SGMICRO SGM358

SGM321
SGM358
SGM324
PRODUCT DESCRIPTION
The SGM321(single), SGM358(dual) and SGM324(quad)
are rail-to-rail input and output voltage feedback
amplifiers offering low cost. They have a wide input
common-mode voltage range and output voltage
swing, and take the minimum operating supply
voltage down to 2.1V and the maximum recommended
supply voltage is 5.5 V. All are specified over the
extended – 40°C to +85°C temperature range.
The SGM321/358/324 provide 1MHz bandwidth at a
low current consumption of 60µA per amplifier. Very
low input bias currents of 10pA, enable SGM321/358/
324 to be used for integrators, photodiode amplifiers,
and piezoelectric sensors. Rail-to-rail inputs and
outputs are useful to designers buffering ASIC in
single-supply systems.
1MHz, 60µA, Rail-to-Rail I/O
CMOS Operational Amplifier
FEATURES
• Low Cost
• Rail-to-Rail Input and Output
0.8mV Typical VOS
• Unity Gain Stable
• Gain Bandwidth Product: 1MHz
• Very Low Input Bias Currents: 10pA
• Operates on 2.1 V to 5.5 V Supplies
• Input Voltage Range:
- 0.1 V to +5.6 V with VS = 5.5 V
• Low Supply Current: 60µA/Amplifier
• Small Packaging
SGM321 Available in SOT23-5 and SC70-5
SGM358 Available in SO-8, MSOP-8 and PDIP-8
SGM324 Available in SO-14, SO-16, TSSOP-14 and
TSSOP-16
PIN CONFIGURATIONS (Top View)
Applications for the series amplifiers include safety
monitor- ing, portable equipment, battery and power
supply control, and signal conditioning and interfacing
for transducers in very low power systems.
SGM358
SGM321
+IN
The SGM321 is available in SOT23-5 and SC70-5
packages. The SGM358 comes in SO-8,MSOP-8 and
PDIP-8 packages. The SGM324 is offered in SO-14,
TSSOP-14, TSSOP-16 and SO-16 packages.
5
1
OUT A 1
8
+VS
-INA 2
7
OUT B
+INA 3
6 -INB
-VS 4
5 +INB
+VS
-VS 2
-IN 3
4
OUT
SOT23-5 / SC70-5
APPLICATIONS
ASIC Input or Output Amplifier
Sensor Interface
Piezo Electric Transducer Amplifier
Medical Instrumentation
Mobile Communication
Audio Output
Portable Systems
Smoke Detectors
Notebook PC
PCMCIA cards
Battery –Powered equipment
DSP interface
Shengbang Microelectronics Co, Ltd
Tel: 86/451/84348461
www.sg-micro.com
SO-8 / MSOP-8 / PDIP-8
SGM324
SGM324
OUT A
1
16 OUT D
-IN A
2
15 -IND
OUT A
1
14 OUT D
+IN A
3
14 +IND
-IN A
2
13 -IND
+VS
4
13 -VS
+IN A
3
12 +IND
+INB
5
12 +INC
+VS
4
11 -VS
-INB
6
11 -INC
+INB
5
10 +INC
OUT B
7
10 OUT C
-INB
6
NC
8
NC = NO CONNECT
TSSOP-16 / SO-16
9
NC
OUT B
7
9
-INC
8
OUT C
TSSOP-14/SO-14
REV. D
ELECTRICAL CHARACTERISTICS : VS = +5V
(At RL = 100kΩ connected to Vs/2,and VOUT = Vs/2, unless otherwise noted)
SGM321/358/324
PARAMETER
CONDITION
TYP
MIN/MAX OVER TEMPERATURE
+25℃
+25℃
-40℃
to 85℃
UNITS
MIN / MAX
±0.8
±5
±5.6
INPUT CHARACTERISTICS
Input Offset Voltage (VOS)
Input Bias Current (IB)
Input Offset Current (IOS)
mV
MAX
10
pA
TYP
10
pA
TYP
- 0.1 to + 5.6
V
TYP
Common-Mode Voltage Range (VCM)
VS = 5.5V
Common-Mode Rejection Ratio(CMRR)
VS = 5.5V, VCM = - 0.1V to 4 V
70
62
62
dB
MIN
VS = 5.5V, VCM = - 0.1V to 5.6 V
68
56
55
dB
MIN
Open-Loop Voltage Gain( AOL)
RL = 5KΩ ,Vo = 0.1V to 4.9V
80
70
70
dB
MIN
RL =100KΩ ,Vo = 0.035V to 4.965V
84
80
80
dB
MIN
2.7
µV/℃
TYP
RL = 100KΩ
0.008
V
TYP
RL = 10KΩ
0.08
V
TYP
MIN
Input Offset Voltage Drift (∆VOS/∆T)
OUTPUT CHARACTERISTICS
