ICs for Communications Analog Line Interface Solution ALIS PSB 4595 Version 2.1 PSB 4596 Version 2.1 Data Sheet 06.98 DS 1 ALIS Revision History: Current Version: 06.98 Previous Version: Page Page (in previous (in new Version) Version) Subjects (major changes since last revision) Edition 06.98 This edition was realized using the software system FrameMaker. Published by Siemens AG, HL AT © Siemens AG 1998. All Rights Reserved. Attention please! As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes and circuits implemented within components or assemblies. The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Germany or the Siemens Companies and Representatives worldwide (see address list). Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Siemens Office, Semiconductor Group. Siemens AG is an approved CECC manufacturer. Packing Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred. Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components1 of the Semiconductor Group of Siemens AG, may only be used in life-support devices or systems2 with the express written approval of the Semiconductor Group of Siemens AG. 1 A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system. 2 Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered. PSB 4595 / PSB 4596 Analog Line Interface Solution Table of Contents Page 1 1.1 1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 2 2.1 2.2 2.3 Pin Definition and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Pin Definition of ALIS-A PSB 4595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Pin Definition of ALIS-D PSB 4596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 3 3.1 3.2 3.3 3.4 3.5 System Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 ALIS with DSP-based Modem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 ALIS with Software Modem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Hybrid Modem (ISDN plus Analog) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Modem with Speakerphone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Analog Videophone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 4 4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.3 4.3.1 4.3.2 4.3.3 4.3.3.1 ALIS Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 ALIS Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 ALIS AC Signal Flow Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Receive Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Transmit Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Test Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 ALIS Ring and Caller ID Signal Flow Graph . . . . . . . . . . . . . . . . . . . . . . . . .23 Caller ID (CID) Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 Ring-Level Metering (RLM) Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 Test Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 5 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.3.1 5.2.3.2 5.3 5.3.1 5.3.2 5.4 5.5 Configuration Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 Connection to the Telephone Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 Host Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 The µ-Controller Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 The Data Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Interface Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Demux Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Multiplex Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 External clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 Crystal clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Capacitor Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Caller ID Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 6 Programming ALIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Semiconductor Group 3 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Table of Contents Page 6.1 6.1.1 6.2 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.3.7 6.3.8 6.4 6.5 6.6 6.6.1 6.6.2 Types of Commands and Data Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Storage of Programming Information: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 SOP Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 CR0 Configuration Register 0 (Filters) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 CR1 Configuration Register 1 (Dialing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 CR2 Configuration Register 2 (Caller ID) . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 CR3 Configuration Register 3 (Test Loops) . . . . . . . . . . . . . . . . . . . . . . . . . .42 CR4 Configuration Register 4 (Analog Gain) . . . . . . . . . . . . . . . . . . . . . . . . .43 CR5 Configuration Register 5 (Version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 XOP Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 XR0 Extended Register 0 (Interrupt Register) . . . . . . . . . . . . . . . . . . . . . . . .44 XR1 Extended Register 1 (Interrupt Enable Register) . . . . . . . . . . . . . . . . . .46 XR2 Extended Register 2 (Cadence Time Out) . . . . . . . . . . . . . . . . . . . . . . .47 XR3 Extended Register 3 (DC Characteristic) . . . . . . . . . . . . . . . . . . . . . . . .47 XR4 Extended Register 4 (Cadence) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 XR5 Extended Register 5 (Ring Timer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 XR6 Extended Register 6 (Power State) . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 XR7 Extended Register 7 (Vdd) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50 COP Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50 CAO Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 CR Registers: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 XR Registers: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 7 7.1 7.1.1 7.1.2 7.2 7.2.1 7.2.2 7.3 7.3.1 7.3.2 7.4 7.4.1 7.4.2 7.5 ALIS Command Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 SOP Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 SOP - Write Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 SOP - Read Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54 XOP Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 XOP - Write Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 XOP - Read Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 COP Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 COP - Write Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 COP - Read Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 CAO Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58 CAO - Write Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58 CAO - Read Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58 Example of a Mixed Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 8 8.1 8.1.1 8.1.2 Interrupt Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 Nature and Sources of Interrupts: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 Interrupt Indication at Signal Change: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 Interrupt Indication at Event: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 Semiconductor Group 4 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Table of Contents Page 8.1.3 Interrupt Indication at High Level: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 9 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.8.1 9.8.2 9.8.3 9.8.4 9.8.5 9.8.6 9.8.7 9.8.8 9.8.9 9.8.10 9.8.11 Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 Reset (Basic Settings Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 Deep Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 Ringing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 Conversation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 Pulse Dialing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 Operating Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 Flow of Ring Sequence and Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 Successful Ring Sequence, Auto Ring Enabled, no Caller ID . . . . . . . . . . . .67 Successful Ring Sequence, Auto Ring Enabled, Caller ID . . . . . . . . . . . . . .68 Unsuccessful Ring Sequence, Auto Ring Enabled, no Caller ID . . . . . . . . . .69 Unsuccessful Ring Sequence, Auto Ring Enabled, Caller ID . . . . . . . . . . . .70 Successful Ring Sequence, Auto Ring Disabled, No Caller ID . . . . . . . . . . .71 Successful Ring Sequence, Auto Ring Disabled, Caller ID . . . . . . . . . . . . . .72 Unsuccessful Ring Sequence, Auto Ring Disabled, no Caller ID . . . . . . . . .73 Unsuccessful Ring Sequence, Auto Ring Disabled, Caller ID . . . . . . . . . . . .74 Unsuccessful Ring Sequence, Auto Ring Enabled . . . . . . . . . . . . . . . . . . . .75 Unsuccessful Ring Sequence, Auto Ring Disabled . . . . . . . . . . . . . . . . . . . .76 Start from Deep Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 10 10.1 10.2 10.2.1 10.3 10.3.1 10.3.2 10.3.3 10.4 10.5 10.5.1 10.5.2 10.5.3 Modem Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78 Pulse Dialing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78 DTMF Dialing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78 Programming the ALIS DTMF Tone Generators . . . . . . . . . . . . . . . . . . . . . .78 Caller ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 Characteristics for Caller ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 Storage and Reading of Caller ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80 Programming the ALIS Caller ID Coefficients . . . . . . . . . . . . . . . . . . . . . . . .81 Billing Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 Ring Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 Programming the ALIS Ring Detect Coefficients . . . . . . . . . . . . . . . . . . . . . .82 Ring Threshold in Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 11 11.1 11.2 11.2.1 11.2.2 11.2.3 11.3 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83 Programmable Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83 DC Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84 Programming Ranges for DC Termination . . . . . . . . . . . . . . . . . . . . . . . . . . .84 Input Current in Puls Dialing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 AC Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 Semiconductor Group 5 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Table of Contents 11.3.1 11.4 11.4.1 11.5 Page Ringer Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 ALIS Caller ID Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86 Ring Detect Levels and Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86 ALIS Cap Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86 12 Electrical Performance Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 12.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 12.2 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 12.3 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 12.3.1 ALIS-A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 12.3.2 ALIS-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90 12.4 AC Transmission Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91 12.4.1 Absolute Gain Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91 12.4.2 Gain Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 12.4.3 Harmonic Distortion plus Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 12.4.4 Harmonic Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 12.4.5 Return Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 12.4.6 Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 12.4.6.1 Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 12.4.6.2 Transmit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95 12.4.7 Group Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 12.4.7.1 Group Delay Absolute Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 12.4.7.2 Group Delay Distortion Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 12.4.7.3 Group Delay Distortion Transmit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97 12.4.8 Out-of-Band Signals at TIP/RING Receive . . . . . . . . . . . . . . . . . . . . . . . . . .98 12.4.9 Out-of-Band Signals at TIP/RING Transmit . . . . . . . . . . . . . . . . . . . . . . . . . .99 12.4.10 Trans-hybrid Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100 12.5 AC Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 12.5.1 Input/ Output Waveform for AC Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 12.5.2 Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 12.5.3 Control Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 12.5.4 Data Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102 12.5.5 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104 Semiconductor Group 6 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Overview 1 Overview The PSB 4595 and PSB 4596 two-chip solution forms the complete front end of a modem or fax machine. This Analog Line Interface Solution (ALIS) consists of a DAA, a codec and a hybrid circuit, and bridges the gap between the phone line and the data pump. The analog PSB 4595 is manufactured in low-power BiCMOS technology and the digital PSB 4596 in CMOS technology. The ALIS concept is a fully programmable modem front end which allows a single design for the worldwide market: • Adaptation to specific countries and applications is achieved by downloading appropriate coefficient sets. • Isolation is achieved by a digital capacitor interface, without a transformer; making the ALIS particularly suitable for designing PCMCIA modems. • Thanks to an advanced digital-filter concept in combination with the programmable electronic DAA, ALIS provides both excellent transmission performance and high adaptability. This second-generation digital filter concept also allows maximum autonomy between the various filter blocks. This performance makes ALIS suitable for V.34+ and V.90 modem applications. A