R5220x SERIES PWM Step-down DC/DC Converter with switch function NO.EA-121-070824 OUTLINE The R5220x Series are CMOS-based PWM step-down DC/DC Converters with synchronous rectifier, low supply current and LDO mode. DC/DC converter of the R5220x consists of an oscillator, a PWM control circuit, a reference voltage unit, an error amplifier, a soft-start circuit, protection circuits, a protection against miss operation under low voltage (UVLO), PWM-DC to DC converter / LDO alternative circuit, a chip enable circuit, and a driver transistor. A high efficiency step-down DC/DC converter can be easily composed of this IC with only a few kinds of external components, or an inductor and capacitors. LDO of the R5220x consists of a vortage reference unit, an error amplifier, resistors for voltage setting, output current limit circuit, a driver transistor, and so on. The output voltage is fixed internally in the R5220x. The output voltage of the DC/DC converter and the LDO can be set independently. PWM step-down DC/DC converter / LDO alternative circuit is active with Mode Pin of the R5220x Series. Thus, when the load current is small, the operation can be switching into the LDO operation from PWM operation by the logic of MODE pin and the consumption current of the IC itself will be small at light load current. As protection circuits, the current limit circuit which limits peak current of Lx at each clock cycle, and the latch type protection circuit which works if the term of the over-current condition keeps on a certain time in PWM mode. Latch-type protection circuit works to latch an internal driver with keeping it disable. To release the protection, after disable this IC with a chip enable circuit, enable it again, or restart this IC with power-on or make the supply voltage at UVLO detector threshold level or lower than UVLO. FEATURES • • • • • • • • • • • • • Supply Current ................................................................ Typ. 350µA (DC/DC), Typ. 5µA (VR) Standby Current .............................................................. Typ. 0.1µA Built-in Driver ON Resistance ......................................... P-channel 0.5Ω, N-channel 0.5Ω (at VIN=3.6V) Output Current ................................................................ Min. 400mA (DC/DC), Min. 50mA (VR) Input Voltage ................................................................... 2.8V to 5.5V (Absolute Input Maximum: 6.5V) Output Voltage ................................................................ 1.0V to 3.3V Output Voltage Accuracy................................................. ±2.0% (VOUT > = 1.5), ±30mV (VOUT <1.5V) Oscillator Frequency (DC/DC) ........................................ Typ. 1.2MHz Package .......................................................................... SON-6, PLP2514-6 Built-in Soft-start Function............................................... Typ. 0.2ms Latch-type Protection Function (Delay Time).................. Typ. 3.0ms Built-in fold-back protection circuit (DC/DC, VR) Ceramic Capacitor is recommended. APPLICATIONS • Power source for portable equipment such as DSC, DVC, and communication equipment. 1 R5220x BLOCK DIAGRAM VIN OSC OUTPUT CONTROL LX Vref Current Limit Soft Start MODE∗1 VOUT CE Vref Current Limit GND *1 R5220xxxxA: DC/DC mode: Mode pin= "H", VR mode: Mode pin= "L" R5220xxxxB: DC/DC mode: Mode pin= "L", VR mode: Mode pin= "H" SELECTION GUIDE In the R5220x Series, the output voltage, the version, and the taping type for the ICs can be selected at the user's request. The selection can be made with designating the part number as shown below; R5220xxxxx-xx-x ←Part Number ↑ ↑ ↑↑ ↑ ↑ a bcd e f Code a Designating the Package type: D: SON-6 K: PLP2514-6 b Setting Output Voltage (VOUT) or alphanumeric custom code. c d 2 Contents Setting Output Voltage 1: standard (b: output voltage; DC/DC output voltage = LDO output voltage) 2: custom code (b: custom code; DC/DC output voltage ≠ LDO output voltage) Designation of chip enable and Mode pin polarities A: CE; "H" active, Mode pin; "H"=DC/DC