RICOH R5220K281B

R5220x SERIES
PWM Step-down DC/DC Converter with switch function
NO.EA-121-070824
OUTLINE
The R5220x Series are CMOS-based PWM step-down DC/DC Converters with synchronous rectifier, low
supply current and LDO mode.
DC/DC converter of the R5220x consists of an oscillator, a PWM control circuit, a reference voltage unit, an
error amplifier, a soft-start circuit, protection circuits, a protection against miss operation under low voltage
(UVLO), PWM-DC to DC converter / LDO alternative circuit, a chip enable circuit, and a driver transistor. A high
efficiency step-down DC/DC converter can be easily composed of this IC with only a few kinds of external
components, or an inductor and capacitors.
LDO of the R5220x consists of a vortage reference unit, an error amplifier, resistors for voltage setting, output
current limit circuit, a driver transistor, and so on. The output voltage is fixed internally in the R5220x. The output
voltage of the DC/DC converter and the LDO can be set independently.
PWM step-down DC/DC converter / LDO alternative circuit is active with Mode Pin of the R5220x Series. Thus,
when the load current is small, the operation can be switching into the LDO operation from PWM operation by
the logic of MODE pin and the consumption current of the IC itself will be small at light load current. As protection
circuits, the current limit circuit which limits peak current of Lx at each clock cycle, and the latch type protection
circuit which works if the term of the over-current condition keeps on a certain time in PWM mode. Latch-type
protection circuit works to latch an internal driver with keeping it disable. To release the protection, after disable
this IC with a chip enable circuit, enable it again, or restart this IC with power-on or make the supply voltage at
UVLO detector threshold level or lower than UVLO.
FEATURES
•
•
•
•
•
•
•
•
•
•
•
•
•
Supply Current ................................................................ Typ. 350µA (DC/DC), Typ. 5µA (VR)
Standby Current .............................................................. Typ. 0.1µA
Built-in Driver ON Resistance ......................................... P-channel 0.5Ω, N-channel 0.5Ω (at VIN=3.6V)
Output Current ................................................................ Min. 400mA (DC/DC), Min. 50mA (VR)
Input Voltage ................................................................... 2.8V to 5.5V (Absolute Input Maximum: 6.5V)
Output Voltage ................................................................ 1.0V to 3.3V
Output Voltage Accuracy................................................. ±2.0% (VOUT >
= 1.5), ±30mV (VOUT <1.5V)
Oscillator Frequency (DC/DC) ........................................ Typ. 1.2MHz
Package .......................................................................... SON-6, PLP2514-6
Built-in Soft-start Function............................................... Typ. 0.2ms
Latch-type Protection Function (Delay Time).................. Typ. 3.0ms
Built-in fold-back protection circuit (DC/DC, VR)
Ceramic Capacitor is recommended.
APPLICATIONS
• Power source for portable equipment such as DSC, DVC, and communication equipment.
1
R5220x
BLOCK DIAGRAM
VIN
OSC
OUTPUT
CONTROL
LX
Vref
Current Limit
Soft
Start
MODE∗1
VOUT
CE
Vref
Current Limit
GND
*1 R5220xxxxA: DC/DC mode: Mode pin= "H", VR mode: Mode pin= "L"
R5220xxxxB: DC/DC mode: Mode pin= "L", VR mode: Mode pin= "H"
SELECTION GUIDE
In the R5220x Series, the output voltage, the version, and the taping type for the ICs can be selected at the
user's request.
The selection can be made with designating the part number as shown below;
R5220xxxxx-xx-x ←Part Number
↑ ↑ ↑↑ ↑ ↑
a bcd e f
Code
a
Designating the Package type:
D: SON-6
K: PLP2514-6
b
Setting Output Voltage (VOUT) or alphanumeric custom code.
c
d
2
Contents
Setting Output Voltage
1: standard (b: output voltage; DC/DC output voltage = LDO output voltage)
2: custom code (b: custom code; DC/DC output voltage ≠ LDO output voltage)
Designation of chip enable and Mode pin polarities
A: CE; "H" active, Mode pin; "H"=DC/DC converter mode, "L"=LDO Mode
B: CE; "H" active, Mode pin; "L"=DC/DC converter mode, "H"=LDO Mode
e
Designation of Taping Type; (Refer to Taping Specification) "TR" is prescribed as a standard.
f
Designation of composition of plating:
−F: Lead free plating (SON-6)
None: Au plating (PLP2514-6)
R5220x
PIN CONFIGURATIONS
SON-6
Top View
PLP2514-6
Bottom View
6 5 4
4 5 6
∗
1 2 3
Top View
Bottom View
6
5
4
4
5
6
1
2
3
3
2
1
∗
3 2 1
PIN DESCRIPTIONS
Pin No
Symbol
Description
1
Lx
2
GND
3
MODE
4
CE
Chip Enable Pin (active with "H")
5
VOUT
Output Pin
6
VIN
LX Pin Voltage Supply Pin
Ground Pin
Mode changer Pin
(Refer to the selection guide above.)
Voltage Supply Pin
* Tab in the
parts have GND level. (They are connected to the back side of this IC.)
Do not connect to other wires or land patterns.
ABSOLUTE MAXIMUM RATINGS
Symbol
Item
Rating
Unit
6.5
V
−0.3 to VIN+0.3
V
VIN
VIN Supply Voltage
VLX
LX Pin Voltage
VCE
CE Pin Input Voltage
−0.3 to 6.5
V
VMODE
MODE Pin Input Voltage
−0.3 to 6.5
V
VOUT
VOUT Pin Voltage
−0.3 to VIN+0.3
V
ILX
LX Pin Output Current
600
mA
IOUT
VOUT Pin Output Current
200
mA
Power Dissipation (SON-6)*
500
Power Dissipation (PLP2514-6)*
730
PD
mW
Topt
Operating Temperature Range
−40 to +85
°C
Tstg
Storage Temperature Range
−55 to +125
°C
*) For Power Dissipation, please refer to PACKAGE INFORMATION to be described.