minimum number of external components is required to complete the functional range of ALIS. Its internal precision is based on a very accurate band-gap reference. The frequency behavior is determined largely by digital filters which exhibit no fluctuations. As a result of the ADC and DAC concepts, its linearity is limited only by second-order parasitic effects. The ALIS chip set can be easily adapted and connected to various modem data pumps or to host-based modem solutions. The flexible digital interface of ALIS allows easy programming via the modem data pump or a controller. Siemens offers a range of reference and evaluation tools for the ALIS chip set. For appropriate tools, please contact your nearest Siemens representative. Semiconductor Group 7 Data Sheet 06.98 PSB 4595 PSB 4596 Analog Line Interface Solution ALIS CMOS 1.1 Features • ALIS substitutes data access arrangement (DAA), codec and hybrid • Ring detection: level, frequency and cadence • Caller ID: detection, decoding and storage • Programmable to different country requirements • Programmable DC characteristics • ALIS supports V.34+ and V.90 • ALIS complies with ETS 300 001 and FCC requirements • Isolation by digital capacitor interface • Analog part powered from the tip/ring line by an integrated voltage regulator • High performance analog-to-digital and digital-toanalog conversion • DSP-based solution for adapting the transmission behavior, especially for - AC impedance matching - trans-hybrid balancing - frequency response - gain P-TSSOP24 P-SSOP28 • Advanced test capabilities: - digital loops - analog loops • High-pass filter in receive path to suppress line interference (50/60 Hz) • Isolated control pins for general purpose use • Advanced low-power 0.8µm analog BICMOS technology for ALIS analog and 0.8µm CMOS technology for ALIS digital • Two-chip solution: the P-TSSOP24 and P-SSOP28 packages are PCMCIA-compliant Type Ordering Code Package PSB 4595 V2.1 P-TSSOP24 PSB 4596 V2.1 P-SSOP28 Semiconductor Group 8 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution 1.2 Logic Symbol Isolation MCLK RESET Vdd Vss Data Interface Cap Interface ALIS-D µC Interface ALIS _A ALIS-A SO SO SI Caller ID Interface TIP/RING Figure 1 Logic Symbol of the ALIS Chipset Semiconductor Group 9 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Pin Definition and Functions 2 Pin Definition and Functions 2.1 Pin Configuration CAP1 CAP2 VREF TIP TIP_AC RING RING_AC SO_0 SO_1Q CAP_B22 CAP_B21 CAP_A22 1 2 3 4 24 23 22 21 5 6 7 8 9 10 11 12 20 19 18 17 16 15 14 13 GNDA T1G VDDA VDD_SENS NC T2G SI_0 SI_1 TEST CAP_C21 CAP_C22 CAP_A21 Figure 2 Pin Configuration of ALIS-A (Top View) CAP_A12 CAP_B11 CAP_B12 ID_Ain Afeedback ID_Bin Bfeedback VDD GND CS DCLK DIN DOUT INT 1 2 3 4 5 6 7 8 9 10 11 12 28 27 26 25 24 23 22 21 20 19 18 17 16 15 13 14 CAP_A11 CAP_C12 CAP_C11 VDDA GNDA RESET SO MCLK1 MCLK2 MODE DAT_CLK DAT_IN/SEL DAT_OUT FSC Figure 3 Pin Configuration of ALIS-D (Top View) Semiconductor Group 10 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Pin Definition and Functions 2.2 Pin No. Pin Definition of ALIS-A PSB 4595 Symbol Function Descriptions 22 VDDA Power Programmable supply for the circuitry 24 GNDA Power Analog ground: All signals are referred to this pin 4 TIP I TIP AC+DC sense input 5 TIP_AC I TIP AC sense input 6 RING I RING AC+DC sense input 7 RING_AC I RING AC sense input 23 T1G O Gate for external transistor T1 (AC/DC control) 19 T2G O Gate for external transistor T2 (VDDA control) 21 VDD_SENS I VDDA sense input 3 VREF I/O Reference voltage: Must be connected to GNDA via an external capacitor of more than 10 nF (typ. 15 nF) 1 CAP1 I/O Pin for external capacitor of more than 1 µF for DC filtering to pin Cap2 2 CAP2 I/O See Cap1 18 SI_0 I Auxiliary input pin 0 17 SI_1 I Auxiliary input pin 1 8 SO_0 O Auxiliary output pin 0 9 SO_1Q O Auxiliary output pin 1 16 TEST I Must be connected permanently to GNDA 13 CAP_A21 I Must be connected via a capacitor of more than 5pF to CAP_A11. 12 CAP_A22 I Must be connected via a capacitor of more than 5pF to CAP_A12. 11 CAP_B21 O Must be connected via a capacitor of more than 5pF to CAP_B11. 10 CAP_B22 O Must be connected via a capacitor of more than 5pF to CAP_B12. Semiconductor Group 11 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Pin Definition and Functions Pin No. Symbol Function Descriptions 15 CAP_C21 I Must be connected via a capacitor of more than 5pF to CAP_C11. 14 CAP_C22 I Must be connected via a capacitor of more than 5pF to CAP_C12. Table 1: ALIS-A Pin Definition Semiconductor Group 12 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Pin Definition and Functions 2.3 Pin No. Pin Definition of ALIS-D PSB 4596 Symbol Function Description 8 VDD Power +5 Volt supply for the digital circuitry 9 GND Power Ground digital: All signals are referred to this pin 25 VDDA Power +5 Volt supply for the analog circuitry 24 GNDA Power Ground analog: All analog signals are referred to this pin 21 MCLK1 I Master clock1: One pin of a crystal or ceramic resonator is connected. This pin can also be driven from an external clocking source of 16.384 MHz, synchronous to FSC (MCLK=FSC*2048) 20 MCLK2 O Master clock2: The other pin of a crystal or ceramic resonator is connected. When MCLK1 is driven by an external clock, this pin should be left open 23 RESET I Reset input: Forces the device to default mode (low active) 15 FSC BI As input: Frame synchronisation clock, 8kHz, identifies the beginning of the frame. FSC must be synchronous to MCLK (MCLK=FSC*2048) As Output: Indicates the beginning of a new frame 17 DAT_IN / SEL I Data interface: Receive data from the DSP. The data is received in 16-bit bursts every 125 ms. Interface selection pin in MUX mode. 16 DAT_OUT O Data interface: Transmit data to the DSP. The data is transmitted in 16-bit bursts every 125 ms 18 DAT_CLK I Data clock 128 to 1024 kHz: Determines the rate at which data is shifted into or out of the data interface 10 CS I µ-controller interface: Chip select enable to read or write data. Active low Semiconductor Group 13 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Pin Definition and Functions Pin No. Symbol Function Description 11 DCLK I µ-controller interface: Clock. Maximum clock rate 1024 kHz 12 DIN I µ-controller interface: Input data 13 DOUT TRI µ-controller interface: DOUT is high ’Z’ if no data is transmitted 14 INT O µ-controller interface: Interrupt output pin 19 MODE I Interface mode pin (parallel or MUX mode) 4 ID_Ain I 6 ID_Bin I Input for caller ID comparator (connection to TIP) Input for caller ID comparator (connection to RING) 5 A feedback O Feedback for caller ID comparator 7 B feedback O Feedback for caller ID comparator 28 CAP_A11 O Must be connected via a capacitor of more than 5pF to CAP_A21. 1 CAP_A12 O Must be connected via a capacitor of more than 5pF to CAP_A22. 2 CAP_B11 I 3 CAP_B12 I Must be connected via a capacitor of more than 5pF to CAP_B21. Must be connected via a capacitor of more than 5pF to CAP_B22. 26 CAP_C11 O Must be connected via a capacitor of more than 5pF to CAP_C21. 27 CAP_C12 O Must be connected via a capacitor of more than 5pF to CAP_C22. 22 SO O Auxiliary output pin Table 2: ALIS-D Pin Definition Semiconductor Group 14 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution System Integration 3 System Integration ALIS can be used in different modem applications to connect the data pump to the TIP/ RING wire. 3.1 ALIS with DSP-based Modem For a modem data pump, the ALIS provides the front-end to the tip/ring. Data Pump V.34 V.90 ALIS-D SI ALIS-A Tip/Ring PSB 4596 PSB 4595 Note: SI: Serial Interface Figure 4 DSP-based Modem Application Isolation is provided by a capacitor interface, without transformer. This allows very flat frequency response over the entire voice band, even at low frequencies. In V.90 Modem applications, the 50/60 Hz high-pass filter can be turned off. Semiconductor Group 15 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution System Integration 3.2 ALIS with Software Modem ALIS also supports software modems where V.34 runs on the host computer (e.g. in combination with a USB controller). ALIS-D ALIS-A PSB 4596 PSB 4595 Tip/Ring SI Microcontroller with USB or PCI Interface USB or PCI Figure 5 Software Modem Application Semiconductor Group 16 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution System Integration 3.3 Hybrid Modem (ISDN plus Analog) In combination with the SIEMENS ISDN chip set, ALIS supports hybrid modems, , allowing connection to either the TIP/RING line or to an S or U-interface for ISDN applications. ALIS-D ALIS-A Tip/Ring PSB 4596 Flash SRAM PSB 4595 SI ISAR34 ISAC-S TE IOM-2 Interface PSB 7115 S-Interface * PSB 2186 * Microcontroller with USB or V.24 Interface USB or V.24 Figure 6 Hybrid Modem Application, with S-interface: ISAR34 Enhanced Data Access Controller (PSB 7115) and ISDN Access Controller for S-Bus ISAC-S TE (PSB 2186) * Figure 4 shows a hybrid modem with the ISDN S-interface. To meet the ISDN Uinterface, the ISAC-S TE PSB 2186 is replaced by the IEC-Q TE PSB 21911. Semiconductor Group 17 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution System Integration 3.4 Modem with Speakerphone ALIS-D ALIS-A TIP/RING PSB 4596 Flash SRAM PSB 4595 SI ISAR34 ARCOFI-SP IOM-2 Interface PSB 7115 PSB 2163 Microcontroller with USB or V.24 Interface USB or V.24 Figure 7 Application with Speakerphone: ARCOFI-SP Audio Ringing Codec (PSB 2160, PSB 2163, PSB 2165, PSB 2168) and ISAR34 Enhanced Data Access Controller (PSB 7115) Semiconductor Group 18 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution System Integration 3.5 Analog Videophone The diagram below shows a system solution for an analog videophone application using a SIEMENS chip set. ALIS-D ALIS-A PSB 4596 PSB 4595 Tip/Ring Flash SRAM SI ISAR34 IOM-2 Interface PSB 7115 ARCOFI-SP PSB 2163 JADE AN PSB 7230 VIDEO CODEC Microcontroller with USB or V.24 Interface USB or V.24 Figure 8 ARCOFI-(SP) Audio Ringing Codec (PSB 2160, PSB 2163, PSB 2165, PSB 2168) ; ISAR34 Enhanced Data Access Controller (PSB 7115); JADE Joint Audio Decoder Encoder (PSB 7230, PSB 7238) Semiconductor Group 19 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution ALIS Implementation 4 ALIS Implementation The ALIS chip set replaces all the major parts of a conventional front end for modem solutions. The circuit consists of two major parts, a DSP-based codec and an electronic DAA. Advanced features such as ring detection, pulse dialing and caller ID are integrated on-chip. Additional operating modes such as sleep mode or ringing mode are implemented to minimize power consumption. 4.1 ALIS Block Diagram The tip/ring telephone line interface is connected mainly with the ALIS-A. It is also connected with the ALIS-D for Caller ID functions.. Isolation Control Data I/O Control Interface Vdd Control Cap. Interface DSP Control HWFilter A/D Hybrid and Filters Data Interface TIP/RING D/A Caller ID ALIS-D ALIS-A Transmit/Receive Data Figure 9 ALIS Block Diagram The analog front end (ALIS-A) is connected to the line via TIP/RING. The programmable supply voltage for ALIS-A is generated from the line by the Vdd control. Two/four wire conversion is implemented in the hybrid circuit. Analog anti-aliasing pre-filters (PREFI) and smoothing post-filters (POFI) are included for signal conditioning. High-performance over-sampling analog-to-digital converters (ADCs) and digital-to-analog converters (DACs) assure the required conversion accuracy. The ADCs and DACs are connected to the digital signal processor (DSP) on the digital part (ALIS-D) via a dedicated capacitor interface which also provides the required isolation to the line. Special hardware filters perform filtering functions such as interpolation and decimation. The DSP handles all the necessary algorithms. These include bandpass filtering, sample rate conversion, ringing detection, and caller ID decoding. All programmable filters and functions are also controlled and processed by the DSP. The control interface allows external control of the ALIS features and provides transparent access to ALIS commands and signaling pins. Thus pre-calculated sets of coefficients can be downloaded from the system to the onSemiconductor Group 20 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution ALIS Implementation chip coefficient RAM (CRAM) in order to program the filters. Transmit and receive data is transferred to and from the data pump via the data interface. 4.2 ALIS AC Signal Flow Graph ALIS architecture is based on digital filters. The data path through these filters is shown in the next few diagrams. The filter concept also allows maximum autonomy between the different filter blocks. Each filter block has a one-to-one correspondence with a specific network element. Marked filters (grey) can be programmed by the user. digital out AR1 FRR AR2 RFIX1 RFIX2 ADC ADC DAA Tip/ Ring AX1 FRX THFIX IMFIX TH IM XFIX1 XFIX2 AX2 DAC digital in Legend: user-programmable block fixed filter block fixed functional block Definition: Transmit:Digital-to-Analog Receive :Analog-to-Digital DAA Data Access Arrangement, Fixed Part AR1 Amplification Receive Filter 1 FRR Equalization Receive RFIX1 Receive Filter Fixed Part 1 AR2 Amplification Receive Filter 2 RFIX2 Receive Filter Fixed Part 2 ADC Analog-to-Digital Converter THFIX Transhybrid Filter Fixed Part TH Transhybrid Filter IMFIX Impedance Filter Fixed Part IM Impedance Filter AX1 Amplification Transmit Filter 1 FRX Equalization Transmit XFIX1 Transmit Filter Fixed Part 1 AX2 Amplification Transmit Filter 2 XFIX2 Transmit Filter Fixed Part 2 DAC Digital-to-Analog Converter Figure 10 AC Signal Flow Graph Semiconductor Group 21 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution ALIS Implementation 4.2.1 Receive Path After passing the DAA and a simple anti-aliasing pre-filter with an analog gain stage, the voice signal is converted to a 1-bit digital data stream in the sigma-delta converter. The first down-sampling steps are performed in fast digital hardware filters. Subsequent processing is implemented in the digital structure which allows easy and flexible programming of parameters. Finally, the fully processed signal is transferred to the data interface. Subsequent processing is done by microcode in the digital filter structure to allow adaptability. Gain adjustment is provided in two stages, AR1 and AR2. The total gain adjustment is programmable in two ranges: from 14 to 24 dB, in steps of 0.5 dB; and from -3 to 14 dB, with steps between 0.02 and 0.05 dB. Located inbetween is a decimation stage to reduce the sampling rate to the 8 kHz PCM rate, and a low-pass filter to band-limit the signal in accordance with ITU-T G.714 and ETSI (NET33) recommendations (in RFIX1); also an equalization stage (in FRR). Finally, the signal is passed out to the Serial Data Interface (SDI). ALIS meets or exceeds all ITU and ETSI (NET33) recommendations on attenuation distortion and group delay. 4.2.2 Transmit Path The digital input signal is received via the data interface. Low-pass filtering, gain correction and frequency-response correction are implemented in the digital filter structure. The up-sampling interpolation is then performed by fast hardware structures to reduce the DSP load. The up-sampled 1-bit data stream is converted to an analog equivalent which is smoothed by a post-filter (POFI) and converted to a 2-wire signal in the DAA. There are also two independent tone generators which can insert tones into the Transmit path. They have adjustable frequencies, default 2 kHz, and a programmable bandpassfilter to adapt the output for DTMF. When either tone generator is on, the data signal transmission is suppressed. 4.2.3 Loops ALIS implementation includes two loops. One is used to generate the AC-termination impedance (IM) and the other is used to perform proper hybrid balancing (TH). A simple additional path IM (from the receive to the transmit path) supports the impedancematching function. 4.2.4 Test Features Several analog and digital test loops are implemented in ALIS. The receive and transmit paths may be short-circuited at two different points for test purposes. Semiconductor Group 22 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution ALIS Implementation 4.3 ALIS Ring and Caller ID Signal Flow Graph CID out CIDL CIDH CIDBP Tip/Ring ADC RLM RIM FIX RIM DAC Legend: CIDL Caller ID Lowpass CIDH Caller ID Hilbert Transformer CIDBP Caller ID Bandpass RLM Ring Level Metering ADC Analog-to-Digital Converter RIMFIX Ringer Impedace Filter Fixed Part comparator for CID user-programmable block fixed filter block fixed functional block RIM Ringer Impedace Filter DAC Digital-to-Analog Converter Figure 11 Ring Signal Flow Graph These data paths operate only when the ALIS is in Ringing state. 4.3.1 Caller ID (CID) Path The Caller ID receiver meets Bellcore specifications TR-NWT-000030 and SR-TSV-002476 for Caller ID. In this service, the calling party’s information (Calling Line Identification Presentation (CLIP)) is transmitted in the silent interval between the first and second ring. ALIS receives and stores up to 4096 bits of the 1200 baud FSK (Frequency Shift Keying) signal. The decoding scheme meets the Bell 202 and ITU-T V.23 specifications. The FSK signal which contains the caller information is converted to a 1-bit data stream by a comparator in order to minimize power consumption. Down-sampling steps are performed in fast digital hardware filters. To decode the caller ID, bandpass filtering, Hilbert transformation and other functions are implemented. The output CID-out is sampled at 1200 baud, and stored in the CID-RAM. Semiconductor Group 23 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution ALIS Implementation 4.3.2 Ring-Level Metering (RLM) Path The analog signal is converted to a 1-bit data stream in the ADC. After decimation in hardware filters, the remaining processing is done in the digital filter structure (in RLM): bandpass filtering to select the ringing frequency, and integration to determine if the amount of energy in-band has exceeded the threshold for a valid ring signal. The bandpass parameters and threshold are programmable. Ringing is detected in this path. The digital input is bandpass filtered, integrated and compared to a threshold to determine if a ringing signal has occurred. The threshold and bandpass filters are programmable. The result of this operation can be monitored by reading the RMR bit (see “CR1 Configuration Register 1 (Dialing)” on page 40). 4.3.3 Loops A loop is available to generate the Ring-termination impedance (RIM). 4.3.3.1 Test Features There are three loopbacks on ALIS-D to test interfaces: - Host interface: loopback from the PCM interface (just inside ALIS-D) - Caller ID interface: loopback from Caller ID input to capacitor interface - Capacitor interface: loopback through different parts of the capacitor interface There are two loopbacks on ALIS-A: - Tip/ring interface: loopback from the tip/ring, before the ADC - Codec: loopback from the tip/ring, after the codec Semiconductor Group 24 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Configuration Overview 5 Configuration Overview 5.1 Connection to the Telephone Line VDDA SENS VDD T2 T2G TIP TIP-AC TIP T1 T1G RING RING-AC RING VREF GNDA CAP1 CAP2 Figure 12 Connection of ALIS-A to the Telephone Line As shown in the figure, ALIS-A requires a minimum of components to complete the DAA: - Protection circuit: not shown. - Bridge: using Schottky diodes will improve the performance at low feeding conditions. Recommended: Dual Schottky diode SIEMENS BAT 240A. - Resistors for current sensing. - Capacitors for AC coupling and VDD buffering. Semiconductor Group 25 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Configuration Overview - Two transistors (T1, T2) to handle the line current. T2 must be of depletion type, in order to deal with start-up. Recommended transistors: T1: SIEMENS BSP 88; T2: SIEMENS BSP 129. - Components for EMC protection: not shown, as they depend on the board layout. ALIS-D can optionally be connected to the tip/ring to provide Caller ID functions. The CID circuit requires two capacitors and four resistors. 5.2 Host Interface The host interface consists of a serial µ-controller interface and a 16-bit linear data interface. They are used to connect ALIS either to a µ-controller and or to a data pump. The two serial interfaces can be accessed on two separate serial ports or in timemultiplex (MUX) mode on a single serial port. 5.2.1 The µ-Controller Interface The ALIS internal configuration registers, the auxiliary ports, and the Coefficient RAM (CRAM) are programmable via the serial µ-controller interface. This interface consists of four pins: CS: Chip select, to enable interface (active low) DCLK: Clock, 1 kHz to 1024 kHz DIN: Data input DOUT: Data output CS is used to start serial access to the ALIS registers and the Coefficient RAM. Following a CS falling edge, the first eight bits received at DIN specify the command. Subsequent data bytes (the number depends on the command) are stored in the selected configuration registers or the selected part of the CRAM. Serial interface specification: 8 bit, no parity, no start/stop bit. Every command must begin with a CS falling edge. Semiconductor Group 26 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Configuration Overview CS DCLK DIN 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Control Data Byte 1 Data Byte 2 High ’Z’ DOUT Figure 13 Example of a Write Access, two Data Bytes transferred If the first eight bits received via DIN specify a read command, ALIS will start to respond via DOUT with its specific identification byte. The number of specified data bytes within the command (contents of configuration registers or contents of the CRAM) will follow on DOUT. CS DCLK DIN 7 6 5 4 3 2 1 0 Control High ’Z’ DOUT 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Identification Data Byte 1 Figure 14 Example of a Read Access, one Data Byte transferred via DOUT Semiconductor Group 27 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Configuration Overview The data transfer is synchronized by DCLK. DIN is latched at the falling edge of DCLK, while DOUT changes with the rising edge of DCLK. During the execution of a command which is followed by output data (read command), the device will not accept any new command via DIN. The data transfer sequence can be interrupted by setting CS to ’1’. To reduce the number of connections to the µ-processor, DIN and DOUT may be strapped together to form a bi-directional data pin. 5.2.2 The Data Interface A serial data interface is used for transferring voice data. The interface consists of five pins: DAT_CLK: Clock, 128 kHz to 1024 kHz FSC: Frame synchronization clock, 8 kHz DAT_IN: Transmit data input DAT_OUT: Receive data output The Frame Sync (FSC) pulse identifies the beginning of a receive and a transmit frame. DAT_CLK synchronizes the data transfer on DAT_IN and DAT_OUT. The data bytes are first serialized to 16-bit width and MSB. The rising edge indicates the start of the bit, while the falling edge is used to latch the contents of the received data. 125 µS FSC DAT_CLK DAT_IN 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 DAT_OUT 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 16 Bit Voicedata MSB first Figure 15 Example of a Clock Rate of 128 kb/s Semiconductor Group 28 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Configuration Overview 125 µS FSC DAT_CLK DAT_IN 151413121110 9 8 7 6 5 4 3 2 1 0 DAT_OUT 151413121110 9 8 7 6 5 4 3 2 1 0 tStart tVoice tStop Figure 16 Example of a Clock Rate higher than 128 kb/s The data package must stay within the frame, tStart > 0 and tStop > 0. The FSC signal can be generated externally by the host or by ALIS. Semiconductor Group 29 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Configuration Overview 5.2.3 Interface Modes 5.2.3.1 Demux Mode Connection of the MODE pin to GND allows the µC and the data interface to be accessed via two serial ports. DSP (Data Pump) ALIS-D DCLK CS DIN DOUT INT µC Interface DAT_CLK FSC DAT_IN DAT_OUT Data Interface MODE Figure 17 Host Interface in Demux Mode, FSC as Input DSP (Data Pump) ALIS-D DCLK CS DIN DOUT INT µC Interface DAT_CLK FSC DAT_IN DAT_OUT Data Interface MODE Figure 18 Host Interface in Demux Mode, FSC as Output Semiconductor Group 30 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Configuration Overview 5.2.3.2 Multiplex Mode Connection of the MODE pin to VDD allows the two interfaces to be time-multiplexed on a single port. The interfaces are selected by the DAT_IN/SEL pin. DSP (Data Pump) ALIS-D DCLK / DAT_CLK CS / FSC DIN / DAT_IN DOUT / DAT_OUT INT µC Interface Data Interface DAT_IN / SEL VDD MODE Figure 19 Host Interface in MUX Mode, FSC as Input DAT_IN / SEL = 0 DAT_IN / SEL = 1 PIN No Function PIN No Function 11 DCLK 11 DAT_CLK 10 CS 10 FSC 12 DIN 12 DAT_IN 13 DOUT 13 DAT_OUT Table 3: Pin Definition in MUX mode, FSC as Input Semiconductor Group 31 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Configuration Overview DSP (Data Pump) ALIS-D DCLK / DAT_CLK CS DIN / DAT_IN DOUT / DAT_OUT INT µC Interface FSC DAT_IN / SEL Data Interface VDD MODE Figure 20 Host Interface in MUX mode, FSC as Output DAT_IN / SEL = 0 DAT_IN / SEL = 1 PIN No Function PIN No Function 11 DCLK 11 DAT_CLK 10 CS 10 VDD / GND1) 12 DIN 12 DAT_IN 13 DOUT 13 DAT_OUT 15 FSC (output) 15 FSC (output) 1) must be connected to a fixed potential Table 4: Pin Definition in MUX Mode, FSC as Output Semiconductor Group 32 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Configuration Overview M U X -M o d e , F S C e x te rn F S C C o n tro l D a ta D C L K = D C L K /D A T _ C L K E C S = C S /F S C E C lo c k in C lo c k in O O D D D IN = D IN /D A T _ IN C lo c k o u t C lo c k o u t M M D O U T = D O U T /D A T _ O U T U P C C M D A T _ IN = S E L 1 2 5 u s F R A M E r is in g e d g e c s w ith s e l= 1 is fs c s ta r t M U X - M o d e , F S C in te r n F S C C o n tro l D a ta D C L K = D C L K /D A T _ C L K E C S = C S C lo c k in C lo c k in O D D IN = D IN /D A T _ IN C lo c k o u t C lo c k o u t M D O U T = D O U T /D A T _ O U T P C M D A T _ IN = S E L 1 2 5 u s F R A M E Figure 21 Protocol for Transmission of µC- and PCM Data in MUX Mode 5.3 Clocking ALIS operates with a typical master clock frequency of 16.384 MHz. This clock can either be supplied from an external source or generated with a crystal by ALIS-D. It is essential that the ratio of the master clock frequency to the FSC frequency is exactly 2048. This is of course guaranteed if the FSC signal is generated internally. 