converter mode, "L"=LDO Mode B: CE; "H" active, Mode pin; "L"=DC/DC converter mode, "H"=LDO Mode e Designation of Taping Type; (Refer to Taping Specification) "TR" is prescribed as a standard. f Designation of composition of plating: −F: Lead free plating (SON-6) None: Au plating (PLP2514-6) R5220x PIN CONFIGURATIONS SON-6 Top View PLP2514-6 Bottom View 6 5 4 4 5 6 ∗ 1 2 3 Top View Bottom View 6 5 4 4 5 6 1 2 3 3 2 1 ∗ 3 2 1 PIN DESCRIPTIONS Pin No Symbol Description 1 Lx 2 GND 3 MODE 4 CE Chip Enable Pin (active with "H") 5 VOUT Output Pin 6 VIN LX Pin Voltage Supply Pin Ground Pin Mode changer Pin (Refer to the selection guide above.) Voltage Supply Pin * Tab in the parts have GND level. (They are connected to the back side of this IC.) Do not connect to other wires or land patterns. ABSOLUTE MAXIMUM RATINGS Symbol Item Rating Unit 6.5 V −0.3 to VIN+0.3 V VIN VIN Supply Voltage VLX LX Pin Voltage VCE CE Pin Input Voltage −0.3 to 6.5 V VMODE MODE Pin Input Voltage −0.3 to 6.5 V VOUT VOUT Pin Voltage −0.3 to VIN+0.3 V ILX LX Pin Output Current 600 mA IOUT VOUT Pin Output Current 200 mA Power Dissipation (SON-6)* 500 Power Dissipation (PLP2514-6)* 730 PD mW Topt Operating Temperature Range −40 to +85 °C Tstg Storage Temperature Range −55 to +125 °C *) For Power Dissipation, please refer to PACKAGE INFORMATION to be described. 3 R5220x ELECTRICAL CHARACTERISTICS • R5220xxxxA Topt=25°C Symbol Item VIN Operating Input Voltage Supply Current 1 ISS1 (Standby mode) Supply Current 2 ISS2 (Power Save mode) ISS3 Supply Current 3 DC/DC Part Symbol fosc Oscillator Frequency VR Part Symbol Soft-start Time ON Resistance of Pch Transistor ON Resistance of Nch Transistor Lx Leakage Current Output Voltage Temperature Coefficient Oscillator Maximum Duty Cycle Lx Current Limit Protection Delay Circuit UVLO Threshold Voltage UVLO Released Voltage MODE "H" Input Voltage MODE "L" Input Voltage Conditions Min. > VOUT1 = 1.5 ×0.98 VIN=3.6V IOUT=50mA VOUT1 < 1.5 −0.03 0.96 VIN=3.6V VOUT1 < 1.5 VIN=3.6V VOUT1 > = 1.5 VIN=3.6V, ILX=−100mA VIN=3.6V, ILX=−100mA VIN=5.5V, VCE=0V, LX=5.5V/0V −1.0 −40°C < = Topt < = Max. 5.5 Unit V 0.1 1.0 µA 5 10 µA 350 450 µA VOUT=0V VIN=3.6V VIN=3.6V VIN=VCE=VMODE, VOUT=0V VIN=VCE=VMODE, VOUT=0V Typ. 1.20 0.15 0.20 0.5 0.5 Max. ×1.02 +0.03 1.44 0.30 0.35 1.0 ±150 85°C 100 500 1.0 2.00 2.05 1.0 0 800 3.0 2.35 2.45 Unit V MHz ms Ω Ω µA ppm/°C 7.0 2.75 2.80 0.3 % mA ms V V V V Topt=25°C Conditions Min. > VOUT2 = 1.5 VIN=VOUT2+1.0V ×0.98 VOUT2 Output Voltage IOUT=10mA VOUT2 < 1.5 −0.03 IOUT Output Current 50 VIN=VOUT2+1.0V VOUT2 < 2.3 VIN=VOUT2+1.0V ∆VOUT2/ Load Regulation 2.3 < = VOUT2 < 3.0 ∆IOUT 10µA < = IOUT < = 25mA VOUT2 > = 3.0 VOUT2 < 1.8 VDIF Dropout Voltage IOUT=50mA VOUT2 > = 1.8 2.8V < = VIN < = 5.5V VOUT2 < 2.3 IOUT=25mA ∆VOUT2/ Line Regulation ∆VIN VOUT2+0.5V < = VIN < = 5.5V VOUT2 > = 2.3 IOUT=25mA RR Ripple Rejection Refer to Typical Characteristics ∆VOUT/ Output Voltage IOUT=30mA, ∆Topt Temperature Coefficient −40°C < = Topt < = 85°C Ilim Short Current Limit VOUT=0V IPDC CE pull-down current 0.12 VCEH CE "H" Input Voltage 1.0 VCEL CE "L" Input Voltage 0 4 Typ. Topt=25°C Output Voltage RONP RONN ILXLEAK ∆VOUT/ ∆Topt Maxduty ILXlim Tprot VUVLO1 VUVLO2 VMODEH VMODEL Min. 2.8 VIN=VOUT1+1.0V, VCE=GND, VMODE=GND or VIN VOUT1:DC/DC Set VOUT VIN=VCE=VOUT2+1.0V, VMODE=GND VOUT2:VR Set VOUT, IOUT=0mA VIN=VCE=VMODE=3.6V Item VOUT1 TSTART Conditions Item Typ. Max. ×1.02 +0.03 Unit V mA 15 25 35 0.7 0.3 40 50 65 mV V 0.2 %/V dB ±100 60 0.40 ppm/°C 0.70 0.3 mA µA V V R5220x • R5220xxxxB Topt=25°C Symbol Item VIN Operating Input Voltage Supply Current 1 ISS1 (Standby mode) Supply Current 2 ISS2 (Power Save mode) ISS3 Supply Current 3 DC/DC Part Symbol fosc Oscillator Frequency VR Part Symbol Typ. Max. 5.5 Unit V 0.1 1.0 µA 5 10 µA 350 450 µA Topt=25°C Output Voltage RONP RONN ILXLEAK ∆VOUT/ ∆Topt Maxduty ILXlim Tprot VUVLO1 VUVLO2 VMODEH VMODEL Min. 2.8 VIN=VOUT1+1.0V, VCE=GND, VMODE=GND or VIN VOUT1:DC/DC Set VOUT VIN=VCE=VMODE=VOUT2+1.0V, VOUT2:VR Set VOUT, IOUT=0mA VIN=VCE=3.6V, VMODE=GND Item