S3CK318/FK318 CalmRISC 8-Bit CMOS MICROCONTROLLER USER'S MANUAL Revision 1 Important Notice The information in this publication has been carefully checked and is believed to be entirely accurate at the time of publication. Samsung assumes no responsibility, however, for possible errors or omissions, or for any consequences resulting from the use of the information contained herein. Samsung reserves the right to make changes in its products or product specifications with the intent to improve function or design at any time and without notice and is not required to update this documentation to reflect such changes. This publication does not convey to a purchaser of semiconductor devices described herein any license under the patent rights of Samsung or others. Samsung makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Samsung assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation any consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by the customer's technical experts. Samsung products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, for other applications intended to support or sustain life, or for any other application in which the failure of the Samsung product could create a situation where personal injury or death may occur. Should the Buyer purchase or use a Samsung product for any such unintended or unauthorized application, the Buyer shall indemnify and hold Samsung and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, expenses, and reasonable attorney fees arising out of, either directly or indirectly, any claim of personal injury or death that may be associated with such unintended or unauthorized use, even if such claim alleges that Samsung was negligent regarding the design or manufacture of said product. S3CK318/FK318 8-Bit CMOS Microcontroller User's Manual, Revision 1 Publication Number: 21-S3-CK318/FK318-042004 2004 Samsung Electronics All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electric or mechanical, by photocopying, recording, or otherwise, without the prior written consent of Samsung Electronics. Samsung Electronics' microcontroller business has been awarded full ISO-14001 certification (BVQ1 Certificate No. 9330). All semiconductor products are designed and manufactured in accordance with the highest quality standards and objectives. Samsung Electronics Co., Ltd. San #24 Nongseo-Lee, Kiheung-Eup Yongin-City Kyungi-Do, Korea C.P.O. Box #37, Suwon 449-900 TEL: (82)-(331)-209-1907 FAX: (82)-(331)-209-1889 Home-Page URL: Http://www.samsungsemi.com/ Printed in the Republic of Korea Preface The S3CK318/FK318 Microcontroller User's Manual is designed for application designers and programmers who are using the S3CK318/FK318 microcontroller for application development. It is organized in two main parts: Part I Programming Model Part II Hardware Descriptions Part I contains software-related information to familiarize you with the microcontroller's architecture, programming model, instruction set, and interrupt structure. It has seven chapters: Chapter 1 Chapter 2 Chapter 3 Chapter 4 Product Overview Address Spaces Register Memory Map Chapter 5 Chapter 6 Chapter 7 Hardware Stack Exceptions Instruction Set Chapter 1, "Product Overview," is a high-level introduction to S3CK318/FK318 with general product descriptions, as well as detailed information about individual pin characteristics and pin circuit types. Chapter 2, "Address Spaces," describes program and data memory spaces. Chapter 2 also describes ROM code option. Chapter 3, "Register," describes the special registers. Chapter 4, "Memory Map," describes the internal register file. Chapter 5, "Hardware Stack," describes the S3CK318/FK318 hardware stack structure in detail. Chapter 6, "Exception," describes the S3CK318/FK318 exception structure in detail. A basic familiarity with the information in Part I will help you to understand the hardware module descriptions in Part II. If you are not yet familiar with the S3CK-series microcontroller family and are reading this manual for the first time, we recommend that you first read Chapters 1–3 carefully. Then, briefly look over the detailed information in Chapters 4, 5, 6 and 7. Later, you can reference the information in Part I as necessary. Part II "hardware Descriptions," has detailed information about specific hardware components of the S3CK318/FK318 microcontroller. Also included in Part II are electrical, mechanical. It has 17 chapters: Chapter 8 Chapter 9 Chapter 10 Chapter 11 Chapter 12 Chapter 13 Chapter 14 Chapter 15 Chapter 16 Clock Circuit RESET and Power-Down I/O Ports Basic Timer/Watchdog Timer Watch Timer 16-bit Timer 0 8-bit Timer 1 Serial I/O Interface Battery Level Detector Chapter 17 Chapter 18 Chapter 19 Chapter 20 Chapter 21 Chapter 22 Chapter 23 Chapter 24 LCD Controller/Driver 10-Bit Analog-to-Digital Converter D/A Converter Frequency Counter Electrical Data Mechanical Data S3FK318 Flash MCU Development Tools One order form is included at the back of this manual to facilitate customer order for S3CK318/FK318 microcontrollers: the Flash Factory Writing Order Form. You can photocopy this form, fill it out, and then forward it to your local Samsung Sales Representative. S3CK318/FK318 MICROCONTROLLER iii Table of Contents Part I — Programming Model Chapter 1 Product Overview Overview ............................................................................................................................................. 1-1 Features ............................................................................................................................................. 1-5 Block Diagram .................................................................................................................................... 1-7 Pin Assignment................................................................................................................................... 1-8 Pin Descriptions .................................................................................................................................. 1-9 Pin Circuits......................................................................................................................................... 1-11 Chapter 2 Address Spaces Overview ............................................................................................................................................. 2-1 Program Memory (ROM) ...................................................................................................................... 2-1 ROM Code Option (RCOD_OPT)........................................................................................................... 2-4 Data Memory Organization................................................................................................................... 2-6 Chapter 3 Register Overview ............................................................................................................................................. 3-1 Index Registers: IDH, IDL0 and IDL1.............................................................................................. 3-2 Link Registers: ILX, ILH and ILL .................................................................................................... 3-2 Status Register 0: SR0 ................................................................................................................ 3-3 Status Register 1: SR1 ................................................................................................................ 3-4 Chapter 4 Memory Map Overview ............................................................................................................................................. 4-1 S3CK318/FK318 MICROCONTROLLER v Table of Contents (Continued) Chapter 5 Hardware Stack Overview ............................................................................................................................................. 5-1 Chapter 6 Exceptions Overview ............................................................................................................................................. 6-1 Hardware Reset........................................................................................................................... 6-1 IRQ[0] Exception......................................................................................................................... 6-2 IRQ[1] Exception (Level-Sensitive)................................................................................................. 6-2 Hardware Stack Full Exception..................................................................................................... 6-2 Break Exception.......................................................................................................................... 6-2 Exceptions (or Interrupts)............................................................................................................. 6-3 Interrupt Mask Registers .............................................................................................................. 6-5 Interrupt Priority Register.............................................................................................................. 6-6 Chapter 7 Instruction Set Overview ............................................................................................................................................. 7-1 Glossary..................................................................................................................................... 7-1 Instruction Set Map ............................................................................................................................. 7-2 Quick Reference.................................................................................................................................. 7-9 Instruction Group Summary .................................................................................................................. 7-12 ALU Instructions.......................................................................................................................... 7-12 Shift/Rotate Instructions ............................................................................................................... 7-16 Load Instructions ......................................................................................................................... 7-18 Branch Instructions...................................................................................................................... 7-21 Bit Manipulation Instructions......................................................................................................... 7-25 Miscellaneous Instruction............................................................................................................. 7-26 Pseudo Instructions ..................................................................................................................... 7-29 vi S3CK318/FK318 MICROCONTROLLER Table of Contents (Continued) Part II — Hardware Descriptions Chapter 8 Clock Circuit System Clock Circuit........................................................................................................................... 8-1 Chapter 9 RESET and Power-Down Overview ............................................................................................................................................. 9-1 Chapter 10 Port Port Port Port Port Port Port I/O Ports 0................................................................................................................................................. 10-1 1................................................................................................................................................. 10-2 2................................................................................................................................................. 10-4 3................................................................................................................................................. 10-5 4................................................................................................................................................. 10-7 5................................................................................................................................................. 10-8 6................................................................................................................................................. 10-9 Chapter 11 Basic Timer/Watchdog Timer Overview ............................................................................................................................................. 11-1 Block Diagram ............................................................................................................................ 11-2 Chapter 12 Watch Timer Overview ............................................................................................................................................. 12-1 Watch Timer Circuit Diagram........................................................................................................ 12-2 Chapter 13 16-Bit Timer 0 Overview ............................................................................................................................................. 13-1 Function Description............................................................................................................................ 13-2 Timer 0 Control Register (T0CON) ......................................................................................................... 13-3 Block Diagram .................................................................................................................................... 13-4 S3CK318/FK318 MICROCONTROLLER vii Table of Contents (Continued) Chapter 14 8-Bit Timer 1 Overview ............................................................................................................................................. 14-1 Function Description............................................................................................................................ 14-1 Timer 1 Control Register (T1CON) ................................................................................................. 14-2 Block Diagram ............................................................................................................................ 14-3 Chapter 15 Serial I/O Interface Overview ............................................................................................................................................. 15-1 Programming Procedure............................................................................................................... 15-1 SIO Control Register (SIOCON) ............................................................................................................ 15-2 SIO Pre-Scaler Register (SIOPS).......................................................................................................... 15-2 Block Diagram .................................................................................................................................... 15-3 Serial I/O Timing Diagram..................................................................................................................... 15-4 Chapter 16 Battery Level Detector Overview ............................................................................................................................................. 16-1 Battery Level Detector Control Register (BLDCON) ......................................................................... 16-2 Chapter 17 LCD Controller/Driver Overview ............................................................................................................................................. 17-1 LCD Circuit Diagram .................................................................................................................... 17-2 LCD RAM Address Area .............................................................................................................. 17-3 LCD Mode Control Register (LMOD).............................................................................................. 17-4 LCD Port Control Registers (LPOT0, LPOT1, LPOT2) ..................................................................... 17-5 LCD Voltage Dividing Resistors..................................................................................................... 17-7 Common (COM) Signals .............................................................................................................. 17-8 Segment (SEG) Signals............................................................................................................... 17-8 Chapter 18 10-Bit Analog-to-Digital Converter Overview ............................................................................................................................................. 18-1 Function Description............................................................................................................................ 18-1 Conversion Timing ....................................................................................................................... 18-2 A/D Converter Control Register (ADCON)....................................................................................... 18-2 Internal Reference Voltage Levels.................................................................................................. 18-3 Block Diagram .................................................................................................................................... 18-3 viii S3CK318/FK318 MICROCONTROLLER Table of Contents (Continued) Chapter 19 D/A Converter Overview ............................................................................................................................................. 19-1 Function Description.................................................................................................................... 19-1 D/A Converter Data Register (DADATAH/DADATAL)....................................................................... 19-3 Chapter 20 Frequency Counter Overview ............................................................................................................................................. 20-1 FC Contorl Register (FCCON)............................................................................................................... 20-2 Input Pin Configuration for an AC Frequency Count ......................................................................... 20-3 FC Mode Register (FCMOD)................................................................................................................. 20-4 Gate Times ......................................................................................................................................... 20-5 Frequency Counter (FC) Operation........................................................................................................ 20-8 FC Data Calculation............................................................................................................................. 20-9 Chapter 21 Electrical Data Chapter 22 Mechanical Data Overview ............................................................................................................................................. 22-1 Chapter 23 S3FK318 Flash MCU Overview ............................................................................................................................................. 23-1 S3CK318/FK318 MICROCONTROLLER ix Table of Contents (Continued) Chapter 24 Development Tools Overview ............................................................................................................................................. 24-1 CALMSHINE: IDE (Integrated Development Environment)................................................................ 24-1 Invisible Mds: In-Circuit Emulator .................................................................................................. 24-1 CALMRISC8 C-Compiler: CALM8CC ............................................................................................. 24-1 CALMRISC8 Relocatable Assembler: CALM8ASM......................................................................... 24-1 CALMRISC8 Linker: CALM8LINK .................................................................................................. 24-1 Emulation Probe Board Configuration .................................................................................................... 24-2 External Event Input Headers........................................................................................................ 24-3 Event Match Output Headers ........................................................................................................ 24-3 External Break Input Headers (U6) ................................................................................................ 24-3 Power Selection .......................................................................................................................... 24-4 Clock Selection........................................................................................................................... 24-4 Use Clock Setting for External Clock Mode.................................................................................... 24-5 Sub Clock Setting ....................................................................................................................... 24-5 JP1 Pin Assignment .................................................................................................................... 24-6 x S3CK318/FK318 MICROCONTROLLER List of Figures Figure Number Title Page Number 1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10 1-11 1-12 1-13 Top Block Diagram.......................................................................................................... 1-2 CalmRISC Pipeline Diagram............................................................................................. 1-3 CalmRISC Pipeline Stream Diagram ................................................................................. 1-4 Block Diagram................................................................................................................ 1-7 Pin Assignment (44-QFP-1010B)...................................................................................... 1-8 Pin Circuit Type B (nRESET) ........................................................................................... 1-11 Pin Circuit Type B-4 (P0) ................................................................................................. 1-11 Pin Circuit Type E-4 (P1, P3.1) ........................................................................................ 1-11 Pin Circuit Type E-5 (P3.0) .............................................................................................. 1-11 Pin Circuit Type F-16A (P2) ............................................................................................ 1-12 Pin Circuit Type H-23 ...................................................................................................... 1-12 Pin Circuit Type H-32 (P4, P5, and P6) ............................................................................. 1-13 Pin Circuit Type H-32A (P3.2–P3.5).................................................................................. 1-13 2-1 2-2 2-3 2-4 2-5 2-6 Program Memory Organization......................................................................................... 2-1 Relative Jump Around Page Boundary............................................................................... 2-2 Program Memory Layout ................................................................................................. 2-3 ROM Code Option (RCOD_OPT) ...................................................................................... 2-5 Data Memory Map of CalmRISC8 ..................................................................................... 2-6 Data Memory Map of S3CK318 ........................................................................................ 2-7 3-1 Bank Selection by Setting of GRB Bits and IDB Bit............................................................ 3-3 4-1 Memory Map Area .......................................................................................................... 4-1 5-1 5-2 5-3 5-4 5-5 Hardware Stack .............................................................................................................. 5-1 Even and Odd Bank Selection Example ............................................................................ 5-2 Stack Operation with PC [19:0] ........................................................................................ 5-3 Stack Operation with Registers ........................................................................................ 5-4 Stack Overflow................................................................................................................ 5-5 6-1 6-2 6-3 6-4 Interrupt Structure ........................................................................................................... 6-3 Interrupt Block Diagram ................................................................................................... 6-4 Interrupt Mask Register ................................................................................................... 6-5 Interrupt Priority Register ................................................................................................. 6-6 S3CK318/FK318 MICROCONTROLLER xi List of Figures (Continued) Figure Number Title Page Number 8-1 8-2 8-3 8-4 8-5 8-6 Main Oscillator Circuit (Crystal or Ceramic Oscillator) ........................................................ 8-1 Main Oscillator Circuit (RC Oscillator)............................................................................... 8-1 Sub Oscillator Circuit (Crystal or Ceramic Oscillator).......................................................... 8-2 System Clock Circuit Diagram ......................................................................................... 8-3 Power Control Register (PCON)........................................................................................ 8-4 Oscillator Control Register (OSCCON) .............................................................................. 8-4 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 10-13 10-14 Port 0 Pull-up Control Register (P0PUR) ........................................................................... 10-1 Port 1 Control Register (P1CON) ...................................................................................... 10-2 Port 1 Pull-up Control Register (P1PUR) ........................................................................... 10-2 Port 1 Interrupt Edge Selection Register (P1EDGE) ........................................................... 10-3 Port 2 Control Register (P2CON) ...................................................................................... 10-4 Port 2 Pull-up Control Register (P2PUR) ........................................................................... 10-4 Port 3 Control Register A (P3CONA)................................................................................. 10-5 Port 3 Control Register B (P3CONB)................................................................................. 10-5 Port 3 Control Register C (P3CONC)................................................................................. 10-6 Port 4 High-Byte Control Register (P4CONH)..................................................................... 10-7 Port 4 Low-Byte Control Register (P4CONL)...................................................................... 10-7 Port 5 High-Byte Control Register (P5CONH)..................................................................... 10-8 Port 5 Low-Byte Control Register (P5CONL)...................................................................... 10-8 Port 6 Control Register (P6CON) ...................................................................................... 10-9 11-1 11-2 Watchdog Timer Control Register (WDTCON).................................................................... 11-1 Basic Timer & Watchdog Timer Functional Block Diagram.................................................. 11-2 12-1 Watch Timer Circuit Diagram ........................................................................................... 12-2 13-1 13-2 13-3 Timer 0 Control Register (T0CON)..................................................................................... 13-3 Timer 0 Functional Block Diagram .................................................................................... 13-4 Timer 0 Counter and Data Registers (T0CNTH/L, T0DATAH/L)............................................. 13-5 14-1 14-2 14-3 14-4 Timer 1 Control (T1CON).................................................................................................. 14-2 Timer 1 Functional Block Diagram .................................................................................... 14-3 Timer 1 Counter Register (T1CNT) .................................................................................... 14-4 Timer 1 Data Register (T1DATA)....................................................................................... 14-4 15-1 15-2 15-3 15-4 15-5 Serial I/O Module Control Registers (SIOCON)................................................................... 15-2 SIO Pre-scaler Register (SIOPS)...................................................................................... 15-2 SIO Function Block Diagram............................................................................................ 15-3 Serial I/O Timing in Transmit/Receive Mode (Tx at falling, SIOCON.4 = 0) ............................ 15-4 Serial I/O Timing in Transmit/Receive Mode (Tx at rising, SIOCON.4 = 1)............................. 15-4 xii S3CK318/FK318 MICROCONTROLLER List of Figures (Continued) Figure Number Title Page Number 16-1 16-2 Block Diagram for Battery Level Detect ............................................................................. 16-1 Battery Level Detector Circuit and Control Register ............................................................ 16-2 17-1 17-2 17-3 17-4 17-5 17-6 17-7 17-8 17-9 17-10 17-11 17-12 LCD Function Diagram .................................................................................................... 17-1 LCD Circuit Diagram........................................................................................................ 17-2 LCD Display Data RAM Organization................................................................................ 17-3 LCD Mode Control Register (LMOD) ................................................................................. 17-4 LCD Port Control Register 0 (LPOT0)................................................................................ 17-5 LCD Port Control Register 1 (LPOT1)................................................................................ 17-5 LCD Port Control Register 2 (LPOT2)................................................................................ 17-6 LCD Bias Circuit Connection............................................................................................ 17-7 LCD Signal Waveforms (1/3 Duty, 1/3 Bias)....................................................................... 17-9 LCD Signal Waveforms (1/4 Duty, 1/3 Bias)....................................................................... 17-10 LCD Signal Waveforms (1/8 Duty, 1/4 Bias)....................................................................... 17-11 LCD Signal Waveforms (1/8 Duty, 1/5 Bias)....................................................................... 17-13 18-1 18-2 18-3 18-4 A/D Converter Control Register (ADCON) .......................................................................... 18-2 A/D Converter Data Register (ADDATAH/ADDATAL) .......................................................... 18-3 A/D Converter Functional Block Diagram........................................................................... 18-3 Recommended A/D Converter Circuit for Highest Absolute Accuracy ................................... 18-4 19-1 19-2 19-3 DAC Circuit Diagram ....................................................................................................... 19-2 Digital to Analog Converter Control Register (DACON) ........................................................ 19-2 D/A Converter Data Register (DADATAH/DADATAL) .......................................................... 19-3 20-1 20-2 20-3 20-4 20-5 20-6 20-7 20-8 Frequency Counter Block Diagram ................................................................................... 20-1 Frequency Counter Control Register (FCCON) ................................................................... 20-2 Frequency Counter Register (FCNT2–FCNT0).................................................................... 20-2 FMF and AMF Pin Configuration....................................................................................... 20-3 Frequency Counter Mode Register (FCMOD)..................................................................... 20-4 Gate Timing (16, 32, or 64-ms)......................................................................................... 20-5 Gate Timing (When Open) ............................................................................................... 20-6 Gate Timing (16-ms Error)................................................................................................ 20-7 21-1 21-2 21-3 21-4 21-5 21-6 21-7 Input Timing for External Interrupts (P1, P3.0–P3.2) ........................................................... 21-4 Input Timing for RESET ................................................................................................... 21-4 Stop Mode Release Timing When Initiated by a RESET ..................................................... 21-5 Stop Mode (Main) Release Timing Initiated by Interrupts..................................................... 21-6 Stop Mode (Sub) Release Timing Initiated by Interrupts ...................................................... 21-6 Serial Data Transfer Timing .............................................................................................. 21-10 Clock Timing Measurement at XIN..................................................................................... 21-12 21-8 Clock Timing Measurement at XT IN ................................................................................... 21-12 21-9 Operating Voltage Range................................................................................................. 21-13 S3CK318/FK318 MICROCONTROLLER xiii List of Figures (Continued) Figure Number Title Page Number 22-1 44-Pin QFP Package Dimensions (44-QFP-1010B)............................................................ 22-1 23-1 S3FK318 Pin Assignments (44-QFP-1010B) ..................................................................... 23-2 24-1 Emulation Probe Board Configuration................................................................................ 24-2 xiv S3CK318/FK318 MICROCONTROLLER List of Tables Table Number Title Page Number 1-1 Pin Descriptions ............................................................................................................. 1-9 3-1 3-2 3-3 General and Special Purpose Registers ............................................................................ 3-1 Status Register 0 configuration......................................................................................... 3-3 Status Register 1: SR1.................................................................................................... 3-4 4-1 Registers ....................................................................................................................... 4-2 6-1 Exceptions ..................................................................................................................... 6-1 7-1 7-2 7-3 7-4 7-5 7-6 7-7 7-8 7-9 Instruction Notation Conventions....................................................................................... 7-1 Overall Instruction Set Map .............................................................................................. 7-2 Instruction Encoding........................................................................................................ 7-4 Index Code Information ("idx") .......................................................................................... 7-7 Index Modification Code Information ("mod")...................................................................... 7-7 Condition Code Information ("cc") ..................................................................................... 7-7 "ALUop1" Code Information.............................................................................................. 7-8 "ALUop2" Code Information.............................................................................................. 7-8 "MODop1" Code Information............................................................................................. 7-8 12-1 Watch Timer Control Register (WTCON): 8-Bit R/W ........................................................... 12-1 16-1 BLDCON Value and Detection Level ................................................................................. 16-2 19-1 DADATA Setting to Generate Analog Voltage.................................................................... 19-3 20-1 20-2 20-3 Frequency Counter Control Register (FCCON) Bit Settings in Normal Operating Mode .......... 20-3 Frequency Counter Control Register (FCCON) Bit Settings in Power-Down Mode.................. 20-3 FC Frequency Characteristics.......................................................................................... 20-9 S3CK318/FK318 MICROCONTROLLER xv List of Tables (Continued) Table Number Title Page Number 21-1 21-2 21-3 21-4 21-5 21-6 21-7 21-8 21-9 21-10 21-11 21-12 Absolute Maximum Ratings ............................................................................................. 21-1 D.C. Electrical Characteristics ......................................................................................... 21-1 A.C. Electrical Characteristics ......................................................................................... 21-4 Input/Output Capacitance ................................................................................................ 21-5 Data Retention Supply Voltage in Stop Mode .................................................................... 21-5 A/D Converter Electrical Characteristics............................................................................ 21-7 D/A Converter Electrical Characteristics............................................................................ 21-7 Characteristics of Frequency Counter ............................................................................... 21-8 Characteristics of Battery Level Detect Circuit ................................................................... 21-8 LCD Contrast Level Characteristics................................................................................... 21-9 Synchronous SIO Electrical Characteristics ...................................................................... 21-10 Main Oscillator Frequency (fOSC1) .................................................................................... 21-11 21-13 Main Oscillator Clock Stabilization Time (TST1).................................................................. 21-11 21-14 21-15 Sub Oscillator Frequency (fOSC2)...................................................................................... 21-12 Sub Oscillator (Crystal) Start up Time (t ST2) ...................................................................... 21-13 23-1 Descriptions of Pins Used to Read/Write the FLASH ROM ................................................. 23-3 xvi S3CK318/FK318 MICROCONTROLLER List of Programming Tips Description Page Number Chapter 6: Exceptions Interrupt Programming Tip 1.................................................................................................................. 6-7 Interrupt Programming Tip 2.................................................................................................................. 6-8 S3CK318/FK318 MICROCONTROLLER xvii List of Instruction Descriptions Instruction Mnemonic ADC ADD AND AND SR0 BANK BITC BITR BITS BITT BMC/BMS CALL CALLS CLD CLD COM COM2 COMC COP CP CPC DEC DECC DI EI IDLE INC INCC IRET JNZD JP JR LCALL LD adr:8 Full Instruction Name Page Number Add with Carry .................................................................................................... 7-30 Add ................................................................................................................... 7-31 Bit-wise AND...................................................................................................... 7-32 Bit-wise AND with SR0........................................................................................ 7-33 GPR Bank Selection ........................................................................................... 7-34 Bit Complement .................................................................................................. 7-35 Bit Reset............................................................................................................ 7-36 Bit Set ............................................................................................................... 7-37 Bit Test.............................................................................................................. 7-38 TF bit clear/set ................................................................................................... 7-39 Conditional subroutine call (Pseudo Instruction) .................................................... 7-40 Call Subroutine ................................................................................................... 7-41 Load into Coprocessor......................................................................................... 7-42 Load from Coprocessor........................................................................................ 7-43 1's or Bit-wise Complement.................................................................................. 7-44 2's Complement .................................................................................................. 7-45 Bit-wise Complement with Carry ........................................................................... 7-46 Coprocessor....................................................................................................... 7-47 Compare ............................................................................................................ 7-48 Compare with Carry............................................................................................. 7-49 Decrement ......................................................................................................... 7-50 Decrement with Carry .......................................................................................... 7-51 Disable Interrupt (Pseudo Instruction).................................................................... 7-52 Enable Interrupt (Pseudo Instruction) ................................................................... 7-53 Idle Operation (Pseudo Instruction) ...................................................................... 7-54 Increment ........................................................................................................... 7-55 Increment with Carry ........................................................................................... 7-56 Return from Interrupt Handling .............................................................................. 7-57 Jump Not Zero with Delay Slot ............................................................................. 7-58 Conditional Jump (Pseudo Instruction) ................................................................. 7-59 Conditional Jump Relative .................................................................................... 7-60 Conditional Subroutine Call .................................................................................. 7-61 Load into Memory ............................................................................................... 7-62 S3CK318/FK318 MICROCONTROLLER xix List of Instruction Descriptions (Continued) Instruction Mnemonic LD @idm LD LD LD LD LD SPR LD SPR0 LDC LJP LLNK LNK LNKS LRET NOP OR OR SR0 POP POP PUSH RET RL RLC RR RRC SBC SL SLA SR SRA STOP SUB SWAP SYS TM XOR xx Full Instruction Name Page Number Load into Memory Indexed................................................................................... 7-63 Load Register ..................................................................................................... 7-64 Load GPR:bankd, GPR:banks.............................................................................. 7-65 Load GPR, TBH/TBL........................................................................................... 7-66 Load TBH/TBL, GPR........................................................................................... 7-67 Load SPR .......................................................................................................... 7-68 Load SPR0 Immediate......................................................................................... 7-69 Load Code.......................................................................................................... 7-70 Conditional Jump ................................................................................................ 7-71 Linked Subroutine Call Conditional........................................................................ 7-72 Linked Subroutine Call (Pseudo Instruction) .......................................................... 7-73 Linked Subroutine Call......................................................................................... 7-74 Return from Linked Subroutine Call....................................................................... 7-75 No Operation ...................................................................................................... 7-76 Bit-wise OR........................................................................................................ 7-77 Bit-wise OR with SR0.......................................................................................... 7-78 POP .................................................................................................................. 7-79 POP to Register ................................................................................................. 7-80 Push Register..................................................................................................... 7-81 Return from Subroutine........................................................................................ 7-82 Rotate Left ......................................................................................................... 7-83 Rotate Left with Carry .......................................................................................... 7-84 Rotate Right ....................................................................................................... 7-85 Rotate Right with Carry........................................................................................ 7-86 Subtract with Carry ............................................................................................. 7-87 Shift Left ............................................................................................................ 7-88 Shift Left Arithmetic............................................................................................. 7-89 Shift Right .......................................................................................................... 7-90 Shift Right Arithmetic .......................................................................................... 7-91 Stop Operation (Pseudo Instruction) .................................................................... 7-92 Subtract............................................................................................................. 7-93 Swap ................................................................................................................. 7-94 System.............................................................................................................. 7-95 Test Multiple Bits................................................................................................ 7-96 Exclusive OR...................................................................................................... 7-97 S3CK318/FK318 MICROCONTROLLER NOTIFICATION OF REVISIONS ORIGINATOR: Samsung Electronics, LSI Development Group, Ki-Heung, South Korea PRODUCT NAME: S3CK318/FK318 8-bit CMOS Microcontroller DOCUMENT NAME: S3CK318/FK318 User's Manual, Revision 1 DOCUMENT NUMBER: 21-S3-CK318/FK318-042004 EFFECTIVE DATE: April, 2004 SUMMARY: As a result of additional product testing and evaluation, some specifications published in the S3CK318/FK318 User's Manual, Revision 0, have been changed. These changes for S3CK318/FK318 microcontroller, which are described in detail in the Revision Descriptions section below, are related to the followings: — Chapter 21. Electrical Data DIRECTIONS: Please note the changes in your copy (copies) of the S3CK318/FK318 User's Manual, Revision 0. Or, simply attach the Revision Descriptions of the next page to S3CK318/FK318 User's Manual, Revision 0. REVISION HISTORY Revision Date Remark 0 November, 2003 Preliminary Spec for internal release only. First edition. Reviewed by Finechips. 1 April, 2004 Second edition. Reviewed by Finechips. REVISION DESCRIPTIONS 1. OPERATING VOLTAGE (PAGE 21-1) The Operating voltage at 8MHz X-tal is changed 2.4V to 2.3V. The Operating voltage at 2MHz X-tal is changed 2.0V to 1.95V. Table 21-2. D.C. Electrical Characteristics (TA = – 25 °C to + 85 °C, VDD = 1.95 V to 3.6 V) Parameter Operating voltage Symbol VDD Conditions Min Typ Max Unit fx = 8 MHz 2.3 – 3.6 V fx = 2 MHz 1.95 – 3.6 2. CHARACTERISTICS OF BATTERY LEVEL DETECT CIRCUIT (PAGE 21-8) Table 21-9. Characteristics of Battery Level Detect Circuit (TA = 25 °C) Parameter Symbol Operating voltage of BLD VDDBLD Voltage of BLD VBLD Conditions Min Typ Max Unit 1.95 – 3.6 V BLDCON.4–.2 = 100b 1.95 2.2 2.45 BLDCON.4–.2 = 101b 2.15 2.4 2.65 BLDCON.4–.2 = 110b 2.3 2.6 2.9 S3CK318/FK318 1 PRODUCT OVERVIEW PRODUCT OVERVIEW OVERVIEW The S3CK318/FK318 single-chip CMOS microcontroller is designed for high performance using Samsung's new 8-bit CPU core, CalmRISC. CalmRISC is an 8-bit low power RISC microcontroller. Its basic architecture follows Harvard style, that is, it has separate program memory and data memory. Both instruction and data can be fetched simultaneously without causing a stall, using separate paths for memory access. Represented below is the top block diagram of the CalmRISC microcontroller. 1-1 PRODUCT OVERVIEW S3CK318/FK318 20 PA[19:0] Program Memory Address Generation Unit PD[15:0] PC[19:0] 20 8 8 HS[0] Hardware Stack TBH HS[15] TBL DO[7:0] ABUS[7:0] BBUS[7:0] DI[7:0] ALUL R0 ALUR R1 R2 ALU Flag R3 GPR RBUS ILX DA[15:0] Data Memory Address Generation Unit SR1 SR0 ILH ILL IDL0 IDH IDL1 SPR Figure 1-1. Top Block Diagram 1-2 S3CK318/FK318 PRODUCT OVERVIEW The CalmRISC building blocks consist of: — An 8-bit ALU — 16 general purpose registers (GPR) — 11 special purpose registers (SPR) — 16-level hardware stack — Program memory address generation unit — Data memory address generation unit Sixteen GPRs are grouped into four banks (Bank0 to Bank3), and each bank has four 8-bit registers (R0, R1, R2, and R3). SPRs, designed for special purposes, include status registers, link registers for branch-link instructions, and data memory index registers. The data memory address generation unit provides the data memory address (denoted as DA[15:0] in the top block diagram) for a data memory access instruction. Data memory contents are accessed through DI[7:0] for read operations and DO[7:0] for write operations. The program memory address generation unit contains a program counter, PC[19:0], and supplies the program memory address through PA[19:0] and fetches the corresponding instruction through PD[15:0] as the result of the program memory access. CalmRISC has a 16-level hardware stack for low power stack operations as well as a temporary storage area. Instruction Fetch (IF) Instruction Decode/ Data Memory Access (ID/MEM) Execution/Writeback (EXE/WB) Figure 1-2. CalmRISC Pipeline Diagram CalmRISC has a 3-stage pipeline as described below: As can be seen in the pipeline scheme, CalmRISC adopts a register-memory instruction set. In other words, data memory where R is a GPR can be one operand of an ALU instruction as shown below: The first stage (or cycle) is the Instruction fetch stage (IF for short), where the instruction pointed by the program counter, PC[19:0] , is read into the Instruction Register (IR for short). The second stage is the Instruction Decode and Data Memory Access stage (ID/MEM for short), where the fetched instruction (stored in IR) is decoded and data memory access is performed, if necessary. The final stage is the Execute and Write-back stage (EXE/WB), where the required ALU operation is executed and the result is written back into the destination registers. Since CalmRISC instructions are pipelined, the next instruction fetch is not postponed until the current instruction is completely finished but is performed immediately after completing the current instruction fetch. The pipeline stream of instructions is illustrated in the following diagram. 1-3 PRODUCT OVERVIEW /1 S3CK318/FK318 IF /2 ID/MEM EXE/WB IF ID/MEM EXE/WB IF ID/MEM EXE/WB IF IF /3 /4 /5 ID/MEM EXE/WB IF ID/MEM EXE/WB IF ID/MEM /6 EXE/WB Figure 1-3. CalmRISC Pipeline Stream Diagram Most CalmRISC instructions are 1-word instructions, while same branch instructions such as long "call" and "jp" instructions are 2-word instructions. In Figure 1-3, the instruction, I4, is a long branch instruction, and it takes two clock cycles to fetch the instruction. As indicated in the pipeline stream, the number of clocks per instruction (CPI) is 1 except for long branches, which take 2 clock cycles per instruction. 1-4 S3CK318/FK318 PRODUCT OVERVIEW FEATURES CPU 24-bit Frequency Counter (FC) • • Level = 300 mVpp (Min.) • AMF input range = 0.5 to 5 MHz or 5 to 30 MHz • FMF input range = 30 to 130 MHz • Operating voltage: 2.0 V to 3.6 V • Counter measurement function (16/32/64 msec) CalmRISC core (8-bit RISC architecture) Memory • ROM: 4K-word (8K-byte) • RAM: 256-byte (excluding LCD data RAM) Stack • Size: maximum 16 word-level Battery Level Detector • 36 I/O Pins Programmable detection voltage (2.2 V, 2.4V, 2.6 V) • Input only: 2 pins • I/O: 10 pins • 8-bit transmit/receive mode • 24 I/O pins are share with COM/SEG pins • 8-bit receive mode • LSB-first/MSB-first transmission selectable • Internal/external clock source Basic Timer • Overflow signal makes a system reset • Watchdog function 16-bit Timer/Counter 0 8-Bit Serial I/O Interface A/D Converter • Four analog input channels • Programmable 16-bit timer • 25 µs conversion speed at 8 MHz • Interval, capture, PWM mode • 10-bit conversion resolution • Match/capture, overflow interrupt • Operating voltage: 2.0 V to 3.6 V 8-bit Timer/Counter 1 D/A Converter • Programmable 8-bit timer • One analog output channel • Match interrupt generator • 9-bit conversion resolution (R-2R) • Operating voltage: 2.0 V to 3.6 V Watch Timer • Real-time and interval time measurement Oscillation Sources • Clock generation for LCD • Crystal, ceramic, RC for main clock • Four frequency outputs for buzzer sound (0.47/0.94/1.87/3.75 kHz at 75 kHz) • Crystal for sub clock • Main clock frequency: 0.4 – 8 MHz • Sub clock frequency: 32.8 – 100 kHz • CPU clock divider circuit (divided by 1, 2, 4, 8, 16, 32, 64, or 128) LCD Controller/Driver • Up to 20 segment pins • 3, 4, and 8 common selectable • Internal resistor circuit for LCD bias Two Power-Down Modes • LCD Contrast Control • Idle (only CPU clock stops) • Stop (System clock stops) 1-5 PRODUCT OVERVIEW S3CK318/FK318 Interrupts Operating Voltage Range • • 1.95 V to 3.6 V at 2 MHz (2MIPS) • 2.3 V to 3.6 V at 8 MHz (8MIPS) 2 Vectors, 14 interrupts Instruction Execution Times • 125 ns at 8 MHz (main clock) Package Type • 13.3 µs at 75 kHz (sub clock) • Operating Temperature Range • 1-6 - 25 °C to 85 °C 44-QFP-1010B S3CK318/FK318 PRODUCT OVERVIEW BLOCK DIAGRAM nRESET T0OUT/T0PWM/INT0/P1.0 T0CLK/INT1/P1.1 T0CAP/INT2/P1.2 XI N, XT IN XOUT, XT OUT 16-Bit Timer/ Counter 0 8-Bit Timer/ Counter 1 OSC, nRESET BUZ/INT3/P1.3 COM0-COM3/P6.3-P6.0 Basic Timer Watch Timer LCD Driver COM4-COM7/SEG19-SEG16/ P5.7-P5.4 SEG0-SEG3/P3.2-P3.5/ INT6, SI, SO, SCK SEG4-SEG15/P4.0-P5.3 AMF/P0.0 FMF/P0.1 Input Port 0 INT0/T0OUT/T0PWM/P1.0 INT1//T0CLK/P1.1 INT2/T0CAP/P1.2 INT3/BUZ/P1.3 I/O Port 1 AD0-AD3/P2.0-P2.3 I/O Port 2 I/O Port and Interrupt Control Serial I/O Port SI/SEG1/P3.3 SO/SEG2/P3.4 SCK/SEG3/P3.5 Frequency Counter AMF/P0.0 FMF/P0.1 10-bit A/D Converter AD0-AD3/P2.0-P2.3 9-bit D/A Converter DAO/P3.0/INT4 I/O Port 5 P5.0-P5.3/SEG12-SEG15 P5.4-P5.7/SEG16-SEG19 /COM7-COM4 I/O Port 6 P6.0-P6.3/COM3-COM0 Calm8 RISC CPU DAO/INT4/P3.0 INT5/P3.1 SEG0/INT6/P3.2 SEG1/SI/P3.3 SEG2/SO/P3.4 SEG3/SCK/P3.5 I/O Port 3 SEG4-SEG11 /P4.0-P4.7 I/O Port 4 256-Byte Register File 8K-Byte ROM Figure 1-4. Block Diagram 1-7 PRODUCT OVERVIEW S3CK318/FK318 44 43 42 41 40 39 38 37 36 35 34 P1.3/INT3/BUZ P1.2/INT2/T0CAP P1.1/INT1/T0CLK P1.0/INT0/T0OUT/T0PWM P0.1/ FMF P0.0/ AMF COM0/P6.3 COM1/P6.2 COM2/P6.1 COM3/P6.0 COM4/SEG19/P5.7 PIN ASSIGNMENT 1 2 3 4 5 6 7 8 9 10 11 S3CK318/ S3FK318 (44-QFP-1010B) 33 32 31 30 29 28 27 26 25 24 23 COM5/SEG18/P5.6 COM6/SEG17/P5.5 COM7/SEG16/P5.4 SEG15/P5.3 SEG14/P5.2 SEG13/P5.1 SEG12/P5.0 SEG11/P4.7 SEG10/P4.6 SEG9/P4.5 SEG8/P4.4 nRESET P3.0/INT4/DAO P3.1/INT5 SEG0/P3.2/INT6 SEG1/P3.3/SI SEG2/P3.4/SO SEG3/P3.5/SCK SEG4/P4.0 SEG5/P4.1 SEG6/P4.2 SEG7/P4.3 12 13 14 15 16 17 18 19 20 21 22 P2.0/AD0 P2.1/AD1 P2.2/AD2 P2.3/AD3 VDD VSS XOUT XIN TEST XTIN XT OUT Figure 1-5. Pin Assignment (44-QFP-1010B) 1-8 S3CK318/FK318 PRODUCT OVERVIEW PIN DESCRIPTIONS Table 1-1. Pin Descriptions Pin Names Pin Type Pin Description Circuit Type Pin Numbers Share Pins Input port with bit programmable pins; software assignable pull-up resistors. B-4 39 40 AMF FMF I/O port with bit programmable pins; Schmitt trigger input or output mode selected by software; Open-drain output mode can be selected by software; software assignable pull-up resistors. E-4 41 42 43 44 INT0/T0OUT/T0PWM P0.0 P0.1 I P1.0 P1.1 P1.2 P1.3 I/O P2.0 P2.1 P2.2 P2.3 I/O I/O port with bit programmable pins; Schmitt trigger input or output mode selected by software; Open-drain output mode can be selected by software; software assignable pull-up resistors. F-16A 1 2 3 4 AD0 AD1 AD2 AD3 P3.0 P3.1 I/O I/O port with bit programmable pins; Schmitt trigger input or output mode selected by software; Open-drain output mode can be selected by software; software assignable pull-up resistors. E-5 E-4 13 14 INT4/DAO INT5 H-32A 15 16 17 18 SEG0/INT6 SEG1/SI SEG2/SO SEG3/SCK P3.2 P3.3 P3.4 P3.5 INT1/T0CLK INT2/T0CAP INT3/BUZ P4.0–P4.7 I/O I/O port with bit programmable pins; Input or output mode selected by software; Open-drain output mode can be selected by software; software assignable pull-up resistors. H-32 19–26 SEG4–SEG11 P5.0–P5.3 P5.4–P5.7 I/O Have the same characteristic as port 4 H-32 27–30 31–34 SEG12–SEG15 SEG16–SEG19/ COM7–COM4 P6.0–P6.3 I/O Have the same characteristic as port 4 H-32 35–38 COM3–COM0 1-9 PRODUCT OVERVIEW S3CK318/FK318 Table 1-1. Pin Descriptions (Continued) Pin Names Pin Type Pin Description Circuit Type Pin Numbers Share Pins VDD, VSS – Main power supply and Ground – 5, 6 – XOUT, XIN – Main oscillator pins – 7, 8 – XTOUT, XTIN – Sub oscillator pins – 11, 10 – TEST I Test signal input (must be connected to Vss) – 9 – nRESET I System reset pin B 12 – INT0–INT3 INT4 INT5 INT6 I/O External interrupt input pins E-4 E-5 E-4 H-32A 41–44 13 14 15 P1.0–P1.3 P3.0/DAO P3.1 P3.2/SEG0 SI, SO, SCK I/O Serial I/O interface clock and data signal H-32A 16–18 P3.3–P3.5/ SEG1–SEG3 AMF FMF I External AM/FM frequency inputs B-4 39 40 P0.0 P0.1 E-4 41 P1.0/INT0 T0OUT/T0PWM I/O Timer 0 output and PWM output T0CLK I/O Timer 0 External clock input 42 P1.1/INT1 T0CAP I/O Timer 0 Capture input 43 P1.2/INT2 BUZ I/O Four frequency output for buzzer sound with main clock or sub clock 44 P1.3/INT3 AD0–AD3 I/O A/D converter analog input channels F-16A 1–4 P2.0–P2.3 DAO I/O D/A converter analog output channel E-5 13 P3.0/INT4 COM0–COM3 COM4–COM7 I/O LCD common signal output H-32 38–35 34–31 P6.3–P6.0 P5.7–P5.4/ SEG19–SEG16 SEG0 SEG1–SEG3 I/O LCD segment signal output H-32A H-32A 15 16–18 P3.2/INT6 P3.3–3.5/ SI,SO,SCK H-32 H-32 19–26 27–34 P4.0–P4.7 P5.0–P5.7 SEG4–SEG11 SEG12–SEG19 1-10 S3CK318/FK318 PRODUCT OVERVIEW PIN CIRCUITS VDD Pull-up Resistor Pull-up Enable VDD In Pull-up Resistor Feedback Enable In Pull-down Enable Figure 1-6. Pin Circuit Type B (nRESET) Figure 1-7. Pin Circuit Type B-4 (P0) V DD VDD Open drain Enable VDD Open drain Enable VDD Pull-up Resistor Pull-up Resistor P-CH Data P-CH I/O Data I/O N-CH Output Disable N-CH Output Disable DAC Enable DAC Select From DAC Figure 1-8. Pin Circuit Type E-4 (P1, P3.1) Figure 1-9. Pin Circuit Type E-5 (P3.0) 1-11 PRODUCT OVERVIEW S3CK318/FK318 VDD Pull-up Resistor Pull-up Enable Open-drain Enable Data Output Disable Circuit Type E-4 I/O ADC Enable ADC Select Data To ADC Figure 1-10. Pin Circuit Type F-16A (P2) VLC1 VLC2 VLC3 OUT SEG/COM VLC4 VLC5 Vss Figure 1-11. Pin Circuit Type H-23 1-12 S3CK318/FK318 PRODUCT OVERVIEW VDD Pull-up Resistor VDD Pull-up Enable Open-drain Enable Data I/O LCD OUT Enable VSS COM/SEG Circuit Type H-23 Output Disable Figure 1-12. Pin Circuit Type H-32 (P4, P5, and P6) VDD VDD Pull-up Resistor Pull-up Enable Open-drain Enable Data I/O LCD OUT Enable VSS COM/SEG Circuit Type H-23 Output Disable Figure 1-13. Pin Circuit Type H-32A (P3.2–P3.5) 1-13 PRODUCT OVERVIEW S3CK318/FK318 NOTES 1-14 S3CK318/FK318 2 ADDRESS SPACES ADDRESS SPACES OVERVIEW CalmRISC has 20-bit program address lines, PA[19:0], which supports up to 1M words of program memory. The 1M word program memory space is divided into 256 pages and each page is 4K word long as shown in the next page. The upper 8 bits of the program counter, PC[19:12], points to a specific page and the lower 12 bits, PC[11:0], specify the offset address of the page. CalmRISC also has 16-bit data memory address lines, DA[15:0], which supports up to 64K bytes of data memory. The 64K byte data memory space is divided into 256 pages and each page has 256 bytes. The upper 8 bits of the data address, DA[15:8], points to a specific page and the lower 8 bits, DA[7:0], specify the offset address of the page. PROGRAM MEMORY (ROM) FFFH 1 Mword FFFH 4 Kword 000H 256 page 000H Figure 2-1. Program Memory Organization 2-1 ADDRESS SPACES S3CK318/FK318 For example, if PC[19:0] = 5F79AH, the page index pointed to by PC is 5FH and the offset in the page is 79AH. If the current PC[19:0] = 5EFFFH and the instruction pointed to by the current PC, i.e., the instruction at the address 5EFFFH is not a branch instruction, the next PC becomes 5E000H, not 5F000H. In other words, the instruction sequence wraps around at the page boundary, unless the instruction at the boundary (in the above example, at 5EFFFH) is a long branch instruction. The only way to change the program page is by long branches (LCALL, LLNK, and LJP), where the absolute branch target address is specified. For example, if the current PC[19:0] = 047ACH (the page index is 04H and the offset is 7ACH) and the instruction pointed to by the current PC, i.e., the instruction at the address 047ACH, is "LJP A507FH" (jump to the program address A507FH), then the next PC[19:0] = A507FH, which means that the page and the offset are changed to A5H and 07FH, respectively. On the other hand, the short branch instructions cannot change the page indices. Suppose the current PC is 6FFFEH and its instruction is "JR 5H" (jump to the program address PC + 5H). Then the next instruction address is 6F003H, not 70003H. In other words, the branch target address calculation also wraps around with respect to a page boundary. This situation is illustrated below: Page 6FH 000H 001H 002H 003H 004H 005H FFEH JR 5H FFFH Figure 2-2. Relative Jump Around Page Boundary Programmers do not have to manually calculate the offset and insert extra instructions for a jump instruction across page boundaries. The compiler and the assembler for CalmRISC are in charge of producing appropriate codes for it. 2-2 S3CK318/FK318 ADDRESS SPACES FFFFFH ~ ~ ~ ~ Program Memory Area (4K words x 256 page = 1M word) 0FFFH 4K words (8K bytes) 00020H 0001FH Vector and Option Area 00000H NOTE: For S3CK318, total size of program memory area is 4K words (8K bytes). Figure 2-3. Program Memory Layout From 00000H to 00004H addresses are used for the vector address of exceptions, and 0001EH, 0001FH are used for the option only. Aside from these addresses others are reserved in the vector and option area. Program memory area from the address 00020H to FFFFFH can be used for normal programs. The Program memory size of S3CK318 is 4K word (8K byte), so from the address 00020H to 00FFFH are the program memory area. 2-3 ADDRESS SPACES ROM CODE OPTION (RCOD_OPT) Just after power on, the ROM data located at 0001EH and 0001FH is used as the ROM code option. S3CK318 has ROM code options like the Reset value of Basic timer and Watchdog timer enable. For example, if you program as below: RCOD_OPT1EH, 0x0000 RCOD_OPT1FH, 0xbfff fxx/32 is used as Reset value of basic timer (by bit.14, 13, 12) Watchdog timer is enabled (by bit.11) If you don't program any values in these option areas, then the default value is "1". In these cases, the address 0001EH would be the value of "FFFFH". 