Output Voltage Swing from Rail
Output Current (IOUT)
POWER
23
20
18.8
mA
2.1
2.5
V
MIN
5.5
5.5
V
MAX
SUPPLY
Operating Voltage Range
Power Supply Rejection Ratio (PSRR)
Quiescent Current / Amplifier (IQ)
DYNAMIC PERFORMANCE
Vs = +2.5 V to + 5.5 V
VCM = (-VS) + 0.5
82
60
58
dB
MIN
IOUT = 0
60
80
86
µA
MAX
1
MHz
TYP
CL = 100pF
Gain-Bandwidth Product (GBP)
Slew Rate (SR)
G = +1 , 2V Output Step
0.52
V/µs
TYP
Settling Time to 0.1%( tS)
G = +1, 2 V Output Step
5.3
µs
TYP
Overload Recovery Time
VIN ·Gain = Vs
2.6
µs
TYP
f = 1kHz
27
nV/
Hz
TYP
f = 10kHz
20
nV/
Hz
TYP
NOISE PERFORMANCE
Voltage Noise Density (en)
Specifications subject to change without notice.
2
SGM321/358/324
PACKAGE/ORDERING INFORMATION
MODEL
SGM321
SGM358
SGM324
ORDER NUMBER
PACKAGE
DESCRIPTION
PACKAGE
OPTION
MARKING
INFORMATION
SGM321YC5/TR
SC70-5
Tape and Reel, 3000
321
SGM321YN5/TR
SOT23-5
Tape and Reel, 3000
321
SGM358YS/TR
SO-8
Tape and Reel, 2500
SGM358YS
SGM358YMS/TR
MSOP-8
Tape and Reel, 3000
SGM358YMS
SGM358YP
PDIP-8
Tube, 50
SGM358YP
SGM324YS/TR
SO-16
Tape and Reel, 2500
SGM324YS
SGM324YTS/TR
TSSOP-16
Tape and Reel, 3000
SGM324YTS
SGM324YS14/TR
SO-14
Tape and Reel, 2500
SGM324YS14
SGM324YTS14/TR
TSSOP-14
Tape and Reel, 3000
SGM324YTS14
CAUTION
ABSOLUTE MAXIMUM RATINGS
Supply Voltage, V+ to V- . . . . . . . . . . . . . . . . . . . . . 7.5 V
Common-Mode Input Voltage
. . . . . . . . . . . . . . . . . . . . (–VS) – 0.5 V to (+VS )+0.5V
Storage Temperature Range . . . . . . . . .–65℃ to +150℃
Junction Temperature . . . . . . . . . . . . . . . .. . . . . . . .160℃
Operating Temperature Range . . . . . . . –45℃ to +85℃
This integrated circuit can be damaged by ESD.
Shengbang Micro-electronics recommends that all
integrated circuits be handled with appropriate
precautions. Failure to observe proper handling and
installation procedures can cause damage.
ESD damage can range from subtle performance
degradation to complete device failure. Precision
integrated circuits may be more susceptible to
damage because very small parametric changes could
cause the device not to meet its published
specifications.
Package Thermal Resistance @ TA = 25℃
SC70-5, θJA................................................................ 333℃/W
SOT23-5, θJA.............................................................. 190℃/W
SO-8, θJA......................................................................125℃/W
MSOP-8, θJA.............................................................. 216℃/W
SO-16, θJA..................................................................... 82℃/W
TSSOP-16, θJA............................................................ 105℃/W
Lead Temperature Range (Soldering 10 sec)
.....................................................260℃
ESD Susceptibility
HBM................................................................................4000V
MM....................................................................................400V
NOTES
1. Stresses above those listed under Absolute Maximum
Ratings may cause permanent damage to the device. This is
a stress rating only; functional operation of the device at
these or any other conditions above those indicated in the
operational section of this specification is not implied.
