDIP 44-pin QFN 44-pin TQFP PORTE contains the single RE3 read-only bit. The LATE and TRISE registers are not implemented. 28-pin PDIP 28-pin SOIC 28-pin QFN 28-pin SSOP 40-pin PDIP 44-pin QFN 44-pin TQFP 40-pin PDIP 44-pin QFN 44-pin TQFP 40-pin PDIP 44-pin QFN 44-pin TQFP 75 Instructions; 75 Instructions; 75 Instructions; 75 Instructions; 75 Instructions; 75 Instructions; 75 Instructions; 75 Instructions; 83 with Extended 83 with Extended 83 with Extended 83 with Extended 83 with Extended 83 with Extended 83 with Extended 83 with Extended Instruction Set Instruction Set Instruction Set Instruction Set Instruction Set Instruction Set Instruction Set Instruction Set enabled enabled enabled enabled enabled enabled enabled enabled Yes Programmable High/Low-Voltage Detect Instruction Set 1 internal plus 10 Input Channels No MSSP, Enhanced USART 4 A, B, C, (E)(1) 19 256 1536 16384 32768 DC – 64 MHz PIC18F25K20 POR, BOR, POR, BOR, POR, BOR, POR, BOR, POR, BOR, POR, BOR, POR, BOR, POR, BOR, RESET RESET RESET RESET RESET RESET RESET RESET Instruction, Instruction, Instruction, Instruction, Instruction, Instruction, Instruction, Instruction, Stack Full, Stack Stack Full, Stack Stack Full, Stack Stack Full, Stack Stack Full, Stack Stack Full, Stack Stack Full, Stack Stack Full, Stack Underflow Underflow Underflow Underflow Underflow Underflow Underflow Underflow (PWRT, OST), (PWRT, OST), (PWRT, OST), (PWRT, OST), (PWRT, OST), (PWRT, OST), (PWRT, OST), (PWRT, OST), MCLR (optional), MCLR (optional), MCLR (optional), MCLR (optional), MCLR (optional), MCLR (optional), MCLR (optional), MCLR (optional), WDT WDT WDT WDT WDT WDT WDT WDT 10-bit Analog-to-Digital Module Resets (and Delays) No 1 internal plus 10 Input Channels Parallel Communications (PSP) MSSP, Enhanced USART A, B, C, (E)(1) A, B, C, (E)(1) I/O Ports Serial Communications 19 19 Interrupt Sources 768 256 512 256 8192 Data EEPROM Memory (Bytes) 4096 Program Memory (Instructions) 16384 DC – 64 MHz PIC18F24K20 TABLE 1-1: Data Memory (Bytes) 8192 DC – 64 MHz Operating Frequency Program Memory (Bytes) PIC18F23K20 Features PIC18F2XK20/4XK20 DEVICE FEATURES DS41303B-page 11 PIC18F2XK20/4XK20 FIGURE 1-1: PIC18F2XK20 (28-PIN) BLOCK DIAGRAM Data Bus<8> Table Pointer<21> Data Latch 8 8 inc/dec logic PORTA Data Memory PCLATU PCLATH 21 Address Latch 20 PCU PCH PCL Program Counter 12 Data Address<12> RA0/AN0 RA1/AN1 RA2/AN2/VREF-/CVREF RA3/AN3/VREF+ RA4/T0CKI/C1OUT RA5/AN4/SS/HLVDIN/C2OUT OSC2/CLKOUT(3)/RA6 OSC1/CLKIN(3)/RA7 31-Level Stack 4 BSR Address Latch Program Memory (8/16/32/64 Kbytes) STKPTR 12 FSR0 FSR1 FSR2 Data Latch 4 Access Bank 12 PORTB 8 inc/dec logic Table Latch Address Decode ROM Latch Instruction Bus <16> RB0/INT0/FLT0/AN12 RB1/INT1/AN10 RB2/INT2/AN8 RB3/AN9/CCP2(1) RB4/KBI0/AN11 RB5/KBI1/PGM RB6/KBI2/PGC RB7/KBI3/PGD IR 8 Instruction Decode and Control State machine control signals PRODH PRODL PORTC 8 W BITOP 8 Internal Oscillator Block OSC1(3) OSC2 (3) T1OSI LFINTOSC Oscillator T1OSO 16 MHz Oscillator Single-Supply Programming In-Circuit Debugger MCLR(2) VDD, VSS BOR HLVD FVR CVREF Comparator Note Power-up Timer 8 8 8 8 Oscillator Start-up Timer Power-on Reset RC0/T1OSO/T13CKI RC1/T1OSI/CCP2(1) RC2/CCP1 RC3/SCK/SCL RC4/SDI/SDA RC5/SDO RC6/TX/CK RC7/RX/DT 8 x 8 Multiply 3 ALU<8> 8 Watchdog Timer Brown-out Reset Fail-Safe Clock Monitor Precision Band Gap Reference FVR PORTE MCLR/VPP/RE3(2) Data EEPROM Timer0 Timer1 Timer2 Timer3 ECCP1 CCP2 MSSP EUSART ADC 10-bit FVR 1: CCP2 is multiplexed with RC1 when Configuration bit CCP2MX is set, or RB3 when CCP2MX is not set. 2: RE3 is only available when MCLR functionality is disabled. 3: OSC1/CLKIN and OSC2/CLKOUT are only available in select oscillator modes and when these pins are not being used as digital I/O. Refer to Section 2.0 “Oscillator Module (With Fail-Safe Clock Monitor)” for additional information. DS41303B-page 12 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 FIGURE 1-2: PIC18F4XK20 (40/44-PIN) BLOCK DIAGRAM Data Bus<8> PORTA Table Pointer<21> RA0/AN0 RA1/AN1 RA2/AN2/VREF-/CVREF RA3/AN3/VREF+ RA4/T0CKI/C1OUT RA5/AN4/SS/HLVDIN/C2OUT OSC2/CLKOUT(3)/RA6 OSC1/CLKIN(3)/RA7 Data Latch 8 8 inc/dec logic Data Memory PCLATU PCLATH 21 Address Latch 20 PCU PCH PCL Program Counter 12 Data Address<12> PORTB 31-Level Stack 4 BSR Address Latch Program Memory (8/16/32/64 Kbytes) STKPTR FSR0 FSR1 FSR2 Data Latch 8 RB0/INT0/FLT0/AN12 RB1/INT1/AN10 RB2/INT2/AN8 RB3/AN9/CCP2(1) RB4/KBI0/AN11 RB5/KBI1/PGM RB6/KBI2/PGC RB7/KBI3/PGD 4 Access Bank 12 12 inc/dec logic Table Latch PORTC Address Decode ROM Latch Instruction Bus <16> RC0/T1OSO/T13CKI RC1/T1OSI/CCP2(1) RC2/CCP1/P1A RC3/SCK/SCL RC4/SDI/SDA RC5/SDO RC6/TX/CK RC7/RX/DT IR 8 Instruction Decode and Control State machine control signals PRODH PRODL PORTD 8 x 8 Multiply 3 W BITOP 8 Internal Oscillator Block OSC1(3) OSC2 (3) T1OSI LFINTOSC Oscillator T1OSO 16 MHz Oscillator Single-Supply Programming In-Circuit Debugger MCLR(2) VDD, VSS BOR HLVD Power-up Timer 8 Note 8 8 8 Oscillator Start-up Timer Power-on Reset ALU<8> 8 Watchdog Timer PORTE Brown-out Reset Fail-Safe Clock Monitor Precision Band Gap Reference RE0/RD/AN5 RE1/WR/AN6 RE2/CS/AN7 MCLR/VPP/RE3(2) FVR Data EEPROM Timer0 Timer1 Timer2 Timer3 ECCP1 CCP2 MSSP EUSART ADC 10-bit FVR CVREF Comparator RD0/PSP0 RD1/PSP1 RD2/PSP2 RD3/PSP3 RD4/PSP4 RD5/PSP5/P1B RD6/PSP6/P1C RD7/PSP7/P1D 8 FVR PSP 1: CCP2 is multiplexed with RC1 when Configuration bit CCP2MX is set, or RB3 when CCP2MX is not set. 2: RE3 is only available when MCLR functionality is disabled. 3: OSC1/CLKIN and OSC2/CLKOUT are only available in select oscillator modes and when these pins are not being used as digital I/O. Refer to Section 2.0 “Oscillator Module (With Fail-Safe Clock Monitor)” for additional information. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 13 PIC18F2XK20/4XK20 TABLE 1-2: PIC18F2XK20 PINOUT I/O DESCRIPTIONS Pin Number Pin Name Pin Buffer PDIP, QFN Type Type SOIC MCLR/VPP/RE3 MCLR VPP RE3 1 OSC1/CLKIN/RA7 OSC1 9 26 I P I 6 ST ST ST O — CLKOUT O — RA6 I/O TTL RA7 OSC2/CLKOUT/RA6 OSC2 10 Master Clear (input) or programming voltage (input) Active-low Master Clear (device Reset) input Programming voltage input Digital input Oscillator crystal or external clock input Oscillator crystal input or external clock source input ST buffer when configured in RC mode; CMOS otherwise I CMOS External clock source input. Always associated with pin function OSC1. (See related OSC1/CLKIN, OSC2/CLKOUT pins) I/O TTL General purpose I/O pin I CLKIN Description 7 Oscillator crystal or clock output Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate General purpose I/O pin Legend: TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels O = Output CMOS = CMOS compatible input or output I = Input P = Power Note 1: Default assignment for CCP2 when Configuration bit CCP2MX is set. 2: Alternate assignment for CCP2 when Configuration bit CCP2MX is cleared. DS41303B-page 14 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 TABLE 1-2: PIC18F2XK20 PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Name Pin Number Pin Buffer PDIP, QFN Type Type SOIC Description PORTA is a bidirectional I/O port. RA0/AN0/C12IN0RA0 AN0 C12IN0- 2 RA1/AN1/C12IN1RA1 AN1 C12IN1- 3 RA2/AN2/VREF-/CVREF/ C2IN+ RA2 AN2 VREFCVREF C2IN+ 4 RA3/AN3/VREF+/C1IN+ RA3 AN3 VREF+ C1IN+ 5 RA4/T0CKI/C1OUT RA4 T0CKI C1OUT 6 RA5/AN4/SS/HLVDIN/ C2OUT RA5 AN4 SS HLVDIN C2OUT 7 27 I/O TTL I Analog I Analog Digital I/O Analog input 0, ADC channel 0 Comparators C1 and C2 inverting input I/O TTL I Analog I Analog Digital I/O ADC input 1, ADC channel 1 Comparators C1 and C2 inverting input I/O I I O I Digital I/O Analog input 2, ADC channel 2 A/D reference voltage (low) input Comparator reference voltage output Comparator C2 non-inverting input 28 1 TTL Analog Analog Analog Analog 2 I/O TTL I Analog I Analog I Analog Digital I/O Analog input 3, ADC channel 3 A/D reference voltage (high) input Comparator C1 non-inverting input I/O ST I ST O CMOS Digital I/O Timer0 external clock input Comparator C1 output I/O TTL I Analog I TTL I Analog O CMOS Digital I/O Analog input 4, ADC channel 4 SPI slave select input High/Low-Voltage Detect input Comparator C2 output 3 4 RA6 See the OSC2/CLKOUT/RA6 pin RA7 See the OSC1/CLKIN/RA7 pin Legend: TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels O = Output CMOS = CMOS compatible input or output I = Input P = Power Note 1: Default assignment for CCP2 when Configuration bit CCP2MX is set. 2: Alternate assignment for CCP2 when Configuration bit CCP2MX is cleared. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 15 PIC18F2XK20/4XK20 TABLE 1-2: PIC18F2XK20 PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Name Pin Number Pin Buffer PDIP, QFN Type Type SOIC Description PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-up on each input. RB0/INT0/FLT0/AN12 RB0 INT0 FLT0 AN12 21 RB1/INT1/AN10/C12IN2/P1C RB1 INT1 AN10 C12IN2P1C 22 RB2/INT2/AN8/P1B RB2 INT2 AN8 P1B 23 RB3/AN9/C12IN3-/CCP2 RB3 AN9 C12IN3CCP2(2) 24 RB4/KBI0/AN11/P1D RB4 KBI0 AN11 P1D 25 RB5/KBI1/PGM RB5 KBI1 PGM 26 RB6/KBI2/PGC RB6 KBI2 PGC 27 RB7/KBI3/PGD RB7 KBI3 PGD 28 18 I/O TTL I ST I ST I Analog Digital I/O External interrupt 0 PWM Fault input for CCP1 Analog input 12, ADC channel 12 I/O TTL I ST I Analog I Analog O CMOS Digital I/O External interrupt 1 Analog input 10, ADC channel 10 Comparators C1 and C2 inverting input Enhanced CCP1 PWM output I/O TTL I ST I Analog O CMOS Digital I/O External interrupt 2 Analog input 8, ADC channel 8 Enhanced CCP1 PWM output I/O TTL I Analog I Analog I/O ST Digital I/O Analog input 9, ADC channel 9 Comparators C1 and C2 inverting input Capture 2 input/Compare 2 output/PWM 2 output I/O TTL I TTL I Analog O CMOS Digital I/O Interrupt-on-change pin Analog input 11, ADC channel 11 Enhanced CCP1 PWM output I/O I I/O TTL TTL ST Digital I/O Interrupt-on-change pin Low-Voltage ICSP™ Programming enable pin I/O I I/O TTL TTL ST Digital I/O Interrupt-on-change pin In-Circuit Debugger and ICSP™ programming clock pin I/O I I/O TTL TTL ST Digital I/O Interrupt-on-change pin In-Circuit Debugger and ICSP™ programming data pin 19 20 21 22 23 24 25 Legend: TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels O = Output CMOS = CMOS compatible input or output I = Input P = Power Note 1: Default assignment for CCP2 when Configuration bit CCP2MX is set. 2: Alternate assignment for CCP2 when Configuration bit CCP2MX is cleared. DS41303B-page 16 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 TABLE 1-2: PIC18F2XK20 PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Name Pin Number Pin Buffer PDIP, QFN Type Type SOIC Description PORTC is a bidirectional I/O port. RC0/T1OSO/T13CKI RC0 T1OSO T13CKI 11 RC1/T1OSI/CCP2 RC1 T1OSI CCP2(1) 12 RC2/CCP1/P1A RC2 CCP1 P1A 13 RC3/SCK/SCL RC3 SCK SCL 14 RC4/SDI/SDA RC4 SDI SDA 15 RC5/SDO RC5 SDO 16 RC6/TX/CK RC6 TX CK 17 RC7/RX/DT RC7 RX DT 18 RE3 VSS VDD 8 I/O O I — Digital I/O Timer1 oscillator output Timer1/Timer3 external clock input 9 I/O ST I Analog I/O ST Digital I/O Timer1 oscillator input Capture 2 input/Compare 2 output/PWM 2 output I/O ST I/O ST O CMOS Digital I/O Capture 1 input/Compare 1 output Enhanced CCP1 PWM output 10 11 I/O I/O I/O ST ST ST Digital I/O Synchronous serial clock input/output for SPI mode Synchronous serial clock input/output for I2C™ mode I/O I I/O ST ST ST Digital I/O SPI data in I2C™ data I/O I/O O ST — Digital I/O SPI data out I/O O I/O ST — ST Digital I/O EUSART asynchronous transmit EUSART synchronous clock (see related RX/DT) I/O I I/O ST ST ST Digital I/O EUSART asynchronous receive EUSART synchronous data (see related TX/CK) — — See MCLR/VPP/RE3 pin P — Ground reference for logic and I/O pins P — Positive supply for logic and I/O pins 12 13 14 15 — 8, 19 5, 16 20 ST — ST 17 Legend: TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels O = Output CMOS = CMOS compatible input or output I = Input P = Power Note 1: Default assignment for CCP2 when Configuration bit CCP2MX is set. 2: Alternate assignment for CCP2 when Configuration bit CCP2MX is cleared. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 17 PIC18F2XK20/4XK20 TABLE 1-3: PIC18F4XK20 PINOUT I/O DESCRIPTIONS Pin Name Pin Number PDIP MCLR/VPP/RE3 MCLR VPP RE3 1 OSC1/CLKIN/RA7 OSC1 13 Pin Buffer QFN TQFP Type Type 18 18 I P I 32 30 I CLKIN I RA7 OSC2/CLKOUT/RA6 OSC2 I/O 14 33 ST ST Description Master Clear (input) or programming voltage (input) Active-low Master Clear (device Reset) input Programming voltage input Digital input Oscillator crystal or external clock input Oscillator crystal input or external clock source input ST buffer when configured in RC mode; analog otherwise CMOS External clock source input. Always associated with pin function OSC1 (See related OSC1/CLKIN, OSC2/CLKOUT pins) TTL General purpose I/O pin ST 31 O — CLKOUT O — RA6 I/O TTL Legend: TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels O = Output Oscillator crystal or clock output Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate General purpose I/O pin CMOS = CMOS compatible input or output I = Input P = Power Note 1: Default assignment for CCP2 when Configuration bit CCP2MX is set. 2: Alternate assignment for CCP2 when Configuration bit CCP2MX is cleared. DS41303B-page 18 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 TABLE 1-3: PIC18F4XK20 PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Name Pin Number PDIP Pin Buffer QFN TQFP Type Type Description PORTA is a bidirectional I/O port. RA0/AN0/C12IN0RA0 AN0 C12IN0- 2 RA1/AN1/C12IN0RA1 AN1 C12IN0- 3 RA2/AN2/VREF-/CVREF/ C2IN+ RA2 AN2 VREFCVREF C2IN+ 4 RA3/AN3/VREF+/ C1IN+ RA3 AN3 VREF+ C1IN+ 5 RA4/T0CKI/C1OUT RA4 T0CKI C1OUT 6 RA5/AN4/SS/HLVDIN/ C2OUT RA5 AN4 SS HLVDIN C2OUT 7 19 20 21 22 23 24 19 I/O I I TTL Analog Analog Digital I/O Analog input 0, ADC channel 0 Comparator C1 and C2 inverting input I/O I I TTL Analog Analog Digital I/O Analog input 1, ADC channel 1 Comparator C1 and C2 inverting input I/O I I O I TTL Analog Analog Analog Analog Digital I/O Analog input 2, ADC channel 2 A/D reference voltage (low) input Comparator reference voltage output Comparator C2 non-inverting input I/O I I I TTL Analog Analog Analog Digital I/O Analog input 3, ADC channel 3 A/D reference voltage (high) input Comparator C1 non-inverting input I/O I O ST ST CMOS Digital I/O Timer0 external clock input Comparator C1 output I/O I I I O TTL Analog TTL Analog CMOS Digital I/O Analog input 4, ADC channel 4 SPI slave select input High/Low-Voltage Detect input Comparator C2 output 20 21 22 23 24 RA6 See the OSC2/CLKOUT/RA6 pin RA7 See the OSC1/CLKIN/RA7 pin Legend: TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels O = Output CMOS = CMOS compatible input or output I = Input P = Power Note 1: Default assignment for CCP2 when Configuration bit CCP2MX is set. 2: Alternate assignment for CCP2 when Configuration bit CCP2MX is cleared. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 19 PIC18F2XK20/4XK20 TABLE 1-3: PIC18F4XK20 PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Name Pin Number PDIP Pin Buffer QFN TQFP Type Type Description PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-up on each input. RB0/INT0/FLT0/AN12 RB0 INT0 FLT0 AN12 33 RB1/INT1/AN10/ C12IN2RB1 INT1 AN10 C12IN2- 34 RB2/INT2/AN8 RB2 INT2 AN8 35 RB3/AN9/C12IN3-/ CCP2 RB3 AN9 C12IN3CCP2(2) 36 RB4/KBI0/AN11 RB4 KBI0 AN11 37 RB5/KBI1/PGM RB5 KBI1 PGM 38 RB6/KBI2/PGC RB6 KBI2 PGC 39 RB7/KBI3/PGD RB7 KBI3 PGD 40 9 10 11 12 14 15 16 17 8 I/O I I I TTL ST ST Analog Digital I/O External interrupt 0 PWM Fault input for Enhanced CCP1 Analog input 12, ADC channel 12 I/O I I I TTL ST Analog Analog Digital I/O External interrupt 1 Analog input 10, ADC channel 10 Comparator C1 and C2 inverting input I/O I I TTL ST Analog Digital I/O External interrupt 2 Analog input 8, ADC channel 8 I/O I I I/O TTL Analog Analog ST Digital I/O Analog input 9, ADC channel 9 Comparator C1 and C2 inverting input Capture 2 input/Compare 2 output/PWM 2 output I/O I I TTL TTL Analog Digital I/O Interrupt-on-change pin Analog input 11, ADC channel 11 I/O I I/O TTL TTL ST Digital I/O Interrupt-on-change pin Low-Voltage ICSP™ Programming enable pin I/O I I/O TTL TTL ST Digital I/O Interrupt-on-change pin In-Circuit Debugger and ICSP™ programming clock pin I/O I I/O TTL TTL ST Digital I/O Interrupt-on-change pin In-Circuit Debugger and ICSP™ programming data pin 9 10 11 14 15 16 17 Legend: TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels O = Output CMOS = CMOS compatible input or output I = Input P = Power Note 1: Default assignment for CCP2 when Configuration bit CCP2MX is set. 2: Alternate assignment for CCP2 when Configuration bit CCP2MX is cleared. DS41303B-page 20 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 TABLE 1-3: PIC18F4XK20 PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Name Pin Number PDIP Pin Buffer QFN TQFP Type Type Description PORTC is a bidirectional I/O port. RC0/T1OSO/T13CKI RC0 T1OSO T13CKI 15 RC1/T1OSI/CCP2 RC1 T1OSI CCP2(1) 16 RC2/CCP1/P1A RC2 CCP1 P1A 17 RC3/SCK/SCL RC3 SCK 18 34 35 36 37 32 23 RC5/SDO RC5 SDO 24 RC6/TX/CK RC6 TX CK 25 RC7/RX/DT RC7 RX DT 26 42 43 44 1 ST — ST I/O I I/O ST CMOS ST Digital I/O Timer1 oscillator input Capture 2 input/Compare 2 output/PWM 2 output I/O I/O O ST ST — Digital I/O Capture 1 input/Compare 1 output/PWM 1 output Enhanced CCP1 output I/O I/O ST ST I/O ST Digital I/O Synchronous serial clock input/output for SPI mode Synchronous serial clock input/output for I2C™ mode I/O I I/O ST ST ST Digital I/O SPI data in I2C™ data I/O I/O O ST — Digital I/O SPI data out I/O O I/O ST — ST Digital I/O EUSART asynchronous transmit EUSART synchronous clock (see related RX/DT) I/O I I/O ST ST ST Digital I/O EUSART asynchronous receive EUSART synchronous data (see related TX/CK) Digital I/O Timer1 oscillator output Timer1/Timer3 external clock input 35 36 37 SCL RC4/SDI/SDA RC4 SDI SDA I/O O I 42 43 44 1 Legend: TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels O = Output CMOS = CMOS compatible input or output I = Input P = Power Note 1: Default assignment for CCP2 when Configuration bit CCP2MX is set. 2: Alternate assignment for CCP2 when Configuration bit CCP2MX is cleared. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 21 PIC18F2XK20/4XK20 TABLE 1-3: Pin Name PIC18F4XK20 PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Number PDIP Pin Buffer QFN TQFP Type Type Description PORTD is a bidirectional I/O port or a Parallel Slave Port (PSP) for interfacing to a microprocessor port. These pins have TTL input buffers when PSP module is enabled. RD0/PSP0 RD0 PSP0 19 RD1/PSP1 RD1 PSP1 20 RD2/PSP2 RD2 PSP2 21 RD3/PSP3 RD3 PSP3 22 RD4/PSP4 RD4 PSP4 27 RD5/PSP5/P1B RD5 PSP5 P1B 28 RD6/PSP6/P1C RD6 PSP6 P1C 29 RD7/PSP7/P1D RD7 PSP7 P1D 30 38 39 40 41 2 3 4 5 38 I/O I/O ST TTL Digital I/O Parallel Slave Port data I/O I/O ST TTL Digital I/O Parallel Slave Port data I/O I/O ST TTL Digital I/O Parallel Slave Port data I/O I/O ST TTL Digital I/O Parallel Slave Port data I/O I/O ST TTL Digital I/O Parallel Slave Port data I/O I/O O ST TTL — Digital I/O Parallel Slave Port data Enhanced CCP1 output I/O I/O O ST TTL — Digital I/O Parallel Slave Port data Enhanced CCP1 output I/O I/O O ST TTL — Digital I/O Parallel Slave Port data Enhanced CCP1 output 39 40 41 2 3 4 5 Legend: TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels O = Output CMOS = CMOS compatible input or output I = Input P = Power Note 1: Default assignment for CCP2 when Configuration bit CCP2MX is set. 2: Alternate assignment for CCP2 when Configuration bit CCP2MX is cleared. DS41303B-page 22 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 TABLE 1-3: Pin Name PIC18F4XK20 PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Number PDIP Pin Buffer QFN TQFP Type Type Description PORTE is a bidirectional I/O port RE0/RD/AN5 RE0 RD 8 25 25 AN5 RE1/WR/AN6 RE1 WR 9 26 10 27 — I Analog I/O I ST TTL I Analog I/O I ST TTL Digital I/O Read control for Parallel Slave Port (see related WR and CS pins) Analog input 5, ADC channel 5 Digital I/O Write control for Parallel Slave Port (see related CS and RD pins) Analog input 6, ADC channel 6 27 AN7 RE3 ST TTL 26 AN6 RE2/CS/AN7 RE2 CS I/O I Digital I/O Chip Select control for Parallel Slave Port (see related RD and WR) Analog input 7, ADC channel 7 I Analog — — — See MCLR/VPP/RE3 pin 6, 29 P — Ground reference for logic and I/O pins 7, 8, 7, 28 28, 29 P — Positive supply for logic and I/O pins — — No connect — VSS 12, 31 6, 30, 31 VDD 11, 32 NC — 13 12, 13, 33, 34 Legend: TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels O = Output CMOS = CMOS compatible input or output I = Input P = Power Note 1: Default assignment for CCP2 when Configuration bit CCP2MX is set. 2: Alternate assignment for CCP2 when Configuration bit CCP2MX is cleared. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 23 PIC18F2XK20/4XK20 NOTES: DS41303B-page 24 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 2.0 OSCILLATOR MODULE (WITH FAIL-SAFE CLOCK MONITOR) 2.1 Overview The Oscillator module can be configured in one of ten primary clock modes. 1. 2. 3. 4. Low-Power Crystal Crystal/Resonator High-Speed Crystal/Resonator High-Speed Crystal/Resonator with PLL enabled 5. RC External Resistor/Capacitor with FOSC/4 output on RA6 6. RCIO External Resistor/Capacitor with I/O on RA6 7. INTOSC Internal Oscillator with FOSC/4 output on RA6 and I/O on RA7 8. INTOSCIO Internal Oscillator with I/O on RA6 and RA7 9. EC External Clock with FOSC/4 output 10. ECIO External Clock with I/O on RA6 The Oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 2-1 illustrates a block diagram of the Oscillator module. Clock sources can be configured from external oscillators, quartz crystal resonators, ceramic resonators and Resistor-Capacitor (RC) circuits. In addition, the system clock source can be configured from one of two internal oscillators, with a choice of speeds selectable via software. Additional clock features include: • Selectable system clock source between external or internal via software. • Two-Speed Start-up mode, which minimizes latency between external oscillator start-up and code execution. • Fail-Safe Clock Monitor (FSCM) designed to detect a failure of the external clock source (LP, XT, HS, EC or RC modes) and switch automatically to the internal oscillator. LP XT HS HSPLL Primary Clock modes are selected by the FOSC<3:0> bits of the CONFIG1H Configuration Register. The HFINTOSC and LFINTOSC are factory calibrated highfrequency and low-frequency oscillators, respectively, which are used as the internal clock sources. PIC® MCU CLOCK SOURCE BLOCK DIAGRAM FIGURE 2-1: PIC18F2XK20/4XK20 Primary Oscillator LP, XT, HS, RC, EC OSC2 IDLEN Sleep 4 x PLL OSC1 HSPLL, HFINTOSC/PLL Sleep Secondary Oscillator T1OSC T1OSO T1OSCEN Enable Oscillator OSCCON<6:4> 16 MHz FOSC<3:0> OSCCON<1:0> 31 kHz Source Main 16 MHz (HFINTOSC) 31 kHz (LFINTOSC) 2 MHz 1 MHz 500 kHz 250 kHz Peripherals Internal Oscillator CPU 111 Sleep 110 4 MHz Postscaler Internal Oscillator Block 16 MHz Source 8 MHz 101 100 011 MUX T1OSI MUX OSCTUNE<6>(1) 010 001 1 31 kHz 000 0 Clock Control FOSC<3:0> OSCCON<1:0> Clock Source Option for other Modules OSCTUNE<7> WDT, PWRT, FSCM and Two-Speed Start-up Note 1: Operates only when HFINTOSC is the primary oscillator. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 25 PIC18F2XK20/4XK20 2.2 2.2.4 Oscillator Control The OSCCON register (Register 2-1) controls several aspects of the device clock’s operation, both in full power operation and in power-managed modes. • • • • Main System Clock Selection (SCS) Internal Frequency selection bits (IRCF) Clock Status bits (OSTS, IOFS) Power management selection (IDLEN) 2.2.1 MAIN SYSTEM CLOCK SELECTION The System Clock Select bits, SCS<1:0>, select the main clock source. The available clock sources are • Primary clock defined by the FOSC<3:0> bits of CONFIG1H. The primary clock can be the primary oscillator, an external clock, or the internal oscillator block. • Secondary clock (Timer1 oscillator) • Internal oscillator block (HFINTOSC and LFINTOSC). The clock source changes immediately after one or more of the bits is written to, following a brief clock transition interval. The SCS bits are cleared to select the primary clock on all forms of Reset. 2.2.2 INTERNAL FREQUENCY SELECTION The Internal Oscillator Frequency Select bits (IRCF<2:0>) select the frequency output of the internal oscillator block. The choices are the LFINTOSC source (31 kHz), the HFINTOSC source (16 MHz) or one of the frequencies derived from the HFINTOSC postscaler (31.25 kHz to 8 MHz). If the internal oscillator block is supplying the main clock, changing the states of these bits will have an immediate change on the internal oscillator’s output. On device Resets, the output frequency of the internal oscillator is set to the default frequency of 1 MHz. 2.2.3 CLOCK STATUS The OSTS and IOFS bits of the OSCCON register, and the T1RUN bit of the T1CON register, indicate which clock source is currently providing the main clock. The OSTS bit indicates that the Oscillator Start-up Timer has timed out and the primary clock is providing the device clock. The IOFS bit indicates when the internal oscillator block has stabilized and is providing the device clock in HFINTOSC Clock modes. The IOFS and OSTS Status bits will both be set when SCS<1:0> = 00 and HFINTOSC is the primary clock. The T1RUN bit indicates when the Timer1 oscillator is providing the device clock in secondary clock modes. When SCS<1:0> ≠ 00, only one of these three bits will be set at any time. If none of these bits are set, the LFINTOSC is providing the clock or the HFINTOSC has just started and is not yet stable. 2.2.5 POWER MANAGEMENT The IDLEN bit of the OSCCON register determines if the device goes into Sleep mode or one of the Idle modes when the SLEEP instruction is executed. The use of the flag and control bits in the OSCCON register is discussed in more detail in Section 3.0 “Power-Managed Modes”. Note 1: The Timer1 oscillator must be enabled to select the secondary clock source. The Timer1 oscillator is enabled by setting the T1OSCEN bit of the T1CON register. If the Timer1 oscillator is not enabled, then the main oscillator will continue to run from the previously selected source. The source will then switch to the secondary oscillator after the T1OSCEN bit is set. 2: It is recommended that the Timer1 oscillator be operating and stable before selecting the secondary clock source or a very long delay may occur while the Timer1 oscillator starts. LOW FREQUENCY SELECTION When a nominal output frequency of 31 kHz is selected (IRCF<2:0> = 000), users may choose which internal oscillator acts as the source. This is done with the INTSRC bit of the OSCTUNE register. Setting this bit selects the HFINTOSC as a 31.25 kHz clock source by enabling the divide-by-512 output of the HFINTOSC postscaler. Clearing INTSRC selects LFINTOSC (nominally 31 kHz) as the clock source. 2.2.6 This option allows users to select the tunable and more precise HFINTOSC as a clock source, while maintaining power savings with a very low clock speed. Regardless of the setting of INTSRC, LFINTOSC always remains the clock source for features such as the Watchdog Timer and the Fail-Safe Clock Monitor. Clock transitions are discussed in greater detail in Section 3.1.2 “Entering Power-Managed Modes”. DS41303B-page 26 OSCILLATOR TRANSITIONS PIC18F2XK20/4XK20 devices contain circuitry to prevent clock “glitches” when switching between clock sources. A short pause in the device clock occurs during the clock switch. The length of this pause is the sum of two cycles of the old clock source and three to four cycles of the new clock source. This formula assumes that the new clock source is stable. Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 REGISTER 2-1: R/W-0 OSCCON: OSCILLATOR CONTROL REGISTER R/W-0 IDLEN IRCF2 R/W-1 IRCF1 R/W-1 IRCF0 R-q (1) OSTS R-0 R/W-0 R/W-0 IOFS SCS1 SCS0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ q = depends on condition -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 IDLEN: Idle Enable bit 1 = Device enters Idle mode on SLEEP instruction 0 = Device enters Sleep mode on SLEEP instruction bit 6-4 IRCF<2:0>: Internal Oscillator Frequency Select bits 111 = 16 MHz (HFINTOSC drives clock directly) 110 = 8 MHz 101 = 4 MHz 100 = 2 MHz 011 = 1 MHz(3) 010 = 500 kHz 001 = 250 kHz 000 = 31 kHz (from either HFINTOSC/512 or LFINTOSC directly)(2) bit 3 OSTS: Oscillator Start-up Time-out Status bit(1) 1 = Device is running from the clock defined by FOSC<2:0> of the CONFIG1 register 0 = Device is running from the internal oscillator (HFINTOSC or LFINTOSC) bit 2 IOFS: HFINTOSC Frequency Stable bit 1 = HFINTOSC frequency is stable 0 = HFINTOSC frequency is not stable bit 1-0 SCS<1:0>: System Clock Select bits 1x = Internal oscillator block 01 = Secondary (Timer1) oscillator 00 = Primary clock (determined by CONFIG1H[FOSC<3:0>]). Note 1: 2: 3: Reset state depends on state of the IESO Configuration bit. Source selected by the INTSRC bit of the OSCTUNE register, see text. Default output frequency of HFINTOSC on Reset. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 27 PIC18F2XK20/4XK20 2.3 Clock Source Modes Clock Source modes can be classified as external or internal. External Clock Modes 2.4.1 OSCILLATOR START-UP TIMER (OST) When the Oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations from OSC1. This occurs following a Power-on Reset (POR) and when the Power-up Timer (PWRT) has expired (if configured), or a wake-up from Sleep. During this time, the program counter does not increment and program execution is suspended. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the Oscillator module. When switching between clock sources, a delay is required to allow the new clock to stabilize. These oscillator delays are shown in Table 2-1. • External Clock modes rely on external circuitry for the clock source. Examples are: Clock modules (EC mode), quartz crystal resonators or ceramic resonators (LP, XT and HS modes) and ResistorCapacitor (RC mode) circuits. • Internal clock sources are contained internally within the Oscillator block. The Oscillator block has two internal oscillators: the 16 MHz HighFrequency Internal Oscillator (HFINTOSC) and the 31 kHz Low-Frequency Internal Oscillator (LFINTOSC). The system clock can be selected between external or internal clock sources via the System Clock Select (SCS<1:0>) bits of the OSCCON register. See Section 2.9 “Clock Switching” for additional information. TABLE 2-1: 2.4 In order to minimize latency between external oscillator start-up and code execution, the Two-Speed Clock Start-up mode can be selected (see Section 2.10 “Two-Speed Clock Start-up Mode”). OSCILLATOR DELAY EXAMPLES Switch From Switch To Frequency Sleep/POR LFINTOSC HFINTOSC 31 kHz 250 kHz to 16 MHz Oscillator Delay Oscillator Warm-Up Delay (TWARM) Sleep/POR EC, RC DC – 64 MHz 2 instruction cycles LFINTOSC (31 kHz) EC, RC DC – 64 MHz 1 cycle of each Sleep/POR LP, XT, HS 32 kHz to 40 MHz 1024 Clock Cycles (OST) Sleep/POR HSPLL 32 MHz to 64 MHz 1024 Clock Cycles (OST) + 2 ms LFINTOSC (31 kHz) HFINTOSC 250 kHz to 16 MHz 1 μs (approx.) 2.4.2 EC MODE FIGURE 2-2: The External Clock (EC) mode allows an externally generated logic level as the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input and the OSC2 is available for general purpose I/O. Figure 2-2 shows the pin connections for EC mode. The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC® MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed. DS41303B-page 28 EXTERNAL CLOCK (EC) MODE OPERATION OSC1/CLKIN Clock from Ext. System PIC® MCU I/O Note 1: Advance Information OSC2/CLKOUT(1) Alternate pin functions are listed in Section 1.0 “Device Overview”. © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 2.4.3 LP, XT, HS MODES The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 2-3). The mode selects a low, medium or high gain setting of the internal inverteramplifier to support various resonator types and speed. LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is best suited to drive resonators with a low drive level specification, for example, tuning fork type crystals. Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application. 2: Always verify oscillator performance over the VDD and temperature range that is expected for the application. 3: For oscillator design assistance, reference the following Microchip Applications Notes: • AN826, “Crystal Oscillator Basics and Crystal Selection for rfPIC® and PIC® Devices” (DS00826) • AN849, “Basic PIC® Oscillator Design” (DS00849) • AN943, “Practical PIC® Oscillator Analysis and Design” (DS00943) • AN949, “Making Your Oscillator Work” (DS00949) XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification. HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting. Figure 2-3 and Figure 2-4 show typical circuits for quartz crystal and ceramic resonators, respectively. FIGURE 2-3: FIGURE 2-4: CERAMIC RESONATOR OPERATION (XT OR HS MODE) QUARTZ CRYSTAL OPERATION (LP, XT OR HS MODE) PIC® MCU OSC1/CLKIN PIC® MCU C1 To Internal Logic OSC1/CLKIN C1 Quartz Crystal C2 RP(3) To Internal Logic RS(1) RF(2) RF(2) Sleep Sleep C2 Ceramic RS(1) Resonator OSC2/CLKOUT OSC2/CLKOUT Note 1: A series resistor (RS) may be required for ceramic resonators with low drive level. Note 1: A series resistor (RS) may be required for quartz crystals with low drive level. 2: The value of RF varies with the Oscillator mode selected (typically between 2 MΩ to 10 MΩ). 2: The value of RF varies with the Oscillator mode selected (typically between 2 MΩ to 10 MΩ). 3: An additional parallel feedback resistor (RP) may be required for proper ceramic resonator operation. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 29 PIC18F2XK20/4XK20 2.4.4 EXTERNAL RC MODES 2.5 The external Resistor-Capacitor (RC) modes support the use of an external RC circuit. This allows the designer maximum flexibility in frequency choice while keeping costs to a minimum when clock accuracy is not required. There are two modes: RC and RCIO. 2.4.4.1 The Oscillator module has two independent, internal oscillators that can be configured or selected as the system clock source. 1. RC Mode In RC mode, the RC circuit connects to OSC1. OSC2/ CLKOUT outputs the RC oscillator frequency divided by 4. This signal may be used to provide a clock for external circuitry, synchronization, calibration, test or other application requirements. Figure 2-5 shows the external RC mode connections. FIGURE 2-5: EXTERNAL RC MODES VDD PIC® MCU Internal Clock Modes 2. The HFINTOSC (High-Frequency Internal Oscillator) is factory calibrated and operates at 16 MHz. The frequency of the HFINTOSC can be user-adjusted via software using the OSCTUNE register (Register 2-2). The LFINTOSC (Low-Frequency Internal Oscillator) operates at 31 kHz. The system clock speed can be selected via software using the Internal Oscillator Frequency Select bits IRCF<2:0> of the OSCCON register. The system clock can be selected between external or internal clock sources via the System Clock Selection (SCS<1:0>) bits of the OSCCON register. See Section 2.9 “Clock Switching” for more information. REXT OSC1/CLKIN Internal Clock CEXT VSS FOSC/4 or I/O(2) OSC2/CLKOUT(1) Recommended values: 10 kΩ ≤ REXT ≤ 100 kΩ CEXT > 20 pF Note 1: 2: 2.4.4.2 Alternate pin functions are listed in Section 1.0 “Device Overview”. Output depends upon RC or RCIO clock mode. RCIO Mode In RCIO mode, the RC circuit is connected to OSC1. OSC2 becomes an additional general purpose I/O pin. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values and the operating temperature. Other factors affecting the oscillator frequency are: • input threshold voltage variation • component tolerances • packaging variations in capacitance 2.5.1 INTOSC AND INTOSCIO MODES The INTOSC and INTOSCIO modes configure the internal oscillators as the primary clock source.The FOSC<3:0> bits in the CONFIG1H Configuration register determine which mode is selected. See Section 23.0 “Special Features of the CPU” for more information. In INTOSC mode, OSC1/CLKIN is available for general purpose I/O. OSC2/CLKOUT outputs the selected internal oscillator frequency divided by 4. The CLKOUT signal may be used to provide a clock for external circuitry, synchronization, calibration, test or other application requirements. In INTOSCIO mode, OSC1/CLKIN and OSC2/CLKOUT are available for general purpose I/O. 2.5.2 HFINTOSC The output of the HFINTOSC connects to a postscaler and multiplexer (see Figure 2-1). One of eight frequencies can be selected via software using the IRCF<2:0> bits of the OSCCON register. See Section 2.5.4 “Frequency Select Bits (IRCF)” for more information. The HFINTOSC is enabled when: The user also needs to take into account variation due to tolerance of external RC components used. • SCS1 = 1 and IRCF<2:0> ≠ 000 • SCS1 = 1 and IRCF<2:0> = 000 and INTSRC = 1 • IESO bit of CONFIG1H = 1 enabling Two-Speed Start-up. • FCMEM bit of CONFIG1H = 1 enabling TwoSpeed Start-up and Fail-Safe mode. • FOSC<3:0> of CONFIG1H selects the internal oscillator as the primary clock The HF Internal Oscillator (IOFS) bit of the OSCCON register indicates whether the HFINTOSC is stable or not. DS41303B-page 30 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 2.5.2.1 OSCTUNE Register The HFINTOSC is factory calibrated but can be adjusted in software by writing to the TUN<5:0> bits of the OSCTUNE register (Register 2-2). The default value of the TUN<5:0> is ‘000000’. The value is a 6-bit two’s complement number. When the OSCTUNE register is modified, the HFINTOSC frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred. OSCTUNE does not affect the LFINTOSC frequency. Operation of features that depend on the LFINTOSC clock source frequency, such as the Power-up Timer REGISTER 2-2: (PWRT), Watchdog Timer (WDT), Fail-Safe Clock Monitor (FSCM) and peripherals, are not affected by the change in frequency. The OSCTUNE register also implements the INTSRC and PLLEN bits, which control certain features of the internal oscillator block. The INTSRC bit allows users to select which internal oscillator provides the clock source when the 31 kHz frequency option is selected. This is covered in greater detail in Section 2.2.3 “Low Frequency Selection”. The PLLEN bit controls the operation of the frequency multiplier, PLL, in internal oscillator modes. For more details about the function of the PLLEN bit see Section 2.6.2 “PLL in HFINTOSC Modes” OSCTUNE: OSCILLATOR TUNING REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 INTSRC PLLEN(1) TUN5 TUN4 TUN3 TUN2 TUN1 TUN0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 INTSRC: Internal Oscillator Low-Frequency Source Select bit 1 = 31.25 kHz device clock derived from 16 MHz HFINTOSC source (divide-by-512 enabled) 0 = 31 kHz device clock derived directly from LFINTOSC internal oscillator bit 6 PLLEN: Frequency Multiplier PLL for HFINTOSC Enable bit(1) 1 = PLL enabled for HFINTOSC (8 MHz and 16 MHz only) 0 = PLL disabled bit 5-0 TUN<5:0>: Frequency Tuning bits 011111 = Maximum frequency 011110 = ••• 000001 = 000000 = Oscillator module is running at the factory calibrated frequency. 111111 = ••• 100000 = Minimum frequency Note 1: The PLLEN bit is active only when the HFINTOSC is the primary clock source (FOSC<2:0> = 100X) and the selected frequency is 8 MHz or 16 MHz. Otherwise, the PLLEN bit is unavailable and always reads ‘0’. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 31 PIC18F2XK20/4XK20 2.5.3 LFINTOSC 2.5.5 The Low-Frequency Internal Oscillator (LFINTOSC) is a 31 kHz internal clock source. The output of the LFINTOSC connects to internal oscillator block frequency selection multiplexer (see Figure 2-1). Select 31 kHz, via software, using the IRCF<2:0> bits of the OSCCON register and the INTSRC bit of the OSCTUNE register. See Section 2.5.4 “Frequency Select Bits (IRCF)” for more information. The LFINTOSC is also the frequency for the Power-up Timer (PWRT), Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM). The LFINTOSC is enabled when any of the following are enabled: • IRCF<2:0> bits of the OSCCON register = 000 and INTSRC bit of the OSCTUNE register = 1 • Power-up Timer (PWRT) • Watchdog Timer (WDT) • Fail-Safe Clock Monitor (FSCM) 2.5.4 FREQUENCY SELECT BITS (IRCF) The output of the 16 MHz HFINTOSC and 31 kHz LFINTOSC connects to a postscaler and multiplexer (see Figure 2-1). The Internal Oscillator Frequency Select bits IRCF<2:0> of the OSCCON register select the output frequency of the internal oscillators. One of eight frequencies can be selected via software: • • • • • • • • 16 MHz 8 MHz 4 MHz 2 MHz 1 MHz (Default after Reset) 500 kHz 250 kHz 31 kHz (LFINTOSC or HFINTOSC/512) Note: HFINTOSC FREQUENCY DRIFT The factory calibrates the internal oscillator block output (HFINTOSC) for 16 MHz. However, this frequency may drift as VDD or temperature changes, which can affect the controller operation in a variety of ways. It is possible to adjust the HFINTOSC frequency by modifying the value of the TUN<5:0> bits in the OSCTUNE register. This has no effect on the LFINTOSC clock source frequency. Tuning the HFINTOSC source requires knowing when to make the adjustment, in which direction it should be made and in some cases, how large a change is needed. Three possible compensation techniques are discussed in the following sections, however other techniques may be used. 2.5.5.1 Compensating with the USART An adjustment may be required when the USART begins to generate framing errors or receives data with errors while in Asynchronous mode. Framing errors indicate that the device clock frequency is too high; to adjust for this, decrement the value in OSCTUNE to reduce the clock frequency. On the other hand, errors in data may suggest that the clock speed is too low; to compensate, increment OSCTUNE to increase the clock frequency. 2.5.5.2 Compensating with the Timers This technique compares device clock speed to some reference clock. Two timers may be used; one timer is clocked by the peripheral clock, while the other is clocked by a fixed reference source, such as the Timer1 oscillator. Both timers are cleared, but the timer clocked by the reference generates interrupts. When an interrupt occurs, the internally clocked timer is read and both timers are cleared. If the internally clocked timer value is greater than expected, then the internal oscillator block is running too fast. To adjust for this, decrement the OSCTUNE register. Following any Reset, the IRCF<2:0> bits of the OSCCON register are set to ‘011’ and the frequency selection is set to 1 MHz. The user can modify the IRCF bits to select a different frequency. 2.5.5.3 Compensating with the CCP Module in Capture Mode A CCP module can use free running Timer1 (or Timer3), clocked by the internal oscillator block and an external event with a known period (i.e., AC power frequency). The time of the first event is captured in the CCPRxH:CCPRxL registers and is recorded for use later. When the second event causes a capture, the time of the first event is subtracted from the time of the second event. Since the period of the external event is known, the time difference between events can be calculated. If the measured time is much greater than the calculated time, the internal oscillator block is running too fast; to compensate, decrement the OSCTUNE register. If the measured time is much less than the calculated time, the internal oscillator block is running too slow; to compensate, increment the OSCTUNE register. DS41303B-page 32 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 2.6 2.6.2 PLL Frequency Multiplier A Phase Locked Loop (PLL) circuit is provided as an option for users who wish to use a lower frequency oscillator circuit or to clock the device up to its highest rated frequency from the crystal oscillator. This may be useful for customers who are concerned with EMI due to high-frequency crystals or users who require higher clock speeds from an internal oscillator. There are three conditions when the PLL can be used: • When the primary clock is HSPLL • When the primary clock is HFINTOSC and the selected frequency is 16 MHz • When the primary clock is HFINTOSC and the selected frequency is 8 MHz 2.6.1 HSPLL OSCILLATOR MODE The HSPLL mode makes use of the HS mode oscillator for frequencies up to 16 MHz. A PLL then multiplies the oscillator output frequency by 4 to produce an internal clock frequency up to 64 MHz. The PLLEN bit of the OSCTUNE register is active only when the HFINTOSC is the primary clock and is not available in HSPLL oscillator mode. PLL IN HFINTOSC MODES The 4x frequency multiplier can be used with the internal oscillator block to produce faster device clock speeds than are normally possible with an internal oscillator. When enabled, the PLL produces a clock speed of up to 64 MHz. Unlike HSPLL mode, the PLL is controlled through software. The PLLEN control bit of the OSCTUNE register is used to enable or disable the PLL operation when the HFINTOSC is used. The PLL is available when the device is configured to use the internal oscillator block as its primary clock source (FOSC<3:0> = 1001 or 1000). Additionally, the PLL will only function when the selected output frequency is either 8 MHz or 16 MHz (OSCCON<6:4> = 111 or 110). If both of these conditions are not met, the PLL is disabled. The PLLEN control bit is only functional in those internal oscillator modes where the PLL is available. In all other modes, it is forced to ‘0’ and is effectively unavailable. The PLL is only available to the primary oscillator when the FOSC<3:0> Configuration bits are programmed for HSPLL mode (= 0110). FIGURE 2-6: PLL BLOCK DIAGRAM (HS MODE) HS Oscillator Enable PLL Enable (from Configuration Register 1H) OSC2 HS Mode OSC1 Crystal Osc FIN Phase Comparator FOUT Loop Filter VCO MUX ÷4 © 2007 Microchip Technology Inc. SYSCLK Advance Information DS41303B-page 33 PIC18F2XK20/4XK20 2.7 Effects of Power-Managed Modes on the Various Clock Sources For more information about the modes discussed in this section see Section 3.0 “Power-Managed Modes”. A quick reference list is also available in Table 3-1. When PRI_IDLE mode is selected, the designated primary oscillator continues to run without interruption. For all other power-managed modes, the oscillator using the OSC1 pin is disabled. The OSC1 pin (and OSC2 pin, if used by the oscillator) will stop oscillating. In secondary clock modes (SEC_RUN and SEC_IDLE), the Timer1 oscillator is operating and providing the device clock. The Timer1 oscillator may also run in all power-managed modes if required to clock Timer1 or Timer3. In internal oscillator modes (INTOSC_RUN and INTOSC_IDLE), the internal oscillator block provides the device clock source. The 31 kHz LFINTOSC output can be used directly to provide the clock and may be enabled to support various special features, regardless of the power-managed mode (see Section 23.2 “Watchdog Timer (WDT)”, Section 2.10 “TwoSpeed Clock Start-up Mode” and Section 2.11 “FailSafe Clock Monitor” for more information on WDT, Fail-Safe Clock Monitor and Two-Speed Start-up). The HFINTOSC output at 16 MHz may be used directly to clock the device or may be divided down by the postscaler. The HFINTOSC output is disabled if the clock is provided directly from the LFINTOSC output. If the Sleep mode is selected, all clock sources are stopped. Since all the transistor switching currents have been stopped, Sleep mode achieves the lowest current consumption of the device (only leakage currents). Enabling any on-chip feature that will operate during Sleep will increase the current consumed during Sleep. The LFINTOSC is required to support WDT operation. The Timer1 oscillator may be operating to support a real-time clock. Other features may be operating that do not require a device clock source (i.e., SSP slave, PSP, INTn pins and others). Peripherals that may add significant current consumption are listed in Section 26.8 “DC Characteristics”. TABLE 2-2: 2.8 Power-up Delays Power-up delays are controlled by two timers, so that no external Reset circuitry is required for most applications. The delays ensure that the device is kept in Reset until the device power supply is stable under normal circumstances and the primary clock is operating and stable. For additional information on power-up delays, see Section 4.5 “Device Reset Timers”. The first timer is the Power-up Timer (PWRT), which provides a fixed delay on power-up (parameter 33, Table 26-9). It is enabled by clearing (= 0) the PWRTEN Configuration bit. The second timer is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable (LP, XT and HS modes). The OST does this by counting 1024 oscillator cycles before allowing the oscillator to clock the device. When the HSPLL Oscillator mode is selected, the device is kept in Reset for an additional 2 ms, following the HS mode OST delay, so the PLL can lock to the incoming clock frequency. There is a delay of interval TCSD (parameter 38, Table 26-9), following POR, while the controller becomes ready to execute instructions. This delay runs concurrently with any other delays. This may be the only delay that occurs when any of the EC, RC or INTIO modes are used as the primary clock source. When the HFINTOSC is selected as the primary clock, the main system clock can be delayed until the HFINTOSC is stable. This is user selectable by the HFOFST bit of the CONFIG3H Configuration register. When the HFOFST bit is cleared the main system clock is delayed until the HFINTOSC is stable. When the HFOFST bit is set the main system clock starts immediately. In either case the IOFS bit of the OSCCON register can be read to determine whether the HFINTOSC is operating and stable. OSC1 AND OSC2 PIN STATES IN SLEEP MODE OSC Mode OSC1 Pin OSC2 Pin RC, INTOSC Floating, external resistor should pull high At logic low (clock/4 output) RCIO Floating, external resistor should pull high Configured as PORTA, bit 6 INTOSCIO Configured as PORTA, bit 7 Configured as PORTA, bit 6 ECIO Floating, pulled by external clock Configured as PORTA, bit 6 EC Floating, pulled by external clock At logic low (clock/4 output) LP, XT, HS and HSPLL Feedback inverter disabled at quiescent voltage level Feedback inverter disabled at quiescent voltage level Note: See Table 4-2 in Section 4.0 “Reset” for time-outs due to Sleep and MCLR Reset. DS41303B-page 34 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 2.9 Clock Switching 2.10 The system clock source can be switched between external and internal clock sources via software using the System Clock Select (SCS<1:0>) bits of the OSCCON register. 2.9.1 SYSTEM CLOCK SELECT (SCS<1:0>) BITS The System Clock Select (SCS<1:0>) bits of the OSCCON register select the system clock source that is used for the CPU and peripherals. • When SCS<1:0> = 00, the system clock source is determined by configuration of the FOSC<2:0> bits in the CONFIG1H Configuration register. • When SCS<1:0> = 10, the system clock source is chosen by the internal oscillator frequency selected by the INTSRC bit of the OSCTUNE register and the IRCF<2:0> bits of the OSCCON register. • When SCS<1:0> = 01, the system clock source is the 32.768 kHz secondary oscillator shared with Timer1. After a Reset, the SCS<1:0> bits of the OSCCON register are always cleared. Note: 2.9.2 Any automatic clock switch, which may occur from Two-Speed Start-up or Fail-Safe Clock Monitor, does not update the SCS<1:0> bits of the OSCCON register. The user can monitor the T1RUN bit of the T1CON register and the IOFS and OSTS bits of the OSCCON register to determine the current system clock source. OSCILLATOR START-UP TIME-OUT STATUS (OSTS) BIT The Oscillator Start-up Time-out Status (OSTS) bit of the OSCCON register indicates whether the system clock is running from the external clock source, as defined by the FOSC<3:0> bits in the CONFIG1H Configuration register, or from the internal clock source. In particular, when the primary oscillator is the source of the primary clock, OSTS indicates that the Oscillator Start-up Timer (OST) has timed out for LP, XT or HS modes. © 2007 Microchip Technology Inc. Two-Speed Clock Start-up Mode Two-Speed Start-up mode provides additional power savings by minimizing the latency between external oscillator start-up and code execution. In applications that make heavy use of the Sleep mode, Two-Speed Start-up will remove the external oscillator start-up time from the time spent awake and can reduce the overall power consumption of the device. This mode allows the application to wake-up from Sleep, perform a few instructions using the HFINTOSC as the clock source and go back to Sleep without waiting for the primary oscillator to become stable. Note: Executing a SLEEP instruction will abort the oscillator start-up time and will cause the OSTS bit of the OSCCON register to remain clear. When the Oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) is enabled (see Section 2.4.1 “Oscillator Start-up Timer (OST)”). The OST will suspend program execution until 1024 oscillations are counted. Two-Speed Start-up mode minimizes the delay in code execution by operating from the internal oscillator as the OST is counting. When the OST count reaches 1024 and the OSTS bit of the OSCCON register is set, program execution switches to the external oscillator. 2.10.1 TWO-SPEED START-UP MODE CONFIGURATION Two-Speed Start-up mode is enabled when all of the following settings are configured as noted: • Two-Speed Start-up mode is enabled by setting the IESO of the CONFIG1H Configuration register is set. Fail-Safe mode (FCMEM=1) also enables two-speed by default. • SCS<1:0> (of the OSCCON register) = 00. • FOSC<2:0> bits of the CONFIG1H Configuration register are configured for LP, XT or HS mode. Two-Speed Start-up mode becomes active after: • Power-on Reset (POR) and, if enabled, after Power-up Timer (PWRT) has expired, or • Wake-up from Sleep. If the external clock oscillator is configured to be anything other than LP, XT or HS mode, then TwoSpeed Start-up is disabled. This is because the external clock oscillator does not require any stabilization time after POR or an exit from Sleep. Advance Information DS41303B-page 35 PIC18F2XK20/4XK20 2.10.2 1. 2. 3. 4. 5. 6. TWO-SPEED START-UP SEQUENCE 2.10.4 Wake-up from Power-on Reset or Sleep. Instructions begin executing by the internal oscillator at the frequency set in the IRCF<2:0> bits of the OSCCON register. OST enabled to count 1024 external clock cycles. OST timed out. External clock is ready. OSTS is set. Clock switch finishes according to FIGURE 2-7: “Clock Switch Timing” 2.10.3 CHECKING TWO-SPEED CLOCK STATUS Checking the state of the OSTS bit of the OSCCON register will confirm if the microcontroller is running from the external clock source, as defined by the FOSC<2:0> bits in CONFIG1H Configuration register, or the internal oscillator. OSTS = 0 when the external oscillator is not ready, which indicates that the system is running from the internal oscillator. CLOCK SWITCH TIMING When switching between one oscillator and another, the new oscillator may not be operating which saves power (see Figure 2-7). If this is the case, there is a delay after the IRCF<2:0> bits of the OSCCON register are modified before the frequency change takes place. The OSTS and IOFS bits of the OSCCON register will reflect the current active status of the external and HFINTOSC oscillators. The timing of a frequency selection is as follows: 1. 2. 3. 4. 5. 6. 7. IRCF<2:0> bits of the OSCCON register are modified. The old clock continues to operate until the new clock is ready. Clock switch circuitry waits for two consecutive rising edges of the old clock after the new clock ready signal goes true. The system clock is held low starting at the next falling edge of the old clock. Clock switch circuitry waits for an additional two rising edges of the new clock. On the next falling edge of the new clock the low hold on the system clock is released and new clock is switched in as the system clock. Clock switch is complete. See Figure 2-1 for more details. If the HFINTOSC is the source of both the old and new frequency, there is no start-up delay before the new frequency is active. This is because the old and new frequencies are derived from the HFINTOSC via the postscaler and multiplexer. Start-up delay specifications are located in Section 26.0 “Electrical Characteristics”, under AC Specifications (Oscillator Module). DS41303B-page 36 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 FIGURE 2-7: High Speed CLOCK SWITCH TIMING Low Speed Old Clock Start-up Time(1) Clock Sync Running New Clock New Clk Ready IRCF <2:0> Select Old Select New System Clock Low Speed High Speed Old Clock Start-up Time(1) Clock Sync Running New Clock New Clk Ready IRCF <2:0> Select Old Select New System Clock Note 1: Start-up time includes TOST (1024 TOSC) for external clocks, plus TPLL (approx. 2 ms) for HSPLL mode. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 37 PIC18F2XK20/4XK20 2.11 2.11.3 Fail-Safe Clock Monitor The Fail-Safe Clock Monitor (FSCM) allows the device to continue operating should the external oscillator fail. The FSCM can detect oscillator failure any time after the Oscillator Start-up Timer (OST) has expired. The FSCM is enabled by setting the FCMEN bit in the CONFIG1H Configuration register. The FSCM is applicable to all external oscillator modes (LP, XT, HS, EC, RC and RCIO). FIGURE 2-8: FSCM BLOCK DIAGRAM Clock Monitor Latch External Clock S LFINTOSC Oscillator ÷ 64 31 kHz (~32 μs) 488 Hz (~2 ms) R Q Sample Clock 2.11.1 The Fail-Safe condition is cleared by either one of the following: • Any Reset • By toggling the SCS1 bit of the OSCCON register Both of these conditions restart the OST. While the OST is running, the device continues to operate from the INTOSC selected in OSCCON. When the OST times out, the Fail-Safe condition is cleared and the device automatically switches over to the external clock source. The Fail-Safe condition need not be cleared before the OSCFIF flag is cleared. 2.11.4 Q Clock Failure Detected RESET OR WAKE-UP FROM SLEEP The FSCM is designed to detect an oscillator failure after the Oscillator Start-up Timer (OST) has expired. The OST is used after waking up from Sleep and after any type of Reset. The OST is not used with the EC or RC Clock modes so that the FSCM will be active as soon as the Reset or wake-up has completed. When the FSCM is enabled, the Two-Speed Start-up is also enabled. Therefore, the device will always be executing code while the OST is operating. Note: FAIL-SAFE DETECTION The FSCM module detects a failed oscillator by comparing the external oscillator to the FSCM sample clock. The sample clock is generated by dividing the LFINTOSC by 64. See Figure 2-8. Inside the fail detector block is a latch. The external clock sets the latch on each falling edge of the external clock. The sample clock clears the latch on each rising edge of the sample clock. A failure is detected when an entire halfcycle of the sample clock elapses before the primary clock goes low. 2.11.2 FAIL-SAFE CONDITION CLEARING Due to the wide range of oscillator start-up times, the Fail-Safe circuit is not active during oscillator start-up (i.e., after exiting Reset or Sleep). After an appropriate amount of time, the user should check the OSTS bit of the OSCCON register to verify the oscillator start-up and that the system clock switchover has successfully completed. FAIL-SAFE OPERATION When the external clock fails, the FSCM switches the device clock to an internal clock source and sets the bit flag OSCFIF of the PIR2 register. The OSCFIF flag will generate an interrupt if the OSCFIE bit of the PIE2 register is also set. The device firmware can then take steps to mitigate the problems that may arise from a failed clock. The system clock will continue to be sourced from the internal clock source until the device firmware successfully restarts the external oscillator and switches back to external operation. An automatic transition back to the failed clock source will not occur. The internal clock source chosen by the FSCM is determined by the IRCF<2:0> bits of the OSCCON register. This allows the internal oscillator to be configured before a failure occurs. DS41303B-page 38 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 FIGURE 2-9: FSCM TIMING DIAGRAM Sample Clock Oscillator Failure System Clock Output Clock Monitor Output (Q) Failure Detected OSCFIF Test Note: TABLE 2-3: Test Test The system clock is normally at a much higher frequency than the sample clock. The relative frequencies in this example have been chosen for clarity. SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets(1) CONFIG1H IESO FCMEN — — FOSC3 FOSC2 FOSC1 FOSC0 — — INT0IE RBIE TMR0IF INT0IF RBIF 0000 000x 0000 000x OSCCON IDLEN IRCF2 IRCF1 IRCF0 OSTS IOFS SCS1 SCS0 0011 q000 0011 q000 OSCTUNE INTSRC PLLEN TUN5 TUN4 TUN3 TUN2 TUN1 TUN0 0000 0000 000u uuuu PIE2 OSCFIE C1IE C2IE EEIE BCLIE HLVDIE TMR3IE CCP2IE 0000 0000 0000 0000 OSCFIF C1IF C2IF EEIF BCLIF HLVDIF TMR3IF CCP2IF 0000 0000 0000 0000 INTCON PIR2 Legend: Note 1: GIE/GIEH PEIE/GIEL TMR0IE x = unknown, u = unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by oscillators. Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 39 PIC18F2XK20/4XK20 NOTES: DS41303B-page 40 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 3.0 POWER-MANAGED MODES 3.1.1 CLOCK SOURCES The SCS<1:0> bits allow the selection of one of three clock sources for power-managed modes. They are: PIC18F2XK20/4XK20 devices offer a total of seven operating modes for more efficient power management. These modes provide a variety of options for selective power conservation in applications where resources may be limited (i.e., battery-powered devices). • the primary clock, as defined by the FOSC<3:0> Configuration bits • the secondary clock (the Timer1 oscillator) • the internal oscillator block There are three categories of power-managed modes: 3.1.2 • Run modes • Idle modes • Sleep mode Switching from one power-managed mode to another begins by loading the OSCCON register. The SCS<1:0> bits select the clock source and determine which Run or Idle mode is to be used. Changing these bits causes an immediate switch to the new clock source, assuming that it is running. The switch may also be subject to clock transition delays. These are discussed in Section 3.1.3 “Clock Transitions and Status Indicators” and subsequent sections. These categories define which portions of the device are clocked and sometimes, what speed. The Run and Idle modes may use any of the three available clock sources (primary, secondary or internal oscillator block); the Sleep mode does not use a clock source. The power-managed modes include several powersaving features offered on previous PIC® microcontroller devices. One is the clock switching feature which allows the controller to use the Timer1 oscillator in place of the primary oscillator. Also included is the Sleep mode, offered by all PIC® microcontroller devices, where all device clocks are stopped. 3.1 ENTERING POWER-MANAGED MODES Entry to the power-managed Idle or Sleep modes is triggered by the execution of a SLEEP instruction. The actual mode that results depends on the status of the IDLEN bit of the OSCCON register. Depending on the current mode and the mode being switched to, a change to a power-managed mode does not always require setting all of these bits. Many transitions may be done by changing the oscillator select bits, or changing the IDLEN bit, prior to issuing a SLEEP instruction. If the IDLEN bit is already configured correctly, it may only be necessary to perform a SLEEP instruction to switch to the desired mode. Selecting Power-Managed Modes Selecting a power-managed mode requires two decisions: • Whether or not the CPU is to be clocked • The selection of a clock source The IDLEN bit of the OSCCON register controls CPU clocking, while the SCS<1:0> bits of the OSCCON register select the clock source. The individual modes, bit settings, clock sources and affected modules are summarized in Table 3-1. TABLE 3-1: POWER-MANAGED MODES OSCCON Bits Mode Module Clocking Available Clock and Oscillator Source IDLEN(1) SCS<1:0> CPU Peripherals 0 N/A Off Off PRI_RUN N/A 00 Clocked Clocked SEC_RUN N/A 01 Clocked Clocked Secondary – Timer1 Oscillator RC_RUN N/A 1x Clocked Clocked Internal Oscillator Block(2) PRI_IDLE 1 00 Off Clocked Primary – LP, XT, HS, HSPLL, RC, EC SEC_IDLE 1 01 Off Clocked Secondary – Timer1 Oscillator RC_IDLE 1 1x Off Clocked Internal Oscillator Block(2) Sleep Note 1: 2: None – All clocks are disabled Primary – LP, XT, HS, HSPLL, RC, EC and Internal Oscillator Block(2). This is the normal full power execution mode. IDLEN reflects its value when the SLEEP instruction is executed. Includes HFINTOSC and HFINTOSC postscaler, as well as the LFINTOSC source. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 41 PIC18F2XK20/4XK20 3.1.3 CLOCK TRANSITIONS AND STATUS INDICATORS The length of the transition between clock sources is the sum of: • Start-up time of the new clock • Two and one half cycles of the old clock source • Two and one half cycles of the new clock Three flag bits indicate the current clock source and its status. They are: • OSTS (of the OSCCON register) • IOFS (of the OSCCON register) • T1RUN (of the T1CON register) In general, only one of these bits will be set while in a given power-managed mode. Table 3-2 shows the relationship of the flags to the active main system clock source. TABLE 3-2: SYSTEM CLOCK INDICATORS OSTS IOFS T1RUN Main System Clock Source 1 0 0 Primary Oscillator 0 1 0 HFINTOSC 0 0 1 Secondary Oscillator 1 1 0 HFINTOSC as primary clock 0 LFINTOSC or HFINTOSC is not yet stable 0 0 . Note 1: Caution should be used when modifying a single IRCF bit. If VDD is less than 2.7V, it is possible to select a higher clock speed than is supported by the low VDD. Improper device operation may result if the VDD/FOSC specifications are violated. 2: Executing a SLEEP instruction does not necessarily place the device into Sleep mode. It acts as the trigger to place the controller into either the Sleep mode or one of the Idle modes, depending on the setting of the IDLEN bit. 3.1.4 MULTIPLE FUNCTIONS OF THE SLEEP COMMAND The power-managed mode that is invoked with the SLEEP instruction is determined by the setting of the IDLEN bit of the OSCCON register at the time the instruction is executed. All clocks stop and minimum power is consumed when SLEEP is executed with the IDLEN bit cleared. The system clock continues to supply a clock to the peripherals but is disconnected from the CPU when SLEEP is executed with the IDLEN bit set. DS41303B-page 42 3.2 Run Modes In the Run modes, clocks to both the core and peripherals are active. The difference between these modes is the clock source. 3.2.1 PRI_RUN MODE The PRI_RUN mode is the normal, full power execution mode of the microcontroller. This is also the default mode upon a device Reset, unless Two-Speed Start-up is enabled (see Section 2.10 “Two-Speed Clock Start-up Mode” for details). In this mode, the OSTS bit is set. The IOFS bit will be set if the HFINTOSC is the primary clock source and the oscillator is stable (see Section 2.2 “Oscillator Control”). 3.2.2 SEC_RUN MODE The SEC_RUN mode is the mode compatible to the “clock switching” feature offered in other PIC18 devices. In this mode, the CPU and peripherals are clocked from the Timer1 oscillator. This gives users the option of lower power consumption while still using a high accuracy clock source. SEC_RUN mode is entered by setting the SCS<1:0> bits to ‘01’. When SEC_RUN mode is active all of the following are true: • The main clock source is switched to the Timer1 oscillator • Primary oscillator is shut down • T1RUN bit of the T1CON register is set • OSTS bit is cleared. Note: The Timer1 oscillator should already be running prior to entering SEC_RUN mode. If the T1OSCEN bit is not set when the SCS<1:0> bits are set to ‘01’, entry to SEC_RUN mode will not occur until T1OSCEN bit is set and Timer1 oscillator is ready. On transitions from SEC_RUN mode to PRI_RUN, the peripherals and CPU continue to be clocked from the Timer1 oscillator while the primary clock is started. When the primary clock becomes ready, a clock switch back to the primary clock occurs (see Figure 2-7). When the clock switch is complete, the T1RUN bit is cleared, the OSTS bit is set and the primary clock is providing the main system clock. The Timer1 oscillator continues to run as long as the T1OSCEN bit is set. Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 3.2.3 RC_RUN MODE 3.3 In RC_RUN mode, the CPU and peripherals are clocked from the internal oscillator block using one of the selections from the HFINTOSC multiplexer. In this mode, the primary oscillator is shut down. RC_RUN mode provides the best power conservation of all the Run modes when the LFINTOSC is the main clock source. It works well for user applications which are not highly timing sensitive or do not require high-speed clocks at all times. If the primary clock source is the internal oscillator block (either LFINTOSC or HFINTOSC), there are no distinguishable differences between PRI_RUN and RC_RUN modes during execution. However, a clock switch delay will occur during entry to and exit from RC_RUN mode. Therefore, if the primary clock source is the internal oscillator block, the use of RC_RUN mode is not recommended. See 2.10.4 “Clock Switch Timing” for details about clock switching. RC_RUN mode is entered by setting the SCS1 bit to ‘1’. The SCS0 bit can be either ‘0’ or ‘1’ but should be ‘0’ to maintain software compatibility with future devices. When the clock source is switched from the primary oscillator to the HFINTOSC multiplexer, the primary oscillator is shut down and the OSTS bit is cleared. The IRCF bits may be modified at any time to immediately change the clock speed. Note: Caution should be used when modifying a single IRCF bit. If VDD is less than 2.7V, it is possible to select a higher clock speed than is supported by the low VDD. Improper device operation may result if the VDD/FOSC specifications are violated. On transitions from RC_RUN mode to PRI_RUN mode, the device continues to be clocked from the internal oscillator block while the primary oscillator is started. When the primary oscillator becomes ready, a clock switch to the primary clock occurs. When the clock switch is complete, the IOFS bit is cleared, the OSTS bit is set and the primary oscillator is providing the main system clock. The HFINTOSC will continue to run if any of the conditions noted in Section 2.5.2 “HFINTOSC” are met. The LFINTOSC source will continue to run if any of the conditions noted in Section 2.5.3 “LFINTOSC” are met. Sleep Mode The Power-Managed Sleep mode in the PIC18F2XK20/ 4XK20 devices is identical to the legacy Sleep mode offered in all other PIC® microcontroller devices. It is entered by clearing the IDLEN bit (the default state on device Reset) and executing the SLEEP instruction. This shuts down the selected oscillator (Figure 3-1). All clock source Status bits are cleared. Entering the Sleep mode from any other mode does not require a clock switch. This is because no clocks are needed once the controller has entered Sleep. If the WDT is selected, the LFINTOSC source will continue to operate. If the Timer1 oscillator is enabled, it will also continue to run. When a wake event occurs in Sleep mode (by interrupt, Reset or WDT time-out), the device will not be clocked until the clock source selected by the SCS<1:0> bits becomes ready (see Figure 3-2), or it will be clocked from the internal oscillator block if either the TwoSpeed Start-up or the Fail-Safe Clock Monitor are enabled (see Section 23.0 “Special Features of the CPU”). In either case, the OSTS bit is set when the primary clock is providing the device clocks. The IDLEN and SCS bits are not affected by the wake-up. 3.4 Idle Modes The Idle modes allow the controller’s CPU to be selectively shut down while the peripherals continue to operate. Selecting a particular Idle mode allows users to further manage power consumption. If the IDLEN bit is set to a ‘1’ when a SLEEP instruction is executed, the peripherals will be clocked from the clock source selected by the SCS<1:0> bits; however, the CPU will not be clocked. The clock source Status bits are not affected. Setting IDLEN and executing a SLEEP instruction provides a quick method of switching from a given Run mode to its corresponding Idle mode. If the WDT is selected, the LFINTOSC source will continue to operate. If the Timer1 oscillator is enabled, it will also continue to run. Since the CPU is not executing instructions, the only exits from any of the Idle modes are by interrupt, WDT time-out, or a Reset. When a wake event occurs, CPU execution is delayed by an interval of TCSD (parameter 38, Table 26-9) while it becomes ready to execute code. When the CPU begins executing code, it resumes with the same clock source for the current Idle mode. For example, when waking from RC_IDLE mode, the internal oscillator block will clock the CPU and peripherals (in other words, RC_RUN mode). The IDLEN and SCS bits are not affected by the wake-up. While in any Idle mode or the Sleep mode, a WDT time-out will result in a WDT wake-up to the Run mode currently specified by the SCS<1:0> bits. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 43 PIC18F2XK20/4XK20 FIGURE 3-1: TRANSITION TIMING FOR ENTRY TO SLEEP MODE Q1 Q2 Q3 Q4 Q1 OSC1 CPU Clock Peripheral Clock Sleep Program Counter PC FIGURE 3-2: PC + 2 TRANSITION TIMING FOR WAKE FROM SLEEP (HSPLL) Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 OSC1 PLL Clock Output TOST(1) TPLL(1) CPU Clock Peripheral Clock Program Counter PC Wake Event PC + 2 PC + 4 PC + 6 OSTS bit set Note1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale. DS41303B-page 44 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 3.4.1 PRI_IDLE MODE 3.4.2 This mode is unique among the three low-power Idle modes, in that it does not disable the primary device clock. For timing sensitive applications, this allows for the fastest resumption of device operation with its more accurate primary clock source, since the clock source does not have to “warm-up” or transition from another oscillator. PRI_IDLE mode is entered from PRI_RUN mode by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, set IDLEN first, then clear the SCS bits and execute SLEEP. Although the CPU is disabled, the peripherals continue to be clocked from the primary clock source specified by the FOSC<3:0> Configuration bits. The OSTS bit remains set (see Figure 3-3). In SEC_IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the Timer1 oscillator. This mode is entered from SEC_RUN by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, set the IDLEN bit first, then set the SCS<1:0> bits to ‘01’ and execute SLEEP. When the clock source is switched to the Timer1 oscillator, the primary oscillator is shut down, the OSTS bit is cleared and the T1RUN bit is set. When a wake event occurs, the peripherals continue to be clocked from the Timer1 oscillator. After an interval of TCSD following the wake event, the CPU begins executing code being clocked by the Timer1 oscillator. The IDLEN and SCS bits are not affected by the wake-up; the Timer1 oscillator continues to run (see Figure 3-4). When a wake event occurs, the CPU is clocked from the primary clock source. A delay of interval TCSD is required between the wake event and when code execution starts. This is required to allow the CPU to become ready to execute instructions. After the wakeup, the OSTS bit remains set. The IDLEN and SCS bits are not affected by the wake-up (see Figure 3-4). FIGURE 3-3: SEC_IDLE MODE Note: The Timer1 oscillator should already be running prior to entering SEC_IDLE mode. If the T1OSCEN bit is not set when the SLEEP instruction is executed, the main system clock will continue to operate in the previously selected mode and the corresponding IDLE mode will be entered (i.e., PRI_IDLE or RC_IDLE). TRANSITION TIMING FOR ENTRY TO IDLE MODE Q1 Q3 Q2 Q4 Q1 OSC1 CPU Clock Peripheral Clock Program Counter PC FIGURE 3-4: PC + 2 TRANSITION TIMING FOR WAKE FROM IDLE TO RUN MODE Q1 Q2 Q3 Q4 OSC1 TCSD CPU Clock Peripheral Clock Program Counter PC Wake Event © 2007 Microchip Technology Inc. Advance Information DS41303B-page 45 PIC18F2XK20/4XK20 3.4.3 RC_IDLE MODE 3.5.1 In RC_IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the internal oscillator block from the HFINTOSC multiplexer output. This mode allows for controllable power conservation during Idle periods. From RC_RUN, this mode is entered by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, first set IDLEN, then set the SCS1 bit and execute SLEEP. It is recommended that SCS0 also be cleared, although its value is ignored, to maintain software compatibility with future devices. The HFINTOSC multiplexer may be used to select a higher clock frequency by modifying the IRCF bits before executing the SLEEP instruction. When the clock source is switched to the HFINTOSC multiplexer, the primary oscillator is shut down and the OSTS bit is cleared. If the IRCF bits are set to any non-zero value, or the INTSRC bit is set, the HFINTOSC output is enabled. The IOFS bit becomes set, after the HFINTOSC output becomes stable, after an interval of TIOBST (parameter 39, Table 26-9). Clocks to the peripherals continue while the HFINTOSC source stabilizes. If the IRCF bits were previously at a non-zero value, or INTSRC was set before the SLEEP instruction was executed and the HFINTOSC source was already stable, the IOFS bit will remain set. If the IRCF bits and INTSRC are all clear, the HFINTOSC output will not be enabled, the IOFS bit will remain clear and there will be no indication of the current clock source. When a wake event occurs, the peripherals continue to be clocked from the HFINTOSC multiplexer output. After a delay of TCSD following the wake event, the CPU begins executing code being clocked by the HFINTOSC multiplexer. The IDLEN and SCS bits are not affected by the wake-up. The LFINTOSC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled. 3.5 Exiting Idle and Sleep Modes An exit from Sleep mode or any of the Idle modes is triggered by any one of the following: • an interrupt • a Reset • a watchdog time-out Any of the available interrupt sources can cause the device to exit from an Idle mode or the Sleep mode to a Run mode. To enable this functionality, an interrupt source must be enabled by setting its enable bit in one of the INTCON or PIE registers. The PEIE bIt must also be set If the desired interrupt enable bit is in a PIE register. The exit sequence is initiated when the corresponding interrupt flag bit is set. The instruction immediately following the SLEEP instruction is executed on all exits by interrupt from Idle or Sleep modes. Code execution then branches to the interrupt vector if the GIE/GIEH bit of the INTCON register is set, otherwise code execution continues without branching (see Section 9.0 “Interrupts”). A fixed delay of interval TCSD following the wake event is required when leaving Sleep and Idle modes. This delay is required for the CPU to prepare for execution. Instruction execution resumes on the first clock cycle following this delay. 3.5.2 EXIT BY WDT TIME-OUT A WDT time-out will cause different actions depending on which power-managed mode the device is in when the time-out occurs. If the device is not executing code (all Idle modes and Sleep mode), the time-out will result in an exit from the power-managed mode (see Section 3.2 “Run Modes” and Section 3.3 “Sleep Mode”). If the device is executing code (all Run modes), the time-out will result in a WDT Reset (see Section 23.2 “Watchdog Timer (WDT)”). The WDT timer and postscaler are cleared by any one of the following: • executing a SLEEP instruction • executing a CLRWDT instruction • the loss of the currently selected clock source when the Fail-Safe Clock Monitor is enabled • modifying the IRCF bits in the OSCCON register when the internal oscillator block is the device clock source 3.5.3 EXIT BY RESET Exiting Sleep and Idle modes by Reset causes code execution to restart at address 0. See Section 4.0 “Reset” for more details. This section discusses the triggers that cause exits from power-managed modes. The clocking subsystem actions are discussed in each of the power-managed modes (see Section 3.2 “Run Modes”, Section 3.3 “Sleep Mode” and Section 3.4 “Idle Modes”). DS41303B-page 46 EXIT BY INTERRUPT The exit delay time from Reset to the start of code execution depends on both the clock sources before and after the wake-up and the type of oscillator. Exit delays are summarized in Table 3-3. Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 3.5.4 EXIT WITHOUT AN OSCILLATOR START-UP DELAY Certain exits from power-managed modes do not invoke the OST at all. There are two cases: • PRI_IDLE mode, where the primary clock source is not stopped and • the primary clock source is not any of the LP, XT, HS or HSPLL modes. TABLE 3-3: In these instances, the primary clock source either does not require an oscillator start-up delay since it is already running (PRI_IDLE), or normally does not require an oscillator start-up delay (RC, EC, INTOSC, and INTOSCIO modes). However, a fixed delay of interval TCSD following the wake event is still required when leaving Sleep and Idle modes to allow the CPU to prepare for execution. Instruction execution resumes on the first clock cycle following this delay. EXIT DELAY ON WAKE-UP BY RESET FROM SLEEP MODE OR ANY IDLE MODE (BY CLOCK SOURCES) Clock Source before Wake-up Clock Source after Wake-up Exit Delay Clock Ready Status Bit (OSCCON) LP, XT, HS Primary Device Clock (PRI_IDLE mode) HSPLL TCSD(1) EC, RC HFINTOSC(2) T1OSC or LFINTOSC(1) HFINTOSC(2) None (Sleep mode) IOFS LP, XT, HS TOST(3) HSPLL TOST + tPLL(3) OSTS EC, RC HFINTOSC(1) TCSD(1) TIOBST(4) IOFS LP, XT, HS TOST(4) HSPLL TOST + tPLL(3) EC, RC TCSD(1) HFINTOSC(1) None LP, XT, HS TOST(3) HSPLL TOST + tPLL(3) OSTS EC, RC TCSD(1) TIOBST(4) IOFS HFINTOSC(1) Note 1: 2: 3: 4: OSTS OSTS IOFS TCSD (parameter 38) is a required delay when waking from Sleep and all Idle modes and runs concurrently with any other required delays (see Section 3.4 “Idle Modes”). On Reset, HFINTOSC defaults to 1 MHz. Includes both the HFINTOSC 16 MHz source and postscaler derived frequencies. TOST is the Oscillator Start-up Timer (parameter 32). tPLL is the PLL Lock-out Timer (parameter F12). Execution continues during the HFINTOSC stabilization period, TIOBST (parameter 39). © 2007 Microchip Technology Inc. Advance Information DS41303B-page 47 PIC18F2XK20/4XK20 NOTES: DS41303B-page 48 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 4.0 RESET A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 4-1. The PIC18F2XK20/4XK20 devices between various kinds of Reset: a) b) c) d) e) f) g) h) differentiate 4.1 Power-on Reset (POR) MCLR Reset during normal operation MCLR Reset during power-managed modes Watchdog Timer (WDT) Reset (during execution) Programmable Brown-out Reset (BOR) RESET Instruction Stack Full Reset Stack Underflow Reset This section discusses Resets generated by MCLR, POR and BOR and covers the operation of the various start-up timers. Stack Reset events are covered in Section 5.1.2.4 “Stack Full and Underflow Resets”. WDT Resets are covered in Section 23.2 “Watchdog Timer (WDT)”. FIGURE 4-1: RCON Register Device Reset events are tracked through the RCON register (Register 4-1). The lower five bits of the register indicate that a specific Reset event has occurred. In most cases, these bits can only be cleared by the event and must be set by the application after the event. The state of these flag bits, taken together, can be read to indicate the type of Reset that just occurred. This is described in more detail in Section 4.6 “Reset State of Registers”. The RCON register also has control bits for setting interrupt priority (IPEN) and software control of the BOR (SBOREN). Interrupt priority is discussed in Section 9.0 “Interrupts”. BOR is covered in Section 4.4 “Brown-out Reset (BOR)”. SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT RESET Instruction Stack Full/Underflow Reset Stack Pointer External Reset MCLRE MCLR ( )_IDLE Sleep WDT Time-out VDD Rise Detect POR Pulse VDD Brown-out Reset S BOREN OST/PWRT OST(2) 1024 Cycles 10-bit Ripple Counter Chip_Reset R Q OSC1 32 μs LFINTOSC PWRT(2) 65.5 ms 11-bit Ripple Counter Enable PWRT Enable OST(1) Note 1: 2: See Table 4-2 for time-out situations. PWRT and OST counters are reset by POR and BOR. See Sections 4.3 and 4.4. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 49 PIC18F2XK20/4XK20 REGISTER 4-1: R/W-0 IPEN RCON: RESET CONTROL REGISTER R/W-1 SBOREN U-0 (1) R/W-1 — RI R-1 TO R-1 R/W-0 PD (2) R/W-0 POR bit 7 BOR bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 IPEN: Interrupt Priority Enable bit 1 = Enable priority levels on interrupts 0 = Disable priority levels on interrupts (PIC16CXXX Compatibility mode) bit 6 SBOREN: BOR Software Enable bit(1) If BOREN<1:0> = 01: 1 = BOR is enabled 0 = BOR is disabled If BOREN<1:0> = 00, 10 or 11: Bit is disabled and read as ‘0’. bit 5 Unimplemented: Read as ‘0’ bit 4 RI: RESET Instruction Flag bit 1 = The RESET instruction was not executed (set by firmware or Power-on Reset) 0 = The RESET instruction was executed causing a device Reset (must be set in firmware after a code-executed Reset occurs) bit 3 TO: Watchdog Time-out Flag bit 1 = Set by power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time-out occurred bit 2 PD: Power-down Detection Flag bit 1 = Set by power-up or by the CLRWDT instruction 0 = Set by execution of the SLEEP instruction bit 1 POR: Power-on Reset Status bit(2) 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs) bit 0 BOR: Brown-out Reset Status bit(3) 1 = A Brown-out Reset has not occurred (set by firmware only) 0 = A Brown-out Reset occurred (must be set by firmware after a POR or Brown-out Reset occurs) Note 1: 2: 3: If SBOREN is enabled, its Reset state is ‘1’; otherwise, it is ‘0’. The actual Reset value of POR is determined by the type of device Reset. See the notes following this register and Section 4.6 “Reset State of Registers” for additional information. See Table 4-3. Note 1: Brown-out Reset is indicated when BOR is ‘0’ and POR is ‘1’ (assuming that both POR and BOR were set to ‘1’ by firmware immediately after POR). 2: It is recommended that the POR bit be set after a Power-on Reset has been detected so that subsequent Power-on Resets may be detected. DS41303B-page 50 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 4.2 FIGURE 4-2: Master Clear (MCLR) The MCLR pin provides a method for triggering an external Reset of the device. A Reset is generated by holding the pin low. These devices have a noise filter in the MCLR Reset path which detects and ignores small pulses. 4.3 PIC® MCU D To take advantage of the POR circuitry, tie the MCLR pin through a resistor (1 kΩ to 10 kΩ) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset delay. A minimum rise rate for VDD is specified (parameter D004). For a slow rise time, see Figure 4-2. R R1 MCLR C Note 1: External Power-on Reset circuit is required only if the VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down. 2: R < 40 kΩ is recommended to make sure that the voltage drop across R does not violate the device’s electrical specification. 3: R1 ≥ 1 kΩ will limit any current flowing into MCLR from external capacitor C, in the event of MCLR/VPP pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Power-on Reset (POR) A Power-on Reset pulse is generated on-chip whenever VDD rises above a certain threshold. This allows the device to start in the initialized state when VDD is adequate for operation. VDD VDD The MCLR pin is not driven low by any internal Resets, including the WDT. In PIC18F2XK20/4XK20 devices, the MCLR input can be disabled with the MCLRE Configuration bit. When MCLR is disabled, the pin becomes a digital input. See Section 10.6 “PORTE, TRISE and LATE Registers” for more information. EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP) When the device starts normal operation (i.e., exits the Reset condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met. POR events are captured by the POR bit of the RCON register. The state of the bit is set to ‘0’ whenever a POR occurs; it does not change for any other Reset event. POR is not reset to ‘1’ by any hardware event. To capture multiple events, the user must manually set the bit to ‘1’ by software following any POR. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 51 PIC18F2XK20/4XK20 4.4 Brown-out Reset (BOR) PIC18F2XK20/4XK20 devices implement a BOR circuit that provides the user with a number of configuration and power-saving options. The BOR is controlled by the BORV<1:0> and BOREN<1:0> bits of the CONFIG2L Configuration register. There are a total of four BOR configurations which are summarized in Table 4-1. The BOR threshold is set by the BORV<1:0> bits. If BOR is enabled (any values of BOREN<1:0>, except ‘00’), any drop of VDD below VBOR (parameter D005) for greater than TBOR (parameter 35) will reset the device. A Reset may or may not occur if VDD falls below VBOR for less than TBOR. The chip will remain in Brown-out Reset until VDD rises above VBOR. If the Power-up Timer is enabled, it will be invoked after VDD rises above VBOR; it then will keep the chip in Reset for an additional time delay, TPWRT (parameter 33). If VDD drops below VBOR while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above VBOR, the Power-up Timer will execute the additional time delay. BOR and the Power-on Timer (PWRT) are independently configured. Enabling BOR Reset does not automatically enable the PWRT. 4.4.1 SOFTWARE ENABLED BOR When BOREN<1:0> = 01, the BOR can be enabled or disabled by the user in software. This is done with the SBOREN control bit of the RCON register. Setting SBOREN enables the BOR to function as previously described. Clearing SBOREN disables the BOR entirely. The SBOREN bit operates only in this mode; otherwise it is read as ‘0’. TABLE 4-1: Placing the BOR under software control gives the user the additional flexibility of tailoring the application to its environment without having to reprogram the device to change BOR configuration. It also allows the user to tailor device power consumption in software by eliminating the incremental current that the BOR consumes. While the BOR current is typically very small, it may have some impact in low-power applications. Note: Even when BOR is under software control, the BOR Reset voltage level is still set by the BORV<1:0> Configuration bits. It cannot be changed by software. 4.4.2 DETECTING BOR When BOR is enabled, the BOR bit always resets to ‘0’ on any BOR or POR event. This makes it difficult to determine if a BOR event has occurred just by reading the state of BOR alone. A more reliable method is to simultaneously check the state of both POR and BOR. This assumes that the POR and BOR bits are reset to ‘1’ by software immediately after any POR event. If BOR is ‘0’ while POR is ‘1’, it can be reliably assumed that a BOR event has occurred. 4.4.3 DISABLING BOR IN SLEEP MODE When BOREN<1:0> = 10, the BOR remains under hardware control and operates as previously described. Whenever the device enters Sleep mode, however, the BOR is automatically disabled. When the device returns to any other operating mode, BOR is automatically re-enabled. This mode allows for applications to recover from brown-out situations, while actively executing code, when the device requires BOR protection the most. At the same time, it saves additional power in Sleep mode by eliminating the small incremental BOR current. BOR CONFIGURATIONS BOR Configuration BOREN1 BOREN0 Status of SBOREN (RCON<6>) 0 0 Unavailable 0 1 Available 1 0 Unavailable BOR enabled by hardware in Run and Idle modes, disabled during Sleep mode. 1 1 Unavailable BOR enabled by hardware; must be disabled by reprogramming the Configuration bits. DS41303B-page 52 BOR Operation BOR disabled; must be enabled by reprogramming the Configuration bits. BOR enabled by software; operation controlled by SBOREN. Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 4.5 Device Reset Timers PIC18F2XK20/4XK20 devices incorporate three separate on-chip timers that help regulate the Power-on Reset process. Their main function is to ensure that the device clock is stable before code is executed. These timers are: • Power-up Timer (PWRT) • Oscillator Start-up Timer (OST) • PLL Lock Time-out 4.5.1 POWER-UP TIMER (PWRT) The Power-up Timer (PWRT) of PIC18F2XK20/4XK20 devices is an 11-bit counter which uses the LFINTOSC source as the clock input. This yields an approximate time interval of 2048 x 32 μs = 65.6 ms. While the PWRT is counting, the device is held in Reset. The power-up time delay depends on the LFINTOSC clock and will vary from chip-to-chip due to temperature and process variation. See DC parameter 33 for details. The PWRT is enabled by clearing the PWRTEN Configuration bit. 4.5.2 OSCILLATOR START-UP TIMER (OST) The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over (parameter 33). This ensures that the crystal oscillator or resonator has started and stabilized. TABLE 4-2: 4.5.3 PLL LOCK TIME-OUT With the PLL enabled in its PLL mode, the time-out sequence following a Power-on Reset is slightly different from other oscillator modes. A separate timer is used to provide a fixed time-out that is sufficient for the PLL to lock to the main oscillator frequency. This PLL lock time-out (TPLL) is typically 2 ms and follows the oscillator start-up time-out. 4.5.4 TIME-OUT SEQUENCE On power-up, the time-out sequence is as follows: 1. 2. After the POR pulse has cleared, PWRT time-out is invoked (if enabled). Then, the OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. Figure 4-3, Figure 4-4, Figure 4-5, Figure 4-6 and Figure 4-7 all depict time-out sequences on power-up, with the Power-up Timer enabled and the device operating in HS Oscillator mode. Figures 4-3 through 4-6 also apply to devices operating in XT or LP modes. For devices in RC mode and with the PWRT disabled, on the other hand, there will be no time-out at all. Since the time-outs occur from the POR pulse, if MCLR is kept low long enough, all time-outs will expire, after which, bringing MCLR high will allow program execution to begin immediately (Figure 4-5). This is useful for testing purposes or to synchronize more than one PIC18FXXK20 device operating in parallel. TIME-OUT IN VARIOUS SITUATIONS Power-up(2) and Brown-out Oscillator Configuration HSPLL The OST time-out is invoked only for XT, LP, HS and HSPLL modes and only on Power-on Reset, or on exit from all power-managed modes that stop the external oscillator. PWRTEN = 0 66 ms(1) + 1024 TOSC + 2 ms(2) PWRTEN = 1 Exit from Power-Managed Mode 1024 TOSC + 2 ms(2) 1024 TOSC + 2 ms(2) HS, XT, LP 66 ms(1) + 1024 TOSC 1024 TOSC 1024 TOSC EC, ECIO 66 ms(1) — — RC, RCIO ms(1) — — (1) — — INTIO1, INTIO2 66 66 ms Note 1: 66 ms (65.5 ms) is the nominal Power-up Timer (PWRT) delay. 2: 2 ms is the nominal time required for the PLL to lock. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 53 PIC18F2XK20/4XK20 FIGURE 4-3: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD, VDD RISE < TPWRT) VDD MCLR INTERNAL POR TPWRT PWRT TIME-OUT TOST OST TIME-OUT INTERNAL RESET TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1 FIGURE 4-4: VDD MCLR INTERNAL POR TPWRT PWRT TIME-OUT TOST OST TIME-OUT INTERNAL RESET TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2 FIGURE 4-5: VDD MCLR INTERNAL POR TPWRT PWRT TIME-OUT TOST OST TIME-OUT INTERNAL RESET DS41303B-page 54 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 FIGURE 4-6: SLOW RISE TIME (MCLR TIED TO VDD, VDD RISE > TPWRT) 5V VDD 0V MCLR INTERNAL POR TPWRT PWRT TIME-OUT TOST OST TIME-OUT INTERNAL RESET TIME-OUT SEQUENCE ON POR W/PLL ENABLED (MCLR TIED TO VDD) FIGURE 4-7: VDD MCLR INTERNAL POR TPWRT PWRT TIME-OUT TOST OST TIME-OUT TPLL PLL TIME-OUT INTERNAL RESET Note: TOST = 1024 clock cycles. TPLL ≈ 2 ms max. First three stages of the PWRT timer. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 55 PIC18F2XK20/4XK20 4.6 Reset State of Registers Some registers are unaffected by a Reset. Their status is unknown on POR and unchanged by all other Resets. All other registers are forced to a “Reset state” depending on the type of Reset that occurred. Table 4-4 describes the Reset states for all of the Special Function Registers. These are categorized by Power-on and Brown-out Resets, Master Clear and WDT Resets and WDT wake-ups. Most registers are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. Status bits from the RCON register, RI, TO, PD, POR and BOR, are set or cleared differently in different Reset situations, as indicated in Table 4-3. These bits are used by software to determine the nature of the Reset. TABLE 4-3: STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR RCON REGISTER Condition Program Counter RCON Register SBOREN RI TO PD STKPTR Register POR BOR STKFUL STKUNF Power-on Reset 0000h 1 1 1 1 0 0 0 0 RESET Instruction 0000h u(2) 0 u u u u u u Brown-out Reset 0000h (2) u 1 1 1 u 0 u u MCLR during Power-Managed Run Modes 0000h u(2) u 1 u u u u u MCLR during Power-Managed Idle Modes and Sleep Mode 0000h u(2) u 1 0 u u u u WDT Time-out during Full Power or Power-Managed Run Mode 0000h u(2) u 0 u u u u u MCLR during Full Power Execution 0000h u(2) u u u u u u u Stack Full Reset (STVREN = 1) 0000h u(2) u u u u u 1 u Stack Underflow Reset (STVREN = 1) 0000h u(2) u u u u u u 1 Stack Underflow Error (not an actual Reset, STVREN = 0) 0000h u(2) u u u u u u 1 WDT Time-out during Power-Managed Idle or Sleep Modes PC + 2 u(2) u 0 0 u u u u PC + 2(1) u(2) u u 0 u u u u Interrupt Exit from Power-Managed Modes Legend: u = unchanged Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the interrupt vector (008h or 0018h). 2: Reset state is ‘1’ for POR and unchanged for all other Resets when software BOR is enabled (BOREN<1:0> Configuration bits = 01 and SBOREN = 1). Otherwise, the Reset state is ‘0’. DS41303B-page 56 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 TABLE 4-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS Applicable Devices Power-on Reset, Brown-out Reset MCLR Resets, WDT Reset, RESET Instruction, Stack Resets Wake-up via WDT or Interrupt TOSU PIC18F2XK20 PIC18F4XK20 ---0 0000 ---0 0000 ---0 uuuu(3) TOSH PIC18F2XK20 PIC18F4XK20 0000 0000 0000 0000 uuuu uuuu(3) TOSL PIC18F2XK20 PIC18F4XK20 0000 0000 0000 0000 uuuu uuuu(3) STKPTR PIC18F2XK20 PIC18F4XK20 00-0 0000 uu-0 0000 uu-u uuuu(3) PCLATU PIC18F2XK20 PIC18F4XK20 ---0 0000 ---0 0000 ---u uuuu PCLATH Register PIC18F2XK20 PIC18F4XK20 0000 0000 0000 0000 uuuu uuuu PCL PIC18F2XK20 PIC18F4XK20 0000 0000 0000 0000 PC + 2(2) TBLPTRU PIC18F2XK20 PIC18F4XK20 --00 0000 --00 0000 --uu uuuu TBLPTRH PIC18F2XK20 PIC18F4XK20 0000 0000 0000 0000 uuuu uuuu TBLPTRL PIC18F2XK20 PIC18F4XK20 0000 0000 0000 0000 uuuu uuuu TABLAT PIC18F2XK20 PIC18F4XK20 0000 0000 0000 0000 uuuu uuuu PRODH PIC18F2XK20 PIC18F4XK20 xxxx xxxx uuuu uuuu uuuu uuuu PRODL PIC18F2XK20 PIC18F4XK20 xxxx xxxx uuuu uuuu uuuu uuuu INTCON PIC18F2XK20 PIC18F4XK20 0000 000x 0000 000u uuuu uuuu(1) INTCON2 PIC18F2XK20 PIC18F4XK20 1111 -1-1 1111 -1-1 uuuu -u-u(1) INTCON3 PIC18F2XK20 PIC18F4XK20 11-0 0-00 11-0 0-00 uu-u u-uu(1) INDF0 PIC18F2XK20 PIC18F4XK20 N/A N/A N/A POSTINC0 PIC18F2XK20 PIC18F4XK20 N/A N/A N/A POSTDEC0 PIC18F2XK20 PIC18F4XK20 N/A N/A N/A PREINC0 PIC18F2XK20 PIC18F4XK20 N/A N/A N/A PLUSW0 PIC18F2XK20 PIC18F4XK20 N/A N/A N/A FSR0H PIC18F2XK20 PIC18F4XK20 ---- 0000 ---- 0000 ---- uuuu FSR0L PIC18F2XK20 PIC18F4XK20 xxxx xxxx uuuu uuuu uuuu uuuu WREG PIC18F2XK20 PIC18F4XK20 xxxx xxxx uuuu uuuu uuuu uuuu INDF1 PIC18F2XK20 PIC18F4XK20 N/A N/A N/A POSTINC1 PIC18F2XK20 PIC18F4XK20 N/A N/A N/A POSTDEC1 PIC18F2XK20 PIC18F4XK20 N/A N/A N/A PREINC1 PIC18F2XK20 PIC18F4XK20 N/A N/A N/A PLUSW1 PIC18F2XK20 PIC18F4XK20 N/A N/A N/A Legend: Note 1: 2: 3: 4: 5: 6: u = unchanged, x = unknown, - = unimplemented bit, read as ‘0’, q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device. One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up). When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h). When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack. See Table 4-3 for Reset value for specific condition. Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read ‘0’. All bits of the ANSELH register initialize to ‘0’ if the PBADEN bit of CONFIG3H is ‘0’. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 57 PIC18F2XK20/4XK20 TABLE 4-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED) Applicable Devices Power-on Reset, Brown-out Reset MCLR Resets, WDT Reset, RESET Instruction, Stack Resets Wake-up via WDT or Interrupt FSR1H PIC18F2XK20 PIC18F4XK20 ---- 0000 ---- 0000 ---- uuuu FSR1L PIC18F2XK20 PIC18F4XK20 xxxx xxxx uuuu uuuu uuuu uuuu BSR Register PIC18F2XK20 PIC18F4XK20 ---- 0000 ---- 0000 ---- uuuu INDF2 PIC18F2XK20 PIC18F4XK20 N/A N/A N/A POSTINC2 PIC18F2XK20 PIC18F4XK20 N/A N/A N/A POSTDEC2 PIC18F2XK20 PIC18F4XK20 N/A N/A N/A PREINC2 PIC18F2XK20 PIC18F4XK20 N/A N/A N/A PLUSW2 PIC18F2XK20 PIC18F4XK20 N/A N/A N/A FSR2H PIC18F2XK20 PIC18F4XK20 ---- 0000 ---- 0000 ---- uuuu FSR2L PIC18F2XK20 PIC18F4XK20 xxxx xxxx uuuu uuuu uuuu uuuu STATUS PIC18F2XK20 PIC18F4XK20 ---x xxxx ---u uuuu ---u uuuu TMR0H PIC18F2XK20 PIC18F4XK20 0000 0000 0000 0000 uuuu uuuu TMR0L PIC18F2XK20 PIC18F4XK20 xxxx xxxx uuuu uuuu uuuu uuuu T0CON PIC18F2XK20 PIC18F4XK20 1111 1111 1111 1111 uuuu uuuu OSCCON PIC18F2XK20 PIC18F4XK20 0011 qq00 0011 qq00 uuuu uuuu HLVDCON PIC18F2XK20 PIC18F4XK20 0-00 0101 0-00 0101 u-uu uuuu WDTCON PIC18F2XK20 PIC18F4XK20 ---- ---0 ---- ---0 ---- ---u PIC18F2XK20 PIC18F4XK20 0q-1 11q0 0q-q qquu uq-u qquu RCON (4) TMR1H PIC18F2XK20 PIC18F4XK20 xxxx xxxx uuuu uuuu uuuu uuuu TMR1L PIC18F2XK20 PIC18F4XK20 xxxx xxxx uuuu uuuu uuuu uuuu T1CON PIC18F2XK20 PIC18F4XK20 0000 0000 u0uu uuuu uuuu uuuu TMR2 PIC18F2XK20 PIC18F4XK20 0000 0000 0000 0000 uuuu uuuu PR2 PIC18F2XK20 PIC18F4XK20 1111 1111 1111 1111 1111 1111 T2CON PIC18F2XK20 PIC18F4XK20 -000 0000 -000 0000 -uuu uuuu SSPBUF PIC18F2XK20 PIC18F4XK20 xxxx xxxx uuuu uuuu uuuu uuuu SSPADD PIC18F2XK20 PIC18F4XK20 0000 0000 0000 0000 uuuu uuuu SSPSTAT PIC18F2XK20 PIC18F4XK20 0000 0000 0000 0000 uuuu uuuu SSPCON1 PIC18F2XK20 PIC18F4XK20 0000 0000 0000 0000 uuuu uuuu SSPCON2 PIC18F2XK20 PIC18F4XK20 0000 0000 0000 0000 uuuu uuuu Legend: Note 1: 2: 3: 4: 5: 6: u = unchanged, x = unknown, - = unimplemented bit, read as ‘0’, q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device. One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up). When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h). When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack. See Table 4-3 for Reset value for specific condition. Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read ‘0’. All bits of the ANSELH register initialize to ‘0’ if the PBADEN bit of CONFIG3H is ‘0’. DS41303B-page 58 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 TABLE 4-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED) Applicable Devices Power-on Reset, Brown-out Reset MCLR Resets, WDT Reset, RESET Instruction, Stack Resets Wake-up via WDT or Interrupt ADRESH PIC18F2XK20 PIC18F4XK20 xxxx xxxx uuuu uuuu uuuu uuuu ADRESL PIC18F2XK20 PIC18F4XK20 xxxx xxxx uuuu uuuu uuuu uuuu ADCON0 Register PIC18F2XK20 PIC18F4XK20 --00 0000 --00 0000 --uu uuuu ADCON1 PIC18F2XK20 PIC18F4XK20 --00 0qqq --00 0qqq --uu uuuu ADCON2 PIC18F2XK20 PIC18F4XK20 0-00 0000 0-00 0000 u-uu uuuu CCPR1H PIC18F2XK20 PIC18F4XK20 xxxx xxxx uuuu uuuu uuuu uuuu CCPR1L PIC18F2XK20 PIC18F4XK20 xxxx xxxx uuuu uuuu uuuu uuuu CCP1CON PIC18F2XK20 PIC18F4XK20 0000 0000 0000 0000 uuuu uuuu CCPR2H PIC18F2XK20 PIC18F4XK20 xxxx xxxx uuuu uuuu uuuu uuuu CCPR2L PIC18F2XK20 PIC18F4XK20 xxxx xxxx uuuu uuuu uuuu uuuu CCP2CON PIC18F2XK20 PIC18F4XK20 --00 0000 --00 0000 --uu uuuu PSTRCON PIC18F2XK20 PIC18F4XK20 ---0 0001 ---0 0001 ---u uuuu BAUDCTL PIC18F2XK20 PIC18F4XK20 0100 0-00 0100 0-00 uuuu u-uu PWM1CON PIC18F2XK20 PIC18F4XK20 0000 0000 0000 0000 uuuu uuuu ECCP1AS PIC18F2XK20 PIC18F4XK20 0000 0000 0000 0000 uuuu uuuu CVRCON PIC18F2XK20 PIC18F4XK20 0000 0000 0000 0000 uuuu uuuu CVRCON2 PIC18F2XK20 PIC18F4XK20 00-- ---- 00-- ---- uu-- ---- TMR3H PIC18F2XK20 PIC18F4XK20 xxxx xxxx uuuu uuuu uuuu uuuu TMR3L PIC18F2XK20 PIC18F4XK20 xxxx xxxx uuuu uuuu uuuu uuuu T3CON PIC18F2XK20 PIC18F4XK20 0000 0000 uuuu uuuu uuuu uuuu SPBRGH PIC18F2XK20 PIC18F4XK20 0000 0000 0000 0000 uuuu uuuu SPBRG PIC18F2XK20 PIC18F4XK20 0000 0000 0000 0000 uuuu uuuu RCREG PIC18F2XK20 PIC18F4XK20 0000 0000 0000 0000 uuuu uuuu TXREG PIC18F2XK20 PIC18F4XK20 0000 0000 0000 0000 uuuu uuuu TXSTA PIC18F2XK20 PIC18F4XK20 0000 0010 0000 0010 uuuu uuuu RCSTA PIC18F2XK20 PIC18F4XK20 0000 000x 0000 000x uuuu uuuu EEADR PIC18F2XK20 PIC18F4XK20 0000 0000 0000 0000 uuuu uuuu EEADRH PIC18F26K20 PIC18F46K20 ---- --00 ---- --00 ---- --uu EEDATA PIC18F2XK20 PIC18F4XK20 0000 0000 0000 0000 uuuu uuuu EECON2 PIC18F2XK20 PIC18F4XK20 0000 0000 0000 0000 0000 0000 PIC18F2XK20 PIC18F4XK20 xx-0 x000 uu-0 u000 uu-0 u000 EECON1 Legend: Note 1: 2: 3: 4: 5: 6: u = unchanged, x = unknown, - = unimplemented bit, read as ‘0’, q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device. One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up). When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h). When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack. See Table 4-3 for Reset value for specific condition. Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read ‘0’. All bits of the ANSELH register initialize to ‘0’ if the PBADEN bit of CONFIG3H is ‘0’. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 59 PIC18F2XK20/4XK20 TABLE 4-4: Register INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED) Power-on Reset, Brown-out Reset Applicable Devices MCLR Resets, WDT Reset, RESET Instruction, Stack Resets Wake-up via WDT or Interrupt IPR2 PIC18F2XK20 PIC18F4XK20 1111 1111 1111 1111 uuuu uuuu PIR2 PIC18F2XK20 PIC18F4XK20 0000 0000 0000 0000 uuuu uuuu(1) PIE2 PIC18F2XK20 PIC18F4XK20 0000 0000 0000 0000 uuuu uuuu PIC18F2XK20 PIC18F4XK20 1111 1111 1111 1111 uuuu uuuu PIC18F2XK20 PIC18F4XK20 -111 1111 -111 1111 -uuu uuuu PIC18F2XK20 PIC18F4XK20 0000 0000 0000 0000 uuuu uuuu(1) PIC18F2XK20 PIC18F4XK20 -000 0000 -000 0000 -uuu uuuu(1) PIC18F2XK20 PIC18F4XK20 0000 0000 0000 0000 uuuu uuuu PIC18F2XK20 PIC18F4XK20 -000 0000 -000 0000 -uuu uuuu OSCTUNE PIC18F2XK20 PIC18F4XK20 0000 0000 0000 0000 uuuu uuuu TRISE IPR1 PIR1 PIE1 PIC18F2XK20 PIC18F4XK20 ---- -111 ---- -111 ---- -uuu TRISD PIC18F2XK20 PIC18F4XK20 1111 1111 1111 1111 uuuu uuuu TRISC PIC18F2XK20 PIC18F4XK20 1111 1111 1111 1111 uuuu uuuu TRISB PIC18F2XK20 PIC18F4XK20 1111 1111 (5) 1111 1111 (5) uuuu uuuu (5) uuuu uuuu(5) TRISA PIC18F2XK20 PIC18F4XK20 1111 1111 LATE PIC18F2XK20 PIC18F4XK20 ---- -xxx ---- -uuu ---- -uuu LATD PIC18F2XK20 PIC18F4XK20 xxxx xxxx uuuu uuuu uuuu uuuu LATC PIC18F2XK20 PIC18F4XK20 xxxx xxxx uuuu uuuu uuuu uuuu LATB PIC18F2XK20 PIC18F4XK20 xxxx xxxx uuuu uuuu uuuu uuuu PIC18F2XK20 PIC18F4XK20 xxxx xxxx(5) uuuu uuuu(5) uuuu uuuu(5) PIC18F2XK20 PIC18F4XK20 ---- x000 ---- u000 ---- uuuu PIC18F2XK20 PIC18F4XK20 ---- x--- ---- u--- ---- u--- LATA(5) PORTE PORTD 1111 1111 PIC18F2XK20 PIC18F4XK20 xxxx xxxx uuuu uuuu uuuu uuuu PORTC PIC18F2XK20 PIC18F4XK20 xxxx xxxx uuuu uuuu uuuu uuuu PORTB PIC18F2XK20 PIC18F4XK20 xxx0 0000 (5) PORTA PIC18F2XK20 PIC18F4XK20 ANSELH(6) xx0x 0000 uuu0 0000 (5) uu0u 0000 uuuu uuuu (5) uuuu uuuu(5) PIC18F2XK20 PIC18F4XK20 ---1 1111 ---1 1111 ---u uuuu ANSEL PIC18F2XK20 PIC18F4XK20 1111 1111 1111 1111 uuuu uuuu IOCB PIC18F2XK20 PIC18F4XK20 0000 ---- 0000 ---- uuuu ---- WPUB PIC18F2XK20 PIC18F4XK20 1111 1111 1111 1111 uuuu uuuu CM1CON0 PIC18F2XK20 PIC18F4XK20 0000 0000 0000 0000 uuuu uuuu PIC18F2XK20 PIC18F4XK20 0000 0000 0000 0000 uuuu uuuu CM2CON0 Legend: Note 1: 2: 3: 4: 5: 6: u = unchanged, x = unknown, - = unimplemented bit, read as ‘0’, q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device. One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up). When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h). When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack. See Table 4-3 for Reset value for specific condition. Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read ‘0’. All bits of the ANSELH register initialize to ‘0’ if the PBADEN bit of CONFIG3H is ‘0’. DS41303B-page 60 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 TABLE 4-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED) Applicable Devices Power-on Reset, Brown-out Reset MCLR Resets, WDT Reset, RESET Instruction, Stack Resets Wake-up via WDT or Interrupt CM2CON1 PIC18F2XK20 PIC18F4XK20 0000 ---- 0000 ---- uuuu ---- SLRCON PIC18F2XK20 PIC18F4XK20 ---1 1111 ---1 1111 ---u uuuu PIC18F2XK20 PIC18F4XK20 1111 1111 1111 1111 uuuu uuuu Register SSPMSK Legend: Note 1: 2: 3: 4: 5: 6: u = unchanged, x = unknown, - = unimplemented bit, read as ‘0’, q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device. One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up). When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h). When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack. See Table 4-3 for Reset value for specific condition. Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read ‘0’. All bits of the ANSELH register initialize to ‘0’ if the PBADEN bit of CONFIG3H is ‘0’. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 61 PIC18F2XK20/4XK20 NOTES: DS41303B-page 62 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 5.0 MEMORY ORGANIZATION 5.1 Program Memory Organization PIC18 microcontrollers implement a 21-bit program counter, which is capable of addressing a 2-Mbyte program memory space. Accessing a location between the upper boundary of the physically implemented memory and the 2-Mbyte address will return all ‘0’s (a NOP instruction). There are three types of memory in PIC18 Enhanced microcontroller devices: • Program Memory • Data RAM • Data EEPROM As Harvard architecture devices, the data and program memories use separate busses; this allows for concurrent access of the two memory spaces. The data EEPROM, for practical purposes, can be regarded as a peripheral device, since it is addressed and accessed through a set of control registers. This family of devices contain the following: • PIC18F23K20, PIC18F43K20: 8 Kbytes of Flash Memory, up to 4,096 single-word instructions • PIC18F24K20, PIC18F44K20: 16 Kbytes of Flash Memory, up to 8,192 single-word instructions • PIC18F25K20, PIC18F45K20: 32 Kbytes of Flash Memory, up to 16,384 single-word instructions • PIC18F26K20, PIC18F46K20: 64 Kbytes of Flash Memory, up to 37,768 single-word instructions Additional detailed information on the operation of the Flash program memory is provided in Section 6.0 “Flash Program Memory”. Data EEPROM is discussed separately in Section 7.0 “Data EEPROM Memory”. PIC18 devices have two interrupt vectors. The Reset vector address is at 0000h and the interrupt vector addresses are at 0008h and 0018h. The program memory map for PIC18F2XK20/4XK20 devices is shown in Figure 5-1. Memory block details are shown in Figure 23-2. FIGURE 5-1: PROGRAM MEMORY MAP AND STACK FOR PIC18F2XK20/4XK20 DEVICES PC<20:0> 21 CALL,RCALL,RETURN RETFIE,RETLW Stack Level 1 • • • Stack Level 31 2000h 0000h High Priority Interrupt Vector 0008h Low Priority Interrupt Vector 0018h On-Chip Program Memory 3FFFh 4000h PIC18F23K20/ 43K20 On-Chip Program Memory User Memory Space On-Chip Program Memory 1FFFh Reset Vector On-Chip Program Memory PIC18F24K20/ 44K20 7FFFh 8000h PIC18F25K20/ 45K20 Read ‘0’ Read ‘0’ FFFFh 10000h Read ‘0’ PIC18F26K20/ 46K20 Read ‘0’ © 2007 Microchip Technology Inc. Advance Information 1FFFFFh 200000h DS41303B-page 63 PIC18F2XK20/4XK20 5.1.1 PROGRAM COUNTER The Program Counter (PC) specifies the address of the instruction to fetch for execution. The PC is 21 bits wide and is contained in three separate 8-bit registers. The low byte, known as the PCL register, is both readable and writable. The high byte, or PCH register, contains the PC<15:8> bits; it is not directly readable or writable. Updates to the PCH register are performed through the PCLATH register. The upper byte is called PCU. This register contains the PC<20:16> bits; it is also not directly readable or writable. Updates to the PCU register are performed through the PCLATU register. The contents of PCLATH and PCLATU are transferred to the program counter by any operation that writes PCL. Similarly, the upper two bytes of the program counter are transferred to PCLATH and PCLATU by an operation that reads PCL. This is useful for computed offsets to the PC (see Section 5.1.4.1 “Computed GOTO”). The PC addresses bytes in the program memory. To prevent the PC from becoming misaligned with word instructions, the Least Significant bit of PCL is fixed to a value of ‘0’. The PC increments by 2 to address sequential instructions in the program memory. The CALL, RCALL, GOTO and program branch instructions write to the program counter directly. For these instructions, the contents of PCLATH and PCLATU are not transferred to the program counter. 5.1.2 RETURN ADDRESS STACK The return address stack allows any combination of up to 31 program calls and interrupts to occur. The PC is pushed onto the stack when a CALL or RCALL instruction is executed or an interrupt is Acknowledged. The PC value is pulled off the stack on a RETURN, RETLW or a RETFIE instruction. PCLATU and PCLATH are not affected by any of the RETURN or CALL instructions. FIGURE 5-2: The stack operates as a 31-word by 21-bit RAM and a 5-bit Stack Pointer, STKPTR. The stack space is not part of either program or data space. The Stack Pointer is readable and writable and the address on the top of the stack is readable and writable through the Top-ofStack (TOS) Special File Registers. Data can also be pushed to, or popped from the stack, using these registers. A CALL type instruction causes a push onto the stack; the Stack Pointer is first incremented and the location pointed to by the Stack Pointer is written with the contents of the PC (already pointing to the instruction following the CALL). A RETURN type instruction causes a pop from the stack; the contents of the location pointed to by the STKPTR are transferred to the PC and then the Stack Pointer is decremented. The Stack Pointer is initialized to ‘00000’ after all Resets. There is no RAM associated with the location corresponding to a Stack Pointer value of ‘00000’; this is only a Reset value. Status bits indicate if the stack is full or has overflowed or has underflowed. 5.1.2.1 Top-of-Stack Access Only the top of the return address stack (TOS) is readable and writable. A set of three registers, TOSU:TOSH:TOSL, hold the contents of the stack location pointed to by the STKPTR register (Figure 5-2). This allows users to implement a software stack if necessary. After a CALL, RCALL or interrupt, the software can read the pushed value by reading the TOSU:TOSH:TOSL registers. These values can be placed on a user defined software stack. At return time, the software can return these values to TOSU:TOSH:TOSL and do a return. The user must disable the global interrupt enable bits while accessing the stack to prevent inadvertent stack corruption. RETURN ADDRESS STACK AND ASSOCIATED REGISTERS Return Address Stack <20:0> 11111 11110 11101 Top-of-Stack Registers TOSU 00h TOSH 1Ah DS41303B-page 64 STKPTR<4:0> 00010 TOSL 34h Top-of-Stack Stack Pointer 001A34h 000D58h 00011 00010 00001 00000 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 5.1.2.2 Return Stack Pointer (STKPTR) When the stack has been popped enough times to unload the stack, the next pop will return a value of zero to the PC and sets the STKUNF bit, while the Stack Pointer remains at zero. The STKUNF bit will remain set until cleared by software or until a POR occurs. The STKPTR register (Register 5-1) contains the Stack Pointer value, the STKFUL (stack full) Status bit and the STKUNF (stack underflow) Status bits. The value of the Stack Pointer can be 0 through 31. The Stack Pointer increments before values are pushed onto the stack and decrements after values are popped off the stack. On Reset, the Stack Pointer value will be zero. The user may read and write the Stack Pointer value. This feature can be used by a Real-Time Operating System (RTOS) for return stack maintenance. Note: After the PC is pushed onto the stack 31 times (without popping any values off the stack), the STKFUL bit is set. The STKFUL bit is cleared by software or by a POR. 5.1.2.3 PUSH and POP Instructions Since the Top-of-Stack is readable and writable, the ability to push values onto the stack and pull values off the stack without disturbing normal program execution is a desirable feature. The PIC18 instruction set includes two instructions, PUSH and POP, that permit the TOS to be manipulated under software control. TOSU, TOSH and TOSL can be modified to place data or a return address on the stack. The action that takes place when the stack becomes full depends on the state of the STVREN (Stack Overflow Reset Enable) Configuration bit. (Refer to Section 23.1 “Configuration Bits” for a description of the device Configuration bits.) If STVREN is set (default), the 31st push will push the (PC + 2) value onto the stack, set the STKFUL bit and reset the device. The STKFUL bit will remain set and the Stack Pointer will be set to zero. The PUSH instruction places the current PC value onto the stack. This increments the Stack Pointer and loads the current PC value onto the stack. If STVREN is cleared, the STKFUL bit will be set on the 31st push and the Stack Pointer will increment to 31. Any additional pushes will not overwrite the 31st push and STKPTR will remain at 31. REGISTER 5-1: Returning a value of zero to the PC on an underflow has the effect of vectoring the program to the Reset vector, where the stack conditions can be verified and appropriate actions can be taken. This is not the same as a Reset, as the contents of the SFRs are not affected. The POP instruction discards the current TOS by decrementing the Stack Pointer. The previous value pushed onto the stack then becomes the TOS value. STKPTR: STACK POINTER REGISTER R/C-0 R/C-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 STKFUL(1) STKUNF(1) — SP4 SP3 SP2 SP1 SP0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented C = Clearable only bit -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 STKFUL: Stack Full Flag bit(1) 1 = Stack became full or overflowed 0 = Stack has not become full or overflowed bit 6 STKUNF: Stack Underflow Flag bit(1) 1 = Stack underflow occurred 0 = Stack underflow did not occur bit 5 Unimplemented: Read as ‘0’ bit 4-0 SP<4:0>: Stack Pointer Location bits Note 1: Bit 7 and bit 6 are cleared by user software or by a POR. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 65 PIC18F2XK20/4XK20 5.1.2.4 Stack Full and Underflow Resets Device Resets on stack overflow and stack underflow conditions are enabled by setting the STVREN bit in Configuration Register 4L. When STVREN is set, a full or underflow will set the appropriate STKFUL or STKUNF bit and then cause a device Reset. When STVREN is cleared, a full or underflow condition will set the appropriate STKFUL or STKUNF bit but not cause a device Reset. The STKFUL or STKUNF bits are cleared by the user software or a Power-on Reset. 5.1.3 FAST REGISTER STACK A fast register stack is provided for the Status, WREG and BSR registers, to provide a “fast return” option for interrupts. The stack for each register is only one level deep and is neither readable nor writable. It is loaded with the current value of the corresponding register when the processor vectors for an interrupt. All interrupt sources will push values into the stack registers. The values in the registers are then loaded back into their associated registers if the RETFIE, FAST instruction is used to return from the interrupt. 5.1.4 LOOK-UP TABLES IN PROGRAM MEMORY There may be programming situations that require the creation of data structures, or look-up tables, in program memory. For PIC18 devices, look-up tables can be implemented in two ways: • Computed GOTO • Table Reads 5.1.4.1 Computed GOTO A computed GOTO is accomplished by adding an offset to the program counter. An example is shown in Example 5-2. A look-up table can be formed with an ADDWF PCL instruction and a group of RETLW nn instructions. The W register is loaded with an offset into the table before executing a call to that table. The first instruction of the called routine is the ADDWF PCL instruction. The next instruction executed will be one of the RETLW nn instructions that returns the value ‘nn’ to the calling function. If both low and high priority interrupts are enabled, the stack registers cannot be used reliably to return from low priority interrupts. If a high priority interrupt occurs while servicing a low priority interrupt, the stack register values stored by the low priority interrupt will be overwritten. In these cases, users must save the key registers by software during a low priority interrupt. The offset value (in WREG) specifies the number of bytes that the program counter should advance and should be multiples of 2 (LSb = 0). If interrupt priority is not used, all interrupts may use the fast register stack for returns from interrupt. If no interrupts are used, the fast register stack can be used to restore the Status, WREG and BSR registers at the end of a subroutine call. To use the fast register stack for a subroutine call, a CALL label, FAST instruction must be executed to save the Status, WREG and BSR registers to the fast register stack. A RETURN, FAST instruction is then executed to restore these registers from the fast register stack. EXAMPLE 5-2: Example 5-1 shows a source code example that uses the fast register stack during a subroutine call and return. EXAMPLE 5-1: CALL SUB1, FAST FAST REGISTER STACK CODE EXAMPLE ;STATUS, WREG, BSR ;SAVED IN FAST REGISTER ;STACK • • • • RETURN, FAST SUB1 DS41303B-page 66 ;RESTORE VALUES SAVED ;IN FAST REGISTER STACK In this method, only one data byte may be stored in each instruction location and room on the return address stack is required. ORG TABLE MOVF CALL nn00h ADDWF RETLW RETLW RETLW . . . 5.1.4.2 COMPUTED GOTO USING AN OFFSET VALUE OFFSET, W TABLE PCL nnh nnh nnh Table Reads and Table Writes A better method of storing data in program memory allows two bytes of data to be stored in each instruction location. Look-up table data may be stored two bytes per program word by using table reads and writes. The Table Pointer (TBLPTR) register specifies the byte address and the Table Latch (TABLAT) register contains the data that is read from or written to program memory. Data is transferred to or from program memory one byte at a time. Table read and table write operations are discussed further in Section 6.1 “Table Reads and Table Writes”. Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 5.2 5.2.2 PIC18 Instruction Cycle 5.2.1 An “Instruction Cycle” consists of four Q cycles: Q1 through Q4. The instruction fetch and execute are pipelined in such a manner that a fetch takes one instruction cycle, while the decode and execute take another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO), then two cycles are required to complete the instruction (Example 5-3). CLOCKING SCHEME The microcontroller clock input, whether from an internal or external source, is internally divided by four to generate four non-overlapping quadrature clocks (Q1, Q2, Q3 and Q4). Internally, the program counter is incremented on every Q1; the instruction is fetched from the program memory and latched into the instruction register during Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 5-3. FIGURE 5-3: INSTRUCTION FLOW/PIPELINING A fetch cycle begins with the Program Counter (PC) incrementing in Q1. In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write). CLOCK/INSTRUCTION CYCLE Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 OSC1 Q1 Q2 Internal Phase Clock Q3 Q4 PC PC PC + 2 PC + 4 OSC2/CLKOUT (RC mode) Execute INST (PC – 2) Fetch INST (PC) EXAMPLE 5-3: TCY0 TCY1 Fetch 1 Execute 1 2. MOVWF PORTB 4. BSF Execute INST (PC + 2) Fetch INST (PC + 4) INSTRUCTION PIPELINE FLOW 1. MOVLW 55h 3. BRA Execute INST (PC) Fetch INST (PC + 2) SUB_1 PORTA, BIT3 (Forced NOP) Fetch 2 TCY2 TCY3 TCY4 TCY5 Execute 2 Fetch 3 Execute 3 Fetch 4 Flush (NOP) Fetch SUB_1 Execute SUB_1 5. Instruction @ address SUB_1 All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is “flushed” from the pipeline while the new instruction is being fetched and then executed. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 67 PIC18F2XK20/4XK20 5.2.3 INSTRUCTIONS IN PROGRAM MEMORY The program memory is addressed in bytes. Instructions are stored as either two bytes or four bytes in program memory. The Least Significant Byte of an instruction word is always stored in a program memory location with an even address (LSb = 0). To maintain alignment with instruction boundaries, the PC increments in steps of 2 and the LSb will always read ‘0’ (see Section 5.1.1 “Program Counter”). Figure 5-4 shows an example of how instruction words are stored in the program memory. FIGURE 5-4: The CALL and GOTO instructions have the absolute program memory address embedded into the instruction. Since instructions are always stored on word boundaries, the data contained in the instruction is a word address. The word address is written to PC<20:1>, which accesses the desired byte address in program memory. Instruction #2 in Figure 5-4 shows how the instruction GOTO 0006h is encoded in the program memory. Program branch instructions, which encode a relative address offset, operate in the same manner. The offset value stored in a branch instruction represents the number of single-word instructions that the PC will be offset by. Section 24.0 “Instruction Set Summary” provides further details of the instruction set. INSTRUCTIONS IN PROGRAM MEMORY LSB = 1 LSB = 0 0Fh EFh F0h C1h F4h 55h 03h 00h 23h 56h Program Memory Byte Locations → 5.2.4 Instruction 1: Instruction 2: MOVLW GOTO 055h 0006h Instruction 3: MOVFF 123h, 456h TWO-WORD INSTRUCTIONS The standard PIC18 instruction set has four two-word instructions: CALL, MOVFF, GOTO and LSFR. In all cases, the second word of the instruction always has ‘1111’ as its four Most Significant bits; the other 12 bits are literal data, usually a data memory address. The use of ‘1111’ in the 4 MSbs of an instruction specifies a special form of NOP. If the instruction is executed in proper sequence – immediately after the first word – the data in the second word is accessed EXAMPLE 5-4: Word Address ↓ 000000h 000002h 000004h 000006h 000008h 00000Ah 00000Ch 00000Eh 000010h 000012h 000014h and used by the instruction sequence. If the first word is skipped for some reason and the second word is executed by itself, a NOP is executed instead. This is necessary for cases when the two-word instruction is preceded by a conditional instruction that changes the PC. Example 5-4 shows how this works. Note: See Section 5.6 “PIC18 Instruction Execution and the Extended Instruction Set” for information on two-word instructions in the extended instruction set. TWO-WORD INSTRUCTIONS CASE 1: Object Code 0110 0110 0000 1100 0001 0010 1111 0100 0101 0010 0100 0000 0000 0011 0110 0000 Source Code TSTFSZ REG1 ; is RAM location 0? MOVFF REG1, REG2 ; No, skip this word ; Execute this word as a NOP ADDWF REG3 ; continue code 0000 0011 0110 0000 Source Code TSTFSZ REG1 ; is RAM location 0? MOVFF REG1, REG2 ; Yes, execute this word ; 2nd word of instruction ADDWF REG3 ; continue code CASE 2: Object Code 0110 0110 0000 1100 0001 0010 1111 0100 0101 0010 0100 0000 DS41303B-page 68 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 5.3 Note: Data Memory Organization The operation of some aspects of data memory are changed when the PIC18 extended instruction set is enabled. See Section 5.5 “Data Memory and the Extended Instruction Set” for more information. The data memory in PIC18 devices is implemented as static RAM. Each register in the data memory has a 12-bit address, allowing up to 4096 bytes of data memory. The memory space is divided into as many as 16 banks that contain 256 bytes each. Figures 5-5 through 5-7 show the data memory organization for the PIC18F2XK20/4XK20 devices. The data memory contains Special Function Registers (SFRs) and General Purpose Registers (GPRs). The SFRs are used for control and status of the controller and peripheral functions, while GPRs are used for data storage and scratchpad operations in the user’s application. Any read of an unimplemented location will read as ‘0’s. The instruction set and architecture allow operations across all banks. The entire data memory may be accessed by Direct, Indirect or Indexed Addressing modes. Addressing modes are discussed later in this subsection. To ensure that commonly used registers (SFRs and select GPRs) can be accessed in a single cycle, PIC18 devices implement an Access Bank. This is a 256-byte memory space that provides fast access to SFRs and the lower portion of GPR Bank 0 without using the Bank Select Register (BSR). Section 5.3.2 “Access Bank” provides a detailed description of the Access RAM. 5.3.1 BANK SELECT REGISTER (BSR) Large areas of data memory require an efficient addressing scheme to make rapid access to any address possible. Ideally, this means that an entire address does not need to be provided for each read or write operation. For PIC18 devices, this is accomplished with a RAM banking scheme. This divides the memory space into 16 contiguous banks of 256 bytes. Depending on the instruction, each location can be addressed directly by its full 12-bit address, or an 8-bit low-order address and a 4-bit Bank Pointer. Most instructions in the PIC18 instruction set make use of the Bank Pointer, known as the Bank Select Register (BSR). This SFR holds the 4 Most Significant bits of a location’s address; the instruction itself includes the 8 Least Significant bits. Only the four lower bits of the BSR are implemented (BSR<3:0>). The upper four bits are unused; they will always read ‘0’ and cannot be written to. The BSR can be loaded directly by using the MOVLB instruction. The value of the BSR indicates the bank in data memory; the 8 bits in the instruction show the location in the bank and can be thought of as an offset from the bank’s lower boundary. The relationship between the BSR’s value and the bank division in data memory is shown in Figures 5-5 through 5-7. Since up to 16 registers may share the same low-order address, the user must always be careful to ensure that the proper bank is selected before performing a data read or write. For example, writing what should be program data to an 8-bit address of F9h while the BSR is 0Fh will end up resetting the program counter. While any bank can be selected, only those banks that are actually implemented can be read or written to. Writes to unimplemented banks are ignored, while reads from unimplemented banks will return ‘0’s. Even so, the STATUS register will still be affected as if the operation was successful. The data memory maps in Figures 5-5 through 5-7 indicate which banks are implemented. In the core PIC18 instruction set, only the MOVFF instruction fully specifies the 12-bit address of the source and target registers. This instruction ignores the BSR completely when it executes. All other instructions include only the low-order address as an operand and must use either the BSR or the Access Bank to locate their target registers. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 69 PIC18F2XK20/4XK20 FIGURE 5-5: DATA MEMORY MAP FOR PIC18F23K20/43K20 DEVICES BSR<3:0> = 0000 00h Access RAM FFh 00h GPR Bank 0 = 0001 = 0011 = 0100 = 0101 = 0110 = 0111 = 1000 = 1001 = 1010 = 1011 = 1100 = 1101 = 1110 = 1111 DS41303B-page 70 000h 05Fh 060h 0FFh 100h GPR Bank 1 = 0010 When ‘a’ = 0: Data Memory Map FFh 00h 1FFh 200h FFh 00h 2FFh 300h FFh 00h 3FFh 400h FFh 00h 4FFh 500h FFh 00h 5FFh 600h FFh 00h 6FFh 700h The BSR is ignored and the Access Bank is used. The first 96 bytes are general purpose RAM (from Bank 0). The second 160 bytes are Special Function Registers (from Bank 15). Bank 2 Bank 3 Bank 4 Bank 5 When ‘a’ = 1: The BSR specifies the Bank used by the instruction. Bank 6 Bank 7 Bank 8 Bank 9 7FFh 800h FFh 00h FFh 00h Unused Read 00h 9FFh A00h FFh 00h AFFh B00h FFh 00h BFFh C00h FFh Bank 13 00h CFFh D00h FFh 00h DFFh E00h Bank 11 Bank 12 Access RAM Low 00h 5Fh Access RAM High 60h (SFRs) FFh 8FFh 900h FFh 00h Bank 10 Access Bank Bank 14 FFh 00h Unused FFh SFR Bank 15 EFFh F00h F5Fh F60h FFFh Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 FIGURE 5-6: DATA MEMORY MAP FOR PIC18F24K20/44K20 DEVICES BSR<3:0> = 0000 00h Access RAM FFh 00h GPR Bank 0 = 0001 = 0011 = 0100 = 0101 = 0110 = 0111 = 1000 = 1001 = 1010 = 1011 = 1100 = 1101 = 1110 = 1111 1FFh 200h FFh 00h Bank 2 Bank 3 Bank 4 Bank 5 000h 05Fh 060h 0FFh 100h GPR Bank 1 = 0010 When ‘a’ = 0: Data Memory Map The BSR is ignored and the Access Bank is used. The first 96 bytes are general purpose RAM (from Bank 0). The second 160 bytes are Special Function Registers (from Bank 15). GPR FFh 00h 2FFh 300h FFh 00h 3FFh 400h FFh 00h 4FFh 500h FFh 00h 5FFh 600h FFh 00h 6FFh 700h When ‘a’ = 1: The BSR specifies the Bank used by the instruction. Bank 6 Bank 7 Bank 8 Bank 9 7FFh 800h FFh 00h FFh 00h Unused Read 00h 9FFh A00h FFh 00h AFFh B00h FFh 00h BFFh C00h FFh Bank 13 00h CFFh D00h FFh 00h DFFh E00h Bank 11 Bank 12 Access RAM Low 00h 5Fh Access RAM High 60h (SFRs) FFh 8FFh 900h FFh 00h Bank 10 Access Bank Bank 14 FFh 00h Unused FFh SFR Bank 15 © 2007 Microchip Technology Inc. EFFh F00h F5Fh F60h FFFh Advance Information DS41303B-page 71 PIC18F2XK20/4XK20 FIGURE 5-7: DATA MEMORY MAP FOR PIC18F25K20/45K20 DEVICES BSR<3:0> = 0000 00h Access RAM FFh 00h GPR Bank 0 = 0001 = 0011 = 0100 = 0101 = 0110 = 0111 = 1000 = 1001 = 1010 = 1011 = 1100 = 1101 = 1110 = 1111 DS41303B-page 72 1FFh 200h FFh 00h Bank 2 Bank 3 Bank 4 Bank 5 000h 05Fh 060h 0FFh 100h GPR Bank 1 = 0010 When ‘a’ = 0: Data Memory Map The BSR is ignored and the Access Bank is used. The first 96 bytes are general purpose RAM (from Bank 0). The second 160 bytes are Special Function Registers (from Bank 15). GPR FFh 00h 2FFh 300h GPR 3FFh 400h FFh 00h When ‘a’ = 1: The BSR specifies the Bank used by the instruction. GPR 4FFh 500h FFh 00h GPR FFh 00h 5FFh 600h FFh 00h 6FFh 700h Bank 6 Bank 7 Bank 8 Bank 9 Bank 10 FFh 00h 7FFh 800h FFh 00h 8FFh 900h FFh 00h Unused Read 00h AFFh B00h FFh 00h BFFh C00h FFh Bank 13 00h CFFh D00h FFh 00h DFFh E00h Bank 12 Access RAM Low 00h 5Fh Access RAM High 60h (SFRs) FFh 9FFh A00h FFh 00h Bank 11 Access Bank Bank 14 FFh 00h Unused FFh SFR Bank 15 EFFh F00h F5Fh F60h FFFh Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 FIGURE 5-8: DATA MEMORY MAP FOR PIC18F26K20/46K20 DEVICES BSR<3:0> = 0000 00h Access RAM FFh 00h GPR Bank 0 = 0001 = 0011 = 0100 = 0101 = 0110 = 0111 = 1000 = 1001 = 1010 = 1011 = 1100 = 1101 = 1110 = 1111 1FFh 200h FFh 00h Bank 2 Bank 3 Bank 4 Bank 5 2FFh 300h GPR 3FFh 400h FFh 00h Bank 12 The BSR specifies the Bank used by the instruction. 5FFh 600h GPR 6FFh 700h GPR 7FFh 800h FFh 00h GPR Access Bank Access RAM Low 00h 5Fh Access RAM High 60h (SFRs) FFh 8FFh 900h FFh 00h GPR 9FFh A00h FFh 00h GPR AFFh B00h FFh 00h GPR FFh 00h FFh Bank 13 00h BFFh C00h GPR CFFh D00h GPR DFFh E00h FFh 00h GPR Bank 14 FFh 00h GPR FFh SFR Bank 15 © 2007 Microchip Technology Inc. When ‘a’ = 1: GPR Bank 7 Bank 11 The second 160 bytes are Special Function Registers (from Bank 15). 4FFh 500h FFh 00h Bank 10 The first 96 bytes are general purpose RAM (from Bank 0). GPR FFh 00h Bank 6 Bank 9 The BSR is ignored and the Access Bank is used. GPR FFh 00h FFh 00h Bank 8 000h 05Fh 060h 0FFh 100h GPR Bank 1 = 0010 When ‘a’ = 0: Data Memory Map EFFh F00h F5Fh F60h FFFh Advance Information DS41303B-page 73 PIC18F2XK20/4XK20 FIGURE 5-9: USE OF THE BANK SELECT REGISTER (DIRECT ADDRESSING) 0 Data Memory BSR(1) 7 0 0 0 0 0 0 1 1 000h 00h Bank 0 100h Bank 1 Bank Select(2) FFh 00h From Opcode(2) 7 1 1 1 1 1 1 0 1 1 FFh 00h 200h Bank 2 300h FFh 00h Bank 3 through Bank 13 FFh 00h E00h Bank 14 F00h Bank 15 FFFh Note 1: 2: FFh 00h FFh The Access RAM bit of the instruction can be used to force an override of the selected bank (BSR<3:0>) to the registers of the Access Bank. The MOVFF instruction embeds the entire 12-bit address in the instruction. DS41303B-page 74 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 5.3.2 ACCESS BANK 5.3.3 While the use of the BSR with an embedded 8-bit address allows users to address the entire range of data memory, it also means that the user must always ensure that the correct bank is selected. Otherwise, data may be read from or written to the wrong location. This can be disastrous if a GPR is the intended target of an operation, but an SFR is written to instead. Verifying and/or changing the BSR for each read or write to data memory can become very inefficient. To streamline access for the most commonly used data memory locations, the data memory is configured with an Access Bank, which allows users to access a mapped block of memory without specifying a BSR. The Access Bank consists of the first 96 bytes of memory (00h-5Fh) in Bank 0 and the last 160 bytes of memory (60h-FFh) in Block 15. The lower half is known as the “Access RAM” and is composed of GPRs. This upper half is also where the device’s SFRs are mapped. These two areas are mapped contiguously in the Access Bank and can be addressed in a linear fashion by an 8-bit address (Figures 5-5 through 5-7). The Access Bank is used by core PIC18 instructions that include the Access RAM bit (the ‘a’ parameter in the instruction). When ‘a’ is equal to ‘1’, the instruction uses the BSR and the 8-bit address included in the opcode for the data memory address. When ‘a’ is ‘0’, however, the instruction is forced to use the Access Bank address map; the current value of the BSR is ignored entirely. GENERAL PURPOSE REGISTER FILE PIC18 devices may have banked memory in the GPR area. This is data RAM, which is available for use by all instructions. GPRs start at the bottom of Bank 0 (address 000h) and grow upwards towards the bottom of the SFR area. GPRs are not initialized by a Power-on Reset and are unchanged on all other Resets. 5.3.4 SPECIAL FUNCTION REGISTERS The Special Function Registers (SFRs) are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. SFRs start at the top of data memory (FFFh) and extend downward to occupy the top portion of Bank 15 (F60h to FFFh). A list of these registers is given in Table 5-1 and Table 5-2. The SFRs can be classified into two sets: those associated with the “core” device functionality (ALU, Resets and interrupts) and those related to the peripheral functions. The Reset and interrupt registers are described in their respective chapters, while the ALU’s STATUS register is described later in this section. Registers related to the operation of a peripheral feature are described in the chapter for that peripheral. The SFRs are typically distributed among the peripherals whose functions they control. Unused SFR locations are unimplemented and read as ‘0’s. Using this “forced” addressing allows the instruction to operate on a data address in a single cycle, without updating the BSR first. For 8-bit addresses of 60h and above, this means that users can evaluate and operate on SFRs more efficiently. The Access RAM below 60h is a good place for data values that the user might need to access rapidly, such as immediate computational results or common program variables. Access RAM also allows for faster and more code efficient context saving and switching of variables. The mapping of the Access Bank is slightly different when the extended instruction set is enabled (XINST Configuration bit = 1). This is discussed in more detail in Section 5.5.3 “Mapping the Access Bank in Indexed Literal Offset Mode”. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 75 PIC18F2XK20/4XK20 TABLE 5-1: SPECIAL FUNCTION REGISTER MAP FOR PIC18F2XK20/4XK20 DEVICES Address Name Address Name Address Name Address Name FFFh TOSU FD7h TMR0H FAFh SPBRG F87h —(2) FFEh TOSH FD6h TMR0L FAEh RCREG F86h —(2) FFDh TOSL FD5h T0CON FADh TXREG F85h —(2) FFCh STKPTR FD4h —(2) FACh TXSTA F84h PORTE FFBh PCLATU FD3h OSCCON FABh RCSTA F83h PORTD(3) FFAh PCLATH FD2h HLVDCON FAAh EEADRH F82h PORTC FF9h PCL FD1h WDTCON FA9h EEADR F81h PORTB FF8h TBLPTRU FD0h RCON FA8h EEDATA F80h PORTA FF7h TBLPTRH FCFh TMR1H FA7h EECON2(1) F7Fh ANSELH FF6h TBLPTRL FCEh TMR1L FA6h EECON1 F7Eh ANSEL FF5h TABLAT FCDh T1CON FA5h —(2) F7Dh IOCB FF4h PRODH FCCh TMR2 FA4h —(2) F7Ch WPUB FF3h PRODL FCBh PR2 FA3h —(2) F7Bh CM1CON0 FF2h INTCON FCAh T2CON FA2h IPR2 F7Ah CM2CON0 FF1h INTCON2 FC9h SSPBUF FA1h PIR2 F79h CM2CON1 FF0h INTCON3 FC8h SSPADD FA0h PIE2 F78h SLRCON FEFh INDF0(1) FC7h SSPSTAT F9Fh IPR1 F77h SSPMSK FEEh POSTINC0(1) FC6h SSPCON1 F9Eh PIR1 F76h —(2) FEDh POSTDEC0(1) FC5h SSPCON2 F9Dh PIE1 F75h —(2) FECh PREINC0(1) FC4h ADRESH F9Ch —(2) F74h —(2) FEBh PLUSW0(1) FC3h ADRESL F9Bh OSCTUNE F73h —(2) FEAh FSR0H FC2h ADCON0 F9Ah —(2) F72h —(2) F71h —(2) FE9h FSR0L FC1h ADCON1 F99h —(2) FE8h WREG FC0h ADCON2 F98h —(2) F70h —(2) FE7h INDF1(1) F6Fh —(2) FE6h POSTINC1(1) FBFh CCPR1H F97h —(2) FBEh CCPR1L F96h TRISE(3) F6Eh —(2) F6Dh —(2) FE5h POSTDEC1(1) FBDh CCP1CON F95h TRISD(3) FE4h PREINC1(1) FBCh CCPR2H F94h TRISC F6Ch —(2) FE3h PLUSW1(1) FBBh CCPR2L F93h TRISB F6Bh —(2) FE2h FSR1H FBAh CCP2CON F92h TRISA F6Ah —(2) (2) FE1h FSR1L FB9h PSTRCON F91h — F69h —(2) FE0h BSR FB8h BAUDCTL F90h —(2) F68h —(2) FDFh INDF2(1) F67h —(2) FDEh POSTINC2(1) FB7h PWM1CON F8Fh —(2) FB6h ECCP1AS F8Eh —(2) F66h —(2) F65h —(2) FDDh POSTDEC2(1) FB5h CVRCON F8Dh LATE(3) FDCh PREINC2(1) FB4h CVRCON2 F8Ch LATD(3) F64h —(2) FDBh PLUSW2(1) FB3h TMR3H F8Bh LATC F63h —(2) FDAh FSR2H FB2h TMR3L F8Ah LATB F62h —(2) FD9h FSR2L FB1h T3CON F89h LATA F61h —(2) FD8h STATUS FB0h SPBRGH F88h —(2) F60h —(2) Note 1: 2: 3: This is not a physical register. Unimplemented registers are read as ‘0’. This register is not available on PIC18F2XK20 devices. DS41303B-page 76 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 TABLE 5-2: File Name TOSU REGISTER FILE SUMMARY (PIC18F2XK20/4XK20) Bit 7 Bit 6 Bit 5 — — — Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Details on page: ---0 0000 57, 64 TOSH Top-of-Stack, High Byte (TOS<15:8>) 0000 0000 57, 64 TOSL Top-of-Stack, Low Byte (TOS<7:0>) 0000 0000 57, 64 00-0 0000 57, 65 ---0 0000 57, 64 STKPTR STKFUL STKUNF — PCLATU — — — Top-of-Stack Upper Byte (TOS<20:16>) Value on POR, BOR SP4 SP3 SP2 SP1 SP0 Holding Register for PC<20:16> PCLATH Holding Register for PC<15:8> 0000 0000 57, 64 PCL PC, Low Byte (PC<7:0>) 0000 0000 57, 64 --00 0000 57, 90 TBLPTRU — — bit 21 Program Memory Table Pointer Upper Byte (TBLPTR<20:16>) TBLPTRH Program Memory Table Pointer, High Byte (TBLPTR<15:8>) 0000 0000 57, 90 TBLPTRL Program Memory Table Pointer, Low Byte (TBLPTR<7:0>) 0000 0000 57, 90 TABLAT Program Memory Table Latch 0000 0000 57, 90 PRODH Product Register, High Byte xxxx xxxx 57, 101 PRODL Product Register, Low Byte xxxx xxxx 57, 101 INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 0000 000x 57, 105 INTCON2 RBPU INTEDG0 INTEDG1 INTEDG2 — TMR0IP — RBIP 1111 -1-1 57, 106 INT2IP INT1IP — INT2IE INT1IE — INT2IF INT1IF 11-0 0-00 57, 107 INTCON3 INDF0 Uses contents of FSR0 to address data memory – value of FSR0 not changed (not a physical register) N/A 57, 82 POSTINC0 Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register) N/A 57, 82 POSTDEC0 Uses contents of FSR0 to address data memory – value of FSR0 post-decremented (not a physical register) N/A 57, 82 PREINC0 Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 57, 82 PLUSW0 Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) – value of FSR0 offset by W N/A 57, 82 FSR0H ---- 0000 57, 82 FSR0L Indirect Data Memory Address Pointer 0, Low Byte — xxxx xxxx 57, 82 WREG Working Register xxxx xxxx 57 INDF1 Uses contents of FSR1 to address data memory – value of FSR1 not changed (not a physical register) N/A 57, 82 POSTINC1 Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register) N/A 57, 82 POSTDEC1 Uses contents of FSR1 to address data memory – value of FSR1 post-decremented (not a physical register) N/A 57, 82 PREINC1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) N/A 57, 82 PLUSW1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) – value of FSR1 offset by W N/A 57, 82 ---- 0000 58, 82 FSR1H — FSR1L — — — — — — Indirect Data Memory Address Pointer 0, High Byte Indirect Data Memory Address Pointer 1, High Byte Indirect Data Memory Address Pointer 1, Low Byte BSR — — — — Bank Select Register xxxx xxxx 58, 82 ---- 0000 58, 69 INDF2 Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register) N/A 58, 82 POSTINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 58, 82 POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register) N/A 58, 82 PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 58, 82 PLUSW2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) – value of FSR2 offset by W N/A 58, 82 ---- 0000 58, 82 FSR2H — FSR2L — — — Indirect Data Memory Address Pointer 2, High Byte Indirect Data Memory Address Pointer 2, Low Byte STATUS Legend: Note 1: 2: 3: 4: 5: 6: — — — N OV Z DC C xxxx xxxx 58, 82 ---x xxxx 58, 80 x = unknown, u = unchanged, — = unimplemented, q = value depends on condition The SBOREN bit is only available when the BOREN<1:0> Configuration bits = 01; otherwise it is disabled and reads as ‘0’. See Section 4.4 “Brown-out Reset (BOR)”. These registers and/or bits are not implemented on 28-pin devices and are read as ‘0’. Reset values are shown for 40/44-pin devices; individual unimplemented bits should be interpreted as ‘-’. The PLLEN bit is only available in specific oscillator configuration; otherwise it is disabled and reads as ‘0’. See Section 2.6.2 “PLL in HFINTOSC Modes”. The RE3 bit is only available when Master Clear Reset is disabled (MCLRE Configuration bit = 0). Otherwise, RE3 reads as ‘0’. This bit is read-only. RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as ‘0’. All bits of the ANSELH register initialize to ‘0’ if the PBADEN bit of CONFIG3H is ‘0’. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 77 PIC18F2XK20/4XK20 TABLE 5-2: File Name REGISTER FILE SUMMARY (PIC18F2XK20/4XK20) (CONTINUED) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Details on page: TMR0H Timer0 Register, High Byte 0000 0000 58, 139 TMR0L Timer0 Register, Low Byte xxxx xxxx 58, 139 58, 137 T0CON TMR0ON T08BIT T0CS T0SE PSA T0PS2 T0PS1 T0PS0 1111 1111 OSCCON IDLEN IRCF2 IRCF1 IRCF0 OSTS IOFS SCS1 SCS0 0011 qq00 27, 58 HLVDCON VDIRMAG — IRVST HLVDEN HLVDL3 HLVDL2 HLVDL1 HLVDL0 0-00 0101 58, 283 — — — — — — — SWDTEN --- ---0 58, 299 IPEN SBOREN(1) — RI TO PD POR BOR 0q-1 11q0 49, 56, 114 WDTCON RCON TMR1H Timer1 Register, High Byte xxxx xxxx 58, 146 TMR1L Timer1 Register, Low Bytes xxxx xxxx 58, 146 T1CON RD16 T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC 0000 0000 58, 141 TMR2 Timer2 Register 0000 0000 58, 148 PR2 Timer2 Period Register 1111 1111 58, 148 -000 0000 58, 147 xxxx xxxx 58, 193, 194 T2CON — T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON TMR1CS TMR1ON T2CKPS1 T2CKPS0 SSPBUF SSP Receive Buffer/Transmit Register SSPADD SSP Address Register in I2C™ Slave Mode. SSP Baud Rate Reload Register in I2C Master Mode. 0000 0000 58, 194 SSPSTAT SMP CKE D/A P S R/W UA BF 0000 0000 58, 187, 196 SSPCON1 WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0 0000 0000 58, 187, 196 GCEN ACKSTAT ACKDT ACKEN RCEN PEN RSEN SEN SSPCON2 0000 0000 58, 197 ADRESH A/D Result Register, High Byte xxxx xxxx 59, 267 ADRESL A/D Result Register, Low Byte xxxx xxxx 59, 267 ADCON0 — — CHS3 CHS2 CHS1 CHS0 GO/DONE ADON --00 0000 59, 261 ADCON1 — — VCFG1 VCFG0 — — — — --00 ---- 59, 262 ADFM — ACQT2 ACQT1 ACQT0 ADCS2 ADCS1 ADCS0 ADCON2 0-00 0000 59, 263 CCPR1H Capture/Compare/PWM Register 1, High Byte xxxx xxxx 59, 154 CCPR1L Capture/Compare/PWM Register 1, Low Byte xxxx xxxx 59, 154 0000 0000 59, 165 59, 154 CCP1CON P1M1 P1M0 DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0 CCPR2H Capture/Compare/PWM Register 2, High Byte xxxx xxxx CCPR2L Capture/Compare/PWM Register 2, Low Byte xxxx xxxx 59, 154 CCP2M0 --00 0000 59, 153 CCP2CON — — DC2B1 DC2B0 CCP2M3 CCP2M2 CCP2M1 PSTRCON — — — STRSYNC STRD STRC STRB STRA ---0 0001 59, 179 BAUDCTL ABDOVF RCIDL DTRXP CKTXP BRG16 — WUE ABDEN 0100 0-00 59, 238 PWM1CON PRSEN PDC6 PDC5 PDC4 PDC3 PDC2 PDC1 PDC0 0000 0000 59, 178 ECCP1AS ECCPASE ECCPAS2 ECCPAS1 ECCPAS0 PSSAC1 PSSAC0 PSSBD1 PSSBD0 0000 0000 59, 175 CVRCON CVREN CVROE CVRR CVRSS CVR3 CVR2 CVR1 CVR0 0000 0000 59, 281 CVRCON2 FVREN FVRST — — — — — — 00-- ---- 59, 282 59, 151 TMR3H Timer3 Register, High Byte xxxx xxxx TMR3L Timer3 Register, Low Byte xxxx xxxx 59, 151 0000 0000 59, 149 T3CON RD16 Legend: Note 1: 2: 3: 4: 5: 6: T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON x = unknown, u = unchanged, — = unimplemented, q = value depends on condition The SBOREN bit is only available when the BOREN<1:0> Configuration bits = 01; otherwise it is disabled and reads as ‘0’. See Section 4.4 “Brown-out Reset (BOR)”. These registers and/or bits are not implemented on 28-pin devices and are read as ‘0’. Reset values are shown for 40/44-pin devices; individual unimplemented bits should be interpreted as ‘-’. The PLLEN bit is only available in specific oscillator configuration; otherwise it is disabled and reads as ‘0’. See Section 2.6.2 “PLL in HFINTOSC Modes”. The RE3 bit is only available when Master Clear Reset is disabled (MCLRE Configuration bit = 0). Otherwise, RE3 reads as ‘0’. This bit is read-only. RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as ‘0’. All bits of the ANSELH register initialize to ‘0’ if the PBADEN bit of CONFIG3H is ‘0’. DS41303B-page 78 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 TABLE 5-2: File Name REGISTER FILE SUMMARY (PIC18F2XK20/4XK20) (CONTINUED) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Details on page: SPBRGH EUSART Baud Rate Generator Register, High Byte 0000 0000 59, 227 SPBRG EUSART Baud Rate Generator Register, Low Byte 0000 0000 59, 227 RCREG EUSART Receive Register 0000 0000 59, 228 TXREG EUSART Transmit Register 0000 0000 59, 227 TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 0000 0010 59, 236 RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 0000 000x 59, 237 EEADR EEADR7 EEADR6 EEADR5 EEADR4 EEADR3 EEADR2 EEADR1 EEADR0 0000 0000 59, 88, 97 — — — — — — EEADR9 EEADR8 ---- --00 59, 88, 97 EEADRH EEDATA EEPROM Data Register EECON2 EEPROM Control Register 2 (not a physical register) 0000 0000 59, 88, 97 0000 0000 59, 88, 97 EECON1 EEPGD CFGS — FREE WRERR WREN WR RD IPR2 OSCFIP C1IP C2IP EEIP BCLIP HLVDIP TMR3IP CCP2IP 1111 1111 60, 113 PIR2 OSCFIF C1IF C2IF EEIF BCLIF HLVDIF TMR3IF CCP2IF 0000 0000 60, 109 xx-0 x000 59, 89, 97 PIE2 OSCFIE C1IE C2IE EEIE BCLIE HLVDIE TMR3IE CCP2IE 0000 0000 60, 111 IPR1 PSPIP(2) ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP 1111 1111 60, 112 PIR1 PSPIF(2) ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 60, 108 PIE1 PSPIE(2) ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 60, 110 OSCTUNE INTSRC PLLEN(3) TUN5 TUN4 TUN3 TUN2 TUN1 TUN0 0q00 0000 31, 60 IBF OBF IBOV PSPMODE — TRISE2 TRISE1 TRISE0 0000 -111 60, 130 TRISE(2) TRISD(2) PORTD Data Direction Control Register 1111 1111 60, 126 TRISC PORTC Data Direction Control Register 1111 1111 60, 123 TRISB PORTB Data Direction Control Register 1111 1111 60, 120 TRISA TRISA7(5) TRISA6(5) LATE(2) — — Data Direction Control Register for PORTA — — — PORTE Data Latch Register (Read and Write to Data Latch) 1111 1111 60, 117 ---- -xxx 60, 129 LATD(2) PORTD Data Latch Register (Read and Write to Data Latch) xxxx xxxx 60, 126 LATC PORTC Data Latch Register (Read and Write to Data Latch) xxxx xxxx 60, 123 LATB PORTB Data Latch Register (Read and Write to Data Latch) xxxx xxxx 60, 120 LATA PORTE LATA7(5) LATA6(5) — — PORTA Data Latch Register (Read and Write to Data Latch) — — RE3(4) xxxx xxxx 60, 117 RE2(2) RE1(2) RE0(2) ---- x000 60, 129 PORTD(2) RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0 xxxx xxxx 60, 126 PORTC RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0 xxxx xxxx 60, 123 PORTB RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 xxx0 0000 60, 120 PORTA RA7(5) RA6(5) RA5 RA4 RA3 RA2 RA1 RA0 xx0x 0000 60, 117 — — — ANS12 ANS11 ANS10 ANS9 ANS8 ---1 1111 60, 133 ANSEL ANS7(2) ANS6(2) ANS5(2) ANS4 ANS3 ANS2 ANS1 ANS0 1111 1111 60, 132 IOCB IOCB7 IOCB6 IOCB5 IOCB4 — — — — 0000 ---- 60, 120 WPUB WPUB7 WPUB6 WPUB5 WPUB4 WPUB3 WPUB2 WPUB1 WPUB0 1111 1111 60, 120 CM1CON0 C1ON C1OUT C1OE C1POL C1SP C1R C1CH1 C1CH0 0000 0000 60, 274 CM2CON0 C2ON C2OUT C2OE C2POL C2SP C2R C2CH1 C2CH0 0000 0000 60, 275 CM2CON1 MC1OUT MC2OUT C1RSEL C2RSEL — — — — 0000 ---- 61, 277 ANSELH(6) SLRCON — — — SLRE SLRD SLRC SLRB SLRA ---1 1111 61, 134 SSPMSK MSK7 MSK6 MSK5 MSK4 MSK3 MSK2 MSK1 MSK0 1111 1111 61, 204 Legend: Note 1: 2: 3: 4: 5: 6: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition The SBOREN bit is only available when the BOREN<1:0> Configuration bits = 01; otherwise it is disabled and reads as ‘0’. See Section 4.4 “Brown-out Reset (BOR)”. These registers and/or bits are not implemented on 28-pin devices and are read as ‘0’. Reset values are shown for 40/44-pin devices; individual unimplemented bits should be interpreted as ‘-’. The PLLEN bit is only available in specific oscillator configuration; otherwise it is disabled and reads as ‘0’. See Section 2.6.2 “PLL in HFINTOSC Modes”. The RE3 bit is only available when Master Clear Reset is disabled (MCLRE Configuration bit = 0). Otherwise, RE3 reads as ‘0’. This bit is read-only. RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as ‘0’. All bits of the ANSELH register initialize to ‘0’ if the PBADEN bit of CONFIG3H is ‘0’. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 79 PIC18F2XK20/4XK20 5.3.5 STATUS REGISTER The STATUS register, shown in Register 5-2, contains the arithmetic status of the ALU. As with any other SFR, it can be the operand for any instruction. If the STATUS register is the destination for an instruction that affects the Z, DC, C, OV or N bits, the results of the instruction are not written; instead, the STATUS register is updated according to the instruction performed. Therefore, the result of an instruction with the STATUS register as its destination may be different than intended. As an example, CLRF STATUS will set the Z bit and leave the remaining Status bits unchanged (‘000u u1uu’). REGISTER 5-2: U-0 For other instructions that do not affect Status bits, see the instruction set summaries in Table 24-2 and Table 24-3. Note: The C and DC bits operate as the borrow and digit borrow bits, respectively, in subtraction. STATUS: STATUS REGISTER U-0 — It is recommended that only BCF, BSF, SWAPF, MOVFF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C, DC, OV or N bits in the STATUS register. — U-0 R/W-x — N R/W-x OV R/W-x R/W-x R/W-x (1) Z DC bit 7 C(1) bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-5 Unimplemented: Read as ‘0’ bit 4 N: Negative bit This bit is used for signed arithmetic (two’s complement). It indicates whether the result was negative (ALU MSB = 1). 1 = Result was negative 0 = Result was positive bit 3 OV: Overflow bit This bit is used for signed arithmetic (two’s complement). It indicates an overflow of the 7-bit magnitude which causes the sign bit (bit 7 of the result) to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred bit 2 Z: Zero bit 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero bit 1 DC: Digit Carry/Borrow bit (ADDWF, ADDLW,SUBLW,SUBWF instructions)(1) 1 = A carry-out from the 4th low-order bit of the result occurred 0 = No carry-out from the 4th low-order bit of the result bit 0 C: Carry/Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)(1) 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two’s complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order bit of the source register. DS41303B-page 80 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 5.4 Data Addressing Modes Note: The execution of some instructions in the core PIC18 instruction set are changed when the PIC18 extended instruction set is enabled. See Section 5.5 “Data Memory and the Extended Instruction Set” for more information. While the program memory can be addressed in only one way – through the program counter – information in the data memory space can be addressed in several ways. For most instructions, the addressing mode is fixed. Other instructions may use up to three modes, depending on which operands are used and whether or not the extended instruction set is enabled. The addressing modes are: • • • • Inherent Literal Direct Indirect A few instructions, such as MOVFF, include the entire 12-bit address (either source or destination) in their opcodes. In these cases, the BSR is ignored entirely. The destination of the operation’s results is determined by the destination bit ‘d’. When ‘d’ is ‘1’, the results are stored back in the source register, overwriting its original contents. When ‘d’ is ‘0’, the results are stored in the W register. Instructions without the ‘d’ argument have a destination that is implicit in the instruction; their destination is either the target register being operated on or the W register. 5.4.3 An additional addressing mode, Indexed Literal Offset, is available when the extended instruction set is enabled (XINST Configuration bit = 1). Its operation is discussed in greater detail in Section 5.5.1 “Indexed Addressing with Literal Offset”. 5.4.1 The Access RAM bit ‘a’ determines how the address is interpreted. When ‘a’ is ‘1’, the contents of the BSR (Section 5.3.1 “Bank Select Register (BSR)”) are used with the address to determine the complete 12-bit address of the register. When ‘a’ is ‘0’, the address is interpreted as being a register in the Access Bank. Addressing that uses the Access RAM is sometimes also known as Direct Forced Addressing mode. INHERENT AND LITERAL ADDRESSING Many PIC18 control instructions do not need any argument at all; they either perform an operation that globally affects the device or they operate implicitly on one register. This addressing mode is known as Inherent Addressing. Examples include SLEEP, RESET and DAW. Other instructions work in a similar way but require an additional explicit argument in the opcode. This is known as Literal Addressing mode because they require some literal value as an argument. Examples include ADDLW and MOVLW, which respectively, add or move a literal value to the W register. Other examples include CALL and GOTO, which include a 20-bit program memory address. Indirect addressing allows the user to access a location in data memory without giving a fixed address in the instruction. This is done by using File Select Registers (FSRs) as pointers to the locations which are to be read or written. Since the FSRs are themselves located in RAM as Special File Registers, they can also be directly manipulated under program control. This makes FSRs very useful in implementing data structures, such as tables and arrays in data memory. The registers for indirect addressing are also implemented with Indirect File Operands (INDFs) that permit automatic manipulation of the pointer value with auto-incrementing, auto-decrementing or offsetting with another value. This allows for efficient code, using loops, such as the example of clearing an entire RAM bank in Example 5-5. EXAMPLE 5-5: NEXT 5.4.2 INDIRECT ADDRESSING LFSR CLRF DIRECT ADDRESSING Direct addressing specifies all or part of the source and/or destination address of the operation within the opcode itself. The options are specified by the arguments accompanying the instruction. BTFSS BRA CONTINUE HOW TO CLEAR RAM (BANK 1) USING INDIRECT ADDRESSING FSR0, 100h ; POSTINC0 ; Clear INDF ; register then ; inc pointer FSR0H, 1 ; All done with ; Bank1? NEXT ; NO, clear next ; YES, continue In the core PIC18 instruction set, bit-oriented and byteoriented instructions use some version of direct addressing by default. All of these instructions include some 8-bit literal address as their Least Significant Byte. This address specifies either a register address in one of the banks of data RAM (Section 5.3.3 “General Purpose Register File”) or a location in the Access Bank (Section 5.3.2 “Access Bank”) as the data source for the instruction. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 81 PIC18F2XK20/4XK20 5.4.3.1 FSR Registers and the INDF Operand 5.4.3.2 At the core of indirect addressing are three sets of registers: FSR0, FSR1 and FSR2. Each represents a pair of 8-bit registers, FSRnH and FSRnL. Each FSR pair holds a 12-bit value, therefore the four upper bits of the FSRnH register are not used. The 12-bit FSR value can address the entire range of the data memory in a linear fashion. The FSR register pairs, then, serve as pointers to data memory locations. In addition to the INDF operand, each FSR register pair also has four additional indirect operands. Like INDF, these are “virtual” registers which cannot be directly read or written. Accessing these registers actually accesses the location to which the associated FSR register pair points, and also performs a specific action on the FSR value. They are: • POSTDEC: accesses the location to which the FSR points, then automatically decrements the FSR by 1 afterwards • POSTINC: accesses the location to which the FSR points, then automatically increments the FSR by 1 afterwards • PREINC: automatically increments the FSR by 1, then uses the location to which the FSR points in the operation • PLUSW: adds the signed value of the W register (range of -127 to 128) to that of the FSR and uses the location to which the result points in the operation. Indirect addressing is accomplished with a set of Indirect File Operands, INDF0 through INDF2. These can be thought of as “virtual” registers: they are mapped in the SFR space but are not physically implemented. Reading or writing to a particular INDF register actually accesses its corresponding FSR register pair. A read from INDF1, for example, reads the data at the address indicated by FSR1H:FSR1L. Instructions that use the INDF registers as operands actually use the contents of their corresponding FSR as a pointer to the instruction’s target. The INDF operand is just a convenient way of using the pointer. Because indirect addressing uses a full 12-bit address, data RAM banking is not necessary. Thus, the current contents of the BSR and the Access RAM bit have no effect on determining the target address. FIGURE 5-10: FSR Registers and POSTINC, POSTDEC, PREINC and PLUSW In this context, accessing an INDF register uses the value in the associated FSR register without changing it. Similarly, accessing a PLUSW register gives the FSR value an offset by that in the W register; however, neither W nor the FSR is actually changed in the operation. Accessing the other virtual registers changes the value of the FSR register. INDIRECT ADDRESSING 000h Using an instruction with one of the indirect addressing registers as the operand.... Bank 0 ADDWF, INDF1, 1 100h Bank 1 200h Bank 2 ...uses the 12-bit address stored in the FSR pair associated with that register.... 300h FSR1H:FSR1L 7 0 x x x x 1 1 1 0 7 0 Bank 3 through Bank 13 1 1 0 0 1 1 0 0 ...to determine the data memory location to be used in that operation. E00h In this case, the FSR1 pair contains ECCh. This means the contents of location ECCh will be added to that of the W register and stored back in ECCh. Bank 14 F00h Bank 15 FFFh Data Memory DS41303B-page 82 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 Operations on the FSRs with POSTDEC, POSTINC and PREINC affect the entire register pair; that is, rollovers of the FSRnL register from FFh to 00h carry over to the FSRnH register. On the other hand, results of these operations do not change the value of any flags in the STATUS register (e.g., Z, N, OV, etc.). The PLUSW register can be used to implement a form of indexed addressing in the data memory space. By manipulating the value in the W register, users can reach addresses that are fixed offsets from pointer addresses. In some applications, this can be used to implement some powerful program control structure, such as software stacks, inside of data memory. 5.4.3.3 Operations by FSRs on FSRs Indirect addressing operations that target other FSRs or virtual registers represent special cases. For example, using an FSR to point to one of the virtual registers will not result in successful operations. As a specific case, assume that FSR0H:FSR0L contains FE7h, the address of INDF1. Attempts to read the value of the INDF1 using INDF0 as an operand will return 00h. Attempts to write to INDF1 using INDF0 as the operand will result in a NOP. On the other hand, using the virtual registers to write to an FSR pair may not occur as planned. In these cases, the value will be written to the FSR pair but without any incrementing or decrementing. Thus, writing to either the INDF2 or POSTDEC2 register will write the same value to the FSR2H:FSR2L. Since the FSRs are physical registers mapped in the SFR space, they can be manipulated through all direct operations. Users should proceed cautiously when working on these registers, particularly if their code uses indirect addressing. Similarly, operations by indirect addressing are generally permitted on all other SFRs. Users should exercise the appropriate caution that they do not inadvertently change settings that might affect the operation of the device. 5.5 Data Memory and the Extended Instruction Set Enabling the PIC18 extended instruction set (XINST Configuration bit = 1) significantly changes certain aspects of data memory and its addressing. Specifically, the use of the Access Bank for many of the core PIC18 instructions is different; this is due to the introduction of a new addressing mode for the data memory space. 5.5.1 INDEXED ADDRESSING WITH LITERAL OFFSET Enabling the PIC18 extended instruction set changes the behavior of indirect addressing using the FSR2 register pair within Access RAM. Under the proper conditions, instructions that use the Access Bank – that is, most bit-oriented and byte-oriented instructions – can invoke a form of indexed addressing using an offset specified in the instruction. This special addressing mode is known as Indexed Addressing with Literal Offset, or Indexed Literal Offset mode. When using the extended instruction set, this addressing mode requires the following: • The use of the Access Bank is forced (‘a’ = 0) and • The file address argument is less than or equal to 5Fh. Under these conditions, the file address of the instruction is not interpreted as the lower byte of an address (used with the BSR in direct addressing), or as an 8-bit address in the Access Bank. Instead, the value is interpreted as an offset value to an Address Pointer, specified by FSR2. The offset and the contents of FSR2 are added to obtain the target address of the operation. 5.5.2 INSTRUCTIONS AFFECTED BY INDEXED LITERAL OFFSET MODE Any of the core PIC18 instructions that can use direct addressing are potentially affected by the Indexed Literal Offset Addressing mode. This includes all byte-oriented and bit-oriented instructions, or almost one-half of the standard PIC18 instruction set. Instructions that only use Inherent or Literal Addressing modes are unaffected. Additionally, byte-oriented and bit-oriented instructions are not affected if they do not use the Access Bank (Access RAM bit is ‘1’), or include a file address of 60h or above. Instructions meeting these criteria will continue to execute as before. A comparison of the different possible addressing modes when the extended instruction set is enabled is shown in Figure 5-11. Those who desire to use byte-oriented or bit-oriented instructions in the Indexed Literal Offset mode should note the changes to assembler syntax for this mode. This is described in more detail in Section 24.2.1 “Extended Instruction Syntax”. What does not change is just as important. The size of the data memory space is unchanged, as well as its linear addressing. The SFR map remains the same. Core PIC18 instructions can still operate in both Direct and Indirect Addressing mode; inherent and literal instructions do not change at all. Indirect addressing with FSR0 and FSR1 also remain unchanged. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 83 PIC18F2XK20/4XK20 FIGURE 5-11: COMPARING ADDRESSING OPTIONS FOR BIT-ORIENTED AND BYTE-ORIENTED INSTRUCTIONS (EXTENDED INSTRUCTION SET ENABLED) EXAMPLE INSTRUCTION: ADDWF, f, d, a (Opcode: 0010 01da ffff ffff) When ‘a’ = 0 and f ≥ 60h: The instruction executes in Direct Forced mode. ‘f’ is interpreted as a location in the Access RAM between 060h and 0FFh. This is the same as locations F60h to FFFh (Bank 15) of data memory. Locations below 60h are not available in this addressing mode. 000h 060h Bank 0 100h 00h Bank 1 through Bank 14 60h Valid range for ‘f’ Access RAM F00h FFh Bank 15 F60h SFRs FFFh Data Memory When ‘a’ = 0 and f ≤ 5Fh: The instruction executes in Indexed Literal Offset mode. ‘f’ is interpreted as an offset to the address value in FSR2. The two are added together to obtain the address of the target register for the instruction. The address can be anywhere in the data memory space. Note that in this mode, the correct syntax is now: ADDWF [k], d where ‘k’ is the same as ‘f’. 000h 060h Bank 0 100h 001001da ffffffff Bank 1 through Bank 14 FSR2H FSR2L F00h Bank 15 F60h SFRs FFFh Data Memory When ‘a’ = 1 (all values of f): The instruction executes in Direct mode (also known as Direct Long mode). ‘f’ is interpreted as a location in one of the 16 banks of the data memory space. The bank is designated by the Bank Select Register (BSR). The address can be in any implemented bank in the data memory space. BSR 00000000 000h 060h Bank 0 100h Bank 1 through Bank 14 001001da ffffffff F00h Bank 15 F60h SFRs FFFh Data Memory DS41303B-page 84 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 5.5.3 MAPPING THE ACCESS BANK IN INDEXED LITERAL OFFSET MODE The use of Indexed Literal Offset Addressing mode effectively changes how the first 96 locations of Access RAM (00h to 5Fh) are mapped. Rather than containing just the contents of the bottom section of Bank 0, this mode maps the contents from a user defined “window” that can be located anywhere in the data memory space. The value of FSR2 establishes the lower boundary of the addresses mapped into the window, while the upper boundary is defined by FSR2 plus 95 (5Fh). Addresses in the Access RAM above 5Fh are mapped as previously described (see Section 5.3.2 “Access Bank”). An example of Access Bank remapping in this addressing mode is shown in Figure 5-12. FIGURE 5-12: Remapping of the Access Bank applies only to operations using the Indexed Literal Offset mode. Operations that use the BSR (Access RAM bit is ‘1’) will continue to use direct addressing as before. 5.6 PIC18 Instruction Execution and the Extended Instruction Set Enabling the extended instruction set adds eight additional commands to the existing PIC18 instruction set. These instructions are executed as described in Section 24.2 “Extended Instruction Set”. REMAPPING THE ACCESS BANK WITH INDEXED LITERAL OFFSET ADDRESSING Example Situation: ADDWF f, d, a FSR2H:FSR2L = 120h Locations in the region from the FSR2 pointer (120h) to the pointer plus 05Fh (17Fh) are mapped to the bottom of the Access RAM (000h-05Fh). 000h Bank 0 100h 120h 17Fh 200h Bank 1 Window Bank 1 00h Bank 1 “Window” 5Fh 60h Special File Registers at F60h through FFFh are mapped to 60h through FFh, as usual. Bank 2 through Bank 14 Bank 0 addresses below 5Fh can still be addressed by using the BSR. SFRs FFh Access Bank F00h Bank 15 F60h SFRs FFFh Data Memory © 2007 Microchip Technology Inc. Advance Information DS41303B-page 85 PIC18F2XK20/4XK20 NOTES: DS41303B-page 86 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 6.0 FLASH PROGRAM MEMORY The Flash program memory is readable, writable and erasable during normal operation over the entire VDD range. A read from program memory is executed one byte at a time. A write to program memory is executed on blocks of 64, 32 or 8 bytes at a time depending on the specific device (See Table 6-1). Program memory is erased in blocks of 64 bytes at a time. The difference between the write and erase block sizes requires from 1 to 8 block writes to restore the contents of a single block erase. A bulk erase operation can not be issued from user code. TABLE 6-1: WRITE/ERASE BLOCK SIZES Write Block Size (bytes) Erase Block Size (bytes) PIC18F43K20, PIC18F23K20 8 64 PIC18F24K20, PIC18F25K20, PIC18F44K20, PIC18F45K20 32 64 PIC18F26K20, PIC18F46K20 64 64 Device Writing or erasing program memory will cease instruction fetches until the operation is complete. The program memory cannot be accessed during the write or erase, therefore, code cannot execute. An internal programming timer terminates program memory writes and erases. FIGURE 6-1: A value written to program memory does not need to be a valid instruction. Executing a program memory location that forms an invalid instruction results in a NOP. 6.1 Table Reads and Table Writes In order to read and write program memory, there are two operations that allow the processor to move bytes between the program memory space and the data RAM: • Table Read (TBLRD) • Table Write (TBLWT) The program memory space is 16 bits wide, while the data RAM space is 8 bits wide. Table reads and table writes move data between these two memory spaces through an 8-bit register (TABLAT). The table read operation retrieves one byte of data directly from program memory and places it into the TABLAT register. Figure 6-1 shows the operation of a table read. The table write operation stores one byte of data from the TABLAT register into a write block holding register. The procedure to write the contents of the holding registers into program memory is detailed in Section 6.5 “Writing to Flash Program Memory”. Figure 6-2 shows the operation of a table write with program memory and data RAM. Table operations work with byte entities. Tables containing data, rather than program instructions, are not required to be word aligned. Therefore, a table can start and end at any byte address. If a table write is being used to write executable code into program memory, TABLE READ OPERATION Instruction: TBLRD* Program Memory Table Pointer(1) TBLPTRU TBLPTRH Table Latch (8-bit) TBLPTRL TABLAT Program Memory (TBLPTR) Note 1: Table Pointer register points to a byte in program memory. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 87 PIC18F2XK20/4XK20 FIGURE 6-2: TABLE WRITE OPERATION Instruction: TBLWT* Program Memory Table Pointer(1) TBLPTRU TBLPTRH Holding Registers Table Latch (8-bit) TBLPTRL TABLAT Program Memory (TBLPTR<MSBs>) Note 1: During table writes the Table Pointer does not point directly to Program Memory. The LSBs of TBLPRTL actually point to an address within the write block holding registers. The MSBs of the Table Pointer determine where the write block will eventually be written. The process for writing the holding registers to the program memory array is discussed in Section 6.5 “Writing to Flash Program Memory”. 6.2 Control Registers Several control registers are used in conjunction with the TBLRD and TBLWT instructions. These include the: • • • • EECON1 register EECON2 register TABLAT register TBLPTR registers 6.2.1 The FREE bit allows the program memory erase operation. When FREE is set, an erase operation is initiated on the next WR command. When FREE is clear, only writes are enabled. The WREN bit, when set, will allow a write operation. The WREN bit is clear on power-up. EECON1 AND EECON2 REGISTERS The EECON1 register (Register 6-1) is the control register for memory accesses. The EECON2 register is not a physical register; it is used exclusively in the memory write and erase sequences. Reading EECON2 will read all ‘0’s. The EEPGD control bit determines if the access will be a program or data EEPROM memory access. When EEPGD is clear, any subsequent operations will operate on the data EEPROM memory. When EEPGD is set, any subsequent operations will operate on the program memory. The WRERR bit is set by hardware when the WR bit is set and cleared when the internal programming timer expires and the write operation is complete. Note: The WR control bit initiates write operations. The WR bit cannot be cleared, only set, by firmware. Then WR bit is cleared by hardware at the completion of the write operation. Note: The CFGS control bit determines if the access will be to the Configuration/Calibration registers or to program memory/data EEPROM memory. When CFGS is set, subsequent operations will operate on Configuration registers regardless of EEPGD (see Section 23.0 “Special Features of the CPU”). When CFGS is clear, memory selection access is determined by EEPGD. DS41303B-page 88 During normal operation, the WRERR is read as ‘1’. This can indicate that a write operation was prematurely terminated by a Reset, or a write operation was attempted improperly. Advance Information The EEIF interrupt flag bit of the PIR2 register is set when the write is complete. The EEIF flag stays set until cleared by firmware. © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 REGISTER 6-1: EECON1: DATA EEPROM CONTROL 1 REGISTER R/W-x R/W-x U-0 R/W-0 R/W-x R/W-0 R/S-0 R/S-0 EEPGD CFGS — FREE WRERR WREN WR RD bit 7 bit 0 Legend: R = Readable bit W = Writable bit S = Bit can be set by software, but not cleared U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘0’ = Bit is cleared ‘1’ = Bit is set x = Bit is unknown bit 7 EEPGD: Flash Program or Data EEPROM Memory Select bit 1 = Access Flash program memory 0 = Access data EEPROM memory bit 6 CFGS: Flash Program/Data EEPROM or Configuration Select bit 1 = Access Configuration registers 0 = Access Flash program or data EEPROM memory bit 5 Unimplemented: Read as ‘0’ bit 4 FREE: Flash Row (Block) Erase Enable bit 1 = Erase the program memory block addressed by TBLPTR on the next WR command (cleared by completion of erase operation) 0 = Perform write-only bit 3 WRERR: Flash Program/Data EEPROM Error Flag bit(1) 1 = A write operation is prematurely terminated (any Reset during self-timed programming in normal operation, or an improper write attempt) 0 = The write operation completed bit 2 WREN: Flash Program/Data EEPROM Write Enable bit 1 = Allows write cycles to Flash program/data EEPROM 0 = Inhibits write cycles to Flash program/data EEPROM bit 1 WR: Write Control bit 1 = Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle. (The operation is self-timed and the bit is cleared by hardware once write is complete. The WR bit can only be set (not cleared) by software.) 0 = Write cycle to the EEPROM is complete bit 0 RD: Read Control bit 1 = Initiates an EEPROM read (Read takes one cycle. RD is cleared by hardware. The RD bit can only be set (not cleared) by software. RD bit cannot be set when EEPGD = 1 or CFGS = 1.) 0 = Does not initiate an EEPROM read Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the error condition. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 89 PIC18F2XK20/4XK20 6.2.2 TABLAT – TABLE LATCH REGISTER When a TBLRD is executed, all 22 bits of the TBLPTR determine which byte is read from program memory directly into the TABLAT register. The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The Table Latch register is used to hold 8-bit data during data transfers between program memory and data RAM. 6.2.3 When a TBLWT is executed the byte in the TABLAT register is written, not to Flash memory but, to a holding register in preparation for a program memory write. The holding registers constitute a write block which varies depending on the device (See Table 6-1).The 3, 4, or 5 LSbs of the TBLPTRL register determine which specific address within the holding register block is written to. The MSBs of the Table Pointer have no effect during TBLWT operations. TBLPTR – TABLE POINTER REGISTER The Table Pointer (TBLPTR) register addresses a byte within the program memory. The TBLPTR is comprised of three SFR registers: Table Pointer Upper Byte, Table Pointer High Byte and Table Pointer Low Byte (TBLPTRU:TBLPTRH:TBLPTRL). These three registers join to form a 22-bit wide pointer. The low-order 21 bits allow the device to address up to 2 Mbytes of program memory space. The 22nd bit allows access to the device ID, the user ID and the Configuration bits. When a program memory write is executed the entire holding register block is written to the Flash memory at the address determined by the MSbs of the TBLPTR. The 3, 4, or 5 LSBs are ignored during Flash memory writes. For more detail, see Section 6.5 “Writing to Flash Program Memory”. The Table Pointer register, TBLPTR, is used by the TBLRD and TBLWT instructions. These instructions can update the TBLPTR in one of four ways based on the table operation. These operations are shown in Table 6-2. These operations on the TBLPTR affect only the low-order 21 bits. 6.2.4 When an erase of program memory is executed, the 16 MSbs of the Table Pointer register (TBLPTR<21:6>) point to the 64-byte block that will be erased. The Least Significant bits (TBLPTR<5:0>) are ignored. Figure 6-3 describes the relevant boundaries of TBLPTR based on Flash program memory operations. TABLE POINTER BOUNDARIES TBLPTR is used in reads, writes and erases of the Flash program memory. TABLE 6-2: TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS Example Operation on Table Pointer TBLRD* TBLWT* TBLPTR is not modified TBLRD*+ TBLWT*+ TBLPTR is incremented after the read/write TBLRD*TBLWT*- TBLPTR is decremented after the read/write TBLRD+* TBLWT+* TBLPTR is incremented before the read/write FIGURE 6-3: 21 TABLE POINTER BOUNDARIES BASED ON OPERATION TBLPTRU 16 15 TBLPTRH 8 7 TABLE ERASE/WRITE TBLPTR<21:n+1>(1) TBLPTRL 0 TABLE WRITE TBLPTR<n:0>(1) TABLE READ – TBLPTR<21:0> Note 1: n = 3, 4, 5, or 6 for block sizes of 8, 16, 32 or 64 bytes, respectively. DS41303B-page 90 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 6.3 Reading the Flash Program Memory The TBLRD instruction retrieves data from program memory and places it into data RAM. Table reads from program memory are performed one byte at a time. The internal program memory is typically organized by words. The Least Significant bit of the address selects between the high and low bytes of the word. Figure 6-4 shows the interface between the internal program memory and the TABLAT. TBLPTR points to a byte address in program space. Executing TBLRD places the byte pointed to into TABLAT. In addition, TBLPTR can be modified automatically for the next table read operation. FIGURE 6-4: READS FROM FLASH PROGRAM MEMORY Program Memory (Even Byte Address) (Odd Byte Address) TBLPTR = xxxxx1 Instruction Register (IR) EXAMPLE 6-1: FETCH TBLRD TBLPTR = xxxxx0 TABLAT Read Register READING A FLASH PROGRAM MEMORY WORD MOVLW MOVWF MOVLW MOVWF MOVLW MOVWF CODE_ADDR_UPPER TBLPTRU CODE_ADDR_HIGH TBLPTRH CODE_ADDR_LOW TBLPTRL ; Load TBLPTR with the base ; address of the word READ_WORD TBLRD*+ MOVF MOVWF TBLRD*+ MOVFW MOVF TABLAT, W WORD_EVEN TABLAT, W WORD_ODD © 2007 Microchip Technology Inc. ; read into TABLAT and increment ; get data ; read into TABLAT and increment ; get data Advance Information DS41303B-page 91 PIC18F2XK20/4XK20 6.4 Erasing Flash Program Memory The minimum erase block is 32 words or 64 bytes. Only through the use of an external programmer, or through ICSP™ control, can larger blocks of program memory be bulk erased. Word erase in the Flash array is not supported. When initiating an erase sequence from the Microcontroller itself, a block of 64 bytes of program memory is erased. The Most Significant 16 bits of the TBLPTR<21:6> point to the block being erased. The TBLPTR<5:0> bits are ignored. The EECON1 register commands the erase operation. The EEPGD bit must be set to point to the Flash program memory. The WREN bit must be set to enable write operations. The FREE bit is set to select an erase operation. The write initiate sequence for EECON2, shown as steps 4 through 6 in Section 6.4.1 “Flash Program Memory Erase Sequence”, is used to guard against accidental writes. This is sometimes referred to as a long write. 6.4.1 FLASH PROGRAM MEMORY ERASE SEQUENCE The sequence of events for erasing a block of internal program memory is: 1. 2. 3. 4. 5. 6. 7. 8. Load Table Pointer register with address of block being erased. Set the EECON1 register for the erase operation: • set EEPGD bit to point to program memory; • clear the CFGS bit to access program memory; • set WREN bit to enable writes; • set FREE bit to enable the erase. Disable interrupts. Write 55h to EECON2. Write 0AAh to EECON2. Set the WR bit. This will begin the block erase cycle. The CPU will stall for duration of the erase (about 2 ms using internal timer). Re-enable interrupts. A long write is necessary for erasing the internal Flash. Instruction execution is halted during the long write cycle. The long write is terminated by the internal programming timer. EXAMPLE 6-2: ERASING A FLASH PROGRAM MEMORY BLOCK MOVLW MOVWF MOVLW MOVWF MOVLW MOVWF CODE_ADDR_UPPER TBLPTRU CODE_ADDR_HIGH TBLPTRH CODE_ADDR_LOW TBLPTRL ; load TBLPTR with the base ; address of the memory block BSF BCF BSF BSF BCF MOVLW MOVWF MOVLW MOVWF BSF BSF EECON1, EECON1, EECON1, EECON1, INTCON, 55h EECON2 0AAh EECON2 EECON1, INTCON, ; ; ; ; ; ERASE_BLOCK Required Sequence DS41303B-page 92 EEPGD CFGS WREN FREE GIE point to Flash program memory access Flash program memory enable write to memory enable block Erase operation disable interrupts ; write 55h WR GIE ; write 0AAh ; start erase (CPU stall) ; re-enable interrupts Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 6.5 Writing to Flash Program Memory The programming block size is 8, 32 or 64 bytes, depending on the device (See Table 6-1). Word or byte programming is not supported. Table writes are used internally to load the holding registers needed to program the Flash memory. There are only as many holding registers as there are bytes in a write block (See Table 6-1). Since the Table Latch (TABLAT) is only a single byte, the TBLWT instruction may need to be executed 8, 32, or 64 times, depending on the device, for each programming operation. All of the table write operations will essentially be short writes because only the holding registers are written. After all the holding registers have been written, the programming operation of that block of memory is started by configuring the EECON1 register for a program memory write and performing the long write sequence. FIGURE 6-5: The long write is necessary for programming the internal Flash. Instruction execution is halted during a long write cycle. The long write will be terminated by the internal programming timer. The EEPROM on-chip timer controls the write time. The write/erase voltages are generated by an on-chip charge pump, rated to operate over the voltage range of the device. Note: The default value of the holding registers on device Resets and after write operations is FFh. A write of FFh to a holding register does not modify that byte. This means that individual bytes of program memory may be modified, provided that the change does not attempt to change any bit from a ‘0’ to a ‘1’. When modifying individual bytes, it is not necessary to load all holding registers before executing a long write operation. TABLE WRITES TO FLASH PROGRAM MEMORY TABLAT Write Register 8 8 TBLPTR = xxxx00 TBLPTR = xxxx01 Holding Register 8 TBLPTR = xxxxYY(1) TBLPTR = xxxx02 Holding Register 8 Holding Register Holding Register Program Memory Note 1: YY = x7, xF, or 1F for 8, 16 or 32 byte write blocks, respectively. 6.5.1 FLASH PROGRAM MEMORY WRITE SEQUENCE The sequence of events for programming an internal program memory location should be: 1. 2. 3. 4. 5. 6. 7. Read 64 bytes into RAM. Update data values in RAM as necessary. Load Table Pointer register with address being erased. Execute the block erase procedure. Load Table Pointer register with address of first byte being written. Write the 8, 32 or 64 byte block into the holding registers with auto-increment. Set the EECON1 register for the write operation: • set EEPGD bit to point to program memory; • clear the CFGS bit to access program memory; • set WREN to enable byte writes. © 2007 Microchip Technology Inc. 8. 9. 10. 11. 12. Disable interrupts. Write 55h to EECON2. Write 0AAh to EECON2. Set the WR bit. This will begin the write cycle. The CPU will stall for duration of the write (about 2 ms using internal timer). 13. Re-enable interrupts. 14. Repeat steps 6 to 13 for each block until all 64 bytes are written. 15. Verify the memory (table read). This procedure will require about 6 ms to update each write block of memory. An example of the required code is given in Example 6-3. Note: Advance Information Before setting the WR bit, the Table Pointer address needs to be within the intended address range of the bytes in the holding registers. DS41303B-page 93 PIC18F2XK20/4XK20 EXAMPLE 6-3: WRITING TO FLASH PROGRAM MEMORY MOVLW MOVWF MOVLW MOVWF MOVLW MOVWF MOVLW MOVWF MOVLW MOVWF MOVLW MOVWF D'64’ COUNTER BUFFER_ADDR_HIGH FSR0H BUFFER_ADDR_LOW FSR0L CODE_ADDR_UPPER TBLPTRU CODE_ADDR_HIGH TBLPTRH CODE_ADDR_LOW TBLPTRL ; number of bytes in erase block TBLRD*+ MOVF MOVWF DECFSZ BRA TABLAT, W POSTINC0 COUNTER READ_BLOCK MOVLW MOVWF MOVLW MOVWF MOVLW MOVWF MOVLW MOVWF BUFFER_ADDR_HIGH FSR0H BUFFER_ADDR_LOW FSR0L NEW_DATA_LOW POSTINC0 NEW_DATA_HIGH INDF0 MOVLW MOVWF MOVLW MOVWF MOVLW MOVWF BSF BCF BSF BSF BCF MOVLW MOVWF MOVLW MOVWF BSF BSF TBLRD*MOVLW MOVWF MOVLW MOVWF CODE_ADDR_UPPER TBLPTRU CODE_ADDR_HIGH TBLPTRH CODE_ADDR_LOW TBLPTRL EECON1, EEPGD EECON1, CFGS EECON1, WREN EECON1, FREE INTCON, GIE 55h EECON2 0AAh EECON2 EECON1, WR INTCON, GIE MOVLW MOVWF MOVLW MOVWF BlockSize COUNTER D’64’/BlockSize COUNTER2 ; number of bytes in holding register MOVF MOVWF TBLWT+* POSTINC0, W TABLAT ; ; ; ; ; point to buffer ; Load TBLPTR with the base ; address of the memory block READ_BLOCK ; ; ; ; ; read into TABLAT, and inc get data store data done? repeat MODIFY_WORD ; point to buffer ; update buffer word ERASE_BLOCK Required Sequence BUFFER_ADDR_HIGH FSR0H BUFFER_ADDR_LOW FSR0L ; load TBLPTR with the base ; address of the memory block ; ; ; ; ; point to Flash program memory access Flash program memory enable write to memory enable Erase operation disable interrupts ; write 55h ; ; ; ; ; write 0AAh start erase (CPU stall) re-enable interrupts dummy read decrement point to buffer WRITE_BUFFER_BACK ; number of write blocks in 64 bytes WRITE_BYTE_TO_HREGS DS41303B-page 94 get low byte of buffer data present data to table latch write data, perform a short write to internal TBLWT holding register. Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 EXAMPLE 6-3: WRITING TO FLASH PROGRAM MEMORY (CONTINUED) DECFSZ BRA COUNTER WRITE_WORD_TO_HREGS ; loop until holding registers are full BSF BCF BSF BCF MOVLW MOVWF MOVLW MOVWF BSF DCFSZ BRA BSF BCF EECON1, EEPGD EECON1, CFGS EECON1, WREN INTCON, GIE 55h EECON2 0AAh EECON2 EECON1, WR COUNTER2 WRITE_BYTE_TO_HREGS INTCON, GIE EECON1, WREN ; ; ; ; PROGRAM_MEMORY Required Sequence 6.5.2 WRITE VERIFY UNEXPECTED TERMINATION OF WRITE OPERATION If a write is terminated by an unplanned event, such as loss of power or an unexpected Reset, the memory location just programmed should be verified and reprogrammed if needed. If the write operation is interrupted by a MCLR Reset or a WDT Time-out Reset during normal operation, the WRERR bit will be set which the user can check to decide whether a rewrite of the location(s) is needed. TABLE 6-3: ; write 55h ; ; ; ; ; ; write 0AAh start program (CPU stall) repeat for remaining write blocks re-enable interrupts disable write to memory 6.5.4 Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit. 6.5.3 point to Flash program memory access Flash program memory enable write to memory disable interrupts PROTECTION AGAINST SPURIOUS WRITES To protect against spurious writes to Flash program memory, the write initiate sequence must also be followed. See Section 23.0 “Special Features of the CPU” for more detail. 6.6 Flash Program Operation During Code Protection See Section 23.3 “Program Verification and Code Protection” for details on code protection of Flash program memory. REGISTERS ASSOCIATED WITH PROGRAM FLASH MEMORY Name Bit 7 Bit 6 Bit 5 TBLPTRU — — bit 21 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Program Memory Table Pointer Upper Byte (TBLPTR<20:16>) Reset Values on page 57 TBPLTRH Program Memory Table Pointer High Byte (TBLPTR<15:8>) 57 TBLPTRL Program Memory Table Pointer Low Byte (TBLPTR<7:0>) 57 TABLAT Program Memory Table Latch INTCON GIE/GIEH PEIE/GIEL TMR0IE 57 EECON2 EEPROM Control Register 2 (not a physical register) INT0IE RBIE TMR0IF INT0IF RBIF 57 59 59 EECON1 EEPGD CFGS — FREE WRERR WREN WR RD IPR2 OSCFIP C1IP C2IP EEIP BCLIP HLVDIP TMR3IP CCP2IP 60 PIR2 OSCFIF C1IF C2IF EEIF BCLIF HLVDIF TMR3IF CCP2IF 60 PIE2 OSCFIE C1IE C2IE EEIE BCLIE HLVDIE TMR3IE CCP2IE 60 Legend: — = unimplemented, read as ‘0’. Shaded cells are not used during Flash/EEPROM access. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 95 PIC18F2XK20/4XK20 NOTES: DS41303B-page 96 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 7.0 DATA EEPROM MEMORY The data EEPROM is a nonvolatile memory array, separate from the data RAM and program memory, which is used for long-term storage of program data. It is not directly mapped in either the register file or program memory space but is indirectly addressed through the Special Function Registers (SFRs). The EEPROM is readable and writable during normal operation over the entire VDD range. Four SFRs are used to read and write to the data EEPROM as well as the program memory. They are: • • • • • EECON1 EECON2 EEDATA EEADR EEADRH The EEPROM data memory is rated for high erase/write cycle endurance. A byte write automatically erases the location and writes the new data (erase-before-write). The write time is controlled by an on-chip timer; it will vary with voltage and temperature as well as from chipto-chip. Please refer to parameter D122 (Table 26.10 in Section 26.0 “Electrical Characteristics”) for exact limits. EEADR and EEADRH Registers The EEADR register is used to address the data EEPROM for read and write operations. The 8-bit range of the register can address a memory range of 256 bytes (00h to FFh). The EEADRH register expands the range to 1024 bytes by adding an additional two address bits. 7.2 EECON1 and EECON2 Registers Access to the data EEPROM is controlled by two registers: EECON1 and EECON2. These are the same registers which control access to the program memory and are used in a similar manner for the data EEPROM. © 2007 Microchip Technology Inc. Control bit, CFGS, determines if the access will be to the Configuration registers or to program memory/data EEPROM memory. When the CFGS bit is set, subsequent operations access Configuration registers. When the CFGS bit is clear, the EEPGD bit selects either program Flash or data EEPROM memory. The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The data EEPROM allows byte read and write. When interfacing to the data memory block, EEDATA holds the 8-bit data for read/write and the EEADR:EEADRH register pair hold the address of the EEPROM location being accessed. 7.1 The EECON1 register (Register 7-1) is the control register for data and program memory access. Control bit EEPGD determines if the access will be to program or data EEPROM memory. When the EEPGD bit is clear, operations will access the data EEPROM memory. When the EEPGD bit is set, program memory is accessed. The WRERR bit is set by hardware when the WR bit is set and cleared when the internal programming timer expires and the write operation is complete. Note: During normal operation, the WRERR may read as ‘1’. This can indicate that a write operation was prematurely terminated by a Reset, or a write operation was attempted improperly. The WR control bit initiates write operations. The bit can be set but not cleared by software. It is cleared only by hardware at the completion of the write operation. Note: The EEIF interrupt flag bit of the PIR2 register is set when the write is complete. It must be cleared by software. Control bits, RD and WR, start read and erase/write operations, respectively. These bits are set by firmware and cleared by hardware at the completion of the operation. The RD bit cannot be set when accessing program memory (EEPGD = 1). Program memory is read using table read instructions. See Section 6.1 “Table Reads and Table Writes” regarding table reads. The EECON2 register is not a physical register. It is used exclusively in the memory write and erase sequences. Reading EECON2 will read all ‘0’s. Advance Information DS41303B-page 97 PIC18F2XK20/4XK20 REGISTER 7-1: EECON1: DATA EEPROM CONTROL 1 REGISTER R/W-x R/W-x U-0 R/W-0 R/W-x R/W-0 R/S-0 R/S-0 EEPGD CFGS — FREE WRERR WREN WR RD bit 7 bit 0 Legend: R = Readable bit W = Writable bit S = Bit can be set by software, but not cleared U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘0’ = Bit is cleared ‘1’ = Bit is set x = Bit is unknown bit 7 EEPGD: Flash Program or Data EEPROM Memory Select bit 1 = Access Flash program memory 0 = Access data EEPROM memory bit 6 CFGS: Flash Program/Data EEPROM or Configuration Select bit 1 = Access Configuration registers 0 = Access Flash program or data EEPROM memory bit 5 Unimplemented: Read as ‘0’ bit 4 FREE: Flash Row (Block) Erase Enable bit 1 = Erase the program memory block addressed by TBLPTR on the next WR command (cleared by completion of erase operation) 0 = Perform write-only bit 3 WRERR: Flash Program/Data EEPROM Error Flag bit(1) 1 = A write operation is prematurely terminated (any Reset during self-timed programming in normal operation, or an improper write attempt) 0 = The write operation completed bit 2 WREN: Flash Program/Data EEPROM Write Enable bit 1 = Allows write cycles to Flash program/data EEPROM 0 = Inhibits write cycles to Flash program/data EEPROM bit 1 WR: Write Control bit 1 = Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle. (The operation is self-timed and the bit is cleared by hardware once write is complete. The WR bit can only be set (not cleared) by software.) 0 = Write cycle to the EEPROM is complete bit 0 RD: Read Control bit 1 = Initiates an EEPROM read (Read takes one cycle. RD is cleared by hardware. The RD bit can only be set (not cleared) by software. RD bit cannot be set when EEPGD = 1 or CFGS = 1.) 0 = Does not initiate an EEPROM read Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the error condition. DS41303B-page 98 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 7.3 Reading the Data EEPROM Memory To read a data memory location, the user must write the address to the EEADR register, clear the EEPGD control bit of the EECON1 register and then set control bit, RD. The data is available on the very next instruction cycle; therefore, the EEDATA register can be read by the next instruction. EEDATA will hold this value until another read operation, or until it is written to by the user (during a write operation). The basic process is shown in Example 7-1. 7.4 Writing to the Data EEPROM Memory Additionally, the WREN bit in EECON1 must be set to enable writes. This mechanism prevents accidental writes to data EEPROM due to unexpected code execution (i.e., runaway programs). The WREN bit should be kept clear at all times, except when updating the EEPROM. The WREN bit is not cleared by hardware. After a write sequence has been initiated, EECON1, EEADR and EEDATA cannot be modified. The WR bit will be inhibited from being set unless the WREN bit is set. Both WR and WREN cannot be set with the same instruction. At the completion of the write cycle, the WR bit is cleared by hardware and the EEPROM Interrupt Flag bit, EEIF, is set. The user may either enable this interrupt or poll this bit. EEIF must be cleared by software. To write an EEPROM data location, the address must first be written to the EEADR register and the data written to the EEDATA register. The sequence in Example 7-2 must be followed to initiate the write cycle. 