5.3.1 External clock When providing the master clock externally, an external clock signal must be connected to pin MCLK1. The MCLK2 pin must remain unconnected and the CLK_EXT bit in CR0 must be programmed to a logic ’1’. (see the section “CR0 Configuration Register 0 (Filters)” on page 39). Semiconductor Group 33 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Configuration Overview 5.3.2 Crystal clock Because ALIS includes an on-chip oscillator circuit, an external crystal may be used. This crystal is connected across the MCLK1 and MCLK2 pins with two capacitors (see Figure 22 ”External Crystal Connections” ) . The CLK_EXT bit in CR0 must be programmed to a logic '0' (= default value after reset). The capacitor values depend on the crystal type and are specified by the crystal manufacturer. A microprocessor-grade crystal with a parallel-resonant fundamental frequency is recommended. To ensure that the ratio between the master clock and the FSC signal is correct, ALIS can be programmed to internal FSC generation (set Fsc_en bit in CR4 to a logic '1'). See Figure 18 “Host Interface in Demux Mode, FSC as Output” on page 30 and Figure 20 “Host Interface in MUX mode, FSC as Output” on page 32. XTAL 16.384 MHz Cxtl Cxtl MCLK1 MCLK2 ALIS-D Figure 22 External Crystal Connections Semiconductor Group 34 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Configuration Overview 5.4 Capacitor Interface A capacitor interface is used to decouple ALIS-A from ALIS-D. It is a bi-directional serial interface and is used for exchanging control and data information between ALIS-A and ALIS-D. The transmission format is digital to avoid distortion and for performance reasons. For the size and tolerance of the capacitors, see the section “ALIS Cap Interface” on page 86. CAP_A11 CAP_A1 CAP_A21 CAP_A12 CAP_A2 CAP_A22 CAP_B11 CAP_B1 CAP_B21 CAP_B12 CAP_B2 CAP_B22 CAP_C11 CAP_C1 CAP_C21 CAP_C12 CAP_C2 CAP_C22 ALIS-D ALIS-A Figure 23 Connection of Capacitor Interface between ALIS-A and ALIS-D Semiconductor Group 35 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Configuration Overview 5.5 Caller ID Interface To receive the caller ID, ALIS-D must be connected to the line via an RC network. See the section “ALIS Caller ID Interface” on page 86". Afeedback Rfb1 Rin1 Cin1 ID_Ain TIP RING ID_Bin Rin2 Cin2 Rfb2 Bfeedback ALIS-D Figure 24 Caller ID Interface Connection of ALIS-D to Tip/Ring Semiconductor Group 36 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Programming ALIS 6 Programming ALIS Appropriate commands via the serial µ-controller interface enable very flexible programming and verification of ALIS. Four different commands are used to access the various control registers and RAMs: SOP (see page 38), XOP (see page 44), COP (see page 50) and CAO (see page 51). The first byte received via DIN selects the command type. Each command can be used as a write or read command. Thanks to the extended ALIS control facilities, the SOP, XOP and COP commands contain additional information for programming (writing) and verifying (reading) the ALIS status (e.g. number of subsequent bytes, software reset, operating mode). Up to 8 bytes of data can be read or written with an SOP, XOP or COP command. The CAO command allows all 512 bytes of the caller ID RAM to be read or written. Any read command causes ALIS to respond with its specific identification byte before sending the requested information. 6.1 Types of Commands and Data Bytes The ALIS commands are selected by bit 3, 4 and 6 of the command byte as shown below. SOP command Bit 7 6 5 4 3 2 1 0 PU 1 PU 0 RW 1 0 LSEL2 LSEL1 LSEL0 7 6 5 4 3 2 1 0 RST 0 RW 1 1 LSEL2 LSEL1 LSEL0 7 6 5 4 3 2 1 0 0 0 RW 0 CODE 3 CODE 2 CODE 1 CODE 0 7 6 5 4 3 2 1 0 0 1 RW 1 1 0 0 0 XOP command Bit COP command Bit CAO command Bit Semiconductor Group 37 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Programming ALIS 6.1.1 • • • • Storage of Programming Information: 6 Configuration registers: 8 Extended registers: 1 Coefficient RAM: 1 Caller ID RAM: 6.2 CR0, CR1, etc. CR5 accessed by SOP commands XR0, XR1, etc. XR7 accessed by XOP commands CRAM accessed by COP commands RAM accessed by CAO commands SOP Command The SOP (status operation) command allows the ALIS status registers to be written or read via the µ-controller interface. Bit 7 6 5 4 3 2 1 0 PU 1 PU 0 RW 1 0 LSEL2 LSEL1 LSEL0 PU Power-up operation command (only with SOP write command) PU = 0 0: ALIS is set to sleep mode PU = 0 1: ALIS is set to ringing mode PU = 1 0: ALIS is set to conversation mode PU = 1 1: ALIS is set to pulse dialing mode RW Read/Write: Enables reading from ALIS or writing information to ALIS RW = 0: Write to ALIS RW = 1: Read from ALIS LSEL Length select information (see also programming procedure) This field identifies the number of subsequent data bytes LSEL = 000:1 byte of data follows (CR0) LSEL = 001:2 bytes of data follow (CR1, CR0) LSEL = 010:3 bytes of data follow (CR2. CR1, CR0) LSEL = 011:4 bytes of data follow (CR3, CR2. CR1, CR0) LSEL = 100:5 bytes of data follow (CR4, CR3, CR2, CR1, CR0) LSEL = 101:6 bytes of data follow (CR5, ...., CR1, CR0) Note: If only one configuration register requires modification, for example CR3, this can be accomplished by setting LSEL=011 and releasing pin CS after CR3 is written, to. Semiconductor Group 38 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Programming ALIS 6.2.1 CR0 Configuration Register 0 (Filters) Default value: 00H Configuration register CR0 defines the basic ALIS settings, which are: enabling/ disabling the programmable digital filters and tone generators. Bit 7 6 5 4 3 2 1 0 TH IM FRX FRR AX AR RIP CLK_ EXT TH Enable Trans-Hybrid Balancing (TH)-Filter IM TH = 0: TH-filter disabled TH = 1: TH-filter enabled Enable Impedance Matching (IM)-Filter IM = 0: IM-filter disabled IM = 1: IM-filter enabled FRX Enable Frequency Response Transmit (FRX)-Filter FRX = 0: FRX-filter disabled FRX = 1: FRX-filter enabled FRR Enable Frequency Response Receive (FRR)-Filter FRR = 0: FRR-filter disabled FRR = 1: FRR-filter enabled AX Enable Amplification/Attenuation Transmit (AX)-Filter AX = 0: AX-filter disabled AX = 1: AX-filter enabled AR Enable Amplification/Attenuation Receive (AR)-Filter AR = 0: AR-filter disabled AR = 1: AR-filter enabled RIP Enable Ringer Impedance (RIP)-Filter RIP = 0: RIP-filter disabled RIP = 1: RIP-filter enabled CLK_EXT External clock signal CLK_EXT = 0: Crystal Oscillator is enabled, clock will be generated by crystal CLK_EXT = 1: Crystal Oscillator is disabled, clock must be supplied by external source Semiconductor Group 39 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Programming ALIS 6.2.2 CR1 Configuration Register 1 (Dialing) Default value: 00H Configuration register CR01 selects tone generator modes and other operating modes Bit E_Tone2 7 6 5 4 3 2 1 0 E_ Tone2 E_ Tone1 P_ Tone2 P_ Tone1 Pulse No_ auto_ ring RMR RM Enable programmable tone generator 2 E_Tone2= 0: Programmable tone generator 2 disabled E_Tone2= 1: Programmable tone generator 2 enabled E_Tone1 Enable programmable tone generator 1 E_Tone1= 0: Programmable tone generator 1 disabled E_Tone1= 1: Programmable tone generator 1 enabled P_Tone2 User-programmed frequency or fixed frequency selected P_Tone2= 0: Fixed frequency for tone generator 2 selected P_Tone2= 1: Programmed frequency for tone generator 2 selected P_Tone1 User programmed frequency or fixed frequency selected P_Tone1= 0: Fixed frequency for tone generator 1 selected P_Tone1= 1: Programmed frequency for tone generator 1 selected Pulse Pulse dialing Pulse = 1: Make for pulse dialing Pulse = 0: Break for pulse dialing No_auto_ring No_auto_ring= 1:Test mode to disable automatic switching from sleep mode to ringing mode after valid ring. No_auto_ring= 0:Normal operating mode, ALIS switches automatically to ringing mode after ringing detection RMR RM 1 Result of ringing metering function (this bit cannot be written) RMR = 0: Detected level was lower than the programmed1) reference RMR = 1: Detected level was higher than the programmed reference. See “Flow of Ring Sequence and Detection” on page 65. Ringing metering function2) The threshold can be programmed in the CRAM. Coefficients see “Ring Detect” on page 81. Semiconductor Group 40 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Programming ALIS RM = 0: Ringing metering function disabled RM = 1: Ringing metering function enabled 6.2.3 CR2 Configuration Register 2 (Caller ID) Bit 7 6 5 COT/R 4 3 2 1 0 IDR Call_ pon Call_ en Call_I Call_II Default value: 00H COT/R Select cut-off transmit/receive paths 0 0 0: Normal operation 0 0 1: COR16 Cut-off receive path at 16 kHz (input of TH filter) 0 1 0: COR8 Cut-off receive path at 8 kHz 1 0 1: COT2M Cut-off transmit path at 2 MHz (POFI output) 1 1 0: COT64 Cut-off transmit path at 64 KHz (IM filter input) IDR Initialize data RAM IDR = 0: Normal operation selected IDR = 1: Contents of data RAM set to 0 (for test purposes) Call_pon Enable the caller ID Path Call_pon = 0: Caller ID Path disabled Call_pon = 1: Caller ID Path enabled (see Call_pctl in “CR3 Configuration Register 3 (Test Loops)” on page 42) Call_en Enable the caller ID Call_en = 1: Caller ID decoding enabled Call_en = 0: Caller ID decoding disabled Call_I only) Result of caller ID decoding (this bit cannot be written, for test purposes Call_I = 1: 1st tone of caller ID detected Call_I = 0: 1st tone of caller ID not detected Call_II only) Result of caller ID decoding (this bit can not be written, for test purpose Call_II = 1: 2 2nd tone of caller ID detected Explanation of the ringing metering function: The ring signal is rectified, and the voltage is measured. If the voltage exceeds a certain value, the bit RMR is set to ’1’. Semiconductor Group 41 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Programming ALIS Call_II = 0: 6.2.4 2nd tone of caller ID not detected CR3 Configuration Register 3 (Test Loops) Bit 7 6 5 4 Test Loops 3 2 1 0 SEL Call_ pctl DHP-R DHP-X Default value: 00H Test Loops Four-bit field for selection of analog and digital loopbacks 0101 ALB_CIF: Cap. interface loop of the signal from the input circuit (CAP_B11/12 is connected to the output drivers (CAP_A11/12, CAP_C11/12) 1000 ALB-CID: Caller ID loop; the output signal from the caller ID comparator is connected to the output drivers of the capacitor interface (CAP_A11/12, CAP_C11/12); 1001 DLB-2M: Loop via HW filters; 1100 DLB-128k: Loop inside DSP; 1101 DLB-64k: Loop inside DSP; 1111 DLB-PCM: Loop via PCM interface; the received data is sent back in the next frame; SEL Test loop selection SEL = 0: Test loops via impedance path selected SEL = 1: Test loops via receive path selected Call_pctl Caller ID path control Call_pctl = 0: Caller ID interface enabled during ringing mode Call_pctl = 1: Caller ID interface will be selected by the Call_pon bit in CR2 Note: The path can be controlled manually for test purposes. Must be ’0’ for normal operation. DHP-X Disable high-pass in transmit direction DHP-X = 0: Transmit high-pass enabled DHP-X = 1: Transmit high-pass disabled DHP-R Disable high-pass in receive direction DHP-R = 0: Receive high-pass enabled DHP-R = 1: Receive high-pass disabled Semiconductor Group 42 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Programming ALIS 6.2.5 Bit CR4 Configuration Register 4 (Analog Gain) 7 6 5 4 3 2 1 0 AGR_ Z1 AGR_ Z0 AGR_ R1 AGR_ R0 AGX 1 AGX 0 Int_en Fsc_ en Default value: 00H AGR_Z AGR_Z = 00: Analog gain A disabled (0 dB amplification) AGR_Z = 11: Analog gain A enabled (2.5 dB amplification) AGR_Z = 10: Analog gain A enabled (6 dB amplification) AGR_Z = 01: Analog gain A enabled (-3.5 dB amplification)1) AGR_R Analog gain in receive direction (can be used as AGC) AGR_R = 00: Analog gain B disabled (0 dB amplification) AGR_R = 01: Analog gain B enabled (3.5 dB amplification) AGR_R = 11: Analog gain B enabled (6 dB amplification) AGX Analog gain in transmit direction (can be used as AGC) AGX = 00: Analog gain A disabled (0 dB amplification) AGX = 01: Analog gain A enabled (-6 dB amplification) AGX = 10: Analog gain A enabled (3.5 dB amplification) AGX = 11: Analog gain A enabled (-2.5 dB amplification) Int_en Interrupt enable Int_en = 1: Enable interrupts Int_en = 0: Disable interrupts Fsc_en 1 Analog gain in impedance loop (can be used as AGC) FSC signal-source selection Fsc_en = 0: FSC must be generated externally Fsc_en = 1 FSC generated internally Note: the sum of AGR_Z and AGX should be zero for stability reasons. Semiconductor Group 43 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Programming ALIS 6.2.6 Bit V CR5 Configuration Register 5 (Version) 7 6 5 4 3 2 1 0 V_7 V_6 V_5 V_4 V_3 V_2 V_1 V_0 The current version of ALIS (this byte cannot be written) 02H for ALIS V2.1 6.3 XOP Command The ALIS digital command/indication interface to the line and external equipment is configured and evaluated by the Extended Operation (XOP) command. Other common functions are also assigned by this command. Bit 7 6 5 4 3 2 1 0 RST 0 RW 1 1 LSEL2 LSEL1 LSEL0 RST Software reset (same as RESET pin) RST = 0: No reset RST = 1: ALIS is reset to the default settings RW Read / Write: Enables reading from or writing to ALIS RW = 0: Write to ALIS RW = 1: Read from ALIS LSEL Length select information. Specifies the number of subsequent data bytes LSEL = 000 1 byte of data follows (XR0) LSEL = 001 2 bytes of data follow (XR1, XR0) : LSEL= 111 6.3.1 8 bytes of data follow (XR7, ...., XR1, XR0) XR0 Extended Register 0 (Interrupt Register) Any interrupt indications can be monitored in the interrupt register. Interrupts can be signaled via a logic ’1’ on the INT line. After an indication has occurred, further loading of the interrupt register is locked until its contents are read via the µ-controller interface. Reading the interrupt register XR0 releases the lock and the INT line is set to low again. See “Interrupt Controller” on page 60 for more details. Semiconductor Group 44 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Programming ALIS For XOP Read Commands Bit 7 6 5 4 3 2 1 0 0 Wake_ up Cadence RING Caller _ID VDD_ OK SI_1 SI_0 Default value: 00H Wake_up Wake_up Interrupt Wake_up = 0: No Wake_up Interrupt Wake_up = 1: If CLK_OFF bit is set (see “XR6 Extended Register 6 (Power State)” on page 49) and a ringing signal occurs1), then a Wake_up Interrupt is generated. To clear this interrupt, the CLK_OFF bit must be reset and ALIS-D must be supplied with a clock. Cadence Cadence Interrupt Cadence = 0: No cadence Interrupt (time between two ring bursts is available from XR4) Cadence = 1: Time between two ring bursts exceeds the programmed time (see “XR2 Extended Register 2 (Cadence Time Out)” on page 47). RING Ring Interrupt RING = 0: No ring burst RING = 1: No_auto_ring=0: this bit is set after the second valid ring burst No_auto_ring=1: ALIS stays in sleep mode and waits for a command. This bit represents the ring detection signal from ALIS-A. See“CR1 Configuration Register 1 (Dialing)” on page 40. Note: In this case, a command is mandatory to avoid a deadlock. Caller_ID Caller_ID = 0: No caller ID preamble detected Caller_ID = 1: Caller ID preamble detected VDD_OK 1 Caller ID Interrupt Vdd at ALIS-A Interrupt VDD_OK = 1: Power supply for ALIS-A is available and the connection between ALIS-A and ALIS-D is working VDD_OK = 0: No power supply for ALIS-A or no connection between ALIS-A and ALIS-D Any signal at the line with a voltage of more than 18 V. To decode a valid ring signal, ALIS must be switched to the Ringing Mode. Semiconductor Group 45 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Programming ALIS SI_0 Status of pin SI_0 at ALIS-A is transferred to this register SI_1 Status of pin SI_1 at ALIS-A is transferred to this register Note: The auxiliary pins (SO_0, SO_1, SI_0, SI_1) are isolated via the capacitor interface. With XOP-Write Commands to Control the SO Output Pins Bit 7 6 5 4 3 2 1 0 0 0 0 0 0 SO_2 SO_1 SO_0 SO_0 Pin SO_0 at ALIS-A is set to the assigned value if ALIS is not in sleep mode SO_1 Pin SO_1Q at ALIS-A is set to the inverted assigned value if ALIS is not in sleep mode SO_2 Pin SO at ALIS-D is set to the assigned value 6.3.2 XR1 Extended Register 1 (Interrupt Enable Register) Bit 7 6 5 4 3 2 1 0 0 M_Wa ke_up M_ Caden ce M_ RING M_ Caller_ ID M_ VDD_ OK M_ SI_1 M_ SI_0 Default value: 00H M_Wake_up M_Wake_up = 0:Disable Wake_up Interrupt M_Wake_up = 1:Enable Wake_up Interrupt M_Cadence M_Cadence = 0:Disable Cadence Interrupt M_Cadence = 1:Enable Cadence Interrupt M_RING M_RING = 0: Disable RING Interrupts M_RING = 1: Enable RING Interrupts M_Caller_ID Semiconductor Group 46 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Programming ALIS M_Caller_ID = 0:Disable Caller_ID Interrupt M_Caller_ID = 1:Enable Caller_ID Interrupt M_VDD_OK M_VDD_OK = 0:Disable VDD Interrupt M_VDD_OK = 1:Enable VDD Interrupt M_SI_1 M_SI_1 = 0: Disable SI_1 Interrupts M_SI_1 = 1: Enable SI_1 Interrupts M_SI_0 M_SI_0 = 0: Disable SI_0 Interrupts M_SI_0 = 1: Enable SI_0 Interrupts 6.3.3 Bit XR2 Extended Register 2 (Cadence Time Out) 7 6 5 4 3 2 1 0 CTO 7 CTO 6 CTO 5 CTO 4 CTO 3 CTO 2 CTO 1 CTO 0 Default value: 7DH CTO ms Programmable Cadence Time Out: If the time between the first two ring bursts exceeds the time progammed in this register, a cadence interrupt is generated. The time-out is programmable in steps of 64 ms up to 16 seconds. Note: 00 means no cadence time-out programmed - no interrupt will be generated. 6.3.4 Bit AGB XR3 Extended Register 3 (DC Characteristic) 7 6 5 4 3 2 1 0 AGB1 AGB0 B_off DCU 1 DCU 0 DCI DCR 1 DCR 0 Analog gain for analog trans-hybrid filter AGB = 00: Gain for analog trans-hybrid filter = 1.9 dB AGB = 01: Gain for analog trans-hybrid filter = 0 dB AGB = 10: Gain for analog trans-hybrid filter = -2.1 dB AGB = 11: Gain for analog trans-hybrid filter = -3.4 dB B_off Enable analog trans-hybrid filter Semiconductor Group 47 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Programming ALIS B_off = 0: Analog trans-hybrid filter on B_off = 1: Analog trans-hybrid filter off Note: The analog trans-hybrid filter is an analog pre-filter optimized for long loops with a trans-hybrid loss of about 10 dB. DCU = 00: U0 for DC characteristic is 0 V DCU = 01: U0 for DC characteristic is 1.5 V DCU = 10: U0 for DC characteristic is 3.5 V DCU = 11: U0 for DC characteristic is 7.2 V Note: These values do not include the voltage drop at the external diodes. See also “DC Characteristics” on page 88. DCI Limit current for the DC characteristic DCI = 0: Limit current is 100 mA DCI = 1: Limit current is 50 mA DCR Resistance of the DC characteristic DCR = 00: R for DC characteristic is 280 Ω DCR = 01: R for DC characteristic is 240 Ω DCR = 10: R for DC characteristic is 200 Ω DCR = 11: R for DC characteristic is 100 Ω Note: If DCU is programmed to 7.2V (DCU = 11), then R for the DC characteristic is always 70 Ω irrespective of the contents of DCR. See “DC Termination” on page 84. 6.3.5 Bit C XR4 Extended Register 4 (Cadence) 7 6 5 4 3 2 1 0 C_7 C_6 C_5 C_4 C_3 C_2 C_1 C_0 ms (read only) Contains the measured time between the two first ring bursts (time step 64 ms) if the time is below the cadence time-out as programmed in XR2. Semiconductor Group 48 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Programming ALIS 6.3.6 XR5 Extended Register 5 (Ring Timer) Bit 7 6 5 4 3 2 1 0 T_7 T_6 T_5 T_4 T_3 T_2 T_1 T_0 Default value: 22H T ms Ring latency timer, programmable in steps of 2 ms ALIS-A decodes any signal of more than 18 V at TIP/RING. This signal will be transferred over to ALIS-D for further processing. This timer bridges the time when the sine wave of the ring signal is below the 18 V mark to ensure that ALIS does not fall back into sleep mode. 6.3.7 XR6 Extended Register 6 (Power State) Bit 7 6 5 4 3 2 1 0 0 0 0 CKL_ OFF 0 0 CPS1 CPS0 Default value: 00H CPS Current Power State (read only) CPS = 00 Power state is sleep CPS = 01 Power state is ringing CPS = 10 Power state is conversation CPS = 11 Power state is pulse dialing Note: The power mode can be programmed by the SOP command. The current power state will be indicated in this register. CLK_OFF Turn off master clock (ALIS is programmed to deep-sleep mode) CLK_OFF = 0 Master clock is not turned off internally CLK_OFF = 1 Master clock is turned off internally Note: The external clock can be turned off after setting the CLK_OFF bit. The clock must be switched on for programming ALIS. Semiconductor Group 49 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Programming ALIS Note: When a crystal is used, it will be turned off automatically when the CLK_OFF bit is set. It will be switched on when the CS signal goes low. However, the user must wait until the crystal is working before initiating a command. 6.3.8 XR7 Extended Register 7 (Vdd) Bit 7 6 5 4 3 2 1 0 0 0 0 0 0 Vdd1 Vdd0 0 Default value: 00H Vdd Current Power State Vdd = 00 Vdd of ALIS-A is 4.25 V Vdd = 01 Vdd of ALIS-A is 4.38 V (test purpose only) Vdd = 10 Vdd of ALIS-A is 3.90 V (test purpose only) Vdd = 11 Vdd of ALIS-A is 4 V 6.4 COP Command A Coefficient Operation (COP) command allows the coefficients for the programmable filters to be written to the ALIS coefficient RAM or read from this RAM via the µ-controller interface for verification. Bit RW 7 6 5 4 3 2 1 0 0 0 RW 0 CODE 3 CODE 2 CODE 1 CODE 0 Read/Write RW = 0 Subsequent data is written to ALIS RW = 1 Read data from ALIS CODE includes the number of following bytes and the filter address 0 0 0 0 TH filter coefficients (part 1) (followed by 8 bytes of data) 0 0 0 1 TH filter coefficients (part 2) (followed by 8 bytes of data) 0 0 1 0 TH filter coefficients (part 3) (followed by 8 bytes of data) 0 0 1 1 Ringer impedance (part 1) (followed by 8 bytes of data) 0 1 0 0 IM filter coefficients (part 1) (followed by 8 bytes of data) Semiconductor Group 50 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Programming ALIS 0 1 0 1 IM filter coefficients (part 2) (followed by 8 bytes of data) 0 1 1 0 Ringer impedance (part 2) (followed by 8 bytes of data) 0 1 1 1 FRR filter coefficients (followed by 8 bytes of data) 1 0 0 0 FRX filter coefficients (followed by 8 bytes of data) 1 0 0 1 AR filter coefficients (followed by 4 bytes of data) 1 0 1 0 AX filter coefficients (followed by 4 bytes of data) 1 0 1 1 Tone1 coefficients (followed by 4 bytes of data) 1 1 0 0 Tone2 coefficients (followed by 4 bytes of data) 1 1 0 1 Level metering ringing (followed by 4 bytes of data) 1 1 1 0 Caller ID 1st tone (followed by 8 bytes of data) 1 1 1 1 Caller ID 2nd tone (followed by 8 bytes of data) 6.5 CAO Command A CAO (caller ID operation) command allows the decoded caller ID to be read. A CAO command is always followed by 512 bytes of data. Bit RW 7 6 5 4 3 2 1 0 0 1 RW 1 1 0 0 0 Read/Write RW = 0 Subsequent data is written to ALIS (test purposes only) RW = 1 Read data from ALIS Semiconductor Group 51 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Programming ALIS 6.6 Register Summary 6.6.1 CR Registers: Bit 7 6 5 4 3 2 1 0 CR0 TH IM FRX FRR AX AR RIP CLK_E XT CR1 E_ Tone2 E_ Tone1 P_ Tone2 P_ Tone1 Pulse No_ auto RMR RM IDR Call_p on Call_e n Call_I Call_II SEL Cal _pctl DHP-R DHP-X CR2 COT/R CR3 TestLoops CR4 AGR_ Z1 AGR_ Z0 AGR_ R1 AGR_ R0 AGX 1 AGX 0 Int_en Fsc_ en CR5 V_7 V_6 V_5 V_4 V_3 V_2 V_1 V_0 Table 5: Summary of CR Registers 6.6.2 XR Registers: Bit 7 6 5 4 3 2 1 0 XR0/ R 0 Wake_ up Caden ce RING Caller_ ID VDD_ OK SI_1 SI_0 XR0/ W 0 0 0 0 0 SO_2 SO_1 SO_0 XR1 0 M_Wa ke_up M_Cad ence M_ RING M_Call er_ID M_VD D_OK M_ SI_1 M_ SI_0 XR2 CTO 7 CTO 6 CTO 5 CTO 4 CTO 3 CTO 2 CTO 1 CTO 0 XR3 AGB1 AGB0 B_off DCU 1 DCU 0 DCI DCR 1 DCR0 XR4 C_7 C_6 C_5 C_4 C_3 C_2 C_1 C_0 XR5 T_7 T_6 T_5 T_4 T_3 T_2 T_1 T_0 XR6 0 0 0 CLK_O FF 0 0 CPS1 CPS0 XR7 0 0 0 0 0 Vdd1 Vdd0 0 Table 6: Summary of CR Registers Semiconductor Group 52 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution ALIS Command Structure 7 ALIS Command Structure The sections below show the structure of the SOP, XOP, COP and CAO write and read commands. Section 7.5 shows an example of a mixed command. 7.1 SOP Commands 7.1.1 SOP - Write Commands DIN 7 6 5 4 3 2 1 0 Bit 7 6 5 4 3 2 1 0 SOP write 1 byte x x 0 1 0 0 0 0 Idle CR0 Data Idle DIN 7 6 5 4 3 2 1 0 Bit 7 6 5 4 3 2 1 0 SOP write 2 bytes x x 0 1 0 0 0 1 Idle CR1 Data Idle CR0 Data Idle DIN 7 6 5 4 3 2 1 0 Bit 7 6 5 4 3 2 1 0 SOP write 3 bytes x x 0 1 0 0 1 0 Idle CR2 Data Idle CR1 Data Idle CR0 Data Idle DIN 7 6 5 4 3 2 1 0 Bit 7 6 5 4 3 2 1 0 SOP write 4 bytes x x 0 1 0 0 1 1 Idle CR3 Data Idle CR2 Data Idle CR1 Data Idle CR0 Data Idle Semiconductor Group 53 DOUT DOUT DOUT DOUT Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution ALIS Command Structure 7.1.2 SOP - Read Commands DIN SOP read 1 byte DIN SOP read 2 bytes DIN SOP read 3 bytes DIN SOP read 4 bytes 7 6 5 4 3 2 1 0 Bit 7 6 5 4 3 2 1 0 DOUT x x 1 1 0 0 0 0 Idle Idle 1 0 0 0 0 0 0 1 ID Idle Data CR0 7 6 5 4 3 2 1 0 DOUT 7 6 5 4 3 2 1 0 Bit x x 1 1 0 0 0 1 Idle Idle 1 0 0 0 0 0 0 1 ID Idle Data CR1 Idle Data CR0 7 6 5 4 3 2 1 0 DOUT 7 6 5 4 3 2 1 0 Bit x x 1 1 0 0 1 0 Idle Idle 1 0 0 0 0 0 0 1 ID Idle Data CR2 Idle Data CR1 Idle Data CR0 7 6 5 4 3 2 1 0 DOUT 7 6 5 4 3 2 1 0 Bit x x 1 1 0 0 1 1 Idle Idle 1 0 0 0 0 0 0 1 ID Idle Data CR3 Idle Data CR2 Idle Data CR1 Idle Data CR0 Note: x: in accordance with the description of the power-up operation command. See “SOP Command” on page 38. Semiconductor Group 54 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution ALIS Command Structure 7.2 XOP Commands 7.2.1 XOP - Write Commands DIN 7 6 5 4 3 2 1 0 Bit 7 6 5 4 3 2 1 0 XOP write 2 bytes 0 0 0 1 1 0 0 1 Idle XR1 Data Idle XR0 Data Idle DIN 7 6 5 4 3 2 1 0 Bit 7 6 5 4 3 2 1 0 XOP write 3 bytes 0 0 0 1 1 0 1 0 Idle XR2 Data Idle XR1 Data Idle XR0 Data Idle 7.2.2 DOUT DOUT XOP - Read Commands DIN XOP read 1 byte DIN XOP read 2 bytes DIN XOP read 3 bytes Semiconductor Group 7 6 5 4 3 2 1 0 Bit 7 6 5 4 3 2 1 0 DOUT 0 0 1 1 1 0 0 0 Idle Idle 1 0 0 0 0 0 0 1 ID Idle Data XR0 7 6 5 4 3 2 1 0 DOUT 7 6 5 4 3 2 1 0 Bit 0 0 1 1 1 0 0 1 Idle Idle 1 0 0 0 0 0 0 1 ID Idle Data XR1 Idle Data XR0 7 6 5 4 3 2 1 0 DOUT 7 6 5 4 3 2 1 0 Bit 0 0 1 1 1 0 1 0 Idle 55 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution ALIS Command Structure Idle 1 0 0 0 0 0 0 1 ID Idle Data XR2 Idle Data XR1 Idle Data XR0 7 6 5 4 3 2 1 0 DOUT 7.3 COP Command 7.3.1 COP - Write Commands DIN 7 6 5 4 3 2 1 0 Bit COP write 4 bytes 0 0 0 0 b b b b Idle Coeff. 3 Data Idle Coeff. 2 Data Idle Coeff. 1 Data Idle Coeff. 0 Data Idle DIN 7 6 5 4 3 2 1 0 Bit 7 6 5 4 3 2 1 0 COP write 8 bytes 0 0 0 0 b b b b Idle Coeff. 7 Data Idle Coeff. 6 Data Idle Coeff. 5 Data Idle Coeff. 4 Data Idle Coeff. 3 Data Idle Coeff. 2 Data Idle Coeff. 1 Data Idle Coeff. 0 Data Idle Semiconductor Group 56 DOUT Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution ALIS Command Structure 7.3.2 COP - Read Commands DIN COP read 4 bytes DIN COP read 8 bytes 7 6 5 4 3 2 1 0 Bit 7 6 5 4 3 2 1 0 DOUT 0 0 1 0 b b b b Idle Idle 1 0 0 0 0 0 0 1 ID Idle Data Coeff.3 Idle Data Coeff.2 Idle Data Coeff.1 Idle Data Coeff.0 7 6 5 4 3 2 1 0 DOUT 7 6 5 4 3 2 1 0 Bit 0 0 1 0 b b b b Idle Idle 1 0 0 0 0 0 0 1 ID Idle Data Coeff.7 Idle Data Coeff.6 Idle Data Coeff.5 Idle Data Coeff.4 Idle Data Coeff.3 Idle Data Coeff.2 Idle Data Coeff.1 Idle Data Coeff.0 Note: b: in accordance with the description of the COP command. See “COP Command” on page 50. Semiconductor Group 57 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution ALIS Command Structure 7.4 CAO Command 7.4.1 CAO - Write Commands DIN CAO write 7.4.2 7 6 5 4 3 2 1 0 Bit 7 6 5 4 3 2 1 0 0 1 0 1 1 0 0 0 Idle Caller ID 512 Idle Caller ID 511 Idle Caller ID 510 Idle ... Idle Caller ID 1 Idle CAO - Read Commands DIN CAO read 7 6 5 4 3 2 1 0 Bit 7 6 5 4 3 2 1 0 DOUT Idle 1 0 0 0 0 0 0 1 ID Idle Data Caller ID 512 Idle Data Caller ID 511 0 1 1 1 1 0 0 0 Idle ... Idle Semiconductor Group Data 58 Caller ID 1 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution ALIS Command Structure 7.5 Example of a Mixed Command Every single command must begin with a falling edge of CS. DIN 7 6 5 4 3 2 1 0 Bit 7 6 5 4 3 2 1 0 DOUT SOP write 4 bytes x x 0 1 0 0 1 1 Idle CR3 Data Idle CR2 Data Idle CR1 Data Idle CR0 Data Idle XOP write 2 bytes 0 0 0 1 1 0 0 1 Idle XR1 Data Idle XR0 Data Idle COP write 4 bytes 0 0 0 0 b b b b Idle Coeff. 3 Data Idle Coeff. 2 Data Idle Coeff. 1 Data Idle Coeff. 