3
R5220x
ELECTRICAL CHARACTERISTICS
•
R5220xxxxA
Topt=25°C
Symbol
Item
VIN
Operating Input Voltage
Supply Current 1
ISS1
(Standby mode)
Supply Current 2
ISS2
(Power Save mode)
ISS3
Supply Current 3
DC/DC Part
Symbol
fosc
Oscillator Frequency
VR Part
Symbol
Soft-start Time
ON Resistance of Pch Transistor
ON Resistance of Nch Transistor
Lx Leakage Current
Output Voltage
Temperature Coefficient
Oscillator Maximum Duty Cycle
Lx Current Limit
Protection Delay Circuit
UVLO Threshold Voltage
UVLO Released Voltage
MODE "H" Input Voltage
MODE "L" Input Voltage
Conditions
Min.
>
VOUT1 = 1.5
×0.98
VIN=3.6V
IOUT=50mA
VOUT1 < 1.5
−0.03
0.96
VIN=3.6V
VOUT1 < 1.5
VIN=3.6V
VOUT1 >
= 1.5
VIN=3.6V, ILX=−100mA
VIN=3.6V, ILX=−100mA
VIN=5.5V, VCE=0V, LX=5.5V/0V −1.0
−40°C
<
=
Topt
<
=
Max.
5.5
Unit
V
0.1
1.0
µA
5
10
µA
350
450
µA
VOUT=0V
VIN=3.6V
VIN=3.6V
VIN=VCE=VMODE, VOUT=0V
VIN=VCE=VMODE, VOUT=0V
Typ.
1.20
0.15
0.20
0.5
0.5
Max.
×1.02
+0.03
1.44
0.30
0.35
1.0
±150
85°C
100
500
1.0
2.00
2.05
1.0
0
800
3.0
2.35
2.45
Unit
V
MHz
ms
Ω
Ω
µA
ppm/°C
7.0
2.75
2.80
0.3
%
mA
ms
V
V
V
V
Topt=25°C
Conditions
Min.
>
VOUT2 = 1.5
VIN=VOUT2+1.0V
×0.98
VOUT2 Output Voltage
IOUT=10mA
VOUT2 < 1.5
−0.03
IOUT
Output Current
50
VIN=VOUT2+1.0V
VOUT2 < 2.3
VIN=VOUT2+1.0V
∆VOUT2/
Load Regulation
2.3 <
= VOUT2 < 3.0
∆IOUT
10µA <
= IOUT <
= 25mA
VOUT2 >
= 3.0
VOUT2 < 1.8
VDIF
Dropout Voltage
IOUT=50mA
VOUT2 >
= 1.8
2.8V <
= VIN <
= 5.5V
VOUT2 < 2.3
IOUT=25mA
∆VOUT2/
Line Regulation
∆VIN
VOUT2+0.5V <
= VIN <
= 5.5V
VOUT2 >
= 2.3
IOUT=25mA
RR
Ripple Rejection
Refer to Typical Characteristics
∆VOUT/ Output Voltage
IOUT=30mA,
∆Topt Temperature Coefficient −40°C <
= Topt <
= 85°C
Ilim
Short Current Limit
VOUT=0V
IPDC
CE pull-down current
0.12
VCEH
CE "H" Input Voltage
1.0
VCEL
CE "L" Input Voltage
0
4
Typ.
Topt=25°C
Output Voltage
RONP
RONN
ILXLEAK
∆VOUT/
∆Topt
Maxduty
ILXlim
Tprot
VUVLO1
VUVLO2
VMODEH
VMODEL
Min.
2.8
VIN=VOUT1+1.0V, VCE=GND, VMODE=GND or VIN
VOUT1:DC/DC Set VOUT
VIN=VCE=VOUT2+1.0V, VMODE=GND
VOUT2:VR Set VOUT, IOUT=0mA
VIN=VCE=VMODE=3.6V
Item
VOUT1
TSTART
Conditions
Item
Typ.
Max.
×1.02
+0.03
Unit
V
mA
15
25
35
0.7
0.3
40
50
65
mV
V
0.2
%/V
dB
±100
60
0.40
ppm/°C
0.70
0.3
mA
µA
V
V
R5220x
•
R5220xxxxB
Topt=25°C
Symbol
Item
VIN
Operating Input Voltage
Supply Current 1
ISS1
(Standby mode)
Supply Current 2
ISS2
(Power Save mode)
ISS3
Supply Current 3
DC/DC Part
Symbol
fosc
Oscillator Frequency
VR Part
Symbol
Typ.
Max.
5.5
Unit
V
0.1
1.0
µA
5
10
µA
350
450
µA
Topt=25°C
Output Voltage
RONP
RONN
ILXLEAK
∆VOUT/
∆Topt
Maxduty
ILXlim
Tprot
VUVLO1
VUVLO2
VMODEH
VMODEL
Min.
2.8
VIN=VOUT1+1.0V, VCE=GND, VMODE=GND or VIN
VOUT1:DC/DC Set VOUT
VIN=VCE=VMODE=VOUT2+1.0V,
VOUT2:VR Set VOUT, IOUT=0mA
VIN=VCE=3.6V, VMODE=GND
Item
VOUT1
TSTART
Conditions
Soft-start Time
ON Resistance of Pch Transistor
ON Resistance of Nch Transistor
Lx Leakage Current
Output Voltage
Temperature Coefficient
Oscillator Maximum Duty Cycle
Lx Current Limit
Protection Delay Circuit
UVLO Threshold Voltage
UVLO Released Voltage
MODE "H" Input Voltage
MODE "L" Input Voltage
Conditions
VOUT1 >
VIN=3.6V
= 1.5
IOUT=50mA
VOUT1<1.5
VIN=VSET1+1.5V
VOUT1<1.5
VIN=3.6V
VOUT1 >
= 1.5
VIN=3.6V, ILX=−100mA
VIN=3.6V, ILX=−100mA
VIN=5.5V, VCE=0V, LX=5.5V/0V
−40°C
<
=
Topt
<
=
Min.