VOUT1 TSTART Conditions Soft-start Time ON Resistance of Pch Transistor ON Resistance of Nch Transistor Lx Leakage Current Output Voltage Temperature Coefficient Oscillator Maximum Duty Cycle Lx Current Limit Protection Delay Circuit UVLO Threshold Voltage UVLO Released Voltage MODE "H" Input Voltage MODE "L" Input Voltage Conditions VOUT1 > VIN=3.6V = 1.5 IOUT=50mA VOUT1<1.5 VIN=VSET1+1.5V VOUT1<1.5 VIN=3.6V VOUT1 > = 1.5 VIN=3.6V, ILX=−100mA VIN=3.6V, ILX=−100mA VIN=5.5V, VCE=0V, LX=5.5V/0V −40°C < = Topt < = Min. ×0.98 −0.03 0.96 1.20 0.15 0.20 0.5 0.5 −1.0 Max. ×1.02 +0.03 1.44 0.30 0.35 1.0 ±150 85°C VOUT=0V VIN=3.6V VIN=3.6V VCE=VIN, VMODE=GND, VOUT=0V VCE=VIN, VMODE=GND, VOUT=0V Typ. 100 500 1.0 2.00 2.05 1.0 0 800 3.0 2.35 2.45 Unit V MHz ms Ω Ω µA ppm/°C 7.0 2.75 2.80 0.3 % mA ms V V V V Topt=25°C Item Conditions VOUT2 > VIN=VOUT2+1.0V = 1.5 VOUT2 Output Voltage IOUT=10mA VOUT2<1.5 IOUT Output Current VIN=VOUT2+1.0V VOUT2<2.3 VIN=VOUT2+1.0V ∆VOUT2/ Load Regulation 2.3 < = VOUT2<3.0 ∆IOUT 10µA < = IOUT < = 25mA VOUT2 > = 3.0 VOUT2<1.8V VDIF Dropout Voltage IOUT=50mA VOUT2 > = 1.8V < < 2.8V = VIN = 5.5V VOUT2<2.3V IOUT=25mA ∆VOUT2/ Line Regulation ∆VIN VOUT2+0.5V < = VIN < = 5.5V VOUT2 > = 2.3V IOUT=25mA RR Ripple Rejection Refer to Typical Characteristics ∆VOUT/ Output Voltage IOUT=30mA, Temperature Coefficient ∆Topt −40°C < = Topt < = 85°C Ilim Short Current Limit VOUT=0V IPDC CE pull-down current VCEH CE "H" Input Voltage VCEL CE "L" Input Voltage Min. ×0.98 −0.03 50 Typ. Max. ×1.02 +0.03 Unit V mA 15 25 35 0.7 0.3 40 50 65 mV V 0.2 %/V dB ±100 0.12 1.0 0 60 0.40 ppm/°C 0.70 0.3 mA µA V V 5 R5220x TYPICAL APPLICATION CIN 10µF VIN L 4.7µH 1 2 Lx VIN 6 VOUT 5 R5220x Series GND Load COUT 10µF 3 MODE CE 4 Parts Recommendation CIN 10µF Ceramic Capacitor C2012JB0J106K (TDK) COUT 10µF Ceramic Capacitor C2012JB0J106K (TDK) L 4.7µH VLP5610-4R7(TDK) External Components • Set external components such as an inductor, CIN, COUT as close as possible to the IC, in particular, minimize the wiring to VIN pin and GND pin. If VDD line or GND line’s impedance is high, the internal voltage level of the IC may fluctuate and the operation may be unstable. Make GND line and VDD line sufficient. Through the VDD line, the GND line, the inductor, Lx pin, and VOUT line, a large current caused by switching may flow, therefore, those lines should be sufficient and avoid the cross talk with other sensitive lines. Use the individual line from the VOUT pin of the IC for the inductor and the capacitor and load. • Use a low ESR ceramic capacitor COUT/CIN with a capacity of 10µF or more. • Select an inductor with an inductance range from 4.7µH to 10µH. The internal phase compensation is secured with these inductance values and COUT value. Choose the inductor with a low DC resistance and enough permissible current and hard to reach magnetic saturation. In terms of inductance value, choose the appropriate value with considering the conditions of the input voltage range and the output voltage, and load current. If the inductance value is too small and the load current is large, the peak current of Lx may reach the Lx current limit, and the protection against over-current may work. • The protection circuit against over-current is affected by the self-heating and the heat radiation environment. Therefore evaluate under the considerable environment of the application. The performance of power source circuits using these ICs extremely depends upon the peripheral circuits. Pay attention in the selection of the peripheral circuits. In particular, design the peripheral circuits in a way that the values such as voltage, current, and power of each component, PCB patterns and the IC do not exceed their respected rated values. 