2-4 S3CK318/FK318 S3CK318/FK318 ADDRESS SPACES ROM_Code Option (RCOD_OPT) ROM Address: 0001FH MSB .15 .14 .13 .12 .11 .10 .9 .8 LSB Not used Not used Reset value of basic timer clock selection bits (WDTCON.6, .5, .4): 000 = fxx/2 001 = fxx/4 010 = fxx/16 Watchdog timer enable selection bit: 011 = fxx/32 0 = Disable WDT 100 = fxx/128 1 = Enable WDT 101 = fxx/256 110 = fxx/1024 111 = fxx/2048 MSB .7 .6 .5 .4 .3 .1 .0 LSB .10 .9 .8 LSB .2 .1 .0 LSB .2 Not used ROM Address: 0001EH MSB .15 .14 .13 .12 .11 Not used MSB .7 .6 .5 .4 .3 Not used Figure 2-4. ROM Code Option (RCOD_OPT) 2-5 ADDRESS SPACES S3CK318/FK318 DATA MEMORY ORGANIZATION The total data memory address space is 64K bytes, addressed by DA[15:0], and divided into 256 pages, Each page consists of 256 bytes as shown below. FFH 64K bytes FFH FFHFFFH 00H 256 Byte 256 page 00H 00H 1 page Figure 2-5. Data Memory Map of CalmRISC8 The data memory page is indexed by SPR and IDH. In data memory index addressing mode, 16-bit data memory address is composed of two 8-bit SPRs, IDH[7:0] and IDL0[7:0] (or IDH[7:0] and IDL1[7:0]). IDH[7:0] points to a page index, and IDL0[7:0] (or IDL1[7:0]) represents the page offset. In data memory direct addressing mode, an 8-bit direct address, adr[7:0], specifies the offset of the page pointed to by IDH[7:0] (See the details for direct addressing mode in the instruction sections). Unlike the program memory organization, data memory address does not wrap around. In other words, data memory index addressing with modification performs an addition or a subtraction operation on the whole 16-bit address of IDH[7:0] and IDL0[7:0] (or IDL1[7:0]) and updates IDH[7:0] and IDL0[7:0] (or IDL1[7:0]) accordingly. Suppose IDH[7:0] is 0FH and IDL0[7:0] is FCH and the modification on the index registers, IDH[7:0] and IDL0[7:0], is increment by 5H, then, after the modification (i.e., 0FFCH + 5 = 1001H), IDH[7:0] and IDL0[7:0] become 10H and 01H, respectively. 2-6 S3CK318/FK318 ADDRESS SPACES The S3CK318 has 256 bytes of data register address from 0080H to 017FH. The area from 0000H to 007FH is for peripheral control, and LCD RAM area is from 0180H to 0193H. Page 0 FFH Data Memory for Genernal Purpose Page 1 93H 80H 7FH 80H 7FH Control Register Area 00H Data Memory for LCD Display Data Memory for Genernal Purpose 00H 8-bit Figure 2-6. Data Memory Map of S3CK318 2-7 ADDRESS SPACES S3CK318/FK318 NOTES 2-8 S3CK318/FK318 3 REGISTERS REGISTERS OVERVIEW The registers of CalmRISC are grouped into 2 parts: general purpose registers and special purpose registers. Table 3-1. General and Special Purpose Registers Registers Mnemonics General Purpose R0 General Register 0 Unknown Registers (GPR) R1 General Register 1 Unknown R2 General Register 2 Unknown R3 General Register 3 Unknown IDL0 Lower Byte of Index Register 0 Unknown IDL1 Lower Byte of Index Register 1 Unknown IDH Higher Byte of Index Register Unknown SR0 Status Register 0 Special Purpose Group 0 (SPR0) Registers (SPR) Group 1 (SPR1) Description Reset Value 00H ILX Instruction Pointer Link Register for Extended Byte Unknown ILH Instruction Pointer Link Register for Higher Byte Unknown ILL Instruction Pointer Link Register for Lower Byte Unknown Status Register 1 Unknown SR1 GPR's can be used in most instructions such as ALU instructions, stack instructions, load instructions, etc (See the instruction set sections). From the programming standpoint, they have almost no restriction whatsoever. CalmRISC has 4 banks of GPR's and each bank has 4 registers, R0, R1, R2, and R3. Hence, 16 GPR's in total are available. The GPR bank switching can be done by setting an appropriate value in SR0[4:3] (See SR0 for details). The ALU operations between GPR's from different banks are not allowed. SPR's are designed for their own dedicated purposes. They have some restrictions in terms of instructions that can access them. For example, direct ALU operations cannot be performed on SPR's. However, data transfers between a GPR and an SPR are allowed and stack operations with SPR's are also possible (See the instruction sections for details). 3-1 REGISTERS S3CK318/FK318 INDEX REGISTERS: IDH, IDL0 AND IDL1 IDH in concatenation with IDL0 (or IDL1) forms a 16-bit data memory address. Note that CalmRISC's data memory address space is 64 K byte (addressable by 16-bit addresses). Basically, IDH points to a page index and IDL0 (or IDL1) corresponds to an offset of the page. Like GPR's, the index registers are 2-way banked. There are 2 banks in total, each of which has its own index registers, IDH, IDL0 and IDL1. The banks of index registers can be switched by setting an appropriate value in SR0[2] (See SR0 for details). Normally, programmers can reserve an index register pair, IDH and IDL0 (or IDL1), for software stack operations. LINK REGISTERS: ILX, ILH AND ILL The link registers are specially designed for link-and-branch instructions (See LNK and LRET instructions in the instruction sections for details). When an LNK instruction is executed, the current PC[19:0] is saved into ILX, ILH and ILL registers, i.e., PC[19:16] into ILX[3:0], PC[15:8] into ILH [7:0], and PC[7:0] into ILL[7:0], respectively. When an LRET instruction is executed, the return PC value is recovered from ILX, ILH, and ILL, i.e., ILX[3:0] into PC[19:16], ILH[7:0] into PC[15:8] and ILL[7:0] into PC[7:0], respectively. These registers are used to access program memory by LDC/LDC+ instructions. When an LDC or LDC+ instruction is executed, the (code) data residing at the program address specified by ILX:ILH:ILL will be read into TBH:TBL. LDC+ also increments ILL after accessing the program memory. There is a special core input pin signal, nP64KW, which is reserved for indicating that the program memory address space is only 64 K word. By grounding the signal pin to zero, the upper 4-bit of PC, PC[19:16], is deactivated and therefore the upper 4-bit, PA[19:16], of the program memory address signals from CalmRISC core are also deactivated. By doing so, power consumption due to manipulating the upper 4-bit of PC can be totally eliminated (See the core pin description section for details). From the programmer's standpoint, when nP64KW is tied to the ground level, then PC[19:16] is not saved into ILX for LNK instructions and ILX is not read back into PC[19:16] for LRET instructions. Therefore, ILX is totally unused in LNK and LRET instructions when nP64KW = 0. 3-2 S3CK318/FK318 REGISTERS STATUS REGISTER 0: SR0 SR0 is mainly reserved for system control functions and each bit of SR0 has its own dedicated function. Table 3-2. Status Register 0 configuration Flag Name Bit Description eid 0 Data memory page selection in direct addressing ie 1 Global interrupt enable idb 2 Index register banking selection grb[1:0] 4, 3 exe 5 Stack overflow/underflow exception enable ie0 6 Interrupt 0 enable ie1 7 Interrupt 1 enable GPR bank selection SR0[0] (or eid) selects which page index is used in direct addressing. If eid = 0, then page 0 (page index = 0) is used. Otherwise (eid = 1), IDH of the current index register bank is used for page index. SR0[1] (or ie) is the global interrupt enable flag. As explained in the interrupt/exception section, CalmRISC has 3 interrupt sources (nonmaskable interrupt, interrupt 0, and interrupt 1) and 1 stack exception. Both interrupt 0 and interrupt 1 are masked by setting SR0[1] to 0 (i.e., ie = 0). When an interrupt is serviced, the global interrupt enable flag ie is automatically cleared. The execution of an IRET instruction (return from an interrupt service routine) automatically sets ie = 1. SR0[2] (or idb) and SR0[4:3] (or grb[1:0]) selects an appropriate bank for index registers and GPR's, respectively as shown below: R3 R2 R1 R0 R3 R3 R2 R3 R2 R1 R2 R1 R0 R1 R0 Bank 3 Bank 2 R0 Bank 1 Bank 0 grb [1:0] 11 10 01 00 idb 1 0 IDH IDH IDL0 IDL0 IDL1 IDL1 Figure 3-1. Bank Selection by Setting of GRB Bits and IDB Bit SR0[5] (or exe) enables the stack exception, that is, the stack overflow/underflow exception. If exe = 0, the stack exception is disabled. The stack exception can be used for program debugging in the software development stage. SR0[6] (or ie0) and SR0[7] (or ie1) are enabled, by setting them to 1. Even though ie0 or ie1 are enabled, the interrupts are ignored (not serviced) if the global interrupt enable flag ie is set to 0. 3-3 REGISTERS S3CK318/FK318 STATUS REGISTER 1: SR1 SR1 is the register for status flags such as ALU execution flag and stack full flag. Table 3-3. Status Register 1: SR1 Flag Name Bit Description C 0 Carry flag V 1 Overflow flag Z 2 Zero flag N 3 Negative flag SF 4 Stack Full flag – 5, 6, 7 Reserved SR1[0] (or C) is the carry flag of ALU executions. SR1[1] (or V) is the overflow flag of ALU executions. It is set to 1 if and only if the carry-in into the 8-th bit position of addition/subtraction differs from the carry-out from the 8-th bit position. SR1[2] (or Z) is the zero flag, which is set to 1 if and only if the ALU result is zero. SR1[3] (or N) is the negative flag. Basically, the most significant bit (MSB) of ALU results becomes N flag. Note a load instruction into a GPR is considered an ALU instruction. However, if an ALU instruction touches the overflow flag (V) like ADD, SUB, CP, etc, N flag is updated as exclusive-OR of V and the MSB of the ALU result. This implies that even if an ALU operation results in overflow, N flag is still valid. SR1[4] (or SF) is the stack overflow flag. It is set when the hardware stack is overflowed or under flowed. Programmers can check if the hardware stack has any abnormalities by the stack exception or testing if SF is set (See the hardware stack section for great details). NOTE When an interrupt occurs, SR0 and SR1 are not saved by hardware, so SR0, and SR1 register values must be saved by software. 3-4 S3CK318/FK318 4 MEMORY MAP MEMORY MAP OVERVIEW To support the control of peripheral hardware, the address for peripheral control registers are memory-mapped to page 0 of the RAM. Memory mapping lets you use a mnemonic as the operand of an instruction in place of the specific memory location. In this section, detailed descriptions of the control registers are presented in an easy-to-read format. You can use this section as a quick-reference source when writing application programs. This memory area can be accessed with the whole method of data memory access. — If SR0 bit 0 is "0" then the accessed register area is always page 0. — If SR0 bit 0 is "1" then the accessed register page is controlled by the proper IDH register's value. So if you want to access the memory map area, clear the SR0.0 and use the direct addressing mode. This method is used for most cases. This control register is divided into five areas. Here, the system control register area is same in every device. Control Register 7FH Peripheral Control Register ( 1x 16 or 2 x 8) 70H 6FH Peripheral Control Register (4 x 8) 40H 3FH Port Control Register Area (4 x 8) 20H 1FH Port Data Register Area 10H 0FH System Control Register Area 00H Standard exhortative area Standard area Figure 4-1. Memory Map Area 4-1 MEMORY MAP S3CK318/FK318 Table 4-1. Registers Register Name Mnemonic Decimal Hex Reset R/W Locations 17H–1FH are not mapped. Port 6 data register P6 22 16H 00H R/W Port 5 data register P5 21 15H 00H R/W Port 4 data register P4 20 14H 00H R/W Port 3 data register P3 19 13H 00H R/W Port 2 data register P2 18 12H 00H R/W Port 1 data register P1 17 11H 00H R/W Port 0 data register P0 16 10H 00H R Locations 0EH–0FH are not mapped. Watchdog timer control register WDTCON 13 0DH X0H R/W BTCNT 12 0CH 00H R Interrupt ID register 1 IIR1 11 0BH – R/W Interrupt priority register 1 IPR1 10 0AH – R/W Interrupt mask register 1 IMR1 9 09H 00H R/W Interrupt request register 1 IRQ1 8 08H – R Interrupt ID register 0 IIR0 7 07H – R/W Interrupt priority register 0 IPR0 6 06H – R/W Interrupt mask register 0 IMR0 5 05H 00H R/W Interrupt request register 0 IRQ0 4 04H – R OSCCON 3 03H 00H R/W PCON 2 02H 04H R/W Basic timer counter Oscillator control register Power control register Locations 00H–01H are not mapped. NOTES: 1. All the unused and unmapped registers and bits read "0". 2. '–' means undefined. 3. If you want to clear the bit of IRQx, then write the number that you want to clear to IIRx. For example, when clear IRQ0.4 then LD Rx, #04H and LD IIR0, Rx. 4-2 S3CK318/FK318 MEMORY MAP Table 4-1. Registers (continued) Register Name Mnemonic Decimal Hex Reset R/W Locations 4BH–4FH are not mapped. Timer 1 counter T1CNT 74 4AH 00H R Timer 1 data register T1DATA 73 49H FFH R/W Timer 1 control register T1CON 72 48H 00H R/W Locations 45H–47H are not mapped. Timer 0 counter (low byte) T0CNTL 68 44H 00H R Timer 0 counter (high byte) T0CNTH 67 43H 00H R Timer 0 data register (low byte) T0DATAL 66 42H FFH R/W Timer 0 data register (high byte) T0DATAH 65 41H FFH R/W T0CON 64 40H 00H R/W Timer 0 control register Locations 37H–3FH are not mapped Port 6 control register P6CON 54 36H 00H R/W Port 5 control register (low byte) P5CONL 53 35H 00H R/W Port 5 control register (high byte) P5CONH 52 34H 00H R/W Locations 32H–33H are not mapped Port 4 control register (low byte) P4CONL 49 31H 00H R/W Port 4 control register (high byte) P4CONH 48 30H 00H R/W Location 2FH is not mapped. Port 3 control register C P3CONC 45 2EH 00H R/W Port 3 control register B P3CONB 45 2DH 00H R/W Port 3 control register A P3CONA 44 2CH 00H R/W Locations 2AH–2BH are not mapped Port 2 pull-up control register P2PUR 41 29H 00H R/W Port 2 control register P2CON 40 28H 00H R/W P1EDGE 38 26H 00H R/W Port 1 pull-up control register P1PUR 37 25H 00H R/W Port 1 control register P1CON 36 24H 00H R/W 20H 00H R/W Location 27H is not mapped Port 1 interrupt edge selection register Locations 21H–23H are not mapped Port 0 pull-up control register P0PUR 32 NOTES: 1. All unused and unmapped registers and bits read "0". 2. '–' means undefined. 4-3 MEMORY MAP S3CK318/FK318 Table 4-1. Registers (continued) Register Name Mnemonic Decimal Hex Reset R/W Locations 7DH–7FH are not mapped Frequency Counter 2 (high byte) FCNT2 124 7CH 00H R Frequency Counter 1 (mid byte) FCNT1 123 7BH 00H R Frequency Counter 0 (low byte) FCNT0 122 7AH 00H R Frequency counter mode register FCMOD 121 79H 00H R/W Frequency counter control register FCCON 120 78H 00H R/W Location 77H is not mapped D/A converter data register (low byte) DADATAL 118 76H 00H R/W D/A converter data register (high byte) DADATAH 117 75H 00H R/W DACON 116 74H 00H R/W D/A converter control register Locations 72H–73H are not mapped Battery level detector control register BLDCON 113 71H 00H R/W Watch timer control register WTCON 112 70H 00H R/W Locations 64H–6FH are not mapped LCD Port Control Register 2 LPOT2 99 63H 00H R/W LCD Port Control Register 1 LPOT1 98 62H 00H R/W LCD Port Control Register 0 LPOT0 97 61H 00H R/W LCD mode control register LMOD 96 60H 00H R/W Location 5FH is not mapped A/D Converter data register (low byte) ADDATAL 94 5EH – R A/D Converter data register (high byte) ADDATAH 93 5DH – R ADCON 92 5CH 00H R/W SIODATA 90 5AH 00H R/W SIOPS 89 59H 00H R/W SIOCON 88 58H 00H R/W A/D Converter control register Location 5BH is not mapped Serial I/O data register Serial I/O pre-scale register Serial I/O control register Locations 50H–57H are not mapped NOTES 1. All unused and unmapped registers and bits read "0". 2. "–" means undefined. 4-4 S3CK318/FK318 5 HARDWARE STACK HARDWARE STACK OVERVIEW The hardware stack in CalmRISC has two usages: — To save and restore the return PC[19:0] on LCALL, CALLS, RET, and IRET instructions. — Temporary storage space for registers on PUSH and POP instructions. When PC[19:0] is saved into or restored from the hardware stack, the access should be 20 bits wide. On the other hand, when a register is pushed into or popped from the hardware stack, the access should be 8 bits wide. Hence, to maximize the efficiency of the stack usage, the hardware stack is divided into 3 parts: the extended stack bank (XSTACK, 4 bits wide), the odd bank (8 bits wide), and the even bank (8 bits wide). Stack Pointer SPTR [5:0] Hardware Stack 5 3 0 7 0 7 1 0 0 Level 0 Level 1 Level 2 Stack Level Pointer Odd or Even Bank Selector Level 14 Level 15 XSTACK Odd Bank Even Bank Figure 5-1. Hardware Stack 5-1 HARDWARE STACK S3CK318/FK318 The top of the stack (TOS) is pointed to by a stack pointer, called sptr[5:0]. The upper 5 bits of the stack pointer, sptr[5:1], points to the stack level into which either PC[19:0] or a register is saved. For example, if sptr[5:1] is 5H or TOS is 5, then level 5 of XSTACK is empty and either level 5 of the odd bank or level 5 of the even bank is empty. In fact, sptr[0], the stack bank selection bit, indicates which bank(s) is empty. If sptr[0] = 0, both level 5 of the even and the odd banks are empty. On the other hand, if sptr[0] = 1, level 5 of the odd bank is empty, but level 5 of the even bank is occupied. This situation is well illustrated in the figure below. Level 0 Level 1 Level 2 Level 3 SPTR [5:0] 5 1 0 0 0 1 0 1 0 Stack Level Pointer Level 4 Level 5 Bank Selector Level 15 XSTACK Odd Bank Even Bank Level 0 Level 1 Level 2 Level 3 SPTR [5:0] 5 1 0 0 0 1 0 1 1 Stack Level Pointer Level 4 Level 5 Bank Selector Level 15 XSTACK Odd Bank Even Bank Figure 5-2. Even and Odd Bank Selection Example As can be seen in the above example, sptr[5:1] is used as the hardware stack pointer when PC[19:0] is pushed or popped and sptr[5:0] as the hardware stack pointer when a register is pushed or popped. Note that XSTACK is used only for storing and retrieving PC[19:16]. Let us consider the cases where PC[19:0] is pushed into the hardware stack (by executing LCALL/CALLS instructions or by interrupts/exceptions being served) or is retrieved from the hardware stack (by executing RET/IRET instructions). Regardless of the stack bank selection bit (sptr[0]), TOS of the even bank and the odd bank store or return PC[7:0] or PC[15:8], respectively. This is illustrated in the following figures. 5-2 S3CK318/FK318 HARDWARE STACK Level 0 SPTR [5:0] 5 Level 0 SPTR [5:0] 1 0 5 0 0 1 0 1 0 1 0 0 0 1 0 1 1 Stack Level Pointer Stack Level Pointer Level 5 Level 5 Bank Selector Level 6 Level 15 Bank Selector Level 6 Level 15 XSTACK Odd Bank by Executing RET, IRET Even Bank XSTACK Odd Bank by Executing CALL, CALLS or Interrupts/Exceptions Level 0 SPTR [5:0] 5 by Executing RET, IRET Even Bank by Executing CALL, CALLS or Interrupts/Exceptions Level 0 SPTR [5:0] 1 0 5 0 0 1 1 0 0 Stack Level Pointer Level 5 PC[19:16] PC[15:8] Bank Selector Level 6 Stack Level Pointer Level 5 PC[19:16] PC[7:0] 1 0 0 0 1 1 0 1 PC[7:0] Level 6 PC[15:8] Bank Selector Level 15 Level 15 XSTACK Odd Bank Even Bank XSTACK Odd Bank Even Bank Figure 5-3. Stack Operation with PC [19:0] As can be seen in the figures, when stack operations with PC[19:0] are performed, the stack level pointer sptr[5:1] (not sptr[5:0]) is either incremented by 1 (when PC[19:0] is pushed into the stack) or decremented by 1 (when PC[19:0] is popped from the stack). The stack bank selection bit (sptr[0]) is unchanged. If a CalmRISC core input signal nP64KW is 0, which signifies that only PC[15:0] is meaningful, then any access to XSTACK is totally deactivated from the stack operations with PC. Therefore, XSTACK has no meaning when the input pin signal, nP64KW, is tied to 0. In that case, XSTACK doesn’t have to even exist. As a matter of fact, XSTACK is not included in CalmRISC core itself and it is interfaced through some specially reserved core pin signals (nPUSH, nSTACK, XHSI[3:0], XSHO[3:0]), if the program address space is more than 64 K words (See the core pin signal section for details). With regards to stack operations with registers, a similar argument can be made. The only difference is that the data written into or read from the stack are a byte. Hence, the even bank and the odd bank are accessed alternately as shown below. 5-3 HARDWARE STACK S3CK318/FK318 Level 0 SPTR [5:0] 5 Level 0 SPTR [5:0] 1 0 5 0 0 1 0 1 0 1 0 0 0 1 0 1 1 Stack Level Pointer Stack Level Pointer Level 5 Level 5 Bank Selector Level 6 Level 15 Bank Selector Level 6 Level 15 XSTACK Odd Bank Even Bank XSTACK Odd Bank Even Bank POP Register PUSH Register POP Register PUSH Register Level 0 SPTR [5:0] 5 Level 0 SPTR [5:0] 1 0 5 0 0 1 0 1 1 Stack Level Pointer Level 5 Stack Level Pointer Level 5 Register Bank Selector Level 6 1 0 0 0 1 1 0 0 Register Level 6 Bank Selector Level 15 Level 15 XSTACK Odd Bank Even Bank XSTACK Odd Bank Even Bank Figure 5-4. Stack Operation with Registers When the bank selection bit (sptr[0]) is 0, then the register is pushed into the even bank and the bank selection bit is set to 1. In this case, the stack level pointer is unchanged. When the bank selection bit (sptr[0]) is 1, then the register is pushed into the odd bank, the bank selection bit is set to 0, and the stack level pointer is incremented by 1. Unlike the push operations of PC[19:0], any data are not written into XSTACK in the register push operations. This is illustrated in the example figures. When a register is pushed into the stack, sptr[5:0] is incremented by 1 (not the stack level pointer sptr[5:1]). The register pop operations are the reverse processes of the register push operations. When a register is popped out of the stack, sptr[5:0] is decremented by 1 (not the stack level pointer sptr[5:1]). Hardware stack overflow/underflow happens when the MSB of the stack level pointer, sptr[5], is 1. This is obvious from the fact that the hardware stack has only 16 levels and the following relationship holds for the stack level pointer in a normal case. Suppose the stack level pointer sptr[5:1] = 15 (or 01111B in binary format) and the bank selection bit sptr[0] = 1. Here if either PC[19:0] or a register is pushed, the stack level pointer is incremented by 1. Therefore, sptr[5:1] = 16 (or 10000B in binary format) and sptr[5] = 1, which implies that the stack is overflowed. The situation is depicted in the following. 5-4 S3CK318/FK318 HARDWARE STACK SPTR [5:0] 5 1 0 0 1 1 1 1 1 Level 0 Level 1 Level 14 Level 15 XSTACK Odd Bank PUSH Register Even Bank SPTR [5:0] PUSH PC [19:0] 5 1 0 1 0 0 0 0 0 Level 0 Level 0 Level 1 Level 1 Level 14 Level 15 SPTR [5:0] 5 1 0 1 0 0 0 0 1 PC[7:0] Level 14 Register XSTACK Odd Bank Level 15 PC[19:16] Even Bank PC[15:8] XSTACK Odd Bank Even Bank Figure 5-5. Stack Overflow 5-5 HARDWARE STACK S3CK318/FK318 The first overflow happens due to a register push operation. As explained earlier, a register push operation increments sptr[5:0] (not sptr[5:1]) , which results in sptr[5] = 1, sptr[4:1] = 0 and sptr[0] = 0. As indicated by sptr[5] = 1, an overflow happens. Note that this overflow doesn’t overwrite any data in the stack. On the other hand, when PC[19:0] is pushed, sptr[5:1] is incremented by 1 instead of sptr[5:0], and as expected, an overflow results. Unlike the first overflow, PC[7:0] is pushed into level 0 of the even bank and the data that has been there before the push operation is overwritten. A similar argument can be made about stack underflows. Note that any stack operation, which causes the stack to overflow or underflow, doesn’t necessarily mean that any data in the stack are lost, as is observed in the first example. In SR1, there is a status flag, SF (Stack Full Flag), which is exactly the same as sptr[5]. In other words, the value of sptr[5] can be checked by reading SF (or SR1[4]). SF is not a sticky flag in the sense that if there was a stack overflow/underflow but any following stack access instructions clear sptr[5] to 0, then SF = 0 and programmers cannot tell whether there was a stack overflow/underflow by reading SF. For example, if a program pushes a register 64 times in a row, sptr[5:0] is exactly the same as sptr[5:0] before the push sequence. Therefore, special attention should be paid. Another mechanism to detect a stack overflow/underflow is through a stack exception. A stack exception happens only when the execution of any stack access instruction results in SF = 1 (or sptr[5] = 1). Suppose a register push operation makes SF = 1 (the SF value before the push operation doesn’t matter). Then the stack exception due to the push operation is immediately generated and served If the stack exception enable flag (exe of SR0) is 1. If the stack exception enable flag is 0, then the generated interrupt is not served but pending. Sometime later when the stack exception enable flag is set to 1, the pending exception request is served even if SF = 0. More details are available in the stack exception section. 5-6 S3CK318/FK318 6 EXCEPTIONS EXCEPTIONS OVERVIEW Exceptions in CalmRISC are listed in the table below. Exception handling routines, residing at the given addresses in the table, are invoked when the corresponding exception occurs. The start address of each exception routine is specified by concatenation 0H (leading 4 bits of 0) and the 16-bit data in the exception vector listed in the table. For example, the interrupt service routine for IRQ[0] starts from 0H:PM[00002H]. Note that ":"means concatenation and PM[*] stands for the 16-bit content at the address * of the program memory. Aside from the exception due to reset release, the current PC is pushed in the stack on an exception. When an exception is executed due to IRQ[1:0]/IEXP, the global interrupt enable flag, ie bit (SR0[1]), is set to 0, whereas ie is set to 1 when IRET or an instruction that explicitly sets ie is executed. Table 6-1. Exceptions Name Address Priority Reset 00000H 1st – 00001H – IRQ[0] 00002H 3rd Exception due to nIRQ[0] signal. Maskable by setting ie/ie0. IRQ[1] 00003H 4th Exception due to nIRQ[1] signal. Maskable by setting ie/ie1. IEXP 00004H 2nd Exception due to stack full. Maskable by setting exe. – 00005H – Reserved. – 00006H – Reserved. – 00007H – Reserved. NOTE: Description Exception due to reset release. Reserved Break mode due to BKREQ has a higher priority than all the exceptions above. That is, when BKREQ is active, even the exception due to reset release is not executed. HARDWARE RESET When Hardware Reset is active (the reset input signal pin nRES = 0), the control pins in the CalmRISC core are initialized to be disabled, and SR0 and sptr (the hardware stack pointer) are initialized to be 0. Additionally, the interrupt sensing block is cleared. When Hardware Reset is released (nRES = 1), the reset exception is executed by loading the JP instruction in IR (Instruction Register) and 0h:0000h in PC. Therefore, when Hardware Reset is released, the "JP {0h:PM[00000h]}" instruction is executed. 