×0.98
−0.03
0.96
1.20
0.15
0.20
0.5
0.5
−1.0
Max.
×1.02
+0.03
1.44
0.30
0.35
1.0
±150
85°C
VOUT=0V
VIN=3.6V
VIN=3.6V
VCE=VIN, VMODE=GND, VOUT=0V
VCE=VIN, VMODE=GND, VOUT=0V
Typ.
100
500
1.0
2.00
2.05
1.0
0
800
3.0
2.35
2.45
Unit
V
MHz
ms
Ω
Ω
µA
ppm/°C
7.0
2.75
2.80
0.3
%
mA
ms
V
V
V
V
Topt=25°C
Item
Conditions
VOUT2 >
VIN=VOUT2+1.0V
= 1.5
VOUT2 Output Voltage
IOUT=10mA
VOUT2<1.5
IOUT
Output Current
VIN=VOUT2+1.0V
VOUT2<2.3
VIN=VOUT2+1.0V
∆VOUT2/
Load Regulation
2.3 <
= VOUT2<3.0
∆IOUT
10µA <
= IOUT <
= 25mA
VOUT2 >
= 3.0
VOUT2<1.8V
VDIF
Dropout Voltage
IOUT=50mA
VOUT2 >
= 1.8V
<
<
2.8V = VIN = 5.5V
VOUT2<2.3V
IOUT=25mA
∆VOUT2/
Line Regulation
∆VIN
VOUT2+0.5V <
= VIN <
= 5.5V
VOUT2 >
= 2.3V
IOUT=25mA
RR
Ripple Rejection
Refer to Typical Characteristics
∆VOUT/ Output Voltage
IOUT=30mA,
Temperature
Coefficient
∆Topt
−40°C <
= Topt <
= 85°C
Ilim
Short Current Limit
VOUT=0V
IPDC
CE pull-down current
VCEH
CE "H" Input Voltage
VCEL
CE "L" Input Voltage
Min.
×0.98
−0.03
50
Typ.
Max.
×1.02
+0.03
Unit
V
mA
15
25
35
0.7
0.3
40
50
65
mV
V
0.2
%/V
dB
±100
0.12
1.0
0
60
0.40
ppm/°C
0.70
0.3
mA
µA
V
V
5
R5220x
TYPICAL APPLICATION
CIN 10µF
VIN
L 4.7µH
1
2
Lx
VIN
6
VOUT
5
R5220x
Series
GND
Load
COUT 10µF
3
MODE
CE
4
Parts Recommendation
CIN
10µF Ceramic Capacitor C2012JB0J106K (TDK)
COUT
10µF Ceramic Capacitor C2012JB0J106K (TDK)
L
4.7µH VLP5610-4R7(TDK)
External Components
• Set external components such as an inductor, CIN, COUT as close as possible to the IC, in particular,
minimize the wiring to VIN pin and GND pin. If VDD line or GND line’s impedance is high, the internal voltage
level of the IC may fluctuate and the operation may be unstable. Make GND line and VDD line sufficient.
Through the VDD line, the GND line, the inductor, Lx pin, and VOUT line, a large current caused by switching
may flow, therefore, those lines should be sufficient and avoid the cross talk with other sensitive lines. Use
the individual line from the VOUT pin of the IC for the inductor and the capacitor and load.
• Use a low ESR ceramic capacitor COUT/CIN with a capacity of 10µF or more.
• Select an inductor with an inductance range from 4.7µH to 10µH. The internal phase compensation is
secured with these inductance values and COUT value. Choose the inductor with a low DC resistance and
enough permissible current and hard to reach magnetic saturation. In terms of inductance value, choose the
appropriate value with considering the conditions of the input voltage range and the output voltage, and
load current. If the inductance value is too small and the load current is large, the peak current of Lx may
reach the Lx current limit, and the protection against over-current may work.
• The protection circuit against over-current is affected by the self-heating and the heat radiation environment.
Therefore evaluate under the considerable environment of the application.
The performance of power source circuits using these ICs extremely depends upon the peripheral circuits.
Pay attention in the selection of the peripheral circuits. In particular, design the peripheral circuits in a way that
the values such as voltage, current, and power of each component, PCB patterns and the IC do not exceed their
respected rated values.
6
R5220x
OPERATION of step-down DC/DC converter and Output Current
The step-down DC/DC converter charges energy in the inductor when LX transistor is ON, and discharges the
energy from the inductor when LX transistor is OFF and controls with less energy loss, so that a lower output
voltage than the input voltage is obtained. The operation will be explained with reference to the following
diagrams:
<Basic Circuits>
<Current through L>
IL
ILmax
i1
VIN
Pch Tr
Nch Tr
VOUT
L
ILmin
topen
i2
CL
GND
ton
toff
T=1/fosc
Step 1: P-channel Tr. turns on and current IL (=i1) flows, and energy is charged into CL. At this moment, IL
increases from ILmin (=0) to reach ILmax in proportion to the on-time period (ton) of P-channel Tr.
Step 2: When P-channel Tr. turns off, Synchronous rectifier N-channel Tr. turns on in order that L maintains IL
at ILmax, and current IL (=i2) flows.
Step 3: IL (=i2) decreases gradually and reaches IL=ILmin=0 after a time period of topen, and N-channel Tr.