6 R5220x OPERATION of step-down DC/DC converter and Output Current The step-down DC/DC converter charges energy in the inductor when LX transistor is ON, and discharges the energy from the inductor when LX transistor is OFF and controls with less energy loss, so that a lower output voltage than the input voltage is obtained. The operation will be explained with reference to the following diagrams: <Basic Circuits> <Current through L> IL ILmax i1 VIN Pch Tr Nch Tr VOUT L ILmin topen i2 CL GND ton toff T=1/fosc Step 1: P-channel Tr. turns on and current IL (=i1) flows, and energy is charged into CL. At this moment, IL increases from ILmin (=0) to reach ILmax in proportion to the on-time period (ton) of P-channel Tr. Step 2: When P-channel Tr. turns off, Synchronous rectifier N-channel Tr. turns on in order that L maintains IL at ILmax, and current IL (=i2) flows. Step 3: IL (=i2) decreases gradually and reaches IL=ILmin=0 after a time period of topen, and N-channel Tr. Turns off. Provided that in the continuous mode, next cycle starts before IL becomes to 0 because toff time is not enough. In this case, IL value increases from this ILmin (>0). In the case of PWM control system, the output voltage is maintained by controlling the on-time period (ton), with the oscillator frequency (fosc) being maintained constant. The maximum value (ILmax) and the minimum value (ILmin) of the current flowing through the inductor are the same as those when P-channel Tr. turns on and off. The difference between ILmax and ILmin, which is represented by ∆I; ∆I=ILmax−ILmin=VOUT×topen/L=(VIN−VOUT)×ton/L ........................................................ Equation 1 wherein, T=1/fosc=ton+toff duty (%)=ton/T×100=ton×fosc×100 topen < = toff In Equation 1, VOUT×topen/L and (VIN − VOUT) ×ton/L respectively show the change of the current at "ON", and the change of the current at "OFF". 7 R5220x OUTPUT CURRENT AND SELECTION OF EXTERNAL COMPONENTS When P-channel Tr. of LX is ON: (Wherein, Ripple Current P-P value is described as IRP, ON resistance of P-channel Tr. and N-channel Tr. of LX are respectively described as RONP and RONN, and the DC resistor of the inductor is described as RL.) VIN = VOUT + (RONP + RL) × IOUT + L × IRP / ton ...................................................................Equation 2 When P-channel Tr. of LX is "OFF"(N-channel Tr. is "ON"): L × IRP / toff = RONN × IOUT + VOUT + RL × IOUT ..................................................................Equation 3 Put Equation 3 to Equation 2 and solve for ON duty of P-channel transistor, ton/(toff+ton)=DON, DON = (VOUT – RONN × IOUT + RL × IOUT) / (VIN + RONN × IOUT – RONP × IOUT)............................Equation 4 Ripple Current is as follows; IRP = (VIN − VOUT − RONP × IOUT − RL × IOUT) × DON / fosc / L................................................Equation 5 wherein, peak current that flows through L, and LX Tr. is as follows; ILmax = IOUT + IRP / 2 ......................................................................................................Equation 6 Consider ILmax, condition of input and output and select external components. The above explanation is directed to the calculation in an ideal case in continuous mode. 8 R5220x TIMING CHART 1) IC start-up The timing chart as shown in the next describes the operation starting the IC is enabled with CE. When the CE pin voltage becomes higher than the threshold voltage, the IC’s operations starts. At first, only the voltage regulator (VR) starts. The threshold level of the CE pin is between CE “H” input voltage and CE “L” input voltage. After starting the operation, the output capacitor (COUT) is charged with the output current of the VR, and the output level becomes the set VR output voltage. At this moment, the output of Lx is “off”, (“Hi-Z”), the pin voltage, VLX=VOUT through the external inductor L. Secondly, the Mode pin voltage is higher than the threshold voltage, internal operation of DC/DC starts. The threshold level is between Mode “H” input voltage and Mode “L” input voltage. The soft-start circuit inside the DC/DC converter’s operation is as follows: (Case 1) DC/DC output voltage < VR output voltage After the soft-start time, while the output voltage level is down from the VR output voltage to DC/DC output voltage, the circuit is waiting for the start of DC/DC operation. When the output voltage reaches