6-1 EXCEPTIONS S3CK318/FK318 IRQ[0] EXCEPTION When a core input signal nIRQ[0] is low, SR0[6] (ie0) is high, and SR0[1] (ie) is high, IRQ[0] exception is generated, and this will load the CALL instruction in IR (Instruction Register) and 0h:0002h in PC. Therefore, on an IRQ[0] exception, the "CALL {0h:PM[00002h]}" instruction is executed. When the IRQ[0] exception is executed, SR0[1] (ie) is set to 0. IRQ[1] EXCEPTION (LEVEL-SENSITIVE) When a core input signal nIRQ[1] is low, SR0[7] (ie1) is high, and SR0[1] (ie) is high, IRQ[1] exception is generated, and this will load the CALL instruction in IR (Instruction Register) and 0h:0003h in PC. Therefore, on an IRQ[1] exception, the "CALL {0h:PM[00003h]}" instruction is executed. When the IRQ[1] exception is executed, SR0[1] (ie) is set to 0. HARDWARE STACK FULL EXCEPTION A Stack Full exception occurs when a stack operation is performed and as a result of the stack operation sptr[5] (SF) is set to 1. If the stack exception enable bit, exe (SR0[5]), is 1, the Stack Full exception is served. One exception to this rule is when nNMI causes a stack operation that sets sptr[5] (SF), since it has higher priority. Handling a Stack Full exception may cause another Stack Full exception. In this case, the new exception is ignored. On a Stack Full exception, the CALL instruction is loaded in IR (Instruction Register) and 0h:0004h in PC. Therefore, when the Stack Full exception is activated, the "CALL {0h:PM[00004h]}" instruction is executed. When the exception is executed, SR0[1] (ie) is set to 0. BREAK EXCEPTION Break exception is reserved only for an in-circuit debugger. When a core input signal, BKREQ, is high, the CalmRISC core is halted or in the break mode, until BKREQ is deactivated. Another way to drive the CalmRISC core into the break mode is by executing a break instruction, BREAK. When BREAK is fetched, it is decoded in the fetch cycle (IF stage) and the CalmRISC core output signal nBKACK is generated in the second cycle (ID/MEM stage). An in-circuit debugger generates BKREQ active by monitoring nBKACK to be active. BREAK instruction is exactly the same as the NOP (no operation) instruction except that it does not increase the program counter and activates nBKACK in the second cycle (or ID/MEM stage of the pipeline). There, once BREAK is encountered in the program execution, it falls into a deadlock. BREAK instruction is reserved for in-circuit debuggers only, so it should not be used in user programs. 6-2 S3CK318/FK318 EXCEPTIONS EXCEPTIONS (or INTERRUPTS) LEVEL VECTOR SOURCE RESET (CLEAR) RESET 0000H RESET - NMI 0001H Not used - IVEC0 0002H Timer 0 match/capture H/W, S/W Timer 0 overflow H/W, S/W Timer 1 match H/W, S/W FC counting ends H/W, S/W SIO H/W, S/W Basic timer overflow H/W, S/W Watch timer H/W, S/W INT0 H/W, S/W INT1 H/W, S/W INT2 H/W, S/W INT3 H/W, S/W INT4 H/W, S/W INT5 H/W, S/W INT6 H/W, S/W Stack full INT H/W IVEC1 SF_EXCEP 0003H 0004H NOTES: 1. RESET has the highest priority for an interrupt level, followed by SF_EXCEP, IVEC0 and IVEC1. 2. In the case of IVEC0 and IVEC1, one interrupt vector has several interrupt sources. The priority of the sources is controlled by setting the IPR register. 3. External interrupts are triggered by rising or falling edge, depending on the corresponding control register setting. 4. After system reset, the IPR register is in unknown status, so user must set the IPR register with proper value. 5. The pending bit is cleared by hardware when CPU reads the IIR registser value. Figure 6-1. Interrupt Structure 6-3 EXCEPTIONS S3CK318/FK318 Clear (when writing clear bit value to bit.2. 1. 0) ex) LD R0, #x5H LD IIR0, R0 IRQ0.5 is cleared Timer 0 match/capture IRQ0.0 Timer 0 overflow IRQ0.1 Timer 1 match IRQ0.2 FC counting ends IRQ0.3 SIO IRQ0.4 Basic Timer overflow IRQ0.5 Not used IRQ0.6 Not used IRQ0.7 IMR0 Logic IIR0 IPR0 Logic IVEC0 IMR0 IPR0 STOP & IDLE CPU Release Watch timer IRQ1.0 INT0 IRQ1.1 INT1 IRQ1.2 INT2 INT3 IRQ1.3 INT4 INT5 IRQ1.5 IRQ1.6 INT6 IRQ1.7 IMR1 IPR1 IVEC1 IRQ1.4 IMR1 Logic IPR1 Logic Clear (when writing clear bit value to bit.2. 1. 0) ex) LD R0, #x2H LD IIR1, R0 IRQ1.2 is cleared NOTE: The IRQ register value is cleared by H/W when the IIR register is read by the programmer in an interrupt service routine. However, if you want to clear by S/W, then write the proper value to the IIR register like as in the example above. To clear all the bits of IRQx register at one time write "#08h" to the IIRx register. Figure 6-2. Interrupt Block Diagram 6-4 IIR1 S3CK318/FK318 EXCEPTIONS INTERRUPT MASK REGISTERS Interrupt Mask Register0 (IMR0) 05H, R/W, Reset: 00H .7 .6 .5 .4 .3 .2 .1 IRQ0.4 .0 IRQ0.0 IRQ0.5 IRQ0.1 Not used IRQ0.2 Not used IRQ0.3 Interrupt Mask Register1 (IMR1) 09H, R/W, Reset: 00H .7 .6 .5 .4 .3 .2 .1 IRQ1.4 .0 IRQ1.0 IRQ1.1 IRQ1.5 IRQ1.2 IRQ1.6 IRQ1.3 IRQ1.7 Interrupt request enable bits: 0 1 NOTE: Disable interrupt request Enable interrupt request If you want to change the value of the IMR register, then you first make disable global INT by DI instruction, and change the value of the IMR register. Figure 6-3. Interrupt Mask Register 6-5 EXCEPTIONS S3CK318/FK318 INTERRUPT PRIORITY REGISTER IPR GROUP A IRQx.0 IPR GROUP B IRQx.1 IRQx.2 IPR GROUP C IRQx.3 IRQx.4 IRQx.5 IRQx.6 IRQx.7 Interrupt Priority Registers (IPR0:06H,IPR1:0AH, R/W ) .7 .6 .5 .4 .3 .2 .1 .0 Group priority: GROUP A 0 = IRQx.0 > IRQx.1 1 = IRQx.1 > IRQx.0 .7 .4 .1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 Not used B>C>A A>B>C B>A>C C>A>B C>B>A A>C>B Not used GROUP B 0 = IRQx.2 > (IRQx.3,IRQx.4) 1 = (IRQx.3,IRQx.4) > IRQx.2 SUBGROUP B 0 = IRQx.3 > IRQx.4 1 = IRQx.4 > IRQx.3 GROUP C 0 = IRQx.5 > (IRQx.6,IRQx.7) 1 = (IRQx.6,IRQx.7) > IRQx.5 SUBGROUP C 0 = IRQx.6 > IRQx.7 1 = IRQx.7 > IRQx.6 NOTES: 1. If you want to change the value of the IPR register, then you first make disable global INT by DI instruction, and change the value of the IPR register. After reset, IPR register is unknown status, so user must set the IPR register with proper value. 2. Where 'x' is '0' or '1'. Figure 6-4. Interrupt Priority Register 6-6 S3CK318/FK318 EXCEPTIONS F PROGRAMMING TIP — Interrupt Programming Tip 1 Jumped from vector 2 LTE05 LTE03 LTE01 PUSH PUSH LD CP JR CP JR CP JP JP CP JP JP CP JR CP JP JP CP JP JP SR1 R0 R0, IIR0 R0, #03h ULE, LTE03 R0, #05h ULE, LTE05 R0, #06h EQ, IRQ6_srv T, IRQ7_srv R0, #04 EQ, IRQ4_srv T, IRQ5_srv R0, #01 ULE, LTE01 R0, #02 EQ, IRQ2_srv T, IRQ3_srv R0, #00h EQ, IRQ0_srv T, IRQ1_srv ; → service for IRQ0 IRQ0_srv • POP POP IRET R0 SR1 ; → service for IRQ1 IRQ1_srv • • POP POP IRET R0 SR1 • • ; → service for IRQ7 IRQ7_srv • • POP POP IRET R0 SR1 NOTE If the SR0 register is changed in the interrupt service routine, then the SR0 register must be pushed and popped in the interrupt service routine. 6-7 EXCEPTIONS S3CK318/FK318 F PROGRAMMING TIP — Interrupt Programming Tip 2 Jumped from vector 2 TBL_INTx PUSH PUSH PUSH LD SL LD ADD INCC LD LD LRET LJP LJP LJP LJP LJP LJP LJP LJP SR1 R0 R1 R0, IIR0 R0 R1, # < TBL_INTx R0, # > TBL_INTx R1 ILH, R1 ILL, R0 IRQ0_svr IRQ1_svr IRQ2_svr IRQ3_svr IRQ4_svr IRQ5_svr IRQ6_svr IRQ7_svr ; → service for IRQ0 IRQ0_srv • • POP POP POP IRET R1 R0 SR1 ; → service for IRQ1 IRQ1_srv • • POP POP POP IRET R1 R0 SR1 • • ; → service for IRQ7 IRQ7_srv • • POP POP POP IRET R1 R0 SR1 NOTE 1. 2. 6-8 If the SR0 register is changed in the interrupt service routine, then the SR0 register must be pushed and popped in the interrupt service routine. Above example is assumed that ROM size is less than 64K-word and all the LJP instructions in the jump table (TBL_INTx) is in the same page. S3CK318/FK318 7 INSTRUCTION SET INSTRUCTION SET OVERVIEW GLOSSARY This chapter describes the CalmRISC instruction set and the details of each instruction are listed in alphabetical order. The following notations are used for the description. Table 7-1. Instruction Notation Conventions Notation <opN> Interpretation Operand N. N can be omitted if there is only one operand. Typically, <op1> is the destination (and source) operand and <op2> is a source operand. GPR General Purpose Register SPR Special Purpose Register (IDL0, IDL1, IDH, SR0, ILX, ILH, ILL, SR1) adr:N N-bit address specifier @idm Content of memory location pointed by ID0 or ID1 (adr:N) Content of memory location specified by adr:N cc:4 4-bit condition code. Table 7-6 describes cc:4. imm:N N-bit immediate number & Bit-wise AND | Bit-wise OR ~ Bit-wise NOT ^ Bit-wise XOR N**M Mth power of N (N)M M-based number N As additional note, only the affected flags are described in the tables in this section. That is, if a flag is not affected by an operation, it is NOT specified. 7-1 INSTRUCTION SET S3CK318/FK318 INSTRUCTION SET MAP Table 7-2. Overall Instruction Set Map IR [12:10]000 001 010 011 100 101 110 111 ADD GPR, #imm:8 SUB GPR, #imm:8 CP GPR, #imm8 LD GPR, #imm:8 TM GPR, #imm:8 AND GPR, #imm:8 OR GPR, #imm:8 XOR GPR, #imm:8 001 xxxxxx ADD GPR, @idm SUB GPR, @idm CP GPR, @idm LD GPR, @idm LD @idm, GPR AND GPR, @idm OR GPR, @idm XOR GPR, @idm 010 xxxxxx ADD GPR, adr:8 SUB GPR, adr:8 CP GPR, adr:8 LD GPR, adr:8 BITT adr:8.bs BITS adr:8.bs 011 xxxxxx ADC GPR, adr:8 SBC GPR, adr:8 CPC GPR, adr:8 LD adr:8, GPR BITR adr:8.bs BITC adr:8.bs 100 000000 ADD GPR, GPR SUB GPR, GPR CP GPR, GPR 100 000001 ADC GPR, GPR SBC GPR, GPR CPC GPR, GPR invalid 100 000010 invalid invalid invalid invalid 100 000011 AND GPR, GPR OR GPR, GPR XOR GPR, GPR invalid 100 00010x SLA/SL/ RLC/RL/ SRA/SR/ RRC/RR/ GPR INC/INCC/ DEC/ DECC/ COM/ COM2/ COMC GPR invalid invalid 100 00011x LD SPR, GPR LD GPR, SPR SWAP GPR, SPR LD TBH/TBL, GPR [15:13,7:2] 000 xxxxxx BMS/BMC LD SPR0, #imm:8 100 00100x PUSH SPR POP SPR invalid invalid 100 001010 PUSH GPR POP GPR LD GPR, GPR LD GPR, TBH/TBL 7-2 AND GPR, adr:8 OR GPR, adr:8 XOR GPR, adr:8 S3CK318/FK318 INSTRUCTION SET Table 7-2. Overall Instruction Set Map (Continued) IR [12:10]000 001 010 011 100 101 110 111 100 001011 POP invalid LDC invalid LD SPR0, #imm:8 AND GPR, adr:8 OR GPR, adr:8 XOR GPR, adr:8 100 00110x RET/LRET/I RET/NOP/ BREAK invalid invalid invalid 100 00111x invalid invalid invalid invalid 100 01xxxx LD GPR:bank, GPR:bank AND SR0, #imm:8 OR SR0, #imm:8 BANK #imm:2 100 100000 invalid invalid invalid invalid 100 110011 100 1101xx LCALL cc:4, imm:20 (2-word instruction) 100 1110xx LLNK cc:4, imm:20 (2-word instruction) 100 1111xx LJP cc:4, imm:20 (2-word instruction) [15:10] 101 xxx JR cc:4, imm:9 110 0xx CALLS imm:12 110 1xx LNKS imm:12 111 xxx CLD GPR, imm:8 / CLD imm:8, GPR / JNZD GPR, imm:8 / SYS #imm:8 / COP #imm:12 NOTE: "invalid" - invalid instruction. 7-3 INSTRUCTION SET S3CK318/FK318 Table 7-3. Instruction Encoding Instruction ADD GPR, #imm:8 15 14 000 13 12 11 000 SUB GPR, #imm:8 001 CP GPR, #imm:8 010 LD GPR, #imm:8 011 TM GPR, #imm:8 100 AND GPR, #imm:8 101 OR GPR, #imm:8 110 XOR GPR, #imm:8 111 ADD GPR, @idm 001 000 SUB GPR, @idm 001 CP GPR, @idm 010 LD GPR, @idm 011 LD @idm, GPR 100 AND GPR, @idm 101 OR GPR, @idm 110 XOR GPR, @idm 111 ADD GPR, adr:8 010 000 SUB GPR, adr:8 001 CP GPR, adr:8 010 LD GPR, adr:8 011 BITT adr:8.bs 10 BITS adr:8.bs 11 ADC GPR, adr:8 011 000 SBC GPR, adr:8 001 CPC GPR, adr:8 010 LD adr:8, GPR 011 BITR adr:8.bs 10 BITC adr:8.bs 11 7-4 10 9 8 7 6 5 GPR GPR GPR 4 3 imm[7:0] idx mod offset[4:0] adr[7:0] bs GPR bs 2 adr[7:0] 1 0 S3CK318/FK318 INSTRUCTION SET Table 7-3. Instruction Encoding (Continued) Instruction 15 ADD GPRd, GPRs 14 100 13 12 11 10 000 9 8 GPRd 7 6 5 4 3 2 000000 1 0 GPRs SUB GPRd, GPRs 001 CP GPRd, GPRs 010 BMS/BMC 011 ADC GPRd, GPRs 000 SBC GPRd, GPRs 001 CPC GPRd, GPRs 010 invalid 011 invalid ddd 000010 AND GPRd, GPRs 000 000011 OR GPRd, GPRs 001 XOR GPRd, GPRs 010 invalid 011 ALUop1 000 GPR ALUop2 001 GPR ALUop2 010–011 xx xxx LD SPR, GPR 000 GPR LD GPR, SPR 001 GPR SPR SWAP GPR, SPR 010 GPR SPR LD TBL, GPR 011 GPR invalid 000001 00010 ALUop1 00011 LD TBH, GPR x 0 x x 1 x PUSH SPR 000 xx POP SPR 001 xx SPR 010–011 xx xxx PUSH GPR 000 GPR POP GPR 001 GPR GPR LD GPRd, GPRs 010 GPRd GPRs LD GPR, TBL 011 GPR invalid 00100 SPR 001010 LD GPR, TBH POP 000 LDC @IL 010 LDC @IL+ Invalid 001, 011 xx SPR GPR 0 x 1 x 001011 xx 0 x 1 x xx NOTE: "x" means not applicable. 7-5 INSTRUCTION SET S3CK318/FK318 Table 7-3. Instruction Encoding (Concluded) Instruction MODop1 15-13 12 11 100 10 9 8 000 xx Invalid 001–011 xx Invalid 000 xx AND SR0, #imm:8 001 imm[7:6] OR SR0, #imm:8 010 imm[7:6] BANK #imm:2 011 xx 7 6 5 4 3 2 00110 1 MODop1 0 2nd word – xxx 01 xxxxxx imm[5:0] x imm xxx [1:0] Invalid 0 xxxx LCALL cc, imm:20 10000000-11001111 cc 1101 imm[19:16] imm[15:0] LLNK cc, imm:20 LJP cc, imm:20 LD SPR0, #imm:8 1 00 SPR0 IMM[7:0] AND GPR, adr:8 01 GPR ADR[7:0] OR GPR, adr:8 10 XOR GPR, adr:8 11 JR cc, imm:9 101 imm [8] CALLS imm:12 110 0 LNKS imm:12 CLD GPR, imm:8 cc imm[7:0] imm[11:0] 1 00 GPR CLD imm:8, GPR 01 GPR JNZD GPR, imm:8 10 GPR SYS #imm:8 11 xx COP #imm:12 111 0 1 imm[7:0] imm[11:0] NOTES: 1. "x" means not applicable. 2. There are several MODop1 codes that can be used, as described in table 7-9. 3. The operand 1(GPR) of the instruction JNZD is Bank 3's register. 7-6 – S3CK318/FK318 INSTRUCTION SET Table 7-4. Index Code Information ("idx") Symbol Code Description ID0 0 Index 0 IDH:IDL0 ID1 1 Index 1 IDH:IDL1 Table 7-5. Index Modification Code Information ("mod") Symbol Code Function @IDx + offset:5 00 DM[IDx], IDx ← IDx + offset @[IDx - offset:5] 01 DM[IDx + (2's complement of offset:5)], IDx ← IDx + (2's complement of offset:5) @[IDx + offset:5]! 10 DM[IDx + offset], IDx ← IDx @[IDx - offset:5]! 11 DM[IDx + (2's complement of offset:5)], IDx ← IDx NOTE: Carry from IDL is propagated to IDH. In case of @[IDx - offset:5] or @[IDx - offset:5]!, the assembler should convert offset:5 to the 2's complement format to fill the operand field (offset[4:0]). Furthermore, @[IDx - 0] and @[IDx - 0]! are converted to @[IDx + 0] and @[IDx + 0]!, respectively. Table 7-6. Condition Code Information ("cc") Symbol (cc:4) Code Function Blank 0000 always NC or ULT 0001 C = 0, unsigned less than C or UGE 0010 C = 1, unsigned greater than or equal to Z or EQ 0011 Z = 1, equal to NZ or NE 0100 Z = 0, not equal to OV 0101 V = 1, overflow - signed value ULE 0110 ~C | Z, unsigned less than or equal to UGT 0111 C & ~Z, unsigned greater than ZP 1000 N = 0, signed zero or positive MI 1001 N = 1, signed negative PL 1010 ~N & ~Z, signed positive ZN 1011 Z | N, signed zero or negative SF 1100 Stack Full EC0-EC2 NOTE: 1101-1111 EC[0] = 1/EC[1] = 1/EC[2] = 1 EC[2:0] is an external input (CalmRISC core's point of view) and used as a condition. 7-7 INSTRUCTION SET S3CK318/FK318 Table 7-7. "ALUop1" Code Information Symbol Code Function SLA 000 arithmetic shift left SL 001 shift left RLC 010 rotate left with carry RL 011 rotate left SRA 100 arithmetic shift right SR 101 shift right RRC 110 rotate right with carry RR 111 rotate right Table 7-8. "ALUop2" Code Information Symbol Code Function INC 000 increment INCC 001 increment with carry DEC 010 decrement DECC 011 decrement with carry COM 100 1's complement COM2 101 2's complement COMC 110 1's complement with carry 111 reserved – Table 7-9. "MODop1" Code Information Symbol Code Function LRET 000 return by IL RET 001 return by HS IRET 010 return from interrupt (by HS) NOP 011 no operation BREAK 100 reserved for debugger use only – 101 reserved – 110 reserved – 111 reserved 7-8 S3CK318/FK318 INSTRUCTION SET QUICK REFERENCE Operation op1 op2 AND GPR adr:8 OR Flag # of word/cycle op1 ← op1 & op2 z,n 1W1C #imm:8 op1 ← op1 | op2 z,n XOR GPR op1 ← op1 ^ op2 z,n ADD @idm op1 ← op1 + op2 c,z,v,n SUB op1 ← op1 + ~op2 + 1 c,z,v,n CP op1 + ~op2 + 1 c,z,v,n GPR op1 ← op1 + op2 + c c,z,v,n adr:8 op1 ← op1 + ~op2 + c c,z,v,n op1 + ~op2 + c c,z,v,n ADC GPR SBC CPC TM Function GPR #imm:8 op1 & op2 R3 adr:8.bs op1 ← (op2[bit] ← 1) z BITR op1 ← (op2[bit] ← 0) z BITC op1 ← ~(op2[bit]) z BITT z ← ~(op2[bit]) z BITS BMS/BMC PUSH – – TF ← 1 / 0 – GPR – HS[sptr] ← GPR, (sptr ← sptr + 1) – GPR ← HS[sptr - 1], (sptr ← sptr - 1) POP PUSH z,n SPR – HS[sptr] ← SPR, (sptr ← sptr + 1) z,n – SPR ← HS[sptr - 1], (sptr ← sptr - 1) POP POP – – sptr ← sptr – 2 SLA GPR – c ← op1[7], op1 ← {op1[6:0], 0} c,z,v,n SL c ← op1[7], op1 ← {op1[6:0], 0} c,z,n RLC c ← op1[7], op1 ← {op1[6:0], c} c,z,n RL c ← op[7], op1 ← {op1[6:0], op1[7]} c,z,n SRA c ← op[0], op1 ← {op1[7],op1[7:1]} c,z,n SR c ← op1[0], op1 ← {0, op1[7:1]} c,z,n RRC c ← op1[0], op1 ← {c, op1[7:1]} c,z,n RR c ← op1[0], op1 ← {op1[0], op1[7:1]} c,z,n INC op1 ← op1 + 1 c,z,v,n INCC op1 ← op1 + c c,z,v,n DEC op1 ← op1 + 0FFh c,z,v,n DECC op1 ← op1 + 0FFh + c c,z,v,n COM op1 ← ~op1 COM2 op1 ← ~op1 + 1 c,z,v,n COMC op1 ← ~op1 + c c,z,v,n – z,n 7-9 INSTRUCTION SET S3CK318/FK318 QUICK REFERENCE (Continued) Operation op1 op2 LD GPR :bank GPR :bank LD SPR0 LD Flag # of word / cycle op1 ← op2 z,n 1W1C #imm:8 op1 ← op2 – GPR GPR SPR adr:8 @idm #imm:8 TBH/TBL op1 ← op2 z,n LD SPR TBH/TBL GPR op1 ← op2 – LD adr:8 GPR op1 ← op2 – LD @idm GPR op1 ← op2 – LDC @IL @IL+ – (TBH:TBL) ← PM[(ILX:ILH:ILL)], ILL++ if @IL+ – 1W2C AND OR SR0 #imm:8 SR0 ← SR0 & op2 SR0 ← SR0 | op2 – 1W1C BANK #imm:2 – SR0[4:3] ← op2 – SWAP GPR SPR op1 ← op2, op2 ← op1 (excluding SR0/SR1) – LCALL cc imm:20 – If branch taken, push XSTACK, HS[15:0] ← {PC[15:12],PC[11:0] + 2} and PC ← op1 else PC[11:0] ← PC[11:0] + 2 – LLNK cc imm:20 – If branch taken, IL[19:0] ← {PC[19:12], PC[11:0] + 2} and PC ← op1 else PC[11:0] ← PC[11:0] + 2 – CALLS imm:12 – push XSTACK, HS[15:0] ← {PC[15:12], PC[11:0] + 1} and PC[11:0] ← op1 – LNKS imm:12 – IL[19:0] ← {PC[19:12], PC[11:0] + 1} and PC[11:0] ← op1 – JNZD Rn imm:8 if (Rn == 0) PC ← PC[delay slot] - 2's complement of imm:8, Rn-else PC ← PC[delay slot]++, Rn-- – LJP cc imm:20 – If branch taken, PC ← op1 else PC[11:0] < PC[11:0] + 2 – 2W2C JR cc imm:9 – If branch taken, PC[11:0] ← PC[11:0] + op1 else PC[11:0] ← PC[11:0] + 1 – 1W2C NOTE: 7-10 Function 2W2C 1W2C op1 - operand1, op2 - operand2, 1W1C - 1-Word 1-Cycle instruction, 1W2C - 1-Word 2-Cycle instruction, 2W2C 2-Word 2-Cycle instruction. The Rn of instruction JNZD is Bank 3's GPR. S3CK318/FK318 INSTRUCTION SET QUICK REFERENCE (Concluded) Operation LRET op1 op2 – – Function PC ← IL[19:0] Flag # of word / cycle – 1W2C RET PC ← HS[sptr - 2], (sptr ← sptr - 2) 1W2C IRET PC ← HS[sptr - 2], (sptr ← sptr - 2) 1W2C NOP no operation 1W1C BREAK no operation and hold PC 1W1C SYS #imm:8 – no operation but generates SYSCP[7:0] and nSYSID – CLD imm:8 GPR op1 ← op2, generates SYSCP[7:0], nCLDID, and CLDWR – CLD GPR imm:8 op1 ← op2, generates SYSCP[7:0], nCLDID, and CLDWR z,n COP #imm:12 – generates SYSCP[11:0] and nCOPID 1W1C – NOTES: 1. op1 - operand1, op2 - operand2, sptr - stack pointer register, 1W1C - 1-Word 1-Cycle instruction, 1W2C - 1-Word 2-Cycle instruction 2. Pseudo instructions — SCF/RCF Carry flag set or reset instruction — STOP/IDLE MCU power saving instructions — EI/DI Exception enable and disable instructions — JP/LNK/CALL If JR/LNKS/CALLS commands (1 word instructions) can access the target address, there is no conditional code in the case of CALL/LNK, and the JP/LNK/CALL commands are assembled to JR/LNKS/CALLS in linking time, or else the JP/LNK/CALL commands are assembled to LJP/LLNK/LCALL (2 word instructions) instructions. 7-11 INSTRUCTION SET S3CK318/FK318 INSTRUCTION GROUP SUMMARY ALU INSTRUCTIONS "ALU instructions" refer to the operations that use ALU to generate results. ALU instructions update the values in Status Register 1 (SR1), namely carry (C), zero (Z), overflow (V), and negative (N), depending on the operation type and the result. ALUop GPR, adr:8 Performs an ALU operation on the value in GPR and the value in DM[adr:8] and stores the result into GPR. ALUop = ADD, SUB, CP, AND, OR, XOR For SUB and CP, GPR+(not DM[adr:8])+1 is performed. adr:8 is the offset in a specific data memory page. The data memory page is 0 or the value of IDH (Index of Data Memory Higher Byte Register), depending on the value of eid in Status Register 0 (SR0). Operation GPR ← GPR ALUop DM[00h:adr:8] if eid = 0 GPR ← GPR ALUop DM[IDH:adr8] if eid = 1 Note that this is an 7-bit operation. Example ADD R0, 80h // Assume eid = 1 and IDH = 01H // R0 ← R0 + DM[0180h] ALUop GPR, #imm:8 Stores the result of an ALU operation on GPR and an 7-bit immediate value into GPR. ALUop = ADD, SUB, CP, AND, OR, XOR For SUB and CP, GPR+(not #imm:8)+1 is performed. #imm:8 is an 7-bit immediate value. Operation GPR ← GPR ALUop #imm:8 Example ADD R0, #7Ah 7-12 // R0 ← R0 + 7Ah S3CK318/FK318 INSTRUCTION SET ALUop GPRd, GPRs Store the result of ALUop on GPRs and GPRd into GPRd. ALUop = ADD, SUB, CP, AND, OR, XOR For SUB and CP, GPRd + (not GPRs) + 1 is performed. GPRs and GPRd need not be distinct. Operation GPRd ← GPRd ALUop GPRs GPRd - GPRs when ALUop = CP (comparison only) Example ADD R0, R1 // R0 ← R0 + R1 ALUop GPR, @idm Performs ALUop on the value in GPR and DM[ID] and stores the result into GPR. Index register ID is IDH:IDL (IDH:IDL0 or IDH:IDL1). ALUop = ADD, SUB, CP, AND, OR, XOR For SUB and CP, GPR+(not DM[idm])+1 is performed. idm = IDx+off:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]! (IDx = ID0 or ID1) Operation GPR - DM[idm] when ALUop = CP (comparison only) GPR ← GPR ALUop DM[IDx], IDx ← IDx + offset:5 when idm = IDx + offset:5 GPR ← GPR ALUop DM[IDx - offset:5], IDx ← IDx - offset:5 when idm = [IDx - offset:5] GPR ← GPR ALUop DM[IDx + offset:5] when idm = [IDx + offset:5]! GPR ← GPR ALUop DM[IDx - offset:5] when idm = [IDx - offset:5]! When carry is generated from IDL (on a post-increment or pre-decrement), it is propagated to IDH. Example ADD R0, @ID0+2 ADD R0, @[ID0-2] ADD R0, @[ID1+2]! ADD R0, @[ID1-2]! // assume ID0 = 02FFh // R0 ← R0 + DM[02FFh], IDH ← 03h and IDL0 ← 01h // assume ID0 = 0201h // R0 ← R0 + DM[01FFh], IDH ← 01h and IDL0 ← FFh // assume ID1 = 02FFh // R0 ← R0 + DM[0301], IDH ← 02h and IDL1 ← FFh // assume ID1 = 0200h // R0 ← R0 + DM[01FEh], IDH ← 02h and IDL1 ← 00h 7-13 INSTRUCTION SET S3CK318/FK318 ALUopc GPRd, GPRs Performs ALUop with carry on GPRd and GPRs and stores the result into GPRd. ALUopc = ADC, SBC, CPC GPRd and GPRs need not be distinct. Operation GPRd ← GPRd + GPRs + C when ALUopc = ADC GPRd ← GPRd + (not GPRs) + C when ALUopc = SBC GPRd + (not GPRs) + C when ALUopc = CPC (comparison only) Example ADD R0, R2 ADC R1, R3 // assume R1:R0 and R3:R2 are 16-bit signed or unsigned numbers. // to add two 16-bit numbers, use ADD and ADC. SUB R0, R2 SBC R1, R3 // assume R1:R0 and R3:R2 are 16-bit signed or unsigned numbers. // to subtract two 16-bit numbers, use SUB and SBC. CP R0, R2 CPC R1, R3 // assume both R1:R0 and R3:R2 are 16-bit unsigned numbers. // to compare two 16-bit unsigned numbers, use CP and CPC. ALUopc GPR, adr:8 Performs ALUop with carry on GPR and DM[adr:8]. Operation GPR ← GPR + DM[adr:8] + C when ALUopc = ADC GPR ← GPR + (not DM[adr:8]) + C when ALUopc = SBC GPR + (not DM[adr:8]) + C when ALUopc = CPC (comparison only) CPLop GPR (Complement Operations) CPLop = COM, COM2, COMC Operation COM GPR COM2 GPR COMC GPR not GPR (logical complement) not GPR + 1 (2's complement of GPR) not GPR + C (logical complement of GPR with carry) Example COM2 R0 COMC R1 7-14 // assume R1:R0 is a 16-bit signed number. // COM2 and COMC can be used to get the 2's complement of it. S3CK318/FK318 INSTRUCTION SET IncDec GPR (Increment/Decrement Operations) IncDec = INC, INCC, DEC, DECC Operation INC GPR INCC GPR Increase GPR, i.e., GPR ← GPR + 1 Increase GPR if carry = 1, i.e., GPR ← GPR + C DEC GPR DECC GPR Decrease GPR, i.e., GPR ← GPR + FFh Decrease GPR if carry = 0, i.e., GPR ← GPR + FFh + C Example INC R0 INCC R1 // assume R1:R0 is a 16-bit number // to increase R1:R0, use INC and INCC. DEC R0 DECC R1 // assume R1:R0 is a 16-bit number // to decrease R1:R0, use DEC and DECC. 7-15 INSTRUCTION SET S3CK318/FK318 SHIFT/ROTATE INSTRUCTIONS Shift (Rotate) instructions shift (rotate) the given operand by 1 bit. Depending on the operation performed, a number of Status Register 1 (SR1) bits, namely Carry (C), Zero (Z), Overflow (V), and Negative (N), are set. SL GPR Operation 7 0 C 0 GPR Carry (C) is the MSB of GPR before shifting, Negative (N) is the MSB of GPR after shifting. Overflow (V) is not affected. Zero (Z) will be 1 if the result is 0. SLA GPR Operation 7 0 C 0 GPR Carry (C) is the MSB of GPR before shifting, Negative (N) is the MSB of GPR after shifting. Overflow (V) will be 1 if the MSB of the result is different from C. Z will be 1 if the result is 0. RL GPR Operation 7 0 C GPR Carry (C) is the MSB of GPR before rotating. Negative (N) is the MSB of GPR after rotating. Overflow (V) is not affected. Zero (Z) will be 1 if the result is 0. RLC GPR Operation 7 0 GPR C Carry (C) is the MSB of GPR before rotating, Negative (N) is the MSB of GPR after rotating. Overflow (V) is not affected. Zero (Z) will be 1 if the result is 0. 7-16 S3CK318/FK318 INSTRUCTION SET SR GPR Operation 7 0 0 C GPR Carry (C) is the LSB of GPR before shifting, Negative (N) is the MSB of GPR after shifting. Overflow (V) is not affected. Zero (Z) will be 1 if the result is 0. SRA GPR Operation 7 0 C GPR Carry (C) is the LSB of GPR before shifting, Negative (N) is the MSB of GPR after shifting. Overflow (V) is not affected. Z will be 1 if the result is 0. RR GPR Operation 7 0 C GPR Carry (C) is the LSB of GPR before rotating. Negative (N) is the MSB of GPR after rotating. Overflow (V) is not affected. Zero (Z) will be 1 if the result is 0. RRC GPR Operation 7 0 GPR C Carry (C) is the LSB of GPR before rotating, Negative (N) is the MSB of GPR after rotating. Overflow (V) is not affected. Zero (Z) will be 1 if the result is 0. 7-17 INSTRUCTION SET S3CK318/FK318 LOAD INSTRUCTIONS Load instructions transfer data from data memory to a register or from a register to data memory, or assigns an immediate value into a register. As a side effect, a load instruction placing a value into a register sets the Zero (Z) and Negative (N) bits in Status Register 1 (SR1), if the placed data is 00h and the MSB of the data is 1, respectively. LD GPR, adr:8 Loads the value of DM[adr:8] into GPR. Adr:8 is offset in the page specified by the value of eid in Status Register 0 (SR0). Operation GPR ← DM[00h:adr:8] if eid = 0 GPR ← DM[IDH:adr:8] if eid = 1 Note that this is an 7-bit operation. Example LD R0, 80h // assume eid = 1 and IDH= 01H // R0 ← DM[0180h] LD GPR, @idm Loads a value from the data memory location specified by @idm into GPR. idm = IDx+off:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]! (IDx = ID0 or ID1) Operation GPR GPR GPR GPR ← ← ← ← DM[IDx], IDx ← IDx + offset:5 when idm = IDx + offset:5 DM[IDx - offset:5], IDx ← IDx - offset:5 when idm = [IDx - offset:5] DM[IDx + offset:5] when idm = [IDx + offset:5]! DM[IDx - offset:5] when idm = [IDx - offset:5]! When carry is generated from IDL (on a post-increment or pre-decrement), it is propagated to IDH. Example LD R0, @[ID0 + 03h]! 7-18 // assume IDH:IDL0 = 0270h // R0 ← DM[0273h], IDH:IDL0 ← 0270h S3CK318/FK318 INSTRUCTION SET LD REG, #imm:8 Loads an 7-bit immediate value into REG. REG can be either GPR or an SPR0 group register - IDH (Index of Data Memory Higher Byte Register), IDL0 (Index of Data Memory Lower Byte Register)/ IDL1, and Status Register 0 (SR0). #imm:8 is an 7-bit immediate value. Operation REG ← #imm:8 Example LD R0 #7Ah LD IDH, #03h // R0 ← 7Ah // IDH ← 03h LD GPR:bs:2, GPR:bs:2 Loads a value of a register from a specified bank into another register in a specified bank. Example LD R0:1, R2:3 // R0 in bank 1, R2 in bank 3 LD GPR, TBH/TBL Loads the value of TBH or TBL into GPR. TBH and TBL are 7-bit long registers used exclusively for LDC instructions that access program memory. Therefore, after an LDC instruction, LD GPR, TBH/TBL instruction will usually move the data into GPRs, to be used for other operations. Operation GPR ← TBH (or TBL) Example LDC @IL LD R0, TBH LD R1, TBL // gets a program memory item residing @ ILX:ILH:ILL LD TBH/TBL, GPR Loads the value of GPR into TBH or TBL. These instructions are used in pair in interrupt service routines to save and restore the values in TBH/TBL as needed. Operation TBH (or TBL) ← GPR LD GPR, SPR Loads the value of SPR into GPR. Operation GPR ← SPR Example LD R0, IDH // R0 ← IDH 7-19 INSTRUCTION SET S3CK318/FK318 LD SPR, GPR Loads the value of GPR into SPR. Operation SPR ← GPR Example LD IDH, R0 // IDH ← R0 LD adr:8, GPR Stores the value of GPR into data memory (DM). adr:8 is offset in the page specified by the value of eid in Status Register 0 (SR0). Operation DM[00h:adr:8] ← GPR if eid = 0 DM[IDH:adr:8] ← GPR if eid = 1 Note that this is an 7-bit operation. Example LD 7Ah, R0 // assume eid = 1 and IDH = 02h. // DM[027Ah] ← R0 LD @idm, GPR Loads a value into the data memory location specified by @idm from GPR. idm = IDx+off:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]! (IDx = ID0 or ID1) Operation DM[IDx] ← GPR, IDx ← IDx + offset:5 when idm = IDx + offset:5 DM[IDx - offset:5] ← GPR, IDx ← IDx - offset:5 when idm = [IDx - offset:5] DM[IDx + offset:5] ← GPR when idm = [IDx + offset:5]! DM[IDx - offset:5] ← GPR when idm = [IDx - offset:5]! When carry is generated from IDL (on a post-increment or pre-decrement), it is propagated to IDH. Example LD @[ID0 + 03h]!, R0 7-20 // assume IDH:IDL0 = 0170h // DM[0173h] ← R0, IDH:IDL0 ← 0170h S3CK318/FK318 INSTRUCTION SET BRANCH INSTRUCTIONS Branch instructions can be categorized into jump instruction, link instruction, and call instruction. A jump instruction does not save the current PC, whereas a call instruction saves ("pushes") the current PC onto the stack and a link instruction saves the PC in the link register IL. Status registers are not affected. Each instruction type has a 2-word format that supports a 20-bit long jump. JR cc:4, imm:9 imm:9 is a signed number (2's complement), an offset to be added to the current PC to compute the target (PC[19:12]:(PC[11:0] + imm:9)). Operation PC[11:0] ← PC[11:0] + imm:9 PC[11:0] ← PC[11:0] + 1 if branch taken (i.e., cc:4 resolves to be true) otherwise Example L18411: JR Z, 107h // assume current PC = 18411h. // next PC is 18518 (18411h + 107h) if Zero (Z) bit is set. LJP cc:4, imm:20 Jumps to the program address specified by imm:20. If program size is less than 64K word, PC[19:16] is not affected. Operation PC[15:0] ← imm[15:0] if branch taken and program size is less than 64K word PC[19:0] ← imm[19:0] if branch taken and program size is equal to 64K word or more PC [11:0] ← PC[11:0] + 1 otherwise Example L18411: LJP Z, 10107h // assume current PC = 18411h. // next instruction's PC is 10107h If Zero (Z) bit is set JNZD Rn, imm:8 Jumps to the program address specified by imm:8 if the value of the bank 3 register Rn is not zero. JNZD performs only backward jumps, with the value of Rn automatically decreased. There is one delay slot following the JNZD instruction that is always executed, regardless of whether JNZD is taken or not. Operation If (Rn == 0) PC ← PC[delay slot] (-) 2's complement of imm:8, Rn ← Rn - 1 else PC ← PC[delay slot] + 1, Rn ← Rn - 1. 