Turns off. Provided that in the continuous mode, next cycle starts before IL becomes to 0 because toff
time is not enough. In this case, IL value increases from this ILmin (>0).
In the case of PWM control system, the output voltage is maintained by controlling the on-time period (ton), with
the oscillator frequency (fosc) being maintained constant.
The maximum value (ILmax) and the minimum value (ILmin) of the current flowing through the inductor are the
same as those when P-channel Tr. turns on and off.
The difference between ILmax and ILmin, which is represented by ∆I;
∆I=ILmax−ILmin=VOUT×topen/L=(VIN−VOUT)×ton/L ........................................................ Equation 1
wherein, T=1/fosc=ton+toff
duty (%)=ton/T×100=ton×fosc×100
topen <
= toff
In Equation 1, VOUT×topen/L and (VIN − VOUT) ×ton/L respectively show the change of the current at "ON", and the
change of the current at "OFF".
7
R5220x
OUTPUT CURRENT AND SELECTION OF EXTERNAL COMPONENTS
When P-channel Tr. of LX is ON:
(Wherein, Ripple Current P-P value is described as IRP, ON resistance of P-channel Tr. and N-channel Tr. of LX
are respectively described as RONP and RONN, and the DC resistor of the inductor is described as RL.)
VIN = VOUT + (RONP + RL) × IOUT + L × IRP / ton ...................................................................Equation 2
When P-channel Tr. of LX is "OFF"(N-channel Tr. is "ON"):
L × IRP / toff = RONN × IOUT + VOUT + RL × IOUT ..................................................................Equation 3
Put Equation 3 to Equation 2 and solve for ON duty of P-channel transistor, ton/(toff+ton)=DON,
DON = (VOUT – RONN × IOUT + RL × IOUT) / (VIN + RONN × IOUT – RONP × IOUT)............................Equation 4
Ripple Current is as follows;
IRP = (VIN − VOUT − RONP × IOUT − RL × IOUT) × DON / fosc / L................................................Equation 5
wherein, peak current that flows through L, and LX Tr. is as follows;
ILmax = IOUT + IRP / 2 ......................................................................................................Equation 6
Consider ILmax, condition of input and output and select external components.
œ The above explanation is directed to the calculation in an ideal case in continuous mode.
8
R5220x
TIMING CHART
1) IC start-up
The timing chart as shown in the next describes the operation starting the IC is enabled with CE. When the CE
pin voltage becomes higher than the threshold voltage, the IC’s operations starts. At first, only the voltage
regulator (VR) starts. The threshold level of the CE pin is between CE “H” input voltage and CE “L” input voltage.
After starting the operation, the output capacitor (COUT) is charged with the output current of the VR, and the
output level becomes the set VR output voltage. At this moment, the output of Lx is “off”, (“Hi-Z”), the pin voltage,
VLX=VOUT through the external inductor L.
Secondly, the Mode pin voltage is higher than the threshold voltage, internal operation of DC/DC starts. The
threshold level is between Mode “H” input voltage and Mode “L” input voltage. The soft-start circuit inside the
DC/DC converter’s operation is as follows:
(Case 1) DC/DC output voltage < VR output voltage
After the soft-start time, while the output voltage level is down from the VR output voltage to DC/DC output
voltage, the circuit is waiting for the start of DC/DC operation. When the output voltage reaches so set DC/DC
output voltage level, the actual DC/DC operation starts.
(Case 2) DC/DC output voltage> VR output voltage
The soft-start circuit of DC/DC converter makes the voltage reference unit of the IC rise gradually and be
constant. After the voltage reference unit reaches the constant level which the output voltage of DC/DC
converter can balance becomes the output voltage of VR, the set output voltage of DC/DC converter may be
realized.
Therefore, the soft-start time means the time range of starting to the time when the voltage reference unit
reaches the constant level, and the soft-start time is different from turning on speed in some cases. The
operation starting time depends on the ability of the power supply, the load current, the inductance value, the
capacitance value, and the voltage difference between the set VR output and the set DC/DC output.
If CE and Mode are on at once, the same operation as above is happened except the VR start-up and
Soft-start operation start at the same time.
If Mode signal is forced earlier than CE signal, this IC is stand-by until CE signal comes. Therefore when the
CE signal is set, the IC operation starts as above.
• VOUT voltage rising speed at start-up with power supply is affected by the next conditions:
1.The turning on speed of VIN voltage limited by the power supply to the IC and the input capacitor CIN.
2.The output capacitor, COUT value and load current.
• DC/DC operation starting time
1.If the VR output >
= DC/DC output, the operation starting time of the DC/DC converter is approximately equal to
the next formula.
TDC/DC_ACT = TSS + (VOUT_VR − VOUT_DC/DC + 15mV) × COUT / (load current at mode change + 1µA)
TSS: Soft-start time
VOUT_VR: VR output voltage
VOUT_DC/DC: DC/DC Output Voltage
*1µA is the supply current of the IC itself for the output.
2.If the VR output < DC/DC output, the operation starting time is the soft-start time + starting operation time
which depends on the power supply, the load current, and the external components.
9
R5220x
VCEH
CE pin input signal
VCEL
VMODEH
MODE pin input signal
VMODEL
Soft start time
IC DC/DC Voltage Reference Unit
A.VR Output=DC/DC Output voltage
VOUT
Effect from Power Supply, Load Current, Extemal Components
Lx voltage
DC/DC Operation
B.VR voltage > DC/DC Output
VOUT
DC/DC does not operate if VR output is larger than
DC/DC
Lx voltage
DC/DC Operation
C. VR voltage < DC/DC voltage
VOUT
Lx voltage
DC/DC Operating
If CE pin input signal is forced earlier than the supply voltage, the voltage difference between the input and the
output which is according to the input voltage to VIN, is maintained and the VOUT is rising up.