so set DC/DC output voltage level, the actual DC/DC operation starts. (Case 2) DC/DC output voltage> VR output voltage The soft-start circuit of DC/DC converter makes the voltage reference unit of the IC rise gradually and be constant. After the voltage reference unit reaches the constant level which the output voltage of DC/DC converter can balance becomes the output voltage of VR, the set output voltage of DC/DC converter may be realized. Therefore, the soft-start time means the time range of starting to the time when the voltage reference unit reaches the constant level, and the soft-start time is different from turning on speed in some cases. The operation starting time depends on the ability of the power supply, the load current, the inductance value, the capacitance value, and the voltage difference between the set VR output and the set DC/DC output. If CE and Mode are on at once, the same operation as above is happened except the VR start-up and Soft-start operation start at the same time. If Mode signal is forced earlier than CE signal, this IC is stand-by until CE signal comes. Therefore when the CE signal is set, the IC operation starts as above. • VOUT voltage rising speed at start-up with power supply is affected by the next conditions: 1.The turning on speed of VIN voltage limited by the power supply to the IC and the input capacitor CIN. 2.The output capacitor, COUT value and load current. • DC/DC operation starting time 1.If the VR output > = DC/DC output, the operation starting time of the DC/DC converter is approximately equal to the next formula. TDC/DC_ACT = TSS + (VOUT_VR − VOUT_DC/DC + 15mV) × COUT / (load current at mode change + 1µA) TSS: Soft-start time VOUT_VR: VR output voltage VOUT_DC/DC: DC/DC Output Voltage *1µA is the supply current of the IC itself for the output. 2.If the VR output < DC/DC output, the operation starting time is the soft-start time + starting operation time which depends on the power supply, the load current, and the external components. 9 R5220x VCEH CE pin input signal VCEL VMODEH MODE pin input signal VMODEL Soft start time IC DC/DC Voltage Reference Unit A.VR Output=DC/DC Output voltage VOUT Effect from Power Supply, Load Current, Extemal Components Lx voltage DC/DC Operation B.VR voltage > DC/DC Output VOUT DC/DC does not operate if VR output is larger than DC/DC Lx voltage DC/DC Operation C. VR voltage < DC/DC voltage VOUT Lx voltage DC/DC Operating If CE pin input signal is forced earlier than the supply voltage, the voltage difference between the input and the output which is according to the input voltage to VIN, is maintained and the VOUT is rising up. 10 R5220x TEST CIRCUITS OSCILLOSCOPE Lxx L VVIN Lxx L VOUT V GND GND MODE MODE VVIN GND GND A CE VOUT V MODE MODE Supply Current 1,2,3 CE Output Voltage(DC/DC) OSCILLOSCOPE OSCILLOSCOPE Lxx L GND GND Lxx L VVIN GND GND VOUT V VOUT V MODE MODE CE MODE MODE VVIN Oscillator Frequency CE Soft-start Time OSCILLOSCOPE Lxx L GND GND VVIN VOUT V A MODE MODE CE Lx Leakage Current Lxx L GND GND MODE MODE VVIN VOUT V CE Lx Current Limit, Output Delay for Protection Lx Pch transistor ON resistance Nch transistor ON resistance 11 R5220x OSCILLOSCOPE OSCILLOSCOPE Lxx L GND GND MODE MODE VVIN Lxx L VOUT V GND GND MODE MODE CE VVIN VOUT V CE A UVLO Detector Threshold UVLO Release Voltage Lxx L VVIN GND GND MODE MODE MODEInput Voltage ”H”,”L” Input Current Lxx L VOUT V VVIN GND GND CE MODE MODE VOUT V CE Network Analyzer V Output Voltage (VR), Load Regulation Line Regulation, Dropout Voltage Lxx L VVIN GND GND MODE MODE (J) RippleRejection Lxx L VOUT V GND GND CE MODE MODE VVIN VOUT V CE A V A Short Current Limit 12 CE=”H”/”L” Input Voltage/ Input Current R5220x TYPICAL CHARACTERISTICS 1) DC/DC Converter 1-2) DC/DC Output Voltage vs. Input Voltage R5220x181A 1.84 1.84 1.83 1.83 1.82 Output Voltage(V) Output Voltage(V) 1-1) DC/DC Output Voltage vs. Output Current R5220x181A 1.81 1.80 1.79 1.78 2.8V 3.6V 5.5V 1.77 1.81 1.80 1.79 1mA 50mA 250mA 1.78 1.77 1.76 0 1.82 100 200 300 Output Current(mA) 1.76 2.5 400 1-3) DC/DC