7-21 INSTRUCTION SET S3CK318/FK318 Example LOOP_A: // start of loop body • • • JNZD R0, LOOP_A ADD R1, #2 // jump back to LOOP_A if R0 is not zero // delay slot, always executed (you must use one cycle instruction only) CALLS imm:12 Saves the current PC on the stack ("pushes" PC) and jumps to the program address specified by imm:12. The current page number PC[19:12] is not changed. Since this is a 1-word instruction, the return address pushed onto the stack is (PC + 1). If nP64KW is low when PC is saved, PC[19:16] is not saved in the stack. Operation HS[sptr][15:0] ← current PC + 1 and sptr ← sptr + 2 (push stack) HS[sptr][19:0] ← current PC + 1 and sptr ← sptr + 2 (push stack) PC[11:0] ← imm:12 if nP64KW = 0 if nP64KW = 1 Example L18411: CALLS 107h // assume current PC = 18411h. // call the subroutine at 18107h, with the current PC pushed // onto the stack (HS ← 18412h) if nP64KW = 1. LCALL cc:4, imm:20 Saves the current PC onto the stack (pushes PC) and jumps to the program address specified by imm:20. Since this is a 2-word instruction, the return address saved in the stack is (PC + 2). If nP64KW, a core input signal is low when PC is saved, 0000111111PC[19:16] is not saved in the stack and PC[19:16] is not set to imm[19:16]. Operation HS[sptr][15:0] ← current PC + 2 and sptr + 2 (push stack) if branch taken and nP64KW = 0 HS[sptr][19:0] ← current PC + 2 and sptr + 2 (push stack) if branch taken and nP64KW = 1 PC[15:0] ← imm[15:0] if branch taken and nP64KW = 0 PC[19:0] ← imm[19:0] if branch taken and nP64KW = 1 PC[11:0] ← PC[11:0] + 2 otherwise Example L18411: LCALL NZ, 10107h 7-22 // assume current PC = 18411h. // call the subroutine at 10107h with the current PC pushed // onto the stack (HS ← 18413h) S3CK318/FK318 INSTRUCTION SET LNKS imm:12 Saves the current PC in IL and jumps to the program address specified by imm:12. The current page number PC[19:12] is not changed. Since this is a 1-word instruction, the return address saved in IL is (PC + 1). If the program size is less than 64K word when PC is saved, PC[19:16] is not saved in ILX. Operation IL[15:0] ← current PC + 1 IL[19:0] ← current PC + 1 PC[11:0] ← imm:12 if program size is less than 64K word if program size is equal to 64K word or more Example L18411: LNKS 107h // assume current PC = 18411h. // call the subroutine at 18107h, with the current PC saved // in IL (IL[19:0] ← 18412h) if program size is 64K word or more. LLNK cc:4, imm:20 Saves the current PC in IL and jumps to the program address specified by imm:20. Since this is a 2-word instruction, the return address saved in IL is (PC + 2). If the program size is less than 64K word when PC is saved, PC[19:16] is not saved in ILX. Operation IL[15:0] ← current PC + 2 if branch taken and program size is less than 64K word IL[19:0] ← current PC + 2 if branch taken and program size is 64K word or more PC[15:0] ← imm[15:0] if branch taken and program size is less than 64K word PC[19:0] ← imm[19:0] if branch taken and program size is 64K word or more PC[11:0] ← PC[11:0] + 2 otherwise Example L18411: LLNK NZ, 10107h // assume current PC = 18411h. // call the subroutine at 10107h with the current PC saved // in IL (IL[19:0] ← 18413h) if program size is 64K word or more RET, IRET Returns from the current subroutine. IRET sets ie (SR0[1]) in addition. If the program size is less than 64K word, PC[19:16] is not loaded from HS[19:16]. Operation PC[15:0] ← HS[sptr - 2] and sptr ← sptr - 2 (pop stack) if program size is less than 64K word PC[19:0] ← HS[sptr - 2] and sptr ← sptr - 2 (pop stack) if program size is 64K word or more Example RET // assume sptr = 3h and HS[1] = 18407h. // the next PC will be 18407h and sptr is set to 1h 7-23 INSTRUCTION SET S3CK318/FK318 LRET Returns from the current subroutine, using the link register IL. If the program size is less than 64K word, PC[19:16] is not loaded from ILX. Operation PC[15:0] ← IL[15:0] PC[19:0] ← IL[19:0] if program size is less than 64K word if program size is 64K word or more Example LRET // assume IL = 18407h. // the next instruction to execute is at PC = 18407h // if program size is 64K word or more JP/LNK/CALL JP/LNK/CALL instructions are pseudo instructions. If JR/LNKS/CALLS commands (1 word instructions) can access the target address, there is no conditional code in the case of CALL/LNK and the JP/LNK/CALL commands are assembled to JR/LNKS/CALLS in linking time or else the JP/LNK/CALL commands are assembled to LJP/LLNK/LCALL (2 word instructions) instructions. 7-24 S3CK318/FK318 INSTRUCTION SET BIT MANIPULATION INSTRUCTIONS BITop adr:8.bs Performs a bit operation specified by op on the value in the data memory pointed by adr:8 and stores the result into R3 of current GPR bank or back into memory depending on the value of TF bit. BITop = BITS, BITR, BITC, BITT BITS: bit set BITR: bit reset BITC: bit complement BITT: bit test (R3 is not touched in this case) bs: bit location specifier, 0 - 7. Operation R3 ← DM[00h:adr:8] BITop bs if eid = 0 R3 ← DM[IDH:adr:8] BITop bs if eid = 1 (no register transfer for BITT) Set the Zero (Z) bit if the result is 0. Example BITS 25h.3 BITT 25h.3 // assume eid = 0. set bit 3 of DM[00h:25h] and store the result in R3. // check bit 3 of DM[00h:25h] if eid = 0. BMC/BMS Clears or sets the TF bit, which is used to determine the destination of BITop instructions. When TF bit is clear, the result of BITop instructions will be stored into R3 (fixed); if the TF bit is set, the result will be written back to memory. Operation TF ← 0 TF ← 1 (BMC) (BMS) TM GPR, #imm:8 Performs AND operation on GPR and imm:8 and sets the Zero (Z) and Negative (N) bits. No change in GPR. Operation Z, N flag ← GPR & #imm:8 BITop GPR.bs Performs a bit operation on GPR and stores the result in GPR. Since the equivalent functionality can be achieved using OR GPR, #imm:8, AND GPR, #imm:8, and XOR GPR, #imm:8, this instruction type doesn't have separate op codes. 7-25 INSTRUCTION SET S3CK318/FK318 AND SR0, #imm:8/OR SR0, #imm:8 Sets/resets bits in SR0 and stores the result back into SR0. Operation SR0 ← SR0 & #imm:8 SR0 ← SR0 | #imm:8 BANK #imm:2 Loads SR0[4:3] with #imm[1:0]. Operation SR0[4:3] ← #imm[1:0] MISCELLANEOUS INSTRUCTION SWAP GPR, SPR Swaps the values in GPR and SPR. SR0 and SR1 can NOT be used for this instruction. No flag is updated, even though the destination is GPR. Operation temp ← SPR SPR ← GPR GPR ← temp Example SWAP R0, IDH // assume IDH = 00h and R0 = 08h. // after this, IDH = 08h and R0 = 00h. PUSH REG Saves REG in the stack (Pushes REG into stack). REG = GPR, SPR Operation HS[sptr][7:0] ← REG and sptr ← sptr + 1 Example PUSH R0 7-26 // assume R0 = 08h and sptr = 2h // then HS[2][7:0] ← 08h and sptr ← 3h S3CK318/FK318 INSTRUCTION SET POP REG Pops stack into REG. REG = GPR, SPR Operation REG ← HS[sptr-1][7:0] and sptr ← sptr – 1 Example POP R0 // assume sptr = 3h and HS[2] = 18407h // R0 ← 07h and sptr ← 2h POP Pops 2 bytes from the stack and discards the popped data. NOP Does no work but increase PC by 1. BREAK Does nothing and does NOT increment PC. This instruction is for the debugger only. When this instruction is executed, the processor is locked since PC is not incremented. Therefore, this instruction should not be used under any mode other than the debug mode. SYS #imm:8 Does nothing but increase PC by 1 and generates SYSCP[7:0] and nSYSID signals. CLD GPR, imm:8 GPR ← (imm:8) and generates SYSCP[7:0], nCLDID, and nCLDWR signals. CLD imm:8, GPR (imm:8) ← GPR and generates SYSCP[7:0], nCLDID, and nCLDWR signals. COP #imm:12 Generates SYSCP[11:0] and nCOPID signals. 7-27 INSTRUCTION SET S3CK318/FK318 LDC Loads program memory item into register. Operation [TBH:TBL] ← PM[ILX:ILH:ILL] [TBH:TBL] ← PM[ILX:ILH:ILL], ILL++ (LDC @IL) (LDC @IL+) TBH and TBL are temporary registers to hold the transferred program memory items. These can be accessed only by LD GPR and TBL/TBH instruction. Example LD ILX, R1 LD ILH, R2 LD ILL, R3 LDC @IL 7-28 // assume R1:R2:R3 has the program address to access // get the program data @(ILX:ILH:ILL) into TBH:TBL S3CK318/FK318 INSTRUCTION SET PSEUDO INSTRUCTIONS EI/DI Exceptions enable and disable instruction. Operation SR0 ← OR SR0,#00000010b SR0 ← AND SR0,#11111101b (EI) (DI) Exceptions are enabled or disabled through this instruction. If there is an EI instruction, the SR0.1 is set and reset, when DI instruction. Example DI • • • EI SCF/RCF Carry flag set and reset instruction. Operation CP R0,R0 AND R0,R0 (SCF) (RCF) Carry flag is set or reset through this instruction. If there is an SCF instruction, the SR1.0 is set and reset, when RCF instruction. Example SCF RCF STOP/IDLE MCU power saving instruction. Operation SYS #0Ah SYS #05h (STOP) (IDLE) The STOP instruction stops the both CPU clock and system clock and causes the microcontroller to enter STOP mode. The IDLE instruction stops the CPU clock while allowing system clock oscillation to continue. Example STOP(or IDLE) NOP NOP NOP • • • 7-29 INSTRUCTION SET S3CK318/FK318 ADC — Add with Carry Format: ADC <op1>, <op2> <op1>: GPR <op2>: adr:8, GPR Operation: <op1> ← <op1> + <op2> + C ADC adds the values of <op1> and <op2> and carry (C) and stores the result back into <op1> Flags: C: Z: V: N: . set if carry is generated. Reset if not. set if result is zero. Reset if not. set if overflow is generated. Reset if not. exclusive OR of V and MSB of result. Example: ADC R0, 80h // If eid = 0, R0 ← R0 + DM[0080h] + C // If eid = 1, R0 ← R0 + DM[IDH:80h] + C ADC R0, R1 // R0 ← R0 + R1 + C ADD ADC R0, R2 R1, R3 In the last two instructions, assuming that register pair R1:R0 and R3:R2 are 16-bit signed or unsigned numbers. Even if the result of "ADD R0, R2" is not zero, Z flag can be set to '1' if the result of "ADC R1,R3" is zero. Note that zero (Z) flag do not exactly reflect result of 16-bit operation. Therefore when programming 16-bit addition, take care of the change of Z flag. 7-30 S3CK318/FK318 INSTRUCTION SET ADD — Add Format: ADD <op1>, <op2> <op1>: GPR <op2>: adr:8, #imm:8, GPR, @idm Operation: <op1> ← <op1> + <op2> ADD adds the values of <op1> and <op2> and stores the result back into <op1>. Flags: . C: Z: V: N: set if carry is generated. Reset if not. set if result is zero. Reset if not. set if overflow is generated. Reset if not. exclusive OR of V and MSB of result. Example: Given: IDH:IDL0 = 80FFh, eid = 1 ADD R0, 80h // R0 ← R0 + DM[8080h] ADD R0, #12h // R0 ← R0 + 12h ADD R1, R2 // R1 ← R1 + R2 ADD ADD ADD ADD R0, @ID0 + 2 R0, @[ID0 – 3] R0, @[ID0 + 2]! R0, @[ID0 – 2]! // R0 // R0 // R0 // R0 ← ← ← ← R0 + DM[80FFh], IDH ← 81h, IDL0 ← 01h R0 + DM[80FCh], IDH ← 80h, IDL0 ← FCh R0 + DM[8101h], IDH ← 80h, IDL0 ← FFh R0 + DM[80FDh], IDH ← 80h, IDL0 ← FFh In the last two instructions, the value of IDH:IDL0 is not changed. Refer to Table 7-5 for more detailed explanation about this addressing mode. idm = IDx+offset:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]! (IDx = ID0 or ID1) 7-31 INSTRUCTION SET S3CK318/FK318 AND — Bit-wise AND Format: AND <op1>, <op2> <op1>: GPR <op2>: adr:8, #imm:8, GPR, @idm Operation: <op1> ← <op1> & <op2> AND performs bit-wise AND on the values in <op1> and <op2> and stores the result in <op1>. Flags: Z: set if result is zero. Reset if not. N: set if the MSB of result is 1. Reset if not. Example: Given: IDH:IDL0 = 01FFh, eid = 1 AND R0, 7Ah // R0 ← R0 & DM[017Ah] AND R1, #40h // R1 ← R1 & 40h AND R0, R1 // R0 ← R0 & R1 AND AND AND AND R1, @ID0 + 3 R1, @[ID0 – 5] R1, @[ID0 + 7]! R1, @[ID0 – 2]! // R1 // R1 // R1 // R1 ← ← ← ← R1 & DM[01FFh], IDH:IDL0 ← 0202h R1 & DM[01FAh], IDH:IDL0 ← 01FAh R1 & DM[0206h], IDH:IDL0 ← 01FFh R1 & DM[01FDh], IDH:IDL0 ← 01FFh In the first instruction, if eid bit in SR0 is zero, register R0 has garbage value because data memory DM[0051h-007Fh] are not mapped in S3CB519/S3FB519. In the last two instructions, the value of IDH:IDL0 is not changed. Refer to Table 7-5 for more detailed explanation about this addressing mode. idm = IDx+offset:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]! (IDx = ID0 or ID1) 7-32 S3CK318/FK318 INSTRUCTION SET AND SR0 — Bit-wise AND with SR0 Format: AND SR0, #imm:8 Operation: SR0 ← SR0 & imm:8 AND SR0 performs the bit-wise AND operation on the value of SR0 and imm:8 and stores the result in SR0. Flags: – Example: Given: SR0 = 11000010b nIE nIE0 nIE1 EQU EQU EQU ~02h ~40h ~80h AND SR0, #nIE | nIE0 | nIE1 AND SR0, #11111101b In the first example, the statement "AND SR0, #nIE|nIE0|nIE1" clear all of bits of the global interrupt, interrupt 0 and interrupt 1. On the contrary, cleared bits can be set to '1' by instruction "OR SR0, #imm:8". Refer to instruction OR SR0 for more detailed explanation about enabling bit. In the second example, the statement "AND SR0, #11111101b" is equal to instruction DI, which is disabling interrupt globally. 7-33 INSTRUCTION SET S3CK318/FK318 BANK — GPR Bank selection Format: BANK #imm:2 Operation: SR0[4:3] ← imm:2 Flags: – NOTE: For explanation of the CalmRISC banked register file and its usage, please refer to chapter 3. Example: 7-34 BANK LD #1 R0, #11h // Select register bank 1 // Bank1's R0 ← 11h BANK LD #2 R1, #22h // Select register bank 2 // Bank2's R1 ← 22h S3CK318/FK318 INSTRUCTION SET BITC — Bit Complement Format: BITC adr:8.bs bs: 3-digit bit specifier Operation: R3 ← ((adr:8) ^ (2**bs)) (adr:8) ← ((adr:8) ^ (2**bs)) if (TF == 0) if (TF == 1) BITC complements the specified bit of a value read from memory and stores the result in R3 or back into memory, depending on the value of TF. TF is set or clear by BMS/BMC instruction. Flags: Z: set if result is zero. Reset if not. NOTE: Since the destination register R3 is fixed, it is not specified explicitly. Example: Given: IDH = 01, DM[0180h] = FFh, eid = 1 BMC BITC 80h.0 // TF ← 0 // R3 ← FEh, DM[0180h] = FFh BMS BITC 80h.1 // TF ← 1 // DM[0180h] ← FDh 7-35 INSTRUCTION SET S3CK318/FK318 BITR — Bit Reset Format: BITR adr:8.bs bs: 3-digit bit specifier Operation: R3 ← ((adr:8) & ((11111111)2 - (2**bs))) (adr:8) ← ((adr:8) & ((11111111)2 - (2**bs))) if (TF == 0) if (TF == 1) BITR resets the specified bit of a value read from memory and stores the result in R3 or back into memory, depending on the value of TF. TF is set or clear by BMS/BMC instruction. Flags: Z: set if result is zero. Reset if not. NOTE: Since the destination register R3 is fixed, it is not specified explicitly. Example: Given: IDH = 01, DM[0180h] = FFh, eid = 1 7-36 BMC BITR 80h.1 // TF ← 0 // R3 ← FDh, DM[0180h] = FFh BMS BITR 80h.2 // TF ← 1 // DM[0180h] ← FBh S3CK318/FK318 INSTRUCTION SET BITS — Bit Set Format: BITS adr:8.bs bs: 3-digit bit specifier. Operation: R3 ← ((adr:8) | (2**bs)) (adr:8) ← ((adr:8) | (2**bs)) if (TF == 0) if (TF == 1) BITS sets the specified bit of a value read from memory and stores the result in R3 or back into memory, depending on the value of TF. TF is set or clear by BMS/BMC instruction. Flags: Z: set if result is zero. Reset if not. NOTE: Since the destination register R3 is fixed, it is not specified explicitly. Example: Given: IDH = 01, DM[0180h] = F0h, eid = 1 BMC BITS 80h.1 // TF ← 0 // R3 ← 0F2h, DM[0180h] = F0h BMS BITS 80h.2 // TF ← 1 // DM[0180h] ← F4h 7-37 INSTRUCTION SET S3CK318/FK318 BITT — Bit Test Format: BITT adr:8.bs bs: 3-digit bit specifier. Operation: Z ← ~((adr:8) & (2**bs)) BITT tests the specified bit of a value read from memory. Flags: Z: set if result is zero. Reset if not. Example: Given: DM[0080h] = F7h, eid = 0 BITT JR 80h.3 Z, %1 • • • %1 BITS NOP • • • 7-38 80h.3 // Z flag is set to '1' // Jump to label %1 because condition is true. S3CK318/FK318 INSTRUCTION SET BMC/BMS – TF bit clear/set Format: BMS/BMC Operation: BMC/BMS clears (sets) the TF bit. TF ← 0 if BMC TF ← 1 if BMS TF is a single bit flag which determines the destination of bit operations, such as BITC, BITR, and BITS. Flags: – NOTE: BMC/BMS are the only instructions that modify the content of the TF bit. Example: // TF ← 1 BMS BITS 81h.1 BMC BITR LD 81h.2 R0, R3 // TF ← 0 7-39 INSTRUCTION SET S3CK318/FK318 CALL — Conditional Subroutine Call (Pseudo Instruction) Format: CALL cc:4, imm:20 CALL imm:12 Operation: If CALLS can access the target address and there is no conditional code (cc:4), CALL command is assembled to CALLS (1-word instruction) in linking time, else the CALL is assembled to LCALL (2-word instruction). Example: CALL C, Wait // HS[sptr][15:0] ← current PC + 2, sptr ← sptr + 2 // 2-word instruction 0088h // HS[sptr][15:0] ← current PC + 1, sptr ← sptr + 2 // 1-word instruction • • • CALL • • • Wait: 7-40 NOP NOP NOP NOP NOP RET // Address at 0088h S3CK318/FK318 INSTRUCTION SET CALLS — Call Subroutine Format: CALLS imm:12 Operation: HS[sptr][15:0] ← current PC + 1, sptr ← sptr + 2 if the program size is less than 64K word. HS[sptr][19:0] ← current PC + 1, sptr ← sptr + 2 if the program size is equal to or over 64K word. PC[11:0] ← imm:12 CALLS unconditionally calls a subroutine residing at the address specified by imm:12. Flags: – Example: CALLS Wait • • • Wait: NOP NOP NOP RET Because this is a 1-word instruction, the saved returning address on stack is (PC + 1). 7-41 INSTRUCTION SET S3CK318/FK318 CLD — Load into Coprocessor Format: CLD imm:8, <op> <op>: GPR Operation: (imm:8) ← <op> CLD loads the value of <op> into (imm:8), where imm:8 is used to access the external coprocessor's address space. Flags: – Example: AH AL BH BL EQU EQU EQU EQU 00h 01h 02h 03h • • • CLD CLD AH, R0 AL, R1 // A[15:8] ← R0 // A[7:0] ← R1 CLD CLD BH, R2 BL, R3 // B[15:8] ← R2 // B[7:0] ← R3 The registers A[15:0] and B[15:0] are Arithmetic Unit (AU) registers of MAC816. Above instructions generate SYSCP[7:0], nCLDID and CLDWR signals to access MAC816. 7-42 S3CK318/FK318 INSTRUCTION SET CLD — Load from Coprocessor Format: CLD <op>, imm:8 <op>: GPR Operation: <op> ← (imm:8) CLD loads a value from the coprocessor, whose address is specified by imm:8. Flags: Z: set if the loaded value in <op1> is zero. Reset if not. N: set if the MSB of the loaded value in <op1> is 1. Reset if not. Example: AH AL BH BL EQU EQU EQU EQU 00h 01h 02h 03h • • • CLD CLD R0, AH R1, AL // R0 ← A[15:8] // R1 ← A[7:0] CLD CLD R2, BH R3, BL // R2 ← B[15:8] // R3 ← B[7:0] The registers A[15:0] and B[15:0] are Arithmetic Unit (AU) registers of MAC816. Above instructions generate SYSCP[7:0], nCLDID and CLDWR signals to access MAC816. 7-43 INSTRUCTION SET S3CK318/FK318 COM — 1's or Bit-wise Complement Format: COM <op> <op>: GPR Operation: <op> ← ~<op> COM takes the bit-wise complement operation on <op> and stores the result in <op>. Flags: Z: set if result is zero. Reset if not. N: set if the MSB of result is 1. Reset if not. Example: Given: R1 = 5Ah COM 7-44 R1 // R1 ← A5h, N flag is set to '1' S3CK318/FK318 INSTRUCTION SET COM2 — 2's Complement Format: COM2 <op> <op>: GPR Operation: <op> ← ~<op> + 1 COM2 computes the 2's complement of <op> and stores the result in <op>. Flags: C: Z: V: N: set if carry is generated. Reset if not. set if result is zero. Reset if not. set if overflow is generated. Reset if not. set if result is negative. Example: Given: R0 = 00h, R1 = 5Ah COM2 R0 // R0 ← 00h, Z and C flags are set to '1'. COM2 R1 // R1 ← A6h, N flag is set to '1'. 7-45 INSTRUCTION SET S3CK318/FK318 COMC — Bit-wise Complement with Carry Format: COMC <op> <op>: GPR Operation: <op> ← ~<op> + C COMC takes the bit-wise complement of <op>, adds carry and stores the result in <op>. Flags: C: Z: V: N: set if carry is generated. Reset if not. set if result is zero. Reset if not. set if overflow is generated. Reset if not. set if result is negative. Reset if not. Example: If register pair R1:R0 is a 16-bit number, then the 2's complement of R1:R0 can be obtained by COM2 and COMC as following. COM2 COMC R0 R1 Note that Z flag do not exactly reflect result of 16-bit operation. For example, if 16-bit register pair R1: R0 has value of FF01h, then 2's complement of R1: R0 is made of 00FFh by COM2 and COMC. At this time, by instruction COMC, zero (Z) flag is set to '1' as if the result of 2's complement for 16bit number is zero. Therefore when programming 16-bit comparison, take care of the change of Z flag. 7-46 S3CK318/FK318 INSTRUCTION SET COP — Coprocessor Format: COP #imm:12 Operation: COP passes imm:12 to the coprocessor by generating SYSCP[11:0] and nCOPID signals. Flags: – Example: COP COP #0D01h #0234h // generate 1 word instruction code(FD01h) // generate 1 word instruction code(F234h) The above two instructions are equal to statement "ELD A, #1234h" for MAC816 operation. The microcode of MAC instruction "ELD A, #1234h" is "FD01F234", 2-word instruction. In this, code "F" indicates "COP" instruction. 7-47 INSTRUCTION SET S3CK318/FK318 CP — Compare Format: CP <op1>, <op2> <op1>: GPR <op2>: adr:8, #imm:8, GPR, @idm Operation: <op1> + ~<op2> + 1 CP compares the values of <op1> and <op2> by subtracting <op2> from <op1>. Contents of <op1> and <op2> are not changed. Flags: C: Z: V: N: set if carry is generated. Reset if not. set if result is zero (i.e., <op1> and <op2> are same). Reset if not. set if overflow is generated. Reset if not. set if result is negative. Reset if not. Example: Given: R0 = 73h, R1 = A5h, IDH:IDL0 = 0123h, DM[0123h] = A5, eid = 1 CP R0, 80h // C flag is set to '1' CP R0, #73h // Z and C flags are set to '1' CP R0, R1 // V flag is set to '1' CP CP CP CP R1, @ID0 R1, @[ID0 – 5] R2, @[ID0 + 7]! R2, @[ID0 – 2]! // Z and C flags are set to '1' In the last two instructions, the value of IDH:IDL0 is not changed. Refer to Table 7-5 for more detailed explanation about this addressing mode. idm = IDx+offset:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]! (IDx = ID0 or ID1) 7-48 S3CK318/FK318 INSTRUCTION SET CPC — Compare with Carry Format: CPC <op1>, <op2> <op1>: GPR <op2>: adr:8, GPR Operation: <op1> ← <op1> + ~<op2> + C CPC compares <op1> and <op2> by subtracting <op2> from <op1>. Unlike CP, however, CPC adds (C - 1) to the result. Contents of <op1> and <op2> are not changed. Flags: C: Z: V: N: set if carry is generated. Reset if not. set if result is zero. Reset if not. set if overflow is generated. Reset if not. set if result is negative. Reset if not. Example: If register pair R1:R0 and R3:R2 are 16-bit signed or unsigned numbers, then use CP and CPC to compare two 16-bit numbers as follows. CP CPC R0, R1 R2, R3 Because CPC considers C when comparing <op1> and <op2>, CP and CPC can be used in pair to compare 16-bit operands. But note that zero (Z) flag do not exactly reflect result of 16-bit operation. Therefore when programming 16-bit comparison, take care of the change of Z flag. 7-49 INSTRUCTION SET S3CK318/FK318 DEC — Decrement Format: DEC <op> <op>: GPR Operation: <op> ← <op> + 0FFh DEC decrease the value in <op> by adding 0FFh to <op>. Flags: C: Z: V: N: Example: Given: R0 = 80h, R1 = 00h 7-50 set if carry is generated. Reset if not. set if result is zero. Reset if not. set if overflow is generated. Reset if not. set if result is negative. Reset if not. DEC R0 // R0 ← 7Fh, C, V and N flags are set to '1' DEC R1 // R1 ← FFh, N flags is set to '1' S3CK318/FK318 INSTRUCTION SET DECC — Decrement with Carry Format: DECC <op> <op>: GPR Operation: <op> ← <op> + 0FFh + C DECC decrease the value in <op> when carry is not set. When there is a carry, there is no change in the value of <op>. Flags: C: Z: V: N: set if carry is generated. Reset if not. set if result is zero. Reset if not. set if overflow is generated. Reset if not. set if result is negative. Reset if not. Example: If register pair R1:R0 is 16-bit signed or unsigned number, then use DEC and DECC to decrement 16-bit number as follows. DEC DECC R0 R1 Note that zero (Z) flag do not exactly reflect result of 16-bit operation. Therefore when programming 16-bit decrement, take care of the change of Z flag. 7-51 INSTRUCTION SET S3CK318/FK318 DI — Disable Interrupt (Pseudo Instruction) Format: DI Operation: Disables interrupt globally. It is same as "AND SR0, #0FDh" . DI instruction sets bit1 (ie: global interrupt enable) of SR0 register to '0' Flags: – Example: Given: SR0 = 03h DI // SR0 ← SR0 & 11111101b DI instruction clears SR0[1] to '0', disabling interrupt processing. 7-52 S3CK318/FK318 INSTRUCTION SET EI — Enable Interrupt (Pseudo Instruction) Format: EI Operation: Enables interrupt globally. It is same as "OR SR0, #02h" . EI instruction sets the bit1 (ie: global interrupt enable) of SR0 register to '1' Flags: – Example: Given: SR0 = 01h EI // SR0 ← SR0 | 00000010b The statement "EI" sets the SR0[1] to '1', enabling all interrupts. 7-53 INSTRUCTION SET S3CK318/FK318 IDLE — Idle Operation (Pseudo Instruction) Format: IDLE Operation: The IDLE instruction stops the CPU clock while allowing system clock oscillation to continue. Idle mode can be released by an interrupt or reset operation. The IDLE instruction is a pseudo instruction. It is assembled as "SYS #05H", and this generates the SYSCP[7-0] signals. Then these signals are decoded and the decoded signals execute the idle operation. Flags: – NOTE: The next instruction of IDLE instruction is executed, so please use the NOP instruction after the IDLE instruction. Example: IDLE NOP NOP NOP • • • The IDLE instruction stops the CPU clock but not the system clock. 7-54 S3CK318/FK318 INSTRUCTION SET INC — Increment Format: INC <op> <op>: GPR Operation: <op> ← <op> + 1 INC increase the value in <op>. Flags: C: Z: V: N: set if carry is generated. Reset if not. set if result is zero. Reset if not. set if overflow is generated. Reset if not. set if result is negative. Reset if not. Example: Given: R0 = 7Fh, R1 = FFh INC R0 // R0 ← 80h, V flag is set to '1' INC R1 // R1 ← 00h, Z and C flags are set to '1' 7-55 INSTRUCTION SET S3CK318/FK318 INCC — Increment with Carry Format: INCC <op> <op>: GPR Operation: <op> ← <op> + C INCC increase the value of <op> only if there is carry. When there is no carry, the value of <op> is not changed. Flags: C: Z: V: N: set if carry is generated. Reset if not. set if result is zero. Reset if not. set if overflow is generated. Reset if not. exclusive OR of V and MSB of result. Example: If register pair R1:R0 is 16-bit signed or unsigned number, then use INC and INCC to increment 16-bit number as following. INC INCC R0 R1 Assume R1:R0 is 0010h, statement "INC R0" increase R0 by one without carry and statement "INCC R1" set zero (Z) flag to '1' as if the result of 16-bit increment is zero. Note that zero (Z) flag do not exactly reflect result of 16-bit operation. Therefore when programming 16-bit increment, take care of the change of Z flag. 7-56 S3CK318/FK318 INSTRUCTION SET IRET — Return from Interrupt Handling Format: IRET Operation: PC ← HS[sptr - 2], sptr ← sptr - 2 IRET pops the return address (after interrupt handling) from the hardware stack and assigns it to PC. The ie (i.e., SR0[1]) bit is set to allow further interrupt generation. Flags: – NOTE: The program size (indicated by the nP64KW signal) determines which portion of PC is updated. When the program size is less than 64K word, only the lower 16 bits of PC are updated (i.e., PC[15:0] ← HS[sptr – 2]). When the program size is 64K word or more, the action taken is PC[19:0] ← HS[sptr - 2]. Example: SF_EXCEP: NOP // Stack full exception service routine • • • IRET 7-57 INSTRUCTION SET S3CK318/FK318 JNZD — Jump Not Zero with Delay slot Format: JNZD <op>, imm:8 <op>: GPR (bank 3's GPR only) imm:8 is an signed number Operation: PC ← PC[delay slot] - 2's complement of imm:8 <op> ← <op> - 1 JNZD performs a backward PC-relative jump if <op> evaluates to be non-zero. Furthermore, JNZD decrease the value of <op>. The instruction immediately following JNZD (i.e., in delay slot) is always executed, and this instruction must be 1 cycle instruction. Flags: – NOTE: Typically, the delay slot will be filled with an instruction from the loop body. It is noted, however, that the chosen instruction should be "dead" outside the loop for it executes even when the loop is exited (i.e., JNZD is not taken). Example: Given: IDH = 03h, eid = 1 %1 BANK LD LD LD JNZD LD #3 R0, #0FFh R1, #0 IDL0, R0 R0, %B1 @ID0, R1 // R0 is used to loop counter // If R0 of bank3 is not zero, jump to %1. // Clear register pointed by ID0 • • • This example can be used for RAM clear routine. The last instruction is executed even if the loop is exited. 7-58 S3CK318/FK318 INSTRUCTION SET JP — Conditional Jump (Pseudo Instruction) Format: JP cc:4 imm:20 JP cc:4 imm:9 Operation: If JR can access the target address, JP command is assembled to JR (1 word instruction) in linking time, else the JP is assembled to LJP (2 word instruction) instruction. There are 16 different conditions that can be used, as described in table 7-6. Example: %1 LD R0, #10h // Assume address of label %1 is 020Dh JP Z, %B1 // Address at 0264h JP C, %F2 // Address at 0265h R1, #20h // Assume address of label %2 is 089Ch • • • • • • %2 LD • • • In the above example, the statement "JP Z, %B1" is assembled to JR instruction. Assuming that current PC is 0264h and condition is true, next PC is made by PC[11:0] ← PC[11:0] + offset, offset value is "64h + A9h" without carry. "A9" means 2's complement of offset value to jump backward. Therefore next PC is 020Dh. On the other hand, statement "JP C, %F2" is assembled to LJP instruction because offset address exceeds the range of imm:9. 7-59 INSTRUCTION SET S3CK318/FK318 JR — Conditional Jump Relative Format: JR cc:4 imm:9 cc:4: 4-bit condition code Operation: PC[11:0] ← PC[11:0] + imm:9 if condition is true. imm:9 is a signed number, which is signextended to 12 bits when added to PC. There are 16 different conditions that can be used, as described in table 7-6. Flags: – NOTE: Unlike LJP, the target address of JR is PC-relative. In the case of JR, imm:9 is added to PC to compute the actual jump address, while LJP directly jumps to imm:20, the target. Example: JR Z, %1 // Assume current PC = 1000h R0, R1 // Address at 10A5h • • • %1 LD • • • After the first instruction is executed, next PC has become 10A5h if Z flag bit is set to '1'. The range of the relative address is from +255 to –256 because imm:9 is signed number. 7-60 S3CK318/FK318 INSTRUCTION SET LCALL — Conditional Subroutine Call Format: LCALL cc:4, imm:20 Operation: HS[sptr][15:0] ← current PC + 2, sptr ← sptr + 2, PC[15:0] ← imm[15:0] if the condition holds and the program size is less than 64K word. HS[sptr][19:0] ← current PC + 2, sptr ← sptr + 2, PC[19:0] ← imm:20 if the condition holds and the program size is equal to or over 64K word. PC[11:0] ← PC[11:0] + 2 otherwise. LCALL instruction is used to call a subroutine whose starting address is specified by imm:20. Flags: – Example: LCALL L1 LCALL C, L2 Label L1 and L2 can be allocated to the same or other section. Because this is a 2-word instruction, the saved returning address on stack is (PC + 2). 