10
R5220x
TEST CIRCUITS
OSCILLOSCOPE
Lxx
L
VVIN
Lxx
L
VOUT
V
GND
GND
MODE
MODE
VVIN
GND
GND
A
CE
VOUT
V
MODE
MODE
Supply Current 1,2,3
CE
Output Voltage(DC/DC)
OSCILLOSCOPE
OSCILLOSCOPE
Lxx
L
GND
GND
Lxx
L
VVIN
GND
GND
VOUT
V
VOUT
V
MODE
MODE
CE
MODE
MODE
VVIN
Oscillator Frequency
CE
Soft-start Time
OSCILLOSCOPE
Lxx
L
GND
GND
VVIN
VOUT
V
A
MODE
MODE
CE
Lx Leakage Current
Lxx
L
GND
GND
MODE
MODE
VVIN
VOUT
V
CE
Lx Current Limit, Output Delay for Protection
Lx Pch transistor ON resistance
Nch transistor ON resistance
11
R5220x
OSCILLOSCOPE
OSCILLOSCOPE
Lxx
L
GND
GND
MODE
MODE
VVIN
Lxx
L
VOUT
V
GND
GND
MODE
MODE
CE
VVIN
VOUT
V
CE
A
UVLO Detector Threshold UVLO Release Voltage
Lxx
L
VVIN
GND
GND
MODE
MODE
MODEInput Voltage ”H”,”L” Input Current
Lxx
L
VOUT
V
VVIN
GND
GND
CE
MODE
MODE
VOUT
V
CE
Network
Analyzer
V
Output Voltage (VR), Load Regulation
Line Regulation, Dropout Voltage
Lxx
L
VVIN
GND
GND
MODE
MODE
(J) RippleRejection
Lxx
L
VOUT
V
GND
GND
CE
MODE
MODE
VVIN
VOUT
V
CE
A
V
A
Short Current Limit
12
CE=”H”/”L” Input Voltage/ Input Current
R5220x
TYPICAL CHARACTERISTICS
1) DC/DC Converter
1-2) DC/DC Output Voltage vs. Input Voltage
R5220x181A
1.84
1.84
1.83
1.83
1.82
Output Voltage(V)
Output Voltage(V)
1-1) DC/DC Output Voltage vs. Output Current
R5220x181A
1.81
1.80
1.79
1.78
2.8V
3.6V
5.5V
1.77
1.81
1.80
1.79
1mA
50mA
250mA
1.78
1.77
1.76
0
1.82
100
200
300
Output Current(mA)
1.76
2.5
400
1-3) DC/DC Efficiency vs. Output Current
R5220x181A
3.0
3.5
4.0
4.5
Input Voltage(V)
5.0
5.5
1-4) DC/DC Supply Current vs. Temperature
VIN=VCE=VMODE=3.6V
Supply Current ISS(µA)
100
Efficiency(%)
80
60
40
2.8V
3.6V
5.5V
20
0
0.1
1
10
100
Output Current(mA)
1000
400
380
360
340
320
300
280
260
240
220
200
-50
DC/DC_VSET : 1.0V
DC/DC_VSET : 1.8V
-25
0
25
50
75
Temperature Topt(°C)
100
1-6) DC/DC Output Waveform
R5220x121A
CIN=COUT=Ceramic 10µF,L=4.7µH
VIN=3.6V,IOUT=300mA
VIN=VCE=VMODE
1.26
Output Ripple Voltage(V)
Supply Current ISS(µA)
1-5) DC/DC Supply Current vs. Input Voltage
400
380
360
340
320
300
280
260
240
220
200
-50
1.24
1.22
1.20
1.18
1.16
1.14
-25
0
25
50
Input Voltage(V)
75
100
0
1
2
3
Time(µs)
4
5
13
R5220x
1-7) DC/DC Output Voltage vs. Temperature
R5220x181A
R5220x181A
1.84
Output Voltage VOUT(V)
Output Ripple Voltage(V)
1.86
1.82
1.80
1.78
1.76
1.74
0
1
2
3
Time(µs)
4
5
1-8) DC/DC Oscillator Frequency vs. Temperature
Frequency fosc(kHz)
Frequency fosc(kHz)
1250
1200
1150
1100
1050
1000
-50
-25
0
25
50
75
Temperature Topt(°C)
0
25
50
75
Temperature Topt(°C)
100
1300
1250
1200
1150
1100
1050
2.5
100
1-10) Soft-start time vs. Temperature
-25
1350
1350
1300
IOUT=50mA
1-9) DC/DC Oscillator Frequency vs. Input Voltage
R5220x181A
VIN=3.6V
1400
1.90
1.88
1.86
1.84
1.82
1.80
1.78
1.76
1.74
1.72
1.70
-50
3.0
3.5
4.0
4.5
Input Voltage(V)
5.0
5.5
1-11) UVLO Detector Threshold/ Released Voltage vs.
Temperature
250
2.8
150
100
DC/DC_VSET : 1.0V
50
0
-50
14
VDD Voltage Level(V)
Soft-Start Time (µs)
2.7
200
DC/DC_VSET : 1.8V
-25
0
25
50
75
Temperature Topt(°C)
100
UVLO Detector Threshold
2.6
UVLO Released Voltage
2.5
2.4
2.3
2.2
2.1
2.0
-50
-25
0
25
50
75
Temperature Topt(°C)
100
R5220x
1-13) Pch Transistor On Resistance vs. Temperature
0.8
0.8
0.7
0.7
PchTr. On Resistance (Ω)
MODE Input Voltage VMODE(V)
1-12) MODE Input Voltage vs. temperature
0.6
0.5
0.4
0.3
0.2
0.1
0.0
-50
-25
0
25
50
75
Temperature Topt(°C)
0.6
0.5
0.4
0.3
0.2
0.1
0.0
-50
100
1-14) Nch Transistor On Resistance vs.