Efficiency vs. Output Current R5220x181A 3.0 3.5 4.0 4.5 Input Voltage(V) 5.0 5.5 1-4) DC/DC Supply Current vs. Temperature VIN=VCE=VMODE=3.6V Supply Current ISS(µA) 100 Efficiency(%) 80 60 40 2.8V 3.6V 5.5V 20 0 0.1 1 10 100 Output Current(mA) 1000 400 380 360 340 320 300 280 260 240 220 200 -50 DC/DC_VSET : 1.0V DC/DC_VSET : 1.8V -25 0 25 50 75 Temperature Topt(°C) 100 1-6) DC/DC Output Waveform R5220x121A CIN=COUT=Ceramic 10µF,L=4.7µH VIN=3.6V,IOUT=300mA VIN=VCE=VMODE 1.26 Output Ripple Voltage(V) Supply Current ISS(µA) 1-5) DC/DC Supply Current vs. Input Voltage 400 380 360 340 320 300 280 260 240 220 200 -50 1.24 1.22 1.20 1.18 1.16 1.14 -25 0 25 50 Input Voltage(V) 75 100 0 1 2 3 Time(µs) 4 5 13 R5220x 1-7) DC/DC Output Voltage vs. Temperature R5220x181A R5220x181A 1.84 Output Voltage VOUT(V) Output Ripple Voltage(V) 1.86 1.82 1.80 1.78 1.76 1.74 0 1 2 3 Time(µs) 4 5 1-8) DC/DC Oscillator Frequency vs. Temperature Frequency fosc(kHz) Frequency fosc(kHz) 1250 1200 1150 1100 1050 1000 -50 -25 0 25 50 75 Temperature Topt(°C) 0 25 50 75 Temperature Topt(°C) 100 1300 1250 1200 1150 1100 1050 2.5 100 1-10) Soft-start time vs. Temperature -25 1350 1350 1300 IOUT=50mA 1-9) DC/DC Oscillator Frequency vs. Input Voltage R5220x181A VIN=3.6V 1400 1.90 1.88 1.86 1.84 1.82 1.80 1.78 1.76 1.74 1.72 1.70 -50 3.0 3.5 4.0 4.5 Input Voltage(V) 5.0 5.5 1-11) UVLO Detector Threshold/ Released Voltage vs. Temperature 250 2.8 150 100 DC/DC_VSET : 1.0V 50 0 -50 14 VDD Voltage Level(V) Soft-Start Time (µs) 2.7 200 DC/DC_VSET : 1.8V -25 0 25 50 75 Temperature Topt(°C) 100 UVLO Detector Threshold 2.6 UVLO Released Voltage 2.5 2.4 2.3 2.2 2.1 2.0 -50 -25 0 25 50 75 Temperature Topt(°C) 100 R5220x 1-13) Pch Transistor On Resistance vs. Temperature 0.8 0.8 0.7 0.7 PchTr. On Resistance (Ω) MODE Input Voltage VMODE(V) 1-12) MODE Input Voltage vs. temperature 0.6 0.5 0.4 0.3 0.2 0.1 0.0 -50 -25 0 25 50 75 Temperature Topt(°C) 0.6 0.5 0.4 0.3 0.2 0.1 0.0 -50 100 1-14) Nch Transistor On Resistance vs. Temperature VIN=3.6V -25 0 25 50 75 Temperature Topt(°C) 100 1-15) DC/DC Lx Current Limit vs. Temperature R5220x131A VIN=3.6V 1200 0.7 Lx Limit Current(mA) NchTr. ON Resistance (Ω) 0.8 0.6 0.5 0.4 0.3 0.2 1000 800 600 0.1 0.0 -50 -25 0 25 50 75 Temperature Topt(°C) 400 -50 100 -25 0 25 50 75 Temperature Topt(°C) 100 2) VR 2-1) VR Output Voltage vs. Output Current R5220x121A R5220x181A 1.2 1.0 Output Voltage VOUT(V) Output Voltage VOUT(V) 1.4 VIN=2.8V VIN=3.6V VIN=5.5V 0.8 0.6 0.4 0.2 0.0 0 50 100 150 Output Current IOUT(mA) 200 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 VIN=2.8V VIN=3.6V VIN=5.5V 0 50 100 150 Output Current IOUT(mA) 200 15 R5220x 2-2) VR Output Voltage vs. Input Voltage R5220x121A R5220x181A 1.2 Output Voltage VOUT(V) Output Voltage VOUT(V) 1.4 1.0 0.8 0.6 IOUT=1mA IOUT=25mA IOUT=50mA 0.4 0.2 0.0 0 1 2 3 4 Input Voltage VIN(V) 5 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 6 IOUT=1mA IOUT=25mA IOUT=50mA 0 1 8.0 7.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 5 6 6.0 5.0 4.0 3.0 2.0 1.0 1 2 3 4 Input Voltage VIN(V) 5 6 0 1 2-4) VR Output Voltage vs. Temperature R5220x121A 1.84 1.23 1.83 1.22 1.21 1.20 1.19 1.18 1.17 1.16 -50 -25 0 25 50 75 Temperature Topt(°C) 2 3 4 Input Voltage VIN(V) R5220x181A 1.24 Output Voltage VOUT(V) Output Voltage VOUT(V) 6 0.0 0 16 5 R5220x181A 8.0 Supply Current ISS2(µA) Supply Current ISS2(µA) 2-3) VR Supply Current vs. Input Voltage R5220x121A 2 3 4 Input Voltage VIN(V) 100 1.82 1.81 1.80 1.79 1.78 1.77 1.76 -50 -25 0 25 50 75 Temperature Topt(°C) 100 R5220x 10 9 8 7 6 5 4 3 2 1 0 -50 R5220x181A Supply Current ISS2(µA) Supply Current ISS2(µA) 2-5) VR Supply Current vs. Temperature R5220x121A VIN=3.6V VIN=5.5V -25 0 25 50 75 Temperature Topt(°C) 100 10 9 8 7 6 5 4 3 2 1 0 -50 VIN=3.6V VIN=5.5V -25 0 25 50 75 Temperature Topt(°C) 2-6) Dropout Voltage vs. Output Current R5220x121A R5220x181A 1.86 700 Output Ripple Voltage(V) Dropout Voltage VDIF(V) 800 600 500 400 300 -40°C 200 25°C 100 85°C 0 1.84 1.82 1.80 1.78 1.76 1.74 0 10 20 30 40 Output Current IOUT(mA) 50 0 2-7) Ripple Rejection vs. Input Voltage R5220x121A 70 70 40 20 10 f=400Hz f=1kHz f=10kHz f=100kHz 0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Input Voltage VIN(V) Ripple Rejection RR(dB) Ripple Rejection RR(dB) 80 50 2 3 Time(µs) 4 5 Ripple 0.2Vp-p,IOUT=25mA, CIN=none,COUT=Ceramic10µF 80 60 1 R5220x181A Ripple 0.2Vp-p,IOUT=25mA, CIN=none,COUT=Ceramic10µF 30 100 60 50 40 30 20 10 f=400Hz f=1kHz f=10kHz f=100kHz 0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Input Voltage VIN(V) 17 R5220x 2-8) VR Ripple Rejection vs. Frequency R5220x121A R5220x181A VIN=2.8V+0.2Vp-p CIN=none COUT=Ceramic10µF IOUT=50mA IOUT=25mA IOUT=1mA 1 10 Frequency f (kHz) 100 100 90 80 70 60 50 40 30 20 10 0 0.1 IOUT=50mA IOUT=25mA IOUT=1mA 1 10 Frequency f (kHz) 2-9) Input Transient Response R5220x121A R5220x181A 5 1.88 5 1.26 4 1.86 4 1.24 3 1.84 3 1.22 2 1.82 2 1.20 1 1.80 1 1.18 0 1.78 0 1.16 0.0 0.2 0.4 0.6 Time T(ms) 0.8 Output Voltage(V) 1.28 1.76 0.0 1.0 0.2 2-10) Load Transient Response R5220x121A 0mA 50 1.40 25 1.35 0 1.25 1.20 Output Voltage(V) Output Voltage(V) 10mA 1.30 50 1mA 25mA 1mA 0.8 1.6 2.4 Time T(µs) 3.2 4.0 1.25 1.20 1.10 0.0 25 0 1.30 1.15 1.15 1.10 0.0 1.0 VIN=3.6V,CIN=COUT=Ceramic10µF Load Current(mA) 1.40 0mA 0.8 R5220x121A VIN=3.6V,CIN=COUT=Ceramic10µF 1.35 0.4 0.6 Time T(ms) Input Voltage(V) IOUT=10mA CIN=none, COUT=Ceramic10µF Input Voltage(V) Output Voltage(V) IOUT=10mA CIN=none, COUT=Ceramic10µF 18 100 0.8 1.6 2.4 Time (µs) 3.2 4.0 Load Current(mA) 100 90 80 70 60 50 40 30 20 10 0 0.1 Ripple Rejection(dB) Ripple Rejection(dB) VIN=2.2V+0.2Vp-p CIN=none COUT=Ceramic10µF R5220x R5220x181A R5220x181A VIN=3.6V,CIN=COUT=Ceramic10µF 0mA 1.90 0 1.85 1.80 50 1mA 1.95 25 Output Voltage(V) 10mA Load Current(mA) 0mA 1.95 Output Voltage(V) VIN=3.6V,CIN=COUT=Ceramic10µF 2.00 50 1.75 25mA 1mA 25 1.90 0 1.85 1.80 Load Current(mA) 2.00 1.75 1.70 0.0 0.8 1.6 2.4 Time T(µs) 3.2 1.70 0.0 4.0 0.8 1.6 2.4 Time T(µs) 3.2 4.0 3) Mode Transient Response between VR and DC/DC 3-1) VR to DC/DC Mode Transient Response R5220x151A 3-2) DC/DC to VR Mode Transient Response R5220x151A 1.60 20 1.55 16 1.55 16 VOUT 1.50 12 1.45 8 1.40 4 VMODE 1.35 0 Output Voltage(V) 20 MODE(V) Output Voltage(V) 1.60 VOUT 1.50 12 8 1.45 1.40 4 MODE(V) VIN=3.6V,IOUT=0.5mA CIN=COUT=Ceramic10µF VIN=3.6V,IOUT=0.5mA CIN=COUT=Ceramic10µF VMODE 0 1.35 1.30 1.30 0 200 400 600 Time (µs) 800 1000 0 200 400 600 Time (µs) 800 1000 19 PACKAGE INFORMATION • PE-SON-6-0510 SON-6 Unit: mm PACKAGE DIMENSIONS 3 0.85MAX. 0.13±0.05 0.1 1.34 Bottom View (0.3) 1 2.6±0.2 3.0±0.15 4 (0.3) 1.6±0.2 6 Attention: Tab suspension leads in the parts have VDD or GND level.(They are connected to the reverse side of this IC.) Refer to PIN DISCRIPTION. Do not connect to other wires or land patterns. 0.2±0.1 0.5 4.0±0.1 3.2 3.5±0.05 2.0±0.05 1.9 4.0±0.1 1.7MAX. ∅1.1±0.1 TR User Direction of Feed TAPING REEL DIMENSIONS (1reel=3000pcs) +1 60 0 2±0.5 21±0.8 0 180 −1.5 13±0.2 11.4±1.0 9.0±0.3 8.0±0.3 ∅ 1.5+0.1 0 0.2±0.1 1.75±0.1 TAPING SPECIFICATION PACKAGE INFORMATION PE-SON-6-0510 POWER DISSIPATION (SON-6) This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the measurement at the condition below: Measurement Conditions Standard Land Pattern Environment Mounting on Board (Wind velocity=0m/s) Board Material Glass cloth epoxy plactic (Double sided) Board Dimensions 40mm × 40mm × 1.6mm Copper Ratio Top side : Approx. 50% , Back side : Approx. 50% Through-hole φ0.5mm × 44pcs Measurement Result (Topt=25°C,Tjmax=125°C) Standard Land Pattern Free Air Power Dissipation 500mW 250mW Thermal Resistance θja=(125−25°C)/0.5W=200°C/W - On Board 500 40 400 300 Free Air 250 200 40 Power Dissipation PD(mW) 600 100 0 0 25 50 75 85 100 Ambient Temperature (°C) 125 150 Power Dissipation Measurement Board Pattern IC Mount Area (Unit : mm) RECOMMENDED LAND PATTERN 1.05 0.75 0.25 0.5 (Unit: mm) PACKAGE INFORMATION • PE-PLP2514-6-0610 PLP2514-6 Unit: mm 0.50 0.20±0.05 B 4 6 0.25±0.05 1.4±0.05 0.05 2.5 ×4 1.4 0.25±0.05 A 0.05 PACKAGE DIMENSIONS 0. 