7-61 INSTRUCTION SET S3CK318/FK318 LD adr:8 — Load into Memory Format: LD adr:8, <op> <op>: GPR Operation: DM[00h:adr:8] ← <op> if eid = 0 DM[IDH:adr:8] ← <op> if eid = 1 LD adr:8 loads the value of <op> into a memory location. The memory location is determined by the eid bit and adr:8. Flags: – Example: Given: IDH = 01h LD 80h, R0 If eid bit of SR0 is zero, the statement "LD 80h, R0" load value of R0 into DM[0080h], else eid bit was set to '1', the statement "LD 80h, R0" load value of R0 into DM[0180h] 7-62 S3CK318/FK318 INSTRUCTION SET LD @idm — Load into Memory Indexed Format: LD @idm, <op> <op>: GPR Operation: (@idm) ← <op> LD @idm loads the value of <op> into the memory location determined by @idm. Details of the @idm format and how the actual address is calculated can be found in chapter 2. Flags: – Example: Given R0 = 5Ah, IDH:IDL0 = 8023h, eid = 1 LD LD LD LD LD @ID0, R0 @ID0 + 3, R0 @[ID0-5], R0 @[ID0+4]!, R0 @[ID0-2]!, R0 // // // // // DM[8023h] ← 5Ah DM[8023h] ← 5Ah, IDL0 ← 26h DM[801Eh] ← 5Ah, IDL0 ← 1Eh DM[8027h] ← 5Ah, IDL0 ← 23h DM[8021h] ← 5Ah, IDL0 ← 23h In the last two instructions, the value of IDH:IDL0 is not changed. Refer to Table 7-5 for more detailed explanation about this addressing mode. idm = IDx+offset:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]! (IDx = ID0 or ID1) 7-63 INSTRUCTION SET S3CK318/FK318 LD — Load Register Format: LD <op1>, <op2> <op1>: GPR <op2>: GPR, SPR, adr:8, @idm, #imm:8 Operation: <op1> ← <op2> LD loads a value specified by <op2> into the register designated by <op1>. Flags: Z: set if result is zero. Reset if not. N: exclusive OR of V and MSB of result. Example: Given: R0 = 5Ah, R1 = AAh, IDH:IDL0 = 8023h, eid = 1 LD R0, R1 // R0 ← AAh LD R1, IDH // R1 ← 80h LD R2, 80h // R2 ← DM[8080h] LD R0, #11h // R0 ← 11h LD LD LD LD R0, @ID0+1 R1, @[ID0-2] R2, @[ID0+3]! R3, @[ID0-5]! // R0 // R1 // R2 // R3 ← DM[8023h], IDL0 ← 24h ← DM[8021h], IDL0 ← 21h ← DM[8026h], IDL0 ← 23h ← DM[801Eh], IDL0 ← 23h In the last two instructions, the value of IDH:IDL0 is not changed. Refer to Table 7-5 for more detailed explanation about this addressing mode. idm = IDx+offset:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]! (IDx = ID0 or ID1) 7-64 S3CK318/FK318 INSTRUCTION SET LD — Load GPR:bankd, GPR:banks Format: LD <op1>, <op2> <op1>: GPR: bankd <op2>: GPR: banks Operation: <op1> ← <op2> LD loads a value of a register in a specified bank (banks) into another register in a specified bank (bankd). Flags: Z: set if result is zero. Reset if not. N: exclusive OR of V and MSB of result. Example: LD R2:1, R0:3 // Bank1's R2 ← bank3's R0 LD R0:0, R0:2 // Bank0's R0 ← bank2's R0 7-65 INSTRUCTION SET S3CK318/FK318 LD — Load GPR, TBH/TBL Format: LD <op1>, <op2> <op1>: GPR <op2>: TBH/TBL Operation: <op1> ← <op2> LD loads a value specified by <op2> into the register designated by <op1>. Flags: Z: set if result is zero. Reset if not. N: exclusive OR of V and MSB of result. Example: Given: register pair R1:R0 is 16-bit unsigned data. LDC LD LD 7-66 @IL R1, TBH R0, TBL // TBH:TBL ← PM[ILX:ILH:ILL] // R1 ← TBH // R0 ← TBL S3CK318/FK318 INSTRUCTION SET LD — Load TBH/TBL, GPR Format: LD <op1>, <op2> <op1>: TBH/TBL <op2>: GPR Operation: <op1> ← <op2> LD loads a value specified by <op2> into the register designated by <op1>. Flags: – Example: Given: register pair R1:R0 is 16-bit unsigned data. LD LD TBH, R1 TBL, R0 // TBH ← R1 // TBL ← R0 7-67 INSTRUCTION SET S3CK318/FK318 LD SPR — Load SPR Format: LD <op1>, <op2> <op1>: SPR <op2>: GPR Operation: <op1> ← <op2> LD SPR loads the value of a GPR into an SPR. Refer to Table 3-1 for more detailed explanation about kind of SPR. Flags: – Example: Given: register pair R1:R0 = 1020h LD LD 7-68 ILH, R1 ILL, R0 // ILH ← 10h // ILL ← 20h S3CK318/FK318 INSTRUCTION SET LD SPR0 — Load SPR0 Immediate Format: LD SPR0, #imm:8 Operation: SPR0 ← imm:8 LD SPR0 loads an 7-bit immediate value into SPR0. Flags: – Example: Given: eid = 1, idb = 0 (index register bank 0 selection) LD LD LD LD IDH, #80h IDL1, #44h IDL0, #55h SR0, #02h // IDH point to page 80h The last instruction set ie (global interrupt enable) bit to '1'. Special register group 1 (SPR1) registers are not supported in this addressing mode. 7-69 INSTRUCTION SET S3CK318/FK318 LDC — Load Code Format: LDC <op1> <op1>: @IL, @IL+ Operation: TBH:TBL ← PM[ILX:ILH:ILL] ILL ← ILL + 1 (@IL+ only) LDC loads a data item from program memory and stores it in the TBH:TBL register pair. @IL+ increase the value of ILL, efficiently implementing table lookup operations. Flags: – Example: LD LD LD LDC ILX, R1 ILH, R2 ILL, R3 @IL LD LD R1, TBH R0, TBL // Loads value of PM[ILX:ILH:ILL] into TBH:TBL // Move data in TBH:TBL to GPRs for further processing The statement "LDC @IL" do not increase, but if you use statement "LDC @IL+", ILL register is increased by one after instruction execution. 7-70 S3CK318/FK318 INSTRUCTION SET LJP — Conditional Jump Format: LJP cc:4, imm:20 cc:4: 4-bit condition code Operation: PC[15:0] ← imm[15:0] if condition is true and the program size is less than 64K word. If the program is equal to or larger than 64K word, PC[19:0] ← imm[19:0] as long as the condition is true. There are 16 different conditions that can be used, as described in table 7-6. Flags: – NOTE: LJP cc:4 imm:20 is a 2-word instruction whose immediate field directly specifies the target address of the jump. Example: LJP C, %1 // Assume current PC = 0812h R0, R1 // Address at 10A5h • • • %1 LD • • • After the first instruction is executed, LJP directly jumps to address 10A5h if condition is true. 7-71 INSTRUCTION SET S3CK318/FK318 LLNK — Linked Subroutine Call Conditional Format: LLNK cc:4, imm:20 cc:4: 4-bit condition code Operation: If condition is true, IL[19:0] ← {PC[19:12], PC[11:0] + 2}. Further, when the program is equal to or larger than 64K word, PC[19:0] ← imm[19:0] as long as the condition is true. If the program is smaller than 64K word, PC[15:0] ← imm[15:0]. There are 16 different conditions that can be used, as described in table 7-6. Flags: – NOTE: LLNK is used to conditionally to call a subroutine with the return address saved in the link register (IL) without stack operation. This is a 2-word instruction. Example: LLNK NOP Z, %1 • • • %1 LD • • • LRET 7-72 R0, R1 // Address at 005Ch, ILX:ILH:ILL ← 00:00:5Eh // Address at 005Eh S3CK318/FK318 INSTRUCTION SET LNK — Linked Subroutine Call (Pseudo Instruction) Format: LNK cc:4, imm:20 LNK imm:12 Operation: If LNKS can access the target address and there is no conditional code (cc:4), LNK command is assembled to LNKS (1 word instruction) in linking time, else the LNK is assembled to LLNK (2 word instruction). Example: LNK LNK NOP Z, Link1 Link2 // Equal to "LLNK Z, Link1" // Equal to "LNKS Link2" • • • Link2: NOP • • • LRET Subroutines section CODE, ABS 0A00h Subroutines Link1: NOP • • • LRET 7-73 INSTRUCTION SET S3CK318/FK318 LNKS — Linked Subroutine Call Format: LNKS imm:12 Operation: IL[19:0] ← {PC[19:12], PC[11:0] + 1} and PC[11:0] ← imm:12 LNKS saves the current PC in the link register and jumps to the address specified by imm:12. Flags: – NOTE: LNKS is used to call a subroutine with the return address saved in the link register (IL) without stack operation. Example: LNKS NOP • • • Link1: NOP • • • LRET 7-74 Link1 // Address at 005Ch, ILX:ILH:ILL ← 00:00:5Dh // Address at 005Dh S3CK318/FK318 INSTRUCTION SET LRET — Return from Linked Subroutine Call Format: LRET Operation: PC ← IL[19:0] LRET returns from a subroutine by assigning the saved return address in IL to PC. Flags: – Example: Link1: LNK NOP • • • LRET Link1 ; PC[19:0] ← ILX:ILH:ILL 7-75 INSTRUCTION SET S3CK318/FK318 NOP — No Operation Format: NOP Operation: No operation. When the instruction NOP is executed in a program, no operation occurs. Instead, the instruction time is delayed by approximately one machine cycle per each NOP instruction encountered. Flags: – Example: NOP 7-76 S3CK318/FK318 INSTRUCTION SET OR — Bit-wise OR Format: OR <op1>, <op2> <op1>: GPR <op2>: adr:8, #imm:8, GPR, @idm Operation: <op1> ← <op1> | <op2> OR performs the bit-wise OR operation on <op1> and <op2> and stores the result in <op1>. Flags: Z: set if result is zero. Reset if not. N: exclusive OR of V and MSB of result. Example: Given: IDH:IDL0 = 031Eh, eid = 1 OR R0, 80h // R0 ← R0 | DM[0380h] OR R1, #40h // Mask bit6 of R1 OR R1, R0 // R1 ← R1 | R0 OR OR OR OR R0, @ID0 R1, @[ID0-1] R2, @[ID0+1]! R3, @[ID0-1]! // R0 // R1 // R2 // R3 ← ← ← ← R0 | DM[031Eh], IDL0 ← 1Eh R1 | DM[031Dh], IDL0 ← 1Dh R2 | DM[031Fh], IDL0 ← 1Eh R3 | DM[031Dh], IDL0 ← 1Eh In the last two instructions, the value of IDH:IDL0 is not changed. Refer to Table 7-5 for more detailed explanation about this addressing mode. idm = IDx+offset:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]! (IDx = ID0 or ID1) 7-77 INSTRUCTION SET S3CK318/FK318 OR SR0 — Bit-wise OR with SR0 Format: OR SR0, #imm:8 Operation: SR0 ← SR0 | imm:8 OR SR0 performs the bit-wise OR operation on SR0 and imm:8 and stores the result in SR0. Flags: – Example: Given: SR0 = 00000000b EID IE IDB1 IE0 IE1 EQU EQU EQU EQU EQU 01h 02h 04h 40h 80h OR SR0, #IE | IE0 | IE1 OR SR0, #00000010b In the first example, the statement "OR SR0, #EID|IE|IE0" set global interrupt(ie), interrupt 0(ie0) and interrupt 1(ie1) to '1' in SR0. On the contrary, enabled bits can be cleared with instruction "AND SR0, #imm:8". Refer to instruction AND SR0 for more detailed explanation about disabling bit. In the second example, the statement "OR SR0, #00000010b" is equal to instruction EI, which is enabling interrupt globally. 7-78 S3CK318/FK318 INSTRUCTION SET POP — POP Format: POP Operation: sptr ← sptr – 2 POP decrease sptr by 2. The top two bytes of the hardware stack are therefore invalidated. Flags: – Example: Given: sptr[5:0] = 001010b POP This POP instruction decrease sptr[5:0] by 2. Therefore sptr[5:0] is 001000b. 7-79 INSTRUCTION SET S3CK318/FK318 POP — POP to Register Format: POP <op> <op>: GPR, SPR Operation: <op> ← HS[sptr - 1], sptr ← sptr - 1 POP copies the value on top of the stack to <op> and decrease sptr by 1. Flags: Z: set if the value copied to <op> is zero. Reset if not. N: set if the value copied to <op> is negative. Reset if not. When <op> is SPR, no flags are affected, including Z and N. Example: POP R0 // R0 ← HS[sptr-1], sptr ← sptr-1 POP IDH // IDH ← HS[sptr-1], sptr ← sptr-1 In the first instruction, value of HS[sptr-1] is loaded to R0 and the second instruction "POP IDH" load value of HS[sptr-1] to register IDH. Refer to chapter 5 for more detailed explanation about POP operations for hardware stack. 7-80 S3CK318/FK318 INSTRUCTION SET PUSH — Push Register Format: PUSH <op> <op>: GPR, SPR Operation: HS[sptr] ← <op>, sptr ← sptr + 1 PUSH stores the value of <op> on top of the stack and increase sptr by 1. Flags: – Example: PUSH R0 // HS[sptr] ← R0, sptr ← sptr + 1 PUSH IDH // HS[sptr] ← IDH, sptr ← sptr + 1 In the first instruction, value of register R0 is loaded to HS[sptr-1] and the second instruction "PUSH IDH" load value of register IDH to HS[sptr-1]. Current HS pointed by stack point sptr[5:0] be emptied. Refer to chapter 5 for more detailed explanation about PUSH operations for hardware stack. 7-81 INSTRUCTION SET S3CK318/FK318 RET — Return from Subroutine Format: RET Operation: PC ← HS[sptr - 2], sptr ← sptr – 2 RET pops an address on the hardware stack into PC so that control returns to the subroutine call site. Flags: – Example: Given: sptr[5:0] = 001010b CALLS Wait // Address at 00120h • • • Wait: NOP NOP NOP NOP NOP RET // Address at 01000h After the first instruction CALLS execution, "PC+1", 0121h is loaded to HS[5] and hardware stack pointer sptr[5:0] have 001100b and next PC became 01000h. The instruction RET pops value 0121h on the hardware stack HS[sptr-2] and load to PC then stack pointer sptr[[5:0] became 001010b. 7-82 S3CK318/FK318 INSTRUCTION SET RL — Rotate Left Format: RL <op> <op>: GPR Operation: C ← <op>[7], <op> ← {<op>[6:0], <op>[7]} RL rotates the value of <op> to the left and stores the result back into <op>. The original MSB of <op> is copied into carry (C). Flags: C: set if the MSB of <op> (before rotating) is 1. Reset if not. Z: set if result is zero. Reset if not. N: set if the MSB of <op> (after rotating) is 1. Reset if not. Example: Given: R0 = 01001010b, R1 = 10100101b RL R0 // N flag is set to '1', R0 ← 10010100b RL R1 // C flag is set to '1', R1 ← 01001011b 7-83 INSTRUCTION SET S3CK318/FK318 RLC — Rotate Left with Carry Format: RLC <op> <op>: GPR Operation: C ← <op>[7], <op> ← {<op>[6:0], C} RLC rotates the value of <op> to the left and stores the result back into <op>. The original MSB of <op> is copied into carry (C), and the original C bit is copied into <op>[0]. Flags: C: set if the MSB of <op> (before rotating) is 1. Reset if not. Z: set if result is zero. Reset if not. N: set if the MSB of <op> (after rotating) is 1. Reset if not. Example: Given: R2 = A5h, if C = 0 RLC R2 RL RLC R0 R1 // R2 ← 4Ah, C flag is set to '1' In the second example, assuming that register pair R1:R0 is 16-bit number, then RL and RLC are used for 16-bit rotate left operation. But note that zero (Z) flag do not exactly reflect result of 16-bit operation. Therefore when programming 16-bit decrement, take care of the change of Z flag. 7-84 S3CK318/FK318 INSTRUCTION SET RR — Rotate Right Format: RR <op> <op>: GPR Operation: C ← <op>[0], <op> ← {<op>[0], <op>[7:1]} RR rotates the value of <op> to the right and stores the result back into <op>. The original LSB of <op> is copied into carry (C). Flags: C: set if the LSB of <op> (before rotating) is 1. Reset if not. Z: set if result is zero. Reset if not. N: set if the MSB of <op> (after rotating) is 1. Reset if not. Example: Given: R0 = 01011010b, R1 = 10100101b RR R0 // No change of flag, R0 ← 00101101b RR R1 // C and N flags are set to '1', R1 ← 11010010b 7-85 INSTRUCTION SET S3CK318/FK318 RRC — Rotate Right with Carry Format: RRC <op> <op>: GPR Operation: C ← <op>[0], <op> ← {C, <op>[7:1]} RRC rotates the value of <op> to the right and stores the result back into <op>. The original LSB of <op> is copied into carry (C), and C is copied to the MSB. Flags: C: set if the LSB of <op> (before rotating) is 1. Reset if not. Z: set if result is zero. Reset if not. N: set if the MSB of <op> (after rotating) is 1. Reset if not. Example: Given: R2 = A5h, if C = 0 RRC R2 RR RRC R0 R1 // R2 ← 52h, C flag is set to '1' In the second example, assuming that register pair R1:R0 is 16-bit number, then RR and RRC are used for 16-bit rotate right operation. But note that zero (Z) flag do not exactly reflect result of 16-bit operation. Therefore when programming 16-bit decrement, take care of the change of Z flag. 7-86 S3CK318/FK318 INSTRUCTION SET SBC — Subtract with Carry Format: SBC <op1>, <op2> <op1>: GPR <op2>: adr:8, GPR Operation: <op1> ← <op1> + ~<op2> + C SBC computes (<op1> - <op2>) when there is carry and (<op1> - <op2> - 1) when there is no carry. Flags: C: Z: V: N: set if carry is generated. Reset if not. set if result is zero. Reset if not. set if overflow is generated. set if result is negative. Reset if not. Example: SBC R0, 80h // If eid = 0, R0 ← R0 + ~DM[0080h] + C // If eid = 1, R0 ← R0 + ~DM[IDH:80h] + C SBC R0, R1 // R0 ← R0 + ~R1 + C SUB SBC R0, R2 R1, R3 In the last two instructions, assuming that register pair R1:R0 and R3:R2 are 16-bit signed or unsigned numbers. Even if the result of "ADD R0, R2" is not zero, zero (Z) flag can be set to '1' if the result of "SBC R1,R3" is zero. Note that zero (Z) flag do not exactly reflect result of 16-bit operation. Therefore when programming 16-bit addition, take care of the change of Z flag. 7-87 INSTRUCTION SET S3CK318/FK318 SL — Shift Left Format: SL <op> <op>: GPR Operation: C ← <op>[7], <op> ← {<op>[6:0], 0} SL shifts <op> to the left by 1 bit. The MSB of the original <op> is copied into carry (C). Flags: C: set if the MSB of <op> (before shifting) is 1. Reset if not. Z: set if result is zero. Reset if not. N: set if the MSB of <op> (after shifting) is 1. Reset if not. Example: Given: R0 = 01001010b, R1 = 10100101b 7-88 SL R0 // N flag is set to '1', R0 ← 10010100b SL R1 // C flag is set to '1', R1 ← 01001010b S3CK318/FK318 INSTRUCTION SET SLA — Shift Left Arithmetic Format: SLA <op> <op>: GPR Operation: C ← <op>[7], <op> ← {<op>[6:0], 0} SLA shifts <op> to the left by 1 bit. The MSB of the original <op> is copied into carry (C). Flags: C: Z: V: N: set if the MSB of <op> (before shifting) is 1. Reset if not. set if result is zero. Reset if not. set if the MSB of the result is different from C. Reset if not. set if the MSB of <op> (after shifting) is 1. Reset if not. Example: Given: R0 = AAh SLA R0 // C, V, N flags are set to '1', R0 ← 54h 7-89 INSTRUCTION SET S3CK318/FK318 SR — Shift Right Format: SR <op> <op>: GPR Operation: C ← <op>[0], <op> ← {0, <op>[7:1]} SR shifts <op> to the right by 1 bit. The LSB of the original <op> (i.e., <op>[0]) is copied into carry (C). Flags: C: set if the LSB of <op> (before shifting) is 1. Reset if not. Z: set if result is zero. Reset if not. N: set if the MSB of <op> (after shifting) is 1. Reset if not. Example: Given: R0 = 01011010b, R1 = 10100101b 7-90 SR R0 // No change of flags, R0 ← 00101101b SR R1 // C flag is set to '1', R1 ← 01010010b S3CK318/FK318 INSTRUCTION SET SRA — Shift Right Arithmetic Format: SRA <op> <op>: GPR Operation: C ← <op>[0], <op> ← {<op>[7], <op>[7:1]} SRA shifts <op> to the right by 1 bit while keeping the sign of <op>. The LSB of the original <op> (i.e., <op>[0]) is copied into carry (C). Flags: C: set if the LSB of <op> (before shifting) is 1. Reset if not. Z: set if result is zero. Reset if not. N: set if the MSB of <op> (after shifting) is 1. Reset if not. NOTE: SRA keeps the sign bit or the MSB (<op>[7]) in its original position. If SRA is executed 'N' times, N significant bits will be set, followed by the shifted bits. Example: Given: R0 = 10100101b SRA SRA SRA SRA R0 R0 R0 R0 // C, N flags are set to '1', R0 ← 11010010b // N flag is set to '1', R0 ← 11101001b // C, N flags are set to '1', R0 ← 11110100b // N flags are set to '1', R0 ← 11111010b 7-91 INSTRUCTION SET S3CK318/FK318 STOP — Stop Operation (pseudo instruction) Format: STOP Operation: The STOP instruction stops the both the CPU clock and system clock and causes the microcontroller to enter the STOP mode. In the STOP mode, the contents of the on-chip CPU registers, peripheral registers, and I/O port control and data register are retained. A reset operation or external or internal interrupts can release stop mode. The STOP instruction is a pseudo instruction. It is assembled as "SYS #0Ah", which generates the SYSCP[7-0] signals. These signals are decoded and stop the operation. NOTE: The next instruction of STOP instruction is executed, so please use the NOP instruction after the STOP instruction. Example: STOP NOP NOP NOP • • • In this example, the NOP instructions provide the necessary timing delay for oscillation stabilization before the next instruction in the program sequence is executed. Refer to the timing diagrams of oscillation stabilization, as described in Figure 21-4, 21-5. 7-92 S3CK318/FK318 INSTRUCTION SET SUB — Subtract Format: SUB <op1>, <op2> <op1>: GPR <op2>: adr:8, #imm:8, GPR, @idm Operation: <op1> ← <op1> + ~<op2> + 1 SUB adds the value of <op1> with the 2's complement of <op2> to perform subtraction on <op1> and <op2> Flags: C: Z: V: N: set if carry is generated. Reset if not. set if result is zero. Reset if not. set if overflow is generated. Reset if not. set if result is negative. Reset if not. Example: Given: IDH:IDL0 = 0150h, DM[0143h] = 26h, R0 = 52h, R1 = 14h, eid = 1 SUB R0, 43h // R0 ← R0 + ~DM[0143h] + 1 = 2Ch SUB R1, #16h // R1 ← FEh, N flag is set to '1' SUB R0, R1 // R0 ← R0 + ~R1 + 1 = 3Eh SUB SUB SUB SUB R0, @ID0+1 R0, @[ID0-2] R0, @[ID0+3]! R0, @[ID0-2]! // R0 // R0 // R0 // R0 ← ← ← ← R0 + ~DM[0150h] + 1, IDL0 ← 51h R0 + ~DM[014Eh] + 1, IDL0 ← 4Eh R0 + ~DM[0153h] + 1, IDL0 ← 50h R0 + ~DM[014Eh] + 1, IDL0 ← 50h In the last two instructions, the value of IDH:IDL0 is not changed. Refer to Table 7-5 for more detailed explanation about this addressing mode. The example in the SBC description shows how SUB and SBC can be used in pair to subtract a 16-bit number from another. idm = IDx+offset:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]! (IDx = ID0 or ID1) 7-93 INSTRUCTION SET S3CK318/FK318 SWAP — Swap Format: SWAP <op1>, <op2> <op1>: GPR <op2>: SPR Operation: <op1> ← <op2>, <op2> ← <op1> SWAP swaps the values of the two operands. Flags: – NOTE: Among the SPRs, SR0 and SR1 can not be used as <op2>. Example: Given: IDH:IDL0 = 8023h, R0 = 56h, R1 = 01h SWAP SWAP R1, IDH R0, IDL0 // R1 ← 80h, IDH ← 01h // R0 ← 23h, IDL0 ← 56h After execution of instructions, index registers IDH:IDL0 (ID0) have address 0156h. 7-94 S3CK318/FK318 INSTRUCTION SET SYS — System Format: SYS #imm:8 Operation: SYS generates SYSCP[7:0] and nSYSID signals. Flags: – NOTE: Mainly used for system peripheral interfacing. Example: SYS #0Ah SYS #05h In the first example, statement "SYS #0Ah" is equal to STOP instruction and second example "SYS #05h" is equal to IDLE instruction. This instruction does nothing but increase PC by one and generates SYSCP[7:0] and nSYSID signals. 7-95 INSTRUCTION SET S3CK318/FK318 TM — Test Multiple Bits Format: TM <op>, #imm:8 <op>: GPR Operation: TM performs the bit-wise AND operation on <op> and imm:8 and sets the flags. The content of <op> is not changed. Flags: Z: set if result is zero. Reset if not. N: set if result is negative. Reset if not. Example: Given: R0 = 01001101b TM 7-96 R0, #00100010b // Z flag is set to '1' S3CK318/FK318 INSTRUCTION SET XOR — Exclusive OR Format: XOR <op1>, <op2> <op1>: GPR <op2>: adr:8, #imm:8, GPR, @idm Operation: <op1> ← <op1> ^ <op2> XOR performs the bit-wise exclusive-OR operation on <op1> and <op2> and stores the result in <op1>. Flags: Z: set if result is zero. Reset if not. N: set if result is negative. Reset if not. Example: Given: IDH:IDL0 = 8080h, DM[8043h] = 26h, R0 = 52h, R1 = 14h, eid = 1 XOR R0, 43h // R0 ← 74h XOR R1, #00101100b // R1 ← 38h XOR R0, R1 // R0 ← 46h XOR XOR XOR XOR R0, @ID0 R0, @[ID0-2] R0, @[ID0+3]! R0, @[ID0-5]! // R0 ← // R0 ← // R0 ← // R0 ← R0 ^ DM[8080h], IDL0 ← 81h R0 ^ DM[807Eh], IDL0 ← 7Eh R0 ^ DM[8083h], IDL0 ← 80h R0 ^ DM[807Bh], IDL0 ← 80h In the last two instructions, the value of IDH:IDL0 is not changed. Refer to Table 7-5 for more detailed explanation about this addressing mode. idm = IDx+offset:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]! (IDx = ID0 or ID1) 7-97 INSTRUCTION SET S3CK318/FK318 NOTES 7-98 S3CK318/FK318 8 CLOCK CIRCUIT CLOCK CIRCUIT SYSTEM CLOCK CIRCUIT The system clock circuit has the following components: — External crystal, ceramic resonator, or RC oscillation source (or an external clock source) — Oscillator stop and wake-up functions — Programmable frequency divider for the CPU clock (fOSC divided by 1, 2, 4, 8, 16, 32, 64, 128) — System clock control register, PCON — Oscillator control register, OSCCON C1 XIN S3CK318 C2 XOUT Figure 8-1. Main Oscillator Circuit (Crystal or Ceramic Oscillator) XIN S3CK318 XOUT Figure 8-2. Main Oscillator Circuit (RC Oscillator) 8-1 CLOCK CIRCUIT S3CK318/FK318 C1 XT IN S3CK318 C2 XT OUT Figure 8-3. Sub Oscillator Circuit (Crystal or Ceramic Oscillator) 8-2 S3CK318/FK318 INT CLOCK CIRCUIT Stop Release Stop Release Main-System Oscillator Circuit fx Sub-System Oscillator Circuit fxt INT Watch Timer LCD Controller Frequency Counter Selector 1 Stop fxx OSCCON.3 Stop OSCCON.0 OSCCON.2 1/1 - 1/4096 Frequency Dividing Circuit 1/1 PCON.2 - .0 1/2 1/4 1/8 1/16 1/32 1/64 1/128 Basic Timer, Timer/Counter 0,1 Watch Timer LCD Controller BLD SIO A/D Converter D/A Converter Frequency Counter Selector 2 CPU SYS #05H SYS #0AH Idle Stop Oscillator Control Circuit CPU Stop Signal by Idle or Stop Figure 8-4. System Clock Circuit Diagram 8-3 CLOCK CIRCUIT S3CK318/FK318 Power Control Register (PCON) 02H, R/W, Reset: 04H .7 MSB .6 .5 .4 .3 Not used .2 .1 .0 LSB System clock selection bits: 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 fxx/128 fxx/64 fxx/32 fxx/16 fxx/8 fxx/4 fxx/2 fxx/1 Figure 8-5. Power Control Register (PCON) Oscillator Control Register (OSCCON) 03H, R/W, Reset: 00H MSB .7 .6 .5 .4 .3 .2 .1 .0 LSB System clock source selection bit: 0 Main oscillator select 1 Sub oscillator select Not used Not used Sub oscillator control bit: 0 1 Sub oscillator RUN Sub oscillator STOP Main oscillator control bit: 0 1 Main oscillator RUN Main oscillator STOP Figure 8-6. Oscillator Control Register (OSCCON) 8-4 S3CK318/FK318 9 RESET AND POWER-DOWN RESET AND POWER-DOWN OVERVIEW During a power-on reset, the voltage at VDD goes to High level and the nRESET pin is forced to Low level. The nRESET signal is input through a Schmitt trigger circuit where it is then synchronized with the CPU clock. This procedure brings MCU into a known operating status. For the time for CPU clock oscillation to stabilize, the nRESET pin must be held to low level for a minimum time interval after the power supply comes within tolerance. For the minimum time interval, see the electrical characteristics. In summary, the following sequence of events occurs during a reset operation: — All interrupts are disabled. — The watchdog function (basic timer) is enabled. — Ports are set to input mode. — Peripheral control and data registers are disabled and reset to their default hardware values. — The program counter (PC) is loaded with the program reset address in the ROM, 00000H. — When the programmed oscillation stabilization time interval has elapsed, the instruction stored in ROM location 00000H is fetched and executed. NOTE To program the duration of the oscillation stabilization interval, make the appropriate settings to the watchdog timer control register, WDTCON, before entering STOP mode. 9-1 RESET AND POWER-DOWN S3CK318/FK318 NOTES 9-2 S3CK318/FK318 10 I/O PORT I/O PORTS PORT 0 Port 0 Pull-up Control Register (P0PUR) 20H, R/W, Reset: 00H MSB .7 .6 .5 .4 .3 .2 .1 .0 LSB P0.0/AMF Not used P0.1/FMF P0 pull-up resistor settings: 0 1 Enable pull-up resistor Disable pull-up resistor Figure 10-1. Port 0 Pull-up Control Register (P0PUR) 10-1 I/O PORT S3CK318/FK318 PORT 1 Port 1 Control Register (P1CON) 24H, R/W, Reset: 00H MSB .7 .6 .5 P1.3/ INT3/ BUZ .4 .3 P1.2/ INT2/ T0CAP .2 .1 P1.1/ INT1/ T0CLK .0 LSB P1.0/ INT0/ T0OUT/ T0PWM P1CON bit-pair pin configuration settings: 0 0 1 1 0 1 0 1 Schmitt trigger input mode (T0CLK, T0CAP) Output mode, open-drain Alternative function (T0OUT/T0PWM, BUZ) Output mode, push-pull Figure 10-2. Port 1 Control Register (P1CON) Port 1 Pull-up Control Register (P1PUR) 25H, R/W, Reset: 00H MSB .7 .6 .5 .4 .3 .2 .1 .0 LSB P1.0 P1.1 Not used P1.2 P1.3 P1 pull-up resistor settings: 0 1 NOTE: Disable pull-up resistor Enable pull-up resistor A pull-up resistor of port 1 is automatically disabled when the corresponding pin is selected as push-pull output or alternative function. Figure 10-3. Port 1 Pull-up Control Register (P1PUR) 10-2 S3CK318/FK318 I/O PORT Port 1 Interrupt Edge Selection Register (P1EDGE) 26H, R/W, Reset: 00H MSB .7 .6 .5 .4 .3 .2 .1 .0 LSB P1.0 P1.1 Not used P1.2 P1.3 P1EDGE configuration settings: 0 1 Falling edge interrupt Rising edge interrupt Figure 10-4. Port 1 Interrupt Edge Selection Register (P1EDGE) 10-3 I/O PORT S3CK318/FK318 PORT 2 Port 2 Control Register (P2CON) 28H, R/W, Reset: 00H MSB .7 .6 .5 P2.3/AD3 .4 .3 P2.2/AD2 .2 .1 P2.1/AD1 LSB .0 P2.0/AD0 P2CON bit-pair pin configuration settings: 0 0 1 1 0 1 0 1 Schmitt trigger input mode Output mode, open-drain Alternative function (AD0, AD1, AD2, AD3) Output mode, push-pull Figure 10-5. Port 2 Control Register (P2CON) Port 2 Pull-up Control Register (P2PUR) 29H, R/W, Reset: 00H MSB .7 .6 .5 .4 .3 .2 .1 .0 LSB P2.0 P2.1 Not used P2.2 P2.3 P2 pull-up resistor settings: 0 1 NOTE: Disable pull-up resistor Enable pull-up resistor A pull-up resistor of port 2 is automatically disabled when the corresponding pin is selected as push-pull output or alternative function. Figure 10-6. Port 2 Pull-up Control Register (P2PUR) 10-4 S3CK318/FK318 I/O PORT PORT 3 Port 3 Control Register A (P3CONA) 2CH, R/W, Reset: 00H MSB .7 .6 .5 Not used .4 .3 .2 P3.1/INT5 .1 .0 LSB P3.0/INT4/DAO P3CONA bits pin configuration settings: 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 Schmitt trigger input mode; pull-up; interrupt on falling edge Schmitt trigger input mode; interrupt on rising edge Schmitt trigger input mode; interrupt on rising or falling edge Output mode; push-pull Output mode; open-drain Alternative function (DAO) Figure 10-7. Port 3 Control Register A (P3CONA) Port 3 Control Register B (P3CONB) 2DH, R/W, Reset: 00H MSB .7 .6 Not used .5 .4 .3 P3.3/SI/SEG1 .2 .1 .0 LSB P3.2/INT6/SEG0 P3CONB bits pin configuration settings: 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 Schmitt trigger input mode; pull-up; interrupt on falling edge (SI) Schmitt trigger input mode; interrupt on rising edge (SI) Schmitt trigger input mode; interrupt on rising or falling edge (SI) Output mode; push-pull Output mode; open-drain Not available Figure 10-8. Port 3 Control Register B (P3CONB) 10-5 I/O PORT S3CK318/FK318 Port 3 Control Register C (P3CONC) 2EH, R/W, Reset: 00H MSB .7 .6 Not used .5 .4 .3 P3.5/SCK/SEG3 .2 .1 .0 LSB P3.4/SO/SEG2 P3CONC bits pin configuration settings: 0 0 0 0 1 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 Schmitt trigger input mode; pull-up (SCK) Schmitt trigger input mode (SCK) Not available Output mode; push-pull Output mode; open-drain Alternative function 1 (SO, SCK output: push-pull) Alternative function 2 (SO, SCK output: open-drain) Figure 10-9. Port 3 Control Register C (P3CONC) 10-6 S3CK318/FK318 I/O PORT PORT 4 Port 4 High-Byte Control Register (P4CONH) 30H, R/W, Reset: 00H MSB .7 .6 .5 .4 P4.7/SEG11 P4.6/SEG10 .3 .2 P4.5/SEG9 .1 .0 LSB P4.4/SEG8 P4CONH bit-pair pin configuration settings: 0 0 1 1 0 1 0 1 Input mode Input mode, pull-up Output mode, open-drain Output mode, push-pull Figure 10-10. Port 4 High-Byte Control Register (P4CONH) Port 4 Low-Byte Control Register (P4CONL) 31H, R/W, Reset: 00H MSB .7 .6 P4.3/SEG7 .5 .4 P4.2/SEG6 .3 .2 P4.1/SEG5 .1 .0 LSB P4.0/SEG4 P4CONL bit-pair pin configuration settings: 0 0 1 1 0 1 0 1 Input mode Input mode, pull-up Output mode, open-drain Output mode, push-pull Figure 10-11. Port 4 Low-Byte Control Register (P4CONL) 10-7 I/O PORT S3CK318/FK318 PORT 5 Port 5 High-Byte Control Register (P5CONH) 34H, R/W, Reset: 00H MSB .7 .6 P5.7/ SEG19/ COM4 .5 .4 P5.6/ SEG18/ COM5 .3 .2 P5.5/ SEG17/ COM6 .1 .0 LSB P5.4/ SEG16/ COM7 P5CONH bit-pair pin configuration settings: 0 0 1 1 0 1 0 1 Input mode Input mode, pull-up Output mode, open-drain Output mode, push-pull Figure 10-12. Port 5 High-Byte Control Register (P5CONH) Port 5 Low-Byte Control Register (P5CONL) 35H, R/W, Reset: 00H MSB .7 .6 P5.3/ SEG15 .5 .4 P5.2/ SEG14 .3 .2 P5.1/ SEG13 .1 .0 LSB P5.0/ SEG12 P5CONL bit-pair pin configuration settings: 0 0 1 1 0 1 0 1 Input mode Input mode, pull-up Output mode, open-drain Output mode, push-pull Figure 10-13. Port 5 Low-Byte Control Register (P5CONL) 10-8 S3CK318/FK318 I/O PORT PORT 6 Port 6 Control Register (P6CON) 36H, R/W, Reset: 00H MSB .7 .6 P6.3/ COM0 .5 .4 P6.2/ COM1 .3 .2 P6.1/ COM2 .1 .0 LSB P6.0/ COM3 P6CON bit-pair pin configuration settings: 0 0 1 1 0 1 0 1 Input mode Input mode, pull-up Output mode, open-drain Output mode, push-pull Figure 10-14. Port 6 Control Register (P6CON) 10-9 I/O PORT S3CK318/FK318 NOTES 10-10 S3CK318/FK318 BASIC TIMER/WATCHDOG TIMER 11 BASIC TIMER/WATCHDOG TIMER OVERVIEW WDTCON controls basic timer clock selection and watchdog timer clear bit. Basic timer is used in two different ways: • As a clock source to watchdog timer to provide an automatic reset mechanism in the event of a system malfunction (When watchdog function is enabled in ROM code option) • To signal the end of the required oscillation stabilization interval after a reset or stop mode release. The reset value of basic timer clock selection bits is decided by the ROM code option. (see the section on ROM code option for details). After reset, programmer can select the basic timer input clock using WDTCON. When watchdog function is enabled by the ROM code option, programmer must set WDTCON.0 periodically within every 2048 × basic timer input clock time to prevent system reset. Watchdog Timer Control Register (WDTCON) 0DH, R/W, Reset: X0H MSB .7 .6 .5 Not used .4 .3 .2 .1 Not used .0 LSB Watchdog timer clear bit: 0 1 Don't care Clear watchdog timer counter Basic timer counter clock selection bits: 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 NOTE: fxx/2 fxx/4 fxx/16 fxx/32 fxx/128 fxx/256 fxx/1024 fxx/2048 Basic timer counter clear bit: 0 1 Don't care Clear basic timer counter Under the reset operation, basic timer input clock source is effected by RCOD_OPT.14-.12. After reset, it can be selected basic timer clock source by writing appropriate value to WDTCON.6-.4. Figure 11-1. Watchdog Timer Control Register (WDTCON) 11-1 BASIC TIMER/WATCHDOG TIMER S3CK318/FK318 BLOCK DIAGRAM Data Bus RCOD_OPT .14, .13, .12 MUX nRESET WDTCON.6, .5, .4 nRESET, Stop or WDTCON.1 fxx/2048 Data Bus fxx/1024 fxx/256 Clear fxx/128 fxx/32 MUX fb 8-Bit Basic Timer Counter (Read Only) fxx/16 BT OVF Bit 5 BT INT (NOTE) fxx/4 fxx/2 OVF (System Reset) 3-Bit Watchdog Timer Counter RCOD_OPT.11 Clear WDTCON.0 NOTE: nRESET STOP IDLE CPU start signal (Bit 5 = 1/fb x 32) (Power down release) Figure 11-2. Basic Timer & Watchdog Timer Functional Block Diagram 11-2 IRQ0.5 S3CK318/FK318 12 WATCH TIMER WATCH TIMER OVERVIEW The source of watch timer is fx/60 (main osc.) or fxt (sub osc.). The interval of watch timer interrupt can be selected by WTCON.3-2. Table 12-1. Watch Timer Control Register (WTCON): 8-Bit R/W Bit Name Values WTCON.7–.6 WTCON.5–.4 WTCON.3–.2 WTCON.1 WTCON.0 – Function Not used. 0 0 0.47 kHz buzzer (BUZ) signal output 0 1 0.94 kHz buzzer (BUZ) signal output 1 0 1.87 kHz buzzer (BUZ) signal output 1 1 3.75 kHz buzzer (BUZ) signal output 0 0 Set watch timer interrupt to 1 sec. 0 1 Set watch timer interrupt to 0.1 sec. 1 0 Set watch timer interrupt to 0.5 sec. 1 1 Set watch timer interrupt to 50 msec. 0 Select fx/60 as the watch timer clock. 