0 Data Idle SOP read 3 bytes x x 1 1 0 0 1 0 Idle Idle 1 0 0 0 0 0 0 1 ID Idle Data CR2 Idle Data CR1 Idle Data CR0 0 0 1 0 b b b b Idle Idle 1 0 0 0 0 0 0 1 ID Idle Data Coeff.3 Idle Data Coeff.2 Idle Data Coeff.1 Idle Data Coeff.0 0 0 1 1 1 0 0 0 Idle Idle 1 0 0 0 0 0 0 1 ID Idle Data XR0 COP read 4 bytes XOP read 1 byte Semiconductor Group 59 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Interrupt Controller 8 Interrupt Controller There are seven different sources that can cause interrupts in ALIS. The status of these sources are read from interrupt register XR0. Every interrupt source can be enabled individually in interrupt-enable register XR1. To monitor an interrupt source, the corresponding bit must be set in XR1. If an enabled interrupt indication occurs, the interrupt register XR0 is locked. The lock is released when the interrupt register XR0 is read. Any interrupt indication occurring during a locked period will be detected after the lock has been released. NOTE: An interrupt is only acknowledged when the appropriate bit has been set in the interrupt-enable register XR1. The INT pin can be used as an indication to allow external hardware to read the interrupt register. If the Int_en bit (CR4) is set, the INT pin goes to ’1’ whenever the interrupt register is locked. The host must analyze the bits in the interrupt register to determine the cause of the pending interrupt. All interrupt sources that are not enabled must be ignored by the host in its analysis. It is possible for several sources together to cause only one interrupt! (i.e. breakdown of serial connection to ALIS-A: VDD_OK, SI_0, SI_1; if more interrupts occur during the locked period). If the interrupt was caused by a CADENCE, RING, CALLER_ID or WAKE_UP interrupt, the indication that caused the pending interrupt is reset by reading interrupt register XR0. As only one interrupt can be stored internally, the host must respond immediately to avoid loss of interrupts. 8.1 Nature and Sources of Interrupts: There are three different kinds of interrupt indications depending on their source as shown in the sections below. Semiconductor Group 60 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Interrupt Controller 8.1.1 Interrupt Indication at Signal Change: Interrupts: SI_0, SI_1, VDD_OK; Sources: Signaling pins at ALIS-A (SI_0, SI_1); VDD_OK indicates that ALIS-A has a power supply and that the serial connection via the cap. interface is working; Interrupt indication: Any change in the signals will generate an interrupt. The host must store the previous state of these bits to check which signal caused an interrupt. Note: These bits will go to ‘0’ when there is no connection to ALIS-A via the cap. interface. This will cause interrupts! Lock behaviour: At lock-release time, the current signal is compared to the signal stored at lock time. Any difference will cause another interrupt. 8.1.2 Interrupt Indication at Event: Interrupts: CALLER_ID, RING, CADENCE; Sources: CALLER_ID: Complete marker sequence of caller ID detected; RING: Depending on automatic mode switching: - detection of more than 18 V at TIP/RING (No_auto_ring ’1’); - 2nd valid ringing (No_auto_ring ’0’); CADENCE: Time-out for 2nd ring burst; the time can be programmed in XR2 (No_auto_ring ’0’); Interrupt indication: These interrupts indicate that a certain event has occurred. The bits are set from their source and can be reset from the host only by reading the interrupt register. Whenever one of these bits is set, this is an indication that this event has occurred. Lock behaviour: If one of these events occurs while the register is locked, another interrupt will be generated as soon as the lock is released. Semiconductor Group 61 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Interrupt Controller 8.1.3 Interrupt Indication at High Level: If ALIS-D is set to deep-sleep mode (XR6, CLK_OFF = ’1’), this interrupt indicates that there is a signal greater than 18 V at TIP/RING. Interrupts: WAKE_UP; Source: ring_detect signal from ALIS-A; Interrupt indication: More than 18 V at TIP/RING. It is cleared after the interrupt register has been read. Another interrupt is generated if the signal remains higher than 18 V. Lock behaviour: The interrupt will lock the register as soon as clock is turned on again! (If no clock signal is applied to ALIS-D, the other interrupts cannot occur anyway.) Semiconductor Group 62 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Operating Modes 9 Operating Modes 9.1 Reset (Basic Settings Mode) Condition: RESET low, MCLK can be down ALIS-D: After initial application of VDD (power-on reset), reset of the setting pin to ’0’ during operation or a software reset (see XOP command), ALIS-D enters the basic settings mode. Basic settings means that the ALIS-D configuration registers CR0... CR5 and XR0... XR7 are initialized to the default value (sleep mode). All programmable filters are disabled. If any voltage is applied to any input pin before the initial application of VDD, ALIS may be unable to enter the basic settings mode. In this case, it is necessary to reset ALIS or to initialize its configuration registers to the default value. ALIS-A: When the plug is connected to TIP/RING and the hook switch is closed, ALIS-A generates its supply voltage from the line current and performs a power-on reset. 9.2 Deep Sleep Mode Condition: RESET ’1’, if used the external master clock can be deactivated. It can be entered from any mode by programming the CLK_OFF bit in XR6. During deep sleep mode, the serial control interface is ready to receive and register commands only when MCLK is switched on (see “XR6 Extended Register 6 (Power State)” on page 49). Incoming rings will be indicated by the Wake_up interrupt. 9.3 Sleep Mode Condition: RESET ’1’, if used the external master clock must be activated. When the RESET pin (RESET state) is released, ALIS enters sleep mode. ALIS is forced to sleep mode when the PU (power up) bits are set to '00' in the SOP command. During sleep mode, the serial control interface is ready to receive commands and transmit data. Voice data received on the DAT_IN pin will be ignored. The ALIS configuration registers the caller ID RAM, and the coefficient RAM can be loaded and read back in this mode. 9.4 Ringing Mode Condition: RESET ’1’, if used the external master clock must be activated. This mode is entered automatically when bit No_auto_ring is set to 0 from sleep mode after the first ringing pulse or when the PU bits are set to '01' in the SOP command. In this mode, ALIS will measure the level, frequency and cadence of the ringing signal. The cadence between the first two ring bursts is stored in XR4. If the Caller_en bit is enabled, an incoming caller ID will be decoded and stored (see CAO command). Semiconductor Group 63 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Operating Modes 9.5 Conversation Mode Condition: RESET ’1’, if used the external master clock must be activated. The operating mode is entered upon recognition of the PU bits set to '10' in a SOP command. In conversation mode, the AC impedance loops and the DC loops are switched on. The programmed AC and DC characteristics are implemented by these loops. The receive and transmit paths are on. The tone generators are available. 9.6 Pulse Dialing Mode Condition: RESET ’1’, if used the external master clock must be activated. The pulse dialing mode is entered by setting the PU bits to '11' in a SOP command. In pulse dialing mode, the external transistor T1 is switched on and off in accordance with the PULSE bit in CR1. The pulse timing must be controlled by the host. Semiconductor Group 64 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Operating Modes 9.7 Operating Flowchart clock_off Bit is 1 wake_up DEEP SLEEP 1 command 2 ring (in no_auto_ring = 1 and ring) cadence SLEEP first ring ends & no caller ID || no valid ring ringing & no_auto_ring = 0 command 3 ring (if no_auto_ring = 0 and second valid ring) vdd si0 si1 caller_id RINGING command on hook PULSE DIALING vdd si0 si1 CON VERSATION off hook Figure 25 9.8 1 user has to programm clock_off bit and supply clock signal in case of external clock 2 after this interrupts the alis -d system will stay in sleep mode. A user command to ringing is mandatory. 3 after this interrupts the alis -d system will stay in ringing mode. A user command to active or sleep is mandatory. Operating Mode Transitions and Interrupts Flow of Ring Sequence and Detection Ring detection works in ALIS as a two step procedure. In a first step, ALIS-A will detect any AC signal at TIP and RING with a peak value of more than 18 V and will generate the Ring_detect signal. This signal can either generate an interrupt or switch ALIS to ringing mode depending on the No_auto_ring bit in CR1 (see “CR1 Configuration Register 1 (Dialing)” on page 40). The current power mode can Semiconductor Group 65 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Operating Modes be read from the register XR6 (see “XR6 Extended Register 6 (Power State)” on page 49). As a second step, only if enabled by RM (see “CR1 Configuration Register 1 (Dialing)” on page 40) in ringing mode, the TIP/RING signal will be band-filtered and compared to a programmable threshold. If the result is higher than this threshold, the RMR-bit signal is set to one. The ring threshold can be polled as the RMR bit in CR1. The following flow charts show these sequences in more detail. Note: The initial connection to TIP RING looks like a ring voltage to ALIS-A. The reaction of ALIS-D depends on the auto_ring bit: a) auto_ring: ALIS-D goes to ringing, since the spike is not a valid ringing signal. ALIS-D then goes to sleep mode. b) No_auto_ring: ALIS-D generates a ring interrupt, stays in sleep mode and waits for a command. The user has to switch ALIS-D to ringing and poll the RMR bit. If ringing is not valid (RMR bit = 0), the chip can be set back to sleep mode. To detect a valid ring signal and caller ID, ALIS must be programmed to the following setting: • set RM to ’1’ (see “CR1 Configuration Register 1 (Dialing)” on page 40) • cadence time-out must be programmed to PTT requirements (see “XR2 Extended Register 2 (Cadence Time Out)” on page 47) • ring latency timer must be programmed to a value higher than four times the ring period (see “XR5 Extended Register 5 (Ring Timer)” on page 49) • valid ring coefficients • set No_auto_ring to ’0’ (see “CR1 Configuration Register 1 (Dialing)” on page 40) • enable Call_en (see “CR2 Configuration Register 2 (Caller ID)” on page 41) • enable corresponding interrupts Semiconductor Group 66 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Operating Modes 9.8.1 Successful Ring Sequence, Auto Ring Enabled, no Caller ID The following chart and diagram show the successful flow of a ring-event detection with automatic power-mode change (No_auto_ring = 0, Caller_en = 0, RM = 1). In this operating mode, ALIS will not decode a caller ID. 1 s t R IN G 2 n d R IN G B u rs t B u rs t R in g _ d e te c t R in g _ th r e s h o ld Line: on hook 1st ring on hook Mode: sleep ringing sleep Counter: ringcounter 2nd ring on hook ringing off hook conv. ringcounter cadence counter Interrupt: VDD_ok VDD_ok VDD_ok VDD_ok VDD_ok ring Figure 26 Successful Ring Sequence, No_auto_ring = 0; Caller_en = 0 Semiconductor Group 67 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Operating Modes 9.8.2 Successful Ring Sequence, Auto Ring Enabled, Caller ID The following chart and diagram show the successful flow of a ring-event detection with automatic power-mode change (No_auto_ring = 0, Caller_en = 1, RM = 1). In this operating mode, ALIS will decode and store a caller ID. 1 s t R IN G 2 n d R IN G B u rs t B u rs t C a lle r ID R e a d in g C a lle r Id R in g _ d e te c t R in g _ th r e s h o ld Line: on hook Mode: sleep 1st ring on hook caller ID on hook 2nd ring on hook ringing Counter: ringcounter off hook conv. ringcounter cadence counter Interrupt: VDD_ok VDD_ Caller_ID ok VDD_ok Vdd_ok ring Vdd_ok Figure 27 Successful Ring Sequence, No_auto_ring = 0; Caller_en = 1 Semiconductor Group 68 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Operating Modes 9.8.3 Unsuccessful Ring Sequence, Auto Ring Enabled, no Caller ID The following chart and diagram show the unsuccessful flow of a ring-event detection because of no 2nd ring with automatic power-mode change (No_auto_ring = 0, Caller_en = 0, RM = 1). 1 s t R IN G 2 n d R IN G B u rs t B u rs t R in g _ d e te c t R in g _ th r e s h o ld Line: on hook 1st ring on hook Mode: sleep ringing sleep Counter: ringcounter cadence counter Interrupt: VDD_ok VDD_ok cadence Figure 28 Unsuccessful Ring Sequence, No_auto_ring = 0; Caller_en = 0 Semiconductor Group 69 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Operating Modes 9.8.4 Unsuccessful Ring Sequence, Auto Ring Enabled, Caller ID The following chart and diagram show the unsuccessful flow of a ring-event detection because of no 2nd ring with automatic power-mode change (No_auto_ring = 0, Caller_en = 1, RM = 1). 