05 INDEX 3 0.6max. S C 1.10±0.05 1 Bottom View Attention: Tabs or Tab suspension leads in the parts have VDD or GND level.(They are connected to the reverse side of this IC.) Refer to PIN DISCRIPTION. Do not connect to other wires or land patterns. 0.05 S 4.0±0.1 3.0 3.5±0.05 2.0±0.05 8.0±0.3 1.5 +0.1 0 0.2±0.1 1.75±0.1 TAPING SPECIFICATION 1.1±0.1 1.75 1.2max. 4.0±0.1 TR User Direction of Feed TAPING REEL DIMENSIONS (1reel=5000pcs) 11.4±1.0 ∅180 0 -1.5 2±0.5 ∅60 +1 0 21±0.8 ∅13±0.2 9.0±0.3 PACKAGE INFORMATION PE-PLP2514-6-0610 POWER DISSIPATION (PLP2514-6) This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the measurement at the condition below: Measurement Conditions Standard Land Pattern Environment Mounting on Board (Wind velocity=0m/s) Board Material Glass cloth epoxy plactic (Double sided) Board Dimensions 40mm × 40mm × 1.6mm Copper Ratio Top side : Approx. 50% , Back side : Approx. 50% Through-hole φ0.54mm × 30pcs Measurement Result (Topt=25°C,Tjmax=125°C) Standard Land Pattern Power Dissipation 730mW Thermal Resistance θja=(125−25°C)/0.73W=137°C/W 40 1000 800 730 On Board 600 40 Power Dissipation PD(mW) 1200 400 200 0 0 25 50 75 85 100 Ambient Temperature (°C) 125 150 Measurement Board Pattern IC Mount Area Unit : mm Power Dissipation 0.25 0.5 RECOMMENDED LAND PATTERN (PLP2514-6) 0.25 0.25 0.5 0.25 0.25 0.5 0.25 0.5 1.4 0.9 0.25 (Unit: mm) MARK INFORMATION ME-R5220D-070810 R5220D SERIES MARK SPECIFICATION • SON-6 • 1 2 3 4 1 , 2 : Product Code (refer to Part Number vs. Product Code) 3 , 4 : Lot Number Part Number vs. Product Code Part Number Product Code 1 2 R5220D101A C A R5220D111A C B Part Number Product Code 1 2 R5220D101B D A R5220D111B D B Part Number Product Code Set VOUT 1 2 DC/DC VR R5220D012A C W 1.2V 1.1V R5220D022A C X 1.5V 1.1V R5220D121A C C R5220D121B D C R5220D032A C Y 1.3V 1.05V R5220D131A C D R5220D131B D D R5220D042A C Z 1.5V 1.0V R5220D141A C E R5220D141B D E R5220D151A C F R5220D151B D F R5220D012B D W 1.2V 1.1V R5220D161A C G R5220D161B D G R5220D022B D X 1.5V 1.1V R5220D171A C H R5220D171B D H R5220D032B D Y 1.3V 1.05V R5220D181A C J R5220D181B D J R5220D042B D Z 1.5V 1.0V R5220D191A C K R5220D191B D K R5220D201A C L R5220D201B D L R5220D211A C M R5220D211B D M R5220D221A C N R5220D221B D N R5220D231A C P R5220D231B D P R5220D241A C Q R5220D241B D Q R5220D251A C R R5220D251B D R R5220D261A C S R5220D261B D S R5220D271A C T R5220D271B D T R5220D281A C U R5220D281B D U R5220D291A C V R5220D291B D V R5220D301A C 0 R5220D301B D 0 R5220D311A C 1 R5220D311B D 1 R5220D321A C 2 R5220D321B D 2 R5220D331A C 3 R5220D331B D 3 R5220D261A5 C 4 R5220D261B5 D 4 MARK INFORMATION ME-R5220K-070810 R5220K SERIES MARK SPECIFICATION • PLP2514-6 to 1 5 • 1 2 3 4 5 6 , 4 6 : Product Code (refer to Part Number vs. Product Code) : Lot Number Part Number vs. Product Code Part Number Product Code Part Number Product Code Part Number Product Code Set VOUT 1 2 3 4 1 2 3 4 1 2 3 4 DC/DC VR R5220K101A S 1 0 1 R5220K101B T 1 0 1 R5220K012A S 0 1 2 1.2V 1.1V R5220K111A S 1 1 1 R5220K111B T 1 1 1 R5220K022A S 0 2 2 1.5V 1.1V R5220K121A S 1 2 1 R5220K121B T 1 2 1 R5220K032A S 0 3 2 1.3V 1.05V R5220K131A S 1 3 1 R5220K131B T 1 3 1 R5220K042A S 0 4 2 1.5V 1.0V R5220K141A S 1 4 1 R5220K141B T 1 4 1 R5220K151A S 1 5 1 R5220K151B T 1 5 1 R5220K012B T 0 1 2 1.2V 1.1V R5220K161A S 1 6 1 R5220K161B T 1 6 1 R5220K022B T 0 2 2 1.5V 1.1V R5220K171A S 1 7 1 R5220K171B T 1 7 1 R5220K032B T 0 3 2 1.3V 1.05V R5220K181A S 1 8 1 R5220K181B T 1 8 1 R5220K042B T 0 4 2 1.5V 1.0V R5220K191A S 1 9 1 R5220K191B T 1 9 1 R5220K201A S 2 0 1 R5220K201B T 2 0 1 R5220K211A S 2 1 1 R5220K211B T 2 1 1 R5220K221A S 2 2 1 R5220K221B T 2 2 1 R5220K231A S 2 3 1 R5220K231B T 2 3 1 R5220K241A S 2 4 1 R5220K241B T 2 4 1 R5220K251A S 2 5 1 R5220K251B T 2 5 1 R5220K261A S 2 6 1 R5220K261B T 2 6 1 R5220K271A S 2 7 1 R5220K271B T 2 7 1 R5220K281A S 2 8 1 R5220K281B T 2 8 1 R5220K291A S 2 9 1 R5220K291B T 2 9 1 R5220K301A S 3 0 1 R5220K301B T 3 0 1 R5220K311A S 3 1 1 R5220K311B T 3 1 1 R5220K321A S 3 2 1 R5220K321B T 3 2 1 R5220K331A S 3 3 1 R5220K331B T 3 3 1 R5220K261A5 S 2 6 5 R5220K261B5 T 2 6 5