1 Select fxt (sub osc) as the watch timer clock. 0 Disable watch timer: clear frequency dividing circuits. 1 Enable watch timer. Address 70H NOTES: 1. The main clock frequency (fx) is assumed to be 4.5 MHz. 2. The watch timer clock frequency (fw) is assumed to be 75 kHz. 12-1 WATCH TIMER S3CK318/FK318 WATCH TIMER CIRCUIT DIAGRAM WTCON .4-.5 fw/160 (0.47 kHz) fw/80 (0.94 kHz) fw/40 (1.87 kHz) Buzzer Output MUX fw/20 (3.75 kHz) 50 msec fxt fx/60 Clock Selector Frequency Dividing Circuit fw Overflow 0.5 sec 0.1 sec Selector Circuit 1 sec LCD Clock WTCON .1 WTCON .0 WTCON .2-.3 fx = Main clock (4.5 MHz) fxt = Sub clock (75 kHz) fw = Watch timer clock Figure 12-1. Watch Timer Circuit Diagram 12-2 WT INT IRQ1.0 S3CK318/FK318 13 16-BIT TIMER 0 16-BIT TIMER 0 OVERVIEW The 16-bit timer 0 is an 16-bit general-purpose timer/counter. Timer 0 has three operating modes, one of which you select using the appropriate T0CON setting: — Interval timer mode (Toggle output at T0OUT pin) — Capture input mode with a rising or falling edge trigger at the T0CAP pin — PWM mode (T0PWM) Timer 0 has the following functional components: — Clock frequency divider (fxx divided by 4096, 512, 64, 8, or 1) with multiplexer — External clock input pin (T0CLK) — 16-bit counter (T0CNTH/L), 16-bit comparator, and 16-bit reference data register (T0DATAH/L) — I/O pins for capture input (T0CAP), or PWM or match output (T0PWM, T0OUT) — Timer 0 overflow interrupt (IRQ0.1) and match/capture interrupt (IRQ0.0) generation — Timer 0 control register, T0CON (40H, read/write) 13-1 16-BIT TIMER 0 S3CK318/FK318 FUNCTION DESCRIPTION Timer 0 Interrupts (IRQ0.0, IRQ0.1) The timer 0 module can generate two interrupts, the timer 0 overflow interrupt (T0OVF), and the timer 0 match/capture interrupt (T0INT). T0OVF is interrupt level IRQ0.1. T0INT belongs to interrupt level IRQ0.0. Interval Timer Function In interval timer mode, a match signal is generated and T0OUT is toggled when the counter value is identical to the value written to the T0 reference data register, T0DATAH/L. The match signal generates a timer 0 match interrupt (T0INT) and clears the counter. If, for example, you write the value 0010H to T0DATAH/L and 04H to T0CON, the counter will increment until it reaches 0010H. At this point, the T0 interrupt request is generated, the counter value is reset, and counting resumes. Pulse Width Modulation Mode Pulse width modulation (PWM) mode lets you program the width (duration) of the pulse that is output at the T0PWM pin. As in interval timer mode, a match signal is generated when the counter value is identical to the value written to the timer 0 data register. In PWM mode, however, the match signal does not clear the counter but can generate a match interrupt. The counter runs continuously, overflowing at FFFFH, and then repeat the incrementing from 0000H. Whenever an overflow is occurred, an overflow (OVF) interrupt can be generated. Although you can use the match or the overflow interrupt in PWM mode, interrupts are not typically used in PWMtype applications. Instead, the pulse at the T0PWM pin is held to Low level as long as the reference data value is less than or equal to (≤) the counter value and then pulse is held to High level for as long as the data value is greater than (>) the counter value. One pulse width is equal to tCLK Capture Mode In capture mode, a signal edge that is detected at the T0CAP pin opens a gate and loads the current counter value into the T0 data register. You can select rising or falling edges to trigger this operation. Timer 0 also gives you capture input source, the signal edge at the T0CAP pin. You select the capture input by setting the value of the timer 0 capture input selection bit in the port 1 control register, P1CON, (24H). When P1CON.5–.4 is 00, the T0CAP input or normal input is selected .When P1CON.5–.4 is set to 11, normal output is selected. Both kinds of timer 0 interrupts can be used in capture mode, the timer 0 overflow interrupt is generated whenever a counter overflow occurs, the timer 0 match/capture interrupt is generated whenever the counter value is loaded into the T0 data register. By reading the captured data value in T0DATAH/L, and assuming a specific value for the timer 0 clock frequency, you can calculate the pulse width (duration) of the signal that is being input at the T0CAP pin. 13-2 S3CK318/FK318 16-BIT TIMER 0 TIMER 0 CONTROL REGISTER (T0CON) You use the timer 0 control register, T0CON, to — Select the timer 0 operating mode (interval timer, capture mode, or PWM mode) — Select the timer 0 input clock frequency — Clear the timer 0 counter, T0CNTH/L T0CON is located at address 40H, and is read/written addressable. A reset clears T0CON to '00H'. This sets timer 0 to normal interval timer mode, and selects an input clock frequency of fxx/4096. To disable the counter operation, please set T0CON.7–.5 to 111B. You can clear the timer 0 counter at any time during normal operation by writing a "1" to T0CON.2. Timer 0 Control Register (T0CON) 40H, R/W, Reset: 00H MSB .7 .6 .5 .4 .3 .2 0 1 0 1 0 1 0 1 0 0 0 0 1 1 1 1 fxx/4096 fxx/512 fxx/64 fxx/8 fxx/1 External clock (T0CLK) falling edge External clock (T0CLK) rising edge Counter stop .0 LSB Not used Timer 0 input clock selection bits: 0 0 1 1 0 0 1 1 .1 Timer 0 counter clear bit: 0 1 No effect Clear the timer 0 counter (when write) Timer 0 operating mode selection bits: 0 0 1 1 0 1 0 1 Interval mode Capture mode (capture on rising edge, counter running, OVF can occur) Capture mode (capture on falling edge, counter running, OVF can occur) PWM mode (OVF & match interrupt can occur) Figure 13-1. Timer 0 Control Register (T0CON) 13-3 16-BIT TIMER 0 S3CK318/FK318 BLOCK DIAGRAM T0OVF OVF T0CON.7-5 IRQ0.1 Data Bus f XX/4096 f XX/512 f XX/64 f XX/8 f XX/1 T0CLK M U 16-bit Up-Counter (Read Only) Clear R X VSS T0CAP T0CON.2 8 16-bit Comparator Match M U X M U X T0INT T0OUT T0PWM Timer 0 Buffer Reg T0CON.4-.3 Counter Clear Signal or Match T0CON.4-.3 Timer 0 Data H/L Register 8 Data Bus Figure 13-2. Timer 0 Functional Block Diagram 13-4 IRQ0.0 S3CK318/FK318 16-BIT TIMER 0 Timer 0 Counter High-Byte Register (T0CNTH) 43H, Read only, Reset: 00H MSB .7 .6 .5 .4 .3 .2 .1 .0 LSB .0 LSB .0 LSB .0 LSB Timer 0 Counter Low-Byte Register (T0CNTL) 44H, Read only, Reset: 00H MSB .7 .6 .5 .4 .3 .2 .1 Timer 0 Data High-Byte Register (T0DATAH) 41H, R/W, Reset: FFH MSB .7 .6 .5 .4 .3 .2 .1 Timer 0 Data Low-Byte Register (T1DATAL) 42H, R/W, Reset: FFH MSB .7 .6 .5 .4 .3 .2 .1 Figure 13-3. Timer 0 Counter and Data Register (T0CNTH/L, T0DATAH/L) 13-5 16-BIT TIMER 0 S3CK318/FK318 NOTES 13-6 S3CK318/FK318 14 8-BIT TIMER 1 8-BIT TIMER 1 OVERVIEW The 8-bit timer 1 is an 8-bit general-purpose timer. Timer 1 has the interval timer mode by using the appropriate T1CON setting. Timer 1 has the following functional components: — Clock frequency divider (fxx divided by 1024, 256, 64, 8, or 1) with multiplexer — 8-bit counter (T1CNT), 8-bit comparator, and 8-bit reference data register (T1DATA) — Timer 1 interrupt (IRQ0.2) generation — Timer 1 control register, T1CON (48H, read/write) FUNCTION DESCRIPTION Interval Timer Function The timer 1 module can generate an interrupt, the timer 1 match interrupt (T1INT). T1INT belongs to interrupt level IRQ0.2. In interval timer mode, a match signal is generated when the counter value is identical to the values written to the T1 reference data registers, T1DATA. The match signal generates a timer 1 match interrupt (T1INT) and clears the counter. If, for example, you write the value 10H to T1DATA and 0CH to T1CON, the counter will increment until it reaches 10H. At this point, the T1 interrupt request is generated, the counter value is reset, and counting resumes. 14-1 8-BIT TIMER 1 S3CK318/FK318 TIMER 1 CONTROL REGISTER (T1CON) You use the timer 1 control register, T1CON, to — Enable the timer 1 operating (interval timer) — Select the timer 1 input clock frequency — Clear the timer 1 counter, T1CNT T1CON is located, at address 48H, and is read/written addressable. A reset clears T1CON to "00H". This sets timer 1 to disable interval timer mode, and selects an input clock frequency of fxx/1024. You can clear the timer 1 counter at any time during normal operation by writing a "1" to T1CON.3 Timer 1 Control Register (T1CON) 48H, R/W, Reset: 00H MSB .7 .6 .5 .4 0 1 0 1 0 0 0 0 0 1 fxx/1024 fxx/256 fxx/64 fxx/8 fxx .2 .1 .0 LSB Not used Timer 1 input clock selection bits: 0 0 1 1 0 .3 Timer 1 count enable bit: Not used 0 Disable counting operation 1 Enable counting operation Timer 1 counter clear bit: 0 No affect 1 Clear the timer 1 counter (when write) NOTE: For normal operation T1CON.2 bit must be set 1. Figure 14-1. Timer 1 Control Register (T1CON) 14-2 S3CK318/FK318 8-BIT TIMER 1 BLOCK DIAGRAM Bits 7, 6, 5 Data Bus fxx/256 fxx/64 Bit 3 8 fxx/1024 M 8-bit up-Counter (Read Only) U R Clear fxx/8 fxx/1 X T1INT 8-bit Comparator IRQ0.2 Match Bit 2 DA Converter Timer 1 Buffer Reg Counter clear (T1CON.3) signal or match signal Timer 1 Data Reg (Read/Write) 8 Data Bus NOTE: T1CON.3 bit is cleared automatically. Figure 14-2. Timer 1 Functional Block Diagram 14-3 8-BIT TIMER 1 S3CK318/FK318 Timer 1 Counter (T1CNT) 4AH, Read only, Reset: 00H MSB .7 .6 .5 .4 .3 .2 .1 .0 LSB .0 LSB Figure 14-3. Timer 1 Counter (T1CNT) Timer 1 Data Register (T1DATA) 49H, R/W, Reset: FFH MSB .7 .6 .5 .4 .3 .2 .1 Figure 14-4. Timer 1 Data Register (T1DATA) 14-4 S3CK318/FK318 15 SERIAL I/O INTERFACE SERIAL I/O INTERFACE OVERVIEW The SIO module can transmit or receive 8-bit serial data at a frequency determined by its corresponding control register settings. To ensure flexible data transmission rates, you can select an internal or external clock source. PROGRAMMING PROCEDURE To program the SIO modules, follow these basic steps: 1. Configure the I/O pins at port (SO, SCK, SI) by loading the appropriate value to the P3CONB and P3CONC registers, if necessary. 2. Load an 8-bit value to the SIOCON register to properly configure the serial I/O module. In this operation, SIOCON.2 must be set to "1" to enable the data shifter. 3. When you transmit data to the serial buffer, write data to SIODATA and set SIOCON.3 to 1, the shift operation starts. 15-1 SERIAL I/O INTERFACE S3CK318/FK318 SIO CONTROL REGISTER (SIOCON) Serial I/O Module Control Register (SIOCON) 58H, R/W, Reset: 00H MSB .7 .6 .5 .4 .3 .2 SIO shift clock select bit: .0 LSB Not used 0 Internal clock (P.S clock) 1 External clock (SCK) SIO shift operation enable bit: Data direction control bit: 0 1 .1 0 Disable shifter and clock 1 Enable shfter and clock MSB-first LSB-first SIO mode selction bit: 0 Rececive-only mode 1 Transmit/receive mode SIO counter clear and shift start bit: 0 No action 1 Clear 3-bit counter and start shifting Shift clock edge selction bit: 0 Tx at falling edge, Rx at rising edge 1 Tx at rising edge, Rx at falling edge Figure 15-1. Serial I/O Module Control Registers (SIOCON) SIO PRE-SCALER REGISTER (SIOPS) The value stored in the SIO pre-scaler registers, SIOPS, lets you determine the SIO clock rate (baud rate) as follows: Baud rate = Input clock( fxx/4)/(Pre-scaler value + 1), or, SCK input clock where fxx is a selected clock. SIO Pre-scaler Register (SIOPS) 59H, R/W, Reset: 00H MSB .7 .6 .5 .4 .3 .2 .1 .0 Baud rate = (fxx /4)/(SIOPS + 1) Figure 15-2. SIO Pre-scaler Register (SIOPS) 15-2 LSB S3CK318/FK318 SERIAL I/O INTERFACE BLOCK DIAGRAM CLK SIOCON.7 (Shift Clock Source Select) IRQ0.4 (SIO INT) 3-Bit Counter Clear SIOCON.3 SIOCON.4 (Edge Select) SIOCON.2 (Shift Enable) SCK SIOPS fxx/2 8-Bit P.S MUX 1/2 SIOCON.5 (Mode Select) CLK 8-Bit SIO Shift Buffer (SIODATA) 8 SO SIOCON.6 (LSB/MSB First Mode Select) SI Data Bus Figure 15-3. SIO Function Block Diagram 15-3 SERIAL I/O INTERFACE S3CK318/FK318 SERIAL I/O TIMING DIAGRAM SCK SI D17 D16 D15 D14 D13 D12 D11 D10 SO DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 Transmit Complete IRQS Set SIOCON.3 Figure 15-4. Serial I/O Timing in Transmit/Receive Mode (Tx at falling, SIOCON.4 = 0) SCK SI D17 D16 D15 D14 D13 D12 D11 D10 SO DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 Transmit Complete IRQS Set SIOCON.3 Figure 15-5. Serial I/O Timing in Transmit/Receive Mode (Tx at rising, SIOCON.4 = 1) 15-4 S3CK318/FK318 16 BATTERY LEVEL DETECTOR BATTERY LEVEL DETECTOR OVERVIEW The S3CK318/FK318 micro-controller has a built-in BLD (Battery Level Detector) circuit which allows detection of power voltage drop through software. Turning the BLD operation on and off can be controlled by software. Because the IC consumes a large amount of current during BLD operation. It is recommended that the BLD operation should be kept OFF unless it is necessary. Also the BLD criteria voltage can be set by the software. The criteria voltage can be set by matching to one of the 3 kinds of voltage. 2.2 V, 2.4 V or 2.6 V (VDD reference voltage) The BLD block works only when BLDCON.0 is set. If VDD level is lower than the reference voltage selected with BLDCON.4–.2, BLDCON.1 will be set. If VDD level is higher, BLDCON.1 will be cleared. When users need to minimize current consumption, do not operate the BLD block. VDD Pin Battery Level Detector fBLD BLDCON.1 BLD Out BLDCON.0 Battery Level Setting BLD Run BLDCON.4-.2 Set the Level Figure 16-1. Block Diagram for Battery Level Detect 16-1 BATTERY LEVEL DETECTOR S3CK318/FK318 BATTERY LEVEL DETECTOR CONTROL REGISTER (BLDCON) The bit 0 of BLDCON controls to run or disable the operation of battery level detect. Basically this VBLD is set as invalid by system reset and it can be changed in 3 kinds voltages by selecting Battery Level Detect Control register (BLDCON). When you write 3-bit data value to BLDCON, an established resistor string is selected and the VBLD is fixed in accordance with this resistor. Table 16-1 shows specific VBLD of 3 levels. Battery Level Detector Control Register (BLDCON) 71H, R/W, Reset: 00H Resistor String MSB .7 .6 .5 .4 .3 .2 .1 .0 Not used RVLD VIN Comparator BLD OUT VREF Bias BANDGAP BLD Enable/Disable NOTES: 1. The Reset value of BLDCON is #00H. 2. VREF is about 1 volt. Figure 16-2. Battery Level Detector Circuit and Control Register Table 16-1. BLDCON Value and Detection Level 16-2 VLDCON .4–.2 VBLD 1 0 0 2.2 V 1 0 1 2.4 V 1 1 0 2.6 V 1 1 1 – LSB S3CK318/FK318 LCD CONTROLLER/DRIVER 17 LCD CONTROLLER/DRIVER OVERVIEW The S3CK318/FK318 microcontroller can directly drive an up-to-128-dot (16 segments × 8 commons) LCD panel. Its LCD block has the following components: — LCD controller/driver — Display RAM for storing display data — 4 common/segment output pins (COM4/SEG19–COM7/SEG16) — 16 segment output pins (SEG0–SEG15) — 4 common output pins (COM0–COM3) — Internal resistor circuit for LCD bias To use the LCD controller/driver, the watch timer must be enabled by setting WTCON.0 to "1" because fLCD for LCD controller/driver clock source is supplied by the watch timer. When a sub block is selected as the watch timer clock source and watch timer is enabled, the LCD display can be enabled even during stop and idle modes. The LCD clock source speed, duty, bias LCD contrast level, and display on or off are determined by bit settings in the LCD control register, LMOD, at address 60H. Data written to the LCD display RAM can be transferred to the segment signal pins automatically without program control. 4 Data Bus 8 LCD Controller/ Driver 4 16 COM0-COM3/P6.3-P6.0 COM4-COM7/SEG19-SEG16/P5.7-P5.4 SEG0-SEG15/P3.2-P5.3 Figure 17-1. LCD Function Diagram 17-1 LCD CONTROLLER/DRIVER S3CK318/FK318 LCD CIRCUIT DIAGRAM SEG0/P3.2 Port Latch SEG/Port Driver SEG15/P5.3 SEG16/COM7/P5.4 SEG19/COM4/P5.7 Data Bus COM0/P6.3 LCD Display RAM (180H-193H) COM/Port Driver COM3/P6.0 COM4/SEG19/P5.7 COM7/SEG16/P5.4 fLCD Timing Controller LMOD LCD Voltage Controller Figure 17-2. LCD Circuit Diagram 17-2 S3CK318/FK318 LCD CONTROLLER/DRIVER LCD RAM ADDRESS AREA RAM addresses of page 1 are used as LCD data memory. These locations can be addressed by 1-bit or 8-bit instructions. If the bit value of a display segment is "1", the LCD display is turned on. If the bit value is "0", the display is turned off. Display RAM data are sent out through the segment pins, SEG0–SEG19, using the direct memory access (DMA) method that is synchronized with the fLCD signal. RAM addresses in this location that are not used for LCD display can be allocated to general-purpose use. 1/8 Duty Mode COM Bit SEG0 SEG1 SEG2 SEG3 ------ SEG13 SEG14 SEG15 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 .0 .1 .2 .3 .4 .5 .6 .7 180H 181H 182H 183H ------ 18DH 18EH 18FH SEG0 SEG1 SEG2 SEG3 ------ SEG17 SEG18 SEG19 180H 181H 182H 183H ------ 191H 192H 193H 1/4, 1/3 Duty Mode COM Bit COM0 COM1 COM2 COM3 .0 .1 .2 .3 .4 .5 .6 .7 Figure 17-3. LCD Display Data RAM Organization 17-3 LCD CONTROLLER/DRIVER S3CK318/FK318 LCD MODE CONTROL REGISTER (LMOD) The LCD mode control register for the LCD controller/driver is called LMOD. LMOD is located at address 60H. It has the following control functions: LCD duty selection LCD bias selection LCD clock selection LCD contrast level control LCD display control The LCD mode control register, LMOD is used to turn the LCD display on/off, to select duty and bias, to select LCD clock, and to select dividing resistors for bias. Following a reset all LMOD values are cleared to "0". This turns off the LCD display, select 1/3 bias and 1/3 duty, and select VDD for LCD panel power (V LCD). The LCD clock signal determines the frequency of COM signal scanning of each segment output. This is also referred as the frame frequency. Since the LCD clock signal is generated by the watch timer clock (fw), the watch timer must be enabled when the LCD display is turned on. LCD Mode Control Register (LMOD) 60H, R/W, Reset: 00H MSB .7 .6 .5 .4 .3 LCD contrast level control bits (1/3 bias) 0 0 0 0 1 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 .2 .0 LSB LCD clock selection bits: (fw = 75 kHz) 0 0 1 1 VLCD = VDD VLCD = 0.96 VDD VLCD = 0.92 VDD VLCD = 0.86 VDD VLCD = 0.80 VDD VLCD = 0.75 VDD VLCD = 0.70 VDD .1 0 1 0 1 234 Hz (fw/320) 469 Hz (fw/160) 938 Hz (fw/80) 1875 Hz (fw/40) LCD duty and bias selection bits: 0 0 1 1 0 1 0 1 1/3 1/4 1/8 1/8 duty, duty, duty, duty, 1/3 1/3 1/4 1/5 bias; bias; bias; bias; COM0-COM2/SEG0-SEG19 COM0-COM3/SEG0-SEG19 COM0-COM7/SEG0-SEG15 COM0-COM7/SEG0-SEG15 LCD Display Control bit: 0 1 Display off (Cut off the LCD voltage dividing resistors) Normal display on Figure 17-4. LCD Mode Control Register (LMOD) 17-4 S3CK318/FK318 LCD CONTROLLER/DRIVER LCD PORT CONTROL REGISTERS (LPOT0, LPOT1, LPOT2) LCD Port Control Register 0 (LPOT0) 61H, R/W, Reset: 00H MSB .7 .6 .5 .4 .3 .2 .1 SEG7/P4.3 .0 LSB SEG0/P3.2 SEG6/P4.2 SEG1/P3.3 SEG5/P4.1 SEG2/P3.4 SEG4/P4.0 SEG3/P3.5 LPOT0.n bit configuration settings: 0 1 NOTE: SEG Port Normal I/O Port "n" is 0, 1, 2, 3, 4, 5, 6, and 7. Figure 17-5. LCD Port Control Register 0 (LPOT0) LCD Port Control Register 1 (LPOT1) 62H, R/W, Reset: 00H MSB .7 .6 .5 .4 .3 .2 .1 SEG15/P5.3 .0 LSB SEG8/P4.4 SEG14/P5.2 SEG13/P5.1 SEG12/P5.0 SEG9/P4.5 SEG10/P4.6 SEG11/P4.7 LPOT1.n bit configuration settings: 0 1 NOTE: SEG Port Normal I/O Port "n" is 0, 1, 2, 3, 4, 5, 6, and 7. Figure 17-6. LCD Port Control Register 1 (LPOT1) 17-5 LCD CONTROLLER/DRIVER S3CK318/FK318 LCD Port Control Register 2 (LPOT2) 63H, R/W, Reset: 00H MSB .7 .6 .5 .4 .3 .2 COM0/P6.3 .1 .0 LSB SEG16/COM7/P5.4 COM1/P6.2 COM2/P6.1 COM3/P6.0 SEG17/COM6/P5.5 SEG18/COM5/P5.6 SEG19/COM4/P5.7 LPOT2.n bit configuration settings: 0 1 NOTE: SEG or COM Port Normal I/O Port "n" is 0, 1, 2, 3, 4, 5, 6, and 7. Figure 17-7. LCD Port Control Register 2 (LPOT2) 17-6 S3CK318/FK318 LCD CONTROLLER/DRIVER LCD VOLTAGE DIVIDING RESISTORS 1/5 Bias 1/4 Bias S3CK318 S3CK318 VDD LMOD.4 LMOD.5-.7 1/3 Bias S3CK318 VDD LMOD.4 Contrast Controller VLC1 VLC2 VLC3 VLC4 VLC5 VSS LMOD.5-.7 LMOD.4 Contrast Controller VLC1 R R R R R VDD VLC2 VLC3 VLC4 VLC5 VSS LMOD.5-.7 Contrast Controller VLC1 R R R R R VLC2 VLC3 VLC4 VLC5 VSS R R R R R Figure 17-8. LCD Bias Circuit Connection 17-7 LCD CONTROLLER/DRIVER S3CK318/FK318 COMMON (COM) SIGNALS The common signal output pin selection (COM pin selection) varies according to the selected duty cycle. — In 1/3 duty mode, COM0–COM2 pins are selected. — In 1/4 duty mode, COM0–COM3 pins are selected. — In 1/8 duty mode, COM0–COM7 pins are selected. When 1/3 duty is selected by setting LMOD.3–LMOD.2 to "00", COM3–COM7 (P6.0, P5.7–P5.4) can be used for I/O ports, and when 1/4 duty is selected by setting LMOD.3–LMOD.2 to "01", COM4–COM7 (P5.7–P5.4) can be used for I/O ports. SEGMENT (SEG) SIGNALS The 20 LCD segment signal pins are connected to corresponding display RAM locations at 80H–93H of page 1. Bits of the display RAM are synchronized with the common signal output pins. When the bit value of a display RAM location is "1", a 'select' signal (Display ON) is sent to the corresponding segment pin. When the display bit is "0", a 'non-select' signal (Display Off) is sent to the corresponding segment pin. 17-8 S3CK318/FK318 SEG2 SEG1 LCD CONTROLLER/DRIVER SEG0 0 1 2 0 1 2 FR COM0 VLC1 VSS 1 FRAME VLC1 COM1 COM2 COM0 VLC2(VLC3) VLC4(VLC5) VSS VLC1 COM1 VLC2(VLC3) VLC4(VLC5) VSS VLC1 COM2 VLC2(VLC3) VLC4(VLC5) VSS VLC1 SEG0 VLC2(VLC3) VLC4(VLC5) VSS VLC1 SEG1 VLC2(VLC3) VLC4(VLC5) VSS + VLC1 + 1/3 VLC1 SEG0 - COM0 0V - 1/3 VLC1 -VLC1 Figure 17-9. LCD Signal Waveforms (1/3 Duty, 1/3 Bias) 17-9 LCD CONTROLLER/DRIVER SEG1 S3CK318/FK318 SEG0 0 1 2 3 0 1 2 3 FR COM0 VSS 1 FRAME COM1 VLC1 COM2 COM3 VLC1 COM0 VLC2 (VLC3) VLC4 (VLC5) VSS VLC1 COM1 VLC2 (VLC3) VLC4 (VLC5) VSS VLC1 COM2 VLC2 (VLC3) VLC4 (VLC5) VSS VLC1 COM3 VLC2 (VLC3) VLC4 (VLC5) VSS VLC1 SEG0 VLC2 (VLC3) VLC4 (VLC5) VSS VLC1 SEG1 VLC2 (VLC3) VLC4 (VLC5) VSS + V LC1 + 1/3 V LC1 SEG0 - COM0 0V -1/3 VLC1 - V LC1 Figure 17-10. LCD Signal Waveforms (1/4 Duty, 1/3 Bias) 17-10 S3CK318/FK318 LCD CONTROLLER/DRIVER COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 FR VLC1 VSS 1 FRAME VLC1 VLC2 S E G 5 S E G 6 S E G 7 S E G 8 S E G 9 COM0 VLC3 (VLC4) VLC5 VSS VLC1 VLC2 COM1 VLC3 (VLC4) VLC5 VSS VLC1 VLC2 COM2 VLC3 (VLC4) VLC5 VSS VLC1 VLC2 SEG5 VLC3 (VLC4) VLC5 VSS VLC1 VLC2 VLC3 (VLC4) SEG5- COM0 VLC5 0V -VLC5 -VLC3 (-VLC4) -VLC2 -VLC1 Figure 17-11. LCD Signal Waveforms (1/8 Duty, 1/4 Bias) 17-11 LCD CONTROLLER/DRIVER S3CK318/FK318 0 1 2 3 4 FR 5 6 7 0 1 2 3 4 5 6 7 VLC1 VSS 1 FRAME VLC1 VLC2 SEG6 VLC3 (VLC4) VLC5 VSS VLC1 VLC2 VLC3 (VLC4) SEG6 - COM0 VLC5 0V -VLC5 -VLC3 (-VLC4) -VLC2 -VLC1 Figure 17-11. LCD Signal Waveforms (1/8 Duty, 1/4 Bias) (Continued) 17-12 S3CK318/FK318 LCD CONTROLLER/DRIVER COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 0 1 2 3 7 0 1 2 3 FR 7 VLC1 VSS 1 FRAME VLC1 VLC2 S E G 5 S E G 6 S E G 7 S E G 8 S E G 9 COM0 VLC3 VLC4 VLC5 VSS VLC1 VLC2 COM1 VLC3 VLC4 VLC5 VSS VLC1 VLC2 COM2 VLC3 VLC4 VLC5 VSS VLC1 VLC2 SEG5 VLC3 VLC4 VLC5 VSS Figure 17-12. LCD Signal Waveforms (1/8 Duty, 1/5 Bias) 17-13 LCD CONTROLLER/DRIVER S3CK318/FK318 0 1 2 3 7 0 1 2 3 7 FR VLC1 VSS 1 FRAME VLC1 VLC2 SEG6 VLC3 VLC4 VLC5 VSS VLC1 VLC2 VLC3 VLC4 VLC5 SEG5 - COM0 0V - V LC5 - V LC4 - V LC3 - V LC2 - V LC1 VLC1 VLC2 VLC3 VLC4 VLC5 SEG6 - COM0 0V - V LC5 - V LC4 - V LC3 - V LC2 - V LC1 Figure 17-12. LCD Signal Waveforms (1/8 Duty, 1/5 Bias) (Continued) 17-14 S3CK318/FK318 18 10-BIT A/D CONVERTER 10-BIT ANALOG-TO-DIGITAL CONVERTER OVERVIEW The 10-bit A/D converter (ADC) module uses successive approximation logic to convert analog levels entering at one of the four input channels to equivalent 10-bit digital values. The analog input level must lie between the VDD and VSS values. The A/D converter has the following components: — Analog comparator with successive approximation logic — D/A converter logic (resistor string type) — ADC control register (ADCON) — Four multiplexed analog data input pins (AD0–AD3) — 10-bit A/D conversion data output register (ADDATAH/ADDATAL) — 4-bit digital input port (Alternately, I/O port) FUNCTION DESCRIPTION To initiate an analog-to-digital conversion procedure, at first you must set with alternative function for ADC input enable at port 2, the pin set with alternative function can be used for ADC analog input. And you write the channel selection data in the A/D converter control register ADCON.4–.5 to select one of the four analog input pins (AD0– AD3) and set the conversion start or disable bit, ADCON.0. The read-write ADCON register is located in address 5CH. The pins witch are not used for ADC can be used for normal I/O. During a normal conversion, ADC logic initially sets the successive approximation register to 800H (the approximate half-way point of an 10-bit register). This register is then updated automatically during each conversion step. The successive approximation block performs 10-bit conversions for one input channel at a time. You can dynamically select different channels by manipulating the channel selection bit value (ADCON.5–.4) in the ADCON register. To start the A/D conversion, you should set the enable bit, ADCON.0. When a conversion is completed, ADCON.3, the end-of-conversion (EOC) bit is automatically set to 1 and the result is dumped into the ADDATAH/ADDATAL register where it can be read. The A/D converter then enters an idle state. Remember to read the contents of ADDATAH/ADDATAL before another conversion starts. Otherwise, the previous result will be overwritten by the next conversion result. NOTE Because the A/D converter has no sample-and-hold circuitry, it is very important that fluctuation in the analog level at the AD0–AD3 input pins during a conversion procedure be kept to an absolute minimum. Any change in the input level, perhaps due to noise, will invalidate the result. If the chip enters to STOP or IDLE mode in conversion process, there will be a leakage current path in A/D block. You must use STOP or IDLE mode after ADC operation is finished. 