1 s t R IN G 2 n d R IN G B u rs t B u rs t C a lle r ID R e a d in g C a lle r Id R in g _ d e te c t R in g _ th r e s h o ld Line: on hook Mode: sleep 1st ring on hook caller ID on hook ringing Counter: sleep ringcounter cadence counter Interrupt: VDD_ok VDD_ok Caller_ID cadence Figure 29 Unsuccessful Ring Sequence, No_auto_ring = 0; Caller_en = 1 Semiconductor Group 70 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Operating Modes 9.8.5 Successful Ring Sequence, Auto Ring Disabled, No Caller ID The following chart and diagram show the successful flow of a ring-event detection with no automatic power-mode change (No_auto_ring = 1, Caller_en = 0, RM = 1). In this operating mode, ALIS will not decode the caller ID. 1 s t R IN G 2 n d R IN G B u rs t B u rs t R in g _ d e te c t R in g _ th r e s h o ld Line: on hook 1st ring on hook Mode: sleep ringing sleep Interrupt: ring Host CMDs: ring mode VDD_ok 2nd ring ringing VDD_ok ring sleep mode poll RMR √ on hook off hook conv. VDD_ok VDD_ ok ring mode close hook; conv. poll RMR √ Figure 30 Successful Ring Sequence, No_auto_ring = 0; Caller_en = 0 Note: The RMR bit must be polled by the host to verify that the ringing signal is above the programmed threshold level and check the VDD interrupts. Semiconductor Group 71 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Operating Modes 9.8.6 Successful Ring Sequence, Auto Ring Disabled, Caller ID The following chart and diagram show the successful flow of a ring-event detection with no automatic power-mode change (No_auto_ring = 1, Caller_en = 1, RM = 1). In this operating mode, ALIS will decode and store the caller ID. 1 s t R IN G 2 n d R IN G B u rs t B u rs t C a lle r ID R e a d in g C a lle r Id R in g _ d e te c t R in g _ th r e s h o ld Line: on hook Mode: sleep Interrupt: Host CMDs: 1st ring on hook 2nd ring on hook ringing ring VDD_ok Caller_ID off hook conv. VDD_ok ring VDD _ok ring mode VDD _ok close hook; conv. poll RMR √ poll RMR √ Figure 31 Successful Ring Sequence, No_auto_ring = 1; Caller_en = 1 Note: The RMR bit must be polled by the host to verify that the ringing signal is above the programmed threshold level. By leaving ALIS in ringing mode after the first ring, the caller ID can be detected and stored. Semiconductor Group 72 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Operating Modes 9.8.7 Unsuccessful Ring Sequence, Auto Ring Disabled, no Caller ID The following chart and diagram show the unsuccessful flow of a ring-event detection because of no 2nd ring with no automatic power-mode change (No_auto_ring = 1, Caller_en = 0, RM = 1). 1 s t R IN G 2 n d R IN G B u rs t B u rs t R in g _ d e te c t R in g _ th r e s h o ld Line: on hook 1st ring on hook Mode: sleep ringing sleep Interrupt: ring Host CMDs: ring mode VDD_ok sleep mode poll RMR √ Figure 32 Unsuccessful Ring Sequence, No_auto_ring = 1; Caller_en = 0 Note: The RMR bit must be polled by the host to verify that the ringing signal is above the programmed threshold level. The cadence time and number of rings must be calculated by the host. Semiconductor Group 73 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Operating Modes 9.8.8 Unsuccessful Ring Sequence, Auto Ring Disabled, Caller ID The following chart and diagram show the unsuccessful flow of a ring-event detection because of no 2nd ring with no automatic power-mode change (No_auto_ring = 0, Caller_en = 1, RM = 1). . 1 s t R IN G 2 n d R IN G B u rs t B u rs t C a lle r ID R e a d in g C a lle r Id R in g _ d e te c t R in g _ th r e s h o ld Line: on hook Mode: sleep Interrupt: 1st ring on hook caller ID on hook ringing ring Host CMDs: VDD_ok Caller_ID ring mode poll RMR √ Figure 33 Unsuccessful Ring Sequence, No_auto_ring = 1; Caller_en = 1 Note: The cadence time and the number of rings must be calculated by the host. Semiconductor Group 74 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Operating Modes 9.8.9 Unsuccessful Ring Sequence, Auto Ring Enabled The following chart and diagram shows an unsuccessful flow of a ring-event detection because ringing is below the ring threshold level with an automatic power-mode change (No_auto_ring = 0, RM = 1). 1 s t R IN G 2 n d R IN G B u rs t B u rs t R in g _ d e te c t R in g _ th r e s h o ld Line: on hook 1st ring on hook Mode: sleep ringing sleep Counter: Interrupt: ringcounter VDD_ok VDD_ok Figure 34 Unsuccessful Ring Sequence, No_auto_ring = 0 Semiconductor Group 75 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Operating Modes 9.8.10 Unsuccessful Ring Sequence, Auto Ring Disabled The following chart and diagram show an unsuccessful flow of a ring-event detection because ringing is below the ring threshold level with no automatic power-mode change (No_auto_ring = 1, RM = 1). 1 s t R IN G 2 n d R IN G B u rs t B u rs t R in g _ d e te c t R in g _ th r e s h o ld Line: on hook 1st ring on hook Mode: sleep ringing sleep Interrupt: ring Host CMDs: ring mode VDD_ok sleep mode poll RMR √ Figure 35 Unsuccessful Ring Sequence, No_auto_ring = 0 Note: RMR will not be ’1’ Semiconductor Group 76 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Operating Modes 9.8.11 Start from Deep Sleep Mode The following chart and diagram show a start-up procedure from deep sleep mode. 1 s t R IN G 2 n d R IN G B u rs t B u rs t R in g _ d e te c t R in g _ th r e s h o ld Line: on hook Mode: deep sleep Interrupt: 1st ring Wake_up Host CMDs: enable MCLK on board any power mode set CLK_OFF = 0 Figure 36 Deep Sleep Start Note: After the wake_up interrupt, any power mode and operation flow can be programmed as described in the previous sections . Semiconductor Group 77 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Modem Functions 10 Modem Functions 10.1 Pulse Dialing Pulse dialing will be implemented by shortening the line with external transistor T1. Pulse timing must be controlled by the host. Pulse shaping is implemented in ALIS-A and complies with ETS 300 001 10.2 DTMF Dialing DTMF Dialing is implemented by two internal tone generators (see “Programming the ALIS DTMF Tone Generators” on page 78). Since the level of tone generator 2 is 3 dB higher than that of tone generator 1, the former should be used for the high frequency group. The frequency accuracy of the tone generators is better than ±1%. The absolute transmission level can be programmed using the AX filter. Software for computing the coefficients is available. The tone generators can also be used to generate any in-band sine wave for test or measurement purposes. 10.2.1 Programming the ALIS DTMF Tone Generators Two independent tone generators are available. When one or both of them are turned on, the voice signal is switched off automatically. A programmable bandpass filter is included to make the generated signal suitable for DTMF. The default frequency for both tone generators is 2000 Hz. Coefficients for other frequencies are generated by a software tool. Byte sequences for programming both tone generators and bandpass filters: Frequency Command Byte 1 Byte 2 Byte 3 Byte 4 697 Hz 0B *) 11 B3 5A 2C 770 Hz 0B *) 12 33 5A C3 852 Hz 0B *) 13 3C 5B 32 941 Hz 0B *) 1D 1B 5C CC 1209 Hz 0C *) 32 32 52 B3 1336 Hz 0C *) EC 1D 52 22 1477 Hz 0C *) AA AC 51 D2 1633 Hz 0C *) 9B 3B 51 25 Semiconductor Group 78 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Modem Functions *) 0B is used for programming tone generator 1 0C is used for programming tone generator 2 Table 7: Programming the tone generators The sine wave is filtered by a bandpass, the Q factor of this band filter can be altered in the range from 0 to 7 and can be programmed by setting the first nibble of byte 3 to the corresponding value (always 5 in this table). The resulting signal amplitude can be set by programming the filters AR1 and AR2. 10.3 Caller ID The caller ID interface is compatible with Bellcore TR-NWT-000030 and SR-TSV002476 as regards generic requirements for transmitting asynchronous voice-band data to customer premises equipment (CPE) from a serving stored-control switching system (SPCS) or a central office (CO). In this service, the information about the calling party is embedded in the silent interval between the first and the second ring. During this period, ALIS receives and stores up to 4096 bits of the1200-baud FSK signal. The decoding also complies with BELL 202 and CCITT V.23 specifications. (see “Programming the ALIS Caller ID Coefficients” on page 81) 10.3.1 Characteristics for Caller ID Parameter Symbol Limit Values min Input detection level Vin typ -36 12.3 Unit Reference max -9 275 dBm mV Detect frequencies Bell 202 1 (mark) Bell 202 0 (space) CCITT V.23 1 (mark) CCITT V.23 0 (space) Input noise tolerance SNR Input baud rate 1188 2178 1200 2200 1212 2222 Hz Hz Bell 202 1280.5 2068.5 1300 2100 1319.5 2131.5 Hz Hz CCITT V.23 20 dB 1188 1200 1212 Hz Table 8: Characteristics of Caller ID Semiconductor Group 79 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Modem Functions 10.3.2 Storage and Reading of Caller ID The storage of the decoded caller ID is enabled after the first space following the mark state. This event will be indicated by the caller ID interrupt. The maximum storage size is 4096 bits. Start, stop-bit and check-sum decoding must be performed by the host. CID FSK First Ringing TIP/RING Second Ringing DATA mark state channel seizure Figure 37 CID Input Timing When the RAM is read with the CAO command, the received bits will be sent from ALIS in the following order: b22 b23 b8 b9 b10 b11 b12 b13 b14 b15 b0 b1 b2 b3 b4 b5 id_byte b6 DOUT: CAOcommand b7 DIN: ... b0 is the first caller ID data bit after the ’0’ which ends the marker sequence, b1 the second, b2 the third etc. ... The host can read the caller ID RAM at any time. Note that the read data may be erroneous when caller ID data is received at the same time, as old and new data might be mixed. However, the received caller ID bits are stored correctly in the RAM! -> Try not to read the RAM while the caller ID is being received! Semiconductor Group 80 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Modem Functions 10.3.3 Programming the ALIS Caller ID Coefficients Frequency Command Byte 1,2 Byte 3,4 Byte 5,6 Byte 7,8 BELL 202 / CCITT V.23 0E (CID1) CA 0E CA 09 99 99 99 99 0F (CID2) FD B5 BA 07 DA XX XX XX Table 9: Programming the ALIS Caller ID Coefficients 10.4 Billing Pulse Billing pulse frequencies of 12 and 16 kHz are filtered out by the digital part of ALIS. No external components are necessary for blocking. 10.5 Ring Detect 10.5.1 Functional Description In sleep mode, any signal greater than a typical value of 18 volts will be detected. Depending on the No_auto_ring bit, either an interrupt will occur or ALIS will be switched automatically to ringing mode. In this mode, the ringing signal will be passed to ALIS-D and decoded. If the ring burst does not meet the programmed requirements within a programmable time, ALIS will return to sleep mode. After a latency time, ALIS will decode the caller ID. When the second valid ring burst occurs, a ring interrupt is generated, signalling the incoming call to the host (see “Flow of Ring Sequence and Detection” on page 65) Semiconductor Group 81 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Modem Functions 10.5.2 Programming the ALIS Ring Detect Coefficients Frequency 25 Hz 70Vrms 10 kΩ 1.0 µF Command Byte 1 Byte 2 Byte 3 Byte 4 0D AA 05 0F 8E Command Byte 1,2 Byte 3,4 Byte 5,6 Byte 7,8 03 1C B3 AB AB 54 2D 62 2D 06 2D 62 A6 BB 2A 7D 0A D4 Table 10: Programming ALIS Ring Detect Coefficients Frequency 50 Hz 50Vrms 10kΩ 0.6 µF Command Byte 1 Byte 2 Byte 3 Byte 4 0D 22 15 B5 84 Command Byte 1,2 Byte 3,4 Byte 5,6 Byte 7,8 03 1C A4 AA AB BD 2B A2 2D 06 2B A2 A6 BB 2C 63 3A D4 Unit Reference Table 11: Programming ALIS Ring Detect Coefficients 10.5.3 Ring Threshold in Sleep Mode Parameter Symbol Limit Values min Ring Threshold typ max 12 18 Vrms Table 12: Ring Threshold in Sleep Mode Semiconductor Group 82 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Electrical Characteristics 11 Electrical Characteristics 11.1 Programmable Filters A set of programmable filters is used to adapt the whole system to: • country standards • board designs (EMI capacitors etc.) • data pumps • telephone lines Note: All these coefficients will be computed by a coefficient program. Any change in these computed values may cause a loss of performance or instability. In detail, the following filters are programmable: • • • • • • Trans-hybrid balancing (TH) filter Trans-hybrid pre-balancing filter Impedance matching (IM) filter Frequency response receive (FRR) filter Frequency response transmit (FRX) filter Ringer impedance Amplification/attenuation transmit (AX) filter Gain for AX filter range 3.. -14 dB: step size 0.02 .. 0.05 dB range -14 .. -24 dB: step size 0.5 dB Gain for AGX range 3.5, 0 -2.5, -6 Amplification/attenuation receive (AR) filter Gain for AR filter range -3 .. 14 dB: step size 0.02 .. 0.05 dB range 14 .. 24 dB: step size 0.5 dB Gain for AGR_R: range 0, 3.5, 6 dB Gain for AGR_Z: range -3.5, 0, 2.5, 6 dB 11.2 DC Characteristics The filter coefficients are generated by a software tool including a high-level model of ALIS and additional user-defined or application-specific system components. Semiconductor Group 83 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Electrical Characteristics 11.2.1 DC Termination The DC termination is enabled in conversation mode and is disabled during ringing mode, puls dialing mode and sleep mode. The DC termination can be programmed according to the formula: for i < Imax ( u – Uo ) i ( u ) = --------------------R for i > Imax i ( u ) = Imax Note: U0 is the sum of the U value listed in table 14 and the flow voltage of the diodes in the external bridge (typ. 2 x 0.4 V) 11.2.2 Programming Ranges for DC Termination Imax 50 mA 100 mA Table 13: Programming Range for Imax U (DCU) 0V 1.5 V 3.5 V 7.2 V Table 14: Programming Range for U R (DCR) 70 Ω 100 Ω 200 Ω 240 Ω 280 Ω Table 15: Programming Range for R Note: For programming details, see “XR3 Extended Register 3 (DC Characteristic)” on page 47 Semiconductor Group 84 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Electrical Characteristics 11.2.3 Input Current in Puls Dialing Mode Uab = 30 V DC Parameter Symbol Limit Values min Input current at break typ Unit max Iin 500 µA Table 16: Input Current in Puls Dialing Mode 11.3 AC Termination 11.3.1 Ringer Impedance Programming of the ringer impedance is supported by a software tool. The following table shows typical values. Uab = 70 Vrms Parameter Symbol Limit Values min Ringer impedance (20 Hz < f <60 Hz)1) Rin 5 Typical capacitors Cin 0.6 typ 10 Unit max 25 kΩ 1 µF Ringer impedance in other modes2) 1) The frequency range can be changed 2) Ringer impedance is generated only in ring mode Table 17: Ringer Impedance Semiconductor Group 85 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Electrical Characteristics 11.4 ALIS Caller ID Interface Parameter Symbol Limit Values min typ Unit max Capacitance Cin 50 nF Rin Rin 50 kΩ Rfb Rfb 200 kΩ Table 18: ALIS Caller ID Interface 11.4.1 Ring Detect Levels and Frequencies . Parameter Symbol Limit