7.5 The write will not begin if this sequence is not exactly followed (write 55h to EECON2, write 0AAh to EECON2, then set WR bit) for each byte. It is strongly recommended that interrupts be disabled during this code segment. Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit. EXAMPLE 7-1: MOVLW MOVWF BCF BCF BSF MOVF DATA EEPROM READ DATA_EE_ADDR EEADR EECON1, EEPGD EECON1, CFGS EECON1, RD EEDATA, W EXAMPLE 7-2: Required Sequence Write Verify ; ; ; ; ; ; Data Memory Address to read Point to DATA memory Access EEPROM EEPROM Read W = EEDATA DATA EEPROM WRITE MOVLW MOVWF MOVLW MOVWF MOVLW MOVWF BCF BCF BSF BCF MOVLW MOVWF MOVLW MOVWF BSF BSF DATA_EE_ADDR_LOW EEADR DATA_EE_ADDR_HI EEADRH DATA_EE_DATA EEDATA EECON1, EEPGD EECON1, CFGS EECON1, WREN INTCON, GIE 55h EECON2 0AAh EECON2 EECON1, WR INTCON, GIE ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; BCF EECON1, WREN ; User code execution ; Disable writes on write complete (EEIF set) © 2007 Microchip Technology Inc. Data Memory Address to write Data Memory Value to write Point to DATA memory Access EEPROM Enable writes Disable Interrupts Write 55h Write 0AAh Set WR bit to begin write Enable Interrupts Advance Information DS41303B-page 99 PIC18F2XK20/4XK20 7.6 Operation During Code-Protect The write initiate sequence and the WREN bit together help prevent an accidental write during brown-out, power glitch or software malfunction. Data EEPROM memory has its own code-protect bits in Configuration Words. External read and write operations are disabled if code protection is enabled. 7.8 The microcontroller itself can both read and write to the internal data EEPROM, regardless of the state of the code-protect Configuration bit. Refer to Section 23.0 “Special Features of the CPU” for additional information. 7.7 The data EEPROM is a high-endurance, byte addressable array that has been optimized for the storage of frequently changing information (e.g., program variables or other data that are updated often). When variables in one section change frequently, while variables in another section do not change, it is possible to exceed the total number of write cycles to the EEPROM (specification D124) without exceeding the total number of write cycles to a single byte (specification D120). If this is the case, then an array refresh must be performed. For this reason, variables that change infrequently (such as constants, IDs, calibration, etc.) should be stored in Flash program memory. Protection Against Spurious Write There are conditions when the user may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been implemented. On power-up, the WREN bit is cleared. In addition, writes to the EEPROM are blocked during the Power-up Timer period (TPWRT, parameter 33). EXAMPLE 7-3: DATA EEPROM REFRESH ROUTINE CLRF BCF BCF BCF BSF EEADR EECON1, EECON1, INTCON, EECON1, BSF MOVLW MOVWF MOVLW MOVWF BSF BTFSC BRA INCFSZ BRA EECON1, RD 55h EECON2 0AAh EECON2 EECON1, WR EECON1, WR $-2 EEADR, F LOOP BCF BSF EECON1, WREN INTCON, GIE ; ; ; ; ; ; ; ; ; ; ; ; ; CFGS EEPGD GIE WREN Loop TABLE 7-1: Using the Data EEPROM Start at address 0 Set for memory Set for Data EEPROM Disable interrupts Enable writes Loop to refresh array Read current address Write 55h Write 0AAh Set WR bit to begin write Wait for write to complete ; Increment address ; Not zero, do it again ; Disable writes ; Enable interrupts REGISTERS ASSOCIATED WITH DATA EEPROM MEMORY Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset Values on page INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 57 EEADR EEADR7 EEADR6 — — Name EEADRH EEADR5 EEADR4 EEADR3 EEADR2 EEADR1 EEADR0 — — — — EEADR9 EEADR8 59 59 EEDATA EEPROM Data Register 59 EECON2 EEPROM Control Register 2 (not a physical register) 59 EECON1 EEPGD CFGS — FREE WRERR WREN WR RD 59 IPR2 OSCFIP C1IP C2IP EEIP BCLIP HLVDIP TMR3IP CCP2IP 60 PIR2 OSCFIF C1IF C2IF EEIF BCLIF HLVDIF TMR3IF CCP2IF 60 PIE2 OSCFIE C1IE C2IE EEIE BCLIE HLVDIE TMR3IE CCP2IE 60 Legend: — = unimplemented, read as ‘0’. Shaded cells are not used during Flash/EEPROM access. DS41303B-page 100 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 8.0 8 x 8 HARDWARE MULTIPLIER 8.1 Introduction EXAMPLE 8-1: MOVF MULWF All PIC18 devices include an 8 x 8 hardware multiplier as part of the ALU. The multiplier performs an unsigned operation and yields a 16-bit result that is stored in the product register pair, PRODH:PRODL. The multiplier’s operation does not affect any flags in the STATUS register. ARG1, W ARG2 ; ; ARG1 * ARG2 -> ; PRODH:PRODL EXAMPLE 8-2: Making multiplication a hardware operation allows it to be completed in a single instruction cycle. This has the advantages of higher computational throughput and reduced code size for multiplication algorithms and allows the PIC18 devices to be used in many applications previously reserved for digital signal processors. A comparison of various hardware and software multiply operations, along with the savings in memory and execution time, is shown in Table 8-1. 8.2 8 x 8 UNSIGNED MULTIPLY ROUTINE 8 x 8 SIGNED MULTIPLY ROUTINE MOVF MULWF ARG1, W ARG2 BTFSC SUBWF ARG2, SB PRODH, F MOVF BTFSC SUBWF ARG2, W ARG1, SB PRODH, F ; ; ; ; ; ARG1 * ARG2 -> PRODH:PRODL Test Sign Bit PRODH = PRODH - ARG1 ; Test Sign Bit ; PRODH = PRODH ; - ARG2 Operation Example 8-1 shows the instruction sequence for an 8 x 8 unsigned multiplication. Only one instruction is required when one of the arguments is already loaded in the WREG register. Example 8-2 shows the sequence to do an 8 x 8 signed multiplication. To account for the sign bits of the arguments, each argument’s Most Significant bit (MSb) is tested and the appropriate subtractions are done. TABLE 8-1: PERFORMANCE COMPARISON FOR VARIOUS MULTIPLY OPERATIONS Routine 8 x 8 unsigned 8 x 8 signed 16 x 16 unsigned 16 x 16 signed Program Memory (Words) Cycles (Max) Without hardware multiply 13 Hardware multiply 1 Without hardware multiply 33 Hardware multiply 6 Without hardware multiply Hardware multiply Multiply Method Time @ 40 MHz @ 10 MHz @ 4 MHz 69 6.9 μs 27.6 μs 69 μs 1 100 ns 400 ns 1 μs 91 9.1 μs 36.4 μs 91 μs 6 600 ns 2.4 μs 6 μs 21 242 24.2 μs 96.8 μs 242 μs 28 28 2.8 μs 11.2 μs 28 μs Without hardware multiply 52 254 25.4 μs 102.6 μs 254 μs Hardware multiply 35 40 4.0 μs 16.0 μs 40 μs © 2007 Microchip Technology Inc. Advance Information DS41303B-page 101 PIC18F2XK20/4XK20 Example 8-3 shows the sequence to do a 16 x 16 unsigned multiplication. Equation 8-1 shows the algorithm that is used. The 32-bit result is stored in four registers (RES<3:0>). EQUATION 8-1: RES3:RES0 = = EXAMPLE 8-3: 16 x 16 UNSIGNED MULTIPLICATION ALGORITHM ARG1H:ARG1L • ARG2H:ARG2L (ARG1H • ARG2H • 216) + (ARG1H • ARG2L • 28) + (ARG1L • ARG2H • 28) + (ARG1L • ARG2L) EQUATION 8-2: RES3:RES0 = ARG1H:ARG1L • ARG2H:ARG2L = (ARG1H • ARG2H • 216) + (ARG1H • ARG2L • 28) + (ARG1L • ARG2H • 28) + (ARG1L • ARG2L) + (-1 • ARG2H<7> • ARG1H:ARG1L • 216) + (-1 • ARG1H<7> • ARG2H:ARG2L • 216) EXAMPLE 8-4: 16 x 16 UNSIGNED MULTIPLY ROUTINE MOVF MULWF ARG1L, W ARG2L MOVFF MOVFF PRODH, RES1 PRODL, RES0 MOVF MULWF ARG1H, W ARG2H MOVFF MOVFF PRODH, RES3 PRODL, RES2 MOVF MULWF ARG1L, W ARG2H MOVF ADDWF MOVF ADDWFC CLRF ADDWFC PRODL, W RES1, F PRODH, W RES2, F WREG RES3, F MOVF MULWF ARG1H, W ARG2L MOVF ADDWF MOVF ADDWFC CLRF ADDWFC PRODL, W RES1, F PRODH, W RES2, F WREG RES3, F ; ARG1L * ARG2L-> ; PRODH:PRODL ; ; ARG1L * ARG2H-> PRODH:PRODL Add cross products ARG1H * ARG2L-> PRODH:PRODL Add cross products Example 8-4 shows the sequence to do a 16 x 16 signed multiply. Equation 8-2 shows the algorithm used. The 32-bit result is stored in four registers (RES<3:0>). To account for the sign bits of the arguments, the MSb for each argument pair is tested and the appropriate subtractions are done. DS41303B-page 102 ARG1L, W ARG2L MOVFF MOVFF PRODH, RES1 PRODL, RES0 MOVF MULWF ARG1H, W ARG2H MOVFF MOVFF PRODH, RES3 PRODL, RES2 MOVF MULWF ARG1L, W ARG2H MOVF ADDWF MOVF ADDWFC CLRF ADDWFC PRODL, W RES1, F PRODH, W RES2, F WREG RES3, F MOVF MULWF ARG1H, W ARG2L MOVF ADDWF MOVF ADDWFC CLRF ADDWFC PRODL, W RES1, F PRODH, W RES2, F WREG RES3, F BTFSS BRA MOVF SUBWF MOVF SUBWFB ARG2H, 7 SIGN_ARG1 ARG1L, W RES2 ARG1H, W RES3 ; ARG2H:ARG2L neg? ; no, check ARG1 ; ; ; ARG1H, 7 CONT_CODE ARG2L, W RES2 ARG2H, W RES3 ; ARG1H:ARG1L neg? ; no, done ; ; ; ; ARG1L * ARG2L -> ; PRODH:PRODL ; ; ; ARG1H * ARG2H -> ; PRODH:PRODL ; ; ; ; ; ; ; ; ; ; ARG1L * ARG2H -> PRODH:PRODL Add cross products ; ; ; ; ; ; ; ; ; ; ; MOVF MULWF ; ; ; ; ; ; ; ; ; ; 16 x 16 SIGNED MULTIPLY ROUTINE ; ; ; ARG1H * ARG2H-> ; PRODH:PRODL ; ; 16 x 16 SIGNED MULTIPLICATION ALGORITHM ; ; ; ; ; ; ; ; ; ARG1H * ARG2L -> PRODH:PRODL Add cross products ; ; SIGN_ARG1 BTFSS BRA MOVF SUBWF MOVF SUBWFB ; CONT_CODE : Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 9.0 INTERRUPTS 9.2 The PIC18F2XK20/4XK20 devices have multiple interrupt sources and an interrupt priority feature that allows most interrupt sources to be assigned a high priority level or a low priority level. The high priority interrupt vector is at 0008h and the low priority interrupt vector is at 0018h. A high priority interrupt event will interrupt a low priority interrupt that may be in progress. There are ten registers which are used to control interrupt operation. These registers are: • • • • • • • RCON INTCON INTCON2 INTCON3 PIR1, PIR2 PIE1, PIE2 IPR1, IPR2 It is recommended that the Microchip header files supplied with MPLAB® IDE be used for the symbolic bit names in these registers. This allows the assembler/ compiler to automatically take care of the placement of these bits within the specified register. In general, interrupt sources have three bits to control their operation. They are: • Flag bit to indicate that an interrupt event occurred • Enable bit that allows program execution to branch to the interrupt vector address when the flag bit is set • Priority bit to select high priority or low priority 9.1 Mid-Range Compatibility When the IPEN bit is cleared (default state), the interrupt priority feature is disabled and interrupts are compatible with PIC® microcontroller mid-range devices. In Compatibility mode, the interrupt priority bits of the IPRx registers have no effect. The PEIE bit of the INTCON register is the global interrupt enable for the peripherals. The PEIE bit disables only the peripheral interrupt sources and enables the peripheral interrupt sources when the GIE bit is also set. The GIE bit of the INTCON register is the global interrupt enable which enables all non-peripheral interrupt sources and disables all interrupt sources, including the peripherals. All interrupts branch to address 0008h in Compatibility mode. Interrupt Priority The interrupt priority feature is enabled by setting the IPEN bit of the RCON register. When interrupt priority is enabled the GIE and PEIE global interrupt enable bits of Compatibility mode are replaced by the GIEH high priority, and GIEL low priority, global interrupt enables. When set, the GIEH bit of the INTCON register enables all interrupts that have their associated IPRx register or INTCONx register priority bit set (high priority). When clear, the GIEL bit disables all interrupt sources including those selected as low priority. When clear, the GIEL bit of the INTCON register disables only the interrupts that have their associated priority bit cleared (low priority). When set, the GIEL bit enables the low priority sources when the GIEH bit is also set. When the interrupt flag, enable bit and appropriate global interrupt enable bit are all set, the interrupt will vector immediately to address 0008h for high priority, or 0018h for low priority, depending on level of the interrupting source’s priority bit. Individual interrupts can be disabled through their corresponding interrupt enable bits. 9.3 Interrupt Response When an interrupt is responded to, the global interrupt enable bit is cleared to disable further interrupts. The GIE bit is the global interrupt enable when the IPEN bit is cleared. When the IPEN bit is set, enabling interrupt priority levels, the GIEH bit is the high priority global interrupt enable and the GIEL bit is the low priority global interrupt enable. High priority interrupt sources can interrupt a low priority interrupt. Low priority interrupts are not processed while high priority interrupts are in progress. The return address is pushed onto the stack and the PC is loaded with the interrupt vector address (0008h or 0018h). Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits in the INTCONx and PIRx registers. The interrupt flag bits must be cleared by software before re-enabling interrupts to avoid repeating the same interrupt. The “return from interrupt” instruction, RETFIE, exits the interrupt routine and sets the GIE bit (GIEH or GIEL if priority levels are used), which re-enables interrupts. For external interrupt events, such as the INT pins or the PORTB interrupt-on-change, the interrupt latency will be three to four instruction cycles. The exact latency is the same for one-cycle or two-cycle instructions. Individual interrupt flag bits are set, regardless of the status of their corresponding enable bits or the global interrupt enable bit. Note: © 2007 Microchip Technology Inc. Advance Information Do not use the MOVFF instruction to modify any of the interrupt control registers while any interrupt is enabled. Doing so may cause erratic microcontroller behavior. DS41303B-page 103 PIC18F2XK20/4XK20 FIGURE 9-1: PIC18 INTERRUPT LOGIC TMR0IF TMR0IE TMR0IP RBIF RBIE RBIP INT0IF INT0IE Wake-up if in Idle or Sleep modes (1) Interrupt to CPU Vector to Location 0008h INT1IF INT1IE INT1IP INT2IF INT2IE INT2IP SSPIF SSPIE SSPIP GIEH/GIE ADIF ADIE ADIP IPEN IPEN GIEL/PEIE RCIF RCIE RCIP IPEN Additional Peripheral Interrupts High Priority Interrupt Generation Low Priority Interrupt Generation SSPIF SSPIE SSPIP ADIF ADIE ADIP RCIF RCIE RCIP Interrupt to CPU Vector to Location 0018h TMR0IF TMR0IE TMR0IP RBIF RBIE RBIP (1) GIEH/GIE GIEL/PEIE INT1IF INT1IE INT1IP Additional Peripheral Interrupts INT2IF INT2IE INT2IP Note 1: The RBIF interrupt also requires the individual pin IOCB enables. DS41303B-page 104 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 9.4 INTCON Registers Note: The INTCON registers are readable and writable registers, which contain various enable, priority and flag bits. REGISTER 9-1: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling. INTCON: INTERRUPT CONTROL REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-x GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 GIE/GIEH: Global Interrupt Enable bit When IPEN = 0: 1 = Enables all unmasked interrupts 0 = Disables all interrupts including peripherals When IPEN = 1: 1 = Enables all high priority interrupts 0 = Disables all interrupts including low priority. bit 6 PEIE/GIEL: Peripheral Interrupt Enable bit When IPEN = 0: 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts When IPEN = 1: 1 = Enables all low priority interrupts 0 = Disables all low priority interrupts bit 5 TMR0IE: TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 overflow interrupt 0 = Disables the TMR0 overflow interrupt bit 4 INT0IE: INT0 External Interrupt Enable bit 1 = Enables the INT0 external interrupt 0 = Disables the INT0 external interrupt bit 3 RBIE: RB Port Change Interrupt Enable bit(2) 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt bit 2 TMR0IF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed (must be cleared by software) 0 = TMR0 register did not overflow bit 1 INT0IF: INT0 External Interrupt Flag bit 1 = The INT0 external interrupt occurred (must be cleared by software) 0 = The INT0 external interrupt did not occur bit 0 RBIF: RB Port Change Interrupt Flag bit(1) 1 = At least one of the RB<7:4> pins changed state (must be cleared by software) 0 = None of the RB<7:4> pins have changed state Note 1: 2: x = Bit is unknown A mismatch condition will continue to set the RBIF bit. Reading PORTB will end the mismatch condition and allow the bit to be cleared. RB port change interrupts also require the individual pin IOCB enables. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 105 PIC18F2XK20/4XK20 REGISTER 9-2: INTCON2: INTERRUPT CONTROL 2 REGISTER R/W-1 R/W-1 R/W-1 R/W-1 U-0 R/W-1 U-0 R/W-1 RBPU INTEDG0 INTEDG1 INTEDG2 — TMR0IP — RBIP bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 RBPU: PORTB Pull-up Enable bit 1 = All PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled provided that the pin is an input and the corresponding WPUB bit is set. bit 6 INTEDG0: External Interrupt 0 Edge Select bit 1 = Interrupt on rising edge 0 = Interrupt on falling edge bit 5 INTEDG1: External Interrupt 1 Edge Select bit 1 = Interrupt on rising edge 0 = Interrupt on falling edge bit 4 INTEDG2: External Interrupt 2 Edge Select bit 1 = Interrupt on rising edge 0 = Interrupt on falling edge bit 3 Unimplemented: Read as ‘0’ bit 2 TMR0IP: TMR0 Overflow Interrupt Priority bit 1 = High priority 0 = Low priority bit 1 Unimplemented: Read as ‘0’ bit 0 RBIP: RB Port Change Interrupt Priority bit 1 = High priority 0 = Low priority Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling. DS41303B-page 106 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 REGISTER 9-3: INTCON3: INTERRUPT CONTROL 3 REGISTER R/W-1 R/W-1 U-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 INT2IP INT1IP — INT2IE INT1IE — INT2IF INT1IF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 INT2IP: INT2 External Interrupt Priority bit 1 = High priority 0 = Low priority bit 6 INT1IP: INT1 External Interrupt Priority bit 1 = High priority 0 = Low priority bit 5 Unimplemented: Read as ‘0’ bit 4 INT2IE: INT2 External Interrupt Enable bit 1 = Enables the INT2 external interrupt 0 = Disables the INT2 external interrupt bit 3 INT1IE: INT1 External Interrupt Enable bit 1 = Enables the INT1 external interrupt 0 = Disables the INT1 external interrupt bit 2 Unimplemented: Read as ‘0’ bit 1 INT2IF: INT2 External Interrupt Flag bit 1 = The INT2 external interrupt occurred (must be cleared by software) 0 = The INT2 external interrupt did not occur bit 0 INT1IF: INT1 External Interrupt Flag bit 1 = The INT1 external interrupt occurred (must be cleared by software) 0 = The INT1 external interrupt did not occur Note: x = Bit is unknown Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 107 PIC18F2XK20/4XK20 9.5 PIR Registers The PIR registers contain the individual flag bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are two Peripheral Interrupt Request Flag registers (PIR1 and PIR2). Note 1: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE of the INTCON register. 2: User software should ensure the appropriate interrupt flag bits are cleared prior to enabling an interrupt and after servicing that interrupt. REGISTER 9-4: PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1 R/W-0 R/W-0 R-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 PSPIF(1) ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 PSPIF: Parallel Slave Port Read/Write Interrupt Flag bit(1) 1 = A read or a write operation has taken place (must be cleared by software) 0 = No read or write has occurred bit 6 ADIF: A/D Converter Interrupt Flag bit 1 = An A/D conversion completed (must be cleared by software) 0 = The A/D conversion is not complete or has not been started bit 5 RCIF: EUSART Receive Interrupt Flag bit 1 = The EUSART receive buffer, RCREG, is full (cleared when RCREG is read) 0 = The EUSART receive buffer is empty bit 4 TXIF: EUSART Transmit Interrupt Flag bit 1 = The EUSART transmit buffer, TXREG, is empty (cleared when TXREG is written) 0 = The EUSART transmit buffer is full bit 3 SSPIF: Master Synchronous Serial Port Interrupt Flag bit 1 = The transmission/reception is complete (must be cleared by software) 0 = Waiting to transmit/receive bit 2 CCP1IF: CCP1 Interrupt Flag bit Capture mode: 1 = A TMR1 register capture occurred (must be cleared by software) 0 = No TMR1 register capture occurred Compare mode: 1 = A TMR1 register compare match occurred (must be cleared by software) 0 = No TMR1 register compare match occurred PWM mode: Unused in this mode bit 1 TMR2IF: TMR2 to PR2 Match Interrupt Flag bit 1 = TMR2 to PR2 match occurred (must be cleared by software) 0 = No TMR2 to PR2 match occurred bit 0 TMR1IF: TMR1 Overflow Interrupt Flag bit 1 = TMR1 register overflowed (must be cleared by software) 0 = TMR1 register did not overflow Note 1: The PSPIF bit is unimplemented on 28-pin devices and will read as ‘0’. DS41303B-page 108 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 REGISTER 9-5: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 OSCFIF C1IF C2IF EEIF BCLIF HLVDIF TMR3IF CCP2IF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 OSCFIF: Oscillator Fail Interrupt Flag bit 1 = Device oscillator failed, clock input has changed to HFINTOSC (must be cleared by software) 0 = Device clock operating bit 6 C1IF: Comparator C1 Interrupt Flag bit 1 = Comparator C1 output has changed (must be cleared by software) 0 = Comparator C1 output has not changed bit 5 C2IF: Comparator C2 Interrupt Flag bit 1 = Comparator C2 output has changed (must be cleared by software) 0 = Comparator C2 output has not changed bit 4 EEIF: Data EEPROM/Flash Write Operation Interrupt Flag bit 1 = The write operation is complete (must be cleared by software) 0 = The write operation is not complete or has not been started bit 3 BCLIF: Bus Collision Interrupt Flag bit 1 = A bus collision occurred (must be cleared by software) 0 = No bus collision occurred bit 2 HLVDIF: Low-Voltage Detect Interrupt Flag bit 1 = A low-voltage condition occurred (direction determined by the VDIRMAG bit of the HLVDCON register) 0 = A low-voltage condition has not occurred bit 1 TMR3IF: TMR3 Overflow Interrupt Flag bit 1 = TMR3 register overflowed (must be cleared by software) 0 = TMR3 register did not overflow bit 0 CCP2IF: CCP2 Interrupt Flag bit Capture mode: 1 = A TMR1 register capture occurred (must be cleared by software) 0 = No TMR1 register capture occurred Compare mode: 1 = A TMR1 register compare match occurred (must be cleared by software) 0 = No TMR1 register compare match occurred PWM mode: Unused in this mode. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 109 PIC18F2XK20/4XK20 9.6 PIE Registers The PIE registers contain the individual enable bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are two Peripheral Interrupt Enable registers (PIE1 and PIE2). When IPEN = 0, the PEIE bit must be set to enable any of these peripheral interrupts. REGISTER 9-6: PIE1: PERIPHERAL INTERRUPT ENABLE (FLAG) REGISTER 1 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PSPIE(1) ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 PSPIE: Parallel Slave Port Read/Write Interrupt Enable bit(1) 1 = Enables the PSP read/write interrupt 0 = Disables the PSP read/write interrupt bit 6 ADIE: A/D Converter Interrupt Enable bit 1 = Enables the A/D interrupt 0 = Disables the A/D interrupt bit 5 RCIE: EUSART Receive Interrupt Enable bit 1 = Enables the EUSART receive interrupt 0 = Disables the EUSART receive interrupt bit 4 TXIE: EUSART Transmit Interrupt Enable bit 1 = Enables the EUSART transmit interrupt 0 = Disables the EUSART transmit interrupt bit 3 SSPIE: Master Synchronous Serial Port Interrupt Enable bit 1 = Enables the MSSP interrupt 0 = Disables the MSSP interrupt bit 2 CCP1IE: CCP1 Interrupt Enable bit 1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt bit 1 TMR2IE: TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt bit 0 TMR1IE: TMR1 Overflow Interrupt Enable bit 1 = Enables the TMR1 overflow interrupt 0 = Disables the TMR1 overflow interrupt Note 1: x = Bit is unknown The PSPIE bit is unimplemented on 28-pin devices and will read as ‘0’. DS41303B-page 110 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 REGISTER 9-7: PIE2: PERIPHERAL INTERRUPT ENABLE (FLAG) REGISTER 2 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 OSCFIE C1IE C2IE EEIE BCLIE HLVDIE TMR3IE CCP2IE bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 OSCFIE: Oscillator Fail Interrupt Enable bit 1 = Enabled 0 = Disabled bit 6 C1IE: Comparator C1 Interrupt Enable bit 1 = Enabled 0 = Disabled bit 5 C2IE: Comparator C2 Interrupt Enable bit 1 = Enabled 0 = Disabled bit 4 EEIE: Data EEPROM/Flash Write Operation Interrupt Enable bit 1 = Enabled 0 = Disabled bit 3 BCLIE: Bus Collision Interrupt Enable bit 1 = Enabled 0 = Disabled bit 2 HLVDIE: Low-Voltage Detect Interrupt Enable bit 1 = Enabled 0 = Disabled bit 1 TMR3IE: TMR3 Overflow Interrupt Enable bit 1 = Enabled 0 = Disabled bit 0 CCP2IE: CCP2 Interrupt Enable bit 1 = Enabled 0 = Disabled © 2007 Microchip Technology Inc. Advance Information x = Bit is unknown DS41303B-page 111 PIC18F2XK20/4XK20 9.7 IPR Registers The IPR registers contain the individual priority bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are two Peripheral Interrupt Priority registers (IPR1 and IPR2). Using the priority bits requires that the Interrupt Priority Enable (IPEN) bit be set. REGISTER 9-8: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 PSPIP(1) ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 PSPIP: Parallel Slave Port Read/Write Interrupt Priority bit(1) 1 = High priority 0 = Low priority bit 6 ADIP: A/D Converter Interrupt Priority bit 1 = High priority 0 = Low priority bit 5 RCIP: EUSART Receive Interrupt Priority bit 1 = High priority 0 = Low priority bit 4 TXIP: EUSART Transmit Interrupt Priority bit x = Bit is unknown 1 = High priority 0 = Low priority bit 3 SSPIP: Master Synchronous Serial Port Interrupt Priority bit 1 = High priority 0 = Low priority bit 2 CCP1IP: CCP1 Interrupt Priority bit 1 = High priority 0 = Low priority bit 1 TMR2IP: TMR2 to PR2 Match Interrupt Priority bit 1 = High priority 0 = Low priority bit 0 TMR1IP: TMR1 Overflow Interrupt Priority bit 1 = High priority 0 = Low priority Note 1: The PSPIF bit is unimplemented on 28-pin devices and will read as ‘0’. DS41303B-page 112 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 REGISTER 9-9: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 OSCFIP C1IP C2IP EEIP BCLIP HLVDIP TMR3IP CCP2IP bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 OSCFIP: Oscillator Fail Interrupt Priority bit 1 = High priority 0 = Low priority bit 6 C1IP: Comparator C1 Interrupt Priority bit 1 = High priority 0 = Low priority bit 5 C2IP: Comparator C2 Interrupt Priority bit 1 = High priority 0 = Low priority bit 4 EEIP: Data EEPROM/Flash Write Operation Interrupt Priority bit 1 = High priority 0 = Low priority bit 3 BCLIP: Bus Collision Interrupt Priority bit 1 = High priority 0 = Low priority bit 2 HLVDIP: Low-Voltage Detect Interrupt Priority bit 1 = High priority 0 = Low priority bit 1 TMR3IP: TMR3 Overflow Interrupt Priority bit 1 = High priority 0 = Low priority bit 0 CCP2IP: CCP2 Interrupt Priority bit 1 = High priority 0 = Low priority © 2007 Microchip Technology Inc. Advance Information x = Bit is unknown DS41303B-page 113 PIC18F2XK20/4XK20 9.8 RCON Register The RCON register contains flag bits which are used to determine the cause of the last Reset or wake-up from Idle or Sleep modes. RCON also contains the IPEN bit which enables interrupt priorities. The operation of the SBOREN bit and the Reset flag bits is discussed in more detail in Section 4.1 “RCON Register”. REGISTER 9-10: R/W-0 IPEN RCON: RESET CONTROL REGISTER R/W-1 SBOREN U-0 (1) R/W-1 — R-1 RI TO R-1 R/W-0 PD (1) R/W-0 POR bit 7 BOR bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 IPEN: Interrupt Priority Enable bit 1 = Enable priority levels on interrupts 0 = Disable priority levels on interrupts (Mid-Range Compatibility mode) bit 6 SBOREN: Software BOR Enable bit(1) For details of bit operation, see Register 4-1. bit 5 Unimplemented: Read as ‘0’ bit 4 RI: RESET Instruction Flag bit For details of bit operation, see Register 4-1. bit 3 TO: Watchdog Time-out Flag bit For details of bit operation, see Register 4-1. bit 2 PD: Power-down Detection Flag bit For details of bit operation, see Register 4-1 bit 1 POR: Power-on Reset Status bit For details of bit operation, see Register 4-1. bit 0 BOR: Brown-out Reset Status bit For details of bit operation, see Register 4-1. Note 1: Actual Reset values are determined by device configuration and the nature of the device Reset. See Register 4-1 for additional information. DS41303B-page 114 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 9.9 INTn Pin Interrupts 9.10 External interrupts on the RB0/INT0, RB1/INT1 and RB2/INT2 pins are edge-triggered. If the corresponding INTEDGx bit in the INTCON2 register is set (= 1), the interrupt is triggered by a rising edge; if the bit is clear, the trigger is on the falling edge. When a valid edge appears on the RBx/INTx pin, the corresponding flag bit, INTxF, is set. This interrupt can be disabled by clearing the corresponding enable bit, INTxE. Flag bit, INTxF, must be cleared by software in the Interrupt Service Routine before re-enabling the interrupt. All external interrupts (INT0, INT1 and INT2) can wakeup the processor from Idle or Sleep modes if bit INTxE was set prior to going into those modes. If the Global Interrupt Enable bit, GIE, is set, the processor will branch to the interrupt vector following wake-up. Interrupt priority for INT1 and INT2 is determined by the value contained in the interrupt priority bits, INT1IP and INT2IP of the INTCON3 register. There is no priority bit associated with INT0. It is always a high priority interrupt source. TMR0 Interrupt In 8-bit mode (which is the default), an overflow in the TMR0 register (FFh → 00h) will set flag bit, TMR0IF. In 16-bit mode, an overflow in the TMR0H:TMR0L register pair (FFFFh → 0000h) will set TMR0IF. The interrupt can be enabled/disabled by setting/clearing enable bit, TMR0IE of the INTCON register. Interrupt priority for Timer0 is determined by the value contained in the interrupt priority bit, TMR0IP of the INTCON2 register. See Section 11.0 “Timer0 Module” for further details on the Timer0 module. 9.11 PORTB Interrupt-on-Change An input change on PORTB<7:4> sets flag bit, RBIF of the INTCON register. The interrupt can be enabled/ disabled by setting/clearing enable bit, RBIE of the INTCON register. Pins must also be individually enabled with the IOCB register. Interrupt priority for PORTB interrupt-on-change is determined by the value contained in the interrupt priority bit, RBIP of the INTCON2 register. 9.12 Context Saving During Interrupts During interrupts, the return PC address is saved on the stack. Additionally, the WREG, STATUS and BSR registers are saved on the fast return stack. If a fast return from interrupt is not used (see Section 5.3 “Data Memory Organization”), the user may need to save the WREG, STATUS and BSR registers on entry to the Interrupt Service Routine. Depending on the user’s application, other registers may also need to be saved. Example 9-1 saves and restores the WREG, STATUS and BSR registers during an Interrupt Service Routine. EXAMPLE 9-1: SAVING STATUS, WREG AND BSR REGISTERS IN RAM MOVWF W_TEMP MOVFF STATUS, STATUS_TEMP MOVFF BSR, BSR_TEMP ; ; USER ISR CODE ; MOVFF BSR_TEMP, BSR MOVF W_TEMP, W MOVFF STATUS_TEMP, STATUS © 2007 Microchip Technology Inc. ; W_TEMP is in virtual bank ; STATUS_TEMP located anywhere ; BSR_TMEP located anywhere ; Restore BSR ; Restore WREG ; Restore STATUS Advance Information DS41303B-page 115 PIC18F2XK20/4XK20 NOTES: DS41303B-page 116 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 10.0 I/O PORTS Reading the PORTA register reads the status of the pins, whereas writing to it, will write to the PORT latch. Depending on the device selected and features enabled, there are up to five ports available. Some pins of the I/O ports are multiplexed with an alternate function from the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin. Each port has three registers for its operation. These registers are: • TRIS register (data direction register) • PORT register (reads the levels on the pins of the device) • LAT register (output latch) The Data Latch (LAT register) is useful for read-modifywrite operations on the value that the I/O pins are driving. A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 10-1. FIGURE 10-1: GENERIC I/O PORT OPERATION D WR LAT or Port The other PORTA pins are multiplexed with analog inputs, the analog VREF+ and VREF- inputs, and the comparator voltage reference output. The operation of pins RA<3:0> and RA5 as analog is selected by setting the ANS<4:0> bits in the ANSEL register which is the default setting after a Power-on Reset. Pins RA0 through RA5 may also be used as comparator inputs or outputs by setting the appropriate bits in the CM1CON0 and CM2CON0 registers. I/O pin(1) CK D The RA4/T0CKI/C1OUT pin is a Schmitt Trigger input. All other PORTA pins have TTL input levels and full CMOS output drivers. The TRISA register controls the drivers of the PORTA pins, even when they are being used as analog inputs. The user should ensure the bits in the TRISA register are maintained set when using them as analog inputs. Q CK TRIS Latch Input Buffer EXAMPLE 10-1: CLRF RD TRIS Q D CLRF ENEN RD Port Note 1: 10.1 On a Power-on Reset, RA5 and RA<3:0> are configured as analog inputs and read as ‘0’. RA4 is configured as a digital input. Q Data Latch WR TRIS The RA4 pin is multiplexed with the Timer0 module clock input and one of the comparator outputs to become the RA4/T0CKI/C1OUT pin. Pins RA6 and RA7 are multiplexed with the main oscillator pins; they are enabled as oscillator or I/O pins by the selection of the main oscillator in the Configuration register (see Section 23.1 “Configuration Bits” for details). When they are not used as port pins, RA6 and RA7 and their associated TRIS and LAT bits are read as ‘0’. Note: RD LAT Data Bus The Data Latch (LATA) register is also memory mapped. Read-modify-write operations on the LATA register read and write the latched output value for PORTA. I/O pins have diode protection to VDD and VSS. MOVLW MOVWF MOVWF MOVWF MOVLW PORTA, TRISA and LATA Registers MOVWF PORTA is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). © 2007 Microchip Technology Inc. PORTA ; ; ; LATA ; ; ; 07h ; ADCON1 ; 07h ; CMCON ; 0CFh ; ; ; TRISA ; ; Advance Information INITIALIZING PORTA Initialize PORTA by clearing output data latches Alternate method to clear output data latches Configure A/D for digital inputs Configure comparators for digital input Value used to initialize data direction Set RA<3:0> as inputs RA<5:4> as outputs DS41303B-page 117 PIC18F2XK20/4XK20 TABLE 10-1: PORTA I/O SUMMARY Pin Function TRIS Setting I/O RA0/AN0/C12IN0- RA0 0 O DIG LATA<0> data output; not affected by analog input. 1 I TTL PORTA<0> data input; disabled when analog input enabled. AN0 1 I ANA ADC input channel 0. Default input configuration on POR; does not affect digital output. C12IN0- 1 I ANA Comparators C1 and C2 inverting input, channel 0. Analog select is shared with ADC. RA1 0 O DIG LATA<1> data output; not affected by analog input. 1 I TTL PORTA<1> data input; disabled when analog input enabled. AN1 1 I ANA ADC input channel 1. Default input configuration on POR; does not affect digital output. C12IN1- 1 I ANA Comparators C1 and C2 inverting input, channel 1. Analog select is shared with ADC. RA2 0 O DIG LATA<2> data output; not affected by analog input. Disabled when CVREF output enabled. 1 I TTL PORTA<2> data input. Disabled when analog functions enabled; disabled when CVREF output enabled. AN2 1 I ANA ADC input channel 2. Default input configuration on POR; not affected by analog output. C2IN+ 1 I ANA Comparator C2 non-inverting input. Analog selection is shared with ADC. RA1/AN1/C12IN1- RA2/AN2/C2IN+ VREF-/CVREF RA3/AN3/C1IN+/ VREF+ RA4/T0CKI/C1OUT OSC2/CLKOUT/ RA6 Legend: Description VREF- 1 I ANA ADC and comparator voltage reference low input. CVREF x O ANA Comparator voltage reference output. Enabling this feature disables digital I/O. RA3 0 O DIG LATA<3> data output; not affected by analog input. 1 I TTL PORTA<3> data input; disabled when analog input enabled. AN3 1 I ANA A/D input channel 3. Default input configuration on POR. C1IN+ 1 I ANA Comparator C1 non-inverting input. Analog selection is shared with ADC. VREF+ 1 I ANA ADC and comparator voltage reference high input. RA4 0 O DIG LATA<4> data output. 1 I ST PORTA<4> data input; default configuration on POR. 1 I ST Timer0 clock input. T0CKI RA5/AN4/SS/ HLVDIN/C2OUT I/O Type C1OUT 0 O DIG Comparator 1 output; takes priority over port data. RA5 0 O DIG LATA<5> data output; not affected by analog input. 1 I TTL PORTA<5> data input; disabled when analog input enabled. A/D input channel 4. Default configuration on POR. AN4 1 I ANA SS 1 I TTL Slave select input for SSP (MSSP module). HLVDIN 1 I ANA Low-Voltage Detect external trip point input. C2OUT 0 O DIG Comparator 2 output; takes priority over port data. RA6 0 O DIG LATA<6> data output. Enabled in RCIO, INTIO2 and ECIO modes only. 1 I TTL PORTA<6> data input. Enabled in RCIO, INTIO2 and ECIO modes only. OSC2 x O ANA Main oscillator feedback output connection (XT, HS and LP modes). CLKOUT x O DIG System cycle clock output (FOSC/4) in RC, INTIO1 and EC Oscillator modes. DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; x = Don’t care (TRIS bit does not affect port direction or is overridden for this option). DS41303B-page 118 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 TABLE 10-1: PORTA I/O SUMMARY (CONTINUED) Pin Function TRIS Setting I/O I/O Type OSC1/CLKIN/RA7 RA7 0 O DIG Legend: Description LATA<7> data output. Disabled in external oscillator modes. 1 I TTL PORTA<7> data input. Disabled in external oscillator modes. OSC1 x I ANA Main oscillator input connection. CLKIN x I ANA Main clock input connection. DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; x = Don’t care (TRIS bit does not affect port direction or is overridden for this option). TABLE 10-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset Values on page RA7(1) RA6(1) RA5 RA4 RA3 RA2 RA1 RA0 60 LATA LATA7(1) LATA6(1) TRISA TRISA7(1) TRISA6(1) PORTA Data Direction Control Register Name PORTA PORTA Data Latch Register (Read and Write to Data Latch) 60 60 ANS7(2) ANS6(2) ANS5(2) ANS4 ANS3 ANS2 ANS1 ANS0 60 SLRCON — — — SLRE SLRD SLRC SLRB SLRA 61 ANSEL CM1CON C1ON C1OUT C1OE C1POL C1SP C1R C1CH1 C1CH0 60 CM2CON C2ON C2OUT C2OE C2POL C2SP C2R C2CH1 C2CH0 60 CVRCON CVREN CVROE CVRR CVRSS CVR3 CVR2 CVR1 CVR0 59 Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by PORTA. Note 1: RA<7:6> and their associated latch and data direction bits are enabled as I/O pins based on oscillator configuration; otherwise, they are read as ‘0’. 2: Not implemented on PIC18F2XK20 devices. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 119 PIC18F2XK20/4XK20 10.2 10.3.2 PORTB, TRISB and LATB Registers PORTB is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., disable the output driver). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). The Data Latch register (LATB) is also memory mapped. Read-modify-write operations on the LATB register read and write the latched output value for PORTB. EXAMPLE 10-2: CLRF CLRF MOVLW MOVWF MOVLW MOVWF 10.3 INITIALIZING PORTB PORTB ; Initialize PORTB by ; clearing output ; data latches LATB ; Alternate method ; to clear output ; data latches 0Fh ; Set RB<4:0> as ADCON1 ; digital I/O pins ;(required if config bit ; PBADEN is set) 0CFh ; Value used to ; initialize data ; direction TRISB ; Set RB<3:0> as inputs ; RB<5:4> as outputs ; RB<7:6> as inputs Additional PORTB Pin Functions PORTB pins RB<7:4> have an interrupt-on-change option. All PORTB pins have a weak pull-up option. An alternate CCP2 peripheral option is available on RB3. 10.3.1 Note: Four of the PORTB pins (RB<7:4>) are individually configurable as interrupt-on-change pins. Control bits in the IOCB register enable (when set) or disable (when clear) the interrupt function for each pin. When set, the RBIE bit of the INTCON register enables interrupts on all pins which also have their corresponding IOCB bit set. When clear, the RBIE bit disables all interrupt-on-changes. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB<7:4> pin configured as an output is excluded from the interrupt-on-change comparison). For enabled interrupt-on-change pins, the values are compared with the old value latched on the last read of PORTB. The ‘mismatch’ outputs of the last read are OR’d together to set the PORTB Change Interrupt flag bit (RBIF) in the INTCON register. This interrupt can wake the device from the Sleep mode, or any of the Idle modes. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner: a) b) Any read or write of PORTB to clear the mismatch condition (except when PORTB is the source or destination of a MOVFF instruction). Clear the flag bit, RBIF. A mismatch condition will continue to set the RBIF flag bit. Reading or writing PORTB will end the mismatch condition and allow the RBIF bit to be cleared. The latch holding the last read value is not affected by a MCLR nor Brown-out Reset. After either one of these Resets, the RBIF flag will continue to be set if a mismatch is present. Note: WEAK PULL-UPS Each of the PORTB pins has an individually controlled weak internal pull-up. When set, each bit of the WPUB register enables the corresponding pin pull-up. When cleared, the RBPU bit of the INTCON2 register enables pull-ups on all pins which also have their corresponding WPUB bit set. When set, the RBPU bit disables all weak pull-ups. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset. On a Power-on Reset, RB<4:0> are configured as analog inputs by default and read as ‘0’; RB<7:5> are configured as digital inputs. When the PBADEN Configuration bit is set to ‘1’, RB<4:0> will alternatively be configured as digital inputs on POR. DS41303B-page 120 INTERRUPT-ON-CHANGE If a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RBIF interrupt flag may not get set. Furthermore, since a read or write on a port affects all bits of that port, care must be taken when using multiple pins in Interrupt-on-change mode. Changes on one pin may not be seen while servicing changes on another pin. The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature. 10.3.3 ALTERNATE CCP2 OPTION RB3 can be configured as the alternate peripheral pin for the CCP2 module by clearing the CCP2MX Configuration bit of CONFIG3H. The default state of the CCP2MX Configuration bit is ‘1’ which selects RC1 as the CCP2 peripheral pin. Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 TABLE 10-3: Pin RB0/INT0/FLT0/ AN12 RB1/INT1/AN10/ C12IN2-/P1C RB2/INT2/AN8/ P1B RB3/AN9/C12IN3-/ CCP2 RB4/KBI0/AN11/ P1D RB5/KBI1/PGM Legend: Note 1: 2: 3: PORTB I/O SUMMARY Function TRIS Setting I/O I/O Type RB0 0 O DIG LATB<0> data output; not affected by analog input. 1 I TTL PORTB<0> data input; Programmable weak pull-up. Disabled when analog input enabled.(1) INT0 1 I ST External interrupt 0 input. Description FLT0 1 I ST AN12 1 I ANA A/D input channel 12.(1) Enhanced PWM Fault input (ECCP1 module); enabled by software. RB1 0 O DIG LATB<1> data output; not affected by analog input. 1 I TTL PORTB<1> data input; Programmable weak pull-up. Disabled when analog input enabled.(1) INT1 1 I ST External Interrupt 1 input. AN10 1 I ANA ADC input channel 10.(1) C12IN2- 1 I ANA Comparators C1 and C2 inverting input, channel 2. Analog select is shared with ADC. P1C 0 O DIG ECCP PWM output (28-pin devices only). RB2 0 O DIG LATB<2> data output; not affected by analog input. 1 I TTL PORTB<2> data input; Programmable weak pull-up. Disabled when analog input enabled.(1) INT2 1 I ST AN8 1 I ANA External interrupt 2 input. ADC input channel 8.(1) P1B 0 O DIG ECCP PWM output (28-pin devices only). RB3 0 O DIG LATB<3> data output; not affected by analog input. 1 I TTL PORTB<3> data input; Programmable weak pull-up. Disabled when analog input enabled.(1) AN9 1 I ANA ADC input channel 9.(1) C12IN3- 1 I ANA Comparators C1 and C2 inverting input, channel 3. Analog select is shared with ADC. CCP2(2) 0 O DIG CCP2 compare and PWM output. 1 I ST CCP2 capture input 0 O DIG LATB<4> data output; not affected by analog input. 1 I TTL PORTB<4> data input; Programmable weak pull-up. Disabled when analog input enabled.(1) RB4 KBI0 1 I TTL Interrupt-on-pin change. AN11 1 I ANA ADC input channel 11.(1) P1D 0 O DIG ECCP PWM output (28-pin devices only). RB5 0 O DIG LATB<5> data output. 1 I TTL PORTB<5> data input; Programmable weak pull-up. KBI1 1 I TTL Interrupt-on-pin change. PGM x I ST Single-Supply Programming mode entry (ICSP™). Enabled by LVP Configuration bit; all other pin functions disabled. DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; x = Don’t care (TRIS bit does not affect port direction or is overridden for this option). Configuration on POR is determined by the PBADEN Configuration bit. Pins are configured as analog inputs by default when PBADEN is set and digital inputs when PBADEN is cleared. Alternate assignment for CCP2 when the CCP2MX Configuration bit is ‘0’. Default assignment is RC1. All other pin functions are disabled when ICSP or ICD are enabled. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 121 PIC18F2XK20/4XK20 TABLE 10-3: PORTB I/O SUMMARY (CONTINUED) Pin Function TRIS Setting I/O I/O Type RB6 0 O DIG RB6/KBI2/PGC Note 1: 2: 3: 1 I TTL PORTB<6> data input; Programmable weak pull-up. 1 I TTL Interrupt-on-pin change. PGC x I ST Serial execution (ICSP) clock input for ICSP and ICD operation.(3) RB7 0 O DIG LATB<7> data output. 1 I TTL PORTB<7> data input; Programmable weak pull-up. KBI3 1 I TTL Interrupt-on-pin change. PGD x O DIG Serial execution data output for ICSP and ICD operation.(3) x I ST Serial execution data input for ICSP and ICD operation.(3) DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; x = Don’t care (TRIS bit does not affect port direction or is overridden for this option). Configuration on POR is determined by the PBADEN Configuration bit. Pins are configured as analog inputs by default when PBADEN is set and digital inputs when PBADEN is cleared. Alternate assignment for CCP2 when the CCP2MX Configuration bit is ‘0’. Default assignment is RC1. All other pin functions are disabled when ICSP or ICD are enabled. TABLE 10-4: Name PORTB LATB<6> data output. KBI2 RB7/KBI3/PGD Legend: Description SUMMARY OF REGISTERS ASSOCIATED WITH PORTB Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 LATB PORTB Data Latch Register (Read and Write to Data Latch) TRISB PORTB Data Direction Control Register WPUB7 WPUB6 WPUB5 WPUB4 IOCB IOCB7 IOCB6 IOCB5 IOCB4 — — — SLRE SLRD TMR0IE INT0IE INTCON GIE/GIEH PEIE/GIEL INTCON2 RBPU INTCON3 INT2IP ANSELH — 60 60 60 WPUB SLRCON Reset Values on page WPUB3 WPUB2 WPUB1 WPUB0 60 60 SLRC SLRB SLRA 61 RBIE TMR0IF INT0IF RBIF 57 INTEDG0 INTEDG1 INTEDG2 — TMR0IP — RBIP 57 INT1IP — INT2IE INT1IE — INT2IF INT1IF 57 — — ANS12 ANS11 ANS10 ANS9 ANS8 60 Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by PORTB. DS41303B-page 122 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 10.4 EXAMPLE 10-3: PORTC, TRISC and LATC Registers PORTC is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISC. Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., disable the output driver). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). CLRF PORTC CLRF LATC MOVLW 0CFh MOVWF TRISC The Data Latch register (LATC) is also memory mapped. Read-modify-write operations on the LATC register read and write the latched output value for PORTC. INITIALIZING PORTC ; ; ; ; ; ; ; ; ; ; ; ; Initialize PORTC by clearing output data latches Alternate method to clear output data latches Value used to initialize data direction Set RC<3:0> as inputs RC<5:4> as outputs RC<7:6> as inputs PORTC is multiplexed with several peripheral functions (Table 10-5). The pins have Schmitt Trigger input buffers. RC1 is the default configuration for the CCP2 peripheral pin. The CCP2 function can be relocated to the RB3 pin by clearing the CCP2MX bit of Configuration Word CONFIG3H. The default state of the CCP2MX Configuration bit is ‘1’. When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. The EUSART and MSSP peripherals override the TRIS bit to make a pin an output or an input, depending on the peripheral configuration. Refer to the corresponding peripheral section for additional information. Note: On a Power-on Reset, these pins are configured as digital inputs. The contents of the TRISC register are affected by peripheral overrides. Reading TRISC always returns the current contents, even though a peripheral device may be overriding one or more of the pins. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 123 PIC18F2XK20/4XK20 TABLE 10-5: Pin PORTC I/O SUMMARY Function TRIS Setting I/O I/O Type RC0 0 O DIG RC0/T1OSO/ T13CKI RC1/T1OSI/CCP2 RC2/CCP1/P1A 1 I ST x O ANA T13CKI 1 I ST Timer1/Timer3 counter input. RC1 0 O DIG LATC<1> data output. 1 I ST x I ANA Timer1 oscillator input; enabled when Timer1 oscillator enabled. Disables digital I/O. CCP2(1) 0 O DIG CCP2 compare and PWM output; takes priority over port data. 1 I ST CCP2 capture input. 0 O DIG LATC<2> data output. 1 I ST PORTC<2> data input. 0 O DIG ECCP1 compare or PWM output; takes priority over port data. 1 I ST ECCP1 capture input. P1A 0 O DIG ECCP1 Enhanced PWM output, channel A. May be configured for tri-state during Enhanced PWM shutdown events. Takes priority over port data. RC3 0 O DIG LATC<3> data output. 1 I ST PORTC<3> data input. 0 O DIG SPI clock output (MSSP module); takes priority over port data. RC2 SCL RC5/SDO RC7/RX/DT Legend: Note 1: RC4 PORTC<1> data input. 1 I ST SPI clock input (MSSP module). 0 O DIG I2C™ clock output (MSSP module); takes priority over port data. 1 I 0 O DIG LATC<4> data output. PORTC<4> data input. I2C/SMB I2C clock input (MSSP module); input type depends on module setting. 1 I ST SDI 1 I ST SPI data input (MSSP module). SDA 1 O DIG I2C data output (MSSP module); takes priority over port data. 1 I 0 O DIG 1 I ST PORTC<5> data input. SDO 0 O DIG SPI data output (MSSP module); takes priority over port data. RC6 0 O DIG LATC<6> data output. RC5 RC6/TX/CK PORTC<0> data input. Timer1 oscillator output; enabled when Timer1 oscillator enabled. Disables digital I/O. T1OSI SCK RC4/SDI/SDA LATC<0> data output. T1OSO CCP1 RC3/SCK/SCL Description I2C/SMB I2C data input (MSSP module); input type depends on module setting. LATC<5> data output. 1 I ST PORTC<6> data input. TX 1 O DIG Asynchronous serial transmit data output (USART module); takes priority over port data. User must configure as output. CK 1 O DIG Synchronous serial clock output (USART module); takes priority over port data. 1 I ST Synchronous serial clock input (USART module). 0 O DIG LATC<7> data output. 1 I ST PORTC<7> data input. RX 1 I ST Asynchronous serial receive data input (USART module). DT 1 O DIG Synchronous serial data output (USART module); takes priority over port data. 1 I ST Synchronous serial data input (USART module). User must configure as an input. RC7 DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; I2C/SMB = I2C/SMBus input buffer; x = Don’t care (TRIS bit does not affect port direction or is overridden for this option). Default assignment for CCP2 when the CCP2MX Configuration bit is set. Alternate assignment is RB3. DS41303B-page 124 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 TABLE 10-6: Name PORTC SUMMARY OF REGISTERS ASSOCIATED WITH PORTC Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0 LATC PORTC Data Latch Register (Read and Write to Data Latch) TRISC PORTC Data Direction Control Register T1RUN T3CON RD16 T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 TXSTA CSRC TX9 60 60 60 RD16 T1CON Reset Values on page T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TXEN SYNC SENDB T3SYNC BRGH TMR1CS TMR1ON TMR3CS TMR3ON TRMT 58 59 TX9D 59 RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 59 SSPCON1 WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0 58 CCP1CON P1M1 P1M0 DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0 59 CCP2CON — — DC2B1 DC2B0 CCP2M3 CCP2M2 CCP2M1 CCP2M0 59 ECCP1AS SLRCON ECCPASE ECCPAS2 ECCPAS1 ECCPAS0 PSSAC1 — © 2007 Microchip Technology Inc. — — SLRE PSSAC0 PSSBD1 PSSBD0 59 SLRC SLRB SLRA 61 SLRD Advance Information DS41303B-page 125 PIC18F2XK20/4XK20 10.5 Note: PORTD, TRISD and LATD Registers PORTD is only available on 40/44-pin devices. PORTD is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISD. Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., disable the output driver). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). The Data Latch register (LATD) is also memory mapped. Read-modify-write operations on the LATD register read and write the latched output value for PORTD. All pins on PORTD are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output. Three of the PORTD pins are multiplexed with outputs P1B, P1C and P1D of the enhanced CCP module. The operation of these additional PWM output pins is covered in greater detail in Section 16.0 “Enhanced Capture/Compare/PWM (ECCP) Module”. Note: PORTD can also be configured as an 8-bit wide microprocessor port (Parallel Slave Port) by setting control bit, PSPMODE (TRISE<4>). In this mode, the input buffers are TTL. See Section 10.9 “Parallel Slave Port” for additional information on the Parallel Slave Port (PSP). Note: When the enhanced PWM mode is used with either dual or quad outputs, the PSP functions of PORTD are automatically disabled. EXAMPLE 10-4: CLRF PORTD CLRF LATD MOVLW 0CFh MOVWF TRISD INITIALIZING PORTD ; ; ; ; ; ; ; ; ; ; ; ; Initialize PORTD by clearing output data latches Alternate method to clear output data latches Value used to initialize data direction Set RD<3:0> as inputs RD<5:4> as outputs RD<7:6> as inputs On a Power-on Reset, these pins are configured as digital inputs. DS41303B-page 126 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 TABLE 10-7: Pin RD0/PSP0 RD1/PSP1 RD2/PSP2 RD3/PSP3 RD4/PSP4 RD5/PSP5/P1B RD6/PSP6/P1C PORTD I/O SUMMARY Function TRIS Setting I/O I/O Type RD0 0 O DIG 1 I ST PORTD<0> data input. PSP0 x O DIG PSP read data output (LATD<0>); takes priority over port data. Legend: LATD<0> data output. x I TTL PSP write data input. RD1 0 O DIG LATD<1> data output. 1 I ST PORTD<1> data input. PSP1 x O DIG PSP read data output (LATD<1>); takes priority over port data. x I TTL PSP write data input. RD2 0 O DIG LATD<2> data output. 1 I ST PORTD<2> data input. PSP2 x O DIG PSP read data output (LATD<2>); takes priority over port data. x I TTL PSP write data input. RD3 0 O DIG LATD<3> data output. 1 I ST PORTD<3> data input. PSP3 x O DIG PSP read data output (LATD<3>); takes priority over port data. x I TTL PSP write data input. RD4 0 O DIG LATD<4> data output. 1 I ST PORTD<4> data input. PSP4 x O DIG PSP read data output (LATD<4>); takes priority over port data. x I TTL PSP write data input. RD5 0 O DIG LATD<5> data output. 1 I ST PORTD<5> data input. PSP5 x O DIG PSP read data output (LATD<5>); takes priority over port data. x I TTL PSP write data input. P1B 0 O DIG ECCP1 Enhanced PWM output, channel B; takes priority over port and PSP data. May be configured for tri-state during Enhanced PWM shutdown events. RD6 0 O DIG LATD<6> data output. 1 I ST PORTD<6> data input. PSP6 RD7/PSP7/P1D Description x O DIG PSP read data output (LATD<6>); takes priority over port data. x I TTL PSP write data input. P1C 0 O DIG ECCP1 Enhanced PWM output, channel C; takes priority over port and PSP data. May be configured for tri-state during Enhanced PWM shutdown events. RD7 0 O DIG LATD<7> data output. 1 I ST PORTD<7> data input. PSP7 x O DIG PSP read data output (LATD<7>); takes priority over port data. x I TTL PSP write data input. P1D 0 O DIG ECCP1 Enhanced PWM output, channel D; takes priority over port and PSP data. May be configured for tri-state during Enhanced PWM shutdown events. DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; x = Don’t care (TRIS bit does not affect port direction or is overridden for this option). © 2007 Microchip Technology Inc. Advance Information DS41303B-page 127 PIC18F2XK20/4XK20 TABLE 10-8: Name PORTD SUMMARY OF REGISTERS ASSOCIATED WITH PORTD Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0 LATD PORTD Data Latch Register (Read and Write to Data Latch) TRISD PORTD Data Direction Control Register Reset Values on page 60 60 60 IBF OBF IBOV PSPMODE — TRISE2 TRISE1 TRISE0 60 CCP1CON P1M1 P1M0 DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0 59 SLRCON — — — SLRE SLRD SLRC SLRB SLRA 61 TRISE Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by PORTD. DS41303B-page 128 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 10.6 PORTE, TRISE and LATE Registers Depending on the particular PIC18F2XK20/4XK20 device selected, PORTE is implemented in two different ways. 10.6.1 PORTE IN PIC18F4XK20 DEVICES For PIC18F4XK20 devices, PORTE is a 4-bit wide port. Three pins (RE0/RD/AN5, RE1/WR/AN6 and RE2/CS/ AN7) are individually configurable as inputs or outputs. These pins have Schmitt Trigger input buffers. When selected as an analog input, these pins will read as ‘0’s. The corresponding data direction register is TRISE. Setting a TRISE bit (= 1) will make the corresponding PORTE pin an input (i.e., disable the output driver). Clearing a TRISE bit (= 0) will make the corresponding PORTE pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). TRISE controls the direction of the RE pins, even when they are being used as analog inputs. The user must make sure to keep the pins configured as inputs when using them as analog inputs. Note: On a Power-on Reset, RE<2:0> are configured as analog inputs. The upper four bits of the TRISE register also control the operation of the Parallel Slave Port. Their operation is explained in Register 10-1. The Data Latch register (LATE) is also memory mapped. Read-modify-write operations on the LATE register, read and write the latched output value for PORTE. © 2007 Microchip Technology Inc. The fourth pin of PORTE (MCLR/VPP/RE3) is an input only pin. Its operation is controlled by the MCLRE Configuration bit. When selected as a port pin (MCLRE = 0), it functions as a digital input only pin; as such, it does not have TRIS or LAT bits associated with its operation. Otherwise, it functions as the device’s Master Clear input. In either configuration, RE3 also functions as the programming voltage input during programming. Note: On a Power-on Reset, RE3 is enabled as a digital input only if Master Clear functionality is disabled. EXAMPLE 10-5: CLRF CLRF MOVLW ANDWF MOVLW MOVWF PORTE ; ; ; LATE ; ; ; 1Fh ; ANSEL,w ; 05h ; ; ; TRISE ; ; ; 10.6.2 INITIALIZING PORTE Initialize PORTE by clearing output data latches Alternate method to clear output data latches Configure analog pins for digital only Value used to initialize data direction Set RE<0> as input RE<1> as output RE<2> as input PORTE IN PIC18F2XK20 DEVICES For PIC18F2XK20 devices, PORTE is only available when Master Clear functionality is disabled (MCLR = 0). In these cases, PORTE is a single bit, input only port comprised of RE3 only. The pin operates as previously described. Advance Information DS41303B-page 129 PIC18F2XK20/4XK20 REGISTER 10-1: TRISE: PORTE/PSP CONTROL REGISTER (PIC18F4XK20 DEVICES ONLY) R-0 R-0 R/W-0 R/W-0 U-0 R/W-1 R/W-1 R/W-1 IBF OBF IBOV PSPMODE — TRISE2 TRISE1 TRISE0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 IBF: Input Buffer Full Status bit 1 = A word has been received and waiting to be read by the CPU 0 = No word has been received bit 6 OBF: Output Buffer Full Status bit 1 = The output buffer still holds a previously written word 0 = The output buffer has been read bit 5 IBOV: Input Buffer Overflow Detect bit (in Microprocessor mode) 1 = A write occurred when a previously input word has not been read (must be cleared by software) 0 = No overflow occurred bit 4 PSPMODE: Parallel Slave Port Mode Select bit 1 = Parallel Slave Port mode 0 = General purpose I/O mode bit 3 Unimplemented: Read as ‘0’ bit 2 TRISE2: RE2 Direction Control bit 1 = Input 0 = Output bit 1 TRISE1: RE1 Direction Control bit 1 = Input 0 = Output bit 0 TRISE0: RE0 Direction Control bit 1 = Input 0 = Output DS41303B-page 130 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 TABLE 10-9: Pin PORTE I/O SUMMARY Function TRIS Setting I/O I/O Type RE0 0 O DIG LATE<0> data output; not affected by analog input. 1 I ST PORTE<0> data input; disabled when analog input enabled. RE0/RD/AN5 RE1/WR/AN6 RE2/CS/AN7 MCLR/VPP/ RE3(1,2) Legend: Note 1: 2: Description RD 1 I TTL PSP read enable input (PSP enabled). AN5 1 I ANA A/D input channel 5; default input configuration on POR. RE1 0 O DIG LATE<1> data output; not affected by analog input. 1 I ST PORTE<1> data input; disabled when analog input enabled. WR 1 I TTL PSP write enable input (PSP enabled). AN6 1 I ANA A/D input channel 6; default input configuration on POR. RE2 0 O DIG LATE<2> data output; not affected by analog input. 1 I ST PORTE<2> data input; disabled when analog input enabled. CS 1 I TTL PSP write enable input (PSP enabled). AN7 1 I ANA A/D input channel 7; default input configuration on POR. MCLR — I ST External Master Clear input; enabled when MCLRE Configuration bit is set. VPP — I ANA High-voltage detection; used for ICSP™ mode entry detection. Always available, regardless of pin mode. RE3 —(2) I ST PORTE<3> data input; enabled when MCLRE Configuration bit is clear. DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; x = Don’t care (TRIS bit does not affect port direction or is overridden for this option). RE3 is available on both PIC18F2XK20 and PIC18F4XK20 devices. All other PORTE pins are only implemented on PIC18F4XK20 devices. RE3 does not have a corresponding TRIS bit to control data direction. TABLE 10-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE Name Bit 6 Bit 5 Bit 4 Bit 3 PORTE — — — — RE3(1,2) LATE(2) — — — — — TRISE IBF OBF IBOV PSPMODE — TRISE2 TRISE1 TRISE0 60 SLRCON — — — SLRE SLRD SLRC SLRB SLRA 61 ANS7 ANS6 ANS5 ANS4 ANS3 ANS2 ANS1 ANS0 60 ANSEL Bit 2 Bit 1 Bit 0 RE2 RE1 RE0 Reset Values on page Bit 7 LATE Data Output Register 60 60 Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by PORTE. Note 1: Implemented only when Master Clear functionality is disabled (MCLRE Configuration bit = 0). 2: RE3 is the only PORTE bit implemented on both PIC18F2XK20 and PIC18F2XK20 devices. All other bits are implemented only when PORTE is implemented (i.e., PIC18F4XK20 devices). © 2007 Microchip Technology Inc. Advance Information DS41303B-page 131 PIC18F2XK20/4XK20 10.7 Port Analog Control Some port pins are multiplexed with analog functions such as the Analog-to-Digital Converter and comparators. When these I/O pins are to be used as analog inputs it is necessary to disable the digital input buffer to avoid excessive current caused by improper biasing of the digital input. Individual control of the digital input buffers on pins which share analog functions is provided by the ANSEL and ANSELH registers. Setting an ANSx bit high will disable the associated digital input REGISTER 10-2: buffer and cause all reads of that pin to return ‘0’ while allowing analog functions of that pin to operate correctly. The state of the ANSx bits has no affect on digital output functions. A pin with the associated TRISx bit clear and ANSx bit set will still operate as a digital output but the input mode will be analog. This can cause unexpected behavior when performing readmodify-write operations on the affected port. ANSEL: ANALOG SELECT REGISTER 1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 ANS7(1) ANS6(1) ANS5(1) ANS4 ANS3 ANS2 ANS1 ANS0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 ANS7: RE2 Analog Select Control bit(1) 1 = Digital input buffer of RE2 is disabled 0 = Digital input buffer of RE2 is enabled bit 6 ANS6: RE1 Analog Select Control bit(1) 1 = Digital input buffer of RE1 is disabled 0 = Digital input buffer of RE1 is enabled bit 5 ANS5: RE0 Analog Select Control bit(1) 1 = Digital input buffer of RE0 is disabled 0 = Digital input buffer of RE0 is enabled bit 4 ANS4: RA5 Analog Select Control bit 1 = Digital input buffer of RA5 is disabled 0 = Digital input buffer of RA5 is enabled bit 3 ANS3: RA3 Analog Select Control bit 1 = Digital input buffer of RA3 is disabled 0 = Digital input buffer of RA3 is enabled bit 2 ANS2: RA2 Analog Select Control bit 1 = Digital input buffer of RA2 is disabled 0 = Digital input buffer of RA2 is enabled bit 1 ANS1: RA1 Analog Select Control bit 1 = Digital input buffer of RA1 is disabled 0 = Digital input buffer of RA1 is enabled bit 0 ANS0: RA0 Analog Select Control bit 1 = Digital input buffer of RA0 is disabled 0 = Digital input buffer of RA0 is enabled Note 1: x = Bit is unknown These bits are not implemented on PIC18F2XK20 devices. DS41303B-page 132 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 REGISTER 10-3: ANSELH: ANALOG SELECT REGISTER 2 U-0 U-0 U-0 R/W-1(1) R/W-1(1) R/W-1(1) R/W-1(1) R/W-1(1) — — — ANS12 ANS11 ANS10 ANS9 ANS8 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-5 Unimplemented: Read as ‘0’ bit 4 ANS12: RB0 Analog Select Control bit 1 = Digital input buffer of RB0 is disabled 0 = Digital input buffer of RB0 is enabled bit 3 ANS11: RB4 Analog Select Control bit 1 = Digital input buffer of RB4 is disabled 0 = Digital input buffer of RB4 is enabled bit 2 ANS10: RB1 Analog Select Control bit 1 = Digital input buffer of RB1 is disabled 0 = Digital input buffer of RB1 is enabled bit 1 ANS9: RB3 Analog Select Control bit 1 = Digital input buffer of RB3 is disabled 0 = Digital input buffer of RB3 is enabled bit 0 ANS8: RB2 Analog Select Control bit 1 = Digital input buffer of RB2 is disabled 0 = Digital input buffer of RB2 is enabled Note 1: x = Bit is unknown Default state is determined by the PBADEN bit of CONFIG3H. The default state is ‘0’ When PBADEN = ‘0’. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 133 PIC18F2XK20/4XK20 10.8 Port Slew Rate Control The output slew rate of each port is programmable to select either the standard transition rate or a reduced transition rate of 0.1 times the standard to minimize EMI. The reduced transition time is the default slew rate for all ports. REGISTER 10-4: SLRCON: SLEW RATE CONTROL REGISTER U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 — — — SLRE(1) SLRD(1) SLRC SLRB SLRA bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-5 Unimplemented: Read as ‘0’ bit 4 SLRE: PORTE Slew Rate Control bit(1) 1 = All outputs on PORTE slew at 0.1 times the standard rate 0 = All outputs on PORTE slew at the standard rate bit 3 SLRD: PORTD Slew Rate Control bit(1) 1 = All outputs on PORTD slew at 0.1 times the standard rate 0 = All outputs on PORTD slew at the standard rate bit 2 SLRC: PORTC Slew Rate Control bit 1 = All outputs on PORTC slew at 0.1 times the standard rate 0 = All outputs on PORTC slew at the standard rate bit 1 SLRB: PORTB Slew Rate Control bit 1 = All outputs on PORTB slew at 0.1 times the standard rate 0 = All outputs on PORTB slew at the standard rate bit 0 SLRA: PORTA Slew Rate Control bit 1 = All outputs on PORTA slew at 0.1 times the standard rate(2) 0 = All outputs on PORTA slew at the standard rate Note 1: 2: x = Bit is unknown These bits are not implemented on PIC18F2XK20 devices. The slew rate of RA6 defaults to standard rate when the pin is used as CLKOUT. DS41303B-page 134 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 10.9 Note: Parallel Slave Port The Parallel Slave Port is only available on PIC18F4XK20 devices. In addition to its function as a general I/O port, PORTD can also operate as an 8-bit wide Parallel Slave Port (PSP) or microprocessor port. PSP operation is controlled by the 4 upper bits of the TRISE register (Register 10-1). Setting control bit, PSPMODE (TRISE<4>), enables PSP operation as long as the enhanced CCP module is not operating in dual output or quad output PWM mode. In Slave mode, the port is asynchronously readable and writable by the external world. The PSP can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting the control bit, PSPMODE, enables the PORTE I/O pins to become control inputs for the microprocessor port. When set, port pin RE0 is the RD input, RE1 is the WR input and RE2 is the CS (Chip Select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set) and the ANSEL<7:5> bits must be cleared. A write to the PSP occurs when both the CS and WR lines are first detected low and ends when either are detected high. The PSPIF and IBF flag bits are both set when the write ends. The timing for the control signals in Write and Read modes is shown in Figure 10-3 and Figure 10-4, respectively. FIGURE 10-2: One bit of PORTD Data Bus D WR LATD or WR PORTD © 2007 Microchip Technology Inc. Q RDx pin CK Data Latch Q RD PORTD TTL D ENEN RD LATD Set Interrupt Flag PSPIF (PIR1<7>) PORTE Pins Read A read from the PSP occurs when both the CS and RD lines are first detected low. The data in PORTD is read out and the OBF bit is clear. If the user writes new data to PORTD to set OBF, the data is immediately read out; however, the OBF bit is not set. When either the CS or RD lines are detected high, the PORTD pins return to the input state and the PSPIF bit is set. User applications should wait for PSPIF to be set before servicing the PSP; when this happens, the IBF and OBF bits can be polled and the appropriate action taken. PORTD AND PORTE BLOCK DIAGRAM (PARALLEL SLAVE PORT) TTL RD Chip Select TTL CS Write TTL Note: Advance Information WR I/O pins have diode protection to VDD and VSS. DS41303B-page 135 PIC18F2XK20/4XK20 FIGURE 10-3: PARALLEL SLAVE PORT WRITE WAVEFORMS Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q4 Q1 Q2 Q3 Q4 CS WR RD PORTD<7:0> IBF OBF PSPIF FIGURE 10-4: PARALLEL SLAVE PORT READ WAVEFORMS Q1 Q2 Q3 Q4 Q1 Q2 Q3 CS WR RD PORTD<7:0> IBF OBF PSPIF TABLE 10-11: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT Name PORTD Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0 LATD PORTD Data Latch Register (Read and Write to Data Latch) TRISD PORTD Data Direction Control Register PORTE — — — Reset Values on page 60 60 60 — RE3 RE2 RE1 RE0 60 TRISE1 TRISE0 60 LATE — — — — — TRISE IBF OBF IBOV PSPMODE — — — — SLRE SLRD SLRC SLRB SLRA 61 TMR0IF INT0IE RBIE TMR0IF INT0IF RBIF 57 SLRCON INTCON GIE/GIEH PEIE/GIEL LATE Data Output bits TRISE2 60 PIR1 PSPIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 60 PIE1 PSPIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 60 IPR1 PSPIP ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP 60 ANSEL ANS7 ANS6 ANS5 ANS4 ANS3 ANS2 ANS1 ANS0 60 Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Parallel Slave Port. DS41303B-page 136 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 11.0 TIMER0 MODULE The T0CON register (Register 11-1) controls all aspects of the module’s operation, including the prescale selection. It is both readable and writable. The Timer0 module incorporates the following features: • Software selectable operation as a timer or counter in both 8-bit or 16-bit modes • Readable and writable registers • Dedicated 8-bit, software programmable prescaler • Selectable clock source (internal or external) • Edge select for external clock • Interrupt-on-overflow REGISTER 11-1: A simplified block diagram of the Timer0 module in 8-bit mode is shown in Figure 11-1. Figure 11-2 shows a simplified block diagram of the Timer0 module in 16-bit mode. T0CON: TIMER0 CONTROL REGISTER R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 TMR0ON T08BIT T0CS T0SE PSA T0PS2 T0PS1 T0PS0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 TMR0ON: Timer0 On/Off Control bit 1 = Enables Timer0 0 = Stops Timer0 bit 6 T08BIT: Timer0 8-bit/16-bit Control bit 1 = Timer0 is configured as an 8-bit timer/counter 0 = Timer0 is configured as a 16-bit timer/counter bit 5 T0CS: Timer0 Clock Source Select bit 1 = Transition on T0CKI pin 0 = Internal instruction cycle clock (CLKOUT) bit 4 T0SE: Timer0 Source Edge Select bit 1 = Increment on high-to-low transition on T0CKI pin 0 = Increment on low-to-high transition on T0CKI pin bit 3 PSA: Timer0 Prescaler Assignment bit 1 = TImer0 prescaler is NOT assigned. Timer0 clock input bypasses prescaler. 0 = Timer0 prescaler is assigned. Timer0 clock input comes from prescaler output. bit 2-0 T0PS<2:0>: Timer0 Prescaler Select bits 111 = 1:256 prescale value 110 = 1:128 prescale value 101 = 1:64 prescale value 100 = 1:32 prescale value 011 = 1:16 prescale value 010 = 1:8 prescale value 001 = 1:4 prescale value 000 = 1:2 prescale value © 2007 Microchip Technology Inc. Advance Information DS41303B-page 137 PIC18F2XK20/4XK20 11.1 Timer0 Operation 11.2 Timer0 can operate as either a timer or a counter; the mode is selected with the T0CS bit of the T0CON register. In Timer mode (T0CS = 0), the module increments on every clock by default unless a different prescaler value is selected (see Section 11.3 “Prescaler”). Timer0 incrementing is inhibited for two instruction cycles following a TMR0 register write. The user can work around this by adjusting the value written to the TMR0 register to compensate for the anticipated missing increments. The Counter mode is selected by setting the T0CS bit (= 1). In this mode, Timer0 increments either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit, T0SE of the T0CON register; clearing this bit selects the rising edge. Restrictions on the external clock input are discussed below. Timer0 Reads and Writes in 16-Bit Mode TMR0H is not the actual high byte of Timer0 in 16-bit mode; it is actually a buffered version of the real high byte of Timer0 which is neither directly readable nor writable (refer to Figure 11-2). TMR0H is updated with the contents of the high byte of Timer0 during a read of TMR0L. This provides the ability to read all 16 bits of Timer0 without the need to verify that the read of the high and low byte were valid. Invalid reads could otherwise occur due to a rollover between successive reads of the high and low byte. Similarly, a write to the high byte of Timer0 must also take place through the TMR0H Buffer register. Writing to TMR0H does not directly affect Timer0. Instead, the high byte of Timer0 is updated with the contents of TMR0H when a write occurs to TMR0L. This allows all 16 bits of Timer0 to be updated at once. An external clock source can be used to drive Timer0; however, it must meet certain requirements (see Table 26-10) to ensure that the external clock can be synchronized with the internal phase clock (TOSC). There is a delay between synchronization and the onset of incrementing the timer/counter. FIGURE 11-1: TIMER0 BLOCK DIAGRAM (8-BIT MODE) FOSC/4 0 0 1 T0CKI pin T0SE T0CS Programmable Prescaler 1 Sync with Internal Clocks TMR0L (2 TCY Delay) 8 3 T0PS<2:0> 8 PSA Note: Set TMR0IF on Overflow Internal Data Bus Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale. DS41303B-page 138 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 FIGURE 11-2: TIMER0 BLOCK DIAGRAM (16-BIT MODE) FOSC/4 0 0 Sync with Internal Clocks 1 Programmable Prescaler T0CKI pin T0SE T0CS 1 TMR0 High Byte TMR0L 8 Set TMR0IF on Overflow (2 TCY Delay) 3 Read TMR0L T0PS<2:0> Write TMR0L PSA 8 8 TMR0H 8 8 Internal Data Bus Note: 11.3 Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale. 11.3.1 Prescaler An 8-bit counter is available as a prescaler for the Timer0 module. The prescaler is not directly readable or writable; its value is set by the PSA and T0PS<2:0> bits of the T0CON register which determine the prescaler assignment and prescale ratio. Clearing the PSA bit assigns the prescaler to the Timer0 module. When the prescaler is assigned, prescale values from 1:2 through 1:256 in integer power-of-2 increments are selectable. When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF TMR0, MOVWF TMR0, BSF TMR0, etc.) clear the prescaler count. Note: Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count but will not change the prescaler assignment. TABLE 11-1: Name SWITCHING PRESCALER ASSIGNMENT The prescaler assignment is fully under software control and can be changed “on-the-fly” during program execution. 11.4 Timer0 Interrupt The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h in 8-bit mode, or from FFFFh to 0000h in 16-bit mode. This overflow sets the TMR0IF flag bit. The interrupt can be masked by clearing the TMR0IE bit of the INTCON register. Before re-enabling the interrupt, the TMR0IF bit must be cleared by software in the Interrupt Service Routine. Since Timer0 is shut down in Sleep mode, the TMR0 interrupt cannot awaken the processor from Sleep. REGISTERS ASSOCIATED WITH TIMER0 Bit 7 Bit 6 Bit 5 TMR0L Timer0 Register, Low Byte TMR0H Timer0 Register, High Byte INTCON GIE/GIEH PEIE/GIEL TMR0IE T0CON TMR0ON T08BIT TRISA RA7(1) RA6(1) Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset Values on page 58 58 INT0IE RBIE TMR0IF INT0IF RBIF 57 T0CS T0SE PSA T0PS2 T0PS1 T0PS0 58 RA5 RA4 RA3 RA2 RA1 RA0 60 Legend: Shaded cells are not used by Timer0. Note 1: PORTA<7:6> and their direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as ‘0’. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 139 PIC18F2XK20/4XK20 NOTES: DS41303B-page 140 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 12.0 TIMER1 MODULE The Timer1 timer/counter module incorporates the following features: • Software selectable operation as a 16-bit timer or counter • Readable and writable 8-bit registers (TMR1H and TMR1L) • Selectable internal or external clock source and Timer1 oscillator options • Interrupt-on-overflow • Reset on CCP Special Event Trigger • Device clock status flag (T1RUN) REGISTER 12-1: A simplified block diagram of the Timer1 module is shown in Figure 12-1. A block diagram of the module’s operation in Read/Write mode is shown in Figure 12-2. The module incorporates its own low-power oscillator to provide an additional clocking option. The Timer1 oscillator can also be used as a low-power clock source for the microcontroller in power-managed operation. Timer1 can also be used to provide Real-Time Clock (RTC) functionality to applications with only a minimal addition of external components and code overhead. Timer1 is controlled through the T1CON Control register (Register 12-1). It also contains the Timer1 Oscillator Enable bit (T1OSCEN). Timer1 can be enabled or disabled by setting or clearing control bit, TMR1ON of the T1CON register. T1CON: TIMER1 CONTROL REGISTER R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 RD16 T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 RD16: 16-bit Read/Write Mode Enable bit 1 = Enables register read/write of TImer1 in one 16-bit operation 0 = Enables register read/write of Timer1 in two 8-bit operations bit 6 T1RUN: Timer1 System Clock Status bit 1 = Main system clock is derived from Timer1 oscillator 0 = Main system clock is derived from another source bit 5-4 T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value bit 3 T1OSCEN: Timer1 Oscillator Enable bit 1 = Timer1 oscillator is enabled 0 = Timer1 oscillator is shut off The oscillator inverter and feedback resistor are turned off to eliminate power drain. bit 2 T1SYNC: Timer1 External Clock Input Synchronization Select bit When TMR1CS = 1: 1 = Do not synchronize external clock input 0 = Synchronize external clock input When TMR1CS = 0: This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0. bit 1 TMR1CS: Timer1 Clock Source Select bit 1 = External clock from pin RC0/T1OSO/T13CKI (on the rising edge) 0 = Internal clock (FOSC/4) bit 0 TMR1ON: Timer1 On bit 1 = Enables Timer1 0 = Stops Timer1 © 2007 Microchip Technology Inc. Advance Information DS41303B-page 141 PIC18F2XK20/4XK20 12.1 Timer1 Operation instruction cycle (FOSC/4). When the bit is set, Timer1 increments on every rising edge of either the Timer1 external clock input or the Timer1 oscillator, if enabled. Timer1 can operate in one of the following modes: • Timer • Synchronous Counter • Asynchronous Counter When the Timer1 oscillator is enabled, the digital circuitry associated with the RC1/T1OSI and RC0/T1OSO/T13CKI pins is disabled. This means the values of TRISC<1:0> are ignored and the pins are read as ‘0’. The operating mode is determined by the clock select bit, TMR1CS of the T1CON register. When TMR1CS is cleared (= 0), Timer1 increments on every internal FIGURE 12-1: TIMER1 BLOCK DIAGRAM Timer1 Oscillator Timer1 Clock Input 1 On/Off T1OSO/T13CKI 1 FOSC/4 Internal Clock T1OSI Synchronize Prescaler 1, 2, 4, 8 0 Detect 0 2 T1OSCEN(1) Sleep Input Timer1 On/Off TMR1CS T1CKPS<1:0> T1SYNC TMR1ON Clear TMR1 (CCP Special Event Trigger) Set TMR1IF on Overflow TMR1 High Byte TMR1L Note 1: When enable bit, T1OSCEN, is cleared, the inverter and feedback resistor are turned off to eliminate power drain. FIGURE 12-2: TIMER1 BLOCK DIAGRAM (16-BIT READ/WRITE MODE) Timer1 Oscillator Timer1 Clock Input 1 T1OSO/T13CKI 1 FOSC/4 Internal Clock T1OSI Synchronize Prescaler 1, 2, 4, 8 0 Detect 0 2 T1OSCEN(1) T1CKPS<1:0> T1SYNC TMR1ON Sleep Input Timer1 On/Off TMR1CS Clear TMR1 (CCP Special Event Trigger) TMR1 High Byte TMR1L 8 Set TMR1IF on Overflow Read TMR1L Write TMR1L 8 8 TMR1H 8 8 Internal Data Bus Note 1: When enable bit, T1OSCEN, is cleared, the inverter and feedback resistor are turned off to eliminate power drain. DS41303B-page 142 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 12.2 Timer1 16-Bit Read/Write Mode Timer1 can be configured for 16-bit reads and writes (see Figure 12-2). When the RD16 control bit of the T1CON register is set, the address for TMR1H is mapped to a buffer register for the high byte of Timer1. A read from TMR1L will load the contents of the high byte of Timer1 into the Timer1 high byte buffer. This provides the user with the ability to accurately read all 16 bits of Timer1 without the need to determine whether a read of the high byte, followed by a read of the low byte, has become invalid due to a rollover or carry between reads. TABLE 12-1: Osc Type LP 12.3 Timer1 Oscillator An on-chip crystal oscillator circuit is incorporated between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting the Timer1 Oscillator Enable bit, T1OSCEN of the T1CON register. The oscillator is a low-power circuit rated for 32 kHz crystals. It will continue to run during all power-managed modes. The circuit for a typical LP oscillator is shown in Figure 12-3. Table 12-1 shows the capacitor selection for the Timer1 oscillator. The user must provide a software time delay to ensure proper start-up of the Timer1 oscillator. FIGURE 12-3: EXTERNAL COMPONENTS FOR THE TIMER1 LP OSCILLATOR C1 27 pF PIC® MCU Freq 32 kHz C1 27 pF C2 (1) 27 pF(1) Note 1: Microchip suggests these values only as a starting point in validating the oscillator circuit. 2: Higher capacitance increases the stability of the oscillator but also increases the start-up time. 3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components. Writing to TMR1H does not directly affect Timer1. Instead, the high byte of Timer1 is updated with the contents of TMR1H when a write occurs to TMR1L. This allows all 16 bits of Timer1 to be updated at once. The high byte of Timer1 is not directly readable or writable in this mode. All reads and writes must take place through the Timer1 High Byte Buffer register. Writes to TMR1H do not clear the Timer1 prescaler. The prescaler is only cleared on writes to TMR1L. CAPACITOR SELECTION FOR THE TIMER OSCILLATOR 4: Capacitor values are for design guidance only. 12.3.1 USING TIMER1 AS A CLOCK SOURCE The Timer1 oscillator is also available as a clock source in power-managed modes. By setting the clock select bits, SCS<1:0> of the OSCCON register, to ‘01’, the device switches to SEC_RUN mode; both the CPU and peripherals are clocked from the Timer1 oscillator. If the IDLEN bit of the OSCCON register is cleared and a SLEEP instruction is executed, the device enters SEC_IDLE mode. Additional details are available in Section 3.0 “Power-Managed Modes”. Whenever the Timer1 oscillator is providing the clock source, the Timer1 system clock status flag, T1RUN of the T1CON register, is set. This can be used to determine the controller’s current clocking mode. It can also indicate which clock source is currently being used by the Fail-Safe Clock Monitor. If the Clock Monitor is enabled and the Timer1 oscillator fails while providing the clock, polling the T1RUN bit will indicate whether the clock is being provided by the Timer1 oscillator or another source. T1OSI XTAL 32.768 kHz T1OSO C2 27 pF Note: See the Notes with Table 12-1 for additional information about capacitor selection. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 143 PIC18F2XK20/4XK20 12.3.2 LOW-POWER TIMER1 OPTION The Timer1 oscillator can operate at two distinct levels of power consumption based on device configuration. When the LPT1OSC Configuration bit of the CONFIG3H register is set, the Timer1 oscillator operates in a low-power mode. When LPT1OSC is not set, Timer1 operates at a higher power level. Power consumption for a particular mode is relatively constant, regardless of the device’s operating mode. The default Timer1 configuration is the higher power mode. As the low-power Timer1 mode tends to be more sensitive to interference, high noise environments may cause some oscillator instability. The low-power option is, therefore, best suited for low noise applications where power conservation is an important design consideration. 12.3.3 TIMER1 OSCILLATOR LAYOUT CONSIDERATIONS The Timer1 oscillator circuit draws very little power during operation. Due to the low-power nature of the oscillator, it may also be sensitive to rapidly changing signals in close proximity. The oscillator circuit, shown in Figure 12-3, should be located as close as possible to the microcontroller. There should be no circuits passing within the oscillator circuit boundaries other than VSS or VDD. If a high-speed circuit must be located near the oscillator (such as the CCP1 pin in Output Compare or PWM mode, or the primary oscillator using the OSC2 pin), a grounded guard ring around the oscillator circuit, as shown in Figure 12-4, may be helpful when used on a single-sided PCB or in addition to a ground plane. FIGURE 12-4: 12.4 Timer1 Interrupt The TMR1 register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The Timer1 interrupt, if enabled, is generated on overflow, which is latched in the TMR1IF interrupt flag bit of the PIR1 register. This interrupt can be enabled or disabled by setting or clearing the TMR1IE Interrupt Enable bit of the PIE1 register. 12.5 Resetting Timer1 Using the CCP Special Event Trigger If either of the CCP modules is configured to use Timer1 and generate a Special Event Trigger in Compare mode (CCP1M<3:0> or CCP2M<3:0> = 1011), this signal will reset Timer1. The trigger from CCP2 will also start an A/D conversion if the A/D module is enabled (see Section 15.3.4 “Special Event Trigger” for more information). The module must be configured as either a timer or a synchronous counter to take advantage of this feature. When used this way, the CCPRH:CCPRL register pair effectively becomes a period register for Timer1. If Timer1 is running in Asynchronous Counter mode, this Reset operation may not work. In the event that a write to Timer1 coincides with a special Event Trigger, the write operation will take precedence. Note: The Special Event Triggers from the CCP2 module will not set the TMR1IF interrupt flag bit of the PIR1 register. OSCILLATOR CIRCUIT WITH GROUNDED GUARD RING VDD VSS OSC1 OSC2 RC0 RC1 RC2 Note: Not drawn to scale. DS41303B-page 144 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 12.6 Using Timer1 as a Real-Time Clock Adding an external LP oscillator to Timer1 (such as the one described in Section 12.3 “Timer1 Oscillator” above) gives users the option to include RTC functionality to their applications. This is accomplished with an inexpensive watch crystal to provide an accurate time base and several lines of application code to calculate the time. When operating in Sleep mode and using a battery or supercapacitor as a power source, it can completely eliminate the need for a separate RTC device and battery backup. The application code routine, RTCisr, shown in Example 12-1, demonstrates a simple method to increment a counter at one-second intervals using an Interrupt Service Routine. Incrementing the TMR1 register pair to overflow triggers the interrupt and calls the routine, which increments the seconds counter by one; additional counters for minutes and hours are incremented on overflows of the less significant counters. EXAMPLE 12-1: Since the register pair is 16 bits wide, a 32.768 kHz clock source will take 2 seconds to count up to overflow. To force the overflow at the required one-second intervals, it is necessary to preload it; the simplest method is to set the MSb of TMR1H with a BSF instruction. Note that the TMR1L register is never preloaded or altered; doing so may introduce cumulative error over many cycles. For this method to be accurate, Timer1 must operate in Asynchronous mode and the Timer1 overflow interrupt must be enabled (PIE1<0> = 1), as shown in the routine, RTCinit. The Timer1 oscillator must also be enabled and running at all times. IMPLEMENTING A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE RTCinit MOVLW MOVWF CLRF MOVLW MOVWF CLRF CLRF MOVLW MOVWF BSF RETURN 80h TMR1H TMR1L b’00001111’ T1CON secs mins .12 hours PIE1, TMR1IE ; Preload TMR1 register pair ; for 1 second overflow BSF BCF INCF MOVLW CPFSGT RETURN CLRF INCF MOVLW CPFSGT RETURN CLRF INCF MOVLW CPFSGT RETURN CLRF RETURN TMR1H, 7 PIR1, TMR1IF secs, F .59 secs ; ; ; ; Preload for 1 sec overflow Clear interrupt flag Increment seconds 60 seconds elapsed? ; ; ; ; No, done Clear seconds Increment minutes 60 minutes elapsed? ; ; ; ; No, done clear minutes Increment hours 24 hours elapsed? ; Configure for external clock, ; Asynchronous operation, external oscillator ; Initialize timekeeping registers ; ; Enable Timer1 interrupt RTCisr secs mins, F .59 mins mins hours, F .23 hours hours © 2007 Microchip Technology Inc. ; No, done ; Reset hours ; Done Advance Information DS41303B-page 145 PIC18F2XK20/4XK20 TABLE 12-2: Name REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset Values on page INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 57 PIR1 PSPIF(1) ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 60 PIE1 (1) PSPIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 60 IPR1 PSPIP(1) ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP 60 TMR1L Timer1 Register, Low Byte 58 TMR1H Timer1 Register, High Byte 58 T1CON RD16 T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 58 Legend: Shaded cells are not used by the Timer1 module. Note 1: These bits are unimplemented on 28-pin devices; always maintain these bits clear. DS41303B-page 146 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 13.0 TIMER2 MODULE 13.1 The Timer2 module timer incorporates the following features: • 8-bit timer and period registers (TMR2 and PR2, respectively) • Readable and writable (both registers) • Software programmable prescaler (1:1, 1:4 and 1:16) • Software programmable postscaler (1:1 through 1:16) • Interrupt on TMR2-to-PR2 match • Optional use as the shift clock for the MSSP module The module is controlled through the T2CON register (Register 13-1), which enables or disables the timer and configures the prescaler and postscaler. Timer2 can be shut off by clearing control bit, TMR2ON of the T2CON register, to minimize power consumption. A simplified block diagram of the module is shown in Figure 13-1. Timer2 Operation In normal operation, TMR2 is incremented from 00h on each clock (FOSC/4). A 4-bit counter/prescaler on the clock input gives direct input, divide-by-4 and divide-by-16 prescale options; these are selected by the prescaler control bits, T2CKPS<1:0> of the T2CON register. The value of TMR2 is compared to that of the period register, PR2, on each clock cycle. When the two values match, the comparator generates a match signal as the timer output. This signal also resets the value of TMR2 to 00h on the next cycle and drives the output counter/postscaler (see Section 13.2 “Timer2 Interrupt”). The TMR2 and PR2 registers are both directly readable and writable. The TMR2 register is cleared on any device Reset, whereas the PR2 register initializes to FFh. Both the prescaler and postscaler counters are cleared on the following events: • a write to the TMR2 register • a write to the T2CON register • any device Reset (Power-on Reset, MCLR Reset, Watchdog Timer Reset or Brown-out Reset) TMR2 is not cleared when T2CON is written. REGISTER 13-1: T2CON: TIMER2 CONTROL REGISTER U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 Unimplemented: Read as ‘0’ bit 6-3 T2OUTPS<3:0>: Timer2 Output Postscale Select bits 0000 = 1:1 Postscale 0001 = 1:2 Postscale • • • 1111 = 1:16 Postscale bit 2 TMR2ON: Timer2 On bit 1 = Timer2 is on 0 = Timer2 is off bit 1-0 T2CKPS<1:0>: Timer2 Clock Prescale Select bits 00 = Prescaler is 1 01 = Prescaler is 4 1x = Prescaler is 16 © 2007 Microchip Technology Inc. Advance Information x = Bit is unknown DS41303B-page 147 PIC18F2XK20/4XK20 13.2 Timer2 Interrupt 13.3 Timer2 can also generate an optional device interrupt. The Timer2 output signal (TMR2-to-PR2 match) provides the input for the 4-bit output counter/postscaler. This counter generates the TMR2 match interrupt flag which is latched in TMR2IF of the PIR1 register. The interrupt is enabled by setting the TMR2 Match Interrupt Enable bit, TMR2IE of the PIE1 register. Timer2 Output The unscaled output of TMR2 is available primarily to the CCP modules, where it is used as a time base for operations in PWM mode. Timer2 can be optionally used as the shift clock source for the MSSP module operating in SPI mode. Additional information is provided in Section 17.0 “Master Synchronous Serial Port (MSSP) Module”. A range of 16 postscale options (from 1:1 through 1:16 inclusive) can be selected with the postscaler control bits, T2OUTPS<3:0> of the T2CON register. FIGURE 13-1: TIMER2 BLOCK DIAGRAM 4 1:1 to 1:16 Postscaler T2OUTPS<3:0> Set TMR2IF 2 TMR2 Output (to PWM or MSSP) T2CKPS<1:0> 1:1, 1:4, 1:16 Prescaler FOSC/4 TMR2/PR2 Match Reset TMR2 Comparator 8 PR2 8 8 Internal Data Bus TABLE 13-1: Name REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER Bit 7 Bit 6 INTCON GIE/GIEH PEIE/GIEL Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset Values on page TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 57 PIR1 PSPIF(1) ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 60 PIE1 PSPIE(1) ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 60 IPR1 PSPIP(1) ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP TMR2 T2CON PR2 Timer2 Register — 60 58 T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0 Timer2 Period Register 58 58 Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Timer2 module. Note 1: These bits are unimplemented on 28-pin devices; always maintain these bits clear. DS41303B-page 148 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 14.0 TIMER3 MODULE The Timer3 module timer/counter incorporates these features: • Software selectable operation as a 16-bit timer or counter • Readable and writable 8-bit registers (TMR3H and TMR3L) • Selectable clock source (internal or external) with device clock or Timer1 oscillator internal options • Interrupt-on-overflow • Module Reset on CCP Special Event Trigger REGISTER 14-1: A simplified block diagram of the Timer3 module is shown in Figure 14-1. A block diagram of the module’s operation in Read/Write mode is shown in Figure 14-2. The Timer3 module is controlled through the T3CON register (Register 14-1). It also selects the clock source options for the CCP modules (see Section 15.1.1 “CCP Modules and Timer Resources” for more information). T3CON: TIMER3 CONTROL REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 RD16 T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 RD16: 16-bit Read/Write Mode Enable bit 1 = Enables register read/write of Timer3 in one 16-bit operation 0 = Enables register read/write of Timer3 in two 8-bit operations bit 6,3 T3CCP<2:1>: Timer3 and Timer1 to CCPx Enable bits 1x = Timer3 is the capture/compare clock source for CCP1 and CP2 01 = Timer3 is the capture/compare clock source for CCP2 and Timer1 is the capture/compare clock source for CCP1 00 = Timer1 is the capture/compare clock source for CCP1 and CP2 bit 5-4 T3CKPS<1:0>: Timer3 Input Clock Prescale Select bits 11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value bit 2 T3SYNC: Timer3 External Clock Input Synchronization Control bit (Not usable if the device clock comes from Timer1/Timer3.) When TMR3CS = 1: 1 = Do not synchronize external clock input 0 = Synchronize external clock input When TMR3CS = 0: This bit is ignored. Timer3 uses the internal clock when TMR3CS = 0. bit 1 TMR3CS: Timer3 Clock Source Select bit 1 = External clock input from Timer1 oscillator or T13CKI (on the rising edge after the first falling edge) 0 = Internal clock (FOSC/4) bit 0 TMR3ON: Timer3 On bit 1 = Enables Timer3 0 = Stops Timer3 © 2007 Microchip Technology Inc. Advance Information DS41303B-page 149 PIC18F2XK20/4XK20 14.1 Timer3 Operation The operating mode is determined by the clock select bit, TMR3CS of the T3CON register. When TMR3CS is cleared (= 0), Timer3 increments on every internal instruction cycle (FOSC/4). When the bit is set, Timer3 increments on every rising edge of the Timer1 external clock input or the Timer1 oscillator, if enabled. Timer3 can operate in one of three modes: • Timer • Synchronous Counter • Asynchronous Counter As with Timer1, the digital circuitry associated with the RC1/T1OSI and RC0/T1OSO/T13CKI pins is disabled when the Timer1 oscillator is enabled. This means the values of TRISC<1:0> are ignored and the pins are read as ‘0’. FIGURE 14-1: TIMER3 BLOCK DIAGRAM Timer1 Oscillator Timer1 Clock Input 1 T1OSO/T13CKI 1 FOSC/4 Internal Clock T1OSI Synchronize Prescaler 1, 2, 4, 8 Detect 0 0 2 T1OSCEN(1) Sleep Input TMR3CS T3CKPS<1:0> Timer3 On/Off T3SYNC TMR3ON CCP1/CCP2 Special Event Trigger CCP1/CCP2 Select from T3CON<6,3> Clear TMR3 TMR3L TMR3 High Byte Set TMR3IF on Overflow Note 1: When enable bit, T1OSCEN, is cleared, the inverter and feedback resistor are turned off to eliminate power drain. DS41303B-page 150 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 FIGURE 14-2: TIMER3 BLOCK DIAGRAM (16-BIT READ/WRITE MODE) Timer1 Oscillator Timer1 Clock Input 1 T13CKI/T1OSO 1 FOSC/4 Internal Clock T1OSI Synchronize Prescaler 1, 2, 4, 8 0 Detect 0 2 T1OSCEN(1) Sleep Input Timer3 On/Off TMR3CS T3CKPS<1:0> T3SYNC TMR3ON CCP1/CCP2 Special Event Trigger CCP1/CCP2 Select from T3CON<6,3> Clear TMR3 Set TMR3IF on Overflow TMR3 High Byte TMR3L 8 Read TMR1L Write TMR1L 8 8 TMR3H 8 8 Internal Data Bus Note 1: When enable bit, T1OSCEN, is cleared, the inverter and feedback resistor are turned off to eliminate power drain. 14.2 Timer3 16-Bit Read/Write Mode Timer3 can be configured for 16-bit reads and writes (see Figure 14-2). When the RD16 control bit of the T3CON register is set, the address for TMR3H is mapped to a buffer register for the high byte of Timer3. A read from TMR3L will load the contents of the high byte of Timer3 into the Timer3 High Byte Buffer register. This provides the user with the ability to accurately read all 16 bits of Timer1 without having to determine whether a read of the high byte, followed by a read of the low byte, has become invalid due to a rollover between reads. A write to the high byte of Timer3 must also take place through the TMR3H Buffer register. The Timer3 high byte is updated with the contents of TMR3H when a write occurs to TMR3L. This allows a user to write all 16 bits to both the high and low bytes of Timer3 at once. The high byte of Timer3 is not directly readable or writable in this mode. All reads and writes must take place through the Timer3 High Byte Buffer register. Writes to TMR3H do not clear the Timer3 prescaler. The prescaler is only cleared on writes to TMR3L. © 2007 Microchip Technology Inc. 14.3 Using the Timer1 Oscillator as the Timer3 Clock Source The Timer1 internal oscillator may be used as the clock source for Timer3. The Timer1 oscillator is enabled by setting the T1OSCEN bit of the T1CON register. To use it as the Timer3 clock source, the TMR3CS bit must also be set. As previously noted, this also configures Timer3 to increment on every rising edge of the oscillator source. The Timer1 oscillator is described in Section 12.0 “Timer1 Module”. 14.4 Timer3 Interrupt The TMR3 register pair (TMR3H:TMR3L) increments from 0000h to FFFFh and overflows to 0000h. The Timer3 interrupt, if enabled, is generated on overflow and is latched in interrupt flag bit, TMR3IF of the PIR2 register. This interrupt can be enabled or disabled by setting or clearing the Timer3 Interrupt Enable bit, TMR3IE of the PIE2 register. Advance Information DS41303B-page 151 PIC18F2XK20/4XK20 14.5 Resetting Timer3 Using the CCP Special Event Trigger If either of the CCP modules is configured to use Timer3 and to generate a Special Event Trigger in Compare mode (CCP1M<3:0> or CCP2M<3:0> = 1011), this signal will reset Timer3. It will also start an A/D conversion if the A/D module is enabled (see Section 15.3.4 “Special Event Trigger” for more information). The module must be configured as either a timer or synchronous counter to take advantage of this feature. When used this way, the CCPR2H:CCPR2L register pair effectively becomes a period register for Timer3. If Timer3 is running in Asynchronous Counter mode, the Reset operation may not work. In the event that a write to Timer3 coincides with a Special Event Trigger from a CCP module, the write will take precedence. Note: The Special Event Triggers from the CCP2 module will not set the TMR3IF interrupt flag bit of the PIR2 register. TABLE 14-1: Name INTCON REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER Bit 7 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset Values on page TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 57 Bit 6 GIE/GIEH PEIE/GIEL PIR2 OSCFIF C1IF C2IF EEIF BCLIF HLVDIF TMR3IF CCP2IF 60 PIE2 OSCFIE C1IE C2IE EEIE BCLIE HLVDIE TMR3IE CCP2IE 60 IPR2 OSCFIP C1IP C2IP EEIP BCLIP HLVDIP TMR3IP CCP2IP 60 TMR3L Timer3 Register, Low Byte TMR3H Timer3 Register, High Byte 59 59 T1CON RD16 T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 58 T3CON RD16 T3CCP2 T3CKPS1 T3CKPS0 TMR3CS TMR3ON 59 T3CCP1 T3SYNC Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Timer3 module. DS41303B-page 152 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 15.0 CAPTURE/COMPARE/PWM (CCP) MODULES The Capture and Compare operations described in this chapter apply to both standard and enhanced CCP modules. PIC18F2XK20/4XK20 devices have two CCP Capture/Compare/PWM) modules. Each module contains a 16-bit register which can operate as a 16-bit Capture register, a 16-bit Compare register or a PWM Master/Slave Duty Cycle register. CCP1 is implemented as an enhanced CCP module with standard Capture and Compare modes and enhanced PWM modes. The ECCP implementation is discussed in Section 16.0 “Enhanced Capture/Compare/PWM (ECCP) Module”. CCP2 is implemented as a standard CCP module without the enhanced features. REGISTER 15-1: Note: Throughout this section and Section 16.0 “Enhanced Capture/Compare/PWM (ECCP) Module”, references to the register and bit names for CCP modules are referred to generically by the use of ‘x’ or ‘y’ in place of the specific module number. Thus, “CCPxCON” might refer to the control register for CCP1, CCP2 or ECCP1. “CCPxCON” is used throughout these sections to refer to the module control register, regardless of whether the CCP module is a standard or enhanced implementation. CCP2CON: STANDARD CAPTURE/COMPARE/PWM CONTROL REGISTER U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — — DC2B1 DC2B0 CCP2M3 CCP2M2 CCP2M1 CCP2M0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-6 Unimplemented: Read as ‘0’ bit 5-4 DC2B<1:0>: PWM Duty Cycle bit 1 and bit 0 for CCP2 Module Capture mode: Unused. Compare mode: Unused. PWM mode: These bits are the two LSbs (bit 1 and bit 0) of the 10-bit PWM duty cycle. The eight MSbs (DC2B<9:2>) of the duty cycle are found in CCPR2L. bit 3-0 CCP2M<3:0>: CCP2 Mode Select bits 0000 = Capture/Compare/PWM disabled (resets CCP2 module) 0001 = Reserved 0010 = Compare mode, toggle output on match (CCP2IF bit is set) 0011 = Reserved 0100 = Capture mode, every falling edge 0101 = Capture mode, every rising edge 0110 = Capture mode, every 4th rising edge 0111 = Capture mode, every 16th rising edge 1000 = Compare mode: initialize CCP2 pin low; on compare match, force CCP2 pin high (CCP2IF bit is set) 1001 = Compare mode: initialize CCP2 pin high; on compare match, force CCP2 pin low (CCP2IF bit is set) 1010 = Compare mode: generate software interrupt on compare match (CCP2IF bit is set, CCP2 pin reflects I/O state) 1011 = Compare mode: trigger special event, reset timer, start A/D conversion on CCP2 match (CCP2IF bit is set) 11xx = PWM mode © 2007 Microchip Technology Inc. Advance Information DS41303B-page 153 PIC18F2XK20/4XK20 15.1 CCP Module Configuration Each Capture/Compare/PWM module is associated with a control register (generically, CCPxCON) and a data register (CCPRx). The data register, in turn, is comprised of two 8-bit registers: CCPRxL (low byte) and CCPRxH (high byte). All registers are both readable and writable. 15.1.1 CCP MODULES AND TIMER RESOURCES The CCP modules utilize Timers 1, 2 or 3, depending on the mode selected. Timer1 and Timer3 are available to modules in Capture or Compare modes, while Timer2 is available for modules in PWM mode. TABLE 15-1: CCP MODE – TIMER RESOURCE CCP/ECCP Mode Timer Resource Capture Timer1 or Timer3 Compare Timer1 or Timer3 PWM Timer2 TABLE 15-2: The assignment of a particular timer to a module is determined by the Timer-to-CCP enable bits in the T3CON register (Register 14-1). Both modules can be active at the same time and can share the same timer resource if they are configured to operate in the same mode (Capture/Compare or PWM). The interactions between the two modules are summarized in Figure 15-1 and Figure 15-2. In Asynchronous Counter mode, the capture operation will not work reliably. 15.1.2 CCP2 PIN ASSIGNMENT The pin assignment for CCP2 (Capture input, Compare and PWM output) can change, based on device configuration. The CCP2MX Configuration bit determines the pin with which CCP2 is multiplexed. By default, it is assigned to RC1 (CCP2MX = 1). If the Configuration bit is cleared, CCP2 is multiplexed with RB3. Changing the pin assignment of CCP2 does not automatically change any requirements for configuring the port pin. Users must always verify that the appropriate TRIS register is configured correctly for CCP2 operation, regardless of where it is located. INTERACTIONS BETWEEN CCP1 AND CCP2 FOR TIMER RESOURCES CCP1 Mode CCP2 Mode Interaction Capture Capture Each module can use TMR1 or TMR3 as the time base. The time base can be different for each CCP. Capture Compare CCP2 can be configured for the Special Event Trigger to reset TMR1 or TMR3 (depending upon which time base is used). Automatic A/D conversions on trigger event can also be done. Operation of CCP1 could be affected if it is using the same timer as a time base. Compare Capture CCP1 can be configured for the Special Event Trigger to reset TMR1 or TMR3 (depending upon which time base is used). Operation of CCP2 could be affected if it is using the same timer as a time base. Compare Compare Either module can be configured for the Special Event Trigger to reset the time base. Automatic A/D conversions on CCP2 trigger event can be done. Conflicts may occur if both modules are using the same time base. Capture PWM None Compare PWM None PWM(1) Capture None PWM(1) Compare None (1) PWM Note 1: PWM Both PWMs will have the same frequency and update rate (TMR2 interrupt). Includes standard and enhanced PWM operation. DS41303B-page 154 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 15.2 EXAMPLE 15-1: Capture Mode In Capture mode, the CCPRxH:CCPRxL register pair captures the 16-bit value of the TMR1 or TMR3 registers when an event occurs on the corresponding CCPx pin. An event is defined as one of the following: • • • • every falling edge every rising edge every 4th rising edge every 16th rising edge CLRF MOVLW MOVWF CHANGING BETWEEN CAPTURE PRESCALERS (CCP2 SHOWN) CCP2CON ; Turn CCP module off NEW_CAPT_PS ; Load WREG with the ; new prescaler mode ; value and CCP ON CCP2CON ; Load CCP2CON with ; this value The event is selected by the mode select bits, CCPxM<3:0> of the CCPxCON register. When a capture is made, the interrupt request flag bit, CCPxIF, is set; it must be cleared by software. If another capture occurs before the value in register CCPRx is read, the old captured value is overwritten by the new captured value. 15.2.1 CCP PIN CONFIGURATION In Capture mode, the appropriate CCPx pin should be configured as an input by setting the corresponding TRIS direction bit. Note: 15.2.2 If the CCPx pin is configured as an output, a write to the port can cause a capture condition. TIMER1/TIMER3 MODE SELECTION The timers that are to be used with the capture feature (Timer1 and/or Timer3) must be running in Timer mode or Synchronized Counter mode. In Asynchronous Counter mode, the capture operation may not work. The timer to be used with each CCP module is selected in the T3CON register (see Section 15.1.1 “CCP Modules and Timer Resources”). 15.2.3 SOFTWARE INTERRUPT When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCPxIE interrupt enable bit clear to avoid false interrupts. The interrupt flag bit, CCPxIF, should also be cleared following any such change in operating mode. 15.2.4 CCP PRESCALER There are four prescaler settings in Capture mode; they are specified as part of the operating mode selected by the mode select bits (CCPxM<3:0>). Whenever the CCP module is turned off or Capture mode is disabled, the prescaler counter is cleared. This means that any Reset will clear the prescaler counter. Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared; therefore, the first capture may be from a non-zero prescaler. Example 15-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the “false” interrupt. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 155 PIC18F2XK20/4XK20 FIGURE 15-1: CAPTURE MODE OPERATION BLOCK DIAGRAM TMR3H TMR3L Set CCP1IF T3CCP2 CCP1 pin Prescaler ÷ 1, 4, 16 and Edge Detect CCPR1H T3CCP2 4 CCP1CON<3:0> Q1:Q4 CCP2CON<3:0> TMR3 Enable CCPR1L TMR1 Enable TMR1H TMR1L TMR3H TMR3L Set CCP2IF 4 4 T3CCP1 T3CCP2 TMR3 Enable CCP2 pin Prescaler ÷ 1, 4, 16 and Edge Detect CCPR2H CCPR2L TMR1 Enable T3CCP2 T3CCP1 DS41303B-page 156 Advance Information TMR1H TMR1L © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 15.3 15.3.2 Compare Mode TIMER1/TIMER3 MODE SELECTION In Compare mode, the 16-bit CCPRx register value is constantly compared against either the TMR1 or TMR3 register pair value. When a match occurs, the CCPx pin can be: Timer1 and/or Timer3 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation will not work reliably. • • • • 15.3.3 driven high driven low toggled (high-to-low or low-to-high) remain unchanged (that is, reflects the state of the I/O latch) When the Generate Software Interrupt mode is chosen (CCPxM<3:0> = 1010), the corresponding CCPx pin is not affected. Only the CCPxIF interrupt flag is affected. 15.3.4 The action on the pin is based on the value of the mode select bits (CCPxM<3:0>). At the same time, the interrupt flag bit, CCPxIF, is set. 15.3.1 SPECIAL EVENT TRIGGER Both CCP modules are equipped with a Special Event Trigger. This is an internal hardware signal generated in Compare mode to trigger actions by other modules. The Special Event Trigger is enabled by selecting the Compare Special Event Trigger mode (CCPxM<3:0> = 1011). CCP PIN CONFIGURATION The user must configure the CCPx pin as an output by clearing the appropriate TRIS bit. Note: SOFTWARE INTERRUPT MODE For either CCP module, the Special Event Trigger resets the timer register pair for whichever timer resource is currently assigned as the module’s time base. This allows the CCPRx registers to serve as a programmable period register for either timer. Clearing the CCPxCON register will force the CCPx compare output latch (depending on device configuration) to the default low level. This is not the PORTB or PORTC I/O data latch. The Special Event Trigger for CCP2 can also start an A/D conversion. In order to do this, the A/D converter must already be enabled. FIGURE 15-2: COMPARE MODE OPERATION BLOCK DIAGRAM CCPR1H Set CCP1IF CCPR1L Special Event Trigger (Timer1/Timer3 Reset) CCP1 pin Comparator Output Logic Compare Match S Q R TRIS Output Enable 4 CCP1CON<3:0> 0 TMR1H TMR1L 0 1 TMR3H TMR3L 1 Special Event Trigger (Timer1/Timer3 Reset, A/D Trigger) T3CCP1 T3CCP2 Set CCP2IF Comparator CCPR2H CCPR2L Compare Match CCP2 pin Output Logic 4 S Q R TRIS Output Enable CCP2CON<3:0> © 2007 Microchip Technology Inc. Advance Information DS41303B-page 157 PIC18F2XK20/4XK20 TABLE 15-3: Name INTCON REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, TIMER1 AND TIMER3 Bit 7 Bit 6 Bit 5 Reset Values on page Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 57 — RI TO PD POR BOR 56 IPEN SBOREN PIR1 PSPIF(1) ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 60 PIE1 (1) PSPIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 60 IPR1 PSPIP(1) ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP 60 RCON PIR2 OSCFIF C1IF C2IF EEIF BCLIF HLVDIF TMR3IF CCP2IF 60 PIE2 OSCFIE C1IE C2IE EEIE BCLIE HLVDIE TMR3IE CCP2IE 60 IPR2 OSCFIP C1IP C2IP EEIP BCLIP HLVDIP TMR3IP CCP2IP 60 TRISB PORTB Data Direction Control Register 60 TRISC PORTC Data Direction Control Register 60 TMR1L Timer1 Register, Low Byte 58 TMR1H Timer1 Register, High Byte T1CON RD16 T1RUN 58 T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 58 TMR3H Timer3 Register, High Byte 59 TMR3L Timer3 Register, Low Byte 59 T3CON RD16 T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON 59 CCPR1L Capture/Compare/PWM Register 1, Low Byte 59 CCPR1H Capture/Compare/PWM Register 1, High Byte 59 CCP1CON P1M1 P1M0 DC1B1 DC1B0 CCPR2L Capture/Compare/PWM Register 2, Low Byte CCPR2H Capture/Compare/PWM Register 2, High Byte CCP2CON — — DC2B1 DC2B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0 59 59 59 CCP2M3 CCP2M2 CCP2M1 CCP2M0 59 Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by Capture/Compare, Timer1 or Timer3. DS41303B-page 158 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 15.4 PWM Mode The PWM mode generates a Pulse-Width Modulated signal on the CCP2 pin for the CCP module and the P1A through P1D pins for the ECCP module. Hereafter the modulated output pin will be referred to as the CCPx pin. The duty cycle, period and resolution are determined by the following registers: • • • • The PWM output (Figure 15-4) has a time base (period) and a time that the output stays high (duty cycle). FIGURE 15-4: Period Pulse Width PR2 T2CON CCPRxL CCPxCON CCP PWM OUTPUT TMR2 = PR2 TMR2 = CCPRxL:DCxB<1:0> TMR2 = 0 In Pulse-Width Modulation (PWM) mode, the CCP module produces up to a 10-bit resolution PWM output on the CCPx pin. Since the CCPx pin is multiplexed with the PORT data latch, the TRIS for that pin must be cleared to enable the CCPx pin output driver. Note: Clearing the CCPxCON register will relinquish CCPx control of the CCPx pin. Figure 15-3 shows a simplified block diagram of PWM operation. Figure 15-4 shows a typical waveform of the PWM signal. For a step-by-step procedure on how to set up the CCP module for PWM operation, see Section 15.4.7 “Setup for PWM Operation”. FIGURE 15-3: SIMPLIFIED PWM BLOCK DIAGRAM DCxB<1:0> Duty Cycle Registers CCPRxL CCPRxH(2) (Slave) CCPx R Comparator TMR2 (1) Q S TRIS Comparator PR2 Note 1: 2: Clear Timer2, toggle CCPx pin and latch duty cycle The 8-bit timer TMR2 register is concatenated with the 2-bit internal system clock (FOSC), or 2 bits of the prescaler, to create the 10-bit time base. In PWM mode, CCPRxH is a read-only register. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 159 PIC18F2XK20/4XK20 15.4.1 PWM PERIOD 15.4.2 The PWM period is specified by the PR2 register of Timer2. The PWM period can be calculated using the formula of Equation 15-1. EQUATION 15-1: PWM PERIOD PWM Period = [ ( PR2 ) + 1 ] • 4 • T OSC • (TMR2 Prescale Value) Note: TOSC = 1/FOSC. PWM DUTY CYCLE The PWM duty cycle is specified by writing a 10-bit value to multiple registers: CCPRxL register and DCxB<1:0> bits of the CCPxCON register. The CCPRxL contains the eight MSbs and the DCxB<1:0> bits of the CCPxCON register contain the two LSbs. CCPRxL and DCxB<1:0> bits of the CCPxCON register can be written to at any time. The duty cycle value is not latched into CCPRxH until after the period completes (i.e., a match between PR2 and TMR2 registers occurs). While using the PWM, the CCPRxH register is read-only. When TMR2 is equal to PR2, the following three events occur on the next increment cycle: Equation 15-2 is used to calculate the PWM pulse width. • TMR2 is cleared • The CCPx pin is set. (Exception: If the PWM duty cycle = 0%, the pin will not be set.) • The PWM duty cycle is latched from CCPRxL into CCPRxH. Equation 15-3 is used to calculate the PWM duty cycle ratio. EQUATION 15-2: PULSE WIDTH Pulse Width = ( CCPRxL:DCxB<1:0> ) • Note: The Timer2 postscaler (see Section 13.1 “Timer2 Operation”) is not used in the determination of the PWM frequency. T OSC • (TMR2 Prescale Value) EQUATION 15-3: DUTY CYCLE RATIO CCPRxL:DCxB<1:0> )Duty Cycle Ratio = (---------------------------------------------------------4 ( PR2 + 1 ) The CCPRxH register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation. The 8-bit timer TMR2 register is concatenated with either the 2-bit internal system clock (FOSC), or 2 bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1. When the 10-bit time base matches the CCPRxH and 2-bit latch, then the CCPx pin is cleared (see Figure 15-3). DS41303B-page 160 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 15.4.3 PWM RESOLUTION EQUATION 15-4: The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles. The maximum PWM resolution is 10 bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 15-4. TABLE 15-4: Timer Prescaler (1, 4, 16) PR2 Value Maximum Resolution (bits) Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged. 2.44 kHz 9.77 kHz 39.06 kHz 156.25 kHz 312.50 kHz 416.67 kHz 16 4 1 1 1 1 FFh FFh FFh 3Fh 1Fh 17h 10 10 10 8 7 6.58 EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 20 MHz) PWM Frequency Timer Prescale (1, 4, 16) PR2 Value Maximum Resolution (bits) TABLE 15-6: [ 4 ( PR2 + 1 ) ]- bits Resolution = log ----------------------------------------log ( 2 ) EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz PWM Frequency TABLE 15-5: PWM RESOLUTION 1.22 kHz 4.88 kHz 19.53 kHz 78.12 kHz 156.3 kHz 208.3 kHz 16 4 1 1 1 1 0xFF 0xFF 0xFF 0x3F 0x1F 0x17 10 10 10 8 7 6.6 EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 8 MHz) PWM Frequency Timer Prescale (1, 4, 16) PR2 Value Maximum Resolution (bits) © 2007 Microchip Technology Inc. 1.22 kHz 4.90 kHz 19.61 kHz 76.92 kHz 153.85 kHz 200.0 kHz 16 4 1 1 1 1 0x65 0x65 0x65 0x19 0x0C 0x09 8 8 8 6 5 5 Advance Information DS41303B-page 161 PIC18F2XK20/4XK20 15.4.4 OPERATION IN POWER-MANAGED MODES In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state. 15.4.7 The following steps should be taken when configuring the CCP module for PWM operation: 1. 2. In PRI_IDLE mode, the primary clock will continue to clock the CCP module without change. In all other power-managed modes, the selected power-managed mode clock will clock Timer2. Other power-managed mode clocks will most likely be different than the primary clock frequency. 3. 4. 15.4.5 5. CHANGES IN SYSTEM CLOCK FREQUENCY The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 2.0 “Oscillator Module (With Fail-Safe Clock Monitor)” for additional details. 15.4.6 6. EFFECTS OF RESET Any Reset will force all ports to Input mode and the CCP registers to their Reset states. DS41303B-page 162 SETUP FOR PWM OPERATION 7. Disable the PWM pin (CCPx) output drivers by setting the associated TRIS bit. For the ECCP module only: Select the desired PWM outputs (P1A through P1D) by setting the appropriate steering bits of the PSTRCON register. Set the PWM period by loading the PR2 register. Configure the CCP module for the PWM mode by loading the CCPxCON register with the appropriate values. Set the PWM duty cycle by loading the CCPRxL register and CCPx bits of the CCPxCON register. Configure and start Timer2: • Clear the TMR2IF interrupt flag bit of the PIR1 register. • Set the Timer2 prescale value by loading the T2CKPS bits of the T2CON register. • Enable Timer2 by setting the TMR2ON bit of the T2CON register. Enable PWM output after a new PWM cycle has started: • Wait until Timer2 overflows (TMR2IF bit of the PIR1 register is set). • Enable the CCPx pin output driver by clearing the associated TRIS bit. Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 TABLE 15-7: Name INTCON REGISTERS ASSOCIATED WITH PWM AND TIMER2 Bit 7 Bit 6 GIE/GIEH PEIE/GIEL Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset Values on page TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 57 — RI TO PD POR BOR 56 RCON IPEN SBOREN PIR1 PSPIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 60 PIE1 PSPIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 60 IPR1 PSPIP ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP 60 TRISB PORTB Data Direction Control Register 60 TRISC PORTC Data Direction Control Register 60 TMR2 Timer2 Register 58 PR2 Timer2 Period Register 58 T2CON — T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0 CCPR1L Capture/Compare/PWM Register 1, Low Byte CCPR1H Capture/Compare/PWM Register 1, High Byte CCP1CON P1M1 P1M0 DC1B1 DC1B0 58 59 59 CCP1M3 CCP1M2 CCP1M1 CCP1M0 59 CCPR2L Capture/Compare/PWM Register 2, Low Byte 59 CCPR2H Capture/Compare/PWM Register 2, High Byte 59 CCP2CON ECCP1AS PWM1CON — — ECCPASE ECCPAS2 PRSEN PDC6 DC2B1 DC2B0 CCP2M3 CCP2M2 CCP2M1 CCP2M0 59 ECCPAS1 ECCPAS0 PSSAC1 PSSAC0 PSSBD1 PSSBD0 59 PDC5 PDC4 PDC3 PDC2 PDC PDC0 59 Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by PWM or Timer2. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 163 PIC18F2XK20/4XK20 NOTES: DS41303B-page 164 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 16.0 ENHANCED CAPTURE/COMPARE/PWM (ECCP) MODULE CCP1 is implemented as a standard CCP module with enhanced PWM capabilities. These include: • • • • • Provision for 2 or 4 output channels Output steering Programmable polarity Programmable dead-band control Automatic shutdown and restart. REGISTER 16-1: The enhanced features are discussed in detail in Section 16.4 “PWM (Enhanced Mode)”. Capture, Compare and single-output PWM functions of the ECCP module are the same as described for the standard CCP module. The control register for the enhanced CCP module is shown in Register 16-1. It differs from the CCP2CON register in that the two Most Significant bits are implemented to control PWM functionality. CCP1CON: ENHANCED CAPTURE/COMPARE/PWM CONTROL REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 P1M1 P1M0 DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-6 P1M<1:0>: Enhanced PWM Output Configuration bits If CCP1M<3:2> = 00, 01, 10: xx = P1A assigned as Capture/Compare input/output; P1B, P1C, P1D assigned as port pins If CCP1M<3:2> = 11: 00 = Single output: P1A, P1B, P1C and P1D controlled by steering (See Section 16.4.7 “Pulse Steering Mode”). 01 = Full-bridge output forward: P1D modulated; P1A active; P1B, P1C inactive 10 = Half-bridge output: P1A, P1B modulated with dead-band control; P1C, P1D assigned as port pins 11 = Full-bridge output reverse: P1B modulated; P1C active; P1A, P1D inactive bit 5-4 DC1B<1:0>: PWM Duty Cycle bit 1 and bit 0 Capture mode: Unused. Compare mode: Unused. PWM mode: These bits are the two LSbs of the 10-bit PWM duty cycle. The eight MSbs of the duty cycle are found in CCPR1L. bit 3-0 CCP1M<3:0>: Enhanced CCP Mode Select bits 0000 = Capture/Compare/PWM off (resets ECCP module) 0001 = Reserved 0010 = Compare mode, toggle output on match 0011 = Capture mode 0100 = Capture mode, every falling edge 0101 = Capture mode, every rising edge 0110 = Capture mode, every 4th rising edge 0111 = Capture mode, every 16th rising edge 1000 = Compare mode, initialize CCP1 pin low, set output on compare match (set CCP1IF) 1001 = Compare mode, initialize CCP1 pin high, clear output on compare match (set CCP1IF) 1010 = Compare mode, generate software interrupt only, CCP1 pin reverts to I/O state 1011 = Compare mode, trigger special event (ECCP resets TMR1 or TMR3, sets CC1IF bit) 1100 = PWM mode; P1A, P1C active-high; P1B, P1D active-high 1101 = PWM mode; P1A, P1C active-high; P1B, P1D active-low 1110 = PWM mode; P1A, P1C active-low; P1B, P1D active-high 1111 = PWM mode; P1A, P1C active-low; P1B, P1D active-low © 2007 Microchip Technology Inc. Advance Information DS41303B-page 165 PIC18F2XK20/4XK20 In addition to the expanded range of modes available through the CCP1CON register and ECCP1AS register, the ECCP module has two additional registers associated with Enhanced PWM operation and auto-shutdown features. They are: • PWM1CON (Dead-band delay) • PSTRCON (output steering) 16.1 16.3 Standard PWM Mode When configured in Single Output mode, the ECCP module functions identically to the standard CCP module in PWM mode, as described in Section 15.4 “PWM Mode”. This is also sometimes referred to as “Single CCP” mode, as in Table 16-1. ECCP Outputs and Configuration The enhanced CCP module may have up to four PWM outputs, depending on the selected operating mode. These outputs, designated P1A through P1D, are multiplexed with I/O pins on PORTC and PORTD (for PIC18F4XK20 devices) or PORTB (for PIC18F2XK20 devices). The outputs that are active depend on the CCP operating mode selected. The pin assignments are summarized in Table 16-1. To configure the I/O pins as PWM outputs, the proper PWM mode must be selected by setting the P1M<1:0> and CCP1M<3:0> bits. The appropriate TRISC and TRISD direction bits for the port pins must also be set as outputs. 16.1.1 ECCP MODULES AND TIMER RESOURCES Like the standard CCP modules, the ECCP module can utilize Timers 1, 2 or 3, depending on the mode selected. Timer1 and Timer3 are available for modules in Capture or Compare modes, while Timer2 is available for modules in PWM mode. Interactions between the standard and enhanced CCP modules are identical to those described for standard CCP modules. Additional details on timer resources are provided in Section 15.1.1 “CCP Modules and Timer Resources”. 16.2 Capture and Compare Modes Except for the operation of the Special Event Trigger discussed below, the Capture and Compare modes of the ECCP module are identical in operation to that of CCP2. These are discussed in detail in Section 15.2 “Capture Mode” and Section 15.3 “Compare Mode”. No changes are required when moving between 28-pin and 40/44-pin devices. 16.2.1 SPECIAL EVENT TRIGGER The Special Event Trigger output of ECCP1 resets the TMR1 or TMR3 register pair, depending on which timer resource is currently selected. This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1 or Timer3. DS41303B-page 166 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 16.4 PWM (Enhanced Mode) The PWM outputs are multiplexed with I/O pins and are designated P1A, P1B, P1C and P1D. The polarity of the PWM pins is configurable and is selected by setting the CCP1M bits in the CCP1CON register appropriately. The Enhanced PWM Mode can generate a PWM signal on up to four different output pins with up to 10-bits of resolution. It can do this through four different PWM output modes: • • • • Table 16-1 shows the pin assignments for each Enhanced PWM mode. Single PWM Half-Bridge PWM Full-Bridge PWM, Forward mode Full-Bridge PWM, Reverse mode Figure 16-1 shows an example of a simplified block diagram of the Enhanced PWM module. Note: To prevent the generation of an incomplete waveform when the PWM is first enabled, the ECCP module waits until the start of a new PWM period before generating a PWM signal. To select an Enhanced PWM mode, the P1M bits of the CCP1CON register must be set appropriately. Note: The PWM Enhanced mode is available on the Enhanced Capture/Compare/PWM module (CCP1) only. FIGURE 16-1: EXAMPLE SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODE Duty Cycle Registers DC1B<1:0> CCP1M<3:0> 4 P1M<1:0> 2 CCPR1L CCP1/P1A CCP1/P1A TRIS CCPR1H (Slave) P1B R Comparator Output Controller Q P1B TRIS P1C TMR2 (1) S P1D Comparator Clear Timer2, toggle PWM pin and latch duty cycle PR2 Note 1: P1C TRIS P1D TRIS PWM1CON The 8-bit timer TMR2 register is concatenated with the 2-bit internal Q clock, or 2 bits of the prescaler to create the 10-bit time base. Note 1: The TRIS register value for each PWM output must be configured appropriately. 2: Clearing the CCPxCON register will relinquish ECCP control of all PWM output pins. 3: Any pin not used by an Enhanced PWM mode is available for alternate pin functions. TABLE 16-1: EXAMPLE PIN ASSIGNMENTS FOR VARIOUS PWM ENHANCED MODES ECCP Mode P1M<1:0> CCP1/P1A P1B P1C P1D Single 00 Yes(1) Yes(1) Yes(1) Yes(1) Half-Bridge 10 Yes Yes No No Full-Bridge, Forward 01 Yes Yes Yes Yes Full-Bridge, Reverse 11 Yes Yes Yes Yes Note 1: Outputs are enabled by pulse steering in Single mode. See Register 16-4. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 167 PIC18F2XK20/4XK20 FIGURE 16-2: EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS (ACTIVE-HIGH STATE) P1M<1:0> Signal PR2+1 Pulse Width 0 Period 00 (Single Output) P1A Modulated Delay(1) Delay(1) P1A Modulated 10 (Half-Bridge) P1B Modulated P1A Active 01 (Full-Bridge, Forward) P1B Inactive P1C Inactive P1D Modulated P1A Inactive 11 (Full-Bridge, Reverse) P1B Modulated P1C Active P1D Inactive Relationships: • Period = 4 * TOSC * (PR2 + 1) * (TMR2 Prescale Value) • Pulse Width = TOSC * (CCPR1L<7:0>:CCP1CON<5:4>) * (TMR2 Prescale Value) • Delay = 4 * TOSC * (PWM1CON<6:0>) Note 1: Dead-band delay is programmed using the PWM1CON register (Section 16.4.6 “Programmable Dead-Band Delay mode”). DS41303B-page 168 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 FIGURE 16-3: EXAMPLE ENHANCED PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE) Signal P1M<1:0> PR2+1 Pulse Width 0 Period 00 (Single Output) P1A Modulated P1A Modulated Delay(1) 10 (Half-Bridge) Delay(1) P1B Modulated P1A Active 01 (Full-Bridge, Forward) P1B Inactive P1C Inactive P1D Modulated P1A Inactive 11 (Full-Bridge, Reverse) P1B Modulated P1C Active P1D Inactive Relationships: • Period = 4 * TOSC * (PR2 + 1) * (TMR2 Prescale Value) • Pulse Width = TOSC * (CCPR1L<7:0>:CCP1CON<5:4>) * (TMR2 Prescale Value) • Delay = 4 * TOSC * (PWM1CON<6:0>) Note 1: Dead-band delay is programmed using the PWM1CON register (Section 16.4.6 “Programmable Dead-Band Delay mode”). © 2007 Microchip Technology Inc. Advance Information DS41303B-page 169 PIC18F2XK20/4XK20 16.4.1 HALF-BRIDGE MODE In Half-Bridge mode, two pins are used as outputs to drive push-pull loads. The PWM output signal is output on the CCPx/P1A pin, while the complementary PWM output signal is output on the P1B pin (see Figure 16-5). This mode can be used for Half-Bridge applications, as shown in Figure 16-5, or for Full-Bridge applications, where four power switches are being modulated with two PWM signals. In Half-Bridge mode, the programmable dead-band delay can be used to prevent shoot-through current in Half-Bridge power devices. The value of the PDC<6:0> bits of the PWM1CON register sets the number of instruction cycles before the output is driven active. If the value is greater than the duty cycle, the corresponding output remains inactive during the entire cycle. See Section 16.4.6 “Programmable Dead-Band Delay mode” for more details of the dead-band delay operations. Since the P1A and P1B outputs are multiplexed with the PORT data latches, the associated TRIS bits must be cleared to configure P1A and P1B as outputs. FIGURE 16-4: Period Period Pulse Width P1A(2) td td P1B(2) (1) (1) (1) td = Dead-Band Delay Note 1: 2: FIGURE 16-5: EXAMPLE OF HALF-BRIDGE PWM OUTPUT At this time, the TMR2 register is equal to the PR2 register. Output signals are shown as active-high. EXAMPLE OF HALF-BRIDGE APPLICATIONS Standard Half-Bridge Circuit (“Push-Pull”) FET Driver + P1A Load FET Driver + P1B - Half-Bridge Output Driving a Full-Bridge Circuit V+ FET Driver FET Driver P1A FET Driver Load FET Driver P1B DS41303B-page 170 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 16.4.2 FULL-BRIDGE MODE In Full-Bridge mode, all four pins are used as outputs. An example of Full-Bridge application is shown in Figure 16-6. In the Forward mode, pin CCP1/P1A is driven to its active state, pin P1D is modulated, while P1B and P1C will be driven to their inactive state as shown in Figure 16-7. In the Reverse mode, P1C is driven to its active state, pin P1B is modulated, while P1A and P1D will be driven to their inactive state as shown Figure 16-7. P1A, P1B, P1C and P1D outputs are multiplexed with the PORT data latches. The associated TRIS bits must be cleared to configure the P1A, P1B, P1C and P1D pins as outputs. FIGURE 16-6: EXAMPLE OF FULL-BRIDGE APPLICATION V+ FET Driver QC QA FET Driver P1A Load P1B FET Driver P1C FET Driver QD QB VP1D © 2007 Microchip Technology Inc. Advance Information DS41303B-page 171 PIC18F2XK20/4XK20 FIGURE 16-7: EXAMPLE OF FULL-BRIDGE PWM OUTPUT Forward Mode Period P1A (2) Pulse Width P1B(2) P1C(2) P1D(2) (1) (1) Reverse Mode Period Pulse Width P1A(2) P1B(2) P1C(2) P1D(2) (1) Note 1: 2: (1) At this time, the TMR2 register is equal to the PR2 register. Output signal is shown as active-high. DS41303B-page 172 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 16.4.2.1 Direction Change in Full-Bridge Mode In the Full-Bridge mode, the P1M1 bit in the CCP1CON register allows users to control the forward/reverse direction. When the application firmware changes this direction control bit, the module will change to the new direction on the next PWM cycle. A direction change is initiated in software by changing the P1M1 bit of the CCP1CON register. The following sequence occurs prior to the end of the current PWM period: • The modulated outputs (P1B and P1D) are placed in their inactive state. • The associated unmodulated outputs (P1A and P1C) are switched to drive in the opposite direction. • PWM modulation resumes at the beginning of the next period. See Figure 16-8 for an illustration of this sequence. The Full-Bridge mode does not provide dead-band delay. As one output is modulated at a time, dead-band delay is generally not required. There is a situation where dead-band delay is required. This situation occurs when both of the following conditions are true: 1. 2. The direction of the PWM output changes when the duty cycle of the output is at or near 100%. The turn off time of the power switch, including the power device and driver circuit, is greater than the turn on time. Figure 16-9 shows an example of the PWM direction changing from forward to reverse, at a near 100% duty cycle. In this example, at time t1, the output P1A and P1D become inactive, while output P1C becomes active. Since the turn off time of the power devices is longer than the turn on time, a shoot-through current will flow through power devices QC and QD (see Figure 16-6) for the duration of ‘t’. The same phenomenon will occur to power devices QA and QB for PWM direction change from reverse to forward. If changing PWM direction at high duty cycle is required for an application, two possible solutions for eliminating the shoot-through current are: 1. 2. Reduce PWM duty cycle for one PWM period before changing directions. Use switch drivers that can drive the switches off faster than they can drive them on. Other options to prevent shoot-through current may exist. FIGURE 16-8: EXAMPLE OF PWM DIRECTION CHANGE Period(1) Signal Period P1A (Active-High) P1B (Active-High) Pulse Width P1C (Active-High) (2) P1D (Active-High) Pulse Width Note 1: 2: The direction bit P1M1 of the CCP1CON register is written any time during the PWM cycle. When changing directions, the P1A and P1C signals switch before the end of the current PWM cycle. The modulated P1B and P1D signals are inactive at this time. The length of this time is (1/FOSC) • TMR2 prescale value. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 173 PIC18F2XK20/4XK20 FIGURE 16-9: EXAMPLE OF PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE Forward Period t1 Reverse Period P1A P1B PW P1C P1D PW TON External Switch C TOFF External Switch D Potential Shoot-Through Current Note 1: 16.4.3 T = TOFF – TON All signals are shown as active-high. 2: TON is the turn on delay of power switch QC and its driver. 3: TOFF is the turn off delay of power switch QD and its driver. START-UP CONSIDERATIONS When any PWM mode is used, the application hardware must use the proper external pull-up and/or pull-down resistors on the PWM output pins. Note: When the microcontroller is released from Reset, all of the I/O pins are in the high-impedance state. The external circuits must keep the power switch devices in the Off state until the microcontroller drives the I/O pins with the proper signal levels or activates the PWM output(s). The CCP1M<1:0> bits of the CCP1CON register allow the user to choose whether the PWM output signals are active-high or active-low for each pair of PWM output pins (P1A/P1C and P1B/P1D). The PWM output polarities must be selected before the PWM pin output drivers are enabled. Changing the polarity configuration while the PWM pin output drivers are enable is not recommended since it may result in damage to the application circuits. The P1A, P1B, P1C and P1D output latches may not be in the proper states when the PWM module is initialized. Enabling the PWM pin output drivers at the same time as the Enhanced PWM modes may cause damage to the application circuit. The Enhanced PWM modes must be enabled in the proper Output mode and complete a full PWM cycle before enabling the PWM pin output drivers. The completion of a full PWM cycle is indicated by the TMR2IF bit of the PIR1 register being set as the second PWM period begins. DS41303B-page 174 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 16.4.4 ENHANCED PWM AUTO-SHUTDOWN MODE The PWM mode supports an Auto-Shutdown mode that will disable the PWM outputs when an external shutdown event occurs. Auto-Shutdown mode places the PWM output pins into a predetermined state. This mode is used to help prevent the PWM from damaging the application. The auto-shutdown sources are selected using the ECCPAS<2:0> bits of the ECCPAS register. A shutdown event may be generated by: • • • • A logic ‘0’ on the INT pin Comparator C1 Comparator C2 Setting the ECCPASE bit in firmware REGISTER 16-2: A shutdown condition is indicated by the ECCPASE (Auto-Shutdown Event Status) bit of the ECCPAS register. If the bit is a ‘0’, the PWM pins are operating normally. If the bit is a ‘1’, the PWM outputs are in the shutdown state. When a shutdown event occurs, two things happen: The ECCPASE bit is set to ‘1’. The ECCPASE will remain set until cleared in firmware or an auto-restart occurs (see Section 16.4.5 “Auto-Restart Mode”). The enabled PWM pins are asynchronously placed in their shutdown states. The PWM output pins are grouped into pairs [P1A/P1C] and [P1B/P1D]. The state of each pin pair is determined by the PSSAC and PSSBD bits of the ECCPAS register. Each pin pair may be placed into one of three states: • Drive logic ‘1’ • Drive logic ‘0’ • Tri-state (high-impedance) ECCP1AS: ENHANCED CAPTURE/COMPARE/PWM AUTO-SHUTDOWN CONTROL REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 ECCPASE ECCPAS2 ECCPAS1 ECCPAS0 PSSAC1 PSSAC0 PSSBD1 PSSBD0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 ECCPASE: ECCP Auto-Shutdown Event Status bit 1 = A shutdown event has occurred; ECCP outputs are in shutdown state 0 = ECCP outputs are operating bit 6-4 ECCPAS<2:0>: ECCP Auto-shutdown Source Select bits 000 = Auto-Shutdown is disabled 001 = Comparator C1OUT output is high 010 = Comparator C2OUT output is high 011 = Either Comparator C1OUT or C2OUT is high 100 = VIL on INT pin 101 = VIL on INT pin or Comparator C1OUT output is high 110 = VIL on INT pin or Comparator C2OUT output is high 111 = VIL on INT pin or Comparator C1OUT or Comparator C2OUT is high bit 3-2 PSSACn: Pins P1A and P1C Shutdown State Control bits 00 = Drive pins P1A and P1C to ‘0’ 01 = Drive pins P1A and P1C to ‘1’ 1x = Pins P1A and P1C tri-state bit 1-0 PSSBDn: Pins P1B and P1D Shutdown State Control bits 00 = Drive pins P1B and P1D to ‘0’ 01 = Drive pins P1B and P1D to ‘1’ 1x = Pins P1B and P1D tri-state © 2007 Microchip Technology Inc. Advance Information DS41303B-page 175 PIC18F2XK20/4XK20 Note 1: The auto-shutdown condition is a level-based signal, not an edge-based signal. As long as the level is present, the auto-shutdown will persist. 2: Writing to the ECCPASE bit is disabled while an auto-shutdown condition persists. 3: Once the auto-shutdown condition has been removed and the PWM restarted (either through firmware or auto-restart) the PWM signal will always restart at the beginning of the next PWM period. FIGURE 16-10: PWM AUTO-SHUTDOWN WITH FIRMWARE RESTART (PRSEN = 0) PWM Period Shutdown Event ECCPASE bit PWM Activity Normal PWM ECCPASE Cleared by Shutdown Shutdown Firmware PWM Event Occurs Event Clears Resumes Start of PWM Period 16.4.5 AUTO-RESTART MODE The Enhanced PWM can be configured to automatically restart the PWM signal once the auto-shutdown condition has been removed. Auto-restart is enabled by setting the PRSEN bit in the PWM1CON register. If auto-restart is enabled, the ECCPASE bit will remain set as long as the auto-shutdown condition is active. When the auto-shutdown condition is removed, the ECCPASE bit will be cleared via hardware and normal operation will resume. FIGURE 16-11: PWM AUTO-SHUTDOWN WITH AUTO-RESTART ENABLED (PRSEN = 1) PWM Period Shutdown Event ECCPASE bit PWM Activity Normal PWM Start of PWM Period DS41303B-page 176 Shutdown Shutdown Event Occurs Event Clears Advance Information PWM Resumes © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 16.4.6 PROGRAMMABLE DEAD-BAND DELAY MODE FIGURE 16-12: In Half-Bridge applications where all power switches are modulated at the PWM frequency, the power switches normally require more time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on, and the other turned off), both switches may be on for a short period of time until one switch completely turns off. During this brief interval, a very high current (shoot-through current) will flow through both power switches, shorting the bridge supply. To avoid this potentially destructive shoot-through current from flowing during switching, turning on either of the power switches is normally delayed to allow the other switch to completely turn off. Period Period Pulse Width P1A(2) td td P1B(2) (1) (1) (1) td = Dead-Band Delay Note 1: In Half-Bridge mode, a digitally programmable dead-band delay is available to avoid shoot-through current from destroying the bridge power switches. The delay occurs at the signal transition from the non-active state to the active state. See Figure 16-12 for illustration. The lower seven bits of the associated PWM1CON register (Register 16-3) sets the delay period in terms of microcontroller instruction cycles (TCY or 4 TOSC). FIGURE 16-13: EXAMPLE OF HALF-BRIDGE PWM OUTPUT 2: At this time, the TMR2 register is equal to the PR2 register. Output signals are shown as active-high. EXAMPLE OF HALF-BRIDGE APPLICATIONS V+ Standard Half-Bridge Circuit (“Push-Pull”) FET Driver + V - P1A Load FET Driver + V - P1B V- © 2007 Microchip Technology Inc. Advance Information DS41303B-page 177 PIC18F2XK20/4XK20 REGISTER 16-3: PWM1CON: ENHANCED PWM CONTROL REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PRSEN PDC6 PDC5 PDC4 PDC3 PDC2 PDC1 PDC0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 PRSEN: PWM Restart Enable bit 1 = Upon auto-shutdown, the ECCPASE bit clears automatically once the shutdown event goes away; the PWM restarts automatically 0 = Upon auto-shutdown, ECCPASE must be cleared by software to restart the PWM bit 6-0 PDC<6:0>: PWM Delay Count bits PDCn = Number of FOSC/4 (4 * TOSC) cycles between the scheduled time when a PWM signal should transition active and the actual time it transitions active DS41303B-page 178 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 16.4.7 PULSE STEERING MODE In Single Output mode, pulse steering allows any of the PWM pins to be the modulated signal. Additionally, the same PWM signal can be simultaneously available on multiple pins. Once the Single Output mode is selected (CCP1M<3:2> = 11 and P1M<1:0> = 00 of the CCP1CON register), the user firmware can bring out the same PWM signal to one, two, three or four output pins by setting the appropriate STR<D:A> bits of the PSTRCON register, as shown in Table 16-1. REGISTER 16-4: Note: The associated TRIS bits must be set to output (‘0’) to enable the pin output driver in order to see the PWM signal on the pin. While the PWM Steering mode is active, CCP1M<1:0> bits of the CCP1CON register select the PWM output polarity for the P1<D:A> pins. The PWM auto-shutdown operation also applies to PWM Steering mode as described in Section 16.4.4 “Enhanced PWM Auto-shutdown mode”. An auto-shutdown event will only affect pins that have PWM outputs enabled. PSTRCON: PULSE STEERING CONTROL REGISTER(1) U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-1 — — — STRSYNC STRD STRC STRB STRA bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-5 Unimplemented: Read as ‘0’ bit 4 STRSYNC: Steering Sync bit 1 = Output steering update occurs on next PWM period 0 = Output steering update occurs at the beginning of the instruction cycle boundary bit 3 STRD: Steering Enable bit D 1 = P1D pin has the PWM waveform with polarity control from CCPxM<1:0> 0 = P1D pin is assigned to port pin bit 2 STRC: Steering Enable bit C 1 = P1C pin has the PWM waveform with polarity control from CCPxM<1:0> 0 = P1C pin is assigned to port pin bit 1 STRB: Steering Enable bit B 1 = P1B pin has the PWM waveform with polarity control from CCPxM<1:0> 0 = P1B pin is assigned to port pin bit 0 STRA: Steering Enable bit A 1 = P1A pin has the PWM waveform with polarity control from CCPxM<1:0> 0 = P1A pin is assigned to port pin Note 1: The PWM Steering mode is available only when the CCP1CON register bits CCP1M<3:2> = 11 and P1M<1:0> = 00. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 179 PIC18F2XK20/4XK20 FIGURE 16-14: SIMPLIFIED STEERING BLOCK DIAGRAM STRA P1A Signal CCP1M1 1 PORT Data 0 P1A pin STRB CCP1M0 1 PORT Data 0 CCP1M1 1 PORT Data 0 P1C pin TRIS STRD PORT Data P1B pin TRIS STRC CCP1M0 TRIS P1D pin 1 0 TRIS Note 1: Port outputs are configured as shown when the CCP1CON register bits P1M<1:0> = 00 and CCP1M<3:2> = 11. 2: Single PWM output requires setting at least one of the STRx bits. DS41303B-page 180 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 16.4.7.1 Steering Synchronization The STRSYNC bit of the PSTRCON register gives the user two selections of when the steering event will happen. When the STRSYNC bit is ‘0’, the steering event will happen at the end of the instruction that writes to the PSTRCON register. In this case, the output signal at the P1<D:A> pins may be an incomplete PWM waveform. This operation is useful when the user firmware needs to immediately remove a PWM signal from the pin. Figures 16-15 and 16-16 illustrate the timing diagrams of the PWM steering depending on the STRSYNC setting. When the STRSYNC bit is ‘1’, the effective steering update will happen at the beginning of the next PWM period. In this case, steering on/off the PWM output will always produce a complete PWM waveform. FIGURE 16-15: EXAMPLE OF STEERING EVENT AT END OF INSTRUCTION (STRSYNC = 0) PWM Period PWM STRn P1<D:A> PORT Data PORT Data P1n = PWM FIGURE 16-16: EXAMPLE OF STEERING EVENT AT BEGINNING OF INSTRUCTION (STRSYNC = 1) PWM STRn P1<D:A> PORT Data PORT Data P1n = PWM © 2007 Microchip Technology Inc. Advance Information DS41303B-page 181 PIC18F2XK20/4XK20 16.4.8 OPERATION IN POWER-MANAGED MODES In Sleep mode, all clock sources are disabled. Timer2 will not increment and the state of the module will not change. If the ECCP pin is driving a value, it will continue to drive that value. When the device wakes up, it will continue from this state. If Two-Speed Start-ups are enabled, the initial start-up frequency from HFINTOSC and the postscaler may not be stable immediately. In PRI_IDLE mode, the primary clock will continue to clock the ECCP module without change. In all other power-managed modes, the selected power-managed mode clock will clock Timer2. Other power-managed mode clocks will most likely be different than the primary clock frequency. 16.4.8.1 Operation with Fail-Safe Clock Monitor If the Fail-Safe Clock Monitor is enabled, a clock failure will force the device into the RC_RUN Power-Managed mode and the OSCFIF bit of the PIR2 register will be set. The ECCP will then be clocked from the internal oscillator clock source, which may have a different clock frequency than the primary clock. See the previous section for additional details. 16.4.9 EFFECTS OF A RESET Both Power-on Reset and subsequent Resets will force all ports to Input mode and the CCP registers to their Reset states. This forces the enhanced CCP module to reset to a state compatible with the standard CCP module. DS41303B-page 182 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 TABLE 16-2: Name INTCON REGISTERS ASSOCIATED WITH ECCP1 MODULE AND TIMER1 TO TIMER3 Bit 7 Bit 6 GIE/GIEH PEIE/GIEL Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset Values on page TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 57 RCON IPEN SBOREN — RI TO PD POR BOR 56 PIR1 PSPIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 60 PIE1 PSPIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 60 IPR1 PSPIP ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP 60 PIR2 OSCFIF C1IF C2IF EEIF BCLIF HLVDIF TMR3IF CCP2IF 60 PIE2 OSCFIE C1IE C2IE EEIE BCLIE HLVDIE TMR3IE CCP2IE 60 IPR2 OSCFIP C1IP C2IP EEIP BCLIP HLVDIP TMR3IP CCP2IP 60 TRISB PORTB Data Direction Control Register 60 TRISC PORTC Data Direction Control Register 60 TRISD PORTD Data Direction Control Register 60 TMR1L Timer1 Register, Low Byte 58 TMR1H Timer1 Register, High Byte 58 T1CON TMR2 T2CON RD16 T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON Timer2 Register — 58 58 T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0 58 PR2 Timer2 Period Register 58 TMR3L Timer3 Register, Low Byte 59 TMR3H Timer3 Register, High Byte T3CON RD16 T3CCP2 59 T3CKPS1 T3CKPS0 CCPR1L Capture/Compare/PWM Register 1, Low Byte CCPR1H Capture/Compare/PWM Register 1, High Byte CCP1CON ECCP1AS PWM1CON Legend: Note 1: P1M1(1) P1M0(1) ECCPASE ECCPAS2 PRSEN PDC6(1) DC1B1 DC1B0 T3CCP1 T3SYNC TMR3CS TMR3ON 59 59 59 CCP1M3 CCP1M2 CCP1M1 (1) CCP1M0 (1) 59 ECCPAS1 ECCPAS0 PSSAC1 PSSAC0 PSSBD1 PSSBD0 59 PDC5(1) PDC4(1) PDC3(1) PDC2(1) PDC1(1) PDC0(1) 59 — = unimplemented, read as ‘0’. Shaded cells are not used during ECCP operation. These bits are unimplemented on 28-pin devices; always maintain these bits clear. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 183 PIC18F2XK20/4XK20 NOTES: DS41303B-page 184 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 17.0 17.1 MASTER SYNCHRONOUS SERIAL PORT (MSSP) MODULE Master SSP (MSSP) Module Overview The Master Synchronous Serial Port (MSSP) module is a serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSP module can operate in one of two modes: • Serial Peripheral Interface (SPI) • Inter-Integrated Circuit (I2C) - Full Master mode - Slave mode (with general address call) 17.3 SPI Mode The SPI mode allows 8 bits of data to be synchronously transmitted and received simultaneously. All four modes of SPI are supported. To accomplish communication, typically three pins are used: • Serial Data Out – SDO • Serial Data In – SDI/SDA • Serial Clock – SCK/SCL Additionally, a fourth pin may be used when in a Slave mode of operation: • Slave Select – SS Figure 17-1 shows the block diagram of the MSSP module when operating in SPI mode. FIGURE 17-1: MSSP BLOCK DIAGRAM (SPI MODE) The I2C interface supports the following modes in hardware: Internal Data Bus Read • Master mode • Multi-Master mode • Slave mode 17.2 SSPBUF Reg Control Registers SDI/SDA The MSSP module has seven associated registers. These include: • • • • • • • Write SSPSTA – STATUS register SSPCON1 – First Control register SSPCON2 – Second Control register SSPBUF – Transmit/Receive buffer SSPSR – Shift register (not directly accessible) SSPADD – Address register SSPMSK – Address Mask register SSPSR Reg Shift Clock SDO bit 0 SS SS Control Enable Edge Select The use of these registers and their individual Configuration bits differ significantly depending on whether the MSSP module is operated in SPI or I2C mode. 2 Clock Select Additional details are provided under the individual sections. SCK/SCL SSPM<3:0> SMP:CKE 4 TMR2 Output 2 2 Edge Select Prescaler TOSC 4, 16, 64 ( ) Data to TX/RX in SSPSR TRIS bit © 2007 Microchip Technology Inc. Advance Information DS41303B-page 185 PIC18F2XK20/4XK20 17.3.1 REGISTERS SSPSR is the shift register used for shifting data in and out. SSPBUF provides indirect access to the SSPSR register. SSPBUF is the buffer register to which data bytes are written, and from which data bytes are read. The MSSP module has four registers for SPI mode operation. These are: • • • • SSPCON1 – Control Register SSPSTAT – STATUS register SSPBUF – Serial Receive/Transmit Buffer SSPSR – Shift Register (Not directly accessible) In receive operations, SSPSR and SSPBUF together create a double-buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set. SSPCON1 and SSPSTAT are the control and STATUS registers in SPI mode operation. The SSPCON1 register is readable and writable. The lower 6 bits of the SSPSTAT are read-only. The upper two bits of the SSPSTAT are read/write. REGISTER 17-1: During transmission, the SSPBUF is not double-buffered. A write to SSPBUF will write to both SSPBUF and SSPSR. SSPSTAT: MSSP STATUS REGISTER (SPI MODE) R/W-0 R/W-0 R-0 R-0 R-0 R-0 R-0 R-0 SMP CKE D/A P S R/W UA BF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 SMP: Sample bit SPI Master mode: 1 = Input data sampled at end of data output time 0 = Input data sampled at middle of data output time SPI Slave mode: SMP must be cleared when SPI is used in Slave mode. bit 6 CKE: SPI Clock Select bit(1) 1 = Transmit occurs on transition from active to Idle clock state 0 = Transmit occurs on transition from Idle to active clock state bit 5 D/A: Data/Address bit Used in I2C mode only. bit 4 P: Stop bit Used in I2C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared. bit 3 S: Start bit Used in I2C mode only. bit 2 R/W: Read/Write Information bit Used in I2C mode only. bit 1 UA: Update Address bit Used in I2C mode only. bit 0 BF: Buffer Full Status bit (Receive mode only) 1 = Receive complete, SSPBUF is full 0 = Receive not complete, SSPBUF is empty Note 1: Polarity of clock state is set by the CKP bit of the SSPCON1 register. DS41303B-page 186 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 REGISTER 17-2: SSPCON1: MSSP CONTROL 1 REGISTER (SPI MODE) R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 WCOL: Write Collision Detect bit (Transmit mode only) 1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared by software) 0 = No collision bit 6 SSPOV: Receive Overflow Indicator bit(1) SPI Slave mode: 1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. The user must read the SSPBUF, even if only transmitting data, to avoid setting overflow (must be cleared by software). 0 = No overflow bit 5 SSPEN: Synchronous Serial Port Enable bit(2) 1 = Enables serial port and configures SCK, SDO, SDI and SS as serial port pins 0 = Disables serial port and configures these pins as I/O port pins bit 4 CKP: Clock Polarity Select bit 1 = Idle state for clock is a high level 0 = Idle state for clock is a low level bit 3-0 SSPM<3:0>: Synchronous Serial Port Mode Select bits(3) 0101 = SPI Slave mode, clock = SCK pin, SS pin control disabled, SS can be used as I/O pin 0100 = SPI Slave mode, clock = SCK pin, SS pin control enabled 0011 = SPI Master mode, clock = TMR2 output/2 0010 = SPI Master mode, clock = FOSC/64 0001 = SPI Master mode, clock = FOSC/16 0000 = SPI Master mode, clock = FOSC/4 Note 1: 2: 3: In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPBUF register. When enabled, these pins must be properly configured as input or output. Bit combinations not specifically listed here are either reserved or implemented in I2C mode only. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 187 PIC18F2XK20/4XK20 17.3.2 OPERATION When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPCON1<5:0> and SSPSTAT<7:6>). These control bits allow the following to be specified: • • • • Master mode (SCK is the clock output) Slave mode (SCK is the clock input) Clock Polarity (Idle state of SCK) Data Input Sample Phase (middle or end of data output time) • Clock Edge (output data on rising/falling edge of SCK) • Clock Rate (Master mode only) • Slave Select mode (Slave mode only) The MSSP consists of a transmit/receive shift register (SSPSR) and a buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR until the received data is ready. Once the 8 bits of data have been received, that byte is moved to the SSPBUF register. Then, the Buffer Full detect bit, BF of the SSPSTAT register, and the interrupt flag bit, SSPIF, are set. This double-buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored and the write collision detect bit WCOL of the SSPCON1 register, will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPBUF register completed successfully. EXAMPLE 17-1: LOOP When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. The Buffer Full bit, BF of the SSPSTAT register, indicates when SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSP interrupt is used to determine when the transmission/reception has completed. The SSPBUF must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 17-1 shows the loading of the SSPBUF (SSPSR) for data transmission. The SSPSR is not directly readable or writable and can only be accessed by addressing the SSPBUF register. Additionally, the MSSP STATUS register (SSPSTAT) indicates the various status conditions. LOADING THE SSPBUF (SSPSR) REGISTER BTFSS BRA MOVF SSPSTAT, BF LOOP SSPBUF, W ;Has data been received (transmit complete)? ;No ;WREG reg = contents of SSPBUF MOVWF RXDATA ;Save in user RAM, if data is meaningful MOVF MOVWF TXDATA, W SSPBUF ;W reg = contents of TXDATA ;New data to xmit DS41303B-page 188 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 17.3.3 ENABLING SPI I/O 17.3.4 To enable the serial port, SSP Enable bit, SSPEN of the SSPCON1 register, must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, reinitialize the SSPCON registers and then set the SSPEN bit. This configures the SDI, SDO, SCK and SS pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed as follows: • SDI is automatically controlled by the SPI module • SDO must have corresponding TRIS bit cleared • SCK (Master mode) must have corresponding TRIS bit cleared • SCK (Slave mode) must have corresponding TRIS bit set • SS must have corresponding TRIS bit set TYPICAL CONNECTION Figure 17-2 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCK signal. Data is shifted out of both shift registers on their programmed clock edge and latched on the opposite edge of the clock. Both processors should be programmed to the same Clock Polarity (CKP), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application software. This leads to three scenarios for data transmission: • Master sends data – Slave sends dummy data • Master sends data – Slave sends data • Master sends dummy data – Slave sends data Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value. FIGURE 17-2: SPI MASTER/SLAVE CONNECTION SPI Master SSPM<3:0> = 00xxb SPI Slave SSPM<3:0> = 010xb SDO SDI Serial Input Buffer (SSPBUF) SDI Shift Register (SSPSR) MSb Serial Input Buffer (SSPBUF) SDO LSb MSb SCK Serial Clock LSb SCK Processor 1 © 2007 Microchip Technology Inc. Shift Register (SSPSR) Processor 2 Advance Information DS41303B-page 189 PIC18F2XK20/4XK20 17.3.5 MASTER MODE The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2, Figure 17-2) is to broadcast data by the software protocol. In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and Status bits appropriately set). This could be useful in receiver applications as a “Line Activity Monitor” mode. FIGURE 17-3: The clock polarity is selected by appropriately programming the CKP bit of the SSPCON1 register. This then, would give waveforms for SPI communication as shown in Figure 17-3, Figure 17-5 and Figure 17-6, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following: • • • • FOSC/4 (or TCY) FOSC/16 (or 4 • TCY) FOSC/64 (or 16 • TCY) Timer2 output/2 This allows a maximum data rate (at 64 MHz) of 16.00 Mbps. Figure 17-3 shows the waveforms for Master mode. When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown. SPI MODE WAVEFORM (MASTER MODE) Write to SSPBUF SCK (CKP = 0 CKE = 0) SCK (CKP = 1 CKE = 0) 4 Clock Modes SCK (CKP = 0 CKE = 1) SCK (CKP = 1 CKE = 1) SDO (CKE = 0) bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 SDO (CKE = 1) bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 SDI (SMP = 0) bit 0 bit 7 Input Sample (SMP = 0) SDI (SMP = 1) bit 0 bit 7 Input Sample (SMP = 1) SSPIF Next Q4 Cycle after Q2↓ SSPSR to SSPBUF DS41303B-page 190 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 17.3.6 SLAVE MODE In Slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched, the SSPIF interrupt flag bit is set. Before enabling the module in SPI Slave mode, the clock line must match the proper Idle state. The clock line can be observed by reading the SCK pin. The Idle state is determined by the CKP bit of the SSPCON1 register. While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications. While in Sleep mode, the slave can transmit/receive data. When a byte is received, the device will wake-up from Sleep. 17.3.7 SLAVE SELECT SYNCHRONIZATION The SS pin allows a Synchronous Slave mode. The SPI must be in Slave mode with SS pin control enabled (SSPCON1<3:0> = 04h). The pin must not be driven low for the SS pin to function as an input. The data latch FIGURE 17-4: must be high. When the SS pin is low, transmission and reception are enabled and the SDO pin is driven. When the SS pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable depending on the application. Note 1: When the SPI is in Slave mode with SS pin control enabled (SSPCON<3:0> = 0100), the SPI module will reset if the SS pin is set to VDD. 2: When the SPI is used in Slave mode with CKE set the SS pin control must also be enabled. When the SPI module resets, the bit counter is forced to ‘0’. This can be done by either forcing the SS pin to a high level or clearing the SSPEN bit. To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver, the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict. SLAVE SYNCHRONIZATION WAVEFORM SS SCK (CKP = 0 CKE = 0) SCK (CKP = 1 CKE = 0) Write to SSPBUF SDO SDI (SMP = 0) bit 7 bit 6 bit 7 bit 0 bit 0 bit 7 bit 7 Input Sample (SMP = 0) SSPIF Interrupt Flag Next Q4 Cycle after Q2↓ SSPSR to SSPBUF © 2007 Microchip Technology Inc. Advance Information DS41303B-page 191 PIC18F2XK20/4XK20 FIGURE 17-5: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0) SS Optional SCK (CKP = 0 CKE = 0) SCK (CKP = 1 CKE = 0) Write to SSPBUF SDO SDI (SMP = 0) bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 bit 0 bit 7 Input Sample (SMP = 0) SSPIF Interrupt Flag Next Q4 Cycle after Q2↓ SSPSR to SSPBUF FIGURE 17-6: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1) SS Not Optional SCK (CKP = 0 CKE = 1) SCK (CKP = 1 CKE = 1) Write to SSPBUF SDO bit 7 SDI (SMP = 0) bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 bit 0 Input Sample (SMP = 0) SSPIF Interrupt Flag Next Q4 Cycle after Q2↓ SSPSR to SSPBUF DS41303B-page 192 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 17.3.8 OPERATION IN POWER-MANAGED MODES Transmit/Receive Shift register. When all 8 bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device. In SPI Master mode, module clocks may be operating at a different speed than when in full power mode; in the case of the Sleep mode, all clocks are halted. 17.3.9 In all Idle modes, a clock is provided to the peripherals. That clock could be from the primary clock source, the secondary clock (Timer1 oscillator at 32.768 kHz) or the INTOSC source. See Section 3.0 “Power-Managed Modes” for additional information. 17.3.10 In most cases, the speed that the master clocks SPI data is not important; however, this should be evaluated for each system. When MSSP interrupts are enabled, after the master completes sending data, an MSSP interrupt will wake the controller: EFFECTS OF A RESET A Reset disables the MSSP module and terminates the current transfer. BUS MODE COMPATIBILITY Table 17-1 shows the compatibility between the standard SPI modes and the states of the CKP and CKE control bits. TABLE 17-1: SPI BUS MODES Control Bits State Standard SPI Mode Terminology CKP CKE • from Sleep, in slave mode • from Idle, in slave or master mode 0, 0 0 1 0, 1 0 0 If an exit from Sleep or Idle mode is not desired, MSSP interrupts should be disabled. 1, 0 1 1 1, 1 1 0 In SPI master mode, when the Sleep mode is selected, all module clocks are halted and the transmission/reception will remain in that state until the devices wakes. After the device returns to Run mode, the module will resume transmitting and receiving data. There is also an SMP bit which controls when the data is sampled. In SPI Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in any power-managed mode and data to be shifted into the SPI TABLE 17-2: Name REGISTERS ASSOCIATED WITH SPI OPERATION Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset Values on page INT0IE RBIE TMR0IF INT0IF RBIF 57 INTCON GIE/GIEH PEIE/GIEL TMR0IE PIR1 PSPIF(1) ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 60 PIE1 PSPIE(1) ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 60 IPR1 PSPIP(1) ADIP 60 TRISA TRISA7(2) TRISA6(2) TRISC SSPBUF TRISC7 TRISC6 RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 60 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 60 SSP Receive Buffer/Transmit Register 58 SSPCON1 WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0 58 SSPSTAT SMP CKE D/A P S R/W UA BF 58 Legend: Shaded cells are not used by the MSSP in SPI mode. Note 1: These bits are unimplemented in 28-pin devices; always maintain these bits clear. 2: PORTA<7:6> and their direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as ‘0’. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 193 PIC18F2XK20/4XK20 17.4 I2C Mode 17.4.1 The MSSP module in I 2C mode fully implements all master and slave functions (including general call support) and provides interrupts on Start and Stop bits in hardware to determine a free bus (multi-master function). The MSSP module implements the standard mode specifications as well as 7-bit and 10-bit addressing. Two pins are used for data transfer: • Serial clock (SCL) – SCK/SCL • Serial data (SDA) – SDI/SDA The user must configure these pins as inputs with the corresponding TRIS bits. FIGURE 17-7: MSSP BLOCK DIAGRAM (I2C™ MODE) Internal Data Bus Read Write Shift Clock SSPSR Reg SDI/SDA MSb LSb SSPMSK Reg Match Detect Addr Match SSPADD Reg Start and Stop bit Detect DS41303B-page 194 The MSSP module has seven registers for I2C operation. These are: • • • • MSSP Control Register 1 (SSPCON1) MSSP Control Register 2 (SSPCON2) MSSP STATUS register (SSPSTAT) Serial Receive/Transmit Buffer Register (SSPBUF) • MSSP Shift Register (SSPSR) – Not directly accessible • MSSP Address Register (SSPADD) • MSSP Address Mask (SSPMSK) SSPCON1, SSPCON2 and SSPSTAT are the control and STATUS registers in I2C mode operation. The SSPCON1 and SSPCON2 registers are readable and writable. The lower 6 bits of the SSPSTAT are read-only. The upper two bits of the SSPSTAT are read/write. SSPSR is the shift register used for shifting data in or out. SSPBUF is the buffer register to which data bytes are written to or read from. When the SSP is configured in Master mode, the lower seven bits of SSPADD act as the Baud Rate Generator reload value. When the SSP is configured for I2C slave mode the SSPADD register holds the slave device address. The SSP can be configured to respond to a range of addresses by qualifying selected bits of the address register with the SSPMSK register. SSPBUF Reg SCK/SCL REGISTERS Set, Reset S, P bits (SSPSTAT Reg) In receive operations, SSPSR and SSPBUF together create a double-buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set. During transmission, the SSPBUF is not double-buffered. A write to SSPBUF will write to both SSPBUF and SSPSR. Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 REGISTER 17-3: R/W-0 SSPSTAT: MSSP STATUS REGISTER (I2C MODE) R/W-0 SMP CKE R-0 R-0 R-0 D/A (1) (1) P S R-0 R/W (2, 3) R-0 R-0 UA BF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 SMP: Slew Rate Control bit In Master or Slave mode: 1 = Slew rate control disabled for standard speed mode (100 kHz and 1 MHz) 0 = Slew rate control enabled for high-speed mode (400 kHz) bit 6 CKE: SMBus Select bit In Master or Slave mode: 1 = Enable SMBus specific inputs 0 = Disable SMBus specific inputs bit 5 D/A: Data/Address bit In Master mode: Reserved. In Slave mode: 1 = Indicates that the last byte received or transmitted was data 0 = Indicates that the last byte received or transmitted was address bit 4 P: Stop bit(1) 1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last bit 3 S: Start bit(1) 1 = Indicates that a Start bit has been detected last 0 = Start bit was not detected last bit 2 R/W: Read/Write Information bit (I2C mode only)(2, 3) In Slave mode: 1 = Read 0 = Write In Master mode: 1 = Transmit is in progress 0 = Transmit is not in progress bit 1 UA: Update Address bit (10-bit Slave mode only) 1 = Indicates that the user needs to update the address in the SSPADD register 0 = Address does not need to be updated bit 0 BF: Buffer Full Status bit In Transmit mode: 1 = SSPBUF is full 0 = SSPBUF is empty In Receive mode: 1 = SSPBUF is full (does not include the ACK and Stop bits) 0 = SSPBUF is empty (does not include the ACK and Stop bits) Note 1: 2: 3: This bit is cleared on Reset and when SSPEN is cleared. This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next Start bit, Stop bit or not ACK bit. ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSP is in Active mode. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 195 PIC18F2XK20/4XK20 REGISTER 17-4: SSPCON1: MSSP CONTROL 1 REGISTER (I2C MODE) R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 WCOL: Write Collision Detect bit In Master Transmit mode: 1 = A write to the SSPBUF register was attempted while the I2C conditions were not valid for a transmission to be started (must be cleared by software) 0 = No collision In Slave Transmit mode: 1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared by software) 0 = No collision In Receive mode (Master or Slave modes): This is a “don’t care” bit. bit 6 SSPOV: Receive Overflow Indicator bit In Receive mode: 1 = A byte is received while the SSPBUF register is still holding the previous byte (must be cleared by software) 0 = No overflow In Transmit mode: This is a “don’t care” bit in Transmit mode. bit 5 SSPEN: Synchronous Serial Port Enable bit 1 = Enables the serial port and configures the SDA and SCL pins as the serial port pins 0 = Disables serial port and configures these pins as I/O port pins When enabled, the SDA and SCL pins must be properly configured as input or output. bit 4 CKP: SCK Release Control bit In Slave mode: 1 = Release clock 0 = Holds clock low (clock stretch), used to ensure data setup time In Master mode: Unused in this mode. bit 3-0 SSPM<3:0>: Synchronous Serial Port Mode Select bits 1111 = I2C Slave mode, 10-bit address with Start and Stop bit interrupts enabled 1110 = I2C Slave mode, 7-bit address with Start and Stop bit interrupts enabled 1011 = I2C Firmware Controlled Master mode (Slave Idle) 1000 = I2C Master mode, clock = FOSC/(4 * (SSPADD + 1)) 0111 = I2C Slave mode, 10-bit address 0110 = I2C Slave mode, 7-bit address Bit combinations not specifically listed here are either reserved or implemented in SPI mode only. DS41303B-page 196 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 REGISTER 17-5: R/W-0 SSPCON2: MSSP CONTROL REGISTER (I2C MODE) R/W-0 GCEN ACKSTAT R/W-0 R/W-0 (2) (1) ACKDT ACKEN R/W-0 (1) RCEN R/W-0 (1) PEN R/W-0 (1) RSEN R/W-0 SEN(1) bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 GCEN: General Call Enable bit (Slave mode only) 1 = Generate interrupt when a general call address (0000h) is received in the SSPSR 0 = General call address disabled bit 6 ACKSTAT: Acknowledge Status bit (Master Transmit mode only) 1 = Acknowledge was not received from slave 0 = Acknowledge was received from slave bit 5 ACKDT: Acknowledge Data bit (Master Receive mode only)(2) 1 = Not Acknowledge 0 = Acknowledge bit 4 ACKEN: Acknowledge Sequence Enable bit (Master Receive mode only)(1) 1 = Initiate Acknowledge sequence on SDA and SCL pins and transmit ACKDT data bit. Automatically cleared by hardware. 0 = Acknowledge sequence Idle bit 3 RCEN: Receive Enable bit (Master mode only)(1) 1 = Enables Receive mode for I2C 0 = Receive Idle bit 2 PEN: Stop Condition Enable bit (Master mode only)(1) 1 = Initiate Stop condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Stop condition Idle bit 1 RSEN: Repeated Start Condition Enable bit (Master mode only)(1) 1 = Initiate Repeated Start condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Repeated Start condition Idle bit 0 SEN: Start Condition Enable/Stretch Enable bit(1) In Master mode: 1 = Initiate Start condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Start condition Idle In Slave mode: 1 = Clock stretching is enabled for both slave transmit and slave receive (stretch enabled) 0 = Clock stretching is disabled Note 1: 2: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I2C module is not in the Idle mode, these bits may not be set (no spooling) and the SSPBUF may not be written (or writes to the SSPBUF are disabled). Value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 197 PIC18F2XK20/4XK20 17.4.2 OPERATION 17.4.3.1 The MSSP module functions are enabled by setting SSPEN bit of the SSPCON1 register. The SSPCON1 register allows control of the I 2C operation. Four mode selection bits of the SSPCON1 register allow one of the following I 2C modes to be selected: I2C Master mode, clock = (FOSC/4) x (SSPADD + 1) I 2C Slave mode (7-bit address) I 2C Slave mode (10-bit address) I 2C Slave mode (7-bit address) with Start and Stop bit interrupts enabled • I 2C Slave mode (10-bit address) with Start and Stop bit interrupts enabled • I 2C Firmware Controlled Master mode, slave is Idle • • • • Selection of any I 2C mode with the SSPEN bit set, forces the SCL and SDA pins to be open-drain, provided these pins are programmed to inputs by setting the appropriate TRIS bits. To ensure proper operation of the module, pull-up resistors must be provided externally to the SCL and SDA pins. 17.4.3 SLAVE MODE In Slave mode, the SCL and SDA pins must be configured as inputs. The MSSP module will override the input state with the output data when required (slave-transmitter). The I 2C Slave mode hardware will always generate an interrupt on an address match. Through the mode select bits, the user can also choose to interrupt on Start and Stop bits When an address is matched, or the data transfer after an address match is received, the hardware automatically will generate the Acknowledge (ACK) pulse and load the SSPBUF register with the received value currently in the SSPSR register. Any combination of the following conditions will cause the MSSP module not to give this ACK pulse: • The Buffer Full bit, BF bit of the SSPSTAT register, is set before the transfer is received. • The overflow bit, SSPOV bit of the SSPCON1 register, is set before the transfer is received. In this case, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF of the PIR1 register is set. The BF bit is cleared by reading the SSPBUF register, while bit SSPOV is cleared through software. Addressing Once the MSSP module has been enabled, it waits for a Start condition to occur. Following the Start condition, the 8 bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match and the BF and SSPOV bits are clear, the following events occur: 1. 2. 3. 4. The SSPSR register value is loaded into the SSPBUF register. The Buffer Full bit, BF, is set. An ACK pulse is generated. MSSP Interrupt Flag bit, SSPIF of the PIR1 register, is set (interrupt is generated, if enabled) on the falling edge of the ninth SCL pulse. In 10-bit Address mode, two address bytes need to be received by the slave. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/W of the SSPSTAT register must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal ‘11110 A9 A8 0’, where ‘A9’ and ‘A8’ are the two MSbs of the address. The sequence of events for 10-bit address is as follows, with steps 7 through 9 for the slave-transmitter: 1. 2. 3. 4. 5. 6. 7. 8. 9. Receive first (high) byte of address (bits SSPIF, BF and UA (of the SSPSTAT register are set). Update the SSPADD register with second (low) byte of address (clears bit UA and releases the SCL line). Read the SSPBUF register (clears bit BF) and clear flag bit, SSPIF. Receive second (low) byte of address (bits SSPIF, BF and UA are set). If the address matches then the SCL is held until the next step. Otherwise the SCL line is not held. Update the SSPADD register with the first (high) byte of address. (This will clear bit UA and release a held SCL line.) Read the SSPBUF register (clears bit BF) and clear flag bit, SSPIF. Receive Repeated Start condition. Receive first (high) byte of address (bits SSPIF and BF are set). Read the SSPBUF register (clears bit BF) and clear flag bit, SSPIF. The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I2C specification, as well as the requirement of the MSSP module, are shown in timing parameter 100 and parameter 101 (See Table 26-19). DS41303B-page 198 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 17.4.3.2 Reception 17.4.3.3 When the R/W bit of the address byte is clear and an address match occurs, the R/W bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register and the SDA line is held low (ACK). When the address byte overflow condition exists, then the no Acknowledge (ACK) pulse is given. An overflow condition is defined as either bit BF bit of the SSPSTAT register is set, or bit SSPOV bit of the SSPCON1 register is set. An MSSP interrupt is generated for each data transfer byte. Flag bit, SSPIF of the PIR1 register, must be cleared by software. The SSPSTAT register is used to determine the status of the byte. When the SEN bit of the SSPCON2 register is set, SCK/SCL will be held low (clock stretch) following each data transfer. The clock must be released by setting the CKP bit of the SSPCON1 register. See Section 17.4.4 “Clock Stretching” for more detail. Transmission When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit and pin SCK/SCL is held low regardless of SEN (see Section 17.4.4 “Clock Stretching” for more detail). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data. The transmit data must be loaded into the SSPBUF register which also loads the SSPSR register. Then pin SCK/SCL should be enabled by setting the CKP bit of the SSPCON1 register. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 17-9). The ACK pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line is high (not ACK), then the data transfer is complete. In this case, when the ACK is latched by the slave, the slave logic is reset (resets SSPSTAT register) and the slave monitors for another occurrence of the Start bit. If the SDA line was low (ACK), the next transmit data must be loaded into the SSPBUF register. Again, pin SCK/SCL must be enabled by setting bit CKP. An MSSP interrupt is generated for each data transfer byte. The SSPIF bit must be cleared by software and the SSPSTAT register is used to determine the status of the byte. The SSPIF bit is set on the falling edge of the ninth clock pulse. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 199 DS41303B-page 200 1 Advance Information CKP 2 A6 3 4 A4 5 A3 Receiving Address A5 6 A2 (CKP does not reset to ‘0’ when SEN = 0) SSPOV (SSPCON1<6>) BF (SSPSTAT<0>) (PIR1<3>) SSPIF S A7 7 A1 8 9 ACK R/W = 0 1 D7 3 4 D4 5 D3 Receiving Data D5 Cleared by software SSPBUF is read 2 D6 6 D2 7 D1 8 D0 9 ACK 1 D7 2 D6 3 4 D4 5 D3 Receiving Data D5 6 D2 7 D1 8 D0 Bus master terminates transfer P SSPOV is set because SSPBUF is still full. ACK is not sent. 9 ACK FIGURE 17-8: SCL SDA PIC18F2XK20/4XK20 I2C™ SLAVE MODE TIMING WITH SEN = 0 (RECEPTION, 7-BIT ADDRESS) © 2007 Microchip Technology Inc. © 2007 Microchip Technology Inc. 1 Advance Information CKP 2 A6 Data in sampled BF (SSPSTAT<0>) SSPIF (PIR1<3>) S A7 3 A5 4 A4 5 A3 6 A2 Receiving Address 7 A1 8 R/W = 0 9 ACK SCL held low while CPU responds to SSPIF 1 D7 3 D5 4 D4 5 D3 6 D2 CKP is set by software SSPBUF is written by software Cleared by software 2 D6 Transmitting Data 7 8 D0 9 ACK From SSPIF ISR D1 1 D7 4 D4 5 D3 6 D2 CKP is set by software 7 8 D0 9 ACK From SSPIF ISR D1 Transmitting Data Cleared by software 3 D5 SSPBUF is written by software 2 D6 P FIGURE 17-9: SCL SDA PIC18F2XK20/4XK20 I2C™ SLAVE MODE TIMING (TRANSMISSION, 7-BIT ADDRESS) DS41303B-page 201 DS41303B-page 202 2 1 Advance Information 4 1 5 0 7 A8 UA is set indicating that the SSPADD needs to be updated SSPBUF is written with contents of SSPSR 6 A9 8 9 (CKP does not reset to ‘0’ when SEN = 0) UA (SSPSTAT<1>) SSPOV (SSPCON1<6>) CKP 3 1 Cleared by software BF (SSPSTAT<0>) (PIR1<3>) SSPIF 1 SCL S 1 ACK R/W = 0 A7 2 4 A4 5 A3 6 A2 8 9 A0 ACK UA is set indicating that SSPADD needs to be updated Cleared by hardware when SSPADD is updated with low byte of address 7 A1 Cleared by software 3 A5 Dummy read of SSPBUF to clear BF flag 1 A6 Receive Second Byte of Address 1 D7 4 5 6 7 Cleared by software 3 8 9 1 2 4 5 6 7 8 D1 D0 Cleared by software 3 D3 D2 Receive Data Byte D1 D0 ACK D7 D6 D5 D4 Cleared by hardware when SSPADD is updated with high byte of address 2 D3 D2 Receive Data Byte D6 D5 D4 Clock is held low until update of SSPADD has taken place 9 P Bus master terminates transfer SSPOV is set because SSPBUF is still full. ACK is not sent. ACK FIGURE 17-10: SDA Receive First Byte of Address Clock is held low until update of SSPADD has taken place PIC18F2XK20/4XK20 I2C™ SLAVE MODE TIMING WITH SEN = 0 (RECEPTION, 10-BIT ADDRESS) © 2007 Microchip Technology Inc. © 2007 Microchip Technology Inc. 1 2 Advance Information CKP (SSPCON1<4>) UA (SSPSTAT<1>) BF (SSPSTAT<0>) (PIR1<3>) SSPIF S 1 4 1 5 0 6 7 A9 A8 8 UA is set indicating that the SSPADD needs to be updated SSPBUF is written with contents of SSPSR 3 1 Receive First Byte of Address 1 9 ACK 1 3 4 5 Cleared by software 2 7 UA is set indicating that SSPADD needs to be updated Cleared by hardware when SSPADD is updated with low byte of address 6 A6 A5 A4 A3 A2 A1 8 A0 Receive Second Byte of Address Dummy read of SSPBUF to clear BF flag A7 9 ACK 2 3 1 4 1 Cleared by software 1 1 5 0 6 8 9 ACK R/W=1 1 2 4 5 6 7 P CKP is automatically cleared by hardware, holding SCL low CKP is set by software 9 ACK Bus master terminates transfer Completion of data transmission clears BF flag 8 D4 D3 D2 D1 D0 Cleared by software 3 D7 D6 D5 Transmitting Data Byte Clock is held low until CKP is set to ‘1’ Write of SSPBUF BF flag is clear initiates transmit at the end of the third address sequence 7 A9 A8 Cleared by hardware when SSPADD is updated with high byte of address. Dummy read of SSPBUF to clear BF flag Sr 1 Receive First Byte of Address Clock is held low until update of SSPADD has taken place FIGURE 17-11: SCL SDA R/W = 0 Clock is held low until update of SSPADD has taken place PIC18F2XK20/4XK20 I2C™ SLAVE MODE TIMING (TRANSMISSION, 10-BIT ADDRESS) DS41303B-page 203 PIC18F2XK20/4XK20 17.4.3.4 SSP Mask Register This register must be initiated prior to setting SSPM<3:0> bits to select the I2C Slave mode (7-bit or 10-bit address). 2 An SSP Mask (SSPMSK) register is available in I C Slave mode as a mask for the value held in the SSPSR register during an address comparison operation. A zero (‘0’) bit in the SSPMSK register has the effect of making the corresponding bit in the SSPSR register a “don’t care”. The SSP Mask register is active during: • 7-bit Address mode: address compare of A<7:1>. • 10-bit Address mode: address compare of A<7:0> only. The SSP mask has no effect during the reception of the first (high) byte of the address. This register is reset to all ‘1’s upon any Reset condition and, therefore, has no effect on standard SSP operation until written with a mask value. REGISTER 17-6: SSPMSK: SSP MASK REGISTER R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 MSK7 MSK6 MSK5 MSK4 MSK3 MSK2 MSK1 MSK0(1) bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-1 MSK<7:1>: Mask bits 1 = The received address bit n is compared to SSPADD<n> to detect I2C address match 0 = The received address bit n is not used to detect I2C address match bit 0 MSK<0>: Mask bit for I2C Slave mode, 10-bit Address(1) I2C Slave mode, 10-bit Address (SSPM<3:0> = 0111): 1 = The received address bit 0 is compared to SSPADD<0> to detect I2C address match 0 = The received address bit 0 is not used to detect I2C address match Note 1: The MSK0 bit is used only in 10-bit slave mode. In all other modes, this bit has no effect. DS41303B-page 204 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 17.4.4 CLOCK STRETCHING 17.4.4.3 Both 7-bit and 10-bit Slave modes implement automatic clock stretching during a transmit sequence. The SEN bit of the SSPCON2 register allows clock stretching to be enabled during receives. Setting SEN will cause the SCL pin to be held low at the end of each data receive sequence. 17.4.4.1 Clock Stretching for 7-bit Slave Receive Mode (SEN = 1) In 7-bit Slave Receive mode, on the falling edge of the ninth clock at the end of the ACK sequence if the BF bit is set, the CKP bit of the SSPCON1 register is automatically cleared, forcing the SCL output to be held low. The CKP being cleared to ‘0’ will assert the SCL line low. The CKP bit must be set in the user’s ISR before reception is allowed to continue. By holding the SCL line low, the user has time to service the ISR and read the contents of the SSPBUF before the master device can initiate another data transfer sequence. This will prevent buffer overruns from occurring (see Figure 17-13). Note 1: If the user reads the contents of the SSPBUF before the falling edge of the ninth clock, thus clearing the BF bit, the CKP bit will not be cleared and clock stretching will not occur. 2: The CKP bit can be set by software regardless of the state of the BF bit. The user should be careful to clear the BF bit in the ISR before the next receive sequence in order to prevent an overflow condition. 17.4.4.2 Clock Stretching for 7-bit Slave Transmit Mode 7-bit Slave Transmit mode implements clock stretching by clearing the CKP bit after the falling edge of the ninth clock if the BF bit is clear. This occurs regardless of the state of the SEN bit. The user’s ISR must set the CKP bit before transmission is allowed to continue. By holding the SCL line low, the user has time to service the ISR and load the contents of the SSPBUF before the master device can initiate another data transfer sequence (see Figure 17-9). Note 1: If the user loads the contents of SSPBUF, setting the BF bit before the falling edge of the ninth clock, the CKP bit will not be cleared and clock stretching will not occur. 2: The CKP bit can be set by software regardless of the state of the BF bit. 17.4.4.4 Clock Stretching for 10-bit Slave Transmit Mode In 10-bit Slave Transmit mode, clock stretching is controlled during the first two address sequences by the state of the UA bit, just as it is in 10-bit Slave Receive mode. The first two addresses are followed by a third address sequence which contains the high-order bits of the 10-bit address and the R/W bit set to ‘1’. After the third address sequence is performed, the UA bit is not set, the module is now configured in Transmit mode and clock stretching is controlled by the BF flag as in 7-bit Slave Transmit mode (see Figure 17-11). Clock Stretching for 10-bit Slave Receive Mode (SEN = 1) In 10-bit Slave Receive mode during the address sequence, clock stretching automatically takes place but CKP is not cleared. During this time, if the UA bit is set after the ninth clock, clock stretching is initiated. The UA bit is set after receiving the upper byte of the 10-bit address and following the receive of the second byte of the 10-bit address with the R/W bit cleared to ‘0’. The release of the clock line occurs upon updating SSPADD. Clock stretching will occur on each data receive sequence as described in 7-bit mode. Note: If the user polls the UA bit and clears it by updating the SSPADD register before the falling edge of the ninth clock occurs and if the user hasn’t cleared the BF bit by reading the SSPBUF register before that time, then the CKP bit will still NOT be asserted low. Clock stretching on the basis of the state of the BF bit only occurs during a data sequence, not an address sequence. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 205 PIC18F2XK20/4XK20 17.4.4.5 Clock Synchronization and the CKP bit When the CKP bit is cleared, the SCL output is forced to ‘0’. However, clearing the CKP bit will not assert the SCL output low until the SCL output is already sampled low. Therefore, the CKP bit will not assert the SCL line until an external I2C master device has already asserted the SCL line. The SCL output will remain low until the CKP bit is set and all other devices on the I2C bus have deasserted SCL. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCL (see Figure 17-12). FIGURE 17-12: CLOCK SYNCHRONIZATION TIMING Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 SDA DX DX – 1 SCL CKP Master device asserts clock Master device deasserts clock WR SSPCON1 DS41303B-page 206 Advance Information © 2007 Microchip Technology Inc. © 2007 Microchip Technology Inc. 1 Advance Information CKP SSPOV (SSPCON1<6>) BF (SSPSTAT<0>) (PIR1<3>) SSPIF S A7 2 A6 3 A5 4 A4 5 A3 6 A2 Receiving Address 7 A1 8 9 ACK R/W = 0 3 D5 4 D4 5 D3 Cleared by software 2 D6 If BF is cleared prior to the falling edge of the 9th clock, CKP will not be reset to ‘0’ and no clock stretching will occur SSPBUF is read 1 D7 Receiving Data 6 D2 7 D1 9 1 D7 BF is set after falling edge of the 9th clock, CKP is reset to ‘0’ and clock stretching occurs 8 D0 ACK 3 4 D4 5 D3 Receiving Data D5 CKP written to ‘1’ in software 2 D6 Clock is held low until CKP is set to ‘1’ 6 D2 7 D1 8 D0 Bus master terminates transfer P SSPOV is set because SSPBUF is still full. ACK is not sent. 9 ACK Clock is not held low because ACK = 1 FIGURE 17-13: SCL SDA Clock is not held low because buffer full bit is clear prior to falling edge of 9th clock PIC18F2XK20/4XK20 I2C™ SLAVE MODE TIMING WITH SEN = 1 (RECEPTION, 7-BIT ADDRESS) DS41303B-page 207 DS41303B-page 208 2 1 Advance Information UA (SSPSTAT<1>) SSPOV (SSPCON1<6>) CKP 3 1 4 1 5 0 6 7 A9 A8 8 UA is set indicating that the SSPADD needs to be updated SSPBUF is written with contents of SSPSR Cleared by software BF (SSPSTAT<0>) (PIR1<3>) SSPIF 1 SCL S 1 9 ACK R/W = 0 A7 2 4 A4 5 A3 6 A2 Cleared by software 3 A5 7 A1 8 A0 Note: An update of the SSPADD register before the falling edge of the ninth clock will have no effect on UA and UA will remain set. UA is set indicating that SSPADD needs to be updated Cleared by hardware when SSPADD is updated with low byte of address after falling edge of ninth clock Dummy read of SSPBUF to clear BF flag 1 A6 Receive Second Byte of Address 9 ACK 2 4 5 6 7 9 Note: An update of the SSPADD register before the falling edge of the ninth clock will have no effect on UA and UA will remain set. Cleared by hardware when SSPADD is updated with high byte of address after falling edge of ninth clock 8 ACK 1 4 5 6 7 8 9 ACK Bus master terminates transfer P Clock is not held low because ACK = 1 SSPOV is set because SSPBUF is still full. ACK is not sent. D1 D0 Cleared by software 3 CKP written to ‘1’ by software 2 D3 D2 Receive Data Byte D7 D6 D5 D4 Clock is held low until CKP is set to ‘1’ D1 D0 Cleared by software 3 D3 D2 Dummy read of SSPBUF to clear BF flag 1 D7 D6 D5 D4 Receive Data Byte Clock is held low until update of SSPADD has taken place FIGURE 17-14: SDA Receive First Byte of Address Clock is held low until update of SSPADD has taken place PIC18F2XK20/4XK20 I2C™ SLAVE MODE TIMING WITH SEN = 1 (RECEPTION, 10-BIT ADDRESS) © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 17.4.5 GENERAL CALL ADDRESS SUPPORT If the general call address matches, the SSPSR is transferred to the SSPBUF, the BF flag bit is set (eighth bit) and on the falling edge of the ninth bit (ACK bit), the SSPIF interrupt flag bit is set. The addressing procedure for the I2C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an Acknowledge. When the interrupt is serviced, the source for the interrupt can be checked by reading the contents of the SSPBUF. The value can be used to determine if the address was device specific or a general call address. In 10-bit mode, the SSPADD is required to be updated for the second half of the address to match and the UA bit of the SSPSTAT register is set. If the general call address is sampled when the GCEN bit is set, while the slave is configured in 10-bit Address mode, then the second half of the address is not necessary, the UA bit will not be set and the slave will begin receiving data after the Acknowledge (Figure 17-15). The general call address is one of eight addresses reserved for specific purposes by the I2C protocol. It consists of all ‘0’s with R/W = 0. The general call address is recognized when the GCEN bit of the SSPCON2 is set. Following a Start bit detect, 8 bits are shifted into the SSPSR and the address is compared against the SSPADD. It is also compared to the general call address and fixed in hardware. FIGURE 17-15: SLAVE MODE GENERAL CALL ADDRESS SEQUENCE (7 OR 10-BIT ADDRESS MODE) Address is compared to General Call Address after ACK, set interrupt R/W = 0 ACK D7 General Call Address SDA Receiving Data ACK D6 D5 D4 D3 D2 D1 D0 2 3 4 5 6 7 8 SCL S 1 2 3 4 5 6 7 8 9 1 9 SSPIF BF (SSPSTAT<0>) Cleared by software SSPBUF is read SSPOV (SSPCON1<6>) ‘0’ GCEN (SSPCON2<7>) ‘1’ © 2007 Microchip Technology Inc. Advance Information DS41303B-page 209 PIC18F2XK20/4XK20 MASTER MODE Note: Master mode is enabled by setting and clearing the appropriate SSPM bits in SSPCON1 and by setting the SSPEN bit. In Master mode, the SCL and SDA lines are manipulated by the MSSP hardware. Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I 2C bus may be taken when the P bit is set, or the bus is Idle, with both the S and P bits clear. The following events will cause the SSP Interrupt Flag bit, SSPIF, to be set (SSP interrupt, if enabled): In Firmware Controlled Master mode, user code conducts all I 2C bus operations based on Start and Stop bit conditions. • • • • • Once Master mode is enabled, the user has six options. 1. 2. 3. 4. 5. 6. Assert a Start condition on SDA and SCL. Assert a Repeated Start condition on SDA and SCL. Write to the SSPBUF register initiating transmission of data/address. Configure the I2C port to receive data. Generate an Acknowledge condition at the end of a received byte of data. Generate a Stop condition on SDA and SCL. FIGURE 17-16: The MSSP module, when configured in I2C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPBUF register to initiate transmission before the Start condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur. Start condition Stop condition Data transfer byte transmitted/received Acknowledge transmit Repeated Start MSSP BLOCK DIAGRAM (I2C™ MASTER MODE) Internal Data Bus Read SSPM<3:0> SSPADD<6:0> Write SSPBUF Baud Rate Generator Shift Clock SDA SDA In SCL In Bus Collision DS41303B-page 210 LSb Start bit, Stop bit, Acknowledge Generate Start bit Detect Stop bit Detect Write Collision Detect Clock Arbitration State Counter for end of XMIT/RCV Clock Cntl SCL Receive Enable SSPSR MSb Clock Arbitrate/WCOL Detect (hold off clock source) 17.4.6 Set/Reset, S, P, WCOL (SSPSTAT) Set SSPIF, BCLIF Reset ACKSTAT, PEN (SSPCON2) Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 17.4.6.1 I2C Master Mode Operation The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I2C bus will not be released. In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic ‘0’. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer. In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic ‘1’. Thus, the first byte transmitted is a 7-bit slave address followed by a ‘1’ to indicate the receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received 8 bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission. The Baud Rate Generator used for the SPI mode operation is used to set the SCL clock frequency for either 100 kHz, 400 kHz or 1 MHz I2C operation. See Section 17.4.7 “Baud Rate” for more detail. © 2007 Microchip Technology Inc. A typical transmit sequence would go as follows: 1. The user generates a Start condition by setting the SEN bit of the SSPCON2 register. 2. SSPIF is set. The MSSP module will wait the required start time before any other operation takes place. 3. The user loads the SSPBUF with the slave address to transmit. 4. Address is shifted out the SDA pin until all 8 bits are transmitted. 5. The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPCON2 register. 6. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit. 7. The user loads the SSPBUF with eight bits of data. 8. Data is shifted out the SDA pin until all 8 bits are transmitted. 9. The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPCON2 register. 10. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit. 11. The user generates a Stop condition by setting the PEN bit of the SSPCON2 register. 