Temperature
VIN=3.6V
-25
0
25
50
75
Temperature Topt(°C)
100
1-15) DC/DC Lx Current Limit vs. Temperature
R5220x131A
VIN=3.6V
1200
0.7
Lx Limit Current(mA)
NchTr. ON Resistance (Ω)
0.8
0.6
0.5
0.4
0.3
0.2
1000
800
600
0.1
0.0
-50
-25
0
25
50
75
Temperature Topt(°C)
400
-50
100
-25
0
25
50
75
Temperature Topt(°C)
100
2) VR
2-1) VR Output Voltage vs. Output Current
R5220x121A
R5220x181A
1.2
1.0
Output Voltage VOUT(V)
Output Voltage VOUT(V)
1.4
VIN=2.8V
VIN=3.6V
VIN=5.5V
0.8
0.6
0.4
0.2
0.0
0
50
100
150
Output Current IOUT(mA)
200
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
VIN=2.8V
VIN=3.6V
VIN=5.5V
0
50
100
150
Output Current IOUT(mA)
200
15
R5220x
2-2) VR Output Voltage vs. Input Voltage
R5220x121A
R5220x181A
1.2
Output Voltage VOUT(V)
Output Voltage VOUT(V)
1.4
1.0
0.8
0.6
IOUT=1mA
IOUT=25mA
IOUT=50mA
0.4
0.2
0.0
0
1
2
3
4
Input Voltage VIN(V)
5
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0
6
IOUT=1mA
IOUT=25mA
IOUT=50mA
0
1
8.0
7.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0.0
5
6
6.0
5.0
4.0
3.0
2.0
1.0
1
2
3
4
Input Voltage VIN(V)
5
6
0
1
2-4) VR Output Voltage vs. Temperature
R5220x121A
1.84
1.23
1.83
1.22
1.21
1.20
1.19
1.18
1.17
1.16
-50
-25
0
25
50
75
Temperature Topt(°C)
2
3
4
Input Voltage VIN(V)
R5220x181A
1.24
Output Voltage VOUT(V)
Output Voltage VOUT(V)
6
0.0
0
16
5
R5220x181A
8.0
Supply Current ISS2(µA)
Supply Current ISS2(µA)
2-3) VR Supply Current vs. Input Voltage
R5220x121A
2
3
4
Input Voltage VIN(V)
100
1.82
1.81
1.80
1.79
1.78
1.77
1.76
-50
-25
0
25
50
75
Temperature Topt(°C)
100
R5220x
10
9
8
7
6
5
4
3
2
1
0
-50
R5220x181A
Supply Current ISS2(µA)
Supply Current ISS2(µA)
2-5) VR Supply Current vs. Temperature
R5220x121A
VIN=3.6V
VIN=5.5V
-25
0
25
50
75
Temperature Topt(°C)
100
10
9
8
7
6
5
4
3
2
1
0
-50
VIN=3.6V
VIN=5.5V
-25
0
25
50
75
Temperature Topt(°C)
2-6) Dropout Voltage vs. Output Current
R5220x121A
R5220x181A
1.86
700
Output Ripple Voltage(V)
Dropout Voltage VDIF(V)
800
600
500
400
300
-40°C
200
25°C
100
85°C
0
1.84
1.82
1.80
1.78
1.76
1.74
0
10
20
30
40
Output Current IOUT(mA)
50
0
2-7) Ripple Rejection vs. Input Voltage
R5220x121A
70
70
40
20
10
f=400Hz
f=1kHz
f=10kHz
f=100kHz
0
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Input Voltage VIN(V)
Ripple Rejection RR(dB)
Ripple Rejection RR(dB)
80
50
2
3
Time(µs)
4
5
Ripple 0.2Vp-p,IOUT=25mA,
CIN=none,COUT=Ceramic10µF
80
60
1
R5220x181A
Ripple 0.2Vp-p,IOUT=25mA,
CIN=none,COUT=Ceramic10µF
30
100
60
50
40
30
20
10
f=400Hz
f=1kHz
f=10kHz
f=100kHz
0
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Input Voltage VIN(V)
17
R5220x
2-8) VR Ripple Rejection vs. Frequency
R5220x121A
R5220x181A
VIN=2.8V+0.2Vp-p
CIN=none COUT=Ceramic10µF
IOUT=50mA
IOUT=25mA
IOUT=1mA
1
10
Frequency f (kHz)
100
100
90
80
70
60
50
40
30
20
10
0
0.1
IOUT=50mA
IOUT=25mA
IOUT=1mA
1
10
Frequency f (kHz)
2-9) Input Transient Response
R5220x121A
R5220x181A
5
1.88
5
1.26
4
1.86
4
1.24
3
1.84
3
1.22
2
1.82
2
1.20
1
1.80
1
1.18
0
1.78
0
1.16
0.0
0.2
0.4
0.6
Time T(ms)
0.8
Output Voltage(V)
1.28
1.76
0.0
1.0
0.2
2-10) Load Transient Response
R5220x121A
0mA
50
1.40
25
1.35
0
1.25
1.20
Output Voltage(V)
Output Voltage(V)
10mA
1.30
50
1mA
25mA
1mA
0.8
1.6
2.4
Time T(µs)
3.2
4.0
1.25
1.20
1.10
0.0
25
0
1.30
1.15
1.15
1.10
0.0
1.0
VIN=3.6V,CIN=COUT=Ceramic10µF
Load Current(mA)
1.40
0mA
0.8
R5220x121A
VIN=3.6V,CIN=COUT=Ceramic10µF
1.35
0.4
0.6
Time T(ms)