18-1 10-BIT A/D CONVERTER S3CK318/FK318 CONVERSION TIMING The A/D conversion process requires 4 steps (4 clock edges) to convert each bit and 10 clocks to set-up A/D conversion. Therefore, total of 50 clocks are required to complete an 10-bit conversion: When fxx/8 is selected for conversion clock with an 8 MHz fxx clock frequency, one clock cycle is 1 us. Each bit conversion requires 4 clocks, the conversion rate is calculated as follows: 4 clocks/bit × 10-bit + set-up time = 50 clocks, 50 clock × 1 us = 50 us at 1 MHz (8 MHz/8) Note that A/D converter needs at least 25µs for conversion time. A/D CONVERTER CONTROL REGISTER (ADCON) The A/D converter control register, ADCON, is located at address 5CH. It has three functions: — Analog input pin selection (bits 5 and 4) — End-of-conversion status detection (bit 3) — ADC clock selection (bits 2 and 1) — A/D operation start or disable (bit 0) After a reset, the start bit is turned off. You can select only one analog input channel at a time. Other analog input pins (AD0–AD3) can be selected dynamically by manipulating the ADCON.4–.5 bits. And the pins not used for analog input can be used for normal I/O function. A/D Converter Control Register (ADCON) 5CH, R/W (EOC bit is read-only), Reset: 00H .7 MSB .6 .5 .4 .3 .2 .1 0 1 A/D input pin selection bits: 0 1 0 1 LSB Start or disable bit Always logic zero 0 0 1 1 .0 AD0 AD1 AD2 AD3 Disable operation Start operation (This bit is cleared automatically after End-of-Conversion.) Clock Selection bits: 0 0 1 1 0 1 0 1 fxx/8 fxx/4 fxx/2 fxx/1 End-of-conversion bit 0 1 Not complete Conversion Complete Conversion Figure 18-1. A/D Converter Control Register (ADCON) 18-2 S3CK318/FK318 10-BIT A/D CONVERTER A/D Converter Data Register (ADDATAH/ADDATAL) 5DH/5EH, Read Only MSB .9 .8 MSB .1 .0 .7 .6 .5 .4 .3 .2 LSB (ADDATAH) LSB (ADDATAL) Figure 18-2. A/D Converter Data Register (ADDATAH/ADDATAL) INTERNAL REFERENCE VOLTAGE LEVELS In the ADC function block, the analog input voltage level is compared to the reference voltage. The analog input level must remain within the range AVSS to AVREF. Different reference voltage levels are generated internally along the resistor tree during the analog conversion process for each conversion step. The reference voltage level for the first conversion bit is always 1/2 AVREF. BLOCK DIAGRAM ADCON.2-.1 ADCON.4-.5 (Select one input pin of the assigned pins) Clock Selector To ADCON.3 (EOC Flag) ADCON.0 (AD/C Enable) M Input Pins AD0-AD3 (P2.0-P2.3) - .. . U Analog Comparator + Successive Approximation Logic & Register X ADCON.0 (AD/C Enable) P2CON (Assign Pins to ADC Input) 10-bit D/A Converter AVREF AVSS Conversion Result (ADDATAH/ADDATAL, 5DH/5EH) Figure 18-3. A/D Converter Functional Block Diagram 18-3 10-BIT A/D CONVERTER S3CK318/FK318 VDD Reference Voltage Input (AV REF = V DD) VDD 10 µF + - C 103 VDD Analog Input Pin AD0-AD3 S3CK318 C 101 VSS Figure 18-4. Recommended A/D Converter Circuit for Highest Absolute Accuracy 18-4 S3CK318/FK318 19 D/A CONVERTER D/A CONVERTER OVERVIEW The 9-bit D/A Converter (DAC) module uses successive approximation logic to convert 9-bit digital values to 1 equivalent analog levels between VDD (1 – ) and VSS. 512 This D/A Converter consists of R–2R array structure. The D/A Converter has the following components: — R–2R array structure — Digital-to-analog converter control register (DACON) — Digital-to-analog converter data register (DADATAH/DADATAL) — Digital-to-analog converter output pin (DAO) FUNCTION DESCRIPTION To initiate a digital-to-analog conversion procedure, at first you must set with alternative function (P3CONA.2–.0) and set the digital-to-analog converter enable bit (DACON.0). The DACON register is located at the RAM address 74H. You should write the digital value calculated to digital-toanalog converter data register (DADATAH/DADATAL). NOTE If the chip enters to power-down mode, STOP or IDLE, in conversion process, there will be current path in D/A Converter block. So. It is necessary to cut off the current path before the instruction execution enters power-down mode. 19-1 D/A CONVERTER S3CK318/FK318 Data Bus DADATA .0 .1 .2 .3 .4 .5 .6 9-bit DAC Buffer .0 .1 .2 .7 .8 Timer 1 Match Signal DACON.1 .3 .4 .5 .6 .7 .8 DACON.0 2R 2R R 2R 2R R R 2R R 2R 2R R 2R R R 2R R 2R Figure 19-1. DAC Circuit Diagram D/A Converter Control Register (DACON) 74H, R/W, Reset: 00H MSB .7 .6 .5 .4 .3 .2 .1 .0 LSB Enable/Disable control bit: Not used 0 Disable 1 Enable Data latch control bit: 0 1 The value of DADATA is always loaded into the DAC buffer. The value of DADATA is loaded into the DAC buffer when the timer 1 match is occurred. Figure 19-2. Digital to Analog Converter Control Register (DACON) 19-2 DAO S3CK318/FK318 D/A CONVERTER D/A CONVERTER DATA REGISTER (DADATAH/DADATAL) The DAC DATA register, DADATAH/DADATAL is located at the RAM address, 75H–76H. DADATAH/DADATAL specifies the digital data to generate analog voltage. A reset initializes the DADATAH/DADATAL value to "00H". The D/A converter output value, VDAO, is calculated by the following formula. n VDAO = VDD × 512 (n = 0–511, DADATAH/DADATAL value) Table 19-1. DADATA Setting to Generate Analog Voltage DADATAH.7 DADATAH.6 DADATAH.5 DADATAH.4 DADATAH.3 DADATAH.2 DADATAH.1 DADATAH.0 DADATAL.7 V DAO 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 V DD/21 0 1 0 0 0 0 0 0 0 V DD/22 0 0 1 0 0 0 0 0 0 V DD/23 0 0 0 1 0 0 0 0 0 V DD/24 0 0 0 0 1 0 0 0 0 V DD/25 0 0 0 0 0 1 0 0 0 V DD/26 0 0 0 0 0 0 1 0 0 V DD/27 0 0 0 0 0 0 0 1 0 V DD/28 0 0 0 0 0 0 0 0 1 V DD/29 NOTE: These are the values determined by setting just one-bit of DADATA.0–DADATA.8. Other values of DAO can be obtained with superimposition. D/A Converter Data Register (DADATAH/DADATAL) 75H/76H, R/W, Reset: 00H MSB .8 .7 .6 .5 .4 .3 .2 .1 LSB (DADATAH) MSB .0 - - - - - - - LSB (DADATAL) These bits should be always "0". Figure 19-3. D/A Converter Data Register (DADATAH/DADATAL) 19-3 D/A CONVERTER S3CK318/FK318 NOTES 19-4 S3CK318/FK318 20 FREQUENCY COUNTER FREQUENCY COUNTER OVERVIEW The S3CK318 uses a frequency counter (FC) to counter the analog frequencies, FM, AM, SW, or digital pules. The FC block consists of a 1/16 divider, gate control circuit, FC control register (FCCON) and a 24-bit binary counter. The gate control circuit, which controls the frequency counting time, is programmed using the FCMOD register. Four different gate times can be selected using FCMOD register settings. During gate time, the 24-bit FC counts the input frequency at the FMF or AMF pins. The FMF or AMF pin input signal for the 24-bit counter is selected using FCCON register settings. When the FMF pin input signal is selected, the signal is divided by 16. When the AMF pin input signal is selected, the signal is directly connected or divided by 16 to the FC. P0.1/FMF and P0.0/AMF signals also can be used normal input port and count external events. By setting FCMOD register, the gate is opened for 16-ms, 32-ms or 64-ms periods. During the open period of the gate, input frequency is counted by the 24-bit counter. When the gate is closed, the counting operation is complete, and an interrupt is generated. VDD P0.1 input P0PUR.1 FMF/P0.1 Sel 1/16 FCCON.2-.4 clear FCNT2, 1, 0 Sel Vss VDD 24-bit Counter Data Bus FCCON.2-.4 P0.0 input FCCON.1 clear FCCON.2-.4 P0PUR.0 FCMOD.2 FCMOD.0 -.1 AMF/P0.0 FC start Gate Control Circuit Gate Signal Generator FCCON.2-.4 Vss IRQ0.3 16/32/64 msec (fw =75 kHz) 0.5 kHz Internal Signal Figure 20-1. Frequency Counter Block Diagram 20-1 FREQUENCY COUNTER S3CK318/FK318 FC CONTORL REGISTER (FCCON) The FC control register (FCCON) is a 8-bit register that is used to stop/start frequency counting and select a signal of FMF or AMF. Frequency Counter Control Register (FCCON) 78H, R/W, Reset: 00H MSB .7 .6 .5 .4 .3 .2 .1 .0 LSB Not used Not used Frequency counter start bit: 0 1 Stop increasing counter value Start increasing counter value Frequency counter control bits: 0x 0 Select P0.1 signal (through the block dividing by 16), used to normal input or signal input. Select P0.0 signal, used to normal input or signal input. Select AMF signal; disable FMF pin (feedback resistor is off; pull-down through resistor), Input range is 0.5 - 5MHz. Select only FMF, 1/16-divided; disable AMF pin (feedback resistor is off; pull-down through resistor), Input range is 30 - 130 MHz. Select AMF signal, 1/16-divided; disable FMF pin (feedback resistor is off; pull-down through resistor), Input range is 5 - 30 MHz. Disable all inputs and frequency counter (feedback resistors are off, pull-down through resistors) 0x 1 100 101 110 111 NOTES: 1. 'x' means 'don't care' 2. "FCCON.4" is a control bit which can be used to determine whether the P0.0 and P0.1 are of purpose with a frequency counter (analog input 300mVp-p) or general input port. Figure 20-2. Frequency Counter Control Register (FCCON) Frequency Counter Register (FCNT2 - FCNT0) 7CH - 7AH, R, Reset: 00H MSB .23 .22 .21 .20 .19 .18 .17 .16 LSB (FCNT2, 7CH) MSB .15 .14 .13 .12 .11 .10 .9 .8 LSB (FCNT1, 7BH) MSB .7 .6 .5 .4 .3 .2 .1 .0 LSB (FCNT0, 7AH) Figure 20-3. Frequency Counter Register (FCNT2–FCNT0) 20-2 S3CK318/FK318 FREQUENCY COUNTER Table 20-1. Frequency Counter Control Register (FCCON) Bit Settings in Normal Operating Mode FCCON.4 FCCON.3 FCCON.2 FMF's Feedback Resistor AMF's Feedback Resistor FMF's Pull-down AMF's Pull-down 0 x x Off Off Off Off 1 0 0 Off On On Off 0 1 On Off Off On 1 0 Off On On Off 1 1 Off Off On On Table 20-2. Frequency Counter Control Register (FCCON) Bit Settings in Power-Down Mode FCCON.4 FCCON.3 FCCON.2 FMF's Feedback Resistor AMF's Feedback Resistor FMF's Pull-down AMF's Pull-down 0 x x Off Off Off Off 1 x x Off Off On On NOTE: 'x' means 'don't care'. INPUT PIN CONFIGURATION FOR AN AC FREQUENCY COUNT Because the FMF and AMF pins have built-in AC amplifiers, DC component of the input signal must be stripped off by the external capacitor. When the FMF or AMF pin is selected for AC frequency counter function, the voltage level of the corresponding pin is increased to approximately 1/2 VDD after a sufficiently long time. If the pin voltage does not increase, the AC amplifier exceeds its operating range and maybe cause an FC malfunction. To prevent this from occurring, you should program a sufficiently long time delay interval before starting the count operation. Capacitor IN Counter Input S3CK318 Figure 20-4. FMF and AMF Pin Configuration 20-3 FREQUENCY COUNTER S3CK318/FK318 FC MODE REGISTER (FCMOD) FCMOD is a 8-bit register which can be used to select the gate time, and check whether a FC counting operation has been completed or not. Frequency Counter Mode Register (FCMOD) 79H, R/W, Reset: 00H MSB .7 .6 .5 .4 .3 0 0 1 1 FC gate state bit (Read only): 1 .1 .0 LSB FC gate time selection bits: Not used 0 .2 This bit is cleared to "0", when FC counting is started by setting FCMOD.2 Gate is closed (After a specified gate time has elapsed) FC gate start bit: 0 1 0 1 0 1 Gate time is 16 ms Gate time is 32 ms Gate time is 64 ms Gate is open Not affeced FC counting is started, gate state bit (FCMOD.7) and gate start bit (FCMOD.2) is cleared to "0" automatically . Clear frequency values (24-bit counter) and 1/16-divider. Figure 20-5. Frequency Counter Mode Register (FCMOD) 20-4 S3CK318/FK318 FREQUENCY COUNTER GATE TIMES When you write a value to FCMOD, the FC gate is opened for a 16-millisecond, 32-millisecond, or 64-millisecond interval, setting with a rising clock edge. When the gate is open, the frequency at the AMF or FMF pin is counted by the 24-bit counter. When the gate closes, the FCMOD.7 is set to "1". An interrupt is then generated and the FC interrupt request bit (IRQ0.3) is set. Figure 20-6 shows gate timings with a 0.5 kHz internal clock. Clock (0.5 kHz) Counting ends 16 ms Gate Time Counting ends 32 ms 64 ms Counting Period Gate open here FCCON, FCMOD is written; FC gate start bit (FCMOD.2) is set to 1 then FC gate state bit (FCMOD.7) is clear to 0 automatically Counting ends; FCMOD.7 bit is changed "1" and IRQ0.3 is set to "1". Figure 20-6. Gate Timing (16, 32, or 64-ms) 20-5 FREQUENCY COUNTER S3CK318/FK318 Selecting "Gate Remains Open" If you select "gate remain open" (FCMOD.0 and FCMOD.1 = '11'), the FC counts the input signal during the open period of the gate. The gate closes the next time a value is written to FCMOD. Clock (0.5 kHz) Gate Time Counting Period The gate closes when FCMOD is rewritten Gate is opened by writing FCMOD Figure 20-7. Gate Timing (When Open) When you select "gate remains open" as the gating time, you can control the opening and closing of the gate in one of two ways: — Set the gate time to a specific interval (16-ms, 32-ms, or 64-ms) by setting bits FCMOD.1 and FCMOD.0. Gate Time Set FCMOD.1 = FCMOD.0 = "1" Set non-open gate time (16-, 32-, 64-ms) by bit FCMOD.1 and FCMOD.0 — Disable FC operation by setting bits FCCON.4–.2 to "111b". This method lets the gate remain open, and stops the counting operation. Gate Time Set FCMOD.1 = FCMOD.0 = "1" 20-6 Set FCCON.4 = FCCON.3 = FCCON.2 = "1" FC counting operation is stopped. S3CK318/FK318 FREQUENCY COUNTER Gate Time Errors A gate time error occurs whenever the gate signals are not synchronized to the interval instruction clock. That is, the FC does not start counter operation until a rising edge of the gate signal is detected, even though the counter start instruction (setting bit FCMOD.2) has been executed. Therefore, there is a maximum 16-ms timing error (see Figure 20-8). After you have executed the FC start instruction, you can check the gate state at any time. Please note, however that the FC does not actually start its counting operation until stabilization time for the gate control signal has elapsed. Instruction Execution (FCMOD Setting) 16 ms Clock (0.5 kHz) Actual Gate Signal (16 ms) Resulting Gate Signal Gate Time Errors Actual Counting Period Figure 20-8. Gate Timing (16-ms Error) Counting Errors The frequency counter counts the rising edges of the input signal in order to determine the frequency. If the input signal is High level when the gate is open, one additional pulse is counted. When the gate is close, however, counting is not affected by the input signal status. In other words, the counting error is "+1, 0". 20-7 FREQUENCY COUNTER S3CK318/FK318 FREQUENCY COUNTER (FC) OPERATION FCCON register bits 4-2 are used to select the input pin and the register bit 1 is use to start or stop FC increasing a counter value. The counting operation of FC is started by setting FCMOD.2 to "1". You stop the counting operation by setting FCCON.4–.2 to "111b". The FCNT2–0 retains its previous value until FCCON and FCMOD register values are specified. Setting bit FCMOD.2 starts the frequency counting operation. Counting continues as long as the gate is open. The 24-bit counter value is automatically cleared to 000000H after it overflow (at FFFFFFH), and continues counting from zero. A reset operation clears the counter to zero. FCNT2 FCNT2.7 FCNT2.6 FCNT2.5 FCNT2.4 FCNT2.3 FCNT2.2 FCNT2.1 FCNT2.0 FCNT1 FCNT1.7 FCNT1.6 FCNT1.5 FCNT1.4 FCNT1.3 FCNT1.2 FCNT1.1 FCNT1.0 FCNT0 FCNT0.7 FCNT0.6 FCNT0.5 FCNT0.4 FCNT0.3 FCNT0.2 FCNT0.1 FCNT0.0 When the specified gate open time has elapsed, the gate closes in order to complete the counter operation. At this time, the FC counting ends interrupt request bit (IRQ0.3) is automatically set to "1" and an interrupt is generated. The corresponding IRQ bit must be cleared to "0" by software when the interrupt is serviced (Refer to chapter 6 to clear IRQ bit). The FCMOD.7 is set to "1" at the same time the gate is closed. Since the FCMOD.7 is cleaned to "0" when FC operation start, you can check the FCMOD.7 to determine when FC operation stops (that is, when the specified gate open time has elapsed). The frequency applied to FMF or AMF pin is counted while the gate is open. The relationship between the count value (N) and input frequencies fFMF and fAMF is shown below. FMF (divided by 16 before counting) pin input frequency is fFMF = N (DEC) × 16 TG when TG = gate time (16 ms, 32 ms, 64 ms) AMF (divided by 16 before counting) pin input frequency is fAMF = N (DEC) × 16 TG when TG = gate time (16 ms, 32 ms, 64 ms) AMF pin input frequency is fAMF = N (DEC) TG when TG = gate time (16 ms, 32 ms, 64 ms) 20-8 S3CK318/FK318 FREQUENCY COUNTER Table 20-3 shows the range of frequency that you can apply to the AMF and FMF pins. Table 20-3. FC Frequency Characteristics Pin Voltage Level Frequency Range AMF 300 m VPP (min) 0.5 MHz to 5 MHz AMF (divided by 16) 300 m VPP (min) 5 MHz to 30 MHz FMF (divided by 16) 300 m VPP (min) 30 MHz to 130 MHz FC DATA CALCULATION Selecting the FMF pin for FC Input First, divide the signal at the FMF pin by 16, and then apply this value to the frequency counter. This means that the frequency counter value is equal to one-sixteenth of the input signal frequency. FMF input frequency (fFMF): 80 MHz Gate time (TG): 32 ms FC counter value (N): N = (fFMF/16) × TG = 80 × 106/16 × 32 × 10-3 = 160000 = 027100H Bin Hex FCNT 0 0 0 0 0 0 0 1 2 FCNT2 0 0 1 1 1 0 7 0 0 1 FCNT1 1 0 0 0 0 0 0 0 0 0 0 FCNT0 20-9 FREQUENCY COUNTER S3CK318/FK318 Selecting the AMF (divided by 16) Pin for FC Input First, divided the signal at the AMF pin 16, and then apply this value to the frequency counter. This means that the frequency counter value is equal to one-sixteenth of the input signal frequency. AMF input frequency (fAMF): 20 MHz Gate time (TG): 16 ms FC counter value (N): N = (fAMF/16) × TG = 20 × 106/16 × 16 × 10-3 = 20000 = 004E20H Bin 0 0 Hex 0 0 0 0 0 0 0 0 1 0 FCNT 0 0 1 1 4 1 0 0 0 E FCNT2 1 0 0 0 2 0 0 0 0 0 FCNT1 FCNT0 Selecting the AMF Pin for FC Input The signal at AMF pin is directly input to the frequency counter. AMF input frequency (fAMF): 450 kHz Gate time (TG): 64 ms FC counter value (N): N = (fAMF) × TG = 450 × 103 × 64 × 10-3 = 28800 = 007080H Bin Hex FCNT 20-10 0 0 0 0 0 0 0 0 0 FCNT2 0 0 1 1 1 0 7 0 0 0 FCNT1 0 1 0 0 0 0 8 0 0 FCNT0 S3CK318/FK318 21 ELECTRICAL DATA ELECTRICAL DATA Table 21-1. Absolute Maximum Ratings (TA = 25 °C) Parameter Symbol Conditions VDD – – 0.3 to + 4.6 V Input voltage VI – – 0.3 to VDD + 0.3 V Output voltage VO – – 0.3 to VDD + 0.3 V Output current high IOH Supply voltage Output current low IOL One I/O pin active – 18 All I/O pins active – 60 One I/O pin active + 30 Total pin current for port + 100 Unit mA mA TA – – 25 to + 85 °C TSTG – – 65 to + 150 °C Operating temperature Storage temperature Rating Table 21-2. D.C. Electrical Characteristics (TA = – 25 °C to + 85 °C, VDD = 1.95 V to 3.6 V) Parameter Operating voltage Input high voltage Input low voltage Output high voltage Symbol VDD Conditions Min Typ Max Unit fx = 8 MHz 2.3 – 3.6 V fx = 2 MHz 1.95 – 3.6 – VDD V – 0.3V DD V VIH1 All input pins except VIH2, VIH3 0.7V DD VIH2 P1, P2, P3, and nRESET 0.8V DD VIH3 XIN, XTIN VIL1 All input pins except VIL2, VIL3 VIL2 P1, P2, P3, and nRESET VIL3 XIN, XTIN VOH VDD = 2.7 V to 3.6 V; VDD–0.1 – 0.2V DD 0.1 VDD–1.0 – – – – 1.0 V IOH = –1 mA, all output pins Output low voltage VOL VDD = 2.7 V to 3.6 V; IOL = 8 mA, all output pins 21-1 ELECTRICAL DATA S3CK318/FK318 Table 21-2. D.C. Electrical Characteristics (Continued) (TA = – 25 °C to + 85 °C, VDD = 1.95 V to 3.6 V) Parameter Input high leakage current Input low leakage current Symbol Conditions Min Typ Max Unit uA ILIH1 VIN = VDD All input pins except ILIH2 – – 3 ILIH2 VIN = VDD ; XIN, XTIN – – 20 ILIL1 VIN = 0 V – – –3 All input pins except ILIL2 ILIL2 VIN = 0 V; XIN, XTIN, nRESET Output high leakage current ILOH VOUT = VDD All I/O pins and output pins – – 3 Output low leakage current ILOL VOUT = 0 V – – –3 Oscillator feedback resistors Pull-up resistor –20 All I/O pins and output pins ROSC1 VDD = 3.0 V, TA = 25 °C XIN = VDD, XOUT = 0 V 600 1700 3000 ROSC2 VDD = 3.0 V, TA = 25 °C XTIN = VDD, XTOUT = 0 V 3000 6000 9000 kΩ RL1 VIN = 0 V; VDD = 3 V ± 10% Port 0,1,2,3,4,5,6 TA = 25 °C 40 70 140 RL2 VIN = 0 V; VDD = 3 V ± 10% TA = 25 °C, nRESET only 200 400 800 TA = 25 °C 40 55 90 2.5 – 3.6 V VDD-0.2 VDD VDD+0.2 V 0.8V DD-0.2 0.8V DD 0.8V DD+ LCD voltage dividing resistor RLCD LCD driving voltage (resistor bias) VLCD Middle output VLC1 VDD = 2.7 V to 3.6 V voltage VLC2 LCD clock = 0 Hz TA = 25 °C VLC3 – 0.2 0.6V DD-0.2 0.6V DD 0.6V DD+ 0.2 VLC4 0.4V DD-0.2 0.4V DD 0.4V DD+ 0.2 VLC5 0.2V DD-0.2 0.2V DD 0.2V DD+ 0.2 21-2 uA S3CK318/FK318 ELECTRICAL DATA Table 21-2. D.C. Electrical Characteristics (Concluded) (TA = – 25 °C to + 85 °C, VDD = 1.95 V to 3.6 V) Parameter COM output voltage deviation Symbol VDC Conditions VDD = VLC2 = 3 V (V LCD–COMi) Min Typ Max Unit – ± 60 ± 120 mV – ± 60 ± 120 – 2.5 5 2 4 Io = ± 15 µA , (i = 0–7) SEG output voltage deviation VDS VDD = VLC2 = 3 V (V LCD–SEGi) Io = ± 15 µA , (i = 0–19) Supply current (1) IDD1 (2) Main operating: FC enable VDD = 3 V ± 10 % mA 4.5 MHz crystal oscillator IDD2 (2) Main operating: VDD = 3 V ± 10 % 4.5 MHz crystal oscillator IDD3 (2) Idle mode: VDD = 3 V ± 10 % 4.5 MHz crystal oscillator – 0.3 1.0 IDD4 (3) Sub operating: main-osc stop VDD = 3 V ± 10 % – 40 80 – 10 20 – 0.2 2 uA 75 kHz crystal oscillator IDD5 (3) Sub idle mode: main-osc stop VDD = 3 V ± 10 % 75 kHz crystal oscillator IDD6 (4) Main stop mode : sub-osc stop VDD = 3 V ± 10 %, TA = 25 °C NOTES: 1. Supply current does not include current drawn through internal pull-up resistors, LCD voltage dividing resistors, voltage level detector, ADC, DAC, FC or external output current loads. 2. IDD1, IDD2, and IDD3 includes a power consumption of sub oscillator. 3. IDD4 and IDD5 are the current when the main clock oscillation stop and the sub clock is used. 4. IDD6 is the current when the main and sub clock oscillation stop. 5. Every value in this table is measured when bits 2-0 of the power control register (PCON.2–.0) is set to 111B. 21-3 ELECTRICAL DATA S3CK318/FK318 Table 21-3. A.C. Electrical Characteristics (TA = – 25 °C to + 85 °C, VDD = 1.95 V to 3.6 V) Parameter Symbol Conditions Interrupt input high, low width tINTH, tINTL P1.0–P1.3, P3.0–P3.2 VDD = 3 V nRESET input low width tRSL VDD = 3 V ± 10 % t INTL Min Typ Max Unit – 200 – ns 10 – – µs t INTH 0.8 VDD 0.2 VDD Figure 21-1. Input Timing for External Interrupts (P1, P3.0–P3.2) tRSL nRESET 0.2 VDD Figure 21-2. Input Timing for RESET 21-4 S3CK318/FK318 ELECTRICAL DATA Table 21-4. Input/Output Capacitance (TA = –25 °C to + 85 °C, VDD = 0 V) Parameter Symbol Input capacitance CIN Output capacitance COUT I/O capacitance Conditions f = 1 MHz; unmeasured pins are Min Typ Max Unit – – 10 pF returned to VSS. CIO Table 21-5. Data Retention Supply Voltage in Stop Mode (TA = –25 °C to + 85 °C) Parameter Symbol Conditions Min Typ Max Unit Data retention supply voltage VDDDR – 1.95 – 3.6 V Data retention supply current IDDDR – – 2 uA VDDDR = 1.95 V RESET Occur Oscillation Stabilization Time Stop Mode Normal Operating Mode Data Retention Mode VDD Execution of STOP Instruction VDDDR nRESET 0.2VDD tWAIT NOTE: tWAIT is same as 2048 x 32 x 1/fxx when RCOD-OPT .14-.12 = "111b". That is, tWAIT is decided by RCOD-OPT .14-.12 when system Reset is generated. Figure 21-3. Stop Mode Release Timing When Initiated by a RESET 21-5 ELECTRICAL DATA S3CK318/FK318 OSC Start up time Oscillation Stabilization Time Stop Mode Normal Operating Mode Data Retention VDD Execution of STOP Instruction VDDDR INT 0.2 VDD tWAIT NOTE: t WAIT is decided by WDTCON register setting. When bit 6, 5, 4 of WDTCON is "110"b, t WAIT is 1024 x 32 x 1/fxx. Figure 21-4. Stop Mode (Main) Release Timing Initiated by Interrupts Oscillation OSC Start Stabilization Time up time Stop Mode Normal Operating Mode Data Retention VDD Execution of STOP Instruction VDDDR INT 0.2 VDD tWAIT NOTE: tWAIT is same as 256 x 32 x 1/fxx. The oscillator strat up time is less than 100 ms. The value of 256 which is selected for the clock source of basic timer must be kept within this value. Figure 21-5. Stop Mode (Sub) Release Timing Initiated by Interrupts 21-6 S3CK318/FK318 ELECTRICAL DATA Table 21-6. A/D Converter Electrical Characteristics (TA = – 25 °C to 85 °C, VDD = 2.0 V to 3.6 V) Parameter Symbol Conditions Resolution Total Accuracy VDD = 3.072 V Min Typ Max Unit – 10 – bit – – ±3 LSB Integral Linearity Error ILE VSS = 0 V – ±2 Differential Linearity Error DLE fxx = 8MHz – ±1 Offset Error of Top EOT ±1 ±3 Offset Error of Bottom EOB ± 0.5 ±2 Conversion Time (1) TCON 25 – – µs Analog Input Voltage VIAN – VSS – VDD V Analog Input Impedance RAN – 2 – – MΩ Analog Input Current IADIN VDD = 3 V – – 10 µA Analog Block Current (2) IADC VDD = 3 V – 0.5 1.5 mA 100 500 nA Min Typ Max Unit – – 9 bit 10-bit resolution 50 × fxx/4, fxx = 8MHz VDD = 3 V When power down mode NOTES: 1. 'Conversion time' is the period between start and end of conversion operation. 2. IADC is an operating current during A/D conversion. Table 21-7. D/A Converter Electrical Characteristics (TA = – 25 °C to 85 °C, VDD = 2.0 V to 3.6 V, VSS = 0 V) Parameter Symbol Conditions Resolution – VDD = 3.072 V Absolute Accuracy – –3 – 3 LSB Differential Linearity Error DLE –2 – 2 LSB Setup Time tSU – – 5 µs Output Resistance RO 6 9 12 kΩ 21-7 ELECTRICAL DATA S3CK318/FK318 Table 21-8. Characteristics of Frequency Counter (TA = – 25 °C to + 85 °C, VDD = 2.0 V to 3.6 V) Parameter Symbol Conditions Min Typ Max Units Input voltage (peak to peak) VIN AMF/FMF mode, sine wave input 0.3 – VDD V Frequency fAMF AMF mode, sine wave input; VIN = 300mVP-P 0.5 – 5 MHz FCCON.4–.2 = 100b AMF mode, sine wave input; VIN = 300mVP-P 5 30 30 130 FCCON.4–.2 = 110b fFMF FMF mode, sine wave input; VIN = 300mVP-P FCCON.4–.2 = 101b Table 21-9. Characteristics of Battery Level Detect Circuit (TA = 25 °C) Parameter Symbol Operating voltage of BLD VDDBLD Voltage of BLD Current consumption VBLD IBLD Conditions Min Typ Max Unit 1.95 – 3.6 V BLDCON.4–.2 = 100b 1.95 2.2 2.45 BLDCON.4–.2 = 101b 2.15 2.4 2.65 BLDCON.4–.2 = 110b 2.3 2.6 2.9 – 60 100 40 80 BLD on VDD = 3.0 V VDD = 2.0 V µA Hysteresys voltage of BLD ∆V BLDCON.4–.2 = 100b, 101b, 110b – 10 100 mV BLD circuit response time TB fw = 75 kHz – – 1 ms 21-8 S3CK318/FK318 ELECTRICAL DATA Table 21-10. LCD Contrast Level Characteristics (TA = – 25 °C to 85 °C, VDD = 2.5 V to 3.6 V) Parameter LCD drive voltage Symbol VLC1 Conditions LMOD Value Min Typ Max Unit Connect a 1Mohm 000 Typ. VDD Typ. V load resistor 001 x 0.9 0.96 VDD x 1.1 between VSS and VLC1 010 0.92 VDD (No panel load) 011 0.86 VDD 100 0.80 VDD 101 0.75 VDD 110 0.70 VDD 21-9 ELECTRICAL DATA S3CK318/FK318 Table 21-11. Synchronous SIO Electrical Characteristics (TA = – 25 °C to + 85 °C, VDD = 1.95 V to 3.6 V, VSS = 0 V, fxx = 8 MHz oscillator) Parameter Symbol Conditions Min Typ Max Unit SCK Cycle time TCYC – 250 – – ns Serial Clock High Width TSCKH – 75 – – Serial Clock Low Width TSCKL – 75 – – Serial Output data delay time TOD – – – 65 Serial Input data setup time TID – 50 – – Serial Input data Hold time TIH – 125 – – t CYC tSCKL tSCKH SCK 0.8 VDD 0.2 VDD t ID tIH 0.8 VDD Input Data SI 0.2 VDD tOD SO Output Data Figure 21-6. Serial Data Transfer Timing 21-10 S3CK318/FK318 ELECTRICAL DATA Table 21-12. Main Oscillator Frequency (fOSC1) (TA = – 25 °C to + 85 °C VDD = 1.95 V to 3.6 V) Oscillator Crystal/Ceramic Clock Circuit XIN Test Condition VDD = 1.95 V – 3.6 V XOUT C1 Min Typ Max Unit 0.4 – 2.0 MHz C2 VDD = 2.3 V – 3.6 V External clock X IN VDD = 1.95 V – 3.6 V XOUT 8.0 0.4 – VDD = 2.3 V – 3.6 V RC NOTE: XIN VDD = 3 V XOUT 2.0 MHz 8.0 0.4 – 1 MHz Min Typ Max Unit Oscillation frequency and Xin input frequency data are for oscillator characteristics only. Table 21-13. Main Oscillator Clock Stabilization Time (TST1) (TA = – 25 °C to + 85 °C, VDD = 1.95 V to 3.6 V) Oscillator Test Condition Crystal VDD = 1.95 V to 3.6 V – – 30 ms Ceramic VDD = 1.95 V to 3.6 V – – 10 ms External clock XIN input high and low level width (t XH, tXL) 62.5 – 1250 ns NOTE: Oscillation stabilization time (TST1) is the time required for the CPU clock to return to its normal oscillation frequency after a power-on occurs, or when Stop mode is ended by a nRESET signal. 21-11 ELECTRICAL DATA S3CK318/FK318 1/fosc1 tXL tXH XIN VDD - 0.1 V 0.1 V Figure 21-7. Clock Timing Measurement at XIN Table 21-14. Sub Oscillator Frequency (fOSC2) (TA = – 25 °C to + 85 °C, VDD = 1.95 V to 3.6 V) Oscillator Crystal Clock Circuit Test Condition Min Typ Max Unit XT IN XT OUT – 32 – 100 kHz – 32 – 100 kHz C1 External clock NOTE: C2 XT IN XT OUT Oscillation frequency and Xtin input frequency data are for oscillator characteristics only. 1/fosc2 tXTL t XTH XT IN VDD - 0.1 V 0.1 V Figure 21-8. Clock Timing Measurement at XTIN 21-12 S3CK318/FK318 ELECTRICAL DATA Table 21-15. Sub Oscillator (Crystal) Start up Time (tST2) (TA = – 25 °C to + 85 °C, VDD = 1.95 V to 3.6 V) Oscillator Test Condition Min Typ Max Unit Normal drive VDD = 1.95 V to 3.6 V – – 10 sec External clock XTIN input high and low level width (t XTH, tXTL) 5 – 15 us NOTE: Oscillator stabilization time (tST2) is the time required for the oscillator to it's normal oscillation when stop mode is released by interrupts. CPU CLOCK 8 MHz 4 MHz 2 MHz 0.4 MHz 1.95 V 2.3 V 3.6 V Supply Voltage (V) Minimum instruction clock = oscillator frequency Figure 21-9. Operating Voltage Range 21-13 ELECTRICAL DATA S3CK318/FK318 NOTES 21-14 S3CK318/FK318 MECHANICAL DATA 22 MECHANICAL DATA OVERVIEW The S3CK318/FK318 is available in 44-QFP-1010B package. 13.20 + 0.30 0-8 10.00 + 0.10 10.00 0.10 MAX 44-QFP-1010B 0.80 + 0.20 13.20 + 0.30 0.15 - 0.05 #44 #1 0.80 + 0.10 0.35 - 0.05 0.15 MAX 0.05 MIN (1.00) 2.05 + 0.10 2.30 MAX NOTE : Dimensions are in millimeters. Figure 22-1. 44-Pin QFP Package Dimensions (44-QFP-1010B) 22-1 MECHANICAL DATA S3CK318/FK318 NOTES 22-2 S3CK SERIES MASK ROM ORDER FORM Product description: Device Number: S3CK__________- ___________ (write down the ROM code number) Product Order Form: Package Pellet Wafer Package Type: __________ Package Marking (Check One): Standard Custom A Custom B (Max 10 chars) SEC (Max 10 chars each line) @ YWW Device Name @ YWW Device Name @ YWW @ : Assembly site code, Y : Last number of assembly year, WW : Week of assembly Delivery Dates and Quantities: Deliverable Required Delivery Date Quantity Comments – Not applicable See ROM Selection Form ROM code Customer sample Risk order See Risk Order Sheet Please answer the following questions: F For what kind of product will you be using this order? New product Upgrade of an existing product Replacement of an existing product Other If you are replacing an existing product, please indicate the former product name ( F ) What are the main reasons you decided to use a Samsung microcontroller in your product? Please check all that apply. Price Product quality Features and functions Development system Technical support Delivery on time Used same micom before Quality of documentation Samsung reputation Mask Charge (US$ / Won): ____________________________ Customer Information: Company Name: Signatures: ___________________ ________________________ Telephone number _________________________ __________________________________ (For duplicate copies of this form, and for additional ordering information, please contact your local Samsung sales representative. Samsung sales offices are listed on the back cover of this book.) (Person placing the order) (Technical Manager) (For duplicate copies of this form, and for additional ordering information, please contact your local Samsung sales representative. Samsung sales offices are listed on the back cover of this book.) S3CK SERIES REQUEST FOR PRODUCTION AT CUSTOMER RISK Customer Information: Company Name: ________________________________________________________________ Department: ________________________________________________________________ Telephone Number: __________________________ Date: __________________________ Fax: _____________________________ Risk Order Information: Device Number: S3CK________- ________ (write down the ROM code number) Package: Number of Pins: ____________ Intended Application: ________________________________________________________________ Product Model Number: ________________________________________________________________ Package Type: _____________________ Customer Risk Order Agreement: We hereby request SEC to produce the above named product in the quantity stated below. We believe our risk order product to be in full compliance with all SEC production specifications and, to this extent, agree to assume responsibility for any and all production risks involved. Order Quantity and Delivery Schedule: Risk Order Quantity: _____________________ PCS Delivery Schedule: Delivery Date (s) Signatures: Quantity _______________________________ (Person Placing the Risk Order) Comments _______________________________________ (SEC Sales Representative) (For duplicate copies of this form, and for additional ordering information, please contact your local Samsung sales representative. Samsung sales offices are listed on the back cover of this book.) S3FK SERIES FLASH FACTORY WRITING ORDER FORM Product Description: Device Number: S3FK________-________ (write down the ROM code number) Product Order Form: Package Pellet If the product order form is package: Wafer Package Type: _____________________ Package Marking (Check One): Standard Custom A Custom B (Max 10 chars) SEC (Max 10 chars each line) @ YWW Device Name @ YWW Device Name @ YWW @ : Assembly site code, Y : Last number of assembly year, WW : Week of assembly Delivery Dates and Quantity: ROM Code Release Date Required Delivery Date of Device Quantity Please answer the following questions: F What is the purpose of this order? New product development Upgrade of an existing product Replacement of an existing microcontroller Other If you are replacing an existing microcontroller, please indicate the former microcontroller name ( F ) What are the main reasons you decided to use a Samsung microcontroller in your product? Please check all that apply. Price Product quality Features and functions Development system Technical support Delivery on time Used same micom before Quality of documentation Samsung reputation Customer Information: Company Name: Signatures: ___________________ ________________________ Telephone number _________________________ __________________________________ (For duplicate copies of this form, and for additional ordering information, please contact your local Samsung sales representative. Samsung sales offices are listed on the back cover of this book.) (Person placing the order) (Technical Manager) (For duplicate copies of this form, and for additional ordering information, please contact your local Samsung sales representative. Samsung sales offices are listed on the back cover of this book.)