12. Interrupt is generated once the Stop condition is complete. Advance Information DS41303B-page 211 PIC18F2XK20/4XK20 17.4.7 BAUD RATE 2 In I C Master mode, the Baud Rate Generator (BRG) reload value is placed in the SSPADD register (Figure 17-17). When a write occurs to SSPBUF, the Baud Rate Generator will automatically begin counting. The BRG counts down to ‘0’ and stops until another reload has taken place. The BRG count is decremented twice per instruction cycle (TCY) on the Q2 and Q4 clocks. In I2C Master mode, the BRG is reloaded automatically. One half of the SCL period is equal to [(SSPADD+1) • 2]/FOSC. Therefore SSPADD = (FCY/FSCL) -1. FIGURE 17-17: Once the given operation is complete (i.e., transmission of the last data bit is followed by ACK), the internal clock will automatically stop counting and the SCL pin will remain in its last state. Table 17-3 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPADD. BAUD RATE GENERATOR BLOCK DIAGRAM SSPM<3:0> SSPM<3:0> Reload SCL Control CLKOUT Reload BRG Down Counter FOSC/2 I2C™ CLOCK RATE W/BRG TABLE 17-3: Note 1: SSPADD<7:0> FOSC FCY BRG Value FSCL (2 Rollovers of BRG) 64 MHz 16 MHz 27h 400 kHz(1) 64 MHz 16 MHz 32h 313.7 kHz 64 MHz 16 MHz 3Fh 250 kHz 40 MHz 10 MHz 18h 400 kHz(1) 40 MHz 10 MHz 1Fh 312.5 kHz 40 MHz 10 MHz 63h 100 kHz 16 MHz 4 MHz 09h 400 kHz(1) 16 MHz 4 MHz 0Ch 308 kHz 16 MHz 4 MHz 27h 100 kHz 4 MHz 1 MHz 02h 333 kHz(1) 4 MHz 1 MHz 09h 100 kHz 4 MHz 1 MHz 00h 1 MHz(1) I2C I2C The interface does not conform to the 400 kHz specification (which applies to rates greater than 100 kHz) in all details, but may be used with care where higher rates are required by the application. DS41303B-page 212 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 17.4.7.1 Clock Arbitration Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, deasserts the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 17-18). FIGURE 17-18: BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION SDA DX DX – 1 SCL deasserted but slave holds SCL low (clock arbitration) SCL allowed to transition high SCL BRG decrements on Q2 and Q4 cycles BRG Value 03h 02h 01h 00h (hold off) 03h 02h SCL is sampled high, reload takes place and BRG starts its count BRG Reload © 2007 Microchip Technology Inc. Advance Information DS41303B-page 213 PIC18F2XK20/4XK20 17.4.8 I2C MASTER MODE START CONDITION TIMING Note: To initiate a Start condition, the user sets the Start Enable bit, SEN bit of the SSPCON2 register. If the SDA and SCL pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and starts its count. If SCL and SDA are both sampled high when the Baud Rate Generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low while SCL is high is the Start condition and causes the S bit of the SSPSTAT1 register to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit of the SSPCON2 register will be automatically cleared by hardware; the Baud Rate Generator is suspended, leaving the SDA line held low and the Start condition is complete. FIGURE 17-19: 17.4.8.1 If at the beginning of the Start condition, the SDA and SCL pins are already sampled low, or if during the Start condition, the SCL line is sampled low before the SDA line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLIF, is set, the Start condition is aborted and the I2C module is reset into its Idle state. WCOL Status Flag If the user writes the SSPBUF when a Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn’t occur). Note: Because queueing of events is not allowed, writing to the lower 5 bits of SSPCON2 is disabled until the Start condition is complete. FIRST START BIT TIMING Set S bit (SSPSTAT<3>) Write to SEN bit occurs here SDA = 1, SCL = 1 TBRG At completion of Start bit, hardware clears SEN bit and sets SSPIF bit TBRG Write to SSPBUF occurs here 1st bit SDA 2nd bit TBRG SCL TBRG S DS41303B-page 214 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 17.4.9 I2C MASTER MODE REPEATED START CONDITION TIMING Note 1: If RSEN is programmed while any other event is in progress, it will not take effect. A Repeated Start condition occurs when the RSEN bit of the SSPCON2 register is programmed high and the I2C logic module is in the Idle state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded with the contents of SSPADD<5:0> and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. Following this, the RSEN bit of the SSPCON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit of the SSPSTAT register will be set. The SSPIF bit will not be set until the Baud Rate Generator has timed out. 2: A bus collision during the Repeated Start condition occurs if: • SDA is sampled low when SCL goes from low-to-high. • SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data ‘1’. Immediately following the SSPIF bit getting set, the user may write the SSPBUF with the 7-bit address in 7-bit mode or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode) or eight bits of data (7-bit mode). 17.4.9.1 WCOL Status Flag If the user writes the SSPBUF when a Repeated Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn’t occur). Note: FIGURE 17-20: Because queueing of events is not allowed, writing of the lower 5 bits of SSPCON2 is disabled until the Repeated Start condition is complete. REPEAT START CONDITION WAVEFORM S bit set by hardware Write to SSPCON2 occurs here. SDA = 1, SCL (no change). SDA = 1, SCL = 1 TBRG TBRG At completion of Start bit, hardware clears RSEN bit and sets SSPIF TBRG 1st bit SDA RSEN bit set by hardware on falling edge of ninth clock, end of Xmit Write to SSPBUF occurs here TBRG SCL TBRG Sr = Repeated Start © 2007 Microchip Technology Inc. Advance Information DS41303B-page 215 PIC18F2XK20/4XK20 17.4.10 I2C MASTER MODE TRANSMISSION 17.4.10.3 Transmission of a data byte, a 7-bit address or the other half of a 10-bit address is accomplished by simply writing a value to the SSPBUF register. This action will set the Buffer Full flag bit, BF and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted (see data hold time specification parameter 106). SCL is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCL is released high (see data setup time specification parameter 107). When the SCL pin is released high, it is held that way for TBRG. The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA. This allows the slave device being addressed to respond with an ACK bit during the ninth bit time if an address match occurred, or if data was received properly. The status of ACK is written into the ACKDT bit on the falling edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared. If not, the bit is set. After the ninth clock, the SSPIF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPBUF, leaving SCL low and SDA unchanged (Figure 17-21). After the write to the SSPBUF, each bit of the address will be shifted out on the falling edge of SCL until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will deassert the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT Status bit of the SSPCON2 register. Following the falling edge of the ninth clock transmission of the address, the SSPIF is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSPBUF takes place, holding SCL low and allowing SDA to float. 17.4.10.1 BF Status Flag In Transmit mode, the BF bit of the SSPSTAT register is set when the CPU writes to SSPBUF and is cleared when all 8 bits are shifted out. 17.4.10.2 ACKSTAT Status Flag In Transmit mode, the ACKSTAT bit of the SSPCON2 register is cleared when the slave has sent an Acknowledge (ACK = 0) and is set when the slave does not Acknowledge (ACK = 1). A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data. 17.4.11 I2C MASTER MODE RECEPTION Master mode reception is enabled by programming the Receive Enable bit, RCEN bit of the SSPCON2 register. Note: The MSSP module must be in an Idle state before the RCEN bit is set or the RCEN bit will be disregarded. The Baud Rate Generator begins counting and on each rollover, the state of the SCL pin changes (high-to-low/low-to-high) and data is shifted into the SSPSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPSR are loaded into the SSPBUF, the BF flag bit is set, the SSPIF flag bit is set and the Baud Rate Generator is suspended from counting, holding SCL low. The MSSP is now in Idle state awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception by setting the Acknowledge Sequence Enable, ACKEN bit of the SSPCON2 register. 17.4.11.1 BF Status Flag In receive operation, the BF bit is set when an address or data byte is loaded into SSPBUF from SSPSR. It is cleared when the SSPBUF register is read. 17.4.11.2 SSPOV Status Flag In receive operation, the SSPOV bit is set when 8 bits are received into the SSPSR and the BF flag bit is already set from a previous reception. 17.4.11.3 WCOL Status Flag If the user writes the SSPBUF when a receive is already in progress (i.e., SSPSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write doesn’t occur). WCOL Status Flag If the user writes the SSPBUF when a transmit is already in progress (i.e., SSPSR is still shifting out a data byte), the WCOL is set and the contents of the buffer are unchanged (the write doesn’t occur). WCOL must be cleared by software. DS41303B-page 216 Advance Information © 2007 Microchip Technology Inc. © 2007 Microchip Technology Inc. S Advance Information R/W PEN SEN BF (SSPSTAT<0>) SSPIF SCL SDA A6 A5 A4 A3 A2 A1 3 4 5 Cleared by software 2 6 7 8 9 After Start condition, SEN cleared by hardware SSPBUF written 1 D7 1 SCL held low while CPU responds to SSPIF ACK = 0 R/W = 0 SSPBUF written with 7-bit address and R/W start transmit A7 Transmit Address to Slave 3 D5 4 D4 5 D3 6 D2 7 D1 8 D0 SSPBUF is written by software Cleared by software service routine from SSP interrupt 2 D6 Transmitting Data or Second Half of 10-bit Address From slave, clear ACKSTAT bit SSPCON2<6> P Cleared by software 9 ACK ACKSTAT in SSPCON2 = 1 FIGURE 17-21: SEN = 0 Write SSPCON2<0> SEN = 1 Start condition begins PIC18F2XK20/4XK20 I 2C™ MASTER MODE WAVEFORM (TRANSMISSION, 7 OR 10-BIT ADDRESS) DS41303B-page 217 DS41303B-page 218 S Advance Information ACKEN SSPOV BF (SSPSTAT<0>) SDA = 0, SCL = 1 while CPU responds to SSPIF SSPIF SCL SDA 1 A7 2 4 5 6 Cleared by software 3 A6 A5 A4 A3 A2 Transmit Address to Slave 7 A1 8 9 R/W = 0 ACK ACK from Slave 2 3 5 6 7 8 D0 9 ACK 2 3 4 5 6 7 Cleared by software Set SSPIF interrupt at end of Acknowledge sequence Data shifted in on falling edge of CLK 1 D7 D6 D5 D4 D3 D2 D1 Cleared in software Set SSPIF at end of receive 9 ACK is not sent ACK P Set SSPIF interrupt at end of Acknowledge sequence Bus master terminates transfer Set P bit (SSPSTAT<4>) and SSPIF PEN bit = 1 written here SSPOV is set because SSPBUF is still full 8 D0 RCEN cleared automatically Set ACKEN, start Acknowledge sequence SDA = ACKDT = 1 Receiving Data from Slave RCEN = 1, start next receive ACK from Master SDA = ACKDT = 0 Last bit is shifted into SSPSR and contents are unloaded into SSPBUF Cleared by software Set SSPIF interrupt at end of receive 4 Cleared by software 1 D7 D6 D5 D4 D3 D2 D1 Receiving Data from Slave RCEN cleared automatically Master configured as a receiver by programming SSPCON2<3> (RCEN = 1) FIGURE 17-22: SEN = 0 Write to SSPBUF occurs here, start XMIT Write to SSPCON2<0> (SEN = 1), begin Start condition Write to SSPCON2<4> to start Acknowledge sequence SDA = ACKDT (SSPCON2<5>) = 0 PIC18F2XK20/4XK20 I 2C™ MASTER MODE WAVEFORM (RECEPTION, 7-BIT ADDRESS) © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 17.4.12 ACKNOWLEDGE SEQUENCE TIMING 17.4.13 A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN bit of the SSPCON2 register. At the end of a receive/transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to ‘0’. When the Baud Rate Generator times out, the SCL pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDA pin will be deasserted. When the SDA pin is sampled high while SCL is high, the P bit of the SSPSTAT register is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 17-24). An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit, ACKEN bit of the SSPCON2 register. When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCL pin is deasserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into Idle mode (Figure 17-23). 17.4.12.1 17.4.13.1 WCOL Status Flag If the user writes the SSPBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write doesn’t occur). WCOL Status Flag If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn’t occur). FIGURE 17-23: STOP CONDITION TIMING ACKNOWLEDGE SEQUENCE WAVEFORM Acknowledge sequence starts here, write to SSPCON2 ACKEN = 1, ACKDT = 0 ACKEN automatically cleared TBRG TBRG SDA ACK D0 SCL 8 9 SSPIF SSPIF set at the end of receive Cleared in software Cleared in software SSPIF set at the end of Acknowledge sequence Note: TBRG = one Baud Rate Generator period. FIGURE 17-24: STOP CONDITION RECEIVE OR TRANSMIT MODE SCL = 1 for TBRG, followed by SDA = 1 for TBRG after SDA sampled high. P bit (SSPSTAT<4>) is set. Write to SSPCON2, set PEN PEN bit (SSPCON2<2>) is cleared by hardware and the SSPIF bit is set Falling edge of 9th clock TBRG SCL SDA ACK P TBRG TBRG TBRG SCL brought high after TBRG SDA asserted low before rising edge of clock to setup Stop condition Note: TBRG = one Baud Rate Generator period. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 219 PIC18F2XK20/4XK20 17.4.14 SLEEP OPERATION 17.4.17 2 While in Sleep mode, the I C module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSP interrupt is enabled). 17.4.15 EFFECTS OF A RESET A Reset disables the MSSP module and terminates the current transfer. 17.4.16 MULTI-MASTER MODE In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I 2C bus may be taken when the P bit of the SSPSTAT register is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the SSP interrupt will generate the interrupt when the Stop condition occurs. In multi-master operation, the SDA line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed by hardware with the result placed in the BCLIF bit. The states where arbitration can be lost are: • • • • • Address Transfer Data Transfer A Start Condition A Repeated Start Condition An Acknowledge Condition MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a ‘1’ on SDA, by letting SDA float high and another master asserts a ‘0’. When the SCL pin floats high, data should be stable. If the expected data on SDA is a ‘1’ and the data sampled on the SDA pin = 0, then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLIF and reset the I2C port to its Idle state (Figure 17-25). If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDA and SCL lines are deasserted and the SSPBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the I2C bus is free, the user can resume communication by asserting a Start condition. If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are deasserted and the respective control bits in the SSPCON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the I2C bus is free, the user can resume communication by asserting a Start condition. The master will continue to monitor the SDA and SCL pins. If a Stop condition occurs, the SSPIF bit will be set. A write to the SSPBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when the bus collision occurred. In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I2C bus can be taken when the P bit is set in the SSPSTAT register, or the bus is Idle and the S and P bits are cleared. FIGURE 17-25: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE Data changes while SCL = 0 SDA line pulled low by another source SDA released by master Sample SDA. While SCL is high, data doesn’t match what is driven by the master. Bus collision has occurred. SDA SCL Set bus collision interrupt (BCLIF) BCLIF DS41303B-page 220 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 17.4.17.1 Bus Collision During a Start Condition During a Start condition, a bus collision occurs if: a) b) SDA or SCL are sampled low at the beginning of the Start condition (Figure 17-26). SCL is sampled low before SDA is asserted low (Figure 17-27). During a Start condition, both the SDA and the SCL pins are monitored. If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 17-28). If, however, a ‘1’ is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The Baud Rate Generator is then reloaded and counts down to 0; if the SCL pin is sampled as ‘0’ during this time, a bus collision does not occur. At the end of the BRG count, the SCL pin is asserted low. Note: If the SDA pin is already low, or the SCL pin is already low, then all of the following occur: • the Start condition is aborted, • the BCLIF flag is set and • the MSSP module is reset to its Idle state (Figure 17-26). The Start condition begins with the SDA and SCL pins deasserted. When the SDA pin is sampled high, the Baud Rate Generator is loaded from SSPADD<6:0> and counts down to 0. If the SCL pin is sampled low while SDA is high, a bus collision occurs because it is assumed that another master is attempting to drive a data ‘1’ during the Start condition. FIGURE 17-26: The reason that bus collision is not a factor during a Start condition is that no two bus masters can assert a Start condition at the exact same time. Therefore, one master will always assert SDA before the other. This condition does not cause a bus collision because the two masters must be allowed to arbitrate the first address following the Start condition. If the address is the same, arbitration must be allowed to continue into the data portion, Repeated Start or Stop conditions. BUS COLLISION DURING START CONDITION (SDA ONLY) SDA goes low before the SEN bit is set. Set BCLIF, S bit and SSPIF set because SDA = 0, SCL = 1. SDA SCL Set SEN, enable Start condition if SDA = 1, SCL = 1 SEN cleared automatically because of bus collision. SSP module reset into Idle state. SEN BCLIF SDA sampled low before Start condition. Set BCLIF. S bit and SSPIF set because SDA = 0, SCL = 1. SSPIF and BCLIF are cleared by software S SSPIF SSPIF and BCLIF are cleared by software © 2007 Microchip Technology Inc. Advance Information DS41303B-page 221 PIC18F2XK20/4XK20 FIGURE 17-27: BUS COLLISION DURING START CONDITION (SCL = 0) SDA = 0, SCL = 1 TBRG TBRG SDA Set SEN, enable Start sequence if SDA = 1, SCL = 1 SCL SCL = 0 before SDA = 0, bus collision occurs. Set BCLIF. SEN SCL = 0 before BRG time-out, bus collision occurs. Set BCLIF. BCLIF Interrupt cleared by software S ‘0’ ‘0’ SSPIF ‘0’ ‘0’ FIGURE 17-28: BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION SDA = 0, SCL = 1 Set S Less than TBRG SDA SCL Set SSPIF TBRG SDA pulled low by other master. Reset BRG and assert SDA. S SCL pulled low after BRG time-out SEN BCLIF Set SEN, enable START sequence if SDA = 1, SCL = 1 ‘0’ S SSPIF SDA = 0, SCL = 1, set SSPIF DS41303B-page 222 Advance Information Interrupts cleared by software © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 17.4.17.2 Bus Collision During a Repeated Start Condition If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data ‘0’, Figure 17-29). If SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time. During a Repeated Start condition, a bus collision occurs if: a) b) A low level is sampled on SDA when SCL goes from low level to high level. SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data ‘1’. If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data ‘1’ during the Repeated Start condition, see Figure 17-30. When the user deasserts SDA and the pin is allowed to float high, the BRG is loaded with SSPADD<6:0> and counts down to 0. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled. FIGURE 17-29: If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete. BUS COLLISION DURING A REPEATED START CONDITION (CASE 1) SDA SCL Sample SDA when SCL goes high. If SDA = 0, set BCLIF and release SDA and SCL. RSEN BCLIF Cleared by software ‘0’ S ‘0’ SSPIF FIGURE 17-30: BUS COLLISION DURING REPEATED START CONDITION (CASE 2) TBRG TBRG SDA SCL BCLIF SCL goes low before SDA, set BCLIF. Release SDA and SCL. Interrupt cleared by software RSEN ‘0’ S SSPIF © 2007 Microchip Technology Inc. Advance Information DS41303B-page 223 PIC18F2XK20/4XK20 17.4.17.3 Bus Collision During a Stop Condition The Stop condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPADD<6:0> and counts down to 0. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data ‘0’ (Figure 17-31). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data ‘0’ (Figure 17-32). Bus collision occurs during a Stop condition if: a) b) After the SDA pin has been deasserted and allowed to float high, SDA is sampled low after the BRG has timed out. After the SCL pin is deasserted, SCL is sampled low before SDA goes high. FIGURE 17-31: BUS COLLISION DURING A STOP CONDITION (CASE 1) TBRG TBRG SDA sampled low after TBRG, set BCLIF TBRG SDA SDA asserted low SCL PEN BCLIF P ‘0’ SSPIF ‘0’ FIGURE 17-32: BUS COLLISION DURING A STOP CONDITION (CASE 2) TBRG TBRG TBRG SDA Assert SDA SCL SCL goes low before SDA goes high, set BCLIF PEN BCLIF P ‘0’ SSPIF ‘0’ DS41303B-page 224 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 TABLE 17-4: Name SUMMARY OF REGISTERS ASSOCIATED WITH I2C™ Reset Values on page Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 IPR1 PSPIP ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP 60 PIR1 PSPIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 60 PIE1 PSPIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 60 IPR2 — — — — BCLIP — — — 60 PIR2 — — — — BCLIF — — — 60 PIE2 — — — — BCLIE — — — 60 SSPADD SSP Address Register in I2C™ Slave Mode. SSP Baud Rate Reload Register in I2C Master Mode. 58 SSPBUF SSP Receive Buffer/Transmit Register 58 SSPCON1 WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0 58 SSPCON2 GCEN ACKSTAT ACKDT ACKEN RCEN PEN RSEN SEN 58 SSPMSK MSK7 MSK6 MSK5 MSK4 MSK3 MSK2 MSK1 MSK0 61 SSPSTAT TRISC Legend: SMP CKE D/A P S R/W UA BF 58 TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 60 — = unimplemented, read as ‘0’. Shaded cells are not used by PORTA. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 225 PIC18F2XK20/4XK20 NOTES: DS41303B-page 226 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 18.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART) The EUSART module includes the following capabilities: • • • • • • • • • • The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The EUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous system. Full-Duplex mode is useful for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device. FIGURE 18-1: Full-duplex asynchronous transmit and receive Two-character input buffer One-character output buffer Programmable 8-bit or 9-bit character length Address detection in 9-bit mode Input buffer overrun error detection Received character framing error detection Half-duplex synchronous master Half-duplex synchronous slave Programmable clock and data polarity The EUSART module implements the following additional features, making it ideally suited for use in Local Interconnect Network (LIN) bus systems: • Automatic detection and calibration of the baud rate • Wake-up on Break reception • 13-bit Break character transmit Block diagrams of the EUSART transmitter and receiver are shown in Figure 18-1 and Figure 18-2. EUSART TRANSMIT BLOCK DIAGRAM Data Bus TXIE Interrupt TXIF TXREG Register 8 TX/CK pin MSb LSb (8) 0 Pin Buffer and Control TRMT SPEN • • • Transmit Shift Register (TSR) TXEN Baud Rate Generator FOSC TX9 n BRG16 +1 SPBRGH ÷n SPBRG Multiplier x4 x16 x64 SYNC 1 X 0 0 0 BRGH X 1 1 0 0 BRG16 X 1 0 1 0 © 2007 Microchip Technology Inc. TX9D Advance Information DS41303B-page 227 PIC18F2XK20/4XK20 FIGURE 18-2: EUSART RECEIVE BLOCK DIAGRAM SPEN CREN RX/DT pin Baud Rate Generator Data Recovery FOSC BRG16 SPBRGH SPBRG Multiplier x4 x16 x64 SYNC 1 X 0 0 0 BRGH X 1 1 0 0 BRG16 X 1 0 1 0 Stop RCIDL RSR Register MSb Pin Buffer and Control +1 OERR (8) ••• 7 1 LSb 0 START RX9 ÷n n FERR RX9D RCREG Register FIFO 8 Data Bus RCIF RCIE Interrupt The operation of the EUSART module is controlled through three registers: • Transmit Status and Control (TXSTA) • Receive Status and Control (RCSTA) • Baud Rate Control (BAUDCTL) These registers are detailed in Register 18-1, Register 18-2 and Register 18-3, respectively. For all modes of EUSART operation, the TRIS control bits corresponding to the RX/DT and TX/CK pins should be set to ‘1’. The EUSART control will automatically reconfigure the pin from input to output, as needed. DS41303B-page 228 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 18.1 EUSART Asynchronous Mode The EUSART transmits and receives data using the standard non-return-to-zero (NRZ) format. NRZ is implemented with two levels: a VOH mark state which represents a ‘1’ data bit, and a VOL space state which represents a ‘0’ data bit. NRZ refers to the fact that consecutively transmitted data bits of the same value stay at the output level of that bit without returning to a neutral level between each bit transmission. An NRZ transmission port idles in the mark state. Each character transmission consists of one Start bit followed by eight or nine data bits and is always terminated by one or more Stop bits. The Start bit is always a space and the Stop bits are always marks. The most common data format is 8 bits. Each transmitted bit persists for a period of 1/(Baud Rate). An on-chip dedicated 8-bit/16-bit Baud Rate Generator is used to derive standard baud rate frequencies from the system oscillator. See Table 18-5 for examples of baud rate configurations. The EUSART transmits and receives the LSb first. The EUSART’s transmitter and receiver are functionally independent, but share the same data format and baud rate. Parity is not supported by the hardware, but can be implemented in software and stored as the ninth data bit. 18.1.1 EUSART ASYNCHRONOUS TRANSMITTER The EUSART transmitter block diagram is shown in Figure 18-1. The heart of the transmitter is the serial Transmit Shift Register (TSR), which is not directly accessible by software. The TSR obtains its data from the transmit buffer, which is the TXREG register. 18.1.1.1 Enabling the Transmitter The EUSART transmitter is enabled for asynchronous operations by configuring the following three control bits: • TXEN = 1 • SYNC = 0 • SPEN = 1 All other EUSART control bits are assumed to be in their default state. Setting the TXEN bit of the TXSTA register enables the transmitter circuitry of the EUSART. Clearing the SYNC bit of the TXSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCSTA register enables the EUSART and automatically configures the TX/CK I/O pin as an output. If the TX/CK pin is shared with an analog peripheral the analog I/O function must be disabled by clearing the corresponding ANSEL bit. Note 1: When the SPEN bit is set the RX/DT I/O pin is automatically configured as an input, regardless of the state of the corresponding TRIS bit and whether or not the EUSART receiver is enabled. The RX/DT pin data can be read via a normal PORT read but PORT latch data output is precluded. 2: The TXIF transmitter interrupt flag is set when the TXEN enable bit is set. 18.1.1.2 Transmitting Data A transmission is initiated by writing a character to the TXREG register. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXREG is immediately transferred to the TSR register. If the TSR still contains all or part of a previous character, the new character data is held in the TXREG until the Stop bit of the previous character has been transmitted. The pending character in the TXREG is then transferred to the TSR in one TCY immediately following the Stop bit transmission. The transmission of the Start bit, data bits and Stop bit sequence commences immediately following the transfer of the data to the TSR from the TXREG. 18.1.1.3 Transmit Data Polarity The polarity of the transmit data can be controlled with the CKTXP bit of the BAUDCTL register. The default state of this bit is ‘0’ which selects high true transmit idle and data bits. Setting the CKTXP bit to ‘1’ will invert the transmit data resulting in low true idle and data bits. The CKTXP bit controls transmit data polarity only in Asynchronous mode. In Synchronous mode the CKTXP bit has a different function. 18.1.1.4 Transmit Interrupt Flag The TXIF interrupt flag bit of the PIR1 register is set whenever the EUSART transmitter is enabled and no character is being held for transmission in the TXREG. In other words, the TXIF bit is only clear when the TSR is busy with a character and a new character has been queued for transmission in the TXREG. The TXIF flag bit is not cleared immediately upon writing TXREG. TXIF becomes valid in the second instruction cycle following the write execution. Polling TXIF immediately following the TXREG write will return invalid results. The TXIF bit is read-only, it cannot be set or cleared by software. The TXIF interrupt can be enabled by setting the TXIE interrupt enable bit of the PIE1 register. However, the TXIF flag bit will be set whenever the TXREG is empty, regardless of the state of TXIE enable bit. To use interrupts when transmitting data, set the TXIE bit only when there is more data to send. Clear the TXIE interrupt enable bit upon writing the last character of the transmission to the TXREG. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 229 PIC18F2XK20/4XK20 18.1.1.5 TSR Status 18.1.1.7 The TRMT bit of the TXSTA register indicates the status of the TSR register. This is a read-only bit. The TRMT bit is set when the TSR register is empty and is cleared when a character is transferred to the TSR register from the TXREG. The TRMT bit remains clear until all bits have been shifted out of the TSR register. No interrupt logic is tied to this bit, so the user needs to poll this bit to determine the TSR status. Note: 18.1.1.6 1. 2. 3. The TSR register is not mapped in data memory, so it is not available to the user. 4. Transmitting 9-Bit Characters The EUSART supports 9-bit character transmissions. When the TX9 bit of the TXSTA register is set the EUSART will shift 9 bits out for each character transmitted. The TX9D bit of the TXSTA register is the ninth, and Most Significant, data bit. When transmitting 9-bit data, the TX9D data bit must be written before writing the 8 Least Significant bits into the TXREG. All nine bits of data will be transferred to the TSR shift register immediately after the TXREG is written. 5. A special 9-bit Address mode is available for use with multiple receivers. See Section 18.1.2.8 “Address Detection” for more information on the Address mode. 8. FIGURE 18-3: 6. 7. Asynchronous Transmission Set-up: Initialize the SPBRGH:SPBRG register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 18.3 “EUSART Baud Rate Generator (BRG)”). Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit. If 9-bit transmission is desired, set the TX9 control bit. A set ninth data bit will indicate that the 8 Least Significant data bits are an address when the receiver is set for address detection. Set the CKTXP control bit if inverted transmit data polarity is desired. Enable the transmission by setting the TXEN control bit. This will cause the TXIF interrupt bit to be set. If interrupts are desired, set the TXIE interrupt enable bit. An interrupt will occur immediately provided that the GIE and PEIE bits of the INTCON register are also set. If 9-bit transmission is selected, the ninth bit should be loaded into the TX9D data bit. Load 8-bit data into the TXREG register. This will start the transmission. ASYNCHRONOUS TRANSMISSION Write to TXREG BRG Output (Shift Clock) RC4/C2OUT/TX/CK pin TXIF bit (Transmit Buffer Reg. Empty Flag) TRMT bit (Transmit Shift Reg. Empty Flag) DS41303B-page 230 Word 1 Start bit bit 0 bit 1 bit 7/8 Stop bit Word 1 1 TCY Word 1 Transmit Shift Reg Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 FIGURE 18-4: ASYNCHRONOUS TRANSMISSION (BACK-TO-BACK) Write to TXREG Word 1 BRG Output (Shift Clock) RC4/C2OUT/TX/CK pin Word 2 Start bit bit 0 bit 1 Word 1 1 TCY TXIF bit (Interrupt Reg. Flag) bit 7/8 Stop bit Start bit bit 0 Word 2 1 TCY TRMT bit (Transmit Shift Reg. Empty Flag) Note: Word 2 Transmit Shift Reg This timing diagram shows two consecutive transmissions. TABLE 18-1: Name Word 1 Transmit Shift Reg REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset Values on page INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 57 PIR1 PSPIF(1) ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 60 PIE1 PSPIE(1) ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 60 IPR1 PSPIP(1) ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP 60 SPEN RX9 SREN CREN ADDEN FERR OERR RX9D RCSTA TXREG TXSTA BAUDCTL EUSART Transmit Register 59 59 CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 59 ABDOVF RCIDL DTRXP CKTXP BRG16 — WUE ABDEN 59 SPBRGH EUSART Baud Rate Generator Register, High Byte 59 SPBRG EUSART Baud Rate Generator Register, Low Byte 59 Legend: — = unimplemented locations read as ‘0’. Shaded cells are not used for asynchronous transmission. Note 1: Reserved in PIC18F2XK20 devices; always maintain these bits clear. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 231 PIC18F2XK20/4XK20 18.1.2 EUSART ASYNCHRONOUS RECEIVER The Asynchronous mode would typically be used in RS-232 systems. The receiver block diagram is shown in Figure 18-2. The data is received on the RX/DT pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at 16 times the baud rate, whereas the serial Receive Shift Register (RSR) operates at the bit rate. When all 8 or 9 bits of the character have been shifted in, they are immediately transferred to a two character First-In-First-Out (FIFO) memory. The FIFO buffering allows reception of two complete characters and the start of a third character before software must start servicing the EUSART receiver. The FIFO and RSR registers are not directly accessible by software. Access to the received data is via the RCREG register. 18.1.2.1 Enabling the Receiver The EUSART receiver is enabled for asynchronous operation by configuring the following three control bits: • CREN = 1 • SYNC = 0 • SPEN = 1 All other EUSART control bits are assumed to be in their default state. Setting the CREN bit of the RCSTA register enables the receiver circuitry of the EUSART. Clearing the SYNC bit of the TXSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCSTA register enables the EUSART. The RX/DT I/O pin must be configured as an input by setting the corresponding TRIS control bit. If the RX/DT pin is shared with an analog peripheral the analog I/O function must be disabled by clearing the corresponding ANSEL bit. Note: When the SPEN bit is set the TX/CK I/O pin is automatically configured as an output, regardless of the state of the corresponding TRIS bit and whether or not the EUSART transmitter is enabled. The PORT latch is disconnected from the output driver so it is not possible to use the TX/CK pin as a general purpose output. DS41303B-page 232 18.1.2.2 Receiving Data The receiver data recovery circuit initiates character reception on the falling edge of the first bit. The first bit, also known as the Start bit, is always a zero. The data recovery circuit counts one-half bit time to the center of the Start bit and verifies that the bit is still a zero. If it is not a zero then the data recovery circuit aborts character reception, without generating an error, and resumes looking for the falling edge of the Start bit. If the Start bit zero verification succeeds then the data recovery circuit counts a full bit time to the center of the next bit. The bit is then sampled by a majority detect circuit and the resulting ‘0’ or ‘1’ is shifted into the RSR. This repeats until all data bits have been sampled and shifted into the RSR. One final bit time is measured and the level sampled. This is the Stop bit, which is always a ‘1’. If the data recovery circuit samples a ‘0’ in the Stop bit position then a framing error is set for this character, otherwise the framing error is cleared for this character. See Section 18.1.2.5 “Receive Framing Error” for more information on framing errors. Immediately after all data bits and the Stop bit have been received, the character in the RSR is transferred to the EUSART receive FIFO and the RCIF interrupt flag bit of the PIR1 register is set. The top character in the FIFO is transferred out of the FIFO by reading the RCREG register. Note: 18.1.2.3 If the receive FIFO is overrun, no additional characters will be received until the overrun condition is cleared. See Section 18.1.2.6 “Receive Overrun Error” for more information on overrun errors. Receive Data Polarity The polarity of the receive data can be controlled with the DTRXP bit of the BAUDCTL register. The default state of this bit is ‘0’ which selects high true receive idle and data bits. Setting the DTRXP bit to ‘1’ will invert the receive data resulting in low true idle and data bits. The DTRXP bit controls receive data polarity only in Asynchronous mode. In synchronous mode the DTRXP bit has a different function. Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 18.1.2.4 Receive Interrupts 18.1.2.7 The RCIF interrupt flag bit of the PIR1 register is set whenever the EUSART receiver is enabled and there is an unread character in the receive FIFO. The RCIF interrupt flag bit is read-only, it cannot be set or cleared by software. RCIF interrupts are enabled by setting the following bits: • RCIE interrupt enable bit of the PIE1 register • PEIE peripheral interrupt enable bit of the INTCON register • GIE global interrupt enable bit of the INTCON register The RCIF interrupt flag bit will be set when there is an unread character in the FIFO, regardless of the state of interrupt enable bits. 18.1.2.5 Receive Framing Error Each character in the receive FIFO buffer has a corresponding framing error Status bit. A framing error indicates that a Stop bit was not seen at the expected time. The framing error status is accessed via the FERR bit of the RCSTA register. The FERR bit represents the status of the top unread character in the receive FIFO. Therefore, the FERR bit must be read before reading the RCREG. The FERR bit is read-only and only applies to the top unread character in the receive FIFO. A framing error (FERR = 1) does not preclude reception of additional characters. It is not necessary to clear the FERR bit. Reading the next character from the FIFO buffer will advance the FIFO to the next character and the next corresponding framing error. Receiving 9-bit Characters The EUSART supports 9-bit character reception. When the RX9 bit of the RCSTA register is set, the EUSART will shift 9 bits into the RSR for each character received. The RX9D bit of the RCSTA register is the ninth and Most Significant data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the 8 Least Significant bits from the RCREG. 18.1.2.8 Address Detection A special Address Detection mode is available for use when multiple receivers share the same transmission line, such as in RS-485 systems. Address detection is enabled by setting the ADDEN bit of the RCSTA register. Address detection requires 9-bit character reception. When address detection is enabled, only characters with the ninth data bit set will be transferred to the receive FIFO buffer, thereby setting the RCIF interrupt bit. All other characters will be ignored. Upon receiving an address character, user software determines if the address matches its own. Upon address match, user software must disable address detection by clearing the ADDEN bit before the next Stop bit occurs. When user software detects the end of the message, determined by the message protocol used, software places the receiver back into the Address Detection mode by setting the ADDEN bit. The FERR bit can be forced clear by clearing the SPEN bit of the RCSTA register which resets the EUSART. Clearing the CREN bit of the RCSTA register does not affect the FERR bit. A framing error by itself does not generate an interrupt. Note: 18.1.2.6 If all receive characters in the receive FIFO have framing errors, repeated reads of the RCREG will not clear the FERR bit. Receive Overrun Error The receive FIFO buffer can hold two characters. An overrun error will be generated If a third character, in its entirety, is received before the FIFO is accessed. When this happens the OERR bit of the RCSTA register is set. The characters already in the FIFO buffer can be read but no additional characters will be received until the error is cleared. The error must be cleared by either clearing the CREN bit of the RCSTA register or by resetting the EUSART by clearing the SPEN bit of the RCSTA register. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 233 PIC18F2XK20/4XK20 18.1.2.9 Asynchronous Reception Set-up: 18.1.2.10 1. Initialize the SPBRGH:SPBRG register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 18.3 “EUSART Baud Rate Generator (BRG)”). 2. Enable the serial port by setting the SPEN bit and the RX/DT pin TRIS bit. The SYNC bit must be clear for asynchronous operation. 3. If interrupts are desired, set the RCIE interrupt enable bit and set the GIE and PEIE bits of the INTCON register. 4. If 9-bit reception is desired, set the RX9 bit. 5. Set the DTRXP if inverted receive polarity is desired. 6. Enable reception by setting the CREN bit. 7. The RCIF interrupt flag bit will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set. 8. Read the RCSTA register to get the error flags and, if 9-bit data reception is enabled, the ninth data bit. 9. Get the received 8 Least Significant data bits from the receive buffer by reading the RCREG register. 10. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit. FIGURE 18-5: Rcv Shift Reg Rcv Buffer Reg RCIDL This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable: 1. Initialize the SPBRGH, SPBRG register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 18.3 “EUSART Baud Rate Generator (BRG)”). 2. Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation. 3. If interrupts are desired, set the RCIE interrupt enable bit and set the GIE and PEIE bits of the INTCON register. 4. Enable 9-bit reception by setting the RX9 bit. 5. Enable address detection by setting the ADDEN bit. 6. Set the DTRXP if inverted receive polarity is desired. 7. Enable reception by setting the CREN bit. 8. The RCIF interrupt flag bit will be set when a character with the ninth bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set. 9. Read the RCSTA register to get the error flags. The ninth data bit will always be set. 10. Get the received 8 Least Significant data bits from the receive buffer by reading the RCREG register. Software determines if this is the device’s address. 11. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit. 12. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts. ASYNCHRONOUS RECEPTION Start bit bit 0 RX/DT pin 9-bit Address Detection Mode Set-up bit 1 bit 7/8 Stop bit Start bit bit 0 Word 1 RCREG bit 7/8 Stop bit Start bit bit 7/8 Stop bit Word 2 RCREG Read Rcv Buffer Reg RCREG RCIF (Interrupt Flag) OERR bit CREN Note: This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word, causing the OERR (overrun) bit to be set. DS41303B-page 234 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 TABLE 18-2: Name REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset Values on page INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 57 PIR1 PSPIF(1) ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 60 PIE1 PSPIE(1) ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 60 IPR1 PSPIP(1) ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP 60 SPEN RX9 SREN CREN ADDEN FERR OERR RX9D RCSTA RCREG EUSART Receive Register 59 59 TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 60 TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 59 BAUDCTL ABDOVF RCIDL DTRXP CKTXP BRG16 — WUE ABDEN SPBRGH EUSART Baud Rate Generator Register, High Byte 59 SPBRG EUSART Baud Rate Generator Register, Low Byte 59 59 Legend: — = unimplemented locations read as ‘0’. Shaded cells are not used for asynchronous reception. Note 1: Reserved in PIC18F2XK20 devices; always maintain these bits clear. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 235 PIC18F2XK20/4XK20 18.2 Clock Accuracy with Asynchronous Operation The factory calibrates the internal oscillator block output (HFINTOSC). However, the HFINTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind. REGISTER 18-1: The first (preferred) method uses the OSCTUNE register to adjust the HFINTOSC output. Adjusting the value in the OSCTUNE register allows for fine resolution changes to the system clock source. See Section 2.5 “Internal Clock Modes” for more information. The other method adjusts the value in the Baud Rate Generator. This can be done automatically with the Auto-Baud Detect feature (see Section 18.3.1 “Auto-Baud Detect”). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change in the peripheral clock frequency. TXSTA: TRANSMIT STATUS AND CONTROL REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-1 R/W-0 CSRC TX9 TXEN(1) SYNC SENDB BRGH TRMT TX9D bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 CSRC: Clock Source Select bit Asynchronous mode: Don’t care Synchronous mode: 1 = Master mode (clock generated internally from BRG) 0 = Slave mode (clock from external source) bit 6 TX9: 9-bit Transmit Enable bit 1 = Selects 9-bit transmission 0 = Selects 8-bit transmission bit 5 TXEN: Transmit Enable bit(1) 1 = Transmit enabled 0 = Transmit disabled bit 4 SYNC: EUSART Mode Select bit 1 = Synchronous mode 0 = Asynchronous mode bit 3 SENDB: Send Break Character bit Asynchronous mode: 1 = Send Sync Break on next transmission (cleared by hardware upon completion) 0 = Sync Break transmission completed Synchronous mode: Don’t care bit 2 BRGH: High Baud Rate Select bit Asynchronous mode: 1 = High speed 0 = Low speed Synchronous mode: Unused in this mode bit 1 TRMT: Transmit Shift Register Status bit 1 = TSR empty 0 = TSR full bit 0 TX9D: Ninth bit of Transmit Data Can be address/data bit or a parity bit. Note 1: SREN/CREN overrides TXEN in Sync mode. DS41303B-page 236 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 REGISTER 18-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER(1) R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0 R-0 R-x SPEN RX9 SREN CREN ADDEN FERR OERR RX9D bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 SPEN: Serial Port Enable bit 1 = Serial port enabled (configures RX/DT and TX/CK pins as serial port pins) 0 = Serial port disabled (held in Reset) bit 6 RX9: 9-bit Receive Enable bit 1 = Selects 9-bit reception 0 = Selects 8-bit reception bit 5 SREN: Single Receive Enable bit Asynchronous mode: Don’t care Synchronous mode – Master: 1 = Enables single receive 0 = Disables single receive This bit is cleared after reception is complete. Synchronous mode – Slave Don’t care bit 4 CREN: Continuous Receive Enable bit Asynchronous mode: 1 = Enables receiver 0 = Disables receiver Synchronous mode: 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN) 0 = Disables continuous receive bit 3 ADDEN: Address Detect Enable bit Asynchronous mode 9-bit (RX9 = 1): 1 = Enables address detection, enable interrupt and load the receive buffer when RSR<8> is set 0 = Disables address detection, all bytes are received and ninth bit can be used as parity bit Asynchronous mode 8-bit (RX9 = 0): Don’t care bit 2 FERR: Framing Error bit 1 = Framing error (can be updated by reading RCREG register and receive next valid byte) 0 = No framing error bit 1 OERR: Overrun Error bit 1 = Overrun error (can be cleared by clearing bit CREN) 0 = No overrun error bit 0 RX9D: Ninth bit of Received Data This can be address/data bit or a parity bit and must be calculated by user firmware. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 237 PIC18F2XK20/4XK20 REGISTER 18-3: BAUDCTL: BAUD RATE CONTROL REGISTER R-0 R-1 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 ABDOVF RCIDL DTRXP CKTXP BRG16 — WUE ABDEN bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 ABDOVF: Auto-Baud Detect Overflow bit Asynchronous mode: 1 = Auto-baud timer overflowed 0 = Auto-baud timer did not overflow Synchronous mode: Don’t care bit 6 RCIDL: Receive Idle Flag bit Asynchronous mode: 1 = Receiver is Idle 0 = Start bit has been detected and the receiver is active Synchronous mode: Don’t care bit 5 DTRXP: Data/Receive Polarity Select bit Asynchronous mode: 1 = Receive data (RX) is inverted (active-low) 0 = Receive data (RX) is not inverted (active-high) Synchronous mode: 1 = Data (DT) is inverted (active-low) 0 = Data (DT) is not inverted (active-high) bit 4 CKTXP: Clock/Transmit Polarity Select bit Asynchronous mode: 1 = Idle state for transmit (TX) is low 0 = Idle state for transmit (TX) is high Synchronous mode: 1 = Data changes on the falling edge of the clock and is sampled on the rising edge of the clock 0 = Data changes on the rising edge of the clock and is sampled on the falling edge of the clock bit 3 BRG16: 16-bit Baud Rate Generator bit 1 = 16-bit Baud Rate Generator is used (SPBRGH:SPBRG) 0 = 8-bit Baud Rate Generator is used (SPBRG) bit 2 Unimplemented: Read as ‘0’ bit 1 WUE: Wake-up Enable bit Asynchronous mode: 1 = Receiver is waiting for a falling edge. No character will be received but RCIF will be set on the falling edge. WUE will automatically clear on the rising edge. 0 = Receiver is operating normally Synchronous mode: Don’t care bit 0 ABDEN: Auto-Baud Detect Enable bit Asynchronous mode: 1 = Auto-Baud Detect mode is enabled (clears when auto-baud is complete) 0 = Auto-Baud Detect mode is disabled Synchronous mode: Don’t care DS41303B-page 238 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 18.3 EUSART Baud Rate Generator (BRG) The Baud Rate Generator (BRG) is an 8-bit or 16-bit timer that is dedicated to the support of both the asynchronous and synchronous EUSART operation. By default, the BRG operates in 8-bit mode. Setting the BRG16 bit of the BAUDCTL register selects 16-bit mode. If the system clock is changed during an active receive operation, a receive error or data loss may result. To avoid this problem, check the status of the RCIDL bit to make sure that the receive operation is Idle before changing the system clock. EXAMPLE 18-1: For a device with FOSC of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG: The SPBRGH:SPBRG register pair determines the period of the free running baud rate timer. In Asynchronous mode the multiplier of the baud rate period is determined by both the BRGH bit of the TXSTA register and the BRG16 bit of the BAUDCTL register. In Synchronous mode, the BRGH bit is ignored. F OS C Desired Baud Rate = --------------------------------------------------------------------64 ( [SPBRGH:SPBRG] + 1 ) Solving for SPBRGH:SPBRG: FOSC -------------------------------------------Desired Baud Rate X = --------------------------------------------- – 1 64 Table 18-3 contains the formulas for determining the baud rate. Example 18-1 provides a sample calculation for determining the baud rate and baud rate error. Typical baud rates and error values for various asynchronous modes have been computed for your convenience and are shown in Table 18-5. It may be advantageous to use the high baud rate (BRGH = 1), or the 16-bit BRG (BRG16 = 1) to reduce the baud rate error. The 16-bit BRG mode is used to achieve slow baud rates for fast oscillator frequencies. 16000000 -----------------------9600 = ------------------------ – 1 64 = [ 25.042 ] = 25 16000000 Calculated Baud Rate = --------------------------64 ( 25 + 1 ) = 9615 Writing a new value to the SPBRGH, SPBRG register pair causes the BRG timer to be reset (or cleared). This ensures that the BRG does not wait for a timer overflow before outputting the new baud rate. TABLE 18-3: CALCULATING BAUD RATE ERROR Calc. Baud Rate – Desired Baud Rate Error = -------------------------------------------------------------------------------------------Desired Baud Rate ( 9615 – 9600 ) = ---------------------------------- = 0.16% 9600 BAUD RATE FORMULAS Configuration Bits BRG/EUSART Mode Baud Rate Formula 0 8-bit/Asynchronous FOSC/[64 (n+1)] 0 1 8-bit/Asynchronous 0 1 0 16-bit/Asynchronous 0 1 1 16-bit/Asynchronous 1 0 x 8-bit/Synchronous 1 x 16-bit/Synchronous SYNC BRG16 BRGH 0 0 0 FOSC/[16 (n+1)] 1 Legend: x = Don’t care, n = value of SPBRGH, SPBRG register pair TABLE 18-4: Name FOSC/[4 (n+1)] REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Reset Values on page Bit 0 TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 59 RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 59 BAUDCTL ABDOVF RCIDL DTRXP CKTXP BRG16 — WUE ABDEN 59 SPBRGH EUSART Baud Rate Generator Register, High Byte 59 SPBRG EUSART Baud Rate Generator Register, Low Byte 59 Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the BRG. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 239 PIC18F2XK20/4XK20 TABLE 18-5: BAUD RATES FOR ASYNCHRONOUS MODES SYNC = 0, BRGH = 0, BRG16 = 0 BAUD RATE FOSC = 64.000 MHz FOSC = 18.432 MHz FOSC = 16.000 MHz FOSC = 11.0592 MHz Actual Rate % Error SPBRG value (decimal) 300 — — — — — — — — — — — — 1200 — — — 1200 0.00 239 1202 0.16 207 1200 0.00 143 Actual Rate % Error SPBRG value (decimal) Actual Rate % Error SPBRG value (decimal) Actual Rate % Error SPBRG value (decimal) 2400 — — — 2400 0.00 119 2404 0.16 103 2400 0.00 71 9600 9615 0.16 103 9600 0.00 29 9615 0.16 25 9600 0.00 17 10417 10417 0.00 95 10286 -1.26 27 10417 0.00 23 10165 -2.42 16 19.2k 19.23k 0.16 51 19.20k 0.00 14 19.23k 0.16 12 19.20k 0.00 8 57.6k 58.82k 2.12 16 57.60k 0.00 7 — — — 57.60k 0.00 2 115.2k 111.11k -3.55 8 — — — — — — — — — SYNC = 0, BRGH = 0, BRG16 = 0 BAUD RATE FOSC = 8.000 MHz Actual Rate % Error SPBRG value (decimal) FOSC = 4.000 MHz Actual Rate % Error SPBRG value (decimal) FOSC = 3.6864 MHz Actual Rate FOSC = 1.000 MHz % Error SPBRG value (decimal) Actual Rate % Error SPBRG value (decimal) 300 — — — 300 0.16 207 300 0.00 191 300 0.16 51 1200 1202 0.16 103 1202 0.16 51 1200 0.00 47 1202 0.16 12 2400 2404 0.16 51 2404 0.16 25 2400 0.00 23 — — — 9600 9615 0.16 12 — — — 9600 0.00 5 — — — 10417 10417 0.00 11 10417 0.00 5 — — — — — — 19.2k — — — — — — 19.20k 0.00 2 — — — 57.6k — — — — — — 57.60k 0.00 0 — — — 115.2k — — — — — — — — — — — — SYNC = 0, BRGH = 1, BRG16 = 0 BAUD RATE FOSC = 64.000 MHz Actual Rate % Error SPBRG value (decimal) FOSC = 18.432 MHz Actual Rate FOSC = 16.000 MHz % Error SPBRG value (decimal) Actual Rate FOSC = 11.0592 MHz % Error SPBRG value (decimal) Actual Rate % Error SPBRG value (decimal) 300 — — — — — — — — — — — — 1200 — — — — — — — — — — — — 2400 — — — — — — — — — — — — 9600 — — — 9600 0.00 119 9615 0.16 103 9600 0.00 71 10417 — — — 10378 -0.37 110 10417 0.00 95 10473 0.53 65 19.2k 19.23k 0.16 207 19.20k 0.00 59 19.23k 0.16 51 19.20k 0.00 35 57.6k 57.97k 0.64 68 57.60k 0.00 19 58.82k 2.12 16 57.60k 0.00 11 115.2k 114.29k -0.79 34 115.2k 0.00 9 111.1k -3.55 8 115.2k 0.00 5 DS41303B-page 240 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 TABLE 18-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED) SYNC = 0, BRGH = 1, BRG16 = 0 BAUD RATE FOSC = 8.000 MHz Actual Rate % Error SPBRG value (decimal) 300 1200 — — — — — 2400 2404 FOSC = 4.000 MHz FOSC = 3.6864 MHz FOSC = 1.000 MHz Actual Rate % Error SPBRG value (decimal) — — 1202 — 0.16 — 207 — 1200 — 0.00 — 191 300 1202 0.16 0.16 207 51 0.16 207 2404 0.16 103 2400 0.00 95 2404 0.16 25 — Actual Rate % Error SPBRG value (decimal) Actual Rate % Error SPBRG value (decimal) 9600 9615 0.16 51 9615 0.16 25 9600 0.00 23 — — 10417 10417 0.00 47 10417 0.00 23 10473 0.53 21 10417 0.00 5 19.2k 19231 0.16 25 19.23k 0.16 12 19.2k 0.00 11 — — — 57.6k 55556 -3.55 8 — — — 57.60k 0.00 3 — — — 115.2k — — — — — — 115.2k 0.00 1 — — — SYNC = 0, BRGH = 0, BRG16 = 1 BAUD RATE FOSC = 64.000 MHz Actual Rate % Error SPBRGH :SPBRG (decimal) FOSC = 18.432 MHz Actual Rate % Error SPBRGH :SPBRG (decimal) FOSC = 16.000 MHz Actual Rate FOSC = 11.0592 MHz % Error SPBRGH :SPBRG (decimal) Actual Rate % Error SPBRGH :SPBRG (decimal) 300 300.0 0.00 13332 300.0 0.00 3839 300.03 0.01 3332 300.0 0.00 2303 1200 1200.1 0.01 3332 1200 0.00 959 1200.5 0.04 832 1200 0.00 575 2400 2399 -0.02 1666 2400 0.00 479 2398 -0.08 416 2400 0.00 287 9600 9592 -0.08 416 9600 0.00 119 9615 0.16 103 9600 0.00 71 10417 10417 0.00 383 10378 -0.37 110 10417 0.00 95 10473 0.53 65 19.2k 19.23k 0.16 207 19.20k 0.00 59 19.23k 0.16 51 19.20k 0.00 35 57.6k 57.97k 0.64 68 57.60k 0.00 19 58.82k 2.12 16 57.60k 0.00 11 115.2k 114.29k -0.79 34 115.2k 0.00 9 111.11k -3.55 8 115.2k 0.00 5 SYNC = 0, BRGH = 0, BRG16 = 1 BAUD RATE FOSC = 8.000 MHz Actual Rate FOSC = 4.000 MHz % Error SPBRGH :SPBRG (decimal) Actual Rate FOSC = 3.6864 MHz % Error SPBRGH :SPBRG (decimal) Actual Rate FOSC = 1.000 MHz % Error SPBRGH :SPBRG (decimal) Actual Rate % Error SPBRGH :SPBRG (decimal) 300 299.9 -0.02 1666 300.1 0.04 832 300.0 0.00 767 300.5 0.16 207 1200 1199 -0.08 416 1202 0.16 207 1200 0.00 191 1202 0.16 51 2400 2404 0.16 207 2404 0.16 103 2400 0.00 95 2404 0.16 25 9600 9615 0.16 51 9615 0.16 25 9600 0.00 23 — — — 10417 10417 0.00 47 10417 0.00 23 10473 0.53 21 10417 0.00 5 19.2k 19.23k 0.16 25 19.23k 0.16 12 19.20k 0.00 11 — — — 57.6k 55556 -3.55 8 — — — 57.60k 0.00 3 — — — 115.2k — — — — — — 115.2k 0.00 1 — — — © 2007 Microchip Technology Inc. Advance Information DS41303B-page 241 PIC18F2XK20/4XK20 TABLE 18-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED) SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1 BAUD RATE FOSC = 64.000 MHz FOSC = 18.432 MHz FOSC = 16.000 MHz FOSC = 11.0592 MHz Actual Rate % Error SPBRGH :SPBRG (decimal) 300 1200 300 1200 0.00 0.00 53332 13332 300.0 1200 0.00 0.00 15359 3839 300.0 1200.1 0.00 0.01 13332 3332 300.0 1200 0.00 0.00 9215 2303 2400 2400 0.00 6666 2400 0.00 1919 2399.5 -0.02 1666 2400 0.00 1151 9600 9598.1 -0.02 1666 9600 0.00 479 9592 -0.08 416 9600 0.00 287 10417 10417 0.00 1535 10425 0.08 441 10417 0.00 383 10433 0.16 264 Actual Rate % Error SPBRGH :SPBRG (decimal) Actual Rate % Error SPBRGH :SPBRG (decimal) Actual Rate % Error SPBRGH :SPBRG (decimal) 19.2k 19.21k 0.04 832 19.20k 0.00 239 19.23k 0.16 207 19.20k 0.00 143 57.6k 57.55k -0.08 277 57.60k 0.00 79 57.97k 0.64 68 57.60k 0.00 47 115.2k 115.11k -0.08 138 115.2k 0.00 39 114.29k -0.79 34 115.2k 0.00 23 SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1 BAUD RATE FOSC = 8.000 MHz Actual Rate FOSC = 4.000 MHz % Error SPBRGH :SPBRG (decimal) Actual Rate FOSC = 3.6864 MHz % Error SPBRGH :SPBRG (decimal) Actual Rate FOSC = 1.000 MHz % Error SPBRGH :SPBRG (decimal) Actual Rate % Error SPBRGH :SPBRG (decimal) 832 300 300.0 0.00 6666 300.0 0.01 3332 300.0 0.00 3071 300.1 0.04 1200 1200 -0.02 1666 1200 0.04 832 1200 0.00 767 1202 0.16 207 2400 2401 0.04 832 2398 0.08 416 2400 0.00 383 2404 0.16 103 25 9600 9615 0.16 207 9615 0.16 103 9600 0.00 95 9615 0.16 10417 10417 0.00 191 10417 0.00 95 10473 0.53 87 10417 0.00 23 19.2k 19.23k 0.16 103 19.23k 0.16 51 19.20k 0.00 47 19.23k 0.16 12 57.6k 57.14k -0.79 34 58.82k 2.12 16 57.60k 0.00 15 — — — 115.2k 117.6k 2.12 16 111.1k -3.55 8 115.2k 0.00 7 — — — DS41303B-page 242 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 18.3.1 AUTO-BAUD DETECT The EUSART module supports automatic detection and calibration of the baud rate. and SPBRG registers are clocked at 1/8th the BRG base clock rate. The resulting byte measurement is the average bit time when clocked at full speed. Note 1: If the WUE bit is set with the ABDEN bit, auto-baud detection will occur on the byte following the Break character (see Section 18.3.2 “Auto-Wake-up on Break”). In the Auto-Baud Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. The Baud Rate Generator is used to time the period of a received 55h (ASCII “U”) which is the Sync character for the LIN bus. The unique feature of this character is that it has five rising edges including the Stop bit edge. Setting the ABDEN bit of the BAUDCTL register starts the auto-baud calibration sequence (Figure 18-6). While the ABD sequence takes place, the EUSART state machine is held in Idle. On the first rising edge of the receive line, after the Start bit, the SPBRG begins counting up using the BRG counter clock as shown in Table 18-6. The fifth rising edge will occur on the RX pin at the end of the eighth bit period. At that time, an accumulated value totaling the proper BRG period is left in the SPBRGH:SPBRG register pair, the ABDEN bit is automatically cleared, and the RCIF interrupt flag is set. A read operation on the RCREG needs to be performed to clear the RCIF interrupt. RCREG content should be discarded. When calibrating for modes that do not use the SPBRGH register the user can verify that the SPBRG register did not overflow by checking for 00h in the SPBRGH register. 2: It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible. 3: During the auto-baud process, the auto-baud counter starts counting at 1. Upon completion of the auto-baud sequence, to achieve maximum accuracy, subtract 1 from the SPBRGH:SPBRG register pair. TABLE 18-6: The BRG auto-baud clock is determined by the BRG16 and BRGH bits as shown in Table 18-6. During ABD, both the SPBRGH and SPBRG registers are used as a 16-bit counter, independent of the BRG16 bit setting. While calibrating the baud rate period, the SPBRGH FIGURE 18-6: BRG16 BRGH BRG Base Clock BRG ABD Clock 0 0 FOSC/64 FOSC/512 0 1 FOSC/16 FOSC/128 1 0 FOSC/16 FOSC/128 1 FOSC/4 FOSC/32 1 Note: During the ABD sequence, SPBRG and SPBRGH registers are both used as a 16-bit counter, independent of BRG16 setting. AUTOMATIC BAUD RATE CALIBRATION XXXXh BRG Value BRG COUNTER CLOCK RATES RX pin 0000h 001Ch Start Edge #1 bit 1 bit 0 Edge #2 bit 3 bit 2 Edge #3 bit 5 bit 4 Edge #4 bit 7 bit 6 Edge #5 Stop bit BRG Clock Auto Cleared Set by User ABDEN bit RCIDL RCIF bit (Interrupt) Read RCREG SPBRG XXh 1Ch SPBRGH XXh 00h Note 1: The ABD sequence requires the EUSART module to be configured in Asynchronous mode. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 243 PIC18F2XK20/4XK20 18.3.2 AUTO-WAKE-UP ON BREAK During Sleep mode, all clocks to the EUSART are suspended. Because of this, the Baud Rate Generator is inactive and a proper character reception cannot be performed. The Auto-Wake-up feature allows the controller to wake-up due to activity on the RX/DT line. This feature is available only in Asynchronous mode. The Auto-Wake-up feature is enabled by setting the WUE bit of the BAUDCTL register. Once set, the normal receive sequence on RX/DT is disabled, and the EUSART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RX/DT line. (This coincides with the start of a Sync Break or a wake-up signal character for the LIN protocol.) The EUSART module generates an RCIF interrupt coincident with the wake-up event. The interrupt is generated synchronously to the Q clocks in normal CPU operating modes (Figure 18-7), and asynchronously if the device is in Sleep mode (Figure 18-8). The interrupt condition is cleared by reading the RCREG register. The WUE bit is automatically cleared by the low-to-high transition on the RX line at the end of the Break. This signals to the user that the Break event is over. At this point, the EUSART module is in Idle mode waiting to receive the next character. 18.3.2.1 Special Considerations Break Character To avoid character errors or character fragments during a wake-up event, the wake-up character must be all zeros. When the wake-up is enabled the function works independent of the low time on the data stream. If the WUE bit is set and a valid non-zero character is received, the low time from the Start bit to the first rising edge will be interpreted as the wake-up event. The remaining bits in the character will be received as a fragmented character and subsequent characters can result in framing or overrun errors. Therefore, the initial character in the transmission must be all ‘0’s. This must be 10 or more bit times, 13-bit times recommended for LIN bus, or any number of bit times for standard RS-232 devices. Oscillator Startup Time Oscillator start-up time must be considered, especially in applications using oscillators with longer start-up intervals (i.e., LP, XT or HS/PLL mode). The Sync Break (or wake-up signal) character must be of sufficient length, and be followed by a sufficient interval, to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART. WUE Bit The wake-up event causes a receive interrupt by setting the RCIF bit. The WUE bit is cleared by hardware by a rising edge on RX/DT. The interrupt condition is then cleared by software by reading the RCREG register and discarding its contents. To ensure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process before setting the WUE bit. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode. FIGURE 18-7: AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 OSC1 Auto Cleared Bit set by user WUE bit RX/DT Line RCIF Note 1: Cleared due to User Read of RCREG The EUSART remains in Idle while the WUE bit is set. DS41303B-page 244 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 FIGURE 18-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4 OSC1 Auto Cleared Bit Set by User WUE bit RX/DT Line Note 1 RCIF Sleep Command Executed Note 1: 2: 18.3.3 If the wake-up event requires long oscillator warm-up time, the automatic clearing of the WUE bit can occur while the stposc signal is still active. This sequence should not depend on the presence of Q clocks. The EUSART remains in Idle while the WUE bit is set. BREAK CHARACTER SEQUENCE The EUSART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. A Break character consists of a Start bit, followed by 12 ‘0’ bits and a Stop bit. To send a Break character, set the SENDB and TXEN bits of the TXSTA register. The Break character transmission is then initiated by a write to the TXREG. The value of data written to TXREG will be ignored and all ‘0’s will be transmitted. The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification). The TRMT bit of the TXSTA register indicates when the transmit operation is active or Idle, just as it does during normal transmission. See Figure 18-9 for the timing of the Break character sequence. 18.3.3.1 Break and Sync Transmit Sequence The following sequence will start a message frame header made up of a Break, followed by an auto-baud Sync byte. This sequence is typical of a LIN bus master. 1. 2. 3. 4. 5. Cleared due to User Read of RCREG Sleep Ends 18.3.4 RECEIVING A BREAK CHARACTER The Enhanced EUSART module can receive a Break character in two ways. The first method to detect a Break character uses the FERR bit of the RCSTA register and the Received data as indicated by RCREG. The Baud Rate Generator is assumed to have been initialized to the expected baud rate. A Break character has been received when; • RCIF bit is set • FERR bit is set • RCREG = 00h The second method uses the Auto-Wake-up feature described in Section 18.3.2 “Auto-Wake-up on Break”. By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RCIF interrupt, and receive the next data byte followed by another interrupt. Note that following a Break character, the user will typically want to enable the Auto-Baud Detect feature. For both methods, the user can set the ABDEN bit of the BAUDCTL register before placing the EUSART in Sleep mode. Configure the EUSART for the desired mode. Set the TXEN and SENDB bits to enable the Break sequence. Load the TXREG with a dummy character to initiate transmission (the value is ignored). Write ‘55h’ to TXREG to load the Sync character into the transmit FIFO buffer. After the Break has been sent, the SENDB bit is reset by hardware and the Sync character is then transmitted. When the TXREG becomes empty, as indicated by the TXIF, the next data byte can be written to TXREG. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 245 PIC18F2XK20/4XK20 FIGURE 18-9: Write to TXREG SEND BREAK CHARACTER SEQUENCE Dummy Write BRG Output (Shift Clock) TX (pin) Start bit bit 0 bit 1 bit 11 Stop bit Break TXIF bit (Transmit interrupt Flag) TRMT bit (Transmit Shift Reg. Empty Flag) SENDB Sampled Here Auto Cleared SENDB (send Break control bit) DS41303B-page 246 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 18.4 EUSART Synchronous Mode Synchronous serial communications are typically used in systems with a single master and one or more slaves. The master device contains the necessary circuitry for baud rate generation and supplies the clock for all devices in the system. Slave devices can take advantage of the master clock by eliminating the internal clock generation circuitry. There are two signal lines in Synchronous mode: a bidirectional data line and a clock line. Slaves use the external clock supplied by the master to shift the serial data into and out of their respective receive and transmit shift registers. Since the data line is bidirectional, synchronous operation is half-duplex only. Half-duplex refers to the fact that master and slave devices can receive and transmit data but not both simultaneously. The EUSART can operate as either a master or slave device. Start and Stop bits are not used in synchronous transmissions. 18.4.1 SYNCHRONOUS MASTER MODE The following bits are used to configure the EUSART for Synchronous Master operation: • • • • • SYNC = 1 CSRC = 1 SREN = 0 (for transmit); SREN = 1 (for receive) CREN = 0 (for transmit); CREN = 1 (for receive) SPEN = 1 Setting the SYNC bit of the TXSTA register configures the device for synchronous operation. Setting the CSRC bit of the TXSTA register configures the device as a master. Clearing the SREN and CREN bits of the RCSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCSTA register enables the EUSART. If the RX/DT or TX/CK pins are shared with an analog peripheral the analog I/O functions must be disabled by clearing the corresponding ANSEL bits. 18.4.1.2 Clock Polarity A clock polarity option is provided for Microwire compatibility. Clock polarity is selected with the CKTXP bit of the BAUDCTL register. Setting the CKTXP bit sets the clock Idle state as high. When the CKTXP bit is set, the data changes on the falling edge of each clock and is sampled on the rising edge of each clock. Clearing the CKTXP bit sets the Idle state as low. When the CKTXP bit is cleared, the data changes on the rising edge of each clock and is sampled on the falling edge of each clock. 18.4.1.3 Synchronous Master Transmission Data is transferred out of the device on the RX/DT pin. The RX/DT and TX/CK pin output drivers are automatically enabled when the EUSART is configured for synchronous master transmit operation. A transmission is initiated by writing a character to the TXREG register. If the TSR still contains all or part of a previous character the new character data is held in the TXREG until the last bit of the previous character has been transmitted. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXREG is immediately transferred to the TSR. The transmission of the character commences immediately following the transfer of the data to the TSR from the TXREG. Each data bit changes on the leading edge of the master clock and remains valid until the subsequent leading clock edge. Note: 18.4.1.4 The TSR register is not mapped in data memory, so it is not available to the user. Data Polarity The polarity of the transmit and receive data can be controlled with the DTRXP bit of the BAUDCTL register. The default state of this bit is ‘0’ which selects high true transmit and receive data. Setting the DTRXP bit to ‘1’ will invert the data resulting in low true transmit and receive data. The TRIS bits corresponding to the RX/DT and TX/CK pins should be set. 18.4.1.1 Master Clock Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a master transmits the clock on the TX/CK line. The TX/CK pin output driver is automatically enabled when the EUSART is configured for synchronous transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One clock cycle is generated for each data bit. Only as many clock cycles are generated as there are data bits. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 247 PIC18F2XK20/4XK20 18.4.1.5 1. 2. Synchronous Master Transmission Set-up: 3. Initialize the SPBRGH, SPBRG register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 18.3 “EUSART Baud Rate Generator (BRG)”). Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC. Set the TRIS bits corresponding to the RX/DT and TX/CK I/O pins. 4. 5. 6. FIGURE 18-10: 7. 8. Disable Receive mode by clearing bits SREN and CREN. Enable Transmit mode by setting the TXEN bit. If 9-bit transmission is desired, set the TX9 bit. If interrupts are desired, set the TXIE, GIE and PEIE interrupt enable bits. If 9-bit transmission is selected, the ninth bit should be loaded in the TX9D bit. Start transmission by loading data to the TXREG register. SYNCHRONOUS TRANSMISSION RX/DT pin bit 0 bit 1 Word 1 bit 2 bit 7 bit 0 bit 1 Word 2 bit 7 TX/CK pin (SCKP = 0) TX/CK pin (SCKP = 1) Write to TXREG Reg Write Word 1 Write Word 2 TXIF bit (Interrupt Flag) TRMT bit TXEN bit Note: ‘1’ ‘1’ Sync Master mode, SPBRG = 0, continuous transmission of two 8-bit words. FIGURE 18-11: SYNCHRONOUS TRANSMISSION (THROUGH TXEN) RX/DT pin bit 0 bit 1 bit 2 bit 6 bit 7 TX/CK pin Write to TXREG reg TXIF bit TRMT bit TXEN bit DS41303B-page 248 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 TABLE 18-7: Name REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset Values on page INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 57 PIR1 PSPIF(1) ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 60 PIE1 (1) PSPIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 60 IPR1 PSPIP(1) ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP 60 RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 59 TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 60 TXREG EUSART Transmit Register 59 CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 59 BAUDCTL ABDOVF RCIDL DTRXP CKTXP BRG16 — WUE ABDEN 59 SPBRGH EUSART Baud Rate Generator Register, High Byte 59 SPBRG EUSART Baud Rate Generator Register, Low Byte 59 TXSTA Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master transmission. Note 1: Reserved in PIC18F2XK20 devices; always maintain these bits clear. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 249 PIC18F2XK20/4XK20 18.4.1.6 Synchronous Master Reception Data is received at the RX/DT pin. The RX/DT pin output driver must be disabled by setting the corresponding TRIS bits when the EUSART is configured for synchronous master receive operation. In Synchronous mode, reception is enabled by setting either the Single Receive Enable bit (SREN of the RCSTA register) or the Continuous Receive Enable bit (CREN of the RCSTA register). When SREN is set and CREN is clear, only as many clock cycles are generated as there are data bits in a single character. The SREN bit is automatically cleared at the completion of one character. When CREN is set, clocks are continuously generated until CREN is cleared. If CREN is cleared in the middle of a character the CK clock stops immediately and the partial character is discarded. If SREN and CREN are both set, then SREN is cleared at the completion of the first character and CREN takes precedence. To initiate reception, set either SREN or CREN. Data is sampled at the RX/DT pin on the trailing edge of the TX/CK clock pin and is shifted into the Receive Shift Register (RSR). When a complete character is received into the RSR, the RCIF bit is set and the character is automatically transferred to the two character receive FIFO. The Least Significant eight bits of the top character in the receive FIFO are available in RCREG. The RCIF bit remains set as long as there are un-read characters in the receive FIFO. 18.4.1.7 Receive Overrun Error The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before RCREG is read to access the FIFO. When this happens the OERR bit of the RCSTA register is set. Previous data in the FIFO will not be overwritten. The two characters in the FIFO buffer can be read, however, no additional characters will be received until the error is cleared. The OERR bit can only be cleared by clearing the overrun condition. If the overrun error occurred when the SREN bit is set and CREN is clear then the error is cleared by reading RCREG. If the overrun occurred when the CREN bit is set then the error condition is cleared by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART. 18.4.1.9 Receiving 9-bit Characters The EUSART supports 9-bit character reception. When the RX9 bit of the RCSTA register is set the EUSART will shift 9-bits into the RSR for each character received. The RX9D bit of the RCSTA register is the ninth, and Most Significant, data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the 8 Least Significant bits from the RCREG. 18.4.1.10 Synchronous Master Reception Set-up: 1. Slave Clock Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a slave receives the clock on the TX/CK line. The TX/CK pin output driver must be disabled by setting the associated TRIS bit when the device is configured for synchronous slave transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One data bit is transferred for each clock cycle. Only as many clock cycles should be received as there are data bits. DS41303B-page 250 18.4.1.8 Initialize the SPBRGH, SPBRG register pair for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate. 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC. Disable RX/DT and TX/CK output drivers by setting the corresponding TRIS bits. 3. Ensure bits CREN and SREN are clear. 4. If using interrupts, set the GIE and PEIE bits of the INTCON register and set RCIE. 5. If 9-bit reception is desired, set bit RX9. 6. Start reception by setting the SREN bit or for continuous reception, set the CREN bit. 7. Interrupt flag bit RCIF will be set when reception of a character is complete. An interrupt will be generated if the enable bit RCIE was set. 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception. 9. Read the 8-bit received data by reading the RCREG register. 10. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART. Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 FIGURE 18-12: SYNCHRONOUS RECEPTION (MASTER MODE, SREN) RX/DT pin bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7 TX/CK pin (SCKP = 0) TX/CK pin (SCKP = 1) Write to bit SREN SREN bit CREN bit ‘0’ ‘0’ RCIF bit (Interrupt) Read RXREG Note: Timing diagram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0. TABLE 18-8: Name REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset Values on page INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 57 PIR1 PSPIF(1) ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 60 PIE1 PSPIE(1) ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 60 IPR1 PSPIP(1) ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP 60 SPEN RX9 SREN CREN ADDEN FERR OERR RX9D RCSTA RCREG TXSTA BAUDCTL EUSART Receive Register 59 59 CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 59 ABDOVF RCIDL DTRXP CKTXP BRG16 — WUE ABDEN 59 SPBRGH EUSART Baud Rate Generator Register, High Byte 59 SPBRG EUSART Baud Rate Generator Register, Low Byte 59 Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master reception. Note 1: Reserved in 28-pin devices; always maintain these bits clear. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 251 PIC18F2XK20/4XK20 18.4.2 SYNCHRONOUS SLAVE MODE The following bits are used to configure the EUSART for Synchronous slave operation: • • • • • SYNC = 1 CSRC = 0 SREN = 0 (for transmit); SREN = 1 (for receive) CREN = 0 (for transmit); CREN = 1 (for receive) SPEN = 1 1. 2. 3. 4. Setting the SYNC bit of the TXSTA register configures the device for synchronous operation. Clearing the CSRC bit of the TXSTA register configures the device as a slave. Clearing the SREN and CREN bits of the RCSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCSTA register enables the EUSART. If the RX/DT or TX/CK pins are shared with an analog peripheral the analog I/O functions must be disabled by clearing the corresponding ANSEL bits. RX/DT and TX/CK pin output drivers must be disabled by setting the corresponding TRIS bits. 18.4.2.1 If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur: EUSART Synchronous Slave Transmit The operation of the Synchronous Master and Slave modes are identical (see Section 18.4.1.3 “Synchronous Master Transmission”), except in the case of the Sleep mode. 5. 18.4.2.2 1. 2. 3. 4. 5. 6. 7. TABLE 18-9: Name INTCON The first character will immediately transfer to the TSR register and transmit. The second word will remain in TXREG register. The TXIF bit will not be set. After the first character has been shifted out of TSR, the TXREG register will transfer the second character to the TSR and the TXIF bit will now be set. If the PEIE and TXIE bits are set, the interrupt will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will call the Interrupt Service Routine. Synchronous Slave Transmission Set-up: Set the SYNC and SPEN bits and clear the CSRC bit. Set the TRIS bits corresponding to the RX/DT and TX/CK I/O pins. Clear the CREN and SREN bits. If using interrupts, ensure that the GIE and PEIE bits of the INTCON register are set and set the TXIE bit. If 9-bit transmission is desired, set the TX9 bit. Enable transmission by setting the TXEN bit. If 9-bit transmission is selected, insert the Most Significant bit into the TX9D bit. Start transmission by writing the Least Significant 8 bits to the TXREG register. REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION Bit 7 Bit 6 Bit 5 GIE/GIEH PEIE/GIEL TMR0IE Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset Values on page INT0IE RBIE TMR0IF INT0IF RBIF 57 PIR1 PSPIF (1) ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 60 PIE1 PSPIE(1) ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 60 IPR1 PSPIP(1) ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP 60 SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 59 TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 RCSTA TRISC TXREG EUSART Transmit Register 60 59 CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 59 BAUDCTL ABDOVF RCIDL DTRXP CKTXP BRG16 — WUE ABDEN 59 SPBRGH EUSART Baud Rate Generator Register, High Byte 59 SPBRG EUSART Baud Rate Generator Register, Low Byte 59 TXSTA Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master transmission. Note 1: Reserved in PIC18F2XK20 devices; always maintain these bits clear. DS41303B-page 252 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 18.4.2.3 EUSART Synchronous Slave Reception 18.4.2.4 The operation of the Synchronous Master and Slave modes is identical (Section 18.4.1.6 “Synchronous Master Reception”), with the following exceptions: 1. • Sleep • CREN bit is always set, therefore the receiver is never Idle • SREN bit, which is a “don't care” in Slave mode 2. A character may be received while in Sleep mode by setting the CREN bit prior to entering Sleep. Once the word is received, the RSR register will transfer the data to the RCREG register. If the RCIE enable bit is set, the interrupt generated will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will branch to the interrupt vector. 3. 4. 5. 6. 7. 8. Synchronous Slave Reception Set-up: Set the SYNC and SPEN bits and clear the CSRC bit. Set the TRIS bits corresponding to the RX/DT and TX/CK I/O pins. If using interrupts, ensure that the GIE and PEIE bits of the INTCON register are set and set the RCIE bit. If 9-bit reception is desired, set the RX9 bit. Set the CREN bit to enable reception. The RCIF bit will be set when reception is complete. An interrupt will be generated if the RCIE bit was set. If 9-bit mode is enabled, retrieve the Most Significant bit from the RX9D bit of the RCSTA register. Retrieve the 8 Least Significant bits from the receive FIFO by reading the RCREG register. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART. TABLE 18-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset Values on page INT0IE RBIE TMR0IF INT0IF RBIF 57 INTCON GIE/GIEH PEIE/GIEL TMR0IE PIR1 PSPIF(1) ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 60 PIE1 PSPIE(1) ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 60 IPR1 PSPIP(1) ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP 60 SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 59 RCSTA RCREG TXSTA EUSART Receive Register 59 CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 59 BAUDCTL ABDOVF RCIDL DTRXP CKTXP BRG16 — WUE ABDEN 59 SPBRGH EUSART Baud Rate Generator Register, High Byte 59 SPBRG EUSART Baud Rate Generator Register, Low Byte 59 Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous slave reception. Note 1: Reserved in 28-pin devices; always maintain these bits clear. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 253 PIC18F2XK20/4XK20 NOTES: DS41303B-page 254 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 19.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESL and ADRESH). The ADC voltage reference is software selectable to either VDD or a voltage applied to the external reference pins. The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep. Figure 19-1 shows the block diagram of the ADC. FIGURE 19-1: ADC BLOCK DIAGRAM AVSS VREF- VCFG1 = 0 VCFG1 = 1 AVDD VCFG0 = 0 VREF+ VCFG0 = 1 AN0 0000 AN1 0001 AN2 0010 AN3 0011 AN4 0100 AN5 0101 AN6 0110 AN7 0111 AN8 1000 AN9 1001 AN10 1010 AN11 1011 AN12 1100 Unused 1101 Unused 1110 ADC 10 GO/DONE ADFM 0 = Left Justify 1 = Right Justify ADON 10 VSS ADRESH ADRESL 1111 FVR CHS<3:0> © 2007 Microchip Technology Inc. Advance Information DS41303B-page 255 PIC18F2XK20/4XK20 19.1 19.1.4 ADC Configuration When configuring and using the ADC the following functions must be considered: • • • • • • Port configuration Channel selection ADC voltage reference selection ADC conversion clock source Interrupt control Results formatting 19.1.1 PORT CONFIGURATION The ANSEL, ANSELH, TRISA, TRISB and TRISE registers all configure the A/D port pins. Any port pin needed as an analog input should have its corresponding ANSx bit set to disable the digital input buffer and TRISx bit set to disable the digital output driver. If the TRISx bit is cleared, the digital output level (VOH or VOL) will be converted. The A/D operation is independent of the state of the ANSx bits and the TRIS bits. Note 1: When reading the PORT register, all pins with their corresponding ANSx bit set read as cleared (a low level). However, analog conversion of pins configured as digital inputs (ANSx bit cleared and TRISx bit set) will be accurately converted. 19.1.2 Acquisition time is set with the ACQT<2:0> bits of the ADCON2 register. Acquisition delays cover a range of 2 to 20 TAD. When the GO/DONE bit is set, the A/D module continues to sample the input for the selected acquisition time, then automatically begins a conversion. Since the acquisition time is programmed, there is no need to wait for an acquisition time between selecting a channel and setting the GO/DONE bit. Manual acquisition is selected when ACQT<2:0> = 000. When the GO/DONE bit is set, sampling is stopped and a conversion begins. The user is responsible for ensuring the required acquisition time has passed between selecting the desired input channel and setting the GO/DONE bit. This option is also the default Reset state of the ACQT<2:0> bits and is compatible with devices that do not offer programmable acquisition times. In either case, when the conversion is completed, the GO/DONE bit is cleared, the ADIF flag is set and the A/D begins sampling the currently selected channel again. When an acquisition time is programmed, there is no indication of when the acquisition time ends and the conversion begins. 19.1.5 3: The PBADEN bit in Configuration Register 3H configures PORTB pins to reset as analog or digital pins by controlling how the bits in ANSELH are reset. • • • • • • • The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit. When changing channels, a delay is required before starting the next conversion. Refer to Section 19.2 “ADC Operation” for more information. 19.1.3 The ADCON2 register allows the user to select an acquisition time that occurs each time the GO/DONE bit is set. 2: Analog levels on any pin with the corresponding ANSx bit cleared may cause the digital input buffer to consume current out of the device’s specification limits. CHANNEL SELECTION ADC VOLTAGE REFERENCE The VCFG bits of the ADCON1 register provide independent control of the positive and negative voltage references. The positive voltage reference can be either VDD or an external voltage source. Likewise, the negative voltage reference can be either VSS or an external voltage source. DS41303B-page 256 SELECTING AND CONFIGURING ACQUISITION TIME CONVERSION CLOCK The source of the conversion clock is software selectable via the ADCS bits of the ADCON2 register. There are seven possible clock options: FOSC/2 FOSC/4 FOSC/8 FOSC/16 FOSC/32 FOSC/64 FRC (dedicated internal oscillator) The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11 TAD periods as shown in Figure 19-3. For correct conversion, the appropriate TAD specification must be met. See A/D conversion requirements in Table 26-25 for more information. Table 19-1 gives examples of appropriate ADC clock selections. Note: Advance Information Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result. © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 19.1.6 INTERRUPTS This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the global interrupt must be disabled. If the global interrupt is enabled, execution will switch to the Interrupt Service Routine. Please see Section 19.1.6 “Interrupts” for more information. The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital Conversion. The ADC interrupt flag is the ADIF bit in the PIR1 register. The ADC interrupt enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared by software. Note: The ADIF bit is set at the completion of every conversion, regardless of whether or not the ADC interrupt is enabled. TABLE 19-1: ADC CLOCK PERIOD (TAD) VS. DEVICE OPERATING FREQUENCIES ADC Clock Period (TAD) ADC Clock Source ADCS<2:0> FOSC/2 64 MHz 000 FOSC/4 100 31.25 ns(2) 62.5 ns(2) ns(2) FOSC/8 001 400 FOSC/16 101 250 ns(2) FOSC/32 010 ns(2) FOSC/64 110 FRC Legend: Note 1: 2: 3: 4: 19.1.7 Device Frequency (FOSC) 500 16 MHz 1-4 250 ns(2) 1.0 μs 4.0 μs(3) 500 ns(2) 2.0 μs 8.0 μs(3) 1.0 μs 4.0 μs(3) 16.0 μs(3) 2.0 μs μs(3) 32.0 μs(3) 16.0 μs(3) 64.0 μs(3) μs(1,4) 1-4 μs(1,4) 500 8.0 μs(1,4) 1-4 μs(1,4) 1-4 ns(2) 1 MHz 125 4.0 μs(3) 1.0 μs x11 4 MHz ns(2) 2.0 μs Shaded cells are outside of recommended range. The FRC source has a typical TAD time of 1.7 μs. These values violate the minimum required TAD time. For faster conversion times, the selection of another clock source is recommended. When the device frequency is greater than 1 MHz, the FRC clock source is only recommended if the conversion will be performed during Sleep. RESULT FORMATTING The 10-bit A/D conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON2 register controls the output format. Figure 19-2 shows the two output formats. FIGURE 19-2: 10-BIT A/D CONVERSION RESULT FORMAT ADRESH (ADFM = 0) ADRESL MSB LSB bit 7 bit 0 bit 7 10-bit A/D Result (ADFM = 1) bit 0 Unimplemented: Read as ‘0’ MSB bit 7 LSB bit 0 bit 7 Unimplemented: Read as ‘0’ © 2007 Microchip Technology Inc. Advance Information bit 0 10-bit A/D Result DS41303B-page 257 PIC18F2XK20/4XK20 19.2 ADC Operation 19.2.1 Figure 19-3 shows the operation of the A/D converter after the GO bit has been set and the ACQT<2:0> bits are cleared. A conversion is started after the following instruction to allow entry into SLEEP mode before the conversion begins. STARTING A CONVERSION To enable the ADC module, the ADON bit of the ADCON0 register must be set to a ‘1’. Setting the GO/ DONE bit of the ADCON0 register to a ‘1’ will, depending on the ACQT bits of the ADCON2 register, either immediately start the Analog-to-Digital conversion or start an acquisition delay followed by the Analog-toDigital conversion. FIGURE 19-3: Figure 19-4 shows the operation of the A/D converter after the GO bit has been set and the ACQT<2:0> bits are set to ‘010’ which selects a 4 TAD acquisition time before the conversion starts. Note: The GO/DONE bit should not be set in the same instruction that turns on the ADC. Refer to Section 19.2.9 “A/D Conversion Procedure”. A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0) TCY - TAD TAD1 TAD2 TAD3 TAD4 TAD5 TAD6 TAD7 TAD8 TAD9 TAD10 TAD11 2 TAD b4 b1 b0 b6 b7 b2 b9 b8 b3 b5 Conversion starts Discharge Holding capacitor is disconnected from analog input (typically 100 ns) Set GO bit On the following cycle: ADRESH:ADRESL is loaded, GO bit is cleared, ADIF bit is set, holding capacitor is connected to analog input. A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD) FIGURE 19-4: TAD Cycles TACQT Cycles 1 2 3 Automatic Acquisition Time 4 1 3 4 5 b9 b8 b7 b6 6 b5 7 8 9 10 11 b4 b3 b2 b1 b0 Conversion starts (Holding capacitor is disconnected from analog input) Set GO bit (Holding capacitor continues acquiring input) DS41303B-page 258 2 2 TAD Discharge On the following cycle: ADRESH:ADRESL is loaded, GO bit is cleared, ADIF bit is set, holding capacitor is connected to analog input. Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 19.2.2 COMPLETION OF A CONVERSION When the conversion is complete, the ADC module will: • Clear the GO/DONE bit • Set the ADIF flag bit • Update the ADRESH:ADRESL registers with new conversion result 19.2.3 DISCHARGE The discharge phase is used to initialize the value of the capacitor array. The array is discharged after every sample. This feature helps to optimize the unity-gain amplifier, as the circuit always needs to charge the capacitor array, rather than charge/discharge based on previous measure values. 19.2.4 TERMINATING A CONVERSION If a conversion must be terminated before completion, the GO/DONE bit can be cleared by software. The ADRESH:ADRESL registers will not be updated with the partially complete Analog-to-Digital conversion sample. Instead, the ADRESH:ADRESL register pair will retain the value of the previous conversion. Note: 19.2.5 A device Reset forces all registers to their Reset state. Thus, the ADC module is turned off and any pending conversion is terminated. 19.2.7 ADC OPERATION DURING SLEEP The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. When the FRC clock source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set. When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set. 19.2.8 SPECIAL EVENT TRIGGER The CCP2 Special Event Trigger allows periodic ADC measurements without software intervention. When this trigger occurs, the GO/DONE bit is set by hardware and the Timer1 or Timer3 counter resets to zero. Using the Special Event Trigger does not assure proper ADC timing. It is the user’s responsibility to ensure that the ADC timing requirements are met. See Section 15.3.4 “Special Event Trigger” for more information. DELAY BETWEEN CONVERSIONS After the A/D conversion is completed or aborted, a 2 TAD wait is required before the next acquisition can be started. After this wait, the currently selected channel is reconnected to the charge holding capacitor commencing the next acquisition. 19.2.6 ADC OPERATION IN POWERMANAGED MODES The selection of the automatic acquisition time and A/D conversion clock is determined in part by the clock source and frequency while in a power-managed mode. If the A/D is expected to operate while the device is in a power-managed mode, the ACQT<2:0> and ADCS<2:0> bits in ADCON2 should be updated in accordance with the clock source to be used in that mode. After entering the mode, an A/D acquisition or conversion may be started. Once started, the device should continue to be clocked by the same clock source until the conversion has been completed. If desired, the device may be placed into the corresponding Idle mode during the conversion. If the device clock frequency is less than 1 MHz, the A/D FRC clock source should be selected. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 259 PIC18F2XK20/4XK20 19.2.9 A/D CONVERSION PROCEDURE This is an example procedure for using the ADC to perform an Analog-to-Digital conversion: 1. 2. 3. 4. 5. 6. 7. 8. Configure Port: • Disable pin output driver (See TRIS register) • Configure pin as analog Configure the ADC module: • Select ADC conversion clock • Configure voltage reference • Select ADC input channel • Select result format • Select acquisition delay • Turn on ADC module Configure ADC interrupt (optional): • Clear ADC interrupt flag • Enable ADC interrupt • Enable peripheral interrupt • Enable global interrupt(1) Wait the required acquisition time(2). Start conversion by setting the GO/DONE bit. Wait for ADC conversion to complete by one of the following: • Polling the GO/DONE bit • Waiting for the ADC interrupt (interrupts enabled) Read ADC Result Clear the ADC interrupt flag (required if interrupt is enabled). EXAMPLE 19-1: A/D CONVERSION ;This code block configures the ADC ;for polling, Vdd and Vss as reference, Frc clock and AN0 input. ; ;Conversion start & polling for completion ; are included. ; MOVLW B’10101111’ ;right justify, Frc, MOVWF ADCON2 ; & 12 TAD ACQ time MOVLW B’00000000’ ;ADC ref = Vdd,Vss MOVWF ADCON1 ; BSF TRISA,0 ;Set RA0 to input BSF ANSEL,0 ;Set RA0 to analog MOVLW B’00000001’ ;AN0, ADC on MOVWF ADCON0 ; BSF ADCON0,GO ;Start conversion ADCPoll: BTFSC ADCON0,GO ;Is conversion done? BRA ADCPoll ;No, test again ; Result is complete - store 2 MSbits in ; RESULTHI and 8 LSbits in RESULTLO MOVFF ADRESH,RESULTHI MOVFF ADRESL,RESULTLO Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution. 2: Software delay required if ACQT bits are set to zero delay. See Section 19.3 “A/D Acquisition Requirements”. DS41303B-page 260 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 19.2.10 ADC REGISTER DEFINITIONS The following registers are used to control the operation of the ADC. Note: Analog pin control is performed by the ANSEL and ANSELH registers. For ANSEL and ANSELH registers, see Register 10-2 and Register 10-3, respectively. REGISTER 19-1: ADCON0: A/D CONTROL REGISTER 0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — — CHS3 CHS2 CHS1 CHS0 GO/DONE ADON bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7-6 Unimplemented: Read as ‘0’ bit 5-2 CHS<3:0>: Analog Channel Select bits 0000 = AN0 0001 = AN1 0010 = AN2 0011 = AN3 0100 = AN4 0101 = AN5(1) 0110 = AN6(1) 0111 = AN7(1) 1000 = AN8 1001 = AN9 1010 = AN10 1011 = AN11 1100 = AN12 1101 = Reserved 1110 = Reserved 1111 = FVR (1.2 Volt Fixed Voltage Reference) bit 1 GO/DONE: A/D Conversion Status bit 1 = A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle. This bit is automatically cleared by hardware when the A/D conversion has completed. 0 = A/D conversion completed/not in progress bit 0 ADON: ADC Enable bit 1 = ADC is enabled 0 = ADC is disabled and consumes no operating current Note 1: These channels are not implemented on PIC18F2XK20 devices. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 261 PIC18F2XK20/4XK20 REGISTER 19-2: ADCON1: A/D CONTROL REGISTER 1 U-0 U-0 R/W-0 R/W-0 U-0 U-0 U-0 U-0 — — VCFG1 VCFG0 — — — — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-6 Unimplemented: Read as ‘0’ bit 5 VCFG1: Negative Voltage Reference select bit 1 = Negative voltage reference supplied externally through VREF- pin. 0 = Negative voltage reference supplied internally by VSS. bit 4 VCFG0: Positive Voltage Reference select bit 1 = Positive voltage reference supplied externally through VREF+ pin. 0 = Positive voltage reference supplied internally by VDD. bit 3-0 Unimplemented: Read as ‘0’ DS41303B-page 262 Advance Information x = Bit is unknown © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 REGISTER 19-3: ADCON2: A/D CONTROL REGISTER 2 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 ADFM — ACQT2 ACQT1 ACQT0 ADCS2 ADCS1 ADCS0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 x = Bit is unknown ADFM: A/D Conversion Result Format Select bit 1 = Right justified 0 = Left justified bit 6 Unimplemented: Read as ‘0’ bit 5-3 ACQT<2:0>: A/D Acquisition time select bits. Acquisition time is the duration that the A/D charge holding capacitor remains connected to A/D channel from the instant the GO/DONE bit is set until conversions begins. 000 = 0(1) 001 = 2 TAD 010 = 4 TAD 011 = 6 TAD 100 = 8 TAD 101 = 12 TAD 110 = 16 TAD 111 = 20 TAD bit 2-0 ADCS<2:0>: A/D Conversion Clock Select bits 000 = FOSC/2 001 = FOSC/8 010 = FOSC/32 011 = FRC(1) (clock derived from a dedicated internal oscillator = 600 kHz nominal) 100 = FOSC/4 101 = FOSC/16 110 = FOSC/64 111 = FRC(1) (clock derived from a dedicated internal oscillator = 600 kHz nominal) Note 1: When the A/D clock source is selected as FRC then the start of conversion is delayed by one instruction cycle after the GO/DONE bit is set to allow the SLEEP instruction to be executed. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 263 PIC18F2XK20/4XK20 REGISTER 19-4: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x ADRES9 ADRES8 ADRES7 ADRES6 ADRES5 ADRES4 ADRES3 ADRES2 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-0 x = Bit is unknown ADRES<9:2>: ADC Result Register bits Upper 8 bits of 10-bit conversion result REGISTER 19-5: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x ADRES1 ADRES0 — — — — — — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-6 ADRES<1:0>: ADC Result Register bits Lower 2 bits of 10-bit conversion result bit 5-0 Reserved: Do not use. REGISTER 19-6: x = Bit is unknown ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x — — — — — — ADRES9 ADRES8 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-2 Reserved: Do not use. bit 1-0 ADRES<9:8>: ADC Result Register bits Upper 2 bits of 10-bit conversion result REGISTER 19-7: x = Bit is unknown ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x ADRES7 ADRES6 ADRES5 ADRES4 ADRES3 ADRES2 ADRES1 ADRES0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-0 x = Bit is unknown ADRES<7:0>: ADC Result Register bits Lower 8 bits of 10-bit conversion result DS41303B-page 264 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 19.3 A/D Acquisition Requirements For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 19-5. The source impedance (RS) and the internal sampling switch (RSS) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (RSS) impedance varies over the device voltage (VDD), see Figure 19-5. The maximum recommended impedance for analog sources is 10 kΩ. As the source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), EQUATION 19-1: an A/D acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 19-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution. ACQUISITION TIME EXAMPLE Temperature = 50°C and external impedance of 10k Ω 3.0V V DD Assumptions: T ACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient = T AMP + T C + T COFF = 5µs + T C + [ ( Temperature - 25°C ) ( 0.05µs/°C ) ] The value for TC can be approximated with the following equations: 1 V AP PLIE D ⎛ 1 – ------------⎞ = V CHOLD ⎝ 2047⎠ ;[1] VCHOLD charged to within 1/2 lsb –TC ----------⎞ ⎛ RC V AP P LI ED ⎜ 1 – e ⎟ = V CHOLD ⎝ ⎠ ;[2] VCHOLD charge response to VAPPLIED – Tc ---------⎞ ⎛ 1 RC V AP P LIED ⎜ 1 – e ⎟ = V A P PLIE D ⎛ 1 – ------------⎞ ⎝ 2047⎠ ⎝ ⎠ ;combining [1] and [2] Solving for TC: T C = – C HOLD ( R IC + R SS + R S ) ln(1/2047) = – 13.5pF ( 1k Ω + 700 Ω + 10k Ω ) ln(0.0004885) = 1.20 µs Therefore: T ACQ = 5µ S + 1.20µ S + [ ( 50°C- 25°C ) ( 0.05µ S /°C ) ] = 7.45µ S Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out. 2: The charge holding capacitor (CHOLD) is discharged after each conversion. 