Input Voltage(V)
IOUT=10mA
CIN=none, COUT=Ceramic10µF
Input Voltage(V)
Output Voltage(V)
IOUT=10mA
CIN=none, COUT=Ceramic10µF
18
100
0.8
1.6
2.4
Time (µs)
3.2
4.0
Load Current(mA)
100
90
80
70
60
50
40
30
20
10
0
0.1
Ripple Rejection(dB)
Ripple Rejection(dB)
VIN=2.2V+0.2Vp-p
CIN=none COUT=Ceramic10µF
R5220x
R5220x181A
R5220x181A
VIN=3.6V,CIN=COUT=Ceramic10µF
0mA
1.90
0
1.85
1.80
50
1mA
1.95
25
Output Voltage(V)
10mA
Load Current(mA)
0mA
1.95
Output Voltage(V)
VIN=3.6V,CIN=COUT=Ceramic10µF
2.00
50
1.75
25mA
1mA
25
1.90
0
1.85
1.80
Load Current(mA)
2.00
1.75
1.70
0.0
0.8
1.6
2.4
Time T(µs)
3.2
1.70
0.0
4.0
0.8
1.6
2.4
Time T(µs)
3.2
4.0
3) Mode Transient Response between VR and DC/DC
3-1) VR to DC/DC Mode Transient Response
R5220x151A
3-2) DC/DC to VR Mode Transient Response
R5220x151A
1.60
20
1.55
16
1.55
16
VOUT
1.50
12
1.45
8
1.40
4
VMODE
1.35
0
Output Voltage(V)
20
MODE(V)
Output Voltage(V)
1.60
VOUT
1.50
12
8
1.45
1.40
4
MODE(V)
VIN=3.6V,IOUT=0.5mA
CIN=COUT=Ceramic10µF
VIN=3.6V,IOUT=0.5mA
CIN=COUT=Ceramic10µF
VMODE
0
1.35
1.30
1.30
0
200
400
600
Time (µs)
800
1000
0
200
400
600
Time (µs)
800
1000
19
PACKAGE INFORMATION
•
PE-SON-6-0510
SON-6
Unit: mm
PACKAGE DIMENSIONS
3
0.85MAX.
0.13±0.05
0.1
1.34
Bottom View
(0.3)
1
2.6±0.2
3.0±0.15
4
(0.3)
1.6±0.2
6
Attention: Tab suspension leads in the
parts have VDD or GND level.(They are
connected to the reverse side of this IC.)
Refer to PIN DISCRIPTION.
Do not connect to other wires or land patterns.
0.2±0.1
0.5
4.0±0.1
3.2
3.5±0.05
2.0±0.05
1.9
4.0±0.1
1.7MAX.
∅1.1±0.1
TR
User Direction of Feed
TAPING REEL DIMENSIONS
(1reel=3000pcs)
+1
60 0
2±0.5
21±0.8
0
180 −1.5
13±0.2
11.4±1.0
9.0±0.3
8.0±0.3
∅ 1.5+0.1
0
0.2±0.1
1.75±0.1
TAPING SPECIFICATION
PACKAGE INFORMATION
PE-SON-6-0510
POWER DISSIPATION (SON-6)
This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board.
This specification is based on the measurement at the condition below:
Measurement Conditions
Standard Land Pattern
Environment
Mounting on Board (Wind velocity=0m/s)
Board Material
Glass cloth epoxy plactic (Double sided)
Board Dimensions
40mm × 40mm × 1.6mm
Copper Ratio
Top side : Approx. 50% , Back side : Approx. 50%
Through-hole
φ0.5mm × 44pcs
Measurement Result
(Topt=25°C,Tjmax=125°C)
Standard Land Pattern
Free Air
Power Dissipation
500mW
250mW
Thermal Resistance
θja=(125−25°C)/0.5W=200°C/W
-
On Board
500
40
400
300
Free Air
250
200
40
Power Dissipation PD(mW)
600
100
0
0
25
50
75 85 100
Ambient Temperature (°C)
125
150
Power Dissipation
Measurement Board Pattern
IC Mount Area (Unit : mm)
RECOMMENDED LAND PATTERN
1.05 0.75
0.25 0.5
(Unit: mm)
PACKAGE INFORMATION
•
PE-PLP2514-6-0610
PLP2514-6
Unit: mm
0.50
0.20±0.05
B
4
6
0.25±0.05
1.4±0.05
0.05
2.5
×4
1.4
0.25±0.05
A
0.05
PACKAGE DIMENSIONS
0.
05
INDEX
3
0.6max.
S
C
1.10±0.05
1
Bottom View
Attention: Tabs or Tab suspension leads in the
parts have VDD or GND level.(They are
connected to the reverse side of this IC.)
Refer to PIN DISCRIPTION.
Do not connect to other wires or land patterns.
0.05 S
4.0±0.1
3.0
3.5±0.05
2.0±0.05
8.0±0.3
1.5 +0.1
0
0.2±0.1
1.75±0.1
TAPING SPECIFICATION
1.1±0.1
1.75
1.2max.
4.0±0.1
TR
User Direction of Feed
TAPING REEL DIMENSIONS
(1reel=5000pcs)
11.4±1.0
∅180 0
-1.5
2±0.5
∅60 +1
0
21±0.8
∅13±0.2
9.0±0.3
PACKAGE INFORMATION
PE-PLP2514-6-0610
POWER DISSIPATION (PLP2514-6)
This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board.