Values min Range of programs for ring-level detection Vring Ring-level detection step size ∆ Vring Range of programs for frequency detection Fring typ 30 20 Unit Tolerance max 100 V ± 10% 10 V ± 10% 60 Hz ± 10% Table 19: Ring Detect Levels and Frequencies 11.5 ALIS Cap Interface Parameter Symbol Limit Values Unit min typ max 5 10 1000 pF Tolerance between CAP_x1 and CAP_x2 5 % Inductance 10 nH Capacitance Cin Isolation 2 4 kV Table 20: ALIS Cap Interface Semiconductor Group 86 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Electrical Performance Characteristic 12 Electrical Performance Characteristic 12.1 Absolute Maximum Ratings Parameter Symbol Ratings Unit min max Digital supply voltage VDD -0.3 7.0 V Analog supply voltage VDDA -0.3 7.0 V Vin, Vout -0.3 VDDA + 0.3 V VDin -0.3 VDD + 0.3 V Iin, Iout -10 10 mA TST -60 125 °C TA -10 80 °C 1 W Analog input and output voltage Digital input voltages DC input and output current Storage temperature Ambient temperature under bias Max. power dissipation PDmax Note: Stresses above the absolute maximum ratings may cause permanent damage to the device. Extended operation at maximum levels may degrade performance and affect reliability. Table 21: Absolute Maximum Ratings Semiconductor Group 87 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Electrical Performance Characteristic 12.2 Recommended Operating Conditions Parameter Symbol Conditions Unit min typ max VDD 4.75 5.0 5.25 Analog supply voltage ALIS-A (programmed to 4.25 V) VDDA 4.00 4.25 Analog supply voltage ALIS-D VDDA 4.75 5.0 Ambient temperature under bias TA 0 Operating frequency fclk Digital supply voltage Clock duty cycle 45 Signal rise and fall time V V 5.25 V 70 °C 16.384 20** MHz 50 55 % 20 ns tr, tf Note: Extended operation outside the recommended limits may degrade performance and affect reliability. Note: **This value is guaranteed by design. Characterization and periodically samples will be applied to production devices at this test conditions. Table 22: Recommended Operating Conditions 12.3 DC Characteristics 12.3.1 ALIS-A VDDA= 4.25V progr.; TA=0 - 70°C Parameter Symbol Conditions Spec. Limits min Power-up time typ Unit max 100 ms 2.5 3 mA 7 10 mA 500 µA tPU VDDA supply current1) Ringing mode2) IDDA1 Conversation mode3) IDDA2 fclk=16.384MHz Pulse dialing mode IDDA3 Vab=30 V DC Vring=60V DC + 90Vrms, fring=25 - 50Hz Digital interface Semiconductor Group 88 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Electrical Performance Characteristic Low-level input voltage VIL4) High-level input voltage VIH4) 0.8 2.0 5) V V Low-level output voltage VOL IOL=5mA High-level output voltage VOH5) IOH=-5mA Input current low IIL VIL=GNDA ±1 µA Input current high IIH VIH=VDDA ±1 µA Sleep mode Rin note6) MΩ Conversation mode Rin see 10.2.3 Ω Pulse dialing mode Rin Inter-pulsing period (make) 0.5 3.25 V V Input resistance Ring threshold VRThresh VDDA=4.25V ext. Power supply rejection PSRR 200 Ω 15 VRMS Ripple: 0-150kHz; 70mVrms either supply/direction 300Hz - 3.4kHz 40 dB either supply/direction 3.4kHz - 150kHz 25 dB 1) Will be taken from TIP/RING when the hook switch is open 2) In ringing mode the ringer impedance will be synthesized. Therefore a current according to this impedance will flow from TIP/RING. This current is taken out of the ring burst as an AC current. 3) In conversation mode the DC characteristic will be synthesized and a current according to this characteristic will flow from TIP/RING. 4) Digital Inputs: Test, SI_0, SI_1 5) Digital Outputs: SO_0, SO_1Q 6) Within this mode the hook switch must be open and the input resistance is infinite. Table 23: DC Characteristics ALIS-A Semiconductor Group 89 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Electrical Performance Characteristic 12.3.2 ALIS-D VDD = VDDA= 5V± 5%; TA=0 - 70°C Parameter Symbol Conditions Spec. Limits min Supply current Unit typ max <10 50 µA 3.5 10 mA 8.0 15 mA VDD=5V, no loads Deep sleep mode IDD0 Sleep mode IDD1 Ringing mode IDD2 Conversation mode IDD3 13 25 mA Pulse dialing mode IDD4 8.0 15 mA 0.8 1.5 0.5 V fclk = 16.384 MHz 1) Low-level input voltage VIL1 VIL22) VIL33) High-level input voltage VIH11) VIH22) VIH33) Low-level output voltage VOL4) IOL=5mA High-level output voltage VOH4) IOH=-5mA Input current low IIL1,2) VIL=GND ±1 µA 1,2) VIH=VDD ±1 µA V 2.0 3.5 3.5 0.5 VDD0.5 V V Input current high IIH Tri-state current low IOZL5) VIL=GND ±1 µA Tri-state current high IOZH5) VIH=VDD ±1 µA 1) TTL Inputs: DCLK, CS, DIN, DAT_CLK, DAT_IN, MODE, FSC 2) CMOS Input: RESET 3) Clock Input: MCLK1 4) Outputs: DOUT, INT, DAT_OUT, FSC 5) Tristates, Bidirectionals: DOUT, FSC Table 24: DC Characteristics ALIS-D Semiconductor Group 90 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Electrical Performance Characteristic 12.4 AC Transmission Characteristics Unless otherwise stated, the transmission characteristics are guaranteed within the following test conditions: TA=0 °C to 70 °C VDD=5V ±5% VDDA=4.25V (generated from ALIS-A) Line impedance ZL = 600 ± 0.1% Ohms Termination impedance ZM = 600 Ohms digital: 0dBm0 = -3 dB FS analog: 0 dBm is equal to the voltage of 0.775 Vrms when loaded with 600 Ohms 0 dBm = 0dBm0 f=1004Hz. 2 VRMS metering at 12 or 16 kHZ VDDA programmed to 4,25 V: VTIP/RING>=6,8 V VDDA programmed to 4 V: VTIP/RING>=6,5 V 12.4.1 Absolute Gain Error AGX=AGR=0 dB Parameter Symbol Limit Values min Absolute gain error receive typ Unit max AE_R -10 dBm TA=25 °C; VDDA=4.25V -1 ±0.5 +1 dB TA=0-70 °C; VDDA=4.25V -1.2 ±0.7 +1.2 dB Absolute gain error transmit AE_X -10 dBm0 TA=25 °C; VDDA=4.25V -1 ±0.5 +1 dB TA=0-70 °C; VDDA=4.25V -1.2 ±0.7 +1.2 dB Semiconductor Group Test condition 91 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Electrical Performance Characteristic Table 25: Absolute gain error 12.4.2 Gain Tracking AGX=AGR=0dB Parameter Symbol Limit Values min Gain tracking receive Gain tracking transmit GT_R GT_X typ Unit Test condition max -0.15 ±0.01 0.15 0 to -10 dBm -0.15 ±0.01 0.15 -30 to -40 dBm -0.3 ±0.07 0.3 -40 to -50 0.dBm -0.5 ±0.05 0.5 0 to -10 dBm0 -0.1 ±0.07 0.1 -10 to -40 dBm0 -0.5 ±0.3 -40 to -50 dBm0 0.5 Table 26: Gain Tracking 12.4.3 Harmonic Distortion plus Noise -10 dBm0; ZL= 600 Ω; f=1004 Hz Parameter Symbol Limit Values min typ Unit Test condition max HDN receive THDN_Rc 74 77 dBFS HDN transmit THDN_Tc 74 77 dBFS HDN receive THDN_Rl 72 75 dBFS HDN transmit THDN_Tl 72 75 dBFS C-weighted linear-weighted1) 1) Linear weighted values are guaranteed by design, characterization, and periodically samples and testing production devices at this test conditions Table 27: Harmonic Distortion plus Noise Semiconductor Group 92 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Electrical Performance Characteristic 12.4.4 Harmonic Distortion -10 dBm0; ZL= 600 Ω; f=100 to 2000 Hz, 2nd and 3rd harmonic Parameter Symbol Limit Values min typ Unit Test condition max HD receive HDN_R 80 dB HD transmit HDN_T 80 dB HD of echo signals via TIP/RING HDN_El 80 dB Table 28: Harmonic Distortion for Echo Signals 12.4.5 Return Loss The return loss at a level of 0 dBm0 will be better than 16 dB in a 300-3600 Hz bandwidth using the following set of defined impedances 600 Ohms 220 Ohms + (820 Ohms in parallel with 115 nF) 120 Ohms + (820 Ohms in parallel with 110 nF) 370 Ohms + (620 Ohms in parallel with 310 nF) Semiconductor Group 93 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Electrical Performance Characteristic 12.4.6 Frequency Response 12.4.6.1 Receive Reference frequency 1kHz, input signal level 0dBm0 Figure 38 Frequency Response Receive Semiconductor Group 94 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Electrical Performance Characteristic 12.4.6.2 Transmit Reference frequency 1kHz, input signal level 0dBm0 Figure 39 Frequency Response Transmit Semiconductor Group 95 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Electrical Performance Characteristic 12.4.7 Group Delay Maximum delays when ALIS is operating with H(TH)=H(IM)=0 and H(FRR)=H(FRX)=1 including the delay through A/D- and D/A converters. Specific filter programming may cause additional group delays. Group Delay deviations remain within the limits in the figures below. 12.4.7.1 Group Delay Absolute Values Parameter Symbol Limit Values min typ Unit Reference max Receive delay DRA 340 µs Transmit delay DXA 400 µs Input signal level 0 dBm0 Table 29: Group Delay 12.4.7.2 Group Delay Distortion Receive Input signal level 0dBm0 Figure 40 Group Delay Distortion Receive Semiconductor Group 96 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Electrical Performance Characteristic 12.4.7.3 Group Delay Distortion Transmit Input signal level 0dBm0 1)) Figure 41 Group Delay Distortion Transmit 1 R is switched on: reference point is at TGmin HPR is switched off: reference point is at 1.5 kHz Semiconductor Group 97 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Electrical Performance Characteristic 12.4.8 Out-of-Band Signals at TIP/RING Receive When an 0dBm0 out-of-band sine-wave signal with a frequency of (<<100Hz or 3.4kHz to 100kHz) is applied to the analog input, the level of any resulting frequency component at the digital output will stay at least X dB below a 0dBm0, 1kHz sine wave reference signal at the analog input.1)) Figure 42 Out of Band Receive 1 Poles at 12 kHz ± 150 Hz and 16 kHz ± 150 Hz will be provided Semiconductor Group 98 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Electrical Performance Characteristic 12.4.9 Out-of-Band Signals at TIP/RING Transmit When a 0 dBm0 sine wave with a frequency of (300Hz to 3.99kHz) is applied to the digital input, the level of any resulting out-of-band signal at the analog output will stay at least X dB below a 0 dBm0 1 kHz sine-wave reference signal at the analog output. Figure 43 Out of Band Transmit Semiconductor Group 99 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Electrical Performance Characteristic 12.4.10 Trans-hybrid Loss The quality of trans-hybrid balancing is very sensitive to deviations in gain and group delay. These deviations are inherent in ALIS A/D and D/A converters as well as in all the external components used. Measurement of ALIS trans-hybrid loss: A 0dBm0 sine wave signal and a frequency in the range between 300 - 3400 Hz is applied to the digital input. The resulting analog output signal VOUT at TIP RING is received and canceled by the TH filter. The programmable filters FRR, AR, FRX, AX and IM and the balancing filter TH are enabled with optimized coefficients. The resulting echo measured at the digital output is at least X dB below the level of the digital input signal as shown in the table below. (Filter coefficients will be provided.) Parameter Symbol Trans-hybrid loss at Limit Values min typ Unit Test condition TA=25° C; VDDA=4.25V; 300 Hz THL 300 27 40 dB 500 Hz THL 500 33 45 dB 2500 Hz THL2500 29 40 dB 3000 Hz THL3000 27 35 dB 3400 Hz THL3400 27 35 dB Table 30: Trans-hybrid Loss The listed values for THL correspond to a typical variation of the signal amplitude and delay in the analog blocks. Amplitude =typ. ±0.8 dB Delay =typ. ±0.5 µs Semiconductor Group 100 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Electrical Performance Characteristic 12.5 AC Timing Characteristics 12.5.1 Input/ Output Waveform for AC Tests 2,8 2,4 0,8 Device under Test 2,4 0,8 Test Points 0,4 = 50pF max C Load Figure 44 Waveform for AC Tests 12.5.2 Reset Timing For resetting ALIS to its basic settings mode, negative pulses applied to the RESET pin have to be lower than 1.5 volts (CMOS Schmitt trigger input) and longer than 180 ns. Signals shorter than 40 ns are ignored. 12.5.3 Control Interface Timing C S t s u (C S ) t t h d (C c (D C L K ) S ) D C L K t s u (D IN ) t h d (D IN ) t D IN p d (D O U T ) t p d (D O U T Z ) H IG H IM P . D O U T Figure 45 Control Interface Timing Semiconductor Group 101 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Electrical Performance Characteristic VDD=VDDA= 5V± 5%; TA= 0 - 70°C Parameter Symbol Limit Values min Clock cycle time tc(DCLK) typ Unit max 1/1024 Clock duty cycle 45 50 1 ms 55 % Setup time, CS↓ before DCLK↓ tsu(CS) 50 2*tclk1) ns Hold time, CS↑ after DCLK↓ thd(CS) 120 ns Setup time, DIN before DCLK↓ tsu(DIN) 60 ns Hold time, DIN after DCLK↓ thd(DIN) 120 ns Delay time, DCLK↑, to DOUT Delay time, CS↑ to DOUTZ tpd(DOUT) 100 ns tpd(DOUTZ) 100 ns 1) tclk=1/fclk Table 31: Control Interface Switching Characteristics 12.5.4 Data Interface Timing t F S C t t c (F S C ) w (F S C ) p d (F S C ) t t id le ( F S c (D A T _ C L K ) C ) D A T _ C L K t s u (D A T _ IN ) t h d (D A T _ IN ) t p d (D D A T _ IN D A T A T _ O U T ) O U T Figure 46 Data Interface Timing Semiconductor Group 102 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Electrical Performance Characteristic VDD=VDDA= 5V± 5%; TA=0 - 70°C Parameter Symbol Limit Values min Data clock cycle time tc(DAT_CLK) Data clock duty cycle tc(FSC) FSC pulse width (as input) tw(FSC) FSC pulse width (as output) 1/ 1024 45 Frame synch clock cycle time 1) 50 50 Hold time, DAT_IN after DAT_CLK↓ thd(DAT_IN) 100 tpd(FSC) Setup time, FSC↑ to DAT_CLK↓ tsu(FSC) 55 % µs ns µs ns tpd(DAT_OUT) Delay time, DAT_CLK↑ to FSC↑ ms tclk*20 tsu(DAT_IN) tidle(FSC) 1/ 128 488 tw(FSC) Idle time, DAT_CLK↓ to FSC↑ max 125 Setup time, DAT_IN before DAT_CLK↓ Delay time, DAT_CLK↑ to DAT_OUT typ Unit 488 ns 100 ns ns 0 tclk+60 180 ns ns 1) Guaranteed by design Table 32: Data Interface Switching Characteristics Semiconductor Group 103 Data Sheet 06.98 PSB 4595 / PSB 4596 Analog Line Interface Solution Electrical Performance Characteristic 12.5.5 Package Outlines P-SSOP28 (Plastic Shrink Small Outline Package) P-TSSOP24 (Plastic Thin Shrink Small Outline Package) Sorts of Packing Package outlines for tubes, trays etc. are contained in our Data Book “Package Information”. Dimensions in mm SMD = Surface Mounted Device Semiconductor Group 104 Data Sheet 06.98