3: The maximum recommended impedance for analog sources is 10 kΩ. This is required to meet the pin leakage specification. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 265 PIC18F2XK20/4XK20 FIGURE 19-5: ANALOG INPUT MODEL VDD ANx Rs CPIN 5 pF VA VT = 0.6V VT = 0.6V Sampling Switch SS Rss RIC ≤ 1k CHOLD = 13.5 pF I LEAKAGE(1) Legend: CPIN = Input Capacitance = Threshold Voltage VT I LEAKAGE = Leakage current at the pin due to various junctions RIC = Interconnect Resistance SS = Sampling Switch CHOLD = Sample/Hold Capacitance Note 1: VDD Discharge Switch VSS/VREF- 3.5V 3.0V 2.5V 2.0V 1.5V .1 1 10 Rss (kΩ) 100 See Section 26.0 “Electrical Characteristics”. FIGURE 19-6: ADC TRANSFER FUNCTION Full-Scale Range 3FFh 3FEh ADC Output Code 3FDh 3FCh 1/2 LSB ideal 3FBh Full-Scale Transition 004h 003h 002h 001h 000h Analog Input Voltage 1/2 LSB ideal VSS/VREF- DS41303B-page 266 Zero-Scale Transition VDD/VREF+ Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 TABLE 19-2: Name REGISTERS ASSOCIATED WITH A/D OPERATION Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset Values on page INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 57 PIR1 PSPIF(1) ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 60 PIE1 (1) PSPIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 60 IPR1 PSPIP(1) ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP 60 PIR2 OSCFIF C1IF C2IF EEIF BCLIF HLVDIF TMR3IF CCP2IF 60 PIE2 OSCFIE C1IE C2IE EEIE BCLIE HLVDIE TMR3IE CCP2IE 60 OSCFIP C1IP C2IP EEIP BCLIP HLVDIP TMR3IP CCP2IP 60 IPR2 ADRESH A/D Result Register, High Byte 59 ADRESL A/D Result Register, Low Byte 59 ADCON0 — — CHS3 CHS2 CHS1 CHS0 GO/DONE ADON 59 ADCON1 — — VCFG1 VCFG0 — — — — 59 ADCON2 ADFM — ACQT2 ACQT1 ACQT0 ADCS2 ADCS1 ADCS0 59 ANS7(1) ANS6(1) ANS5(1) ANS4 ANS3 ANS2 ANS1 ANS0 60 — — — ANS12 ANS11 ANS10 ANS9 ANS8 60 PORTA RA7(2) RA6(2) RA5 RA4 RA3 RA2 RA1 RA0 60 TRISA TRISA7(2) TRISA6(2) PORTB RB7 RB6 RB1 RB0 60 ANSEL ANSELH PORTA Data Direction Control Register RB5 RB4 RB3 RB2 60 TRISB PORTB Data Direction Control Register 60 LATB PORTB Data Latch Register (Read and Write to Data Latch) 60 PORTE(4) — — — — RE3(3) RE2 RE1 RE0 60 TRISE(4) IBF OBF IBOV PSPMODE — TRISE2 TRISE1 TRISE0 60 LATE(4) — — — — — PORTE Data Latch Register 60 Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for A/D conversion. Note 1: These bits are unimplemented on PIC18F2XK20 devices; always maintain these bits clear. 2: PORTA<7:6> and their direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as ‘0’. 3: RE3 port bit is available only as an input pin when the MCLRE Configuration bit is ‘0’. 4: These registers are not implemented on PIC18F2XK20 devices. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 267 PIC18F2XK20/4XK20 NOTES: DS41303B-page 268 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 20.0 COMPARATOR MODULE Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. The comparators are very useful mixed signal building blocks because they provide analog functionality independent of the program execution. The Analog Comparator module includes the following features: • • • • • • • • • Independent comparator control Programmable input selection Comparator output is available internally/externally Programmable output polarity Interrupt-on-change Wake-up from Sleep Programmable Speed/Power optimization PWM shutdown Programmable and fixed voltage reference 20.1 FIGURE 20-1: SINGLE COMPARATOR VIN+ + VIN- – Output VINVIN+ Output Note: Comparator Overview The black areas of the output of the comparator represents the uncertainty due to input offsets and response time. A single comparator is shown in Figure 20-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 269 PIC18F2XK20/4XK20 FIGURE 20-2: COMPARATOR C1 SIMPLIFIED BLOCK DIAGRAM C1CH<1:0> 2 D Q1 C12IN0- 0 C12IN1C12IN2- 1 MUX 2 C12IN3- 3 To Data Bus Q EN RD_CM1CON0 Set C1IF D Q3*RD_CM1CON0 Q EN CL To PWM Logic Reset C1ON(1) C1R C1OE C1VIN- C1IN+ CVREF 0 MUX 1 0 MUX C1VREF 1 FVR C1RSEL Note 1: 2: 3: 4: FIGURE 20-3: C1VIN+ C1 + C1OUT C1OUT pin(2) C1SP C1POL When C1ON = 0, the C1 comparator will produce a ‘0’ output to the XOR Gate. Output shown for reference only. See I/O port pin block diagram for more detail. Q1 and Q3 are phases of the four-phase system clock (FOSC). Q1 is held high during Sleep mode. COMPARATOR C2 SIMPLIFIED BLOCK DIAGRAM D Q1 To Data Bus Q EN RD_CM2CON0 C2CH<1:0> Set C2IF 2 C12IN0- 0 C12IN1C12IN2- 1 MUX 2 C12IN3- 3 C2R C2IN+ CVREF FVR C2RSEL C2ON(1) Q3*RD_CM2CON0 Q EN CL NRESET To PWM Logic C2OE C2VINC2VIN+ C2 C2OUT C2OUT pin(2) C2SP C2POL 0 MUX 1 0 MUX C2VREF 1 Note 1: 2: 3: 4: DS41303B-page 270 D When C2ON = 0, the C2 comparator will produce a ‘0’ output to the XOR Gate. Output shown for reference only. See I/O port pin block diagram for more detail. Q1 and Q3 are phases of the four-phase system clock (FOSC). Q1 is held high during Sleep mode. Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 20.2 Comparator Control Each comparator has a separate control and Configuration register: CM1CON0 for Comparator C1 and CM2CON0 for Comparator C2. In addition, Comparator C2 has a second control register, CM2CON1, for controlling the interaction with Timer1 and simultaneous reading of both comparator outputs. The CM1CON0 and CM2CON0 registers (see Registers 20-1 and 20-2, respectively) contain the control and Status bits for the following: • • • • • • 2: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched. 20.2.5 COMPARATOR OUTPUT POLARITY Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CxPOL bit of the CMxCON0 register. Clearing the CxPOL bit results in a non-inverted output. Enable Input selection Reference selection Output selection Output polarity Speed selection 20.2.1 Note 1: The CxOE bit overrides the PORT data latch. Setting the CxON has no impact on the port override. Table 20-1 shows the output state versus input conditions, including polarity control. TABLE 20-1: COMPARATOR ENABLE COMPARATOR OUTPUT STATE VS. INPUT CONDITIONS Setting the CxON bit of the CMxCON0 register enables the comparator for operation. Clearing the CxON bit disables the comparator resulting in minimum current consumption. Input Condition CxPOL CxOUT CxVIN- > CxVIN+ 0 0 20.2.2 CxVIN- < CxVIN+ 0 1 CxVIN- > CxVIN+ 1 1 CxVIN- < CxVIN+ 1 0 COMPARATOR INPUT SELECTION The CxCH<1:0> bits of the CMxCON0 register direct one of four analog input pins to the comparator inverting input. Note: 20.2.3 To use CxIN+ and C12INx- pins as analog inputs, the appropriate bits must be set in the ANSEL register and the corresponding TRIS bits must also be set to disable the output drivers. COMPARATOR REFERENCE SELECTION Setting the CxR bit of the CMxCON0 register directs an internal voltage reference or an analog input pin to the non-inverting input of the comparator. See Section 21.0 “VOLTAGE REFERENCES” for more information on the Internal Voltage Reference module. 20.2.4 COMPARATOR OUTPUT SELECTION The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the MCxOUT bit of the CM2CON1 register. In order to make the output available for an external connection, the following conditions must be true: 20.2.6 COMPARATOR SPEED SELECTION The trade-off between speed or power can be optimized during program execution with the CxSP control bit. The default state for this bit is ‘1’ which selects the normal speed mode. Device power consumption can be optimized at the cost of slower comparator propagation delay by clearing the CxSP bit to ‘0’. 20.3 Comparator Response Time The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in Section 26.0 “Electrical Characteristics” for more details. • CxOE bit of the CMxCON0 register must be set • Corresponding TRIS bit must be cleared • CxON bit of the CMxCON0 register must be set © 2007 Microchip Technology Inc. Advance Information DS41303B-page 271 PIC18F2XK20/4XK20 20.4 Comparator Interrupt Operation The comparator interrupt flag can be set whenever there is a change in the output value of the comparator. Changes are recognized by means of a mismatch circuit which consists of two latches and an exclusiveor gate (see Figure 20-2 and Figure 20-3). One latch is updated with the comparator output level when the CMxCON0 register is read. This latch retains the value until the next read of the CMxCON0 register or the occurrence of a Reset. The other latch of the mismatch circuit is updated on every Q1 system clock. A mismatch condition will occur when a comparator output change is clocked through the second latch on the Q1 clock cycle. At this point the two mismatch latches have opposite output levels which is detected by the exclusive-or gate and fed to the interrupt circuitry. The mismatch condition persists until either the CMxCON0 register is read or the comparator output returns to the previous state. Note 1: A write operation to the CMxCON0 register will also clear the mismatch condition because all writes include a read operation at the beginning of the write cycle. 20.4.1 PRESETTING THE MISMATCH LATCHES The comparator mismatch latches can be preset to the desired state before the comparators are enabled. When the comparator is off the CxPOL bit controls the CxOUT level. Set the CxPOL bit to the desired CxOUT non-interrupt level while the CxON bit is cleared. Then, configure the desired CxPOL level in the same instruction that the CxON bit is set. Since all register writes are performed as a Read-Modify-Write, the mismatch latches will be cleared during the instruction Read phase and the actual configuration of the CxON and CxPOL bits will be occur in the final Write phase. FIGURE 20-4: COMPARATOR INTERRUPT TIMING W/O CMxCON0 READ Q1 Q3 CxIN+ TRT CxOUT Set CxIF (edge) CxIF reset by software 2: Comparator interrupts will operate correctly regardless of the state of CxOE. The comparator interrupt is set by the mismatch edge and not the mismatch level. This means that the interrupt flag can be reset without the additional step of reading or writing the CMxCON0 register to clear the mismatch registers. When the mismatch registers are cleared, an interrupt will occur upon the comparator’s return to the previous state, otherwise no interrupt will be generated. FIGURE 20-5: Software will need to maintain information about the status of the comparator output, as read from the CMxCON0 register, or CM2CON1 register, to determine the actual change that has occurred. See Figures 20-4 and 20-5. Set CxIF (edge) The CxIF bit of the PIR2 register is the comparator interrupt flag. This bit must be reset by software by clearing it to ‘0’. Since it is also possible to write a ‘1’ to this register, an interrupt can be generated. In mid-range Compatibility mode the CxIE bit of the PIE2 register and the PEIE and GIE bits of the INTCON register must all be set to enable comparator interrupts. If any of these bits are cleared, the interrupt is not enabled, although the CxIF bit of the PIR2 register will still be set if an interrupt condition occurs. DS41303B-page 272 COMPARATOR INTERRUPT TIMING WITH CMxCON0 READ Q1 Q3 CxIN+ TRT CxOUT CxIF cleared by CMxCON0 read reset by software Note 1: If a change in the CMxCON0 register (CxOUT) should occur when a read operation is being executed (start of the Q2 cycle), then the CxIF interrupt flag of the PIR2 register may not get set. 2: When either comparator is first enabled, bias circuitry in the Comparator module may cause an invalid output from the comparator until the bias circuitry is stable. Allow about 1 μs for bias settling then clear the mismatch condition and interrupt flags before enabling comparator interrupts. Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 20.5 Operation During Sleep The comparator, if enabled before entering Sleep mode, remains active during Sleep. The additional current consumed by the comparator is shown separately in the Section 26.0 “Electrical Characteristics”. If the comparator is not used to wake the device, power consumption can be minimized while in Sleep mode by turning off the comparator. Each comparator is turned off by clearing the CxON bit of the CMxCON0 register. A change to the comparator output can wake-up the device from Sleep. To enable the comparator to wake the device from Sleep, the CxIE bit of the PIE2 register and the PEIE bit of the INTCON register must be set. The instruction following the SLEEP instruction always executes following a wake from Sleep. If the GIE bit of the INTCON register is also set, the device will then execute the Interrupt Service Routine. 20.6 Effects of a Reset A device Reset forces the CMxCON0 and CM2CON1 registers to their Reset states. This forces both comparators and the voltage references to their Off states. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 273 PIC18F2XK20/4XK20 REGISTER 20-1: CM1CON0: COMPARATOR 1 CONTROL REGISTER 0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 C1ON C1OUT C1OE C1POL C1SP C1R C1CH1 C1CH0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 C1ON: Comparator C1 Enable bit 1 = Comparator C1 is enabled 0 = Comparator C1 is disabled bit 6 C1OUT: Comparator C1 Output bit If C1POL = 1 (inverted polarity): C1OUT = 0 when C1VIN+ > C1VINC1OUT = 1 when C1VIN+ < C1VINIf C1POL = 0 (non-inverted polarity): C1OUT = 1 when C1VIN+ > C1VINC1OUT = 0 when C1VIN+ < C1VIN- bit 5 C1OE: Comparator C1 Output Enable bit 1 = C1OUT is present on the C1OUT pin(1) 0 = C1OUT is internal only bit 4 C1POL: Comparator C1 Output Polarity Select bit 1 = C1OUT logic is inverted 0 = C1OUT logic is not inverted bit 3 C1SP: Comparator C1 Speed/Power Select bit 1 = C1 operates in normal power, higher speed mode 0 = C1 operates in low-power, low-speed mode bit 2 C1R: Comparator C1 Reference Select bit (non-inverting input) 1 = C1VIN+ connects to C1VREF output 0 = C1VIN+ connects to C1IN+ pin bit 1-0 C1CH<1:0>: Comparator C1 Channel Select bit 00 = C12IN0- pin of C1 connects to C1VIN01 = C12IN1- pin of C1 connects to C1VIN10 = C12IN2- pin of C1 connects to C1VIN11 = C12IN3- pin of C1 connects to C1VIN- Note 1: x = Bit is unknown Comparator output requires the following three conditions: C1OE = 1, C1ON = 1 and corresponding port TRIS bit = 0. DS41303B-page 274 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 REGISTER 20-2: CM2CON0: COMPARATOR 2 CONTROL REGISTER 0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 C2ON C2OUT C2OE C2POL C2SP C2R C2CH1 C2CH0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 C2ON: Comparator C2 Enable bit 1 = Comparator C2 is enabled 0 = Comparator C2 is disabled bit 6 C2OUT: Comparator C2 Output bit If C2POL = 1 (inverted polarity): C2OUT = 0 when C2VIN+ > C2VINC2OUT = 1 when C2VIN+ < C2VINIf C2POL = 0 (non-inverted polarity): C2OUT = 1 when C2VIN+ > C2VINC2OUT = 0 when C2VIN+ < C2VIN- bit 5 C2OE: Comparator C2 Output Enable bit 1 = C2OUT is present on C2OUT pin(1) 0 = C2OUT is internal only bit 4 C2POL: Comparator C2 Output Polarity Select bit 1 = C2OUT logic is inverted 0 = C2OUT logic is not inverted bit 3 C2SP: Comparator C2 Speed/Power Select bit 1 = C2 operates in normal power, higher speed mode 0 = C2 operates in low-power, low-speed mode bit 2 C2R: Comparator C2 Reference Select bits (non-inverting input) 1 = C2VIN+ connects to C2VREF 0 = C2VIN+ connects to C2IN+ pin bit 1-0 C2CH<1:0>: Comparator C2 Channel Select bits 00 = C12IN0- pin of C2 connects to C2VIN01 = C12IN1- pin of C2 connects to C2VIN10 = C12IN2- pin of C2 connects to C2VIN11 = C12IN3- pin of C2 connects to C2VIN- Note 1: x = Bit is unknown Comparator output requires the following three conditions: C2OE = 1, C2ON = 1 and corresponding port TRIS bit = 0. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 275 PIC18F2XK20/4XK20 20.7 Analog Input Connection Considerations A simplified circuit for an analog input is shown in Figure 20-6. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and VSS. The analog input, therefore, must be between VSS and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur. Note 1: When reading a PORT register, all pins configured as analog inputs will read as a ‘0’. Pins configured as digital inputs will convert as an analog input, according to the input specification. 2: Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified. A maximum source impedance of 10 kΩ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced. FIGURE 20-6: ANALOG INPUT MODEL VDD VT ≈ 0.6V Rs < 10K AIN VA CPIN 5 pF VT ≈ 0.6V RIC ILEAKAGE(1) Vss Legend: CPIN = Input Capacitance ILEAKAGE = Leakage Current at the pin due to various junctions RIC = Interconnect Resistance = Source Impedance RS = Analog Voltage VA VT = Threshold Voltage Note 1: See Section 26.0 “Electrical Characteristics”. DS41303B-page 276 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 20.8 Additional Comparator Features 20.8.2 There are two additional comparator features: • Simultaneous read of comparator outputs • Internal reference selection 20.8.1 SIMULTANEOUS COMPARATOR OUTPUT READ The MC1OUT and MC2OUT bits of the CM2CON1 register are mirror copies of both comparator outputs. The ability to read both outputs simultaneously from a single register eliminates the timing skew of reading separate registers. INTERNAL REFERENCE SELECTION There are two internal voltage references available to the non-inverting input of each comparator. One of these is the 1.2V Fixed Voltage Reference (FVR) and the other is the variable Comparator Voltage Reference (CVREF). The CxRSEL bit of the CM2CON register determines which of these references is routed to the Comparator Voltage reference output (CXVREF). Further routing to the comparator is accomplished by the CxR bit of the CMxCON0 register. See Section 21.1 “Comparator Voltage Reference” and Figure 20-2 and Figure 20-3 for more detail. Note 1: Obtaining the status of C1OUT or C2OUT by reading CM2CON1 does not affect the comparator interrupt mismatch registers. REGISTER 20-3: CM2CON1: COMPARATOR 2 CONTROL REGISTER 1 R-0 R-0 R/W-0 R/W-0 U-0 U-0 U-0 U-0 MC1OUT MC2OUT C1RSEL C2RSEL — — — — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 MC1OUT: Mirror Copy of C1OUT bit bit 6 MC2OUT: Mirror Copy of C2OUT bit bit 5 C1RSEL: Comparator C1 Reference Select bit 1 = FVR (1.2 Volt fixed voltage reference) routed to C1VREF input 0 = CVREF routed to C1VREF input bit 4 C2RSEL: Comparator C2 Reference Select bit 1 = FVR (1.2 Volt fixed voltage reference) routed to C2VREF input 0 = CVREF routed to C2VREF input bit 3-0 Unimplemented: Read as ‘0’ © 2007 Microchip Technology Inc. Advance Information x = Bit is unknown DS41303B-page 277 PIC18F2XK20/4XK20 TABLE 20-2: REGISTERS ASSOCIATED WITH COMPARATOR MODULE Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset Values on page CM1CON0 C1ON C1OUT C1OE C1POL C1SP C1R C1CH1 C1CH0 60 CM2CON0 C2ON C2OUT C2OE C2POL C2SP C2R C2CH1 C2CH0 60 CM2CON1 MC1OUT MC2OUT C1RSEL C2RSEL — — — — 61 CVRCON CVREN CVROE CVRR CVRSS CVR3 CVR2 CVR1 CVR0 59 FVREN FVRST CVRCON2 INTCON GIE/GIEH PEIE/GIEL — — — — — — 59 TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 57 PIR2 OSCFIF C1IF C2IF EEIF BCLIF HLVDIF TMR3IF CCP2IF 60 PIE2 OSCFIE C1IE C2IE EEIE BCLIE HLVDIE TMR3IE CCP2IE 60 IPR2 OSCFIP C1IP C2IP EEIP BCLIP HLVDIP TMR3IP CCP2IP 60 RA7(1) RA6(1) RA5 RA4 RA3 RA2 RA1 RA0 60 LATA LATA7(1) LATA6(1) TRISA TRISA7(1) TRISA6(1) PORTA Data Direction Control Register PORTA PORTA Data Latch Register (Read and Write to Data Latch) 60 60 Legend: — = unimplemented, read as ‘0’. Shaded cells are unused by the comparator module. Note 1: PORTA<7:6> and their direction and latch bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as ‘0’. DS41303B-page 278 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 21.0 VOLTAGE REFERENCES There are two independent voltage references available: • Programmable Comparator Voltage Reference • 1.2V Fixed Voltage Reference 21.1 Comparator Voltage Reference The Comparator Voltage Reference module provides an internally generated voltage reference for the comparators. The following features are available: • • • • • Independent from Comparator operation Two 16-level voltage ranges Output clamped to VSS Ratiometric with VDD 1.2 Fixed Reference Voltage (FVR) INDEPENDENT OPERATION The comparator voltage reference is independent of the comparator configuration. Setting the CVREN bit of the CVRCON register will enable the voltage reference by allowing current to flow in the CVREF voltage divider. When both the CVREN bit is cleared, current flow in the CVREF voltage divider is disabled minimizing the power drain of the voltage reference peripheral. 21.1.2 OUTPUT VOLTAGE SELECTION The CVREF voltage reference has 2 ranges with 16 voltage levels in each range. Range selection is controlled by the CVRR bit of the CVRCON register. The 16 levels are set with the CVR<3:0> bits of the CVRCON register. The CVREF output voltage is determined by the following equations: EQUATION 21-1: OUTPUT CLAMPED TO VSS The CVREF output voltage can be set to Vss with no power consumption by configuring CVRCON as follows: • CVREN = 0 • CVRR = 1 • CVR<3:0> = 0000 This allows the comparator to detect a zero-crossing while not consuming additional CVREF module current. 21.1.4 OUTPUT RATIOMETRIC TO VDD The comparator voltage reference is VDD derived and therefore, the CVREF output changes with fluctuations in VDD. The tested absolute accuracy of the Comparator Voltage Reference can be found in Section 26.0 “Electrical Characteristics”. The CVRCON register (Figure 21-1) controls the Voltage Reference module shown in Figure 21-1. 21.1.1 21.1.3 CVREF OUTPUT VOLTAGE 21.1.5 VOLTAGE REFERENCE OUTPUT The CVREF voltage reference can be output to the device CVREF pin by setting the CVROE bit of the CVRCON register to ‘1’. Selecting the reference voltage for output on the CVREF pin automatically overrides the digital output buffer and digital input threshold detector functions of that pin. Reading the CVREF pin when it has been configured for reference voltage output will always return a ‘0’. Due to the limited current drive capability, a buffer must be used on the voltage reference output for external connections to CVREF. Figure 21-2 shows an example buffering technique. 21.1.6 OPERATION DURING SLEEP When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the CVRCON register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled. 21.1.7 EFFECTS OF A RESET A device Reset affects the following: CV RR = 1 (low range): CVREF = (VR<3:0>/24) × CV RSRC CV RR = 0 (high range): CV REF = (CVRSRC/4) + (VR<3:0> × CVRSRC/32) CV RSRC = V DD or [(VREF+) - (VREF-)] • • • • • Comparator voltage reference is disabled Fixed voltage reference is disabled CVREF is removed from the CVREF pin The high-voltage range is selected The CVR<3:0> range select bits are cleared The full range of VSS to VDD cannot be realized due to the construction of the module. See Figure 21-1. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 279 PIC18F2XK20/4XK20 21.2 21.2.1 FVR Reference Module When the Fixed Voltage Reference module is enabled, it will require some time for the reference and its amplifier circuits to stabilize. The user program must include a small delay routine to allow the module to settle. The FVRST stable bit of the CVRCON2 register also indicates that the FVR reference has been operating long enough to be stable. See Section 26.0 “Electrical Characteristics” for the minimum delay requirement. The FVR reference is a stable fixed voltage reference, independent of VDD, with a nominal output voltage of 1.2V. This reference can be enabled by setting the FVREN bit of the CVRCON2 register to ‘1’. The FVR defaults to on when any one or more of the HFINTOSC, HLVD, or BOR functions are enabled. The FVR voltage reference can be routed to the comparators or an ADC input channel. FIGURE 21-1: FVR STABILIZATION PERIOD VOLTAGE REFERENCE BLOCK DIAGRAM CVRSS = 1 VREF+ VDD 8R CVRSS = 0 CVR<3:0> R CVREN R 16-to-1 MUX R R 16 Steps CVREF R R R CVRR 8R CVRSS = 1 VREF- CVRSS = 0 1.2 Volt Fixed Reference FVREN From HVLD and BOR circuits DS41303B-page 280 EN Advance Information FVR FVRST © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 FIGURE 21-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE PIC18F2XK20/4XK20 CVREF Module R(1) Voltage Reference Output Impedance Note 1: + – CVREF Buffered CVREF Output R is dependent upon the voltage reference Configuration bits, CVR<3:0> and CVRR. REGISTER 21-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 CVREN CVROE(1) CVRR CVRSS CVR3 CVR2 CVR1 CVR0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 CVREN: Comparator Voltage Reference Enable bit 1 = CVREF circuit powered on 0 = CVREF circuit powered down bit 6 CVROE: Comparator VREF Output Enable bit(1) 1 = CVREF voltage level is also output on the CVREF pin 0 = CVREF voltage is disconnected from the CVREF pin bit 5 CVRR: Comparator VREF Range Selection bit 1 = 0 to 0.667 CVRSRC, with CVRSRC/24 step size (low range) 0 = 0.25 CVRSRC to 0.75 CVRSRC, with CVRSRC/32 step size (high range) bit 4 CVRSS: Comparator VREF Source Selection bit 1 = Comparator reference source, CVRSRC = (VREF+) – (VREF-) 0 = Comparator reference source, CVRSRC = VDD – VSS bit 3-0 CVR<3:0>: Comparator VREF Value Selection bits (0 ≤ (CVR<3:0>) ≤ 15) When CVRR = 1: CVREF = ((CVR<3:0>)/24) • (CVRSRC) When CVRR = 0: CVREF = (CVRSRC/4) + ((CVR<3:0>)/32) • (CVRSRC) Note 1: CVROE overrides the TRISA<2> bit setting. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 281 PIC18F2XK20/4XK20 REGISTER 21-2: CVRCON2: COMPARATOR VOLTAGE REFERENCE CONTROL 2 REGISTER R/W-0 R-0 U-0 U-0 U-0 U-0 U-0 U-0 FVREN FVRST — — — — — — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 FVREN: Fixed Voltage Reference Enable bit 1 = FVR circuit powered on 0 = FVR circuit not enabled by FVREN. Other peripherals may enable FVR. bit 6 FVRST: Fixed Voltage Stable Status bit 1 = FVR is stable and can be used. 0 = FVR is not stable and should not be used. bit 5-0 Unimplemented: Read as ‘0’. TABLE 21-1: REGISTERS ASSOCIATED WITH COMPARATOR VOLTAGE REFERENCE Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset Values on page CVRCON CVREN CVROE CVRR CVRSS CVR3 CVR2 CVR1 CVR0 60 CVRCON2 FVREN FVRST — — — — — — 59 CM1CON0 C1ON C1OUT C1OE C1POL C1SP C1R C1CH1 C1CH0 60 CM2CON0 C2ON C2OUT C2OE C2POL C2SP C2R C2CH1 C2CH0 60 — — — — 61 Name CM2CON1 MC1OUT MC2OUT C1RSEL C2RSEL TRISA TRISA7(1) TRISA6(1) PORTA Data Direction Control Register 60 Legend: Shaded cells are not used with the comparator voltage reference. Note 1: PORTA pins are enabled based on oscillator configuration. DS41303B-page 282 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 22.0 HIGH/LOW-VOLTAGE DETECT (HLVD) The block diagram for the HLVD module is shown in Figure 22-1. PIC18F2XK20/4XK20 devices have a High/Low-Voltage Detect module (HLVD). This is a programmable circuit that allows the user to specify both a device voltage trip point and the direction of change from that point. If the device experiences an excursion past the trip point in that direction, an interrupt flag is set. If the interrupt is enabled, the program execution will branch to the interrupt vector address and the software can then respond to the interrupt. The High/Low-Voltage Detect Control register (Register 22-1) completely controls the operation of the HLVD module. This allows the circuitry to be “turned off” by the user under software control, which minimizes the current consumption for the device. REGISTER 22-1: R/W-0 The VDIRMAG bit determines the overall operation of the module. When VDIRMAG is cleared, the module monitors for drops in VDD below a predetermined set point. When the bit is set, the module monitors for rises in VDD above the set point. HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER U-0 VDIRMAG The module is enabled by setting the HLVDEN bit. Each time that the HLVD module is enabled, the circuitry requires some time to stabilize. The IRVST bit is a read-only bit and is used to indicate when the circuit is stable. The module can only generate an interrupt after the circuit is stable and IRVST is set. — R-0 IRVST R/W-0 R/W-0 R/W-1 R/W-0 R/W-1 HLVDEN HLVDL3(1) HLVDL2(1) HLVDL1(1) HLVDL0(1) bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented C = Clearable only bit -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 7 VDIRMAG: Voltage Direction Magnitude Select bit 1 = Event occurs when voltage equals or exceeds trip point (HLVDL<3:0>) 0 = Event occurs when voltage equals or falls below trip point (HLVDL<3:0>) bit 6 Unimplemented: Read as ‘0’ bit 5 IRVST: Internal Reference Voltage Stable Flag bit 1 = Indicates that the voltage detect logic will generate the interrupt flag at the specified voltage range 0 = Indicates that the voltage detect logic will not generate the interrupt flag at the specified voltage range and the HLVD interrupt should not be enabled bit 4 HLVDEN: High/Low-Voltage Detect Power Enable bit 1 = HLVD enabled 0 = HLVD disabled bit 3-0 HLVDL<3:0>: Voltage Detection Limit bits(1) 1111 = External analog input is used (input comes from the HLVDIN pin) 1110 = Maximum setting . . . 0000 = Minimum setting Note 1: See Table 26-3 for specifications. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 283 PIC18F2XK20/4XK20 22.1 Operation When the HLVD module is enabled, a comparator uses an internally generated reference voltage as the set point. The set point is compared with the trip point, where each node in the resistor divider represents a trip point voltage. The “trip point” voltage is the voltage level at which the device detects a high or low-voltage event, depending on the configuration of the module. When the supply voltage is equal to the trip point, the voltage tapped off of the resistor array is equal to the internal reference voltage generated by the voltage reference module. The comparator then generates an interrupt signal by setting the HLVDIF bit. FIGURE 22-1: The trip point voltage is software programmable to any one of 16 values. The trip point is selected by programming the HLVDL<3:0> bits of the HLVDCON register. The HLVD module has an additional feature that allows the user to supply the trip voltage to the module from an external source. This mode is enabled when bits HLVDL<3:0> are set to ‘1111’. In this state, the comparator input is multiplexed from the external input pin, HLVDIN. This gives users flexibility because it allows them to configure the High/Low-Voltage Detect interrupt to occur at any voltage in the valid operating range. HLVD MODULE BLOCK DIAGRAM (WITH EXTERNAL INPUT) Externally Generated Trip Point VDD VDD HLVDCON Register HLVDEN HLVDIN 16-to-1 MUX HLVDIN HLVDL<3:0> VDIRMAG Set HLVDIF HLVDEN BOREN DS41303B-page 284 Internal Voltage Reference Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 22.2 HLVD Setup The following steps are needed to set up the HLVD module: 1. 2. 3. 4. 5. Write the value to the HLVDL<3:0> bits that selects the desired HLVD trip point. Set the VDIRMAG bit to detect high voltage (VDIRMAG = 1) or low voltage (VDIRMAG = 0). Enable the HLVD module by setting the HLVDEN bit. Clear the HLVD interrupt flag bit of the PIR2 register, which may have been set from a previous interrupt. Enable the HLVD interrupt if interrupts are desired by setting the HLVDIE bit of the PIE2 register, and the GIE and PEIE bits of the INTCON register. An interrupt will not be generated until the IRVST bit is set. 22.3 22.4 HLVD Start-up Time The internal reference voltage of the HLVD module, specified in electrical specification parameter D420, may be used by other internal circuitry, such as the Programmable Brown-out Reset. If the HLVD or other circuits using the voltage reference are disabled to lower the device’s current consumption, the reference voltage circuit will require time to become stable before a low or high-voltage condition can be reliably detected. This start-up time, TIRVST, is an interval that is independent of device clock speed. It is specified in electrical specification parameter 36. Current Consumption When the module is enabled, the HLVD comparator and voltage divider are enabled and will consume static current. The total current consumption, when enabled, is specified in electrical specification parameter D022B. FIGURE 22-2: Depending on the application, the HLVD module does not need to be operating constantly. To decrease the current requirements, the HLVD circuitry may only need to be enabled for short periods where the voltage is checked. After doing the check, the HLVD module may be disabled. The HLVD interrupt flag is not enabled until TIRVST has expired and a stable reference voltage is reached. For this reason, brief excursions beyond the set point may not be detected during this interval. Refer to Figure 22-2 or Figure 22-3. LOW-VOLTAGE DETECT OPERATION (VDIRMAG = 0) CASE 1: HLVDIF may not be set VDD VHLVD HLVDIF Enable HLVD TIVRST IRVST Internal Reference is stable HLVDIF cleared by software CASE 2: VDD VHLVD HLVDIF Enable HLVD TIVRST IRVST Internal Reference is stable HLVDIF cleared by software HLVDIF cleared by software, HLVDIF remains set since HLVD condition still exists © 2007 Microchip Technology Inc. Advance Information DS41303B-page 285 PIC18F2XK20/4XK20 FIGURE 22-3: HIGH-VOLTAGE DETECT OPERATION (VDIRMAG = 1) CASE 1: HLVDIF may not be set VHLVD VDD HLVDIF Enable HLVD TIVRST IRVST HLVDIF cleared by software Internal Reference is stable CASE 2: VHLVD VDD HLVDIF Enable HLVD TIVRST IRVST Internal Reference is stable HLVDIF cleared by software HLVDIF cleared by software, HLVDIF remains set since HLVD condition still exists DS41303B-page 286 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 FIGURE 22-4: Applications In many applications, the ability to detect a drop below, or rise above, a particular threshold is desirable. For example, the HLVD module could be periodically enabled to detect Universal Serial Bus (USB) attach or detach. This assumes the device is powered by a lower voltage source than the USB when detached. An attach would indicate a high-voltage detect from, for example, 3.3V to 5V (the voltage on USB) and vice versa for a detach. This feature could save a design a few extra components and an attach signal (input pin). VA VB For general battery applications, Figure 22-4 shows a possible voltage curve. Over time, the device voltage decreases. When the device voltage reaches voltage VA, the HLVD logic generates an interrupt at time TA. The interrupt could cause the execution of an ISR, which would allow the application to perform “housekeeping tasks” and perform a controlled shutdown before the device voltage exits the valid operating range at TB. The HLVD, thus, would give the application a time window, represented by the difference between TA and TB, to safely exit. TABLE 22-1: TYPICAL LOW-VOLTAGE DETECT APPLICATION Voltage 22.5 Time TA TB Legend: VA = HLVD trip point VB = Minimum valid device operating voltage REGISTERS ASSOCIATED WITH HIGH/LOW-VOLTAGE DETECT MODULE Name Bit 7 Bit 6 HLVDCON VDIRMAG — INTCON GIE/GIEH PEIE/GIEL Reset Values on Page Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 IRVST HLVDEN HLVDL3 HLVDL2 HLVDL1 HLVDL0 58 TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 57 PIR2 OSCFIF C1IF C2IF EEIF BCLIF HLVDIF TMR3IF CCP2IF 60 PIE2 OSCFIE C1IE C2IE EEIE BCLIE HLVDIE TMR3IE CCP2IE 60 IPR2 OSCFIP C1IP C2IP EEIP BCLIP HLVDIP TMR3IP CCP2IP 60 Legend: — = unimplemented, read as ‘0’. Shaded cells are unused by the HLVD module. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 287 PIC18F2XK20/4XK20 NOTES: DS41303B-page 288 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 23.0 SPECIAL FEATURES OF THE CPU PIC18F2XK20/4XK20 devices include several features intended to maximize reliability and minimize cost through elimination of external components. These are: • Oscillator Selection • Resets: - Power-on Reset (POR) - Power-up Timer (PWRT) - Oscillator Start-up Timer (OST) - Brown-out Reset (BOR) • Interrupts • Watchdog Timer (WDT) • Code Protection • ID Locations • In-Circuit Serial Programming™ The oscillator can be configured for the application depending on frequency, power, accuracy and cost. All of the options are discussed in detail in Section 2.0 “Oscillator Module (With Fail-Safe Clock Monitor)”. A complete discussion of device Resets and interrupts is available in previous sections of this data sheet. In addition to their Power-up and Oscillator Start-up Timers provided for Resets, PIC18F2XK20/4XK20 devices have a Watchdog Timer, which is either permanently enabled via the Configuration bits or software controlled (if configured as disabled). The inclusion of an internal RC oscillator also provides the additional benefits of a Fail-Safe Clock Monitor (FSCM) and Two-Speed Start-up. FSCM provides for background monitoring of the peripheral clock and automatic switchover in the event of its failure. TwoSpeed Start-up enables code to be executed almost immediately on start-up, while the primary clock source completes its start-up delays. All of these features are enabled and configured by setting the appropriate Configuration register bits. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 289 PIC18F2XK20/4XK20 23.1 Configuration Bits The Configuration bits can be programmed (read as ‘0’) or left unprogrammed (read as ‘1’) to select various device configurations. These bits are mapped starting at program memory location 300000h. The user will note that address 300000h is beyond the user program memory space. In fact, it belongs to the configuration memory space (300000h-3FFFFFh), which can only be accessed using table reads and table writes. Programming the Configuration registers is done in a manner similar to programming the Flash memory. The WR bit in the EECON1 register starts a self-timed write to the Configuration register. In normal operation mode, a TBLWT instruction with the TBLPTR pointing to the Configuration register sets up the address and the data for the Configuration register write. Setting the WR bit starts a long write to the Configuration register. The Configuration registers are written a byte at a time. To write or erase a configuration cell, a TBLWT instruction can write a ‘1’ or a ‘0’ into the cell. For additional details on Flash programming, refer to Section 6.5 “Writing to Flash Program Memory”. TABLE 23-1: CONFIGURATION BITS AND DEVICE IDs File Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 300001h CONFIG1H IESO FCMEN — — FOSC3 FOSC2 300002h CONFIG2L — — — BORV1 BORV0 BOREN1 — — — WDTPS3 WDTPS2 — — — Bit 1 Bit 0 FOSC1 FOSC0 BOREN0 PWRTEN Default/ Unprogrammed Value 00-- 0111 ---1 1111 WDTPS1 WDTPS0 WDTEN HFOFST LPT1OSC PBADEN CCP2MX 1--- 1011 — STVREN 10-- -1-1 CP2(1) CP1 CP0 ---- 1111 — — — — 11-- ---- — WRT3(1) WRT2(1) WRT1 WRT0 ---- 1111 — — — — — 111- ---- 300003h CONFIG2H 300005h CONFIG3H MCLRE 300006h CONFIG4L DEBUG XINST — — — LVP 300008h CONFIG5L — — — — CP3(1) 300009h CONFIG5H CPD CPB — — 30000Ah CONFIG6L — — — 30000Bh CONFIG6H WRTD WRTB WRTC (1) (1) ---1 1111 30000Ch CONFIG7L — — — — EBTR1 EBTR0 ---- 1111 30000Dh CONFIG7H — EBTRB — — — — — — -1-- ---- DEV2 DEV1 DEV0 REV4 REV3 REV2 REV1 REV0 qqqq qqqq(2) DEV10 DEV9 DEV8 DEV7 DEV6 DEV5 DEV4 DEV3 0000 1100 3FFFFEh DEVID1(2) (2) EBTR3 EBTR2 3FFFFFh DEVID2 Legend: x = unknown, u = unchanged, – = unimplemented, q = value depends on condition. Shaded cells are unimplemented, read as ‘0’. Unimplemented in PIC18FX3K20 and PIC18FX4K20 devices; maintain this bit set. See Register 23-12 for DEVID1 values. DEVID registers are read-only and cannot be programmed by the user. Note 1: 2: DS41303B-page 290 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 REGISTER 23-1: CONFIG1H: CONFIGURATION REGISTER 1 HIGH R/P-0 R/P-0 U-0 U-0 R/P-0 R/P-1 R/P-1 R/P-1 IESO FCMEN — — FOSC3 FOSC2 FOSC1 FOSC0 bit 7 bit 0 Legend: R = Readable bit P = Programmable bit -n = Value when device is unprogrammed U = Unimplemented bit, read as ‘0’ x = Bit is unknown bit 7 IESO: Internal/External Oscillator Switchover bit 1 = Oscillator Switchover mode enabled 0 = Oscillator Switchover mode disabled bit 6 FCMEN: Fail-Safe Clock Monitor Enable bit 1 = Fail-Safe Clock Monitor enabled 0 = Fail-Safe Clock Monitor disabled bit 5-4 Unimplemented: Read as ‘0’ bit 3-0 FOSC<3:0>: Oscillator Selection bits 11xx = External RC oscillator, CLKOUT function on RA6 101x = External RC oscillator, CLKOUT function on RA6 1001 = Internal oscillator block, CLKOUT function on RA6, port function on RA7 1000 = Internal oscillator block, port function on RA6 and RA7 0111 = External RC oscillator, port function on RA6 0110 = HS oscillator, PLL enabled (Clock Frequency = 4 x FOSC1) 0101 = EC oscillator, port function on RA6 0100 = EC oscillator, CLKOUT function on RA6 0011 = External RC oscillator, CLKOUT function on RA6 0010 = HS oscillator 0001 = XT oscillator 0000 = LP oscillator © 2007 Microchip Technology Inc. Advance Information DS41303B-page 291 PIC18F2XK20/4XK20 REGISTER 23-2: CONFIG2L: CONFIGURATION REGISTER 2 LOW U-0 U-0 U-0 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 — — — BORV1(1) BORV0(1) BOREN1(2) BOREN0(2) PWRTEN(2) bit 7 bit 0 Legend: R = Readable bit P = Programmable bit -n = Value when device is unprogrammed U = Unimplemented bit, read as ‘0’ x = Bit is unknown bit 7-5 Unimplemented: Read as ‘0’ bit 4-3 BORV<1:0>: Brown-out Reset Voltage bits(1) 11 = VBOR set to 1.8V nominal 10 = VBOR set to 2.2V nominal 01 = VBOR set to 2.7V nominal 00 = VBOR set to 3.0V nominal bit 2-1 BOREN<1:0>: Brown-out Reset Enable bits(2) 11 = Brown-out Reset enabled in hardware only (SBOREN is disabled) 10 = Brown-out Reset enabled in hardware only and disabled in Sleep mode (SBOREN is disabled) 01 = Brown-out Reset enabled and controlled by software (SBOREN is enabled) 00 = Brown-out Reset disabled in hardware and software bit 0 PWRTEN: Power-up Timer Enable bit(2) 1 = PWRT disabled 0 = PWRT enabled Note 1: 2: See Section 26.1 “DC Characteristics: Supply Voltage” for specifications. The Power-up Timer is decoupled from Brown-out Reset, allowing these features to be independently controlled. REGISTER 23-3: CONFIG2H: CONFIGURATION REGISTER 2 HIGH U-0 U-0 U-0 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 — — — WDTPS3 WDTPS2 WDTPS1 WDTPS0 WDTEN bit 7 bit 0 Legend: R = Readable bit P = Programmable bit -n = Value when device is unprogrammed U = Unimplemented bit, read as ‘0’ x = Bit is unknown bit 7-5 Unimplemented: Read as ‘0’ bit 4-1 WDTPS<3:0>: Watchdog Timer Postscale Select bits 1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:1,024 1001 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:8 0010 = 1:4 0001 = 1:2 0000 = 1:1 bit 0 WDTEN: Watchdog Timer Enable bit 1 = WDT is always enabled. SWDTEN bit has no effect 0 = WDT is controlled by SWDTEN bit of the WDTCON register DS41303B-page 292 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 REGISTER 23-4: CONFIG3H: CONFIGURATION REGISTER 3 HIGH R/P-1 U-0 U-0 U-0 R/P-1 R/P-0 R/P-1 R/P-1 MCLRE — — — HFOFST LPT1OSC PBADEN CCP2MX bit 7 bit 0 Legend: R = Readable bit P = Programmable bit -n = Value when device is unprogrammed U = Unimplemented bit, read as ‘0’ x = Bit is unknown bit 7 MCLRE: MCLR Pin Enable bit 1 = MCLR pin enabled; RE3 input pin disabled 0 = RE3 input pin enabled; MCLR disabled bit 6-4 Unimplemented: Read as ‘0’ bit 3 HFOFST: HFINTOSC Fast Start-up 1 = HFINTOSC starts clocking the CPU without waiting for the oscillator to stabilize. 0 = The system clock is held off until the HFINTOSC is stable. bit 2 LPT1OSC: Low-Power Timer1 Oscillator Enable bit 1 = Timer1 configured for low-power operation 0 = Timer1 configured for higher power operation bit 1 PBADEN: PORTB A/D Enable bit (Affects ADCON1 Reset state. ADCON1 controls PORTB<4:0> pin configuration.) 1 = PORTB<4:0> pins are configured as analog input channels on Reset 0 = PORTB<4:0> pins are configured as digital I/O on Reset bit 0 CCP2MX: CCP2 MUX bit 1 = CCP2 input/output is multiplexed with RC1 0 = CCP2 input/output is multiplexed with RB3 REGISTER 23-5: CONFIG4L: CONFIGURATION REGISTER 4 LOW R/P-1 R/P-0 U-0 U-0 U-0 R/P-1 U-0 R/P-1 DEBUG XINST — — — LVP — STVREN bit 0 bit 7 Legend: R = Readable bit P = Programmable bit -n = Value when device is unprogrammed U = Unimplemented bit, read as ‘0’ x = Bit is unknown bit 7 DEBUG: Background Debugger Enable bit 1 = Background debugger disabled, RB6 and RB7 configured as general purpose I/O pins 0 = Background debugger enabled, RB6 and RB7 are dedicated to In-Circuit Debug bit 6 XINST: Extended Instruction Set Enable bit 1 = Instruction set extension and Indexed Addressing mode enabled 0 = Instruction set extension and Indexed Addressing mode disabled (Legacy mode) bit 5-3 Unimplemented: Read as ‘0’ bit 2 LVP: Single-Supply ICSP Enable bit 1 = Single-Supply ICSP enabled 0 = Single-Supply ICSP disabled bit 1 Unimplemented: Read as ‘0’ bit 0 STVREN: Stack Full/Underflow Reset Enable bit 1 = Stack full/underflow will cause Reset 0 = Stack full/underflow will not cause Reset © 2007 Microchip Technology Inc. Advance Information DS41303B-page 293 PIC18F2XK20/4XK20 REGISTER 23-6: U-0 CONFIG5L: CONFIGURATION REGISTER 5 LOW U-0 — — U-0 U-0 — — R/C-1 R/C-1 (1) (1) CP3 CP2 R/C-1 R/C-1 CP1 CP0 bit 7 bit 0 Legend: R = Readable bit U = Unimplemented bit, read as ‘0’ -n = Value when device is unprogrammed C = Clearable only bit bit 7-4 Unimplemented: Read as ‘0’ bit 3 CP3: Code Protection bit(1) 1 = Block 3 not code-protected 0 = Block 3 code-protected bit 2 CP2: Code Protection bit(1) 1 = Block 2 not code-protected 0 = Block 2 code-protected bit 1 CP1: Code Protection bit 1 = Block 1 not code-protected 0 = Block 1 code-protected bit 0 CP0: Code Protection bit 1 = Block 0 not code-protected 0 = Block 0 code-protected Note 1: Unimplemented in PIC18FX3K20 and PIC18FX4K20 devices; maintain this bit set. REGISTER 23-7: CONFIG5H: CONFIGURATION REGISTER 5 HIGH R/C-1 R/C-1 U-0 U-0 U-0 U-0 U-0 U-0 CPD CPB — — — — — — bit 7 bit 0 Legend: R = Readable bit U = Unimplemented bit, read as ‘0’ -n = Value when device is unprogrammed C = Clearable only bit bit 7 CPD: Data EEPROM Code Protection bit 1 = Data EEPROM not code-protected 0 = Data EEPROM code-protected bit 6 CPB: Boot Block Code Protection bit 1 = Boot block not code-protected 0 = Boot block code-protected bit 5-0 Unimplemented: Read as ‘0’ DS41303B-page 294 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 REGISTER 23-8: CONFIG6L: CONFIGURATION REGISTER 6 LOW U-0 U-0 U-0 U-0 R/C-1 R/C-1 R/C-1 R/C-1 — — — — WRT3(1) WRT2(1) WRT1 WRT0 bit 7 bit 0 Legend: R = Readable bit U = Unimplemented bit, read as ‘0’ -n = Value when device is unprogrammed C = Clearable only bit bit 7-4 Unimplemented: Read as ‘0’ bit 3 WRT3: Write Protection bit(1) 1 = Block 3 not write-protected 0 = Block 3 write-protected bit 2 WRT2: Write Protection bit(1) 1 = Block 2 not write-protected 0 = Block 2 write-protected bit 1 WRT1: Write Protection bit 1 = Block 1 not write-protected 0 = Block 1 write-protected bit 0 WRT0: Write Protection bit 1 = Block 0 not write-protected 0 = Block 0 write-protected Note 1: Unimplemented in PIC18FX3K20 and PIC18FX4K20 devices; maintain this bit set. REGISTER 23-9: R/C-1 WRTD CONFIG6H: CONFIGURATION REGISTER 6 HIGH R/C-1 R-1 U-0 U-0 U-0 U-0 U-0 WRTB WRTC(1) — — — — — bit 7 bit 0 Legend: R = Readable bit U = Unimplemented bit, read as ‘0’ -n = Value when device is unprogrammed C = Clearable only bit bit 7 WRTD: Data EEPROM Write Protection bit 1 = Data EEPROM not write-protected 0 = Data EEPROM write-protected bit 6 WRTB: Boot Block Write Protection bit 1 = Boot block not write-protected 0 = Boot block write-protected bit 5 WRTC: Configuration Register Write Protection bit(1) 1 = Configuration registers not write-protected 0 = Configuration registers write-protected bit 4-0 Unimplemented: Read as ‘0’ Note 1: This bit is read-only in normal execution mode; it can be written only in Program mode. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 295 PIC18F2XK20/4XK20 REGISTER 23-10: CONFIG7L: CONFIGURATION REGISTER 7 LOW U-0 U-0 U-0 U-0 R/C-1 R/C-1 R/C-1 R/C-1 — — — — EBTR3(1) EBTR2(1) EBTR1 EBTR0 bit 7 bit 0 Legend: R = Readable bit U = Unimplemented bit, read as ‘0’ -n = Value when device is unprogrammed C = Clearable only bit bit 7-4 Unimplemented: Read as ‘0’ bit 3 EBTR3: Table Read Protection bit(1) 1 = Block 3 not protected from table reads executed in other blocks 0 = Block 3 protected from table reads executed in other blocks bit 2 EBTR2: Table Read Protection bit(1) 1 = Block 2 not protected from table reads executed in other blocks 0 = Block 2 protected from table reads executed in other blocks bit 1 EBTR1: Table Read Protection bit 1 = Block 1 not protected from table reads executed in other blocks 0 = Block 1 protected from table reads executed in other blocks bit 0 EBTR0: Table Read Protection bit 1 = Block 0 not protected from table reads executed in other blocks 0 = Block 0 protected from table reads executed in other blocks Note 1: Unimplemented in PIC18FX3K20 and PIC18FX4K20 devices; maintain this bit set. REGISTER 23-11: CONFIG7H: CONFIGURATION REGISTER 7 HIGH U-0 R/C-1 U-0 U-0 U-0 U-0 U-0 U-0 — EBTRB — — — — — — bit 7 bit 0 Legend: R = Readable bit U = Unimplemented bit, read as ‘0’ -n = Value when device is unprogrammed C = Clearable only bit bit 7 Unimplemented: Read as ‘0’ bit 6 EBTRB: Boot Block Table Read Protection bit 1 = Boot block not protected from table reads executed in other blocks 0 = Boot block protected from table reads executed in other blocks bit 5-0 Unimplemented: Read as ‘0’ DS41303B-page 296 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 REGISTER 23-12: DEVID1: DEVICE ID REGISTER 1 FOR PIC18F2XK20/4XK20 R R R R R R R R DEV2 DEV1 DEV0 REV4 REV3 REV2 REV1 REV0 bit 7 bit 0 Legend: R = Readable bit U = Unimplemented bit, read as ‘0’ -n = Value when device is unprogrammed C = Clearable only bit bit 7-5 DEV<2:0>: Device ID bits 010 = PIC18F45K20 011 = PIC18F25K20 100 = PIC18F44K20 101 = PIC18F24K20 110 = PIC18F43K20 111 = PIC18F23K20 bit 4-0 REV<4:0>: Revision ID bits These bits are used to indicate the device revision. REGISTER 23-13: DEVID2: DEVICE ID REGISTER 2 FOR PIC18F2XK20/4XK20 R R R R R R R R DEV10 DEV9 DEV8 DEV7 DEV6 DEV5 DEV4 DEV3 bit 7 bit 0 Legend: R = Readable bit U = Unimplemented bit, read as ‘0’ -n = Value when device is unprogrammed C = Clearable only bit bit 7-0 Note 1: DEV<10:3>: Device ID bits These bits are used with the DEV<2:0> bits in the Device ID Register 1 to identify the part number. 0010 0000 = PIC18F2XK20/4XK20 devices These values for DEV<10:3> may be shared with other devices. The specific device is always identified by using the entire DEV<10:0> bit sequence. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 297 PIC18F2XK20/4XK20 23.2 Watchdog Timer (WDT) For PIC18F2XK20/4XK20 devices, the WDT is driven by the LFINTOSC source. When the WDT is enabled, the clock source is also enabled. The nominal WDT period is 4 ms and has the same stability as the LFINTOSC oscillator. The 4 ms period of the WDT is multiplied by a 16-bit postscaler. Any output of the WDT postscaler is selected by a multiplexer, controlled by bits in Configuration Register 2H. Available periods range from 4 ms to 131.072 seconds (2.18 minutes). The WDT and postscaler are cleared when any of the following events occur: a SLEEP or CLRWDT instruction is executed, the IRCF bits of the OSCCON register are changed or a clock failure has occurred. Note 1: The CLRWDT and SLEEP instructions clear the WDT and postscaler counts when executed. 2: Changing the setting of the IRCF bits of the OSCCON register clears the WDT and postscaler counts. 3: When a CLRWDT instruction is executed, the postscaler count will be cleared. FIGURE 23-1: WDT BLOCK DIAGRAM SWDTEN WDTEN Enable WDT WDT Counter LFINTOSC Source ÷128 Wake-up from Power Managed Modes Change on IRCF bits Programmable Postscaler 1:1 to 1:32,768 CLRWDT Reset WDT Reset All Device Resets WDTPS<3:0> 4 Sleep DS41303B-page 298 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 23.2.1 CONTROL REGISTER Register 23-14 shows the WDTCON register. This is a readable and writable register which contains a control bit that allows software to override the WDT enable Configuration bit, but only if the Configuration bit has disabled the WDT. REGISTER 23-14: WDTCON: WATCHDOG TIMER CONTROL REGISTER U-0 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 — — — — — — — SWDTEN(1) bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-1 Unimplemented: Read as ‘0’ bit 0 SWDTEN: Software Enable or Disable the Watchdog Timer bit(1) 1 = WDT is turned on 0 = WDT is turned off (Reset value) x = Bit is unknown Note 1: This bit has no effect if the Configuration bit, WDTEN, is enabled. TABLE 23-2: Name RCON WDTCON SUMMARY OF WATCHDOG TIMER REGISTERS Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset Values on page IPEN SBOREN — RI TO PD POR BOR 56 — — — — — — — SWDTEN 58 WDTEN 292 CONFIG2H WDTPS3 WDTPS2 WDTPS1 WDTPS0 Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Watchdog Timer. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 299 PIC18F2XK20/4XK20 23.3 Program Verification and Code Protection Each of the five blocks has three code protection bits associated with them. They are: The overall structure of the code protection on the PIC18 Flash devices differs significantly from other PIC® microcontroller devices. The user program memory is divided into five blocks. One of these is a boot block of 0.5K or 2K bytes, depending on the device. The remainder of the memory is divided into individual blocks on binary boundaries. FIGURE 23-2: • Code-Protect bit (CPn) • Write-Protect bit (WRTn) • External Block Table Read bit (EBTRn) Figure 23-2 shows the program memory organization for 8, 16 and 32-Kbyte devices and the specific code protection bit associated with each block. The actual locations of the bits are summarized in Table 23-3. CODE-PROTECTED PROGRAM MEMORY FOR PIC18F2XK20/4XK20 MEMORY SIZE/DEVICE Block Code Protection Controlled By: 8 Kbytes (PIC18FX3K20) 16 Kbytes (PIC18FX4K20) 32 Kbytes (PIC18FX5K20) 64 Kbytes (PIC18FX6K20) Boot Block (000h-1FFh) Boot Block (000h-7FFh) Boot Block (000h-7FFh) Boot Block (000h-7FFh) CPB, WRTB, EBTRB Block 0 (200h-FFFh) Block 0 (800h-1FFFh) Block 0 (800h-1FFFh) Block 0 (800h-3FFFh) CP0, WRT0, EBTR0 Block 1 (1000h-1FFFh) Block 1 (2000h-3FFFh) Block 1 (2000h-3FFFh) Block 1 (4000h-7FFFh) CP1, WRT1, EBTR1 Block 2 (4000h-5FFFh) Block 2 (8000h-BFFFh) CP2, WRT2, EBTR2 Block 3 (6000h-7FFFh) Block 3 (C000h-FFFFh) CP3, WRT3, EBTR3 Unimplemented Read ‘0’s (2000h-1FFFFFh) Unimplemented Read ‘0’s (4000h-1FFFFFh) Unimplemented Unimplemented Read ‘0’s Read ‘0’s (8000h-1FFFFFh) (10000h-1FFFFFh) TABLE 23-3: (Unimplemented Memory Space) SUMMARY OF CODE PROTECTION REGISTERS File Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 CP3(1) CP2(1) CP1 CP0 300008h CONFIG5L — — — — 300009h CONFIG5H CPD CPB — — — — — — 30000Ah CONFIG6L — — — — WRT3(1) WRT2(1) WRT1 WRT0 30000Bh CONFIG6H WRTD WRTB WRTC — — — — — 30000Ch CONFIG7L — — — — EBTR3(1) EBTR2(1) EBTR1 EBTR0 30000Dh CONFIG7H — EBTRB — — — — — — Legend: Shaded cells are unimplemented. Note 1: Unimplemented in PIC18FX3K20 and PIC18FX4K20 devices; maintain this bit set. DS41303B-page 300 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 23.3.1 PROGRAM MEMORY CODE PROTECTION The program memory may be read to or written from any location using the table read and table write instructions. The device ID may be read with table reads. The Configuration registers may be read and written with the table read and table write instructions. instruction that executes from a location outside of that block is not allowed to read and will result in reading ‘0’s. Figures 23-3 through 23-5 illustrate table write and table read protection. Note: In normal execution mode, the CPn bits have no direct effect. CPn bits inhibit external reads and writes. A block of user memory may be protected from table writes if the WRTn Configuration bit is ‘0’. The EBTRn bits control table reads. For a block of user memory with the EBTRn bit cleared to ‘0’, a table READ instruction that executes from within that block is allowed to read. A table read FIGURE 23-3: Code protection bits may only be written to a ‘0’ from a ‘1’ state. It is not possible to write a ‘1’ to a bit in the ‘0’ state. Code protection bits are only set to ‘1’ by a full chip erase or block erase function. The full chip erase and block erase functions can only be initiated via ICSP or an external programmer. TABLE WRITE (WRTn) DISALLOWED Register Values Program Memory Configuration Bit Settings 000000h 0007FFh 000800h WRTB, EBTRB = 11 TBLPTR = 0008FFh WRT0, EBTR0 = 01 PC = 001FFEh TBLWT* 001FFFh 002000h WRT1, EBTR1 = 11 003FFFh 004000h PC = 005FFEh WRT2, EBTR2 = 11 TBLWT* 005FFFh 006000h WRT3, EBTR3 = 11 007FFFh Results: All table writes disabled to Blockn whenever WRTn = 0. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 301 PIC18F2XK20/4XK20 FIGURE 23-4: EXTERNAL BLOCK TABLE READ (EBTRn) DISALLOWED Register Values Program Memory Configuration Bit Settings 000000h 0007FFh 000800h WRTB, EBTRB = 11 TBLPTR = 0008FFh WRT0, EBTR0 = 10 001FFFh 002000h PC = 003FFEh TBLRD* WRT1, EBTR1 = 11 003FFFh 004000h WRT2, EBTR2 = 11 005FFFh 006000h WRT3, EBTR3 = 11 007FFFh Results: All table reads from external blocks to Blockn are disabled whenever EBTRn = 0. TABLAT register returns a value of ‘0’. FIGURE 23-5: EXTERNAL BLOCK TABLE READ (EBTRn) ALLOWED Register Values Program Memory Configuration Bit Settings 000000h WRTB, EBTRB = 11 0007FFh 000800h TBLPTR = 0008FFh PC = 001FFEh WRT0, EBTR0 = 10 TBLRD* 001FFFh 002000h WRT1, EBTR1 = 11 003FFFh 004000h WRT2, EBTR2 = 11 005FFFh 006000h WRT3, EBTR3 = 11 007FFFh Results: Table reads permitted within Blockn, even when EBTRBn = 0. TABLAT register returns the value of the data at the location TBLPTR. DS41303B-page 302 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 23.3.2 DATA EEPROM CODE PROTECTION The entire data EEPROM is protected from external reads and writes by two bits: CPD and WRTD. CPD inhibits external reads and writes of data EEPROM. WRTD inhibits internal and external writes to data EEPROM. The CPU can always read data EEPROM under normal operation, regardless of the protection bit settings. 23.3.3 CONFIGURATION REGISTER PROTECTION The Configuration registers can be write-protected. The WRTC bit controls protection of the Configuration registers. In normal execution mode, the WRTC bit is readable only. WRTC can only be written via ICSP or an external programmer. 23.4 ID Locations Eight memory locations (200000h-200007h) are designated as ID locations, where the user can store checksum or other code identification numbers. These locations are both readable and writable during normal execution through the TBLRD and TBLWT instructions or during program/verify. The ID locations can be read when the device is code-protected. 23.5 In-Circuit Serial Programming PIC18F2XK20/4XK20 devices can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed. 23.6 In-Circuit Debugger When the DEBUG Configuration bit is programmed to a ‘0’, the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB® IDE. When the microcontroller has this feature enabled, some resources are not available for general use. Table 23-4 shows which resources are required by the background debugger. TABLE 23-4: DEBUGGER RESOURCES I/O pins: RB6, RB7 Stack: 2 levels Program Memory: 512 bytes Data Memory: 10 bytes © 2007 Microchip Technology Inc. To use the In-Circuit Debugger function of the microcontroller, the design must implement In-Circuit Serial Programming connections to the following pins: • • • • • MCLR/VPP/RE3 VDD VSS RB7 RB6 This will interface to the In-Circuit Debugger module available from Microchip or one of the third party development tool companies. 23.7 Single-Supply ICSP Programming The LVP Configuration bit enables Single-Supply ICSP Programming (formerly known as Low-Voltage ICSP Programming or LVP). When Single-Supply Programming is enabled, the microcontroller can be programmed without requiring high voltage being applied to the MCLR/VPP/RE3 pin, but the RB5/KBI1/PGM pin is then dedicated to controlling Program mode entry and is not available as a general purpose I/O pin. While programming, using Single-Supply Programming mode, VDD is applied to the MCLR/VPP/RE3 pin as in normal execution mode. To enter Programming mode, VDD is applied to the PGM pin. Note 1: High-voltage programming is always available, regardless of the state of the LVP bit or the PGM pin, by applying VIHH to the MCLR pin. 2: By default, Single-Supply ICSP is enabled in unprogrammed devices (as supplied from Microchip) and erased devices. 3: When Single-Supply Programming is enabled, the RB5 pin can no longer be used as a general purpose I/O pin. 4: When LVP is enabled, externally pull the PGM pin to VSS to allow normal program execution. If Single-Supply ICSP Programming mode will not be used, the LVP bit can be cleared. RB5/KBI1/PGM then becomes available as the digital I/O pin, RB5. The LVP bit may be set or cleared only when using standard high-voltage programming (VIHH applied to the MCLR/ VPP/RE3 pin). Once LVP has been disabled, only the standard high-voltage programming is available and must be used to program the device. Memory that is not code-protected can be erased using either a block erase, or erased row by row, then written at any specified VDD. If code-protected memory is to be erased, a block erase is required. Advance Information DS41303B-page 303 PIC18F2XK20/4XK20 NOTES: DS41303B-page 304 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 24.0 INSTRUCTION SET SUMMARY PIC18F2XK20/4XK20 devices incorporate the standard set of 75 PIC18 core instructions, as well as an extended set of 8 new instructions, for the optimization of code that is recursive or that utilizes a software stack. The extended set is discussed later in this section. 24.1 Standard Instruction Set The standard PIC18 instruction set adds many enhancements to the previous PIC® MCU instruction sets, while maintaining an easy migration from these PIC® MCU instruction sets. Most instructions are a single program memory word (16 bits), but there are four instructions that require two program memory locations. Each single-word instruction is a 16-bit word divided into an opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction. The instruction set is highly orthogonal and is grouped into four basic categories: • • • • Byte-oriented operations Bit-oriented operations Literal operations Control operations The PIC18 instruction set summary in Table 24-2 lists byte-oriented, bit-oriented, literal and control operations. Table 24-1 shows the opcode field descriptions. Most byte-oriented instructions have three operands: 1. 2. 3. The file register (specified by ‘f’) The destination of the result (specified by ‘d’) The accessed memory (specified by ‘a’) The file register designator ‘f’ specifies which file register is to be used by the instruction. The destination designator ‘d’ specifies where the result of the operation is to be placed. If ‘d’ is zero, the result is placed in the WREG register. If ‘d’ is one, the result is placed in the file register specified in the instruction. All bit-oriented instructions have three operands: 1. 2. 3. The file register (specified by ‘f’) The bit in the file register (specified by ‘b’) The accessed memory (specified by ‘a’) The literal instructions may use some of the following operands: • A literal value to be loaded into a file register (specified by ‘k’) • The desired FSR register to load the literal value into (specified by ‘f’) • No operand required (specified by ‘—’) The control instructions may use some of the following operands: • A program memory address (specified by ‘n’) • The mode of the CALL or RETURN instructions (specified by ‘s’) • The mode of the table read and table write instructions (specified by ‘m’) • No operand required (specified by ‘—’) All instructions are a single word, except for four double-word instructions. These instructions were made double-word to contain the required information in 32 bits. In the second word, the 4 MSbs are ‘1’s. If this second word is executed as an instruction (by itself), it will execute as a NOP. All single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP. The double-word instructions execute in two instruction cycles. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μs. If a conditional test is true, or the program counter is changed as a result of an instruction, the instruction execution time is 2 μs. Two-word branch instructions (if true) would take 3 μs. Figure 24-1 shows the general formats that the instructions can have. All examples use the convention ‘nnh’ to represent a hexadecimal number. The Instruction Set Summary, shown in Table 24-2, lists the standard instructions recognized by the Microchip Assembler (MPASMTM). Section 24.1.1 “Standard Instruction Set” provides a description of each instruction. The bit field designator ‘b’ selects the number of the bit affected by the operation, while the file register designator ‘f’ represents the number of the file in which the bit is located. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 305 PIC18F2XK20/4XK20 TABLE 24-1: OPCODE FIELD DESCRIPTIONS Field Description a RAM access bit a = 0: RAM location in Access RAM (BSR register is ignored) a = 1: RAM bank is specified by BSR register bbb Bit address within an 8-bit file register (0 to 7). BSR Bank Select Register. Used to select the current RAM bank. C, DC, Z, OV, N ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative. d Destination select bit d = 0: store result in WREG d = 1: store result in file register f dest Destination: either the WREG register or the specified register file location. f 8-bit Register file address (00h to FFh) or 2-bit FSR designator (0h to 3h). fs 12-bit Register file address (000h to FFFh). This is the source address. fd 12-bit Register file address (000h to FFFh). This is the destination address. GIE Global Interrupt Enable bit. k Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value). label Label name. mm The mode of the TBLPTR register for the table read and table write instructions. Only used with table read and table write instructions: * No change to register (such as TBLPTR with table reads and writes) *+ Post-Increment register (such as TBLPTR with table reads and writes) *- Post-Decrement register (such as TBLPTR with table reads and writes) Pre-Increment register (such as TBLPTR with table reads and writes) +* n The relative address (2’s complement number) for relative branch instructions or the direct address for CALL/BRANCH and RETURN instructions. PC Program Counter. PCL Program Counter Low Byte. PCH Program Counter High Byte. PCLATH Program Counter High Byte Latch. PCLATU Program Counter Upper Byte Latch. PD Power-down bit. PRODH Product of Multiply High Byte. PRODL Product of Multiply Low Byte. s Fast Call/Return mode select bit s = 0: do not update into/from shadow registers s = 1: certain registers loaded into/from shadow registers (Fast mode) TBLPTR 21-bit Table Pointer (points to a Program Memory location). TABLAT 8-bit Table Latch. TO Time-out bit. TOS Top-of-Stack. u Unused or unchanged. WDT Watchdog Timer. WREG Working register (accumulator). x Don’t care (‘0’ or ‘1’). The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all Microchip software tools. zs 7-bit offset value for indirect addressing of register files (source). 7-bit offset value for indirect addressing of register files (destination). zd { } Optional argument. [text] Indicates an indexed address. (text) The contents of text. [expr]<n> Specifies bit n of the register indicated by the pointer expr. → Assigned to. < > Register bit field. ∈ In the set of. italics User defined term (font is Courier). DS41303B-page 306 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 FIGURE 24-1: GENERAL FORMAT FOR INSTRUCTIONS Byte-oriented file register operations 15 10 9 8 7 OPCODE d a Example Instruction 0 f (FILE #) ADDWF MYREG, W, B d = 0 for result destination to be WREG register d = 1 for result destination to be file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address Byte to Byte move operations (2-word) 15 12 11 OPCODE 15 0 f (Source FILE #) 12 11 MOVFF MYREG1, MYREG2 0 f (Destination FILE #) 1111 f = 12-bit file register address Bit-oriented file register operations 15 12 11 9 8 7 OPCODE b (BIT #) a 0 f (FILE #) BSF MYREG, bit, B b = 3-bit position of bit in file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address Literal operations 15 8 7 OPCODE 0 k (literal) MOVLW 7Fh k = 8-bit immediate value Control operations CALL, GOTO and Branch operations 15 8 7 OPCODE 15 0 n<7:0> (literal) 12 11 GOTO Label 0 n<19:8> (literal) 1111 n = 20-bit immediate value 15 8 7 OPCODE 15 S 0 CALL MYFUNC n<7:0> (literal) 12 11 0 n<19:8> (literal) 1111 S = Fast bit 15 OPCODE 15 OPCODE © 2007 Microchip Technology Inc. 11 10 0 BRA MYFUNC n<10:0> (literal) 8 7 0 n<7:0> (literal) Advance Information BC MYFUNC DS41303B-page 307 PIC18F2XK20/4XK20 TABLE 24-2: PIC18FXXXX INSTRUCTION SET Mnemonic, Operands 16-Bit Instruction Word Description Cycles MSb LSb Status Affected Notes BYTE-ORIENTED OPERATIONS ADDWF ADDWFC ANDWF CLRF COMF CPFSEQ CPFSGT CPFSLT DECF DECFSZ DCFSNZ INCF INCFSZ INFSNZ IORWF MOVF MOVFF f, d, a f, d, a f, d, a f, a f, d, a f, a f, a f, a f, d, a f, d, a f, d, a f, d, a f, d, a f, d, a f, d, a f, d, a fs, fd MOVWF MULWF NEGF RLCF RLNCF RRCF RRNCF SETF SUBFWB f, a f, a f, a f, d, a f, d, a f, d, a f, d, a f, a f, d, a SUBWF SUBWFB f, d, a f, d, a SWAPF TSTFSZ XORWF f, d, a f, a f, d, a Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is driven low by an external device, the data will be written back with a ‘0’. If this instruction is executed on the TMR0 register (and where applicable, ‘d’ = 1), the prescaler will be cleared if assigned. If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP. Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction. 2: 3: 4: DS41303B-page 308 Add WREG and f Add WREG and CARRY bit to f AND WREG with f Clear f Complement f Compare f with WREG, skip = Compare f with WREG, skip > Compare f with WREG, skip < Decrement f Decrement f, Skip if 0 Decrement f, Skip if Not 0 Increment f Increment f, Skip if 0 Increment f, Skip if Not 0 Inclusive OR WREG with f Move f Move fs (source) to 1st word fd (destination) 2nd word Move WREG to f Multiply WREG with f Negate f Rotate Left f through Carry Rotate Left f (No Carry) Rotate Right f through Carry Rotate Right f (No Carry) Set f Subtract f from WREG with borrow Subtract WREG from f Subtract WREG from f with borrow Swap nibbles in f Test f, skip if 0 Exclusive OR WREG with f 1 1 1 1 1 1 (2 or 3) 1 (2 or 3) 1 (2 or 3) 1 1 (2 or 3) 1 (2 or 3) 1 1 (2 or 3) 1 (2 or 3) 1 1 2 C, DC, Z, OV, N C, DC, Z, OV, N Z, N Z Z, N None None None C, DC, Z, OV, N None None C, DC, Z, OV, N None None Z, N Z, N None 1, 2 1, 2 1,2 2 1, 2 4 4 1, 2 1, 2, 3, 4 1, 2, 3, 4 1, 2 1, 2, 3, 4 4 1, 2 1, 2 1 1 1 1 1 1 1 1 1 1 0010 01da0 0010 0da 0001 01da 0110 101a 0001 11da 0110 001a 0110 010a 0110 000a 0000 01da 0010 11da 0100 11da 0010 10da 0011 11da 0100 10da 0001 00da 0101 00da 1100 ffff 1111 ffff 0110 111a 0000 001a 0110 110a 0011 01da 0100 01da 0011 00da 0100 00da 0110 100a 0101 01da ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff 1 1 0101 0101 11da 10da ffff ffff ffff C, DC, Z, OV, N ffff C, DC, Z, OV, N 1, 2 1 1 (2 or 3) 1 0011 0110 0001 10da 011a 10da ffff ffff ffff ffff None ffff None ffff Z, N 4 1, 2 Advance Information None None C, DC, Z, OV, N C, Z, N Z, N C, Z, N Z, N None C, DC, Z, OV, N 1, 2 1, 2 1, 2 © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 TABLE 24-2: PIC18FXXXX INSTRUCTION SET (CONTINUED) 16-Bit Instruction Word Mnemonic, Operands Description Cycles MSb LSb Status Affected Notes BIT-ORIENTED OPERATIONS BCF BSF BTFSC BTFSS BTG f, b, a f, b, a f, b, a f, b, a f, d, a Bit Clear f Bit Set f Bit Test f, Skip if Clear Bit Test f, Skip if Set Bit Toggle f 1 1 1 (2 or 3) 1 (2 or 3) 1 1001 1000 1011 1010 0111 bbba bbba bbba bbba bbba ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff None None None None None 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 2 1 (2) 2 0010 0110 0011 0111 0101 0001 0100 0nnn 0000 110s kkkk 0000 0000 1111 kkkk 0000 xxxx 0000 0000 1nnn 0000 0000 nnnn nnnn nnnn nnnn nnnn nnnn nnnn nnnn nnnn kkkk kkkk 0000 0000 kkkk kkkk 0000 xxxx 0000 0000 nnnn 1111 0001 nnnn nnnn nnnn nnnn nnnn nnnn nnnn nnnn nnnn kkkk kkkk 0100 0111 kkkk kkkk 0000 xxxx 0110 0101 nnnn 1111 000s None None None None None None None None None None 1 1 1 1 2 1 2 1110 1110 1110 1110 1110 1110 1110 1101 1110 1110 1111 0000 0000 1110 1111 0000 1111 0000 0000 1101 0000 0000 2 2 1 0000 0000 0000 1100 0000 0000 kkkk 0001 0000 1, 2 1, 2 3, 4 3, 4 1, 2 CONTROL OPERATIONS BC BN BNC BNN BNOV BNZ BOV BRA BZ CALL n n n n n n n n n n, s CLRWDT DAW GOTO — — n NOP NOP POP PUSH RCALL RESET RETFIE — — — — n s Branch if Carry Branch if Negative Branch if Not Carry Branch if Not Negative Branch if Not Overflow Branch if Not Zero Branch if Overflow Branch Unconditionally Branch if Zero Call subroutine 1st word 2nd word Clear Watchdog Timer Decimal Adjust WREG Go to address 1st word 2nd word No Operation No Operation Pop top of return stack (TOS) Push top of return stack (TOS) Relative Call Software device Reset Return from interrupt enable RETLW RETURN SLEEP k s — Return with literal in WREG Return from Subroutine Go into Standby mode Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is driven low by an external device, the data will be written back with a ‘0’. If this instruction is executed on the TMR0 register (and where applicable, ‘d’ = 1), the prescaler will be cleared if assigned. If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP. Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction. 2: 3: 4: © 2007 Microchip Technology Inc. 1 1 2 Advance Information TO, PD C None None None None None None All GIE/GIEH, PEIE/GIEL kkkk None 001s None 0011 TO, PD 4 DS41303B-page 309 PIC18F2XK20/4XK20 TABLE 24-2: PIC18FXXXX INSTRUCTION SET (CONTINUED) 16-Bit Instruction Word Mnemonic, Operands Description Cycles MSb LSb Status Affected Notes LITERAL OPERATIONS ADDLW ANDLW IORLW LFSR k k k f, k MOVLB MOVLW MULLW RETLW SUBLW XORLW k k k k k k Add literal and WREG AND literal with WREG Inclusive OR literal with WREG Move literal (12-bit) 2nd word to FSR(f) 1st word Move literal to BSR<3:0> Move literal to WREG Multiply literal with WREG Return with literal in WREG Subtract WREG from literal Exclusive OR literal with WREG 1 1 1 2 1 1 1 2 1 1 0000 0000 0000 1110 1111 0000 0000 0000 0000 0000 0000 1111 1011 1001 1110 0000 0001 1110 1101 1100 1000 1010 kkkk kkkk kkkk 00ff kkkk 0000 kkkk kkkk kkkk kkkk kkkk kkkk kkkk kkkk kkkk kkkk kkkk kkkk kkkk kkkk kkkk kkkk C, DC, Z, OV, N Z, N Z, N None 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000 1001 1010 1011 1100 1101 1110 1111 None None None None None None None None None None None None C, DC, Z, OV, N Z, N DATA MEMORY ↔ PROGRAM MEMORY OPERATIONS TBLRD* TBLRD*+ TBLRD*TBLRD+* TBLWT* TBLWT*+ TBLWT*TBLWT+* Note 1: 2: 3: 4: Table Read Table Read with post-increment Table Read with post-decrement Table Read with pre-increment Table Write Table Write with post-increment Table Write with post-decrement Table Write with pre-increment 2 2 When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is driven low by an external device, the data will be written back with a ‘0’. If this instruction is executed on the TMR0 register (and where applicable, ‘d’ = 1), the prescaler will be cleared if assigned. If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP. Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction. DS41303B-page 310 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 24.1.1 STANDARD INSTRUCTION SET ADDLW ADD literal to W ADDWF ADD W to f Syntax: ADDLW Syntax: ADDWF Operands: 0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1] Operation: (W) + (f) → dest Status Affected: N, OV, C, DC, Z k Operands: 0 ≤ k ≤ 255 Operation: (W) + k → W Status Affected: N, OV, C, DC, Z Encoding: 0000 1111 kkkk kkkk Description: The contents of W are added to the 8-bit literal ‘k’ and the result is placed in W. Words: 1 Cycles: 1 Encoding: 0010 Q1 Q2 Q3 Q4 Read literal ‘k’ Process Data Write to W Example: ADDLW = 25h ffff Words: 1 Cycles: 1 Before Instruction W ffff Add W to register ‘f’. If ‘d’ is ‘0’, the result is stored in W. If ‘d’ is ‘1’, the result is stored back in register ‘f’ (default). If ‘a’ is ‘0’, the Access Bank is selected. If ‘a’ is ‘1’, the BSR is used to select the GPR bank (default). If ‘a’ is ‘0’ and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 “Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode” for details. 15h W = 10h After Instruction 01da Description: Q Cycle Activity: Decode f {,d {,a}} Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read register ‘f’ Process Data Write to destination Example: ADDWF REG, 0, 0 Before Instruction W = REG = After Instruction W REG Note: = = 17h 0C2h 0D9h 0C2h All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s). © 2007 Microchip Technology Inc. Advance Information DS41303B-page 311 PIC18F2XK20/4XK20 ADDWFC ADD W and CARRY bit to f ANDLW Syntax: ADDWFC Syntax: ANDLW Operands: 0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1] Operands: 0 ≤ k ≤ 255 Operation: (W) .AND. k → W Status Affected: N, Z f {,d {,a}} Operation: (W) + (f) + (C) → dest Status Affected: N,OV, C, DC, Z Encoding: 0010 Description: 00da Encoding: ffff ffff Add W, the CARRY flag and data memory location ‘f’. If ‘d’ is ‘0’, the result is placed in W. If ‘d’ is ‘1’, the result is placed in data memory location ‘f’. If ‘a’ is ‘0’, the Access Bank is selected. If ‘a’ is ‘1’, the BSR is used to select the GPR bank (default). If ‘a’ is ‘0’ and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 “Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode” for details. Words: 1 Cycles: 1 AND literal with W 0000 k 1011 kkkk kkkk Description: The contents of W are AND’ed with the 8-bit literal ‘k’. The result is placed in W. Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read literal ‘k’ Process Data Write to W Example: ANDLW 05Fh Before Instruction W = After Instruction W = A3h 03h Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read register ‘f’ Process Data Write to destination Example: ADDWFC Before Instruction CARRY bit = REG = W = After Instruction CARRY bit = REG = W = DS41303B-page 312 REG, 0, 1 1 02h 4Dh 0 02h 50h Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 ANDWF AND W with f BC Branch if Carry Syntax: ANDWF Syntax: BC Operands: 0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1] Operands: -128 ≤ n ≤ 127 Operation: if CARRY bit is ‘1’ (PC) + 2 + 2n → PC None f {,d {,a}} Operation: (W) .AND. (f) → dest Status Affected: Status Affected: N, Z Encoding: Encoding: 0001 Description: 01da ffff ffff The contents of W are AND’ed with register ‘f’. If ‘d’ is ‘0’, the result is stored in W. If ‘d’ is ‘1’, the result is stored back in register ‘f’ (default). If ‘a’ is ‘0’, the Access Bank is selected. If ‘a’ is ‘1’, the BSR is used to select the GPR bank (default). If ‘a’ is ‘0’ and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 “Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode” for details. Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read register ‘f’ Process Data Write to destination Example: ANDWF REG, 0, 0 Before Instruction W = REG = After Instruction W REG = = 17h C2h 02h C2h © 2007 Microchip Technology Inc. n 1110 Description: 0010 nnnn nnnn If the CARRY bit is ‘1’, then the program will branch. The 2’s complement number ‘2n’ is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction. Words: 1 Cycles: 1(2) Q Cycle Activity: If Jump: Q1 Q2 Q3 Q4 Decode Read literal ‘n’ Process Data Write to PC No operation No operation No operation No operation If No Jump: Q1 Q2 Q3 Q4 Decode Read literal ‘n’ Process Data No operation Example: HERE Before Instruction PC After Instruction If CARRY PC If CARRY PC Advance Information BC 5 = address (HERE) = = = = 1; address (HERE + 12) 0; address (HERE + 2) DS41303B-page 313 PIC18F2XK20/4XK20 BCF Bit Clear f BN Branch if Negative Syntax: BCF Syntax: BN Operands: 0 ≤ f ≤ 255 0≤b≤7 a ∈ [0,1] Operands: -128 ≤ n ≤ 127 Operation: if NEGATIVE bit is ‘1’ (PC) + 2 + 2n → PC None f, b {,a} Operation: 0 → f<b> Status Affected: Status Affected: None Encoding: Encoding: 1001 Description: bbba ffff ffff Bit ‘b’ in register ‘f’ is cleared. If ‘a’ is ‘0’, the Access Bank is selected. If ‘a’ is ‘1’, the BSR is used to select the GPR bank (default). If ‘a’ is ‘0’ and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 “Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode” for details. Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read register ‘f’ Process Data Write register ‘f’ Example: BCF Before Instruction FLAG_REG = After Instruction FLAG_REG = DS41303B-page 314 FLAG_REG, 7, 0 n 1110 Description: 0110 nnnn nnnn If the NEGATIVE bit is ‘1’, then the program will branch. The 2’s complement number ‘2n’ is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction. Words: 1 Cycles: 1(2) Q Cycle Activity: If Jump: Q1 Q2 Q3 Q4 Decode Read literal ‘n’ Process Data Write to PC No operation No operation No operation No operation If No Jump: Q1 Q2 Q3 Q4 Decode Read literal ‘n’ Process Data No operation C7h 47h Example: HERE Before Instruction PC After Instruction If NEGATIVE PC If NEGATIVE PC Advance Information BN Jump = address (HERE) = = = = 1; address (Jump) 0; address (HERE + 2) © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 BNC Branch if Not Carry BNN Branch if Not Negative Syntax: BNC Syntax: BNN Operands: -128 ≤ n ≤ 127 Operands: -128 ≤ n ≤ 127 Operation: if CARRY bit is ‘0’ (PC) + 2 + 2n → PC Operation: if NEGATIVE bit is ‘0’ (PC) + 2 + 2n → PC Status Affected: None Status Affected: None Encoding: n 1110 Description: 0011 nnnn nnnn Encoding: 1110 If the CARRY bit is ‘0’, then the program will branch. The 2’s complement number ‘2n’ is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction. Description: Words: 1 Words: 1 Cycles: 1(2) Cycles: 1(2) Q Cycle Activity: If Jump: n 0111 nnnn nnnn If the NEGATIVE bit is ‘0’, then the program will branch. The 2’s complement number ‘2n’ is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction. Q Cycle Activity: If Jump: Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Decode Read literal ‘n’ Process Data Write to PC Decode Read literal ‘n’ Process Data Write to PC No operation No operation No operation No operation No operation No operation No operation No operation Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Decode Read literal ‘n’ Process Data No operation Decode Read literal ‘n’ Process Data No operation If No Jump: Example: If No Jump: HERE Before Instruction PC After Instruction If CARRY PC If CARRY PC BNC Example: Jump = address (HERE) = = = = 0; address (Jump) 1; address (HERE + 2) © 2007 Microchip Technology Inc. HERE Before Instruction PC After Instruction If NEGATIVE PC If NEGATIVE PC Advance Information BNN Jump = address (HERE) = = = = 0; address (Jump) 1; address (HERE + 2) DS41303B-page 315 PIC18F2XK20/4XK20 BNOV Branch if Not Overflow BNZ Branch if Not Zero Syntax: BNOV Syntax: BNZ Operands: -128 ≤ n ≤ 127 Operands: -128 ≤ n ≤ 127 Operation: if OVERFLOW bit is ‘0’ (PC) + 2 + 2n → PC Operation: if ZERO bit is ‘0’ (PC) + 2 + 2n → PC Status Affected: None Status Affected: None Encoding: n 1110 Description: 0101 nnnn nnnn Encoding: 1110 If the OVERFLOW bit is ‘0’, then the program will branch. The 2’s complement number ‘2n’ is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction. Description: Words: 1 Words: 1 Cycles: 1(2) Cycles: 1(2) Q Cycle Activity: If Jump: n 0001 nnnn nnnn If the ZERO bit is ‘0’, then the program will branch. The 2’s complement number ‘2n’ is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction. Q Cycle Activity: If Jump: Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Decode Read literal ‘n’ Process Data Write to PC Decode Read literal ‘n’ Process Data Write to PC No operation No operation No operation No operation No operation No operation No operation No operation Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Decode Read literal ‘n’ Process Data No operation Decode Read literal ‘n’ Process Data No operation If No Jump: If No Jump: Example: HERE Before Instruction PC = After Instruction If OVERFLOW = PC = If OVERFLOW = PC = DS41303B-page 316 Example: BNOV Jump address (HERE) 0; address (Jump) 1; address (HERE + 2) HERE Before Instruction PC After Instruction If ZERO PC If ZERO PC Advance Information BNZ Jump = address (HERE) = = = = 0; address (Jump) 1; address (HERE + 2) © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 BRA Unconditional Branch BSF Syntax: BRA Syntax: BSF Operands: -1024 ≤ n ≤ 1023 Operands: 0 ≤ f ≤ 255 0≤b≤7 a ∈ [0,1] n Operation: (PC) + 2 + 2n → PC Status Affected: None Encoding: 1101 Description: 0nnn nnnn nnnn Add the 2’s complement number ‘2n’ to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is a two-cycle instruction. Words: 1 Cycles: 2 Bit Set f Operation: 1 → f<b> Status Affected: None Encoding: 1000 Q1 Q2 Q3 Q4 Read literal ‘n’ Process Data Write to PC No operation No operation No operation No operation Example: bbba ffff ffff Description: Bit ‘b’ in register ‘f’ is set. If ‘a’ is ‘0’, the Access Bank is selected. If ‘a’ is ‘1’, the BSR is used to select the GPR bank (default). If ‘a’ is ‘0’ and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 “Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode” for details. Words: 1 Cycles: 1 Q Cycle Activity: Decode f, b {,a} Q Cycle Activity: HERE Before Instruction PC After Instruction PC BRA Jump = address (HERE) = address (Jump) Q1 Q2 Q3 Q4 Decode Read register ‘f’ Process Data Write register ‘f’ Example: BSF Before Instruction FLAG_REG After Instruction FLAG_REG © 2007 Microchip Technology Inc. Advance Information FLAG_REG, 7, 1 = 0Ah = 8Ah DS41303B-page 317 PIC18F2XK20/4XK20 BTFSC Bit Test File, Skip if Clear BTFSS Syntax: BTFSC f, b {,a} Syntax: BTFSS f, b {,a} Operands: 0 ≤ f ≤ 255 0≤b≤7 a ∈ [0,1] Operands: 0 ≤ f ≤ 255 0≤b<7 a ∈ [0,1] Operation: skip if (f<b>) = 0 Operation: skip if (f<b>) = 1 Status Affected: None Status Affected: None Encoding: 1011 bbba ffff ffff Bit Test File, Skip if Set Encoding: 1010 bbba ffff ffff Description: If bit ‘b’ in register ‘f’ is ‘0’, then the next instruction is skipped. If bit ‘b’ is ‘0’, then the next instruction fetched during the current instruction execution is discarded and a NOP is executed instead, making this a two-cycle instruction. If ‘a’ is ‘0’, the Access Bank is selected. If ‘a’ is ‘1’, the BSR is used to select the GPR bank (default). If ‘a’ is ‘0’ and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 “Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode” for details. Description: If bit ‘b’ in register ‘f’ is ‘1’, then the next instruction is skipped. If bit ‘b’ is ‘1’, then the next instruction fetched during the current instruction execution is discarded and a NOP is executed instead, making this a two-cycle instruction. If ‘a’ is ‘0’, the Access Bank is selected. If ‘a’ is ‘1’, the BSR is used to select the GPR bank (default). If ‘a’ is ‘0’ and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 “Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode” for details. Words: 1 Words: 1 Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. Cycles: 1(2) Note: Q Cycle Activity: 3 cycles if skip and followed by a 2-word instruction. Q Cycle Activity: Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Decode Read register ‘f’ Process Data No operation Decode Read register ‘f’ Process Data No operation Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 No operation No operation No operation No operation No operation No operation No operation No operation If skip: If skip: If skip and followed by 2-word instruction: If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 No operation No operation No operation No operation No operation No operation No operation No operation No operation No operation No operation No operation No operation No operation No operation No operation Example: HERE FALSE TRUE Before Instruction PC After Instruction If FLAG<1> PC If FLAG<1> PC DS41303B-page 318 BTFSC : : FLAG, 1, 0 = address (HERE) = = = = 0; address (TRUE) 1; address (FALSE) Example: HERE FALSE TRUE Before Instruction PC After Instruction If FLAG<1> PC If FLAG<1> PC Advance Information BTFSS : : FLAG, 1, 0 = address (HERE) = = = = 0; address (FALSE) 1; address (TRUE) © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 BTG Bit Toggle f BOV Branch if Overflow Syntax: BTG f, b {,a} Syntax: BOV Operands: 0 ≤ f ≤ 255 0≤b<7 a ∈ [0,1] Operands: -128 ≤ n ≤ 127 Operation: if OVERFLOW bit is ‘1’ (PC) + 2 + 2n → PC None Operation: (f<b>) → f<b> Status Affected: Status Affected: None Encoding: Encoding: 0111 Description: Words: Cycles: bbba ffff ffff Bit ‘b’ in data memory location ‘f’ is inverted. If ‘a’ is ‘0’, the Access Bank is selected. If ‘a’ is ‘1’, the BSR is used to select the GPR bank (default). If ‘a’ is ‘0’ and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 “Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode” for details. 1110 Description: 0100 nnnn nnnn If the OVERFLOW bit is ‘1’, then the program will branch. The 2’s complement number ‘2n’ is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction. Words: 1 Cycles: 1(2) Q Cycle Activity: If Jump: 1 Q1 Q2 Q3 Q4 1 Decode Read literal ‘n’ Process Data Write to PC No operation No operation No operation No operation Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read register ‘f’ Process Data Write register ‘f’ Example: n BTG PORTC, Q1 Q2 Q3 Q4 Decode Read literal ‘n’ Process Data No operation 4, 0 Before Instruction: PORTC = 0111 0101 [75h] After Instruction: PORTC = 0110 0101 [65h] © 2007 Microchip Technology Inc. If No Jump: Example: HERE Before Instruction PC = After Instruction If OVERFLOW = PC = If OVERFLOW = PC = Advance Information BOV Jump address (HERE) 1; address (Jump) 0; address (HERE + 2) DS41303B-page 319 PIC18F2XK20/4XK20 BZ Branch if Zero CALL Subroutine Call Syntax: BZ Syntax: CALL k {,s} Operands: -128 ≤ n ≤ 127 Operands: Operation: if ZERO bit is ‘1’ (PC) + 2 + 2n → PC 0 ≤ k ≤ 1048575 s ∈ [0,1] Operation: (PC) + 4 → TOS, k → PC<20:1>, if s = 1 (W) → WS, (Status) → STATUSS, (BSR) → BSRS Status Affected: None Status Affected: n None Encoding: 1110 Description: 0000 nnnn nnnn If the ZERO bit is ‘1’, then the program will branch. The 2’s complement number ‘2n’ is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction. Words: 1 Cycles: 1(2) Encoding: 1st word (k<7:0>) 2nd word(k<19:8>) Q1 Q2 Q3 Q4 Read literal ‘n’ Process Data Write to PC No operation No operation No operation No operation Q1 Q2 Q3 Q4 Decode Read literal ‘n’ Process Data No operation If No Jump: Example: HERE Before Instruction PC After Instruction If ZERO PC If ZERO PC DS41303B-page 320 BZ k7kkk kkkk 110s k19kkk Subroutine call of entire 2-Mbyte memory range. First, return address (PC + 4) is pushed onto the return stack. If ‘s’ = 1, the W, Status and BSR registers are also pushed into their respective shadow registers, WS, STATUSS and BSRS. If ‘s’ = 0, no update occurs (default). Then, the 20-bit value ‘k’ is loaded into PC<20:1>. CALL is a two-cycle instruction. Words: 2 Cycles: 2 Q Cycle Activity: Q1 Decode Q2 Q3 Q4 Read literal PUSH PC to ‘k’<7:0>, stack Jump No operation = address (HERE) = = = = 1; address (Jump) 0; address (HERE + 2) kkkk0 kkkk8 Description: Q Cycle Activity: If Jump: Decode 1110 1111 Example: No operation HERE Before Instruction PC = After Instruction PC = TOS = WS = BSRS = STATUSS = Advance Information No operation CALL Read literal ‘k’<19:8>, Write to PC No operation THERE, 1 address (HERE) address (THERE) address (HERE + 4) W BSR Status © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 CLRF Clear f Syntax: CLRF Operands: 0 ≤ f ≤ 255 a ∈ [0,1] Operation: 000h → f 1→Z Status Affected: Z Encoding: f {,a} 0110 Description: 101a ffff ffff Clears the contents of the specified register. If ‘a’ is ‘0’, the Access Bank is selected. If ‘a’ is ‘1’, the BSR is used to select the GPR bank (default). If ‘a’ is ‘0’ and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 “Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode” for details. Words: 1 Cycles: 1 Q1 Q2 Q3 Q4 Decode Read register ‘f’ Process Data Write register ‘f’ CLRF Before Instruction FLAG_REG After Instruction FLAG_REG Clear Watchdog Timer Syntax: CLRWDT Operands: None Operation: 000h → WDT, 000h → WDT postscaler, 1 → TO, 1 → PD Status Affected: TO, PD Encoding: 0000 FLAG_REG, 1 = 5Ah = 00h © 2007 Microchip Technology Inc. 0000 0000 0100 Description: CLRWDT instruction resets the Watchdog Timer. It also resets the postscaler of the WDT. Status bits, TO and PD, are set. Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode No operation Process Data No operation Example: Q Cycle Activity: Example: CLRWDT CLRWDT Before Instruction WDT Counter After Instruction WDT Counter WDT Postscaler TO PD Advance Information = ? = = = = 00h 0 1 1 DS41303B-page 321 PIC18F2XK20/4XK20 COMF Complement f CPFSEQ Compare f with W, skip if f = W Syntax: COMF Syntax: CPFSEQ Operands: 0 ≤ f ≤ 255 a ∈ [0,1] Operation: (f) – (W), skip if (f) = (W) (unsigned comparison) Status Affected: None f {,d {,a}} 0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1] Operands: Operation: (f) → dest Status Affected: N, Z Encoding: 0001 11da ffff ffff Description: The contents of register ‘f’ are complemented. If ‘d’ is ‘0’, the result is stored in W. If ‘d’ is ‘1’, the result is stored back in register ‘f’ (default). If ‘a’ is ‘0’, the Access Bank is selected. If ‘a’ is ‘1’, the BSR is used to select the GPR bank (default). If ‘a’ is ‘0’ and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 “Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode” for details. Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read register ‘f’ Process Data Write to destination Encoding: 0110 Description: f {,a} 001a ffff ffff Compares the contents of data memory location ‘f’ to the contents of W by performing an unsigned subtraction. If ‘f’ = W, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If ‘a’ is ‘0’, the Access Bank is selected. If ‘a’ is ‘1’, the BSR is used to select the GPR bank (default). If ‘a’ is ‘0’ and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 “Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode” for details. Words: 1 Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. Q Cycle Activity: Example: COMF Before Instruction REG = After Instruction REG = W = REG, 0, 0 Q1 Q2 Q3 Q4 Decode Read register ‘f’ Process Data No operation 13h If skip: 13h ECh Q1 Q2 Q3 No No No operation operation operation If skip and followed by 2-word instruction: Q1 Q2 Q3 No No No operation operation operation No No No operation operation operation Example: DS41303B-page 322 HERE NEQUAL EQUAL Q4 No operation Q4 No operation No operation CPFSEQ REG, 0 : : Before Instruction PC Address W REG After Instruction = = = HERE ? ? If REG PC If REG PC = = ≠ = W; Address (EQUAL) W; Address (NEQUAL) Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 CPFSGT Compare f with W, skip if f > W CPFSLT Compare f with W, skip if f < W Syntax: CPFSGT Syntax: CPFSLT Operands: 0 ≤ f ≤ 255 a ∈ [0,1] Operands: 0 ≤ f ≤ 255 a ∈ [0,1] Operation: (f) – (W), skip if (f) > (W) (unsigned comparison) Operation: (f) – (W), skip if (f) < (W) (unsigned comparison) Status Affected: None Status Affected: None Encoding: 0110 Description: Words: f {,a} 010a ffff ffff Compares the contents of data memory location ‘f’ to the contents of the W by performing an unsigned subtraction. If the contents of ‘f’ are greater than the contents of WREG, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If ‘a’ is ‘0’, the Access Bank is selected. If ‘a’ is ‘1’, the BSR is used to select the GPR bank (default). If ‘a’ is ‘0’ and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 “Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode” for details. Encoding: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. Q2 Read register ‘f’ Q3 Process Data Q4 No operation Q1 Q2 Q3 No No No operation operation operation If skip and followed by 2-word instruction: Q1 Q2 Q3 No No No operation operation operation No No No operation operation operation Q4 No operation Example: HERE NGREATER GREATER CPFSGT REG, 0 : : Before Instruction PC W After Instruction = = Address (HERE) ? If REG PC If REG PC > = ≤ = W; Address (GREATER) W; Address (NGREATER) © 2007 Microchip Technology Inc. ffff ffff Words: 1 Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read register ‘f’ Process Data No operation Q1 Q2 Q3 Q4 No operation No operation No operation No operation If skip: If skip and followed by 2-word instruction: If skip: Q4 No operation No operation 000a Compares the contents of data memory location ‘f’ to the contents of W by performing an unsigned subtraction. If the contents of ‘f’ are less than the contents of W, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If ‘a’ is ‘0’, the Access Bank is selected. If ‘a’ is ‘1’, the BSR is used to select the GPR bank (default). Q Cycle Activity: Q1 Decode 0110 Description: 1 Cycles: f {,a} Q1 Q2 Q3 Q4 No operation No operation No operation No operation No operation No operation No operation No operation Example: HERE NLESS LESS CPFSLT REG, 1 : : Before Instruction PC W After Instruction = = Address (HERE) ? If REG PC If REG PC < = ≥ = W; Address (LESS) W; Address (NLESS) Advance Information DS41303B-page 323 PIC18F2XK20/4XK20 DAW Decimal Adjust W Register DECF Decrement f Syntax: DAW Syntax: DECF f {,d {,a}} Operands: None Operands: Operation: If [W<3:0> > 9] or [DC = 1] then (W<3:0>) + 6 → W<3:0>; else (W<3:0>) → W<3:0>; 0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1] Operation: (f) – 1 → dest Status Affected: C, DC, N, OV, Z If [W<7:4> + DC > 9] or [C = 1] then Encoding: (W<7:4>) + 6 + DC → W<7:4> ; Description: Decrement register ‘f’. If ‘d’ is ‘0’, the result is stored in W. If ‘d’ is ‘1’, the result is stored back in register ‘f’ (default). If ‘a’ is ‘0’, the Access Bank is selected. If ‘a’ is ‘1’, the BSR is used to select the GPR bank (default). If ‘a’ is ‘0’ and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 “Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode” for details. Words: 1 Cycles: 1 0000 else (W<7:4>) + DC → W<7:4> Status Affected: C Encoding: 0000 0000 0000 0111 Description: DAW adjusts the eight-bit value in W, resulting from the earlier addition of two variables (each in packed BCD format) and produces a correct packed BCD result. Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read register W Process Data Write W ffff ffff Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read register ‘f’ Process Data Write to destination Example1: DAW 01da Before Instruction W = C = DC = After Instruction W C DC Example 2: = = = A5h 0 0 05h 1 0 Example: DECF Before Instruction CNT = Z = After Instruction CNT = Z = CNT, 1, 0 01h 0 00h 1 Before Instruction W = C = DC = After Instruction W C DC = = = DS41303B-page 324 CEh 0 0 34h 1 0 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 Decrement f, skip if 0 DCFSNZ Syntax: DECFSZ f {,d {,a}} Syntax: DCFSNZ Operands: 0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1] Operands: 0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1] Operation: (f) – 1 → dest, skip if result = 0 Operation: (f) – 1 → dest, skip if result ≠ 0 Status Affected: None Status Affected: None DECFSZ Encoding: 0010 Description: 11da ffff ffff The contents of register ‘f’ are decremented. If ‘d’ is ‘0’, the result is placed in W. If ‘d’ is ‘1’, the result is placed back in register ‘f’ (default). If the result is ‘0’, the next instruction, which is already fetched, is discarded and a NOP is executed instead, making it a two-cycle instruction. If ‘a’ is ‘0’, the Access Bank is selected. If ‘a’ is ‘1’, the BSR is used to select the GPR bank (default). If ‘a’ is ‘0’ and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 “Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode” for details. Words: 1 Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. Decrement f, skip if not 0 Encoding: 0100 Q2 Q3 Q4 Decode Read register ‘f’ Process Data Write to destination Q1 Q2 Q3 Q4 No operation No operation No operation No operation Q1 Q2 Q3 Q4 No operation No operation No operation No operation No operation No operation No operation No operation HERE DECFSZ GOTO Example: CNT, 1, 1 LOOP Address (HERE) CNT - 1 0; Address (CONTINUE) 0; Address (HERE + 2) © 2007 Microchip Technology Inc. ffff Words: 1 Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read register ‘f’ Process Data Write to destination Q1 Q2 Q3 Q4 No operation No operation No operation No operation If skip: If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4 No operation No operation No operation No operation No operation No operation No operation No operation Example: CONTINUE Before Instruction PC = After Instruction CNT = If CNT = PC = If CNT ≠ PC = ffff The contents of register ‘f’ are decremented. If ‘d’ is ‘0’, the result is placed in W. If ‘d’ is ‘1’, the result is placed back in register ‘f’ (default). If the result is not ‘0’, the next instruction, which is already fetched, is discarded and a NOP is executed instead, making it a two-cycle instruction. If ‘a’ is ‘0’, the Access Bank is selected. If ‘a’ is ‘1’, the BSR is used to select the GPR bank (default). If ‘a’ is ‘0’ and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 “Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode” for details. If skip: If skip and followed by 2-word instruction: 11da Description: Q Cycle Activity: Q1 f {,d {,a}} HERE ZERO NZERO Before Instruction TEMP After Instruction TEMP If TEMP PC If TEMP PC Advance Information DCFSNZ : : TEMP, 1, 0 = ? = = = ≠ = TEMP – 1, 0; Address (ZERO) 0; Address (NZERO) DS41303B-page 325 PIC18F2XK20/4XK20 GOTO Unconditional Branch INCF Syntax: GOTO k Syntax: INCF Operands: 0 ≤ k ≤ 1048575 Operands: Operation: k → PC<20:1> Status Affected: None 0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1] Operation: (f) + 1 → dest Status Affected: C, DC, N, OV, Z Encoding: 1st word (k<7:0>) 2nd word(k<19:8>) 1110 1111 Description: 1111 k19kkk k7kkk kkkk kkkk0 kkkk8 GOTO allows an unconditional branch Increment f Encoding: 0010 2 Cycles: 2 Q1 Q2 Q3 Q4 Read literal ‘k’<7:0>, No operation Read literal ‘k’<19:8>, Write to PC No operation No operation No operation No operation ffff ffff The contents of register ‘f’ are incremented. If ‘d’ is ‘0’, the result is placed in W. If ‘d’ is ‘1’, the result is placed back in register ‘f’ (default). If ‘a’ is ‘0’, the Access Bank is selected. If ‘a’ is ‘1’, the BSR is used to select the GPR bank (default). If ‘a’ is ‘0’ and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 “Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode” for details. Words: 1 Cycles: 1 Q Cycle Activity: Decode 10da Description: anywhere within entire 2-Mbyte memory range. The 20-bit value ‘k’ is loaded into PC<20:1>. GOTO is always a two-cycle instruction. Words: f {,d {,a}} Q Cycle Activity: Example: GOTO THERE After Instruction PC = Address (THERE) Q1 Q2 Q3 Q4 Decode Read register ‘f’ Process Data Write to destination Example: INCF Before Instruction CNT = Z = C = DC = After Instruction CNT = Z = C = DC = DS41303B-page 326 Advance Information CNT, 1, 0 FFh 0 ? ? 00h 1 1 1 © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 INCFSZ Increment f, skip if 0 INFSNZ Syntax: INCFSZ Syntax: INFSNZ 0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1] f {,d {,a}} Increment f, skip if not 0 f {,d {,a}} Operands: 0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1] Operands: Operation: (f) + 1 → dest, skip if result = 0 Operation: (f) + 1 → dest, skip if result ≠ 0 Status Affected: None Status Affected: None Encoding: 0011 Description: 11da ffff ffff The contents of register ‘f’ are incremented. If ‘d’ is ‘0’, the result is placed in W. If ‘d’ is ‘1’, the result is placed back in register ‘f’ (default). If the result is ‘0’, the next instruction, which is already fetched, is discarded and a NOP is executed instead, making it a two-cycle instruction. If ‘a’ is ‘0’, the Access Bank is selected. If ‘a’ is ‘1’, the BSR is used to select the GPR bank (default). If ‘a’ is ‘0’ and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 “Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode” for details. Encoding: 0100 Description: Words: 1 Words: 1 Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. Cycles: 1(2) Note: Q Cycle Activity: 10da ffff ffff The contents of register ‘f’ are incremented. If ‘d’ is ‘0’, the result is placed in W. If ‘d’ is ‘1’, the result is placed back in register ‘f’ (default). If the result is not ‘0’, the next instruction, which is already fetched, is discarded and a NOP is executed instead, making it a two-cycle instruction. If ‘a’ is ‘0’, the Access Bank is selected. If ‘a’ is ‘1’, the BSR is used to select the GPR bank (default). If ‘a’ is ‘0’ and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 “Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode” for details. 3 cycles if skip and followed by a 2-word instruction. Q Cycle Activity: Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Decode Read register ‘f’ Process Data Write to destination Decode Read register ‘f’ Process Data Write to destination Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 No operation No operation No operation No operation No operation No operation No operation No operation If skip: If skip: If skip and followed by 2-word instruction: If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 No operation No operation No operation No operation No operation No operation No operation No operation No operation No operation No operation No operation No operation No operation No operation No operation Example: HERE NZERO ZERO Before Instruction PC = After Instruction CNT = If CNT = PC = If CNT ≠ PC = INCFSZ : : Address (HERE) CNT + 1 0; Address (ZERO) 0; Address (NZERO) © 2007 Microchip Technology Inc. CNT, 1, 0 Example: HERE ZERO NZERO Before Instruction PC = After Instruction REG = ≠ If REG PC = If REG = PC = Advance Information INFSNZ REG, 1, 0 Address (HERE) REG + 1 0; Address (NZERO) 0; Address (ZERO) DS41303B-page 327 PIC18F2XK20/4XK20 IORLW Inclusive OR literal with W IORWF Syntax: IORLW k Syntax: IORWF Operands: 0 ≤ k ≤ 255 Operands: Operation: (W) .OR. k → W Status Affected: N, Z 0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1] Operation: (W) .OR. (f) → dest Status Affected: N, Z Encoding: 0000 Description: 1001 kkkk kkkk The contents of W are ORed with the eight-bit literal ‘k’. The result is placed in W. Words: 1 Cycles: 1 Inclusive OR W with f Encoding: 0001 Q1 Q2 Q3 Q4 Read literal ‘k’ Process Data Write to W Example: IORLW W = ffff Words: 1 Cycles: 1 35h 9Ah BFh ffff Inclusive OR W with register ‘f’. If ‘d’ is ‘0’, the result is placed in W. If ‘d’ is ‘1’, the result is placed back in register ‘f’ (default). If ‘a’ is ‘0’, the Access Bank is selected. If ‘a’ is ‘1’, the BSR is used to select the GPR bank (default). If ‘a’ is ‘0’ and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 “Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode” for details. Before Instruction W = After Instruction 00da Description: Q Cycle Activity: Decode f {,d {,a}} Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read register ‘f’ Process Data Write to destination Example: IORWF Before Instruction RESULT = W = After Instruction RESULT = W = DS41303B-page 328 Advance Information RESULT, 0, 1 13h 91h 13h 93h © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 LFSR Load FSR MOVF Syntax: LFSR f, k Syntax: MOVF Operands: 0≤f≤2 0 ≤ k ≤ 4095 Operands: Operation: k → FSRf 0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1] Status Affected: None Encoding: 1110 1111 1110 0000 00ff k7kkk k11kkk kkkk Description: The 12-bit literal ‘k’ is loaded into the File Select Register pointed to by ‘f’. Words: 2 Cycles: 2 Move f Operation: f → dest Status Affected: N, Z Encoding: 0101 Q1 Q2 Q3 Q4 Read literal ‘k’ MSB Process Data Write literal ‘k’ MSB to FSRfH Decode Read literal ‘k’ LSB Process Data Write literal ‘k’ to FSRfL Example: After Instruction FSR2H FSR2L 03h ABh ffff ffff The contents of register ‘f’ are moved to a destination dependent upon the status of ‘d’. If ‘d’ is ‘0’, the result is placed in W. If ‘d’ is ‘1’, the result is placed back in register ‘f’ (default). Location ‘f’ can be anywhere in the 256-byte bank. If ‘a’ is ‘0’, the Access Bank is selected. If ‘a’ is ‘1’, the BSR is used to select the GPR bank (default). If ‘a’ is ‘0’ and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 “Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode” for details. Words: 1 Cycles: 1 LFSR 2, 3ABh = = 00da Description: Q Cycle Activity: Decode f {,d {,a}} Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read register ‘f’ Process Data Write W Example: MOVF Before Instruction REG W After Instruction REG W © 2007 Microchip Technology Inc. Advance Information REG, 0, 0 = = 22h FFh = = 22h 22h DS41303B-page 329 PIC18F2XK20/4XK20 MOVFF Move f to f MOVLB Syntax: MOVFF fs,fd Syntax: MOVLW k Operands: 0 ≤ fs ≤ 4095 0 ≤ fd ≤ 4095 Operands: 0 ≤ k ≤ 255 Operation: (fs) → fd k → BSR Operation: Status Affected: None Status Affected: None Encoding: Encoding: 1st word (source) 2nd word (destin.) 1100 1111 Description: ffff ffff ffff ffff ffffs ffffd The contents of source register ‘fs’ are moved to destination register ‘fd’. Location of source ‘fs’ can be anywhere in the 4096-byte data space (000h to FFFh) and location of destination ‘fd’ can also be anywhere from 000h to FFFh. Either source or destination can be W (a useful special situation). MOVFF is particularly useful for transferring a data memory location to a peripheral register (such as the transmit buffer or an I/O port). The MOVFF instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register. Words: 2 Cycles: 2 (3) Move literal to low nibble in BSR 0000 0001 kkkk kkkk Description: The eight-bit literal ‘k’ is loaded into the Bank Select Register (BSR). The value of BSR<7:4> always remains ‘0’, regardless of the value of k7:k4. Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read literal ‘k’ Process Data Write literal ‘k’ to BSR MOVLB 5 Example: Before Instruction BSR Register = After Instruction BSR Register = 02h 05h Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read register ‘f’ (src) Process Data No operation Decode No operation No operation Write register ‘f’ (dest) No dummy read Example: MOVFF Before Instruction REG1 REG2 After Instruction REG1 REG2 DS41303B-page 330 REG1, REG2 = = 33h 11h = = 33h 33h Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 MOVLW Move literal to W MOVWF Syntax: MOVLW k Syntax: MOVWF Operands: 0 ≤ k ≤ 255 Operands: 0 ≤ f ≤ 255 a ∈ [0,1] Operation: (W) → f Status Affected: None Operation: k→W Status Affected: None Encoding: 0000 1110 kkkk kkkk Description: The eight-bit literal ‘k’ is loaded into W. Words: 1 Cycles: 1 Move W to f Encoding: 0110 Q1 Q2 Q3 Q4 Read literal ‘k’ Process Data Write to W Example: MOVLW = ffff ffff Move data from W to register ‘f’. Location ‘f’ can be anywhere in the 256-byte bank. If ‘a’ is ‘0’, the Access Bank is selected. If ‘a’ is ‘1’, the BSR is used to select the GPR bank (default). If ‘a’ is ‘0’ and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 “Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode” for details. Words: 1 Cycles: 1 5Ah After Instruction W 111a Description: Q Cycle Activity: Decode f {,a} 5Ah Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read register ‘f’ Process Data Write register ‘f’ Example: MOVWF REG, 0 Before Instruction W = REG = After Instruction W REG © 2007 Microchip Technology Inc. Advance Information = = 4Fh FFh 4Fh 4Fh DS41303B-page 331 PIC18F2XK20/4XK20 MULLW Multiply literal with W MULWF Syntax: MULLW Syntax: MULWF Operands: 0 ≤ k ≤ 255 Operands: Operation: (W) x k → PRODH:PRODL 0 ≤ f ≤ 255 a ∈ [0,1] Status Affected: None Operation: (W) x (f) → PRODH:PRODL Status Affected: None Encoding: 0000 Description: k 1101 kkkk kkkk An unsigned multiplication is carried out between the contents of W and the 8-bit literal ‘k’. The 16-bit result is placed in the PRODH:PRODL register pair. PRODH contains the high byte. W is unchanged. None of the Status flags are affected. Note that neither overflow nor carry is possible in this operation. A zero result is possible but not detected. Words: 1 Cycles: 1 Multiply W with f Encoding: 0000 Q1 Q2 Q3 Q4 Read literal ‘k’ Process Data Write registers PRODH: PRODL Example: MULLW W PRODH PRODL E2h ? ? = = = E2h ADh 08h ffff Words: 1 Cycles: 1 0C4h = = = ffff An unsigned multiplication is carried out between the contents of W and the register file location ‘f’. The 16-bit result is stored in the PRODH:PRODL register pair. PRODH contains the high byte. Both W and ‘f’ are unchanged. None of the Status flags are affected. Note that neither overflow nor carry is possible in this operation. A zero result is possible but not detected. If ‘a’ is ‘0’, the Access Bank is selected. If ‘a’ is ‘1’, the BSR is used to select the GPR bank (default). If ‘a’ is ‘0’ and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 “Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode” for details. Before Instruction W PRODH PRODL After Instruction 001a Description: Q Cycle Activity: Decode f {,a} Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read register ‘f’ Process Data Write registers PRODH: PRODL Example: MULWF REG, 1 Before Instruction W REG PRODH PRODL After Instruction W REG PRODH PRODL DS41303B-page 332 Advance Information = = = = C4h B5h ? ? = = = = C4h B5h 8Ah 94h © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 NEGF Negate f NOP No Operation Syntax: NEGF Syntax: NOP Operands: 0 ≤ f ≤ 255 a ∈ [0,1] Operands: None Operation: (f)+1→f Status Affected: N, OV, C, DC, Z Encoding: f {,a} 0110 Description: 1 Cycles: 1 No operation Status Affected: None Encoding: 110a ffff 0000 1111 ffff Location ‘f’ is negated using two’s complement. The result is placed in the data memory location ‘f’. If ‘a’ is ‘0’, the Access Bank is selected. If ‘a’ is ‘1’, the BSR is used to select the GPR bank (default). If ‘a’ is ‘0’ and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 “Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode” for details. Words: Operation: 0000 xxxx Description: No operation. Words: 1 Cycles: 1 0000 xxxx 0000 xxxx Q Cycle Activity: Q1 Q2 Q3 Q4 Decode No operation No operation No operation Example: None. Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read register ‘f’ Process Data Write register ‘f’ Example: NEGF Before Instruction REG = After Instruction REG = REG, 1 0011 1010 [3Ah] 1100 0110 [C6h] © 2007 Microchip Technology Inc. Advance Information DS41303B-page 333 PIC18F2XK20/4XK20 POP Pop Top of Return Stack PUSH Push Top of Return Stack Syntax: POP Syntax: PUSH Operands: None Operands: None Operation: (TOS) → bit bucket Operation: (PC + 2) → TOS Status Affected: None Status Affected: None Encoding: 0000 0000 0000 0110 Description: The TOS value is pulled off the return stack and is discarded. The TOS value then becomes the previous value that was pushed onto the return stack. This instruction is provided to enable the user to properly manage the return stack to incorporate a software stack. Words: 1 Cycles: 1 Encoding: Q2 Q3 Q4 Decode No operation POP TOS value No operation POP GOTO NEW Before Instruction TOS Stack (1 level down) DS41303B-page 334 0000 0101 Words: 1 Cycles: 1 Q Cycle Activity: Q1 After Instruction TOS PC 0000 The PC + 2 is pushed onto the top of the return stack. The previous TOS value is pushed down on the stack. This instruction allows implementing a software stack by modifying TOS and then pushing it onto the return stack. Q Cycle Activity: Example: 0000 Description: Q1 Q2 Q3 Q4 Decode PUSH PC + 2 onto return stack No operation No operation Example: = = = = 0031A2h 014332h 014332h NEW PUSH Before Instruction TOS PC = = 345Ah 0124h After Instruction PC TOS Stack (1 level down) = = = 0126h 0126h 345Ah Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 RCALL Relative Call RESET Reset Syntax: RCALL Syntax: RESET Operands: -1024 ≤ n ≤ 1023 Operands: None Operation: (PC) + 2 → TOS, (PC) + 2 + 2n → PC Operation: Reset all registers and flags that are affected by a MCLR Reset. Status Affected: None Status Affected: All Encoding: n 1101 Description: 1nnn nnnn nnnn Subroutine call with a jump up to 1K from the current location. First, return address (PC + 2) is pushed onto the stack. Then, add the 2’s complement number ‘2n’ to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is a two-cycle instruction. Words: 1 Cycles: 2 Encoding: 0000 Q1 Q2 Q3 Q4 Decode Read literal ‘n’ Process Data Write to PC No operation No operation 1111 1111 Description: This instruction provides a way to execute a MCLR Reset by software. Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Start Reset No operation No operation Example: Q Cycle Activity: 0000 After Instruction Registers = Flags* = RESET Reset Value Reset Value PUSH PC to stack No operation Example: No operation HERE RCALL Jump Before Instruction PC = Address (HERE) After Instruction PC = Address (Jump) TOS = Address (HERE + 2) © 2007 Microchip Technology Inc. Advance Information DS41303B-page 335 PIC18F2XK20/4XK20 RETFIE Return from Interrupt RETLW Return literal to W Syntax: RETFIE {s} Syntax: RETLW k Operands: s ∈ [0,1] Operands: 0 ≤ k ≤ 255 Operation: (TOS) → PC, 1 → GIE/GIEH or PEIE/GIEL, if s = 1 (WS) → W, (STATUSS) → Status, (BSRS) → BSR, PCLATU, PCLATH are unchanged. Operation: k → W, (TOS) → PC, PCLATU, PCLATH are unchanged Status Affected: None Status Affected: 0000 0000 0001 1 Cycles: 2 Q Cycle Activity: Q2 Q3 Q4 Decode No operation No operation POP PC from stack Set GIEH or GIEL No operation RETFIE After Interrupt PC W BSR Status GIE/GIEH, PEIE/GIEL DS41303B-page 336 kkkk kkkk Words: 1 Cycles: 2 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read literal ‘k’ Process Data POP PC from stack, Write to W No operation No operation No operation No operation Example: Q1 Example: 1100 W is loaded with the eight-bit literal ‘k’. The program counter is loaded from the top of the stack (the return address). The high address latch (PCLATH) remains unchanged. 000s Return from interrupt. Stack is popped and Top-of-Stack (TOS) is loaded into the PC. Interrupts are enabled by setting either the high or low priority global interrupt enable bit. If ‘s’ = 1, the contents of the shadow registers, WS, STATUSS and BSRS, are loaded into their corresponding registers, W, Status and BSR. If ‘s’ = 0, no update of these registers occurs (default). Words: No operation 0000 Description: GIE/GIEH, PEIE/GIEL. Encoding: Description: Encoding: No operation No operation 1 = = = = = TOS WS BSRS STATUSS 1 CALL TABLE ; ; ; ; : TABLE ADDWF PCL ; RETLW k0 ; RETLW k1 ; : : RETLW kn ; Before Instruction W = After Instruction W = Advance Information W contains table offset value W now has table value W = offset Begin table End of table 07h value of kn © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 RETURN Return from Subroutine RLCF Syntax: RETURN {s} Syntax: RLCF Operands: s ∈ [0,1] Operands: Operation: (TOS) → PC, if s = 1 (WS) → W, (STATUSS) → Status, (BSRS) → BSR, PCLATU, PCLATH are unchanged 0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1] Operation: (f<n>) → dest<n + 1>, (f<7>) → C, (C) → dest<0> Status Affected: C, N, Z Status Affected: None Encoding: 0000 Rotate Left f through Carry Encoding: 0000 0001 001s Description: Return from subroutine. The stack is popped and the top of the stack (TOS) is loaded into the program counter. If ‘s’= 1, the contents of the shadow registers, WS, STATUSS and BSRS, are loaded into their corresponding registers, W, Status and BSR. If ‘s’ = 0, no update of these registers occurs (default). Words: 1 Cycles: 2 0011 Description: Q Cycle Activity: Q1 Q2 Q3 Q4 Decode No operation Process Data POP PC from stack No operation No operation No operation No operation f {,d {,a}} 01da ffff ffff The contents of register ‘f’ are rotated one bit to the left through the CARRY flag. If ‘d’ is ‘0’, the result is placed in W. If ‘d’ is ‘1’, the result is stored back in register ‘f’ (default). If ‘a’ is ‘0’, the Access Bank is selected. If ‘a’ is ‘1’, the BSR is used to select the GPR bank (default). If ‘a’ is ‘0’ and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 “Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode” for details. register f C Words: 1 Cycles: 1 Q Cycle Activity: Example: RETURN After Instruction: PC = TOS Q1 Q2 Q3 Q4 Decode Read register ‘f’ Process Data Write to destination Example: Before Instruction REG = C = After Instruction REG = W = C = © 2007 Microchip Technology Inc. Advance Information RLCF REG, 0, 0 1110 0110 0 1110 0110 1100 1100 1 DS41303B-page 337 PIC18F2XK20/4XK20 RLNCF Rotate Left f (No Carry) RRCF Syntax: RLNCF Syntax: RRCF Operands: 0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1] Operands: 0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1] Operation: (f<n>) → dest<n + 1>, (f<7>) → dest<0> Operation: Status Affected: N, Z (f<n>) → dest<n – 1>, (f<0>) → C, (C) → dest<7> Status Affected: C, N, Z Encoding: 0100 Description: f {,d {,a}} 01da ffff ffff The contents of register ‘f’ are rotated one bit to the left. If ‘d’ is ‘0’, the result is placed in W. If ‘d’ is ‘1’, the result is stored back in register ‘f’ (default). If ‘a’ is ‘0’, the Access Bank is selected. If ‘a’ is ‘1’, the BSR is used to select the GPR bank (default). If ‘a’ is ‘0’ and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 “Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode” for details. Rotate Right f through Carry Encoding: 0011 Description: register f Words: 1 Cycles: 1 Q1 Q2 Q3 Q4 Decode Read register ‘f’ Process Data Write to destination Before Instruction REG = After Instruction REG = DS41303B-page 338 00da RLNCF Words: 1 Cycles: 1 0101 0111 ffff register f Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read register ‘f’ Process Data Write to destination RRCF REG, 0, 0 REG, 1, 0 1010 1011 ffff The contents of register ‘f’ are rotated one bit to the right through the CARRY flag. If ‘d’ is ‘0’, the result is placed in W. If ‘d’ is ‘1’, the result is placed back in register ‘f’ (default). If ‘a’ is ‘0’, the Access Bank is selected. If ‘a’ is ‘1’, the BSR is used to select the GPR bank (default). If ‘a’ is ‘0’ and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 “Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode” for details. C Q Cycle Activity: Example: f {,d {,a}} Example: Before Instruction REG = C = After Instruction REG = W = C = Advance Information 1110 0110 0 1110 0110 0111 0011 0 © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 RRNCF Rotate Right f (No Carry) SETF Syntax: RRNCF Syntax: SETF Operands: 0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1] Operands: 0 ≤ f ≤ 255 a ∈ [0,1] Operation: (f<n>) → dest<n – 1>, (f<0>) → dest<7> FFh → f Operation: Status Affected: None Status Affected: f {,d {,a}} Encoding: N, Z Encoding: 0100 Description: 00da ffff ffff The contents of register ‘f’ are rotated one bit to the right. If ‘d’ is ‘0’, the result is placed in W. If ‘d’ is ‘1’, the result is placed back in register ‘f’ (default). If ‘a’ is ‘0’, the Access Bank will be selected, overriding the BSR value. If ‘a’ is ‘1’, then the bank will be selected as per the BSR value (default). If ‘a’ is ‘0’ and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 “Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode” for details. register f Words: 1 Cycles: 1 Q1 Q2 Q3 Q4 Decode Read register ‘f’ Process Data Write to destination RRNCF Before Instruction REG = After Instruction REG = Example 2: f {,a} 0110 100a ffff ffff Description: The contents of the specified register are set to FFh. If ‘a’ is ‘0’, the Access Bank is selected. If ‘a’ is ‘1’, the BSR is used to select the GPR bank (default). If ‘a’ is ‘0’ and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 “Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode” for details. Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read register ‘f’ Process Data Write register ‘f’ Example: Q Cycle Activity: Example 1: Set f SETF Before Instruction REG After Instruction REG REG, 1 = 5Ah = FFh REG, 1, 0 1101 0111 1110 1011 RRNCF REG, 0, 0 Before Instruction W = REG = After Instruction ? 1101 0111 = = 1110 1011 1101 0111 W REG © 2007 Microchip Technology Inc. Advance Information DS41303B-page 339 PIC18F2XK20/4XK20 SLEEP Enter Sleep mode SUBFWB Syntax: SLEEP Syntax: SUBFWB Operands: None Operands: Operation: 00h → WDT, 0 → WDT postscaler, 1 → TO, 0 → PD 0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1] Operation: (W) – (f) – (C) → dest Status Affected: N, OV, C, DC, Z Status Affected: TO, PD Encoding: 0000 Encoding: 0000 0000 0011 Description: The Power-down Status bit (PD) is cleared. The Time-out Status bit (TO) is set. Watchdog Timer and its postscaler are cleared. The processor is put into Sleep mode with the oscillator stopped. Words: 1 Cycles: 1 0101 Q1 Q2 Q3 Q4 Decode No operation Process Data Go to Sleep SLEEP Before Instruction TO = ? PD = ? After Instruction 1† TO = 0 PD = † If WDT causes wake-up, this bit is cleared. DS41303B-page 340 f {,d {,a}} 01da ffff ffff Description: Subtract register ‘f’ and CARRY flag (borrow) from W (2’s complement method). If ‘d’ is ‘0’, the result is stored in W. If ‘d’ is ‘1’, the result is stored in register ‘f’ (default). If ‘a’ is ‘0’, the Access Bank is selected. If ‘a’ is ‘1’, the BSR is used to select the GPR bank (default). If ‘a’ is ‘0’ and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 “Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode” for details. Words: 1 Cycles: 1 Q Cycle Activity: Example: Subtract f from W with borrow Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read register ‘f’ Process Data Write to destination SUBFWB REG, 1, 0 Example 1: Before Instruction REG = 3 W = 2 C = 1 After Instruction REG = FF W = 2 C = 0 Z = 0 N = 1 ; result is negative SUBFWB REG, 0, 0 Example 2: Before Instruction REG = 2 W = 5 C = 1 After Instruction REG = 2 W = 3 C = 1 Z = 0 N = 0 ; result is positive SUBFWB REG, 1, 0 Example 3: Before Instruction REG = 1 W = 2 C = 0 After Instruction REG = 0 W = 2 C = 1 Z = 1 ; result is zero N = 0 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 SUBLW Subtract W from literal SUBWF Syntax: SUBLW k Syntax: SUBWF Operands: 0 ≤ k ≤ 255 Operands: Operation: k – (W) → W Status Affected: N, OV, C, DC, Z 0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1] Operation: (f) – (W) → dest Status Affected: N, OV, C, DC, Z Encoding: 0000 Description 1000 kkkk kkkk W is subtracted from the eight-bit literal ‘k’. The result is placed in W. Words: 1 Cycles: 1 Subtract W from f Encoding: 0101 Q2 Q3 Q4 Decode Read literal ‘k’ Process Data Write to W Example 1: Before Instruction W = C = After Instruction W = C = Z = N = Example 2: Before Instruction W = C = After Instruction W = C = Z = N = Example 3: Before Instruction W = C = After Instruction W = C = Z = N = SUBLW 1 Cycles: 1 02h Q Cycle Activity: 02h ? 00h 1 ; result is zero 1 0 SUBLW ffff Words: 01h ? SUBLW ffff Subtract W from register ‘f’ (2’s complement method). If ‘d’ is ‘0’, the result is stored in W. If ‘d’ is ‘1’, the result is stored back in register ‘f’ (default). If ‘a’ is ‘0’, the Access Bank is selected. If ‘a’ is ‘1’, the BSR is used to select the GPR bank (default). If ‘a’ is ‘0’ and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 “Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode” for details. 02h 01h 1 ; result is positive 0 0 11da Description: Q Cycle Activity: Q1 f {,d {,a}} Q1 Q2 Q3 Q4 Decode Read register ‘f’ Process Data Write to destination SUBWF REG, 1, 0 Example 1: 02h 03h ? FFh ; (2’s complement) 0 ; result is negative 0 1 Before Instruction REG = W = C = After Instruction REG = W = C = Z = N = Example 2: Before Instruction REG = W = C = After Instruction REG = W = C = Z = N = Example 3: Before Instruction REG = W = C = After Instruction REG = W = C = Z = N = © 2007 Microchip Technology Inc. Advance Information 3 2 ? 1 2 1 0 0 ; result is positive SUBWF REG, 0, 0 2 2 ? 2 0 1 1 0 SUBWF ; result is zero REG, 1, 0 1 2 ? FFh ;(2’s complement) 2 0 ; result is negative 0 1 DS41303B-page 341 PIC18F2XK20/4XK20 SUBWFB Subtract W from f with Borrow SWAPF Swap f Syntax: SUBWFB Syntax: SWAPF f {,d {,a}} Operands: 0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1] Operands: 0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1] Operation: (f) – (W) – (C) → dest Operation: Status Affected: N, OV, C, DC, Z (f<3:0>) → dest<7:4>, (f<7:4>) → dest<3:0> Status Affected: None Encoding: 0101 Description: f {,d {,a}} 10da ffff ffff Subtract W and the CARRY flag (borrow) from register ‘f’ (2’s complement method). If ‘d’ is ‘0’, the result is stored in W. If ‘d’ is ‘1’, the result is stored back in register ‘f’ (default). If ‘a’ is ‘0’, the Access Bank is selected. If ‘a’ is ‘1’, the BSR is used to select the GPR bank (default). If ‘a’ is ‘0’ and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 “Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode” for details. Words: 1 Cycles: 1 Q Cycle Activity: Q1 Decode Q2 Read register ‘f’ Example 1: SUBWFB Before Instruction REG = W = C = After Instruction REG = W = C = Z = N = Example 2: Q4 Write to destination 0011 (0001 1001) (0000 1101) 0Ch 0Dh 1 0 0 (0000 1011) (0000 1101) ffff ffff Description: The upper and lower nibbles of register ‘f’ are exchanged. If ‘d’ is ‘0’, the result is placed in W. If ‘d’ is ‘1’, the result is placed in register ‘f’ (default). If ‘a’ is ‘0’, the Access Bank is selected. If ‘a’ is ‘1’, the BSR is used to select the GPR bank (default). If ‘a’ is ‘0’ and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 “Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode” for details. Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read register ‘f’ Process Data Write to destination REG, 1, 0 19h 0Dh 1 10da Example: SWAPF Before Instruction REG = After Instruction REG = REG, 1, 0 53h 35h ; result is positive SUBWFB REG, 0, 0 Before Instruction REG = W = C = After Instruction REG = W = C = Z = N = Example 3: 1Bh 1Ah 0 (0001 1011) (0001 1010) 1Bh 00h 1 1 0 (0001 1011) SUBWFB Before Instruction REG = W = C = After Instruction REG = W C Z N Q3 Process Data Encoding: = = = = DS41303B-page 342 ; result is zero REG, 1, 0 03h 0Eh 1 (0000 0011) (0000 1101) F5h (1111 0100) ; [2’s comp] (0000 1101) 0Eh 0 0 1 ; result is negative Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 TBLRD Table Read TBLRD Table Read (Continued) Syntax: TBLRD ( *; *+; *-; +*) Example1: TBLRD Operands: None Operation: if TBLRD *, (Prog Mem (TBLPTR)) → TABLAT; TBLPTR – No Change; if TBLRD *+, (Prog Mem (TBLPTR)) → TABLAT; (TBLPTR) + 1 → TBLPTR; if TBLRD *-, (Prog Mem (TBLPTR)) → TABLAT; (TBLPTR) – 1 → TBLPTR; if TBLRD +*, (TBLPTR) + 1 → TBLPTR; (Prog Mem (TBLPTR)) → TABLAT; Example2: 0000 0000 0000 TBLRD = = = 55h 00A356h 34h = = 34h 00A357h +* ; Before Instruction TABLAT TBLPTR MEMORY (01A357h) MEMORY (01A358h) After Instruction TABLAT TBLPTR Status Affected: None Encoding: *+ ; Before Instruction TABLAT TBLPTR MEMORY (00A356h) After Instruction TABLAT TBLPTR = = = = AAh 01A357h 12h 34h = = 34h 01A358h 10nn nn=0 * =1 *+ =2 *=3 +* Description: This instruction is used to read the contents of Program Memory (P.M.). To address the program memory, a pointer called Table Pointer (TBLPTR) is used. The TBLPTR (a 21-bit pointer) points to each byte in the program memory. TBLPTR has a 2-Mbyte address range. TBLPTR[0] = 0: Least Significant Byte of Program Memory Word TBLPTR[0] = 1: Most Significant Byte of Program Memory Word The TBLRD instruction can modify the value of TBLPTR as follows: • no change • post-increment • post-decrement • pre-increment Words: 1 Cycles: 2 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode No operation No operation No operation No operation No operation (Read Program Memory) No operation No operation (Write TABLAT) © 2007 Microchip Technology Inc. Advance Information DS41303B-page 343 PIC18F2XK20/4XK20 TBLWT Table Write TBLWT Table Write (Continued) Syntax: TBLWT ( *; *+; *-; +*) Example1: TBLWT *+; Operands: None Operation: if TBLWT*, (TABLAT) → Holding Register; TBLPTR – No Change; if TBLWT*+, (TABLAT) → Holding Register; (TBLPTR) + 1 → TBLPTR; if TBLWT*-, (TABLAT) → Holding Register; (TBLPTR) – 1 → TBLPTR; if TBLWT+*, (TBLPTR) + 1 → TBLPTR; (TABLAT) → Holding Register; Status Affected: Before Instruction TABLAT = 55h TBLPTR = 00A356h HOLDING REGISTER (00A356h) = FFh After Instructions (table write completion) TABLAT = 55h TBLPTR = 00A357h HOLDING REGISTER (00A356h) = 55h Example 2: None Encoding: 0000 0000 0000 11nn nn=0 * =1 *+ =2 *=3 +* Description: This instruction uses the 3 LSBs of TBLPTR to determine which of the 8 holding registers the TABLAT is written to. The holding registers are used to program the contents of Program Memory (P.M.). (Refer to Section 6.0 “Flash Program Memory” for additional details on programming Flash memory.) The TBLPTR (a 21-bit pointer) points to each byte in the program memory. TBLPTR has a 2-MByte address range. The LSb of the TBLPTR selects which byte of the program memory location to access. TBLPTR[0] = 0: Least Significant Byte of Program Memory Word TBLPTR[0] = 1: Most Significant Byte of Program Memory Word The TBLWT instruction can modify the value of TBLPTR as follows: • no change • post-increment • post-decrement • pre-increment Words: 1 Cycles: 2 TBLWT +*; Before Instruction TABLAT = 34h TBLPTR = 01389Ah HOLDING REGISTER (01389Ah) = FFh HOLDING REGISTER (01389Bh) = FFh After Instruction (table write completion) TABLAT = 34h TBLPTR = 01389Bh HOLDING REGISTER (01389Ah) = FFh HOLDING REGISTER (01389Bh) = 34h Q Cycle Activity: Q1 Decode Q2 Q3 Q4 No No No operation operation operation No No No No operation operation operation operation (Read (Write to TABLAT) Holding Register ) DS41303B-page 344 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 TSTFSZ Test f, skip if 0 XORLW Syntax: TSTFSZ f {,a} Syntax: XORLW k Operands: 0 ≤ f ≤ 255 a ∈ [0,1] Operands: 0 ≤ k ≤ 255 Operation: (W) .XOR. k → W Operation: skip if f = 0 Status Affected: N, Z Status Affected: None Encoding: Encoding: 0110 Description: Exclusive OR literal with W 011a ffff ffff If ‘f’ = 0, the next instruction fetched during the current instruction execution is discarded and a NOP is executed, making this a two-cycle instruction. If ‘a’ is ‘0’, the Access Bank is selected. If ‘a’ is ‘1’, the BSR is used to select the GPR bank (default). If ‘a’ is ‘0’ and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 “Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode” for details. Words: 1 Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. 0000 1010 kkkk kkkk Description: The contents of W are XORed with the 8-bit literal ‘k’. The result is placed in W. Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read literal ‘k’ Process Data Write to W Example: XORLW 0AFh Before Instruction W = After Instruction W = B5h 1Ah Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read register ‘f’ Process Data No operation Q1 Q2 Q3 Q4 No operation No operation No operation No operation If skip: If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4 No operation No operation No operation No operation No operation No operation No operation No operation Example: HERE NZERO ZERO Before Instruction PC After Instruction If CNT PC If CNT PC TSTFSZ : : CNT, 1 = Address (HERE) = = ≠ = 00h, Address (ZERO) 00h, Address (NZERO) © 2007 Microchip Technology Inc. Advance Information DS41303B-page 345 PIC18F2XK20/4XK20 XORWF Exclusive OR W with f Syntax: XORWF Operands: 0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1] Operation: (W) .XOR. (f) → dest Status Affected: N, Z Encoding: 0001 f {,d {,a}} 10da ffff ffff Description: Exclusive OR the contents of W with register ‘f’. If ‘d’ is ‘0’, the result is stored in W. If ‘d’ is ‘1’, the result is stored back in the register ‘f’ (default). If ‘a’ is ‘0’, the Access Bank is selected. If ‘a’ is ‘1’, the BSR is used to select the GPR bank (default). If ‘a’ is ‘0’ and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 24.2.3 “Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode” for details. Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read register ‘f’ Process Data Write to destination Example: XORWF Before Instruction REG = W = After Instruction REG = W = DS41303B-page 346 REG, 1, 0 AFh B5h 1Ah B5h Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 24.2 Extended Instruction Set A summary of the instructions in the extended instruction set is provided in Table 24-3. Detailed descriptions are provided in Section 24.2.2 “Extended Instruction Set”. The opcode field descriptions in Table 24-1 (page 306) apply to both the standard and extended PIC18 instruction sets. In addition to the standard 75 instructions of the PIC18 instruction set, PIC18F2XK20/4XK20 devices also provide an optional extension to the core CPU functionality. The added features include eight additional instructions that augment indirect and indexed addressing operations and the implementation of Indexed Literal Offset Addressing mode for many of the standard PIC18 instructions. Note: The additional features of the extended instruction set are disabled by default. To enable them, users must set the XINST Configuration bit. The instructions in the extended set can all be classified as literal operations, which either manipulate the File Select Registers, or use them for indexed addressing. Two of the instructions, ADDFSR and SUBFSR, each have an additional special instantiation for using FSR2. These versions (ADDULNK and SUBULNK) allow for automatic return after execution. 24.2.1 EXTENDED INSTRUCTION SYNTAX Most of the extended instructions use indexed arguments, using one of the File Select Registers and some offset to specify a source or destination register. When an argument for an instruction serves as part of indexed addressing, it is enclosed in square brackets (“[ ]”). This is done to indicate that the argument is used as an index or offset. MPASM™ Assembler will flag an error if it determines that an index or offset value is not bracketed. The extended instructions are specifically implemented to optimize re-entrant program code (that is, code that is recursive or that uses a software stack) written in high-level languages, particularly C. Among other things, they allow users working in high-level languages to perform certain operations on data structures more efficiently. These include: When the extended instruction set is enabled, brackets are also used to indicate index arguments in byteoriented and bit-oriented instructions. This is in addition to other changes in their syntax. For more details, see Section 24.2.3.1 “Extended Instruction Syntax with Standard PIC18 Commands”. • dynamic allocation and deallocation of software stack space when entering and leaving subroutines • function pointer invocation • software Stack Pointer manipulation • manipulation of variables located in a software stack TABLE 24-3: The instruction set extension and the Indexed Literal Offset Addressing mode were designed for optimizing applications written in C; the user may likely never use these instructions directly in assembler. The syntax for these commands is provided as a reference for users who may be reviewing code that has been generated by a compiler. Note: In the past, square brackets have been used to denote optional arguments in the PIC18 and earlier instruction sets. In this text and going forward, optional arguments are denoted by braces (“{ }”). EXTENSIONS TO THE PIC18 INSTRUCTION SET 16-Bit Instruction Word Mnemonic, Operands ADDFSR ADDULNK CALLW MOVSF f, k k MOVSS zs, zd PUSHL k SUBFSR SUBULNK f, k k zs, fd Description Cycles MSb Add literal to FSR Add literal to FSR2 and return Call subroutine using WREG Move zs (source) to 1st word fd (destination) 2nd word Move zs (source) to 1st word 2nd word zd (destination) Store literal at FSR2, decrement FSR2 Subtract literal from FSR Subtract literal from FSR2 and return © 2007 Microchip Technology Inc. 1 2 2 2 LSb Status Affected 1000 1000 0000 1011 ffff 1011 xxxx 1010 ffkk 11kk 0001 0zzz ffff 1zzz xzzz kkkk kkkk kkkk 0100 zzzz ffff zzzz zzzz kkkk None None None None 1 1110 1110 0000 1110 1111 1110 1111 1110 1 2 1110 1110 1001 1001 ffkk 11kk kkkk kkkk None None 2 Advance Information None None DS41303B-page 347 PIC18F2XK20/4XK20 24.2.2 EXTENDED INSTRUCTION SET ADDFSR Add Literal to FSR ADDULNK Syntax: ADDFSR f, k Syntax: ADDULNK k Operands: 0 ≤ k ≤ 63 f ∈ [ 0, 1, 2 ] Operands: 0 ≤ k ≤ 63 Operation: FSR(f) + k → FSR(f) Status Affected: None Encoding: 1110 Add Literal to FSR2 and Return FSR2 + k → FSR2, Operation: (TOS) → PC Status Affected: 1000 ffkk kkkk Description: The 6-bit literal ‘k’ is added to the contents of the FSR specified by ‘f’. Words: 1 Cycles: 1 None Encoding: 1110 Q1 Q2 Q3 Q4 Read literal ‘k’ Process Data Write to FSR Example: ADDFSR 2, 23h Before Instruction FSR2 = 03FFh After Instruction FSR2 = 0422h kkkk Words: 1 Cycles: 2 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read literal ‘k’ Process Data Write to FSR No Operation No Operation No Operation No Operation Example: Note: 11kk The 6-bit literal ‘k’ is added to the contents of FSR2. A RETURN is then executed by loading the PC with the TOS. The instruction takes two cycles to execute; a NOP is performed during the second cycle. This may be thought of as a special case of the ADDFSR instruction, where f = 3 (binary ‘11’); it operates only on FSR2. Q Cycle Activity: Decode 1000 Description: ADDULNK 23h Before Instruction FSR2 = PC = 03FFh 0100h After Instruction FSR2 = PC = 0422h (TOS) All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction syntax then becomes: {label} instruction argument(s). DS41303B-page 348 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 CALLW Subroutine Call Using WREG MOVSF Syntax: CALLW Syntax: MOVSF [zs], fd Operands: None Operands: Operation: (PC + 2) → TOS, (W) → PCL, (PCLATH) → PCH, (PCLATU) → PCU 0 ≤ zs ≤ 127 0 ≤ fd ≤ 4095 Operation: ((FSR2) + zs) → fd Status Affected: None Status Affected: None Encoding: 0000 0000 0001 0100 Description First, the return address (PC + 2) is pushed onto the return stack. Next, the contents of W are written to PCL; the existing value is discarded. Then, the contents of PCLATH and PCLATU are latched into PCH and PCU, respectively. The second cycle is executed as a NOP instruction while the new next instruction is fetched. Unlike CALL, there is no option to update W, Status or BSR. Words: 1 Cycles: 2 Move Indexed to f Encoding: 1st word (source) 2nd word (destin.) Q1 Q2 Q3 Q4 Read WREG PUSH PC to stack No operation No operation No operation No operation No operation HERE Before Instruction PC = PCLATH = PCLATU = W = After Instruction PC = TOS = PCLATH = PCLATU = W = 2 Cycles: 2 Q Cycle Activity: Q1 Decode address (HERE) 10h 00h 06h © 2007 Microchip Technology Inc. zzzzs ffffd Words: CALLW 001006h address (HERE + 2) 10h 00h 06h 0zzz ffff The contents of the source register are moved to destination register ‘fd’. The actual address of the source register is determined by adding the 7-bit literal offset ‘zs’ in the first word to the value of FSR2. The address of the destination register is specified by the 12-bit literal ‘fd’ in the second word. Both addresses can be anywhere in the 4096-byte data space (000h to FFFh). The MOVSF instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register. If the resultant source address points to an indirect addressing register, the value returned will be 00h. Decode Example: 1011 ffff Description: Q Cycle Activity: Decode 1110 1111 Q2 Q3 Determine Determine source addr source addr No operation No operation No dummy read Example: MOVSF Before Instruction FSR2 Contents of 85h REG2 After Instruction FSR2 Contents of 85h REG2 Advance Information Q4 Read source reg Write register ‘f’ (dest) [05h], REG2 = 80h = = 33h 11h = 80h = = 33h 33h DS41303B-page 349 PIC18F2XK20/4XK20 MOVSS Move Indexed to Indexed PUSHL Syntax: Syntax: PUSHL k Operands: MOVSS [zs], [zd] 0 ≤ zs ≤ 127 0 ≤ zd ≤ 127 Operands: 0 ≤ k ≤ 255 Operation: ((FSR2) + zs) → ((FSR2) + zd) Operation: k → (FSR2), FSR2 – 1 → FSR2 Status Affected: None Status Affected: None Encoding: 1st word (source) 2nd word (dest.) 1110 1111 Description 1011 xxxx 1zzz xzzz zzzzs zzzzd The contents of the source register are moved to the destination register. The addresses of the source and destination registers are determined by adding the 7-bit literal offsets ‘zs’ or ‘zd’, respectively, to the value of FSR2. Both registers can be located anywhere in the 4096-byte data memory space (000h to FFFh). The MOVSS instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register. If the resultant source address points to an indirect addressing register, the value returned will be 00h. If the resultant destination address points to an indirect addressing register, the instruction will execute as a NOP. Words: 2 Cycles: 2 Store Literal at FSR2, Decrement FSR2 Encoding: 1111 1010 kkkk kkkk Description: The 8-bit literal ‘k’ is written to the data memory address specified by FSR2. FSR2 is decremented by 1 after the operation. This instruction allows users to push values onto a software stack. Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read ‘k’ Process data Write to destination Example: PUSHL 08h Before Instruction FSR2H:FSR2L Memory (01ECh) = = 01ECh 00h After Instruction FSR2H:FSR2L Memory (01ECh) = = 01EBh 08h Q Cycle Activity: Q1 Decode Decode Q2 Q3 Determine Determine source addr source addr Determine dest addr Example: Write to dest reg MOVSS [05h], [06h] Before Instruction FSR2 Contents of 85h Contents of 86h After Instruction FSR2 Contents of 85h Contents of 86h DS41303B-page 350 Determine dest addr Q4 Read source reg = 80h = 33h = 11h = 80h = 33h = 33h Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 SUBFSR Subtract Literal from FSR SUBULNK Syntax: SUBFSR f, k Syntax: SUBULNK k Operands: 0 ≤ k ≤ 63 Operands: 0 ≤ k ≤ 63 f ∈ [ 0, 1, 2 ] Operation: Operation: FSR(f) – k → FSRf Status Affected: None Encoding: 1110 FSR2 – k → FSR2 (TOS) → PC Status Affected: None 1001 ffkk kkkk Description: The 6-bit literal ‘k’ is subtracted from the contents of the FSR specified by ‘f’. Words: 1 Cycles: 1 Encoding: 1110 Q1 Q2 Q3 Q4 Decode Read register ‘f’ Process Data Write to destination SUBFSR 2, 23h 1001 11kk kkkk Description: The 6-bit literal ‘k’ is subtracted from the contents of the FSR2. A RETURN is then executed by loading the PC with the TOS. The instruction takes two cycles to execute; a NOP is performed during the second cycle. This may be thought of as a special case of the SUBFSR instruction, where f = 3 (binary ‘11’); it operates only on FSR2. Words: 1 Cycles: 2 Q Cycle Activity: Example: Subtract Literal from FSR2 and Return Q Cycle Activity: Before Instruction FSR2 = Q1 Q2 Q3 Q4 03FFh Decode After Instruction FSR2 = Read register ‘f’ Process Data Write to destination 03DCh No Operation No Operation No Operation No Operation Example: © 2007 Microchip Technology Inc. SUBULNK 23h Before Instruction FSR2 = PC = 03FFh 0100h After Instruction FSR2 = PC = 03DCh (TOS) Advance Information DS41303B-page 351 PIC18F2XK20/4XK20 24.2.3 Note: BYTE-ORIENTED AND BIT-ORIENTED INSTRUCTIONS IN INDEXED LITERAL OFFSET MODE Enabling the PIC18 instruction set extension may cause legacy applications to behave erratically or fail entirely. In addition to eight new commands in the extended set, enabling the extended instruction set also enables Indexed Literal Offset Addressing mode (Section 5.5.1 “Indexed Addressing with Literal Offset”). This has a significant impact on the way that many commands of the standard PIC18 instruction set are interpreted. When the extended set is disabled, addresses embedded in opcodes are treated as literal memory locations: either as a location in the Access Bank (‘a’ = 0), or in a GPR bank designated by the BSR (‘a’ = 1). When the extended instruction set is enabled and ‘a’ = 0, however, a file register argument of 5Fh or less is interpreted as an offset from the pointer value in FSR2 and not as a literal address. For practical purposes, this means that all instructions that use the Access RAM bit as an argument – that is, all byte-oriented and bitoriented instructions, or almost half of the core PIC18 instructions – may behave differently when the extended instruction set is enabled. When the content of FSR2 is 00h, the boundaries of the Access RAM are essentially remapped to their original values. This may be useful in creating backward compatible code. If this technique is used, it may be necessary to save the value of FSR2 and restore it when moving back and forth between C and assembly routines in order to preserve the Stack Pointer. Users must also keep in mind the syntax requirements of the extended instruction set (see Section 24.2.3.1 “Extended Instruction Syntax with Standard PIC18 Commands”). 24.2.3.1 Extended Instruction Syntax with Standard PIC18 Commands When the extended instruction set is enabled, the file register argument, ‘f’, in the standard byte-oriented and bit-oriented commands is replaced with the literal offset value, ‘k’. As already noted, this occurs only when ‘f’ is less than or equal to 5Fh. When an offset value is used, it must be indicated by square brackets (“[ ]”). As with the extended instructions, the use of brackets indicates to the compiler that the value is to be interpreted as an index or an offset. Omitting the brackets, or using a value greater than 5Fh within brackets, will generate an error in the MPASM Assembler. If the index argument is properly bracketed for Indexed Literal Offset Addressing, the Access RAM argument is never specified; it will automatically be assumed to be ‘0’. This is in contrast to standard operation (extended instruction set disabled) when ‘a’ is set on the basis of the target address. Declaring the Access RAM bit in this mode will also generate an error in the MPASM Assembler. The destination argument, ‘d’, functions as before. In the latest versions of the MPASM™ assembler, language support for the extended instruction set must be explicitly invoked. This is done with either the command line option, /y, or the PE directive in the source listing. 24.2.4 CONSIDERATIONS WHEN ENABLING THE EXTENDED INSTRUCTION SET It is important to note that the extensions to the instruction set may not be beneficial to all users. In particular, users who are not writing code that uses a software stack may not benefit from using the extensions to the instruction set. Although the Indexed Literal Offset Addressing mode can be very useful for dynamic stack and pointer manipulation, it can also be very annoying if a simple arithmetic operation is carried out on the wrong register. Users who are accustomed to the PIC18 programming must keep in mind that, when the extended instruction set is enabled, register addresses of 5Fh or less are used for Indexed Literal Offset Addressing. Additionally, the Indexed Literal Offset Addressing mode may create issues with legacy applications written to the PIC18 assembler. This is because instructions in the legacy code may attempt to address registers in the Access Bank below 5Fh. Since these addresses are interpreted as literal offsets to FSR2 when the instruction set extension is enabled, the application may read or write to the wrong data addresses. Representative examples of typical byte-oriented and bit-oriented instructions in the Indexed Literal Offset Addressing mode are provided on the following page to show how execution is affected. The operand conditions shown in the examples are applicable to all instructions of these types. When porting an application to the PIC18F2XK20/ 4XK20, it is very important to consider the type of code. A large, re-entrant application that is written in ‘C’ and would benefit from efficient compilation will do well when using the instruction set extensions. Legacy applications that heavily use the Access Bank will most likely not benefit from using the extended instruction set. DS41303B-page 352 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 ADDWF ADD W to Indexed (Indexed Literal Offset mode) BSF Bit Set Indexed (Indexed Literal Offset mode) Syntax: ADDWF Syntax: BSF [k], b Operands: 0 ≤ k ≤ 95 d ∈ [0,1] Operands: 0 ≤ f ≤ 95 0≤b≤7 Operation: (W) + ((FSR2) + k) → dest Operation: 1 → ((FSR2) + k)<b> Status Affected: N, OV, C, DC, Z Status Affected: None Encoding: [k] {,d} 0010 Description: 01d0 kkkk kkkk The contents of W are added to the contents of the register indicated by FSR2, offset by the value ‘k’. If ‘d’ is ‘0’, the result is stored in W. If ‘d’ is ‘1’, the result is stored back in register ‘f’ (default). Encoding: 1000 bbb0 kkkk kkkk Description: Bit ‘b’ of the register indicated by FSR2, offset by the value ‘k’, is set. Words: 1 Cycles: 1 Q Cycle Activity: Words: 1 Q1 Q2 Q3 Q4 Cycles: 1 Decode Read register ‘f’ Process Data Write to destination Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read ‘k’ Process Data Write to destination Example: ADDWF [OFST] , 0 Before Instruction W OFST FSR2 Contents of 0A2Ch After Instruction W Contents of 0A2Ch = = = 17h 2Ch 0A00h = 20h = 37h = 20h Example: BSF Before Instruction FLAG_OFST FSR2 Contents of 0A0Ah After Instruction Contents of 0A0Ah [FLAG_OFST], 7 = = 0Ah 0A00h = 55h = D5h Set Indexed (Indexed Literal Offset mode) SETF Syntax: SETF [k] Operands: 0 ≤ k ≤ 95 Operation: FFh → ((FSR2) + k) Status Affected: None Encoding: 0110 1000 kkkk kkkk Description: The contents of the register indicated by FSR2, offset by ‘k’, are set to FFh. Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read ‘k’ Process Data Write register Example: SETF Before Instruction OFST FSR2 Contents of 0A2Ch After Instruction Contents of 0A2Ch © 2007 Microchip Technology Inc. Advance Information [OFST] = = 2Ch 0A00h = 00h = FFh DS41303B-page 353 PIC18F2XK20/4XK20 24.2.5 SPECIAL CONSIDERATIONS WITH MICROCHIP MPLAB® IDE TOOLS The latest versions of Microchip’s software tools have been designed to fully support the extended instruction set of the PIC18F2XK20/4XK20 family of devices. This includes the MPLAB C18 C compiler, MPASM assembly language and MPLAB Integrated Development Environment (IDE). When selecting a target device for software development, MPLAB IDE will automatically set default Configuration bits for that device. The default setting for the XINST Configuration bit is ‘0’, disabling the extended instruction set and Indexed Literal Offset Addressing mode. For proper execution of applications developed to take advantage of the extended instruction set, XINST must be set during programming. To develop software for the extended instruction set, the user must enable support for the instructions and the Indexed Addressing mode in their language tool(s). Depending on the environment being used, this may be done in several ways: • A menu option, or dialog box within the environment, that allows the user to configure the language tool and its settings for the project • A command line option • A directive in the source code These options vary between different compilers, assemblers and development environments. Users are encouraged to review the documentation accompanying their development systems for the appropriate information. DS41303B-page 354 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 25.0 DEVELOPMENT SUPPORT The PIC® microcontrollers are supported with a full range of hardware and software development tools: • Integrated Development Environment - MPLAB® IDE Software • Assemblers/Compilers/Linkers - MPASMTM Assembler - MPLAB C18 and MPLAB C30 C Compilers - MPLINKTM Object Linker/ MPLIBTM Object Librarian - MPLAB ASM30 Assembler/Linker/Library • Simulators - MPLAB SIM Software Simulator • Emulators - MPLAB ICE 2000 In-Circuit Emulator - MPLAB REAL ICE™ In-Circuit Emulator • In-Circuit Debugger - MPLAB ICD 2 • Device Programmers - PICSTART® Plus Development Programmer - MPLAB PM3 Device Programmer - PICkit™ 2 Development Programmer • Low-Cost Demonstration and Development Boards and Evaluation Kits 25.1 MPLAB Integrated Development Environment Software The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows® operating system-based application that contains: • A single graphical interface to all debugging tools - Simulator - Programmer (sold separately) - Emulator (sold separately) - In-Circuit Debugger (sold separately) • A full-featured editor with color-coded context • A multiple project manager • Customizable data windows with direct edit of contents • High-level source code debugging • Visual device initializer for easy register initialization • Mouse over variable inspection • Drag and drop variables from source to watch windows • Extensive on-line help • Integration of select third party tools, such as HI-TECH Software C Compilers and IAR C Compilers The MPLAB IDE allows you to: • Edit your source files (either assembly or C) • One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information) • Debug using: - Source files (assembly or C) - Mixed assembly and C - Machine code MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 355 PIC18F2XK20/4XK20 25.2 MPASM Assembler 25.5 The MPASM Assembler is a full-featured, universal macro assembler for all PIC MCUs. The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel® standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging. The MPASM Assembler features include: • Integration into MPLAB IDE projects • User-defined macros to streamline assembly code • Conditional assembly for multi-purpose source files • Directives that allow complete control over the assembly process MPLAB ASM30 Assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include: • • • • • • Support for the entire dsPIC30F instruction set Support for fixed-point and floating-point data Command line interface Rich directive set Flexible macro language MPLAB IDE compatibility 25.6 25.3 MPLAB C18 and MPLAB C30 C Compilers The MPLAB C18 and MPLAB C30 Code Development Systems are complete ANSI C compilers for Microchip’s PIC18 and PIC24 families of microcontrollers and the dsPIC30 and dsPIC33 family of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers. For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger. 25.4 MPLINK Object Linker/ MPLIB Object Librarian The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script. MPLAB ASM30 Assembler, Linker and Librarian MPLAB SIM Software Simulator The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC® DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers. The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C18 and MPLAB C30 C Compilers, and the MPASM and MPLAB ASM30 Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool. The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The object linker/library features include: • Efficient linking of single libraries instead of many smaller files • Enhanced code maintainability by grouping related modules together • Flexible creation of libraries with easy module listing, replacement, deletion and extraction DS41303B-page 356 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 25.7 MPLAB ICE 2000 High-Performance In-Circuit Emulator 25.9 The MPLAB ICE 2000 In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers. Software control of the MPLAB ICE 2000 In-Circuit Emulator is advanced by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment. The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The architecture of the MPLAB ICE 2000 In-Circuit Emulator allows expansion to support new PIC microcontrollers. The MPLAB ICE 2000 In-Circuit Emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft® Windows® 32-bit operating system were chosen to best make these features available in a simple, unified application. 25.8 MPLAB REAL ICE In-Circuit Emulator System MPLAB REAL ICE In-Circuit Emulator System is Microchip’s next generation high-speed emulator for Microchip Flash DSC® and MCU devices. It debugs and programs PIC® and dsPIC® Flash microcontrollers with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit. The MPLAB REAL ICE probe is connected to the design engineer’s PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with the popular MPLAB ICD 2 system (RJ11) or with the new high speed, noise tolerant, lowvoltage differential signal (LVDS) interconnection (CAT5). MPLAB ICD 2 In-Circuit Debugger Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a powerful, low-cost, run-time development tool, connecting to the host PC via an RS-232 or high-speed USB interface. This tool is based on the Flash PIC MCUs and can be used to develop for these and other PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes the in-circuit debugging capability built into the Flash devices. This feature, along with Microchip’s In-Circuit Serial ProgrammingTM (ICSPTM) protocol, offers costeffective, in-circuit Flash debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single stepping and watching variables, and CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real time. MPLAB ICD 2 also serves as a development programmer for selected PIC devices. 25.10 MPLAB PM3 Device Programmer The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an SD/MMC card for file storage and secure data applications. MPLAB REAL ICE is field upgradeable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added, such as software breakpoints and assembly code trace. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, real-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 357 PIC18F2XK20/4XK20 25.11 PICSTART Plus Development Programmer 25.13 Demonstration, Development and Evaluation Boards The PICSTART Plus Development Programmer is an easy-to-use, low-cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus Development Programmer supports most PIC devices in DIP packages up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus Development Programmer is CE compliant. A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification. 25.12 PICkit 2 Development Programmer The PICkit™ 2 Development Programmer is a low-cost programmer and selected Flash device debugger with an easy-to-use interface for programming many of Microchip’s baseline, mid-range and PIC18F families of Flash memory microcontrollers. The PICkit 2 Starter Kit includes a prototyping development board, twelve sequential lessons, software and HI-TECH’s PICC™ Lite C compiler, and is designed to help get up to speed quickly using PIC® microcontrollers. The kit provides everything needed to program, evaluate and develop applications using Microchip’s powerful, mid-range Flash memory family of microcontrollers. DS41303B-page 358 The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory. The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications. In addition to the PICDEM™ and dsPICDEM™ demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ® security ICs, CAN, IrDA®, PowerSmart® battery management, SEEVAL® evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more. Check the Microchip web page (www.microchip.com) and the latest “Product Selector Guide” (DS00148) for the complete list of demonstration, development and evaluation kits. Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 26.0 ELECTRICAL CHARACTERISTICS Absolute Maximum Ratings (†) Ambient temperature under bias.............................................................................................................-40°C to +125°C Storage temperature .............................................................................................................................. -65°C to +150°C Voltage on any pin with respect to VSS (except VDD, and MCLR) .................................................. -0.3V to (VDD + 0.3V) Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +5.0V Voltage on MCLR with respect to VSS (Note 2) ......................................................................................... 0V to +13.25V Total power dissipation (Note 1) ...............................................................................................................................1.0W Maximum current out of VSS pin ...........................................................................................................................300 mA Maximum current into VDD pin ..............................................................................................................................250 mA Input clamp current, IIK (VI < 0 or VI > VDD)...................................................................................................................... ±20 mA Output clamp current, IOK (VO < 0 or VO > VDD) .............................................................................................................. ±20 mA Maximum output current sunk by any I/O pin..........................................................................................................25 mA Maximum output current sourced by any I/O pin ....................................................................................................25 mA Maximum current sunk by all ports .......................................................................................................................200 mA Maximum current sourced by all ports ..................................................................................................................200 mA Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD – ∑ IOH} + ∑ {(VDD – VOH) x IOH} + ∑(VOL x IOL) 2: Voltage spikes below VSS at the MCLR/VPP/RE3 pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a “low” level to the MCLR/VPP/RE3 pin, rather than pulling this pin directly to VSS. † NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 359 PIC18F2XK20/4XK20 FIGURE 26-1: PIC18F2XK20/4XK20 VOLTAGE-FREQUENCY GRAPH 3.5V 3.0V Voltage 2.7V 2.2V 1.8V 10 20 30 32 40 50 60 64 Frequency (MHz) DS41303B-page 360 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 26.1 DC Characteristics: Supply Voltage, PIC18F2XK20/4XK20 PIC18F2XK20/4XK20 Param Symbol No. Characteristic Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +125°C Min Typ Max Units D001 VDD Supply Voltage 1.8 — 3.6 V D002 VDR RAM Data Retention Voltage(1) 1.5 — — V D003 VPOR VDD Start Voltage to ensure internal Power-on Reset signal — — 0.7 V D004 SVDD VDD Rise Rate to ensure internal Power-on Reset signal 0.05 — — D005 VBOR Brown-out Reset Voltage See section on Power-on Reset for details V/ms See section on Power-on Reset for details BORV<1:0> = 11 1.8 — — V BORV<1:0> = 10 — 2.3 — V BORV<1:0> = 01 — 2.8 — V BORV<1:0> = 00 — 3.1 — V This is the limit to which VDD can be lowered in Sleep mode, or during a device Reset, without losing RAM data. Note 1: 26.2 Conditions DC Characteristics: Power-Down Current, PIC18F2XK20/4XK20 PIC18F2XK20/4XK20 Param No. D006 Device Characteristics Typ Power-down Current (IPD)(1) 0.1 D007 Note 1: Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +125°C Max Units — nA Conditions -40°C 0.5 — μA +25°C 2 — μA +85°C 10 — μA +125°C 0.1 — μA -40°C 0.5 — μA +25°C 2 — μA +85°C 10 — μA +125°C VDD = 1.8V, (Sleep mode) VDD = 3.0V, (Sleep mode) The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.). © 2007 Microchip Technology Inc. Advance Information DS41303B-page 361 PIC18F2XK20/4XK20 26.3 DC Characteristics: RC Run Supply Current, PIC18F2XK20/4XK20 PIC18F2XK20/4XK20 Param No. Device Characteristics Supply Current (IDD)(1, 2) D008 D008A D009 D009A D010 D010A Note 1: 2: Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +125°C Typ Max Units Conditions 7 — μA -40°C 8 — μA +25°C 12 — μA +85°C 32 — μA +125°C 14 — μA -40°C 15 — μA +25°C 21 — μA +85°C 48 — μA +125°C 0.5 — mA -40°C TO +85°C 0.5 — mA -40°C to +125°C 0.8 — mA -40°C TO +85°C 0.8 — mA -40°C to +125°C 2.7 — mA -40°C TO +85°C 2.7 — mA -40°C to +125°C 5.2 — mA -40°C TO +85°C 5.2 — mA -40°C to +125°C VDD = 1.8V FOSC = 31 kHz (RC_RUN mode, LFINTOSC source) VDD = 3.0V VDD = 1.8V VDD = 3.0V VDD = 1.8V VDD = 3.0V FOSC = 1 MHz (RC_RUN mode, HF-INTOSC source) FOSC = 16 MHz (RC_RUN mode, HF-INTOSC source) The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT enabled/disabled as specified. For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ. DS41303B-page 362 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 26.4 DC Characteristics: RC Idle Supply Current, PIC18F2XK20/4XK20 PIC18F2XK20/4XK20 Param No. D011 Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +125°C Device Characteristics Typ Supply Current (IDD)(1, 2) 3.0 — μA -40°C 4.5 — μA +25°C 9.0 — μA +85°C TBD — μA +125°C 3.0 — μA -40°C 4.5 — μA +25°C 9.0 — μA +85°C TBD — μA +125°C 250 — μA -40°C to +85°C 250 — μA -40°C to +125°C 400 — μA -40°C to +85°C 400 — μA -40°C to +125°C 1.0 — mA -40°C to +85°C 1.0 — mA -40°C to +125°C 2.0 — mA -40°C to +85°C 2.0 — mA -40°C to +125°C D011A D012 D012A D013 D013A Max Units Conditions VDD = 1.8V FOSC = 31 kHz (RC_IDLE mode, LFINTOSC source) VDD = 3.0V VDD = 1.8V VDD = 3.0V VDD = 1.8V VDD = 3.0V FOSC = 1 MHz (RC_IDLE mode, HF-INTOSC source) FOSC = 16 MHz (RC_IDLE mode, HF-INTOSC source) Legend: TBD = To Be Determined. Note 1: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT enabled/disabled as specified. 2: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 363 PIC18F2XK20/4XK20 26.5 DC Characteristics: Primary Run Supply Current, PIC18F2XK20/4XK20 PIC18F2XK20/4XK20 Param No. D012 Device Characteristics Typ Supply Current (IDD)(1, 2) 0.5 — mA -40°C to +85°C 0.5 — mA -40°C to +125°C 0.8 — mA -40°C to +85°C 0.8 — mA -40°C to +125°C 3.0 — mA -40°C to +85°C 3.0 — mA -40°C to +125°C 6.5 — mA -40°C to +85°C 6.5 — mA -40°C to +125°C 14 — mA -40°C to +85°C 14 — mA -40°C to +125°C 18 — mA -40°C to +85°C 18 — mA -40°C to +125°C 2.7 — mA -40°C to +85°C 2.7 — mA -40°C to +125°C 5.2 — mA -40°C to +85°C 5.2 — mA -40°C to +125°C 14 — mA -40°C to +85°C 14 — mA -40°C to +125°C 18 — mA -40°C to +85°C 18 — mA -40°C to +125°C D012A D013 D013A D014 D014A D015 D015A D016 D016A Note 1: 2: Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +125°C Max Units Conditions VDD = 1.8V VDD = 3.0V VDD = 1.8V VDD = 3.0V VDD = 1.8V VDD = 3.0V VDD = 1.8V VDD = 3.0V VDD = 1.8V VDD = 3.0V FOSC = 1 MHz (PRI_RUN, EC oscillator) FOSC = 20 MHz (PRI_RUN, EC oscillator) FOSC = 64 MHz (PRI_RUN, EC oscillator) FOSC = 4 MHz 16 MHz Internal (PRI_RUN HS+PLL) FOSC = 16 MHz 64 MHz Internal (PRI_RUN HS+PLL) The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT enabled/disabled as specified. For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ. DS41303B-page 364 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 26.6 DC Characteristics: Primary Idle Supply Current, PIC18F2XK20/4XK20 PIC18F2XK20/4XK20 Param No. D017 Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +125°C Device Characteristics Typ Supply Current (IDD)(1, 2) 250 — μA -40°C to +85°C 250 — μA -40°C to +125°C 400 — μA -40°C to +85°C 400 — μA -40°C to +125°C 1.0 — mA -40°C to +85°C 1.0 — mA -40°C to +125°C 2.0 — mA -40°C to +85°C 2.0 — mA -40°C to +125°C TBD — mA -40°C to +85°C TBD — mA -40°C to +125°C TBD — mA -40°C to +85°C TBD — mA -40°C to +125°C D017A D018 D018A D019 D019A Max Units Conditions VDD = 1.8V VDD = 3.0V VDD = 1.8V VDD = 3.0V VDD = 1.8V VDD = 3.0V FOSC = 1 MHz (PRI_IDLE mode, EC oscillator) FOSC = 20 MHz (PRI_IDLEmode, EC oscillator) FOSC = 64 MHz (PRI_IDLEmode, EC oscillator) Legend: TBD = To Be Determined. Note 1: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT enabled/disabled as specified. 2: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 365 PIC18F2XK20/4XK20 26.7 DC Characteristics: Secondary Oscillator Supply Current, PIC18F2XK20/4XK20 PIC18F2XK20/4XK20 Param No. Device Characteristics Supply Current (IDD)(1, 2) D020 D020A D021 D021A Note 1: 2: 3: Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +125°C Typ Max Units Conditions 7 — μA -40°C 8 — μA +25°C 14 — μA +85°C 14 — μA -40°C 15 — μA +25°C 24 — μA +85°C 1.0 — μA -40°C 1.5 — μA +25°C 3.5 — μA +85°C 1.0 — μA -40°C 1.5 — μA +25°C 3.5 — μA +85°C VDD = 1.8V FOSC = 32 kHz(3) (SEC_RUN mode, Timer1 as clock) VDD = 3.0V VDD = 1.8V FOSC = 32 kHz(3) (SEC_IDLE mode, Timer1 as clock) VDD = 3.0V The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT enabled/disabled as specified. For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ. Low-Power mode on T1 osc. DS41303B-page 366 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 26.8 DC Characteristics: Peripheral Supply Current, PIC18F2XK20/4XK20 Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +125°C PIC18F2XK20/4XK20 Param No. Device Characteristics Typ Max Units Conditions Module Differential Currents (ΔIWDT, ΔIBOR, ΔIHLVD, ΔIOSCB, ΔIAD) D022 (ΔIWDT) D022A (ΔIBOR) Watchdog Timer Brown-out Reset(2) D022B (ΔIHLVD) High/Low-Voltage Detect(2) D025 (ΔIOSCB) Timer1 Oscillator D025A (ΔIOSCB) Timer1 Oscillator 1.5 — μA -40°C 1.5 — μA +25°C 2.0 — μA +85°C 2.0 — μA -40°C 3.0 — μA +25°C 3.0 — μA +85°C 40 — μA -40°C to +85°C VDD = 2.7V 45 — μA -40°C to +85°C VDD = 3.3V 0 — μA -40°C to +85°C VDD = 3.3V TBD — μA -40°C to +85°C VDD = 1.8V TBD — μA -40°C to +85°C VDD = 3.3V 1 — μA -40°C 1 — μA +25°C 1 — μA +85°C 1 — μA -40°C 1 — μA +25°C 1 — μA +85°C 5 — μA -40°C 5 — μA +25°C 5 — μA +85°C 5 — μA -40°C 5 — μA +25°C 5 — μA +85°C TBD — μA -40°C to +85°C VDD = 1.8V TBD — μA -40°C to +85°C VDD = 3.0V VDD = 1.8V D026 (ΔIAD) A/D Converter D027 Comparators TBD — μA -40°C to +85°C CVREF TBD — μA -40°C to +85°C D028 Sleep mode, BOREN<1:0> = 10 VDD = 1.8V 32 kHz on Timer1(1) VDD = 3.0V 32 kHz on Timer1(1) VDD = 1.8V 32 kHz on Timer1(3) VDD = 3.0V 32 kHz on Timer1(3) A/D on, not converting VDD = 1.8V VDD = 3.0V (ΔICVREF) 3: VDD = 3.0V VDD = 3.0V (ΔICOMP) Legend: Note 1: 2: VDD = 1.8V TBD = To Be Determined. Low-Power mode on T1 osc. BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications. High-Power mode in T1 osc. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 367 PIC18F2XK20/4XK20 26.9 DC Characteristics: Input/Output Characteristics, PIC18F2XK20/4XK20 Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +125°C DC CHARACTERISTICS Param Symbol No. VIL Characteristic Min Max Units Conditions Input Low Voltage I/O ports: D030 with TTL buffer VSS 0.15 VDD V D031 with Schmitt Trigger buffer RC3 and RC4 VSS VSS 0.2 VDD 0.3 VDD V V MCLR VSS 0.2 VDD V D033 OSC1 VSS 0.3 VDD V HS, HSPLL modes D033A D033B D034 OSC1 OSC1 T13CKI VSS VSS VSS 0.2 VDD 0.3 VDD 0.3 VDD V V V RC, EC modes(1) XT, LP modes 0.25 VDD + 0.8V VDD V 0.8 VDD 0.7 VDD VDD VDD V V MCLR 0.8 VDD VDD V D043 OSC1 0.7 VDD VDD V HS, HSPLL modes D043A D043B D043C D044 OSC1 OSC1 OSC1 T13CKI 0.8 VDD 0.9 VDD 1.6 1.6 VDD VDD VDD VDD V V V V EC mode RC mode(1) XT, LP modes D032 VIH Input High Voltage I/O ports: D040 with TTL buffer D041 with Schmitt Trigger buffer RC3 and RC4 D042 IIL Input Leakage Current(2,3) D060 I/O ports — ±1 μA VSS ≤ VPIN ≤ VDD, Pin at high-impedance D061 MCLR — ±5 μA Vss ≤ VPIN ≤ VDD OSC1 — ±5 μA Vss ≤ VPIN ≤ VDD 50 400 μA VDD = 3.0V, VPIN = VSS D063 D070 Note 1: 2: 3: 4: IPU Weak Pull-up Current IPURB PORTB weak pull-up current In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC® device be driven with an external clock while in RC mode. The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages. Negative current is defined as current sourced by the pin. Parameter is characterized but not tested. DS41303B-page 368 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 26.9 DC Characteristics: Input/Output Characteristics, PIC18F2XK20/4XK20 (Continued) Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +125°C DC CHARACTERISTICS Param Symbol No. VOL Characteristic Min Max Units Conditions Output Low Voltage D080 I/O ports — 0.6 V IOL = 8.5 mA, VDD = 3.0V, -40°C to +85°C D083 OSC2/CLKOUT (RC, RCIO, EC, ECIO modes) — 0.6 V IOL = 1.6 mA, VDD = 3.0V, -40°C to +85°C VOH Output High Voltage(3) D090 I/O ports VDD – 0.7 — V IOH = -3.0 mA, VDD = 3.0V, -40°C to +85°C D092 OSC2/CLKOUT (RC, RCIO, EC, ECIO modes) VDD – 0.7 — V IOH = -1.3 mA, VDD = 3.0V, -40°C to +85°C Capacitive Loading Specs on Output Pins D100(4) COSC2 OSC2 pin — 15 pF In XT, HS and LP modes when external clock is used to drive OSC1 D101 CIO All I/O pins and OSC2 (in RC mode) — 50 pF To meet the AC Timing Specifications D102 CB SCL, SDA — 400 pF I2C™ Specification Note 1: 2: 3: 4: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC® device be driven with an external clock while in RC mode. The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages. Negative current is defined as current sourced by the pin. Parameter is characterized but not tested. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 369 PIC18F2XK20/4XK20 26.10 Memory Programming Requirements Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +125°C DC CHARACTERISTICS Param No. Sym Characteristic Min Typ† Max Units 9.00 — 13.25 V — — 10 mA E/W Conditions Internal Program Memory Programming Specifications(1) D110 VPP Voltage on MCLR/VPP/RE3 pin D113 IDDP Supply Current during Programming D120 ED Byte Endurance — 100K — (Note 3) Data EEPROM Memory -40°C to +125°C D121 VDRW VDD for Read/Write 1.8 — 3.6 V D122 TDEW Erase/Write Cycle Time — 4 — ms D123 TRETD Characteristic Retention 40 — — Year Provided no other specifications are violated D124 TREF 1M 10M — E/W -40°C to +125°C -40°C to +125°C Number of Total Erase/Write Cycles before Refresh(2) Using EECON to read/write Program Flash Memory D130 EP Cell Endurance — 10K — E/W D131 VPR VDD for Read 1.8 — 3.6 V D132 VIW VDD for Row Erase or Write 1.8 — 3.6 V D133 TIW Self-timed Write Cycle Time — 2 — ms D134 TRETD Characteristic Retention 40 — — Year Provided no other specifications are violated † Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: These specifications are for programming the on-chip program memory through the use of table write instructions. 2: Refer to Section 7.8 “Using the Data EEPROM” for a more detailed discussion on data EEPROM endurance. 3: Required only if single-supply programming is disabled. DS41303B-page 370 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 TABLE 26-1: COMPARATOR SPECIFICATIONS Operating Conditions: 1.8V < VDD < 3.6V, -40°C < TA < +125°C (unless otherwise stated). Param No. Sym Characteristics Min Typ Max Units CM01 VIOFF Input Offset Voltage — ±7.5 ±15 mV CM02 VICM Input Common Mode Voltage 0 — VDD V dB CM03 CMRR Common Mode Rejection Ratio 55 — — CM04 TRESP Response Time — 150 400 ns CM05 TMC2OV Comparator Mode Change to Output Valid* — — 10 μs * Note 1: Comments Note 1 These parameters are characterized but not tested. Response time measured with one comparator input at VDD/2, while the other input transitions from VSS to VDD. TABLE 26-2: CVREF VOLTAGE REFERENCE SPECIFICATIONS Operating Conditions: 1.8V < VDD < 3.6V, -40°C < TA < +125°C (unless otherwise stated). Param No. Sym Characteristics Min Typ Max Units Comments CV01* CLSB Step Size(2) — — VDD/24 VDD/32 — — V V Low Range (VRR = 1) High Range (VRR = 0) CV02* CACC Absolute Accuracy — — — — ± 1/4 ± 1/2 LSb LSb Low Range (VRR = 1) High Range (VRR = 0) CV03* CR Unit Resistor Value (R) — 2k — Ω CV04* CST Settling Time(1) — — 10 μs * Note 1: These parameters are characterized but not tested. Settling time measured while CVRR = 1 and CVR3:CVR0 transitions from ‘0000’ to ‘1111’. TABLE 26-3: FIXED VOLTAGE REFERENCE (FVR) SPECIFICATIONS Operating Conditions: 1.8V < VDD < 3.6V, -40°C < TA < +125°C (unless otherwise stated). Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +125°C VR Voltage Reference Specifications Param No. Sym Characteristics Min Typ Max Units TBD 1.2 TBD V VR01 VROUT VR voltage output VR02 TCVOUT Voltage drift temperature coefficient — TBD TBD ppm/°C VR03 ΔVROUT/ ΔVDD Voltage drift with respect to VDD regulation — TBD — μV/V VR04 TSTABLE Settling Time — TBD TBD μs Comments Legend: TBD = To Be Determined * These parameters are characterized but not tested. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 371 PIC18F2XK20/4XK20 FIGURE 26-2: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS VDD (HLVDIF can be cleared by software) VHLVD (HLVDIF set by hardware) HLVDIF TABLE 26-4: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +125°C Param Symbol No. D420 Characteristic Min Typ† Max Units HLVD Voltage on VDD LVV = 0000 Transition High-to-Low LVV = 0001 1.8 V 1.9 V LVV = 0010 2.0 V LVV = 0011 2.1 V LVV = 0100 2.2 V LVV = 0101 2.3 V LVV = 0110 2.4 V LVV = 0111 2.5 V LVV = 1000 2.6 V LVV = 1001 2.7 V LVV = 1010 2.8 V LVV = 1011 2.9 V LVV = 1100 3.0 V LVV = 1101 3.3 V LVV = 1110 3.5 V Conditions † Production tested at TAMB = 25°C. Specifications over temperature limits ensured by characterization. DS41303B-page 372 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 26.11 AC (Timing) Characteristics 26.11.1 TIMING PARAMETER SYMBOLOGY The timing parameter symbols have been created using one of the following formats: 1. TppS2ppS 2. TppS T F Frequency Lowercase letters (pp) and their meanings: pp cc CCP1 ck CLKOUT cs CS di SDI do SDO dt Data in io I/O port mc MCLR Uppercase letters and their meanings: S F Fall H High I Invalid (High-impedance) L Low I2C only AA output access BUF Bus free TCC:ST (I2C specifications only) CC HD Hold ST DAT DATA input hold STA Start condition © 2007 Microchip Technology Inc. 3. TCC:ST 4. Ts (I2C™ specifications only) (I2C specifications only) T Time osc rd rw sc ss t0 t1 wr OSC1 RD RD or WR SCK SS T0CKI T13CKI WR P R V Z Period Rise Valid High-impedance High Low High Low SU Setup STO Stop condition Advance Information DS41303B-page 373 PIC18F2XK20/4XK20 26.11.2 TIMING CONDITIONS The temperature and voltages specified in Table 26-4 apply to all timing specifications unless otherwise noted. Figure 26-3 specifies the load conditions for the timing specifications. TABLE 26-5: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC AC CHARACTERISTICS FIGURE 26-3: Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +125°C Operating voltage VDD range as described in DC spec Section 26.1 and Section 26.9. LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS Load Condition 1 Load Condition 2 VDD/2 RL CL Pin VSS CL Pin RL = 464Ω VSS DS41303B-page 374 CL = 50 pF for all pins except OSC2/CLKOUT and including D and E outputs as ports Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 26.11.3 TIMING DIAGRAMS AND SPECIFICATIONS FIGURE 26-4: EXTERNAL CLOCK TIMING (ALL MODES EXCEPT PLL) Q4 Q1 Q2 Q3 Q4 Q1 OSC1 1 3 4 3 4 2 CLKOUT TABLE 26-6: Param. No. 1A 1 EXTERNAL CLOCK TIMING REQUIREMENTS Symbol FOSC TOSC Characteristic Min Max Units External CLKIN Frequency(1) DC 64 MHz Oscillator Frequency(1) DC 4 MHz RC Oscillator mode 0.1 4 MHz XT Oscillator mode External CLKIN Period(1) Oscillator Period(1) Time(1) 2 TCY Instruction Cycle 3 TOSL, TOSH External Clock in (OSC1) High or Low Time 4 Note 1: TOSR, TOSF External Clock in (OSC1) Rise or Fall Time Conditions EC, ECIO Oscillator mode 4 25 MHz HS Oscillator mode 4 16 MHz HS + PLL Oscillator mode 5 33 kHz LP Oscillator mode 15.6 — ns EC, ECIO Oscillator mode 250 — ns RC Oscillator mode 250 10,000 ns XT Oscillator mode 40 62.5 250 250 ns ns HS Oscillator mode HS + PLL Oscillator mode 30 — μs LP Oscillator mode 100 — ns TCY = 4/FOSC 30 — ns XT Oscillator mode 2.5 — μs LP Oscillator mode 10 — ns HS Oscillator mode — 20 ns XT Oscillator mode — 50 ns LP Oscillator mode — 7.5 ns HS Oscillator mode Instruction cycle period (TCY) equals four times the input oscillator time base period for all configurations except PLL. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at “min.” values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the “max.” cycle time limit is “DC” (no clock) for all devices. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 375 PIC18F2XK20/4XK20 TABLE 26-7: Param No. PLL CLOCK TIMING SPECIFICATIONS (VDD = 4.2V TO 5.5V) Sym Characteristic Min Typ† Max Units Conditions F10 FOSC Oscillator Frequency Range 4 — 64 MHz HS mode only F11 FSYS On-Chip VCO System Frequency 32 — 64 MHz HS mode only F12 trc PLL Start-up Time (Lock Time) — — 2 ms ΔCLK CLKOUT Stability (Jitter) -2 — +2 % F13 † Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. TABLE 26-8: AC CHARACTERISTICS: INTERNAL OSCILLATORS ACCURACY PIC18F2XK20/4XK20 Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +125°C PIC18F2XK20/4XK20 Param No. Min Typ Max Units Conditions HFINTOSC Accuracy @ Freq = 16 MHz, 8 MHz, 4 MHz, 2 MHz, 1 MHz, 500 kHz, 250 kHz(1) 1 — 1 % +25°C VDD = 1.8-3.6V -2 — +2 % 0°C to +85°C VDD = 1.8-3.6V -5 — +5 % -40°C to +125°C VDD = 1.8-3.6V — 35.938 kHz -40°C to +125°C VDD = 1.8-3.6V LFINTOSC Accuracy @ Freq = 31 kHz(2) 26.562 Legend: Note 1: 2: 3: Shading of rows is to assist in readability of the table. Frequency calibrated at 25°C. OSCTUNE register can be used to compensate for temperature drift. INTOSC frequency after calibration. Change of INTOSC frequency as VDD changes. FIGURE 26-5: CLKOUT AND I/O TIMING Q1 Q4 Q2 Q3 OSC1 11 10 CLKOUT 13 14 19 12 18 16 I/O pin (Input) 17 I/O pin (Output) Note: 15 New Value Old Value 20, 21 Refer to Figure 26-3 for load conditions. DS41303B-page 376 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 TABLE 26-9: Param No. CLKOUT AND I/O TIMING REQUIREMENTS Symbol Characteristic Min Typ Max Units Conditions 10 TosH2ckL OSC1 ↑ to CLKOUT ↓ — 75 200 ns (Note 1) 11 TosH2ckH OSC1 ↑ to CLKOUT ↑ — 75 200 ns (Note 1) 12 TckR CLKOUT Rise Time — 35 100 ns (Note 1) 13 TckF CLKOUT Fall Time — 35 100 ns (Note 1) CLKOUT ↓ to Port Out Valid — — 0.5 TCY + 20 ns (Note 1) 0.25 TCY + 25 — — ns (Note 1) (Note 1) 14 TckL2ioV 15 TioV2ckH Port In Valid before CLKOUT ↑ Port In Hold after CLKOUT ↑ 16 TckH2ioI 17 TosH2ioV OSC1 ↑ (Q1 cycle) to Port Out Valid 18 TosH2ioI OSC1 ↑ (Q2 cycle) to Port Input Invalid (I/O in hold time) 0 — — ns — 50 150 ns 100 — — ns 19 TioV2osH Port Input Valid to OSC1 ↑ (I/O in setup time) 0 — — ns 20 TioR Port Output Rise Time — 10 25 ns 21 TioF Port Output Fall Time — 10 25 ns 22† TINP INT pin High or Low Time TCY — — ns 23† TRBP RB7:RB4 Change INT High or Low Time TCY — — 24† TRCP RC7:RC4 Change INT High or Low Time 20 ns ns † These parameters are asynchronous events not related to any internal clock edges. Note 1: Measurements are taken in RC mode, where CLKOUT output is 4 x TOSC. FIGURE 26-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING VDD MCLR 30 Internal POR PWRT Time-out 33 32 OSC Time-out Internal Reset Watchdog Timer Reset 31 34 34 I/O pins Note: Refer to Figure 26-3 for load conditions. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 377 PIC18F2XK20/4XK20 FIGURE 26-7: BROWN-OUT RESET TIMING BVDD VDD 35 VBGAP = 1.2V VIRVST Enable Internal Reference Voltage Internal Reference Voltage Stable 36 TABLE 26-10: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET REQUIREMENTS Param. Symbol No. 30 31 TmcL TWDT 32 33 TOST TPWRT 34 TIOZ Characteristic MCLR Pulse Width (low) Watchdog Timer Time-out Period (no postscaler) Oscillation Start-up Timer Period Power-up Timer Period I/O High-Impedance from MCLR Low or Watchdog Timer Reset Brown-out Reset Pulse Width 35 TBOR 36 TIVRST Time for Internal Reference Voltage to become Stable 37 THLVD High/Low-Voltage Detect Pulse Width 38 TCSD CPU Start-up Time 39 TIOBST Time for INTOSC to Stabilize Legend: TBD = To Be Determined FIGURE 26-8: Min Typ Max Units 2 — — 4.00 — TBD μs ms 1024 TOSC — 1024 TOSC — 65.5 TBD — ms Conditions TOSC = OSC1 period — 2 — μs 200 — — 20 — 50 μs μs VDD ≤ BVDD (see D005) 200 5 — — — 1 — 10 — μs μs ms VDD ≤ VHLVD TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS T0CKI 41 40 42 T1OSO/T13CKI 46 45 47 48 TMR0 or TMR1 Note: Refer to Figure 26-3 for load conditions. DS41303B-page 378 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 TABLE 26-11: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS Param No. Symbol Characteristic 40 Tt0H T0CKI High Pulse Width 41 Tt0L T0CKI Low Pulse Width 42 Tt0P T0CKI Period No prescaler Min Max 0.5 TCY + 20 — ns With prescaler No prescaler 10 — ns 0.5 TCY + 20 — ns With prescaler 45 46 Tt1H Tt1L T13CKI High Time 10 — ns TCY + 10 — ns Greater of: 20 ns or (TCY + 40)/N — ns No prescaler With prescaler Synchronous, no prescaler 0.5 TCY + 20 — ns Synchronous, with prescaler 10 — ns Asynchronous 30 — ns T13CKI Low Synchronous, no prescaler Time Synchronous, with prescaler 0.5 TCY + 5 — ns 10 — ns Asynchronous 47 Tt1P T13CKI Synchronous Input Period 30 — ns Greater of: 20 ns or (TCY + 40)/N — ns 60 — ns DC 50 kHz 2 TOSC 7 TOSC — Asynchronous Ft1 48 T13CKI Oscillator Input Frequency Range Tcke2tmrI Delay from External T13CKI Clock Edge to Timer Increment FIGURE 26-9: Units Conditions N = prescale value (1, 2, 4,..., 256) N = prescale value (1, 2, 4, 8) CAPTURE/COMPARE/PWM TIMINGS (ALL CCP MODULES) CCPx (Capture Mode) 50 51 52 CCPx (Compare or PWM Mode) 53 Note: 54 Refer to Figure 26-3 for load conditions. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 379 PIC18F2XK20/4XK20 TABLE 26-12: CAPTURE/COMPARE/PWM REQUIREMENTS (ALL CCP MODULES) Param Symbol No. 50 TccL 51 TccH Characteristic Min Max Units CCPx Input Low No prescaler Time With prescaler 0.5 TCY + 20 — ns 10 — ns CCPx Input High Time 0.5 TCY + 20 — ns 10 — ns 3 TCY + 40 N — ns No prescaler With prescaler 52 TccP CCPx Input Period 53 TccR CCPx Output Fall Time — 25 ns 54 TccF CCPx Output Fall Time — 25 ns FIGURE 26-10: Conditions N = prescale value (1, 4 or 16) PARALLEL SLAVE PORT TIMING (PIC18F4XK20) RE2/CS RE0/RD RE1/WR 65 RD7:RD0 62 64 63 Note: Refer to Figure 26-3 for load conditions. TABLE 26-13: PARALLEL SLAVE PORT REQUIREMENTS (PIC18F4XK20) Param. No. Symbol Characteristic Min Max Units 62 TdtV2wrH Data In Valid before WR ↑ or CS ↑ (setup time) 20 — ns 63 TwrH2dtI WR ↑ or CS ↑ to Data–In Invalid (hold time) 20 — ns 64 TrdL2dtV RD ↓ and CS ↓ to Data–Out Valid — 80 ns 65 TrdH2dtI RD ↑ or CS ↓ to Data–Out Invalid 10 30 ns 66 TibfINH Inhibit of the IBF Flag bit being Cleared from WR ↑ or CS ↑ — 3 TCY DS41303B-page 380 Advance Information Conditions © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 FIGURE 26-11: EXAMPLE SPI MASTER MODE TIMING (CKE = 0) SS 70 SCK (CKP = 0) 71 72 78 79 79 78 SCK (CKP = 1) 80 bit 6 - - - - - -1 MSb SDO LSb 75, 76 SDI MSb In bit 6 - - - -1 LSb In 74 73 Note: Refer to Figure 26-3 for load conditions. TABLE 26-14: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0) Param No. Symbol Characteristic 70 TssL2scH, TssL2scL SS ↓ to SCK ↓ or SCK ↑ Input 71 TscH SCK Input High Time (Slave mode) SCK Input Low Time (Slave mode) 71A 72 TscL 72A Min Max Units TCY — ns Continuous 1.25 TCY + 30 — ns Single Byte 40 — ns Continuous 1.25 TCY + 30 — ns Single Byte 40 — ns 100 — ns 1.5 TCY + 40 — ns 100 — ns 73 TdiV2scH, TdiV2scL Setup Time of SDI Data Input to SCK Edge 73A Tb2b Last Clock Edge of Byte 1 to the 1st Clock Edge of Byte 2 74 TscH2diL, TscL2diL Hold Time of SDI Data Input to SCK Edge 75 TdoR SDO Data Output Rise Time — 25 ns 76 TdoF SDO Data Output Fall Time — 25 ns 78 TscR SCK Output Rise Time (Master mode) — 25 ns 79 TscF SCK Output Fall Time (Master mode) — 25 ns 80 TscH2doV, TscL2doV SDO Data Output Valid after SCK Edge — 50 ns Note 1: 2: Conditions (Note 1) (Note 1) (Note 2) Requires the use of Parameter #73A. Only if Parameter #71A and #72A are used. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 381 PIC18F2XK20/4XK20 FIGURE 26-12: EXAMPLE SPI MASTER MODE TIMING (CKE = 1) SS 81 SCK (CKP = 0) 71 72 79 73 SCK (CKP = 1) 80 78 MSb SDO bit 6 - - - - - -1 LSb bit 6 - - - -1 LSb In 75, 76 SDI MSb In 74 Note: Refer to Figure 26-3 for load conditions. TABLE 26-15: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1) Param. No. 71 Symbol Characteristic TscH SCK Input High Time (Slave mode) TscL SCK Input Low Time (Slave mode) 73 TdiV2scH, TdiV2scL Setup Time of SDI Data Input to SCK Edge 73A Tb2b Last Clock Edge of Byte 1 to the 1st Clock Edge of Byte 2 74 TscH2diL, TscL2diL Hold Time of SDI Data Input to SCK Edge 75 TdoR SDO Data Output Rise Time 71A 72 72A Continuous Min Max Units 1.25 TCY + 30 — ns Single Byte 40 — ns Continuous 1.25 TCY + 30 — ns Single Byte 40 — ns 100 — ns 1.5 TCY + 40 — ns 100 — ns — 25 ns 76 TdoF SDO Data Output Fall Time — 25 ns 78 TscR SCK Output Rise Time (Master mode) — 25 ns 79 TscF SCK Output Fall Time (Master mode) — 25 ns 80 TscH2doV, TscL2doV SDO Data Output Valid after SCK Edge — 50 ns 81 TdoV2scH, TdoV2scL SDO Data Output Setup to SCK Edge TCY — ns Note 1: 2: Conditions (Note 1) (Note 1) (Note 2) Requires the use of Parameter #73A. Only if Parameter #71A and #72A are used. DS41303B-page 382 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 FIGURE 26-13: EXAMPLE SPI SLAVE MODE TIMING (CKE = 0) SS 70 SCK (CKP = 0) 83 71 72 78 79 79 78 SCK (CKP = 1) 80 MSb SDO bit 6 - - - - - -1 LSb 77 75, 76 MSb In SDI 73 Note: bit 6 - - - -1 LSb In 74 Refer to Figure 26-3 for load conditions. TABLE 26-16: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING, CKE = 0) Param No. Symbol Characteristic 70 TssL2scH, SS ↓ to SCK ↓ or SCK ↑ Input TssL2scL 71 TscH 71A 72 TscL 72A Min TCY Max Units Conditions — ns SCK Input High Time (Slave mode) Continuous 1.25 TCY + 30 — ns Single Byte 40 — ns SCK Input Low Time (Slave mode) Continuous 1.25 TCY + 30 — ns Single Byte 40 — ns 100 — ns 73 TdiV2scH, Setup Time of SDI Data Input to SCK Edge TdiV2scL 73A Tb2b 74 TscH2diL, Hold Time of SDI Data Input to SCK Edge TscL2diL Last Clock Edge of Byte 1 to the First Clock Edge of Byte 2 1.5 TCY + 40 — ns 100 — ns 75 TdoR SDO Data Output Rise Time — 25 ns 76 TdoF SDO Data Output Fall Time — 25 ns 77 TssH2doZ SS↑ to SDO Output High-Impedance 10 50 ns 78 TscR SCK Output Rise Time (Master mode) — 25 ns 79 TscF SCK Output Fall Time (Master mode) 80 TscH2doV, SDO Data Output Valid after SCK Edge TscL2doV 83 TscH2ssH, SS ↑ after SCK edge TscL2ssH Note 1: 2: — 25 ns — 50 ns 1.5 TCY + 40 — ns (Note 1) (Note 1) (Note 2) Requires the use of Parameter #73A. Only if Parameter #71A and #72A are used. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 383 PIC18F2XK20/4XK20 FIGURE 26-14: EXAMPLE SPI SLAVE MODE TIMING (CKE = 1) 82 SS SCK (CKP = 0) 70 83 71 72 SCK (CKP = 1) 80 MSb SDO bit 6 - - - - - -1 LSb 75, 76 SDI MSb In Note: 77 bit 6 - - - -1 LSb In 74 Refer to Figure 26-3 for load conditions. TABLE 26-17: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1) Param No. Symbol Characteristic Min Max Units Conditions 70 TssL2scH, SS ↓ to SCK ↓ or SCK ↑ Input TssL2scL 71 TscH SCK Input High Time (Slave mode) TscL SCK Input Low Time (Slave mode) 73A Tb2b Last Clock Edge of Byte 1 to the First Clock Edge of Byte 2 1.5 TCY + 40 74 TscH2diL, Hold Time of SDI Data Input to SCK Edge TscL2diL 75 TdoR SDO Data Output Rise Time 76 TdoF SDO Data Output Fall Time — 25 ns 77 TssH2doZ SS↑ to SDO Output High-Impedance 10 50 ns 78 TscR SCK Output Rise Time (Master mode) — 25 ns 79 TscF SCK Output Fall Time (Master mode) — 25 ns 80 TscH2doV, SDO Data Output Valid after SCK Edge TscL2doV — 50 ns 82 TssL2doV SDO Data Output Valid after SS ↓ Edge — 50 ns 83 TscH2ssH, SS ↑ after SCK Edge TscL2ssH 1.5 TCY + 40 — ns 71A 72 72A Note 1: 2: Continuous TCY — ns 1.25 TCY + 30 — ns Single Byte 40 — ns Continuous 1.25 TCY + 30 — ns Single Byte 40 (Note 1) — ns (Note 1) — ns (Note 2) 100 — ns — 25 ns Requires the use of Parameter #73A. Only if Parameter #71A and #72A are used. DS41303B-page 384 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 I2C™ BUS START/STOP BITS TIMING FIGURE 26-15: SCL 91 93 90 92 SDA Stop Condition Start Condition Note: Refer to Figure 26-3 for load conditions. TABLE 26-18: I2C™ BUS START/STOP BITS REQUIREMENTS (SLAVE MODE) Param. Symbol No. Characteristic 90 TSU:STA Start Condition 91 THD:STA 92 TSU:STO 93 THD:STO Stop Condition Max Units Conditions 4700 — ns Only relevant for Repeated Start condition ns After this period, the first clock pulse is generated Setup Time 400 kHz mode 600 — Start Condition 100 kHz mode 4000 — Hold Time 400 kHz mode 600 — Stop Condition 100 kHz mode 4700 — Setup Time Hold Time FIGURE 26-16: 100 kHz mode Min 400 kHz mode 600 — 100 kHz mode 4000 — 400 kHz mode 600 — ns ns I2C™ BUS DATA TIMING 103 102 100 101 SCL 90 106 107 91 92 SDA In 110 109 109 SDA Out Note: Refer to Figure 26-3 for load conditions. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 385 PIC18F2XK20/4XK20 TABLE 26-19: I2C™ BUS DATA REQUIREMENTS (SLAVE MODE) Param. Symbol No. 100 THIGH Characteristic Clock High Time Min Max Units 100 kHz mode 4.0 — μs PIC18FXXXX must operate at a minimum of 1.5 MHz 400 kHz mode 0.6 — μs PIC18FXXXX must operate at a minimum of 10 MHz 1.5 TCY — 100 kHz mode 4.7 — μs PIC18FXXXX must operate at a minimum of 1.5 MHz 400 kHz mode 1.3 — μs PIC18FXXXX must operate at a minimum of 10 MHz SSP Module 101 TLOW Clock Low Time SSP Module 102 91 106 107 92 109 2: 300 ns — 300 ns 20 + 0.1 CB 300 ns CB is specified to be from 10 to 400 pF TSU:STA Start Condition Setup Time 100 kHz mode 4.7 — μs 400 kHz mode 0.6 — μs Only relevant for Repeated Start condition THD:STA Start Condition Hold Time 100 kHz mode 4.0 — μs 400 kHz mode 0.6 — μs THD:DAT Data Input Hold Time 100 kHz mode 0 — ns 400 kHz mode 0 0.9 μs TSU:DAT Data Input Setup Time 100 kHz mode 250 — ns 400 kHz mode 100 — ns TSU:STO Stop Condition Setup Time 100 kHz mode 4.7 — μs 400 kHz mode 0.6 — μs CB Note 1: 20 + 0.1 CB 400 kHz mode TBUF D102 ns 100 kHz mode TAA 110 1000 SDA and SCL Fall Time TF 90 — — SDA and SCL Rise 100 kHz mode Time 400 kHz mode TR 103 1.5 TCY Conditions Output Valid from Clock 100 kHz mode — 3500 ns 400 kHz mode — — ns Bus Free Time 100 kHz mode 4.7 — μs 400 kHz mode 1.3 — μs — 400 pF Bus Capacitive Loading CB is specified to be from 10 to 400 pF After this period, the first clock pulse is generated (Note 2) (Note 1) Time the bus must be free before a new transmission can start As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions. A fast mode I2C bus device can be used in a standard mode I2C bus system but the requirement, TSU:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the standard mode I2C bus specification), before the SCL line is released. DS41303B-page 386 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 FIGURE 26-17: MASTER SSP I2C™ BUS START/STOP BITS TIMING WAVEFORMS SCL 93 91 90 92 SDA Stop Condition Start Condition Note: Refer to Figure 26-3 for load conditions. TABLE 26-20: MASTER SSP I2C™ BUS START/STOP BITS REQUIREMENTS Param. Symbol No. 90 TSU:STA Characteristic Start Condition THD:STA Start Condition Hold Time 92 TSU:STO Stop Condition Setup Time 93 Max Units 2(TOSC)(BRG + 1) — ns 400 kHz mode 2(TOSC)(BRG + 1) — 1 MHz mode(1) 2(TOSC)(BRG + 1) — Only relevant for Repeated Start condition ns After this period, the first clock pulse is generated 100 kHz mode Setup Time 91 Min THD:STO Stop Condition Hold Time 100 kHz mode 2(TOSC)(BRG + 1) — 400 kHz mode 2(TOSC)(BRG + 1) — 1 MHz mode(1) 2(TOSC)(BRG + 1) — 100 kHz mode 2(TOSC)(BRG + 1) — 400 kHz mode 2(TOSC)(BRG + 1) — 1 MHz mode(1) 2(TOSC)(BRG + 1) — 100 kHz mode 2(TOSC)(BRG + 1) — 400 kHz mode 2(TOSC)(BRG + 1) — 1 MHz mode(1) 2(TOSC)(BRG + 1) — Conditions ns ns Note 1: Maximum pin capacitance = 10 pF for all I2C pins. FIGURE 26-18: MASTER SSP I2C™ BUS DATA TIMING 103 102 100 101 SCL 90 106 91 107 92 SDA In 109 109 110 SDA Out Note: Refer to Figure 26-3 for load conditions. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 387 PIC18F2XK20/4XK20 TABLE 26-21: MASTER SSP I2C™ BUS DATA REQUIREMENTS Param. Symbol No. 100 THIGH Characteristic Min Max Units 2(TOSC)(BRG + 1) — ms 2(TOSC)(BRG + 1) — ms mode(1) 2(TOSC)(BRG + 1) — ms Clock Low Time 100 kHz mode 2(TOSC)(BRG + 1) — ms 400 kHz mode 2(TOSC)(BRG + 1) — ms mode(1) ms Clock High Time 100 kHz mode 400 kHz mode 1 MHz 101 TLOW 1 MHz 102 103 90 91 TR TF TSU:STA SDA and SCL Rise Time SDA and SCL Fall Time Start Condition Setup Time THD:STA Start Condition Hold Time 2(TOSC)(BRG + 1) — 100 kHz mode — 1000 ns 400 kHz mode 20 + 0.1 CB 300 ns 1 MHz mode(1) — 300 ns 100 kHz mode — 300 ns 400 kHz mode 20 + 0.1 CB 300 ns 1 MHz mode(1) — 100 ns 100 kHz mode 2(TOSC)(BRG + 1) — ms 400 kHz mode 2(TOSC)(BRG + 1) — ms 1 MHz mode(1) 2(TOSC)(BRG + 1) — ms 100 kHz mode 2(TOSC)(BRG + 1) — ms 400 kHz mode 2(TOSC)(BRG + 1) — ms 1 MHz mode(1) 2(TOSC)(BRG + 1) — ms 0 — ns 106 THD:DAT Data Input Hold Time 100 kHz mode 400 kHz mode 0 0.9 ms 107 TSU:DAT 100 kHz mode 250 — ns 92 TSU:STO Stop Condition Setup Time 109 TAA Data Input Setup Time Output Valid from Clock 400 kHz mode 100 — ns 100 kHz mode 2(TOSC)(BRG + 1) — ms 400 kHz mode 2(TOSC)(BRG + 1) — ms 1 MHz mode(1) 2(TOSC)(BRG + 1) — ms 100 kHz mode — 3500 ns 400 kHz mode ns — 1000 mode(1) — — ns 100 kHz mode 4.7 — ms 400 kHz mode 1.3 — ms — 400 pF 1 MHz 110 D102 Note 1: 2: TBUF CB Bus Free Time Bus Capacitive Loading Conditions CB is specified to be from 10 to 400 pF CB is specified to be from 10 to 400 pF Only relevant for Repeated Start condition After this period, the first clock pulse is generated (Note 2) Time the bus must be free before a new transmission can start I2C Maximum pin capacitance = 10 pF for all pins. A fast mode I2C bus device can be used in a standard mode I2C bus system, but parameter 107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, parameter 102 + parameter 107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before the SCL line is released. DS41303B-page 388 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 FIGURE 26-19: EUSART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING RC6/TX/CK pin 121 121 RC7/RX/DT pin 120 Note: 122 Refer to Figure 26-3 for load conditions. TABLE 26-22: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS Param No. Symbol Characteristic Min Max Units 120 TckH2dtV SYNC XMIT (MASTER & SLAVE) Clock High to Data Out Valid — 40 ns 121 Tckrf Clock Out Rise Time and Fall Time (Master mode) — 20 ns 122 Tdtrf Data Out Rise Time and Fall Time — 20 ns FIGURE 26-20: Conditions EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING RC6/TX/CK pin 125 RC7/RX/DT pin 126 Note: Refer to Figure 26-3 for load conditions. TABLE 26-23: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS Param. No. Symbol Characteristic Min Max Units 125 TdtV2ckl SYNC RCV (MASTER & SLAVE) Data Hold before CK ↓ (DT hold time) 10 — ns 126 TckL2dtl Data Hold after CK ↓ (DT hold time) 15 — ns © 2007 Microchip Technology Inc. Advance Information Conditions DS41303B-page 389 PIC18F2XK20/4XK20 TABLE 26-24: A/D CONVERTER CHARACTERISTICS: PIC18F2XK20/4XK20 Param Symbol No. Characteristic Min Typ Max Units — — 10 bit Conditions ΔVREF ≥ 3.0V A01 NR Resolution A03 EIL Integral Linearity Error — — <±1 LSb ΔVREF ≥ 3.0V A04 EDL Differential Linearity Error — — <±1 LSb ΔVREF ≥ 3.0V A06 EOFF Offset Error — — <±3 LSb ΔVREF ≥ 3.0V A07 EGN Gain Error — — <±3 LSb ΔVREF ≥ 3.0V A10 — Monotonicity A20 ΔVREF Reference Voltage Range (VREFH – VREFL) A21 VREFH A22 — VSS ≤ VAIN ≤ VREF 1.8 3 — — — — V V VDD < 3.0V VDD ≥ 3.0V Reference Voltage High VDD/2 — VDD + 0.6 V VREFL Reference Voltage Low VSS – 0.3V — VDD – 3.0V V A25 VAIN Analog Input Voltage VREFL — VREFH V A30 ZAIN Recommended Impedance of Analog Voltage Source — — 2.5 kΩ A50 IREF VREF Input Current(2) — — — — 5 150 μA μA Note 1: 2: Guaranteed(1) During VAIN acquisition. During A/D conversion cycle. The A/D conversion result never decreases with an increase in the input voltage and has no missing codes. VREFH current is from RA3/AN3/VREF+ pin or VDD, whichever is selected as the VREFH source. VREFL current is from RA2/AN2/VREF-/CVREF pin or VSS, whichever is selected as the VREFL source. DS41303B-page 390 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 FIGURE 26-21: A/D CONVERSION TIMING BSF ADCON0, GO (Note 2) 131 Q4 130 132 A/D CLK 9 A/D DATA 8 7 .. . ... 2 1 0 NEW_DATA OLD_DATA ADRES TCY ADIF GO DONE SAMPLING STOPPED SAMPLE Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed. 2: This is a minimal RC delay (typically 100 ns), which also disconnects the holding capacitor from the analog input. TABLE 26-25: A/D CONVERSION REQUIREMENTS Param Symbol No. 130 TAD Characteristic A/D Clock Period Min Max Units 0.7 25.0(1) μs TOSC based, VREF ≥ 3.0V TBD 1 μs A/D RC mode 11 12 TAD 1.4 TBD — — μs μs 131 TCNV Conversion Time (not including acquisition time) (Note 2) 132 TACQ Acquisition Time (Note 3) 135 TSWC Switching Time from Convert → Sample — (Note 4) TBD TDIS Discharge Time 0.2 — Legend: Note 1: 2: 3: 4: Conditions -40°C to +85°C 0°C ≤ to ≤ +85°C μs TBD = To Be Determined The time of the A/D clock period is dependent on the device frequency and the TAD clock divider. ADRES register may be read on the following TCY cycle. The time for the holding capacitor to acquire the “New” input voltage when the voltage changes full scale after the conversion (VDD to VSS or VSS to VDD). The source impedance (RS) on the input channels is 50 Ω. On the following cycle of the device clock. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 391 PIC18F2XK20/4XK20 NOTES: DS41303B-page 392 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 27.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES Graphs and tables are not available at this time. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 393 PIC18F2XK20/4XK20 NOTES: DS41303B-page 394 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 28.0 PACKAGING INFORMATION 28.1 Package Marking Information 28-Lead PDIP Example PIC18F25K20-E/SP XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX YYWWNNN 28-Lead SOIC (7.50 mm) e3 0610017 Example PIC18F25K20-E/SO e3 0610017 XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX YYWWNNN 40-Lead PDIP Example PIC18F45K20-E/P e3 0610017 XXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX YYWWNNN Legend: XX...X Y YY WW NNN e3 * Note: Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week ‘01’) Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ( e3 ) can be found on the outer packaging for this package. In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 395 PIC18F2XK20/4XK20 Package Marking Information (Continued) 28-Lead SSOP Example XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX YYWWNNN PIC18F25K20-E/SS e3 0610017 28-Lead QFN Example XXXXXXXX XXXXXXXX YYWWNNN 18F24K20 -E/ML e3 0610017 44-Lead QFN Example XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX YYWWNNN PIC18F45K20 -E/ML e3 0610017 44-Lead TQFP Example XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX YYWWNNN DS41303B-page 396 PIC18F44K20 -E/PT e3 0610017 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 28.2 Package Details The following sections give the technical details of the packages. 28-Lead Skinny Plastic Dual In-Line (SP or PJ) – 300 mil Body [SPDIP] Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging N NOTE 1 E1 1 2 3 D E A2 A L c b1 A1 b e eB Units Dimension Limits Number of Pins INCHES MIN N NOM MAX 28 Pitch e Top to Seating Plane A – – .200 Molded Package Thickness A2 .120 .135 .150 Base to Seating Plane A1 .015 – – Shoulder to Shoulder Width E .290 .310 .335 Molded Package Width E1 .240 .285 .295 Overall Length D 1.345 1.365 1.400 Tip to Seating Plane L .110 .130 .150 Lead Thickness c .008 .010 .015 b1 .040 .050 .070 b .014 .018 .022 eB – – Upper Lead Width Lower Lead Width Overall Row Spacing § .100 BSC .430 Notes: 1. Pin 1 visual index feature may vary, but must be located within the hatched area. 2. § Significant Characteristic. 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side. 4. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing C04-070B © 2007 Microchip Technology Inc. Advance Information DS41303B-page 397 PIC18F2XK20/4XK20 28-Lead Plastic Small Outline (SO or OI) – Wide, 7.50 mm Body [SOIC] Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging D N E E1 NOTE 1 1 2 3 b e h α A2 A h c φ L A1 L1 Units Dimension Limits Number of Pins β MILLIMETERS MIN N NOM MAX 28 Pitch e Overall Height A – 1.27 BSC – Molded Package Thickness A2 2.05 – – Standoff § A1 0.10 – 0.30 Overall Width E Molded Package Width E1 7.50 BSC Overall Length D 17.90 BSC 2.65 10.30 BSC Chamfer (optional) h 0.25 – 0.75 Foot Length L 0.40 – 1.27 Footprint L1 1.40 REF Foot Angle Top φ 0° – 8° Lead Thickness c 0.18 – 0.33 Lead Width b 0.31 – 0.51 Mold Draft Angle Top α 5° – 15° Mold Draft Angle Bottom β 5° – 15° Notes: 1. Pin 1 visual index feature may vary, but must be located within the hatched area. 2. § Significant Characteristic. 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side. 4. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-052B DS41303B-page 398 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 40-Lead Plastic Dual In-Line (P or PL) – 600 mil Body [PDIP] Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging N NOTE 1 E1 1 2 3 D E A2 A L c b1 A1 b e eB Units Dimension Limits Number of Pins INCHES MIN N NOM MAX 40 Pitch e Top to Seating Plane A – – .250 Molded Package Thickness A2 .125 – .195 Base to Seating Plane A1 .015 – – Shoulder to Shoulder Width E .590 – .625 Molded Package Width E1 .485 – .580 Overall Length D 1.980 – 2.095 Tip to Seating Plane L .115 – .200 Lead Thickness c .008 – .015 b1 .030 – .070 b .014 – .023 eB – – Upper Lead Width Lower Lead Width Overall Row Spacing § .100 BSC .700 Notes: 1. Pin 1 visual index feature may vary, but must be located within the hatched area. 2. § Significant Characteristic. 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side. 4. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing C04-016B © 2007 Microchip Technology Inc. Advance Information DS41303B-page 399 PIC18F2XK20/4XK20 28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging D D2 EXPOSED PAD e E b E2 2 2 1 1 N K N NOTE 1 L BOTTOM VIEW TOP VIEW A A3 A1 Units Dimension Limits Number of Pins MILLIMETERS MIN N NOM MAX 28 Pitch e Overall Height A 0.80 0.65 BSC 0.90 1.00 Standoff A1 0.00 0.02 0.05 Contact Thickness A3 0.20 REF Overall Width E Exposed Pad Width E2 Overall Length D Exposed Pad Length D2 3.65 3.70 4.20 b 0.23 0.30 0.35 Contact Length L 0.50 0.55 0.70 Contact-to-Exposed Pad K 0.20 – – Contact Width 6.00 BSC 3.65 3.70 4.20 6.00 BSC Notes: 1. Pin 1 visual index feature may vary, but must be located within the hatched area. 2. Package is saw singulated. 3. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-105B DS41303B-page 400 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN] Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging D D2 EXPOSED PAD e E E2 b 2 2 1 N 1 N NOTE 1 TOP VIEW K L BOTTOM VIEW A A3 A1 Units Dimension Limits Number of Pins MILLIMETERS MIN N NOM MAX 44 Pitch e Overall Height A 0.80 0.65 BSC 0.90 1.00 Standoff A1 0.00 0.02 0.05 Contact Thickness A3 0.20 REF Overall Width E Exposed Pad Width E2 Overall Length D Exposed Pad Length D2 6.30 6.45 6.80 b 0.25 0.30 0.38 Contact Length L 0.30 0.40 0.50 Contact-to-Exposed Pad K 0.20 – – Contact Width 8.00 BSC 6.30 6.45 6.80 8.00 BSC Notes: 1. Pin 1 visual index feature may vary, but must be located within the hatched area. 2. Package is saw singulated. 3. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-103B © 2007 Microchip Technology Inc. Advance Information DS41303B-page 401 PIC18F2XK20/4XK20 44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP] Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging D D1 E e E1 N b NOTE 1 1 2 3 NOTE 2 α A c φ β L A1 Units Dimension Limits Number of Leads A2 L1 MILLIMETERS MIN N NOM MAX 44 Lead Pitch e Overall Height A – 0.80 BSC – Molded Package Thickness A2 0.95 1.00 1.05 Standoff A1 0.05 – 0.15 Foot Length L 0.45 0.60 0.75 Footprint L1 1.20 1.00 REF Foot Angle φ Overall Width E 12.00 BSC Overall Length D 12.00 BSC Molded Package Width E1 10.00 BSC Molded Package Length D1 10.00 BSC 0° 3.5° 7° Lead Thickness c 0.09 – 0.20 Lead Width b 0.30 0.37 0.45 Mold Draft Angle Top α 11° 12° 13° Mold Draft Angle Bottom β 11° 12° 13° Notes: 1. Pin 1 visual index feature may vary, but must be located within the hatched area. 2. Chamfers at corners are optional; size may vary. 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side. 4. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-076B DS41303B-page 402 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 APPENDIX A: REVISION HISTORY APPENDIX B: Revision A (JULY 2006) DEVICE DIFFERENCES The differences between the devices listed in this data sheet are shown in Table B-1. Original data sheet for PIC18F2XK20/4XK20 devices. Revision B (03/2007) Added part numbers PIC18F26K20 and PIC18F46K20; Replaced Development Support Section; Replaced Package Drawings. TABLE B-1: DEVICE DIFFERENCES Features PIC18F23K20 PIC18F24K20 PIC18F25K20 PIC18F26K20 PIC18F43K20 PIC18F44K20 PIC18F45K20 PIC18F46K20 Program Memory (Bytes) 8192 16384 32768 65536 8192 16384 32768 65536 Program Memory (Instructions) 4096 8192 16384 32768 4096 8192 16384 32768 19 19 19 19 20 20 20 20 Interrupt Sources I/O Ports Ports A, B, C, Ports A, B, C, Ports A, B, C, (E) (E) (E) Ports A, B, C, Ports A, B, C, Ports A, B, C, Ports A, B, C, Ports A, B, C, (E) D, E D, E D, E D, E Capture/Compare/PWM Modules 1 1 1 1 1 1 1 1 Enhanced Capture/Compare/PWM Modules 1 1 1 1 1 1 1 1 Parallel Communications (PSP) No No No No Yes Yes Yes Yes 10-bit Analog-to-Digital Module 11 input channels 11 input channels 11 input channels 11 input channels 14 input channels 14 input channels 14 input channels 14 input channels 28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN 28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN 28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN 28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN 40-pin PDIP 44-pin TQFP 44-pin QFN 40-pin PDIP 44-pin TQFP 44-pin QFN 40-pin PDIP 44-pin TQFP 44-pin QFN 40-pin PDIP 44-pin TQFP 44-pin QFN Packages © 2007 Microchip Technology Inc. Advance Information DS41303B-page 403 PIC18F2XK20/4XK20 NOTES: DS41303B-page 404 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 INDEX A B A/D Bank Select Register (BSR) .............................................. 69 Baud Rate Generator ...................................................... 210 BAUDCTL Register .......................................................... 234 BC .................................................................................... 307 BCF ................................................................................. 308 BF .................................................................................... 214 BF Status Flag ................................................................. 214 Block Diagrams ADC ......................................................................... 249 ADC Transfer Function ............................................ 260 Analog Input Model .......................................... 260, 270 Baud Rate Generator .............................................. 210 Capture Mode Operation ......................................... 154 CCP PWM ............................................................... 157 Clock Source ............................................................. 25 Comparator 1 ........................................................... 264 Comparator 2 ........................................................... 264 Comparator Voltage Reference ............................... 274 Compare Mode Operation ....................................... 155 Crystal Operation ....................................................... 29 EUSART Receive .................................................... 224 EUSART Transmit ................................................... 223 External POR Circuit (Slow VDD Power-up) .............. 51 External RC Mode ..................................................... 30 Fail-Safe Clock Monitor (FSCM) ................................ 38 Generic I/O Port ....................................................... 115 High/Low-Voltage Detect with External Input .......... 278 Interrupt Logic .......................................................... 102 MSSP (I2C Master Mode) ........................................ 208 MSSP (I2C Mode) .................................................... 192 MSSP (SPI Mode) ................................................... 183 On-Chip Reset Circuit ................................................ 49 PIC18F2XK20 ............................................................ 12 PIC18F4XK20 ............................................................ 13 PLL (HS Mode) .......................................................... 33 PORTD and PORTE (Parallel Slave Port) ............... 133 PWM (Enhanced) .................................................... 165 Reads from Flash Program Memory ......................... 89 Resonator Operation ................................................. 29 Table Read Operation ............................................... 85 Table Write Operation ............................................... 86 Table Writes to Flash Program Memory .................... 91 Timer0 in 16-Bit Mode ............................................. 137 Timer0 in 8-Bit Mode ............................................... 136 Timer1 ..................................................................... 140 Timer1 (16-Bit Read/Write Mode) ............................ 140 Timer2 ..................................................................... 146 Timer3 ..................................................................... 148 Timer3 (16-Bit Read/Write Mode) ............................ 149 Voltage Reference Output Buffer Example ............. 275 Watchdog Timer ...................................................... 292 BN .................................................................................... 308 BNC ................................................................................. 309 BNN ................................................................................. 309 BNOV .............................................................................. 310 BNZ ................................................................................. 310 BOR. See Brown-out Reset. BOV ................................................................................. 313 BRA ................................................................................. 311 Break Character (12-bit) Transmit and Receive .............. 241 BRG. See Baud Rate Generator. Brown-out Reset (BOR) ..................................................... 52 Analog Port Pins, Configuring .................................. 261 Associated Registers ............................................... 261 Conversions ............................................................. 252 Converter Characteristics ........................................ 384 Discharge ................................................................. 253 Selecting and Configuring Acquisition Time ............ 250 Special Event Trigger (ECCP) ................................. 164 Absolute Maximum Ratings ............................................. 353 AC (Timing) Characteristics ............................................. 367 Load Conditions for Device Timing Specifications ... 368 Parameter Symbology ............................................. 367 Temperature and Voltage Specifications ................. 368 Timing Conditions .................................................... 368 AC Characteristics Internal RC Accuracy ............................................... 370 Access Bank Mapping with Indexed Literal Offset Mode ................. 84 ACKSTAT ........................................................................ 214 ACKSTAT Status Flag ..................................................... 214 ADC ................................................................................. 249 Acquisition Requirements ........................................ 259 Block Diagram .......................................................... 249 Calculating Acquisition Time .................................... 259 Channel Selection .................................................... 250 Configuration ............................................................ 250 Conversion Clock ..................................................... 250 Conversion Procedure ............................................. 254 Internal Sampling Switch (RSS) IMPEDANCE ............. 259 Interrupts .................................................................. 251 Operation ................................................................. 252 Operation During Sleep ........................................... 253 Port Configuration .................................................... 250 Power Management ................................................. 253 Reference Voltage (VREF) ........................................ 250 Result Formatting ..................................................... 251 Source Impedance ................................................... 259 Special Event Trigger ............................................... 253 Starting an A/D Conversion ..................................... 251 ADCON0 Register ............................................................ 255 ADCON1 Register .................................................... 256, 257 ADDFSR .......................................................................... 342 ADDLW ............................................................................ 305 ADDULNK ........................................................................ 342 ADDWF ............................................................................ 305 ADDWFC ......................................................................... 306 ADRESH Register (ADFM = 0) ........................................ 258 ADRESH Register (ADFM = 1) ........................................ 258 ADRESL Register (ADFM = 0) ......................................... 258 ADRESL Register (ADFM = 1) ......................................... 258 Analog Input Connection Considerations ......................... 270 Analog-to-Digital Converter. See ADC ANDLW ............................................................................ 306 ANDWF ............................................................................ 307 ANSEL (PORT Analog Control) ....................................... 130 ANSEL Register ............................................................... 130 ANSELH Register ............................................................ 131 Assembler MPASM Assembler .................................................. 350 © 2007 Microchip Technology Inc. Advance Information DS41303B-page 405 PIC18F2XK20/4XK20 Detecting .................................................................... 52 Disabling in Sleep Mode ............................................ 52 Software Enabled ....................................................... 52 BSF .................................................................................. 311 BTFSC ............................................................................. 312 BTFSS .............................................................................. 312 BTG .................................................................................. 313 BZ ..................................................................................... 314 C C Compilers MPLAB C18 ............................................................. 350 MPLAB C30 ............................................................. 350 CALL ................................................................................ 314 CALLW ............................................................................. 343 Capture (CCP Module) ..................................................... 153 Associated Registers ............................................... 156 CCP Pin Configuration ............................................. 153 CCPRxH:CCPRxL Registers ................................... 153 Prescaler .................................................................. 153 Software Interrupt .................................................... 153 Timer1/Timer3 Mode Selection ................................ 153 Capture (ECCP Module) .................................................. 164 Capture/Compare/PWM (CCP) ........................................ 151 Capture Mode. See Capture. CCP Mode and Timer Resources ............................ 152 CCPRxH Register .................................................... 152 CCPRxL Register ..................................................... 152 Compare Mode. See Compare. Interaction of Two CCP Modules ............................. 152 Module Configuration ............................................... 152 PWM Mode .............................................................. 157 Duty Cycle ........................................................ 158 Effects of Reset ................................................ 160 Example PWM Frequencies & Resolutions Fosc=20 MHZ .......................................... 159 Fosc=40 MHZ .......................................... 159 Fosc=8 MHZ ............................................ 159 Operation in Sleep Mode ................................. 160 Setup for Operation .......................................... 160 System Clock Frequency Changes .................. 160 PWM Period ............................................................. 158 Setup for PWM Operation ........................................ 160 CCP1CON Register ......................................................... 163 CCP2CON Register ......................................................... 151 Clock Accuracy with Asynchronous Operation ................ 232 Clock Sources Associated registers ................................................... 39 External Modes .......................................................... 28 EC ...................................................................... 28 HS ...................................................................... 29 LP ....................................................................... 29 OST .................................................................... 28 RC ...................................................................... 30 XT ...................................................................... 29 Internal Modes ........................................................... 30 Frequency Selection .......................................... 32 HFINTOSC ......................................................... 30 INTOSC ............................................................. 30 INTOSCIO .......................................................... 30 LFINTOSC ......................................................... 32 Selecting the 31 kHz Source ...................................... 26 Selection Using OSCCON Register ........................... 26 Clock Switching .................................................................. 35 CLRF ................................................................................ 315 CLRWDT .......................................................................... 315 DS41303B-page 406 CM1CON0 Register ......................................................... 268 CM2CON0 Register ......................................................... 269 CM2CON1 Register ......................................................... 271 Code Examples 16 x 16 Signed Multiply Routine .............................. 100 16 x 16 Unsigned Multiply Routine .......................... 100 8 x 8 Signed Multiply Routine .................................... 99 8 x 8 Unsigned Multiply Routine ................................ 99 A/D Conversion ........................................................ 254 Changing Between Capture Prescalers ................... 153 Clearing RAM Using Indirect Addressing .................. 80 Computed GOTO Using an Offset Value ................... 66 Data EEPROM Read ................................................. 97 Data EEPROM Refresh Routine ................................ 98 Data EEPROM Write ................................................. 97 Erasing a Flash Program Memory Row ..................... 90 Fast Register Stack ................................................... 66 Implementing a Timer1 Real-Time Clock ................ 143 Initializing PORTA .................................................... 115 Initializing PORTB .................................................... 118 Initializing PORTC ................................................... 121 Initializing PORTD ................................................... 124 Initializing PORTE .................................................... 127 Loading the SSPBUF (SSPSR) Register ................. 186 Reading a Flash Program Memory Word .................. 89 Saving Status, WREG and BSR Registers in RAM . 113 Writing to Flash Program Memory ....................... 92–93 Code Protection ............................................................... 283 COMF .............................................................................. 316 Comparator Associated Registers ............................................... 272 Operation ................................................................. 263 Operation During Sleep ........................................... 267 Response Time ........................................................ 265 Comparator Module ......................................................... 263 C1 Output State Versus Input Conditions ................ 265 Comparator Specifications ............................................... 365 Comparator Voltage Reference (CVREF) Response Time ........................................................ 265 Comparator Voltage Reference (CVREF) Associated Registers ............................................... 276 Effects of a Reset ............................................ 267, 273 Operation During Sleep ........................................... 273 Overview .................................................................. 273 Comparators Effects of a Reset .................................................... 267 Compare (CCP Module) .................................................. 155 Associated Registers ............................................... 156 CCPRx Register ...................................................... 155 Pin Configuration ..................................................... 155 Software Interrupt .................................................... 155 Special Event Trigger ...................................... 150, 155 Timer1/Timer3 Mode Selection ................................ 155 Compare (ECCP Module) ................................................ 164 Special Event Trigger .............................................. 164 Computed GOTO ............................................................... 66 CONFIG1H Register ........................................................ 285 CONFIG2H Register ........................................................ 286 CONFIG2L Register ........................................................ 286 CONFIG3H Register ........................................................ 287 CONFIG4L Register ........................................................ 287 CONFIG5H Register ........................................................ 288 CONFIG5L Register ........................................................ 288 CONFIG6H Register ........................................................ 289 CONFIG6L Register ........................................................ 289 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 CONFIG7H Register ........................................................ 290 CONFIG7L Register ......................................................... 290 Configuration Bits ............................................................. 284 Configuration Register Protection .................................... 297 Context Saving During Interrupts ..................................... 113 CPFSEQ .......................................................................... 316 CPFSGT .......................................................................... 317 CPFSLT ........................................................................... 317 Customer Change Notification Service ............................ 409 Customer Notification Service .......................................... 409 Customer Support ............................................................ 409 CVREF Voltage Reference Specifications ........................ 365 D Data Addressing Modes ..................................................... 80 Comparing Addressing Modes with the Extended Instruction Set Enabled ..................... 83 Direct .......................................................................... 80 Indexed Literal Offset ................................................. 82 Instructions Affected .......................................... 82 Indirect ....................................................................... 80 Inherent and Literal .................................................... 80 Data EEPROM Code Protection ....................................................... 297 Data EEPROM Memory ..................................................... 95 Associated Registers ................................................. 98 EEADR Register ........................................................ 95 EECON1 and EECON2 Registers ............................. 95 Operation During Code-Protect ................................. 98 Protection Against Spurious Write ............................. 98 Reading ...................................................................... 97 Using .......................................................................... 98 Write Verify ................................................................ 97 Writing ........................................................................ 97 Data Memory ..................................................................... 69 Access Bank .............................................................. 74 and the Extended Instruction Set ............................... 82 Bank Select Register (BSR) ....................................... 69 General Purpose Registers ........................................ 74 Map for PIC18F23K20/43K20 .................................... 70 Map for PIC18F24K20/44K20 .................................... 71 Map for PIC18F25K20/45K20 .................................... 72 Special Function Registers ........................................ 74 DAW ................................................................................. 318 DC and AC Characteristics Graphs and Tables .................................................. 387 DC Characteristics Input/Output ............................................................. 362 Peripheral Supply Current ........................................ 361 Power-Down Current ............................................... 355 Primary Idle Supply Current ..................................... 359 Primary Run Supply Current .................................... 358 RC Idle Supply Current ............................................ 357 RC Run Supply Current ........................................... 356 Secondary Oscillator Supply Current ....................... 360 Supply Voltage ......................................................... 355 DCFSNZ .......................................................................... 319 DECF ............................................................................... 318 DECFSZ ........................................................................... 319 Development Support ...................................................... 349 Device Differences ........................................................... 397 Device Overview .................................................................. 9 Details on Individual Family Members ....................... 10 Features (table) .......................................................... 11 New Core Features ...................................................... 9 Other Special Features .............................................. 10 © 2007 Microchip Technology Inc. Device Reset Timers ......................................................... 53 Oscillator Start-up Timer (OST) ................................. 53 PLL Lock Time-out .................................................... 53 Power-up Timer (PWRT) ........................................... 53 Time-out Sequence ................................................... 53 DEVID1 Register ............................................................. 291 DEVID2 Register ............................................................. 291 Direct Addressing .............................................................. 81 E ECCPAS Register ............................................................ 173 EECON1 Register ........................................................ 87, 96 Effect on Standard PIC Instructions ................................. 346 Effects of Power Managed Modes on Various Clock Sources ........................................................... 34 Effects of Reset PWM mode .............................................................. 160 Electrical Characteristics ................................................. 353 Enhanced Capture/Compare/PWM (ECCP) .................... 163 Associated Registers ............................................... 181 Capture and Compare Modes ................................. 164 Capture Mode. See Capture (ECCP Module). Enhanced PWM Mode ............................................. 165 Auto-Restart .................................................... 174 Auto-shutdown ................................................ 173 Direction Change in Full-Bridge Output Mode . 171 Full-Bridge Application ..................................... 169 Full-Bridge Mode ............................................. 169 Half-Bridge Application .................................... 168 Half-Bridge Application Examples ................... 175 Half-Bridge Mode ............................................. 168 Output Relationships (Active-High and Active-Low) .............................................. 166 Output Relationships Diagram ......................... 167 Programmable Dead Band Delay .................... 175 Shoot-through Current ..................................... 175 Start-up Considerations ................................... 172 Outputs and Configuration ....................................... 164 Standard PWM Mode .............................................. 164 Timer Resources ..................................................... 164 Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) ............................. 223 Errata ................................................................................... 8 EUSART .......................................................................... 223 Asynchronous Mode ................................................ 225 12-bit Break Transmit and Receive ................. 241 Associated Registers, Receive ........................ 231 Associated Registers, Transmit ....................... 227 Auto-Wake-up on Break .................................. 240 Baud Rate Generator (BRG) ........................... 235 Clock Accuracy ................................................ 232 Receiver .......................................................... 228 Setting up 9-bit Mode with Address Detect ..... 230 Transmitter ...................................................... 225 Baud Rate Generator (BRG) Associated Registers ....................................... 235 Auto Baud Rate Detect .................................... 239 Baud Rate Error, Calculating ........................... 235 Baud Rates, Asynchronous Modes ................. 236 Formulas .......................................................... 235 High Baud Rate Select (BRGH Bit) ................. 235 Clock polarity Synchronous Mode .......................................... 243 Data polarity Asychronous Receive ...................................... 228 Asychronous Transmit ..................................... 225 Advance Information DS41303B-page 407 PIC18F2XK20/4XK20 Synchronous Mode .......................................... 243 Interrupts Asychronous Receive ...................................... 229 Asychronous Transmit ..................................... 225 Synchronous Master Mode .............................. 243, 247 Associated Registers, Receive ........................ 246 Associated Registers, Transmit ............... 244, 247 Reception ......................................................... 245 Transmission .................................................... 243 Synchronous Slave Mode Associated Registers, Receive ........................ 248 Reception ......................................................... 248 Transmission .................................................... 247 Extended Instruction Set ADDFSR .................................................................. 342 ADDULNK ................................................................ 342 and Using MPLAB Tools .......................................... 348 CALLW ..................................................................... 343 Considerations for Use ............................................ 346 MOVSF .................................................................... 343 MOVSS .................................................................... 344 PUSHL ..................................................................... 344 SUBFSR .................................................................. 345 SUBULNK ................................................................ 345 Syntax ...................................................................... 341 F Fail-Safe Clock Monitor .............................................. 38, 283 Fail-Safe Condition Clearing ...................................... 38 Fail-Safe Detection .................................................... 38 Fail-Safe Operation .................................................... 38 Reset or Wake-up from Sleep .................................... 38 Fast Register Stack ............................................................ 66 Firmware Instructions ....................................................... 299 Flash Program Memory ...................................................... 85 Associated Registers ................................................. 93 Control Registers ....................................................... 86 EECON1 and EECON2 ..................................... 86 TABLAT (Table Latch) Register ......................... 88 TBLPTR (Table Pointer) Register ...................... 88 Erase Sequence ........................................................ 90 Erasing ....................................................................... 90 Operation During Code-Protect ................................. 93 Reading ...................................................................... 89 Table Pointer Boundaries Based on Operation ........................ 88 Table Pointer Boundaries .......................................... 88 Table Reads and Table Writes .................................. 85 Write Sequence ......................................................... 91 Writing To ................................................................... 91 Protection Against Spurious Writes ................... 93 Unexpected Termination .................................... 93 Write Verify ........................................................ 93 G General Call Address Support ......................................... 207 GOTO ............................................................................... 320 H Hardware Multiplier ............................................................ 99 Introduction ................................................................ 99 Operation ................................................................... 99 Performance Comparison .......................................... 99 High/Low-Voltage Detect ................................................. 277 Applications .............................................................. 281 Associated Registers ............................................... 281 DS41303B-page 408 Characteristics ......................................................... 366 Current Consumption ............................................... 279 Effects of a Reset .................................................... 281 Operation ................................................................. 278 During Sleep .................................................... 281 Setup ....................................................................... 279 Start-up Time ........................................................... 279 Typical Application ................................................... 281 HLVD. See High/Low-Voltage Detect. ............................. 277 HLVDCON Register ......................................................... 277 I I/O Ports ........................................................................... 115 I2C Mode (MSSP) Acknowledge Sequence Timing .............................. 217 Baud Rate Generator .............................................. 210 Bus Collision During a Repeated Start Condition .................. 221 During a Stop Condition .................................. 222 Clock Arbitration ...................................................... 211 Clock Stretching ....................................................... 203 10-Bit Slave Receive Mode (SEN = 1) ............ 203 10-Bit Slave Transmit Mode ............................ 203 7-Bit Slave Receive Mode (SEN = 1) .............. 203 7-Bit Slave Transmit Mode .............................. 203 Clock Synchronization and the CKP bit (SEN = 1) .. 204 Effects of a Reset .................................................... 218 General Call Address Support ................................. 207 I2C Clock Rate w/BRG ............................................. 210 Master Mode ............................................................ 208 Operation ......................................................... 209 Reception ........................................................ 214 Repeated Start Condition Timing .................... 213 Start Condition Timing ..................................... 212 Transmission ................................................... 214 Multi-Master Communication, Bus Collision and Arbitration ................................................. 218 Multi-Master Mode ................................................... 218 Operation ................................................................. 196 Read/Write Bit Information (R/W Bit) ............... 196, 197 Registers ................................................................. 192 Serial Clock (RC3/SCK/SCL) ................................... 197 Slave Mode .............................................................. 196 Addressing ....................................................... 196 Reception ........................................................ 197 Transmission ................................................... 197 Sleep Operation ....................................................... 218 Stop Condition Timing ............................................. 217 ID Locations ............................................................. 283, 297 INCF ................................................................................ 320 INCFSZ ............................................................................ 321 In-Circuit Debugger .......................................................... 297 In-Circuit Serial Programming (ICSP) ...................... 283, 297 Indexed Literal Offset Addressing and Standard PIC18 Instructions ............................. 346 Indexed Literal Offset Mode ............................................. 346 Indirect Addressing ............................................................ 81 INFSNZ ............................................................................ 321 Initialization Conditions for all Registers ...................... 57–60 Instruction Cycle ................................................................ 67 Clocking Scheme ....................................................... 67 Instruction Flow/Pipelining ................................................. 67 Instruction Set .................................................................. 299 ADDLW .................................................................... 305 ADDWF .................................................................... 305 ADDWF (Indexed Literal Offset Mode) .................... 347 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 ADDWFC ................................................................. 306 ANDLW .................................................................... 306 ANDWF .................................................................... 307 BC ............................................................................ 307 BCF .......................................................................... 308 BN ............................................................................ 308 BNC ......................................................................... 309 BNN ......................................................................... 309 BNOV ....................................................................... 310 BNZ .......................................................................... 310 BOV ......................................................................... 313 BRA .......................................................................... 311 BSF .......................................................................... 311 BSF (Indexed Literal Offset Mode) .......................... 347 BTFSC ..................................................................... 312 BTFSS ..................................................................... 312 BTG .......................................................................... 313 BZ ............................................................................ 314 CALL ........................................................................ 314 CLRF ........................................................................ 315 CLRWDT .................................................................. 315 COMF ...................................................................... 316 CPFSEQ .................................................................. 316 CPFSGT .................................................................. 317 CPFSLT ................................................................... 317 DAW ......................................................................... 318 DCFSNZ .................................................................. 319 DECF ....................................................................... 318 DECFSZ ................................................................... 319 Extended Instruction Set .......................................... 341 General Format ........................................................ 301 GOTO ...................................................................... 320 INCF ......................................................................... 320 INCFSZ .................................................................... 321 INFSNZ .................................................................... 321 IORLW ..................................................................... 322 IORWF ..................................................................... 322 LFSR ........................................................................ 323 MOVF ....................................................................... 323 MOVFF .................................................................... 324 MOVLB .................................................................... 324 MOVLW ................................................................... 325 MOVWF ................................................................... 325 MULLW .................................................................... 326 MULWF .................................................................... 326 NEGF ....................................................................... 327 NOP ......................................................................... 327 Opcode Field Descriptions ....................................... 300 POP ......................................................................... 328 PUSH ....................................................................... 328 RCALL ..................................................................... 329 RESET ..................................................................... 329 RETFIE .................................................................... 330 RETLW .................................................................... 330 RETURN .................................................................. 331 RLCF ........................................................................ 331 RLNCF ..................................................................... 332 RRCF ....................................................................... 332 RRNCF .................................................................... 333 SETF ........................................................................ 333 SETF (Indexed Literal Offset Mode) ........................ 347 SLEEP ..................................................................... 334 SUBFWB .................................................................. 334 SUBLW .................................................................... 335 SUBWF .................................................................... 335 © 2007 Microchip Technology Inc. SUBWFB ................................................................. 336 SWAPF .................................................................... 336 TBLRD ..................................................................... 337 TBLWT .................................................................... 338 TSTFSZ ................................................................... 339 XORLW ................................................................... 339 XORWF ................................................................... 340 INTCON Register ............................................................. 103 INTCON Registers ................................................... 103–105 INTCON2 Register ........................................................... 104 INTCON3 Register ........................................................... 105 Inter-Integrated Circuit. See I2C. Internal Oscillator Block HFINTOSC Frequency Drift ....................................... 32 PLL in HFINTOSC Modes ......................................... 33 Internal RC Oscillator Use with WDT .......................................................... 292 Internal Sampling Switch (RSS) IMPEDANCE ..................... 259 Internet Address .............................................................. 409 Interrupt Sources ............................................................. 283 ADC ......................................................................... 251 Capture Complete (CCP) ........................................ 153 Compare Complete (CCP) ...................................... 155 Interrupt-on-Change (RB7:RB4) .............................. 118 INTn Pin ................................................................... 113 PORTB, Interrupt-on-Change .................................. 113 TMR0 ....................................................................... 113 TMR0 Overflow ........................................................ 137 TMR1 Overflow ........................................................ 139 TMR3 Overflow ................................................ 147, 149 Interrupts ......................................................................... 101 IORLW ............................................................................. 322 IORWF ............................................................................. 322 IPR Registers ................................................................... 110 IPR1 Register .................................................................. 110 IPR2 Register .................................................................. 111 L LFSR ............................................................................... 323 Low-Voltage ICSP Programming. See Single-Supply ICSP Programming M Master Clear (MCLR) ......................................................... 51 Master Synchronous Serial Port (MSSP). See MSSP. Memory Organization ........................................................ 63 Data Memory ............................................................. 69 Program Memory ....................................................... 63 Microchip Internet Web Site ............................................. 409 MOVF .............................................................................. 323 MOVFF ............................................................................ 324 MOVLB ............................................................................ 324 MOVLW ........................................................................... 325 MOVSF ............................................................................ 343 MOVSS ............................................................................ 344 MOVWF ........................................................................... 325 MPLAB ASM30 Assembler, Linker, Librarian .................. 350 MPLAB ICD 2 In-Circuit Debugger .................................. 351 MPLAB ICE 2000 High-Performance Universal In-Circuit Emulator ................................................... 351 MPLAB ICE 4000 High-Performance Universal In-Circuit Emulator ................................................... 351 MPLAB Integrated Development Environment Software . 349 MPLAB PM3 Device Programmer ................................... 351 MPLINK Object Linker/MPLIB Object Librarian ............... 350 MSSP Advance Information DS41303B-page 409 PIC18F2XK20/4XK20 ACK Pulse ........................................................ 196, 197 Control Registers (general) ...................................... 183 I2C Mode. See I2C Mode. Module Overview ..................................................... 183 SPI Master/Slave Connection .................................. 187 SPI Mode. See SPI Mode. SSPBUF Register .................................................... 188 SSPSR Register ...................................................... 188 MULLW ............................................................................ 326 MULWF ............................................................................ 326 N NEGF ............................................................................... 327 NOP ................................................................................. 327 O OSCCON Register ............................................................. 27 Oscillator Configuration EC .............................................................................. 25 ECIO .......................................................................... 25 HS .............................................................................. 25 HSPLL ........................................................................ 25 INTOSC ..................................................................... 25 INTOSCIO .................................................................. 25 LP ............................................................................... 25 RC .............................................................................. 25 RCIO .......................................................................... 25 XT .............................................................................. 25 Oscillator Module ............................................................... 25 HFINTOSC ................................................................. 25 LFINTOSC ................................................................. 25 Oscillator Selection .......................................................... 283 Oscillator Start-up Timer (OST) ................................... 34, 53 Oscillator Switching Fail-Safe Clock Monitor .............................................. 38 Two-Speed Clock Start-up ......................................... 35 Oscillator Transitions .......................................................... 26 Oscillator, Timer1 ..................................................... 139, 149 Oscillator, Timer3 ............................................................. 147 OSCTUNE Register ........................................................... 31 P P1A/P1B/P1C/P1D.See Enhanced Capture/Compare/PWM (ECCP) ............................. 165 Packaging Information ..................................................... 389 Marking .................................................................... 389 Parallel Slave Port (PSP) ......................................... 124, 133 Associated Registers ............................................... 134 CS (Chip Select) ...................................................... 133 PORTD .................................................................... 133 RD (Read Input) ....................................................... 133 Select (PSPMODE Bit) .................................... 124, 133 WR (Write Input) ...................................................... 133 PICSTART Plus Development Programmer .................... 352 PIE Registers ................................................................... 108 PIE1 Register ................................................................... 108 PIE2 Register ................................................................... 109 Pin Functions MCLR/VPP/RE3 .................................................... 14, 18 OSC1/CLKI/RA7 .................................................. 14, 18 OSC2/CLKO/RA6 ................................................ 14, 18 RA0/AN0/C12IN0- ................................................ 15, 19 RA1/AN1/C12IN0- ...................................................... 19 RA1/AN1/C12IN1- ...................................................... 15 RA2/AN2/VREF-/CVREF/C2IN+ ............................. 15, 19 RA3/AN3/VREF+/C1IN+ ........................................ 15, 19 DS41303B-page 410 RA4/T0CKI/C1OUT ............................................. 15, 19 RA5/AN4/SS/HLVDIN/C2OUT ............................. 15, 19 RB0/INT0/FLT0/AN12 .......................................... 16, 20 RB1/INT1/AN10/C12IN2- ........................................... 20 RB1/INT1/AN10/P1C/C12IN2- ................................... 16 RB2/INT2/AN8 ........................................................... 20 RB2/INT2/AN8/P1B ................................................... 16 RB3/AN9/CCP2/C12IN3- ..................................... 16, 20 RB4/KBI0/AN11 ......................................................... 20 RB4/KBI0/AN11/P1D ................................................. 16 RB5/KBI1/PGM .................................................... 16, 20 RB6/KBI2/PGC .................................................... 16, 20 RB7/KBI3/PGD .................................................... 16, 20 RC0/T1OSO/T13CKI ........................................... 17, 21 RC1/T1OSI/CCP2 ................................................ 17, 21 RC2/CCP1/P1A ................................................... 17, 21 RC3/SCK/SCL ..................................................... 17, 21 RC4/SDI/SDA ...................................................... 17, 21 RC5/SDO ............................................................. 17, 21 RC6/TX/CK .......................................................... 17, 21 RC7/RX/DT .......................................................... 17, 21 RD0/PSP0 ................................................................. 22 RD1/PSP1 ................................................................. 22 RD2/PSP2 ................................................................. 22 RD3/PSP3 ................................................................. 22 RD4/PSP4 ................................................................. 22 RD5/PSP5/P1B ......................................................... 22 RD6/PSP6/P1C ......................................................... 22 RD7/PSP7/P1D ......................................................... 22 RE0/RD/AN5 .............................................................. 23 RE1/WR/AN6 ............................................................. 23 RE2/CS/AN7 .............................................................. 23 VDD ...................................................................... 17, 23 VSS ...................................................................... 17, 23 Pinout I/O Descriptions PIC18F2XK20 ............................................................ 14 PIC18F4XK20 ............................................................ 18 PIR Registers ................................................................... 106 PIR1 Register .................................................................. 106 PIR2 Register .................................................................. 107 PLL Frequency Multiplier ................................................... 33 HSPLL Oscillator Mode ............................................. 33 POP ................................................................................. 328 POR. See Power-on Reset. PORTA Associated Registers ............................................... 117 LATA Register ......................................................... 115 PORTA Register ...................................................... 115 TRISA Register ........................................................ 115 PORTB Associated Registers ............................................... 120 LATB Register ......................................................... 118 PORTB Register ...................................................... 118 TRISB Register ........................................................ 118 PORTC Associated Registers ............................................... 123 LATC Register ......................................................... 121 PORTC Register ...................................................... 121 RC3/SCK/SCL Pin ................................................... 197 TRISC Register ........................................................ 121 PORTD Associated Registers ............................................... 126 LATD Register ......................................................... 124 Parallel Slave Port (PSP) Function .......................... 124 PORTD Register ...................................................... 124 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 TRISD Register ........................................................ 124 PORTE Associated Registers ............................................... 129 LATE Register .......................................................... 127 PORTE Register ...................................................... 127 PSP Mode Select (PSPMODE Bit) .......................... 124 TRISE Register ........................................................ 127 Power Managed Modes ..................................................... 41 and A/D Operation ................................................... 253 and PWM Operation ................................................ 180 and SPI Operation ................................................... 191 Clock Transitions and Status Indicators ..................... 42 Effects on Clock Sources ........................................... 34 Entering ...................................................................... 41 Exiting Idle and Sleep Modes .................................... 46 by Interrupt ......................................................... 46 by Reset ............................................................. 46 by WDT Time-out ............................................... 46 Without a Start-up Delay .................................... 47 Idle Modes ................................................................. 43 PRI_IDLE ........................................................... 45 RC_IDLE ............................................................ 46 SEC_IDLE ......................................................... 45 Multiple Sleep Functions ............................................ 42 Run Modes ................................................................. 42 PRI_RUN ........................................................... 42 RC_RUN ............................................................ 43 SEC_RUN .......................................................... 42 Selecting .................................................................... 41 Sleep Mode ................................................................ 43 Summary (table) ........................................................ 41 Power-on Reset (POR) ...................................................... 51 Power-up Timer (PWRT) ........................................... 53 Time-out Sequence .................................................... 53 Power-up Delays ................................................................ 34 Power-up Timer (PWRT) ................................................... 34 Prescaler, Timer0 ............................................................. 137 PRI_IDLE Mode ................................................................. 45 PRI_RUN Mode ................................................................. 42 Program Counter ............................................................... 64 PCL, PCH and PCU Registers ................................... 64 PCLATH and PCLATU Registers .............................. 64 Program Memory and Extended Instruction Set ..................................... 84 Code Protection ....................................................... 295 Instructions ................................................................. 68 Two-Word .......................................................... 68 Interrupt Vector .......................................................... 63 Look-up Tables .......................................................... 66 Map and Stack (diagram) ........................................... 63 Reset Vector .............................................................. 63 Program Verification and Code Protection ....................... 294 Associated Registers ............................................... 294 Programming, Device Instructions ................................... 299 PSP. See Parallel Slave Port. PSTRCON Register ......................................................... 177 Pulse Steering .................................................................. 177 PUSH ............................................................................... 328 PUSH and POP Instructions .............................................. 65 PUSHL ............................................................................. 344 PWM (CCP Module) Associated Registers ............................................... 161 PWM (ECCP Module) Effects of a Reset ..................................................... 180 Operation in Power Managed Modes ...................... 180 © 2007 Microchip Technology Inc. Operation with Fail-Safe Clock Monitor ................... 180 Pulse Steering ......................................................... 177 Steering Synchronization ......................................... 179 PWM Mode. See Enhanced Capture/Compare/PWM ..... 165 PWM1CON Register ........................................................ 176 R RAM. See Data Memory. RC_IDLE Mode .................................................................. 46 RC_RUN Mode .................................................................. 43 RCALL ............................................................................. 329 RCON Register .......................................................... 50, 112 Bit Status During Initialization .................................... 56 RCREG ............................................................................ 230 RCSTA Register .............................................................. 233 Reader Response ............................................................ 410 Register RCREG Register ..................................................... 239 Register File ....................................................................... 74 Register File Summary ................................................ 76–78 Registers ADCON0 (ADC Control 0) ....................................... 255 ADCON1 (ADC Control 1) ............................... 256, 257 ADRESH (ADC Result High) with ADFM = 0) ......... 258 ADRESH (ADC Result High) with ADFM = 1) ......... 258 ADRESL (ADC Result Low) with ADFM = 0) ........... 258 ADRESL (ADC Result Low) with ADFM = 1) ........... 258 ANSEL (Analog Select 1) ........................................ 130 ANSEL (PORT Analog Control) ............................... 130 ANSELH (Analog Select 2) ...................................... 131 ANSELH (PORT Analog Control) ............................ 131 BAUDCTL (Baud Rate Control) ............................... 234 BAUDCTL (EUSART Baud Rate Control) ............... 234 CCP1CON (Enhanced Capture/Compare/PWM Control) ............................................................ 163 CCP2CON (Standard Capture/Compare/ PWM Control) .................................................. 151 CM1CON0 (C1 Control) .......................................... 268 CM2CON0 (C2 Control) .......................................... 269 CM2CON1 (C2 Control) .......................................... 271 CONFIG1H (Configuration 1 High) .......................... 285 CONFIG2H (Configuration 2 High) .......................... 286 CONFIG2L (Configuration 2 Low) ........................... 286 CONFIG3H (Configuration 3 High) .......................... 287 CONFIG4L (Configuration 4 Low) ........................... 287 CONFIG5H (Configuration 5 High) .......................... 288 CONFIG5L (Configuration 5 Low) ........................... 288 CONFIG6H (Configuration 6 High) .......................... 289 CONFIG6L (Configuration 6 Low) ........................... 289 CONFIG7H (Configuration 7 High) .......................... 290 CONFIG7L (Configuration 7 Low) ........................... 290 CVRCON (Comparator Voltage Reference Control) CVRCON Register ........................................... 275 CVRCON2 (Comparator Voltage Reference Control 2) CVRCON2 Register ......................................... 276 DEVID1 (Device ID 1) .............................................. 291 DEVID2 (Device ID 2) .............................................. 291 ECCPAS (Enhanced CCP Auto-shutdown Control) 173 EECON1 (Data EEPROM Control 1) ................... 87, 96 HLVDCON (High/Low-Voltage Detect Control) ....... 277 INTCON (Interrupt Control) ..................................... 103 INTCON2 (Interrupt Control 2) ................................ 104 INTCON3 (Interrupt Control 3) ................................ 105 IPR1 (Peripheral Interrupt Priority 1) ....................... 110 IPR2 (Peripheral Interrupt Priority 2) ....................... 111 OSCCON (Oscillator Control) .................................... 27 Advance Information DS41303B-page 411 PIC18F2XK20/4XK20 OSCTUNE (Oscillator Tuning) ................................... 31 PIE1 (Peripheral Interrupt Enable 1) ........................ 108 PIE2 (Peripheral Interrupt Enable 2) ........................ 109 PIR1 (Peripheral Interrupt Request 1) ..................... 106 PIR2 (Peripheral Interrupt Request 2) ..................... 107 PSTRCON (Pulse Steering Control) ........................ 177 PWM1CON (Enhanced PWM Control) .................... 176 RCON (Reset Control) ....................................... 50, 112 RCON (Reset control) .............................................. 112 RCSTA (Receive Status and Control) ...................... 233 SLRCON (PORT Slew Rate Control) ....................... 132 SSPCON1 (MSSP Control 1, I2C Mode) ................. 194 SSPCON1 (MSSP Control 1, SPI Mode) ................. 185 SSPCON2 (MSSP Control 2, I2C Mode) ................. 195 SSPMSK (SSP Mask) .............................................. 202 SSPSTAT (MSSP Status, SPI Mode) .............. 184, 193 STATUS ..................................................................... 79 STKPTR (Stack Pointer) ............................................ 65 T0CON (Timer0 Control) .......................................... 135 T1CON (Timer1 Control) .......................................... 139 T2CON (Timer2 Control) .......................................... 145 T3CON (Timer3 Control) .......................................... 147 TRISE (PORTE/PSP Control) .................................. 128 TXSTA (Transmit Status and Control) ..................... 232 WDTCON (Watchdog Timer Control) ....................... 293 RESET ............................................................................. 329 Reset State of Registers .................................................... 56 Resets ........................................................................ 49, 283 Brown-out Reset (BOR) ........................................... 283 Oscillator Start-up Timer (OST) ............................... 283 Power-on Reset (POR) ............................................ 283 Power-up Timer (PWRT) ......................................... 283 RETFIE ............................................................................ 330 RETLW ............................................................................. 330 RETURN .......................................................................... 331 Return Address Stack ........................................................ 64 Return Stack Pointer (STKPTR) ........................................ 65 Revision History ............................................................... 397 RLCF ................................................................................ 331 RLNCF ............................................................................. 332 RRCF ............................................................................... 332 RRNCF ............................................................................. 333 Special Event Trigger ...................................................... 253 Special Event Trigger. See Compare (ECCP Mode). Special Event Trigger. See Compare (ECCP Module). Special Features of the CPU ........................................... 283 Special Function Registers ................................................ 74 Map ............................................................................ 75 SPI Mode (MSSP) Associated Registers ............................................... 191 Bus Mode Compatibility ........................................... 191 Effects of a Reset .................................................... 191 Enabling SPI I/O ...................................................... 187 Master Mode ............................................................ 188 Master/Slave Connection ......................................... 187 Operation ................................................................. 186 Operation in Power Managed Modes ...................... 191 Serial Clock .............................................................. 183 Serial Data In ........................................................... 183 Serial Data Out ........................................................ 183 Slave Mode .............................................................. 189 Slave Select ............................................................. 183 Slave Select Synchronization .................................. 189 SPI Clock ................................................................. 188 Typical Connection .................................................. 187 SS .................................................................................... 183 SSPCON1 Register ................................................. 185, 194 SSPCON2 Register ......................................................... 195 SSPMSK Register ........................................................... 202 SSPOV ............................................................................ 214 SSPOV Status Flag ......................................................... 214 SSPSTAT Register .................................................. 184, 193 R/W Bit ............................................................ 196, 197 Stack Full/Underflow Resets .............................................. 66 Standard Instructions ....................................................... 299 STATUS Register .............................................................. 79 STKPTR Register .............................................................. 65 SUBFSR .......................................................................... 345 SUBFWB ......................................................................... 334 SUBLW ............................................................................ 335 SUBULNK ........................................................................ 345 SUBWF ............................................................................ 335 SUBWFB ......................................................................... 336 SWAPF ............................................................................ 336 S T SCK .................................................................................. 183 SDI ................................................................................... 183 SDO ................................................................................. 183 SEC_IDLE Mode ................................................................ 45 SEC_RUN Mode ................................................................ 42 Serial Clock, SCK ............................................................. 183 Serial Data In (SDI) .......................................................... 183 Serial Data Out (SDO) ..................................................... 183 Serial Peripheral Interface. See SPI Mode. SETF ................................................................................ 333 Shoot-through Current ..................................................... 175 Single-Supply ICSP Programming. Slave Select (SS) ............................................................. 183 Slave Select Synchronization ........................................... 189 SLEEP .............................................................................. 334 Sleep OSC1 and OSC2 Pin States ...................................... 34 Sleep Mode ........................................................................ 43 SLRCON Register ............................................................ 132 Software Simulator (MPLAB SIM) .................................... 350 SPBRG ............................................................................. 235 SPBRGH .......................................................................... 235 T0CON Register .............................................................. 135 T1CON Register .............................................................. 139 T2CON Register .............................................................. 145 T3CON Register .............................................................. 147 Table Pointer Operations (table) ........................................ 88 Table Reads/Table Writes ................................................. 66 TBLRD ............................................................................. 337 TBLWT ............................................................................. 338 Time-out in Various Situations (table) ................................ 53 Timer0 .............................................................................. 135 Associated Registers ............................................... 137 Operation ................................................................. 136 Overflow Interrupt .................................................... 137 Prescaler ................................................................. 137 Prescaler Assignment (PSA Bit) .............................. 137 Prescaler Select (T0PS2:T0PS0 Bits) ..................... 137 Prescaler. See Prescaler, Timer0. Reads and Writes in 16-Bit Mode ............................ 136 Source Edge Select (T0SE Bit) ............................... 136 Source Select (T0CS Bit) ......................................... 136 Switching Prescaler Assignment ............................. 137 DS41303B-page 412 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 Timer1 .............................................................................. 139 16-Bit Read/Write Mode ........................................... 141 Associated Registers ............................................... 144 Interrupt .................................................................... 142 Operation ................................................................. 140 Oscillator .......................................................... 139, 141 Oscillator Layout Considerations ............................. 142 Overflow Interrupt .................................................... 139 Resetting, Using the CCP Special Event Trigger ..... 142 Special Event Trigger (ECCP) ................................. 164 TMR1H Register ...................................................... 139 TMR1L Register ....................................................... 139 Use as a Real-Time Clock ....................................... 143 Timer2 .............................................................................. 145 Associated Registers ............................................... 146 Interrupt .................................................................... 146 Operation ................................................................. 145 Output ...................................................................... 146 Timer3 .............................................................................. 147 16-Bit Read/Write Mode ........................................... 149 Associated Registers ............................................... 150 Operation ................................................................. 148 Oscillator .......................................................... 147, 149 Overflow Interrupt ............................................ 147, 149 Special Event Trigger (CCP) .................................... 150 TMR3H Register ...................................................... 147 TMR3L Register ....................................................... 147 Timing Diagrams A/D Conversion ........................................................ 385 Acknowledge Sequence .......................................... 217 Asynchronous Reception ......................................... 230 Asynchronous Transmission .................................... 226 Asynchronous Transmission (Back to Back) ........... 227 Auto Wake-up Bit (WUE) During Normal Operation 240 Auto Wake-up Bit (WUE) During Sleep ................... 241 Automatic Baud Rate Calculator .............................. 239 Baud Rate Generator with Clock Arbitration ............ 211 BRG Reset Due to SDA Arbitration During Start Condition ................................................. 220 Brown-out Reset (BOR) ........................................... 372 Bus Collision During a Repeated Start Condition (Case 1) ........................................... 221 Bus Collision During a Repeated Start Condition (Case 2) ........................................... 221 Bus Collision During a Start Condition (SCL = 0) .... 220 Bus Collision During a Stop Condition (Case 1) ...... 222 Bus Collision During a Stop Condition (Case 2) ...... 222 Bus Collision During Start Condition (SDA only) ..... 219 Bus Collision for Transmit and Acknowledge ........... 218 Capture/Compare/PWM (CCP) ................................ 373 CLKO and I/O .......................................................... 370 Clock Synchronization ............................................. 204 Clock/Instruction Cycle .............................................. 67 Comparator Output .................................................. 263 Example SPI Master Mode (CKE = 0) ..................... 375 Example SPI Master Mode (CKE = 1) ..................... 376 Example SPI Slave Mode (CKE = 0) ....................... 377 Example SPI Slave Mode (CKE = 1) ....................... 378 External Clock (All Modes except PLL) .................... 369 Fail-Safe Clock Monitor (FSCM) ................................ 39 First Start Bit Timing ................................................ 212 Full-Bridge PWM Output .......................................... 170 Half-Bridge PWM Output ................................. 168, 175 High/Low-Voltage Detect Characteristics ................ 366 © 2007 Microchip Technology Inc. High/Low-Voltage Detect Operation (VDIRMAG = 0) ............................................... 279 High/Low-Voltage Detect Operation (VDIRMAG = 1) ............................................... 280 I2C Bus Data ............................................................ 379 I2C Bus Start/Stop Bits ............................................ 379 I2C Master Mode (7 or 10-Bit Transmission) ........... 215 I2C Master Mode (7-Bit Reception) ......................... 216 I2C Slave Mode (10-Bit Reception, SEN = 0) .......... 200 I2C Slave Mode (10-Bit Reception, SEN = 1) .......... 206 I2C Slave Mode (10-Bit Transmission) .................... 201 I2C Slave Mode (7-bit Reception, SEN = 0) ............ 198 I2C Slave Mode (7-Bit Reception, SEN = 1) ............ 205 I2C Slave Mode (7-Bit Transmission) ...................... 199 I2C Slave Mode General Call Address Sequence (7 or 10-Bit Address Mode) ............ 207 I2C Stop Condition Receive or Transmit Mode ........ 217 Internal Oscillator Switch Timing ............................... 37 Master SSP I2C Bus Data ....................................... 381 Master SSP I2C Bus Start/Stop Bits ........................ 381 Parallel Slave Port (PIC18F4XK20) ......................... 374 Parallel Slave Port (PSP) Read ............................... 134 Parallel Slave Port (PSP) Write ............................... 134 PWM Auto-shutdown Auto-restart Enabled ........................................ 174 Firmware Restart ............................................. 174 PWM Direction Change ........................................... 171 PWM Direction Change at Near 100% Duty Cycle .. 172 PWM Output (Active-High) ...................................... 166 PWM Output (Active-Low) ....................................... 167 Repeat Start Condition ............................................ 213 Reset, Watchdog Timer (WDT), Oscillator Start-up Timer (OST), Power-up Timer (PWRT) ........... 371 Send Break Character Sequence ............................ 242 Slave Synchronization ............................................. 189 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) ............................................ 55 SPI Mode (Master Mode) ........................................ 188 SPI Mode (Slave Mode, CKE = 0) ........................... 190 SPI Mode (Slave Mode, CKE = 1) ........................... 190 Synchronous Reception (Master Mode, SREN) ...... 246 Synchronous Transmission ..................................... 244 Synchronous Transmission (Through TXEN) .......... 244 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) .......................................... 55 Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 1) ................................... 54 Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 2) ................................... 54 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise < TPWRT) ....................... 54 Timer0 and Timer1 External Clock .......................... 372 Transition for Entry to Sleep Mode ............................ 44 Transition for Wake from Sleep (HSPLL) .................. 44 Transition Timing for Entry to Idle Mode .................... 45 Transition Timing for Wake from Idle to Run Mode ... 45 USART Synchronous Receive (Master/Slave) ........ 383 USART Synchronous Transmission (Master/Slave) 383 Timing Diagrams and Specifications ............................... 369 A/D Conversion Requirements ................................ 385 Capture/Compare/PWM Requirements ................... 374 CLKO and I/O Requirements ................................... 371 Example SPI Mode Requirements (Master Mode, CKE = 0) .................................. 375 (Master Mode, CKE = 1) .................................. 376 Advance Information DS41303B-page 413 PIC18F2XK20/4XK20 (Slave Mode, CKE = 0) .................................... 377 (Slave Mode, CKE = 1) .................................... 378 External Clock Requirements .................................. 369 I2C Bus Data Requirements (Slave Mode) .............. 380 I2C Bus Start/Stop Bits Requirements (Slave Mode) ..... 379 Master SSP I2C Bus Data Requirements ................ 382 Master SSP I2C Bus Start/Stop Bits Requirements . 381 Parallel Slave Port Requirements (PIC18F4X20) .... 374 PLL Clock ................................................................. 370 Reset, Watchdog Timer, Oscillator Start-up Timer, Power-up Timer and Brown-out Reset Requirements ................................................... 372 Timer0 and Timer1 External Clock Requirements ... 373 USART Synchronous Receive Requirements ......... 383 USART Synchronous Transmission Requirements . 383 Top-of-Stack Access .......................................................... 64 TRISE Register ................................................................ 128 PSPMODE Bit .......................................................... 124 TSTFSZ ............................................................................ 339 Two-Speed Clock Start-up Mode ....................................... 35 Two-Speed Start-up ......................................................... 283 Two-Word Instructions Example Cases .......................................................... 68 TXREG ............................................................................. 225 TXSTA Register ............................................................... 232 BRGH Bit ................................................................. 235 W Wake-up on Break ........................................................... 240 Watchdog Timer (WDT) ........................................... 283, 292 Associated Registers ............................................... 293 Control Register ....................................................... 293 Programming Considerations .................................. 292 WCOL ...................................................... 212, 213, 214, 217 WCOL Status Flag ................................... 212, 213, 214, 217 WDTCON Register .......................................................... 293 WWW Address ................................................................ 409 WWW, On-Line Support ...................................................... 8 X XORLW ............................................................................ 339 XORWF ........................................................................... 340 V Voltage Reference. See Comparator Voltage Reference (CVREF) Voltage References Fixed Voltage Reference (FVR) ............................... 274 VR Stabilization ........................................................ 274 VREF. SEE ADC Reference Voltage DS41303B-page 414 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 THE MICROCHIP WEB SITE CUSTOMER SUPPORT Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information: Users of Microchip products can receive assistance through several channels: • Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software • General Technical Support – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing • Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives • • • • • Distributor or Representative Local Sales Office Field Application Engineer (FAE) Technical Support Development Systems Information Line Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document. Technical support is available through the web site at: http://support.microchip.com CUSTOMER CHANGE NOTIFICATION SERVICE Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest. To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions. © 2007 Microchip Technology Inc. Advance Information DS41303B-page 415 PIC18F2XK20/4XK20 READER RESPONSE It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150. Please list the following information, and use this outline to provide us with your comments about this document. To: Technical Publications Manager RE: Reader Response Total Pages Sent ________ From: Name Company Address City / State / ZIP / Country Telephone: (_______) _________ - _________ FAX: (______) _________ - _________ Application (optional): Would you like a reply? Y Device: PIC18F2XK20/4XK20 N Literature Number: DS41303B Questions: 1. What are the best features of this document? 2. How does this document meet your hardware and software development needs? 3. Do you find the organization of this document easy to follow? If not, why? 4. What additions to the document do you think would enhance the structure and subject? 5. What deletions from the document could be made without affecting the overall usefulness? 6. Is there any incorrect or misleading information (what and where)? 7. How would you improve this document? DS41303B-page 416 Advance Information © 2007 Microchip Technology Inc. PIC18F2XK20/4XK20 PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. PART NO. X /XX XXX Device Temperature Range Package Pattern Examples: a) b) Device: PIC18F23K20(1), PIC18F24K20(1), PIC18F25K20(1), PIC18F26K20(1), PIC18F43K20(1), PIC18F44K20(1), PIC18F45K20(1), PIC18F46K20(1) Temperature Range: E Package: ML P PT SO SP SS Pattern: = -40°C to +125°C = = = = = = c) PIC18F45K20-E/P 301 = Extended temp., PDIP package, Extended VDD limits, QTP pattern #301. PIC18F23K20-E/SO = Extended temp., SOIC package. PIC18F44K20-E/P = Extended temp., PDIP package. (Extended) QFN PDIP TQFP (Thin Quad Flatpack) SOIC Skinny Plastic DIP SSOP Note 1: T = in tape and reel PLCC, and TQFP packages only. QTP, SQTP, Code or Special Requirements (blank otherwise) © 2007 Microchip Technology Inc. Advance Information DS41303B-page 417 WORLDWIDE SALES AND SERVICE AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Habour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 India - Bangalore Tel: 91-80-4182-8400 Fax: 91-80-4182-8422 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260 Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445 Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104 China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 Korea - Gumi Tel: 82-54-473-4301 Fax: 82-54-473-4302 China - Fuzhou Tel: 86-591-8750-3506 Fax: 86-591-8750-3521 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431 Malaysia - Penang Tel: 60-4-646-8870 Fax: 60-4-646-5086 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459 China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760 Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803 China - Shunde Tel: 86-757-2839-5507 Fax: 86-757-2839-5571 Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102 China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820 China - Xian Tel: 86-29-8833-7250 Fax: 86-29-8833-7256 12/08/06 DS41303B-page 418 Advance Information © 2007 Microchip Technology Inc.