This specification is based on the measurement at the condition below:
Measurement Conditions
Standard Land Pattern
Environment
Mounting on Board (Wind velocity=0m/s)
Board Material
Glass cloth epoxy plactic (Double sided)
Board Dimensions
40mm × 40mm × 1.6mm
Copper Ratio
Top side : Approx. 50% , Back side : Approx. 50%
Through-hole
φ0.54mm × 30pcs
Measurement Result
(Topt=25°C,Tjmax=125°C)
Standard Land Pattern
Power Dissipation
730mW
Thermal Resistance
θja=(125−25°C)/0.73W=137°C/W
40
1000
800
730
On Board
600
40
Power Dissipation PD(mW)
1200
400
200
0
0
25
50
75 85 100
Ambient Temperature (°C)
125
150
Measurement Board Pattern
IC Mount Area Unit : mm
Power Dissipation
0.25
0.5
RECOMMENDED LAND PATTERN (PLP2514-6)
0.25
0.25
0.5
0.25
0.25
0.5
0.25
0.5
1.4
0.9
0.25
(Unit: mm)
MARK INFORMATION
ME-R5220D-070810
R5220D SERIES MARK SPECIFICATION
• SON-6
•
1
2
3
4
1
,
2
: Product Code (refer to Part Number vs. Product Code)
3
,
4
: Lot Number
Part Number vs. Product Code
Part Number
Product Code
1
2
R5220D101A
C
A
R5220D111A
C
B
Part Number
Product Code
1
2
R5220D101B
D
A
R5220D111B
D
B
Part Number
Product Code
Set VOUT
1
2
DC/DC
VR
R5220D012A
C
W
1.2V
1.1V
R5220D022A
C
X
1.5V
1.1V
R5220D121A
C
C
R5220D121B
D
C
R5220D032A
C
Y
1.3V
1.05V
R5220D131A
C
D
R5220D131B
D
D
R5220D042A
C
Z
1.5V
1.0V
R5220D141A
C
E
R5220D141B
D
E
R5220D151A
C
F
R5220D151B
D
F
R5220D012B
D
W
1.2V
1.1V
R5220D161A
C
G
R5220D161B
D
G
R5220D022B
D
X
1.5V
1.1V
R5220D171A
C
H
R5220D171B
D
H
R5220D032B
D
Y
1.3V
1.05V
R5220D181A
C
J
R5220D181B
D
J
R5220D042B
D
Z
1.5V
1.0V
R5220D191A
C
K
R5220D191B
D
K
R5220D201A
C
L
R5220D201B
D
L
R5220D211A
C
M
R5220D211B
D
M
R5220D221A
C
N
R5220D221B
D
N
R5220D231A
C
P
R5220D231B
D
P
R5220D241A
C
Q
R5220D241B
D
Q
R5220D251A
C
R
R5220D251B
D
R
R5220D261A
C
S
R5220D261B
D
S
R5220D271A
C
T
R5220D271B
D
T
R5220D281A
C
U
R5220D281B
D
U
R5220D291A
C
V
R5220D291B
D
V
R5220D301A
C
0
R5220D301B
D
0
R5220D311A
C
1
R5220D311B
D
1
R5220D321A
C
2
R5220D321B
D
2
R5220D331A
C
3
R5220D331B
D
3
R5220D261A5
C
4
R5220D261B5
D
4
MARK INFORMATION
ME-R5220K-070810
R5220K SERIES MARK SPECIFICATION
• PLP2514-6
to
1
5
•
1
2
3
4
5
6
,
4
6
: Product Code (refer to Part Number vs. Product Code)
: Lot Number
Part Number vs. Product Code
Part Number
Product Code
Part Number
Product Code
Part Number
Product Code
Set VOUT
1
2
3
4
1
2
3
4
1
2
3
4
DC/DC
VR
R5220K101A
S
1
0
1
R5220K101B
T
1
0
1
R5220K012A
S
0
1
2
1.2V
1.1V
R5220K111A
S
1
1
1
R5220K111B
T
1
1
1
R5220K022A
S
0
2
2
1.5V
1.1V
R5220K121A
S
1
2
1
R5220K121B
T
1
2
1
R5220K032A
S
0
3
2
1.3V
1.05V
R5220K131A
S
1
3
1
R5220K131B
T
1
3
1
R5220K042A
S
0
4
2
1.5V
1.0V
R5220K141A
S
1
4
1
R5220K141B
T
1
4
1
R5220K151A
S
1
5
1
R5220K151B
T
1
5
1
R5220K012B
T
0
1
2
1.2V
1.1V
R5220K161A
S
1
6
1
R5220K161B
T
1
6
1
R5220K022B
T
0
2
2
1.5V
1.1V
R5220K171A
S
1
7
1
R5220K171B
T
1
7
1
R5220K032B
T
0
3
2
1.3V
1.05V
R5220K181A
S
1
8
1
R5220K181B
T
1
8
1
R5220K042B
T
0
4
2
1.5V
1.0V
R5220K191A
S
1
9
1
R5220K191B
T
1
9
1
R5220K201A
S
2
0
1
R5220K201B
T
2
0
1
R5220K211A
S
2
1
1
R5220K211B
T
2
1
1
R5220K221A
S
2
2
1
R5220K221B
T
2
2
1
R5220K231A
S
2
3
1
R5220K231B
T
2
3
1
R5220K241A
S
2
4
1
R5220K241B
T
2
4
1
R5220K251A
S
2
5
1
R5220K251B
T
2
5
1
R5220K261A
S
2
6
1
R5220K261B
T
2
6
1
R5220K271A
S
2
7
1
R5220K271B
T
2
7
1
R5220K281A
S
2
8
1
R5220K281B
T
2
8
1
R5220K291A
S
2
9
1
R5220K291B
T
2
9
1
R5220K301A
S
3
0
1
R5220K301B
T
3
0
1
R5220K311A
S
3
1
1
R5220K311B
T
3
1
1
R5220K321A
S
3
2
1
R5220K321B
T
3
2
1
R5220K331A
S
3
3
1
R5220K331B
T
3
3
1
R5220K261A5 S
2
6
5
R5220K261B5 T
2
6
5