Exposure to absolute maximum rating conditions for
extended periods may affect device reliability.
3
SGM321/358/324
TYPICAL PERFORMANCE CHARACTERISTICS
At TA = +25℃, VS = +5V, and RL = 100kΩ connected to Vs/2,unless otherwise noted.
Small-Signal Step Response
Large-Signal Step Response
G = +1
CL = 100pF
RL = 100KΩ
500mV/div
20mV/div
G = +1
CL = 100pF
RL = 100KΩ
2µs/div
10µs/div
Small-Signal Overshoot vs.Load Capacitance
Small-Signal Overshoot vs.Load Capacitance
60
G = -5
RFB = 100KΩ
50
Small-Signal Overshoot(%)
40
30
20
10
0
G = -1
RFB = 100KΩ
50
40
30
G = +1
RL = 100KΩ
20
10
0
10
100
1000
Load Capacitance(pF)
10000
10
6
100
1000
Load Capacitance(pF)
10000
Quiescent And Short-Circuit Current
vs.Supply Voltage
Maximum Output Voltage vs.Frequency
50
30
Quiescent Current(μA)
VS = 5.5V
5
Output Voltage(Vp-p)
G = -1
RFB = 5KΩ
VS = 5V
4
Maximum Output Voltage
Without Slew-Rate
Induced Distortion
3
VS = 2.5V
2
1
0
1
10
100
1000
Frequency(kHz)
10000
45
25
35
15
ISC
30
10
25
5
2
4
20
IQ
40
2.5
3
3.5
4
4.5
Supply Voltage(V)
5
Short-Circuit Current(mA)
Small-Signal Overshoot(%)
60
5.5
SGM321/358/324
TYPICAL PERFORMANCE CHARACTERISTICS
At TA = +25℃, VS = +5V, and RL = 100kΩ connected to Vs/2,unless otherwise noted.
Input Voltage Noise Spectral Density
vs.Frequency
CMRR And PSRR vs.Frequency
100
1000
Voltage Noise(nV/√Hz)
90
CMRR,PSRR(dB)
80
70
60
CMRR
50
40
PSRR
30
20
100
10
0
0.01
0.1
1
10
100
Frequency(kHz)
1000
10
0.01
10000
Output Voltage Swing vs.Output Current
10
100
Output Voltage Swing vs.Output Current
135℃
Sourcing Current
135℃
Output Voltage(V)
25℃
-50℃
2
VS = 5V
25℃
4
VS = 3V
1
-50℃
25℃
135℃
Sinking Current
-50℃
Sourcing Current
3
2
Sinking Current
-50℃
1
25℃
135℃
0
0
0
4
8
12
16
20
0
5
10
Output Current(mA)
55
110
Open–Loop Gain(dB)
120
VS = 5V
45
VS = 3V
VS = 2.5V
40
20
25
30
Open-Loop Gain vs.Temperature
60
50
15
Output Current(mA)
Supply Current vs.Temperature
Supply Current(μA)
1
Frequency(kHz)
5
3
Output Voltage(V)
0.1
35
30
RL = 5kΩ
RL = 100kΩ
100
90
80
70
60
-50 -30 -10
10 30 50 70
Temperature(℃)
90
110 130
-50 -30 -10
5
10 30 50 70
Temperature(℃)
90
110 130
SGM321/358/324
TYPICAL PERFORMANCE CHARACTERISTICS
At TA = +25℃, VS = +5V, and RL = 100kΩ connected to Vs/2,unless otherwise noted.
Common-Mode Rejection Ratio
vs.Temperature
Power-Supply Rejection Ratio
vs.Temperature
120
120
-Vs < VCM < (+Vs)-1.5V
110
110
100
90
PSRR(dB)
CMRR(dB)
100
-Vs < VCM <(+Vs)
80
90
80
70
70
60
60
-50 -30 -10 10 30 50 70
Temperature(℃)
-50 -30 -10 10 30 50 70
Temperature(℃)
90 110 130
90 110 130
Overload Recovery Time
2.5V
Vs = 5V
G = -5
VIN = 500mV
0V
500mV
0V
Time(2µs/div)
6
SGM321/358/324
Power-Supply Bypassing and Layout
APPLICATION NOTES
The SGM3XX family operates from either a single +2.5V to
+5.5V supply or dual ±1.25V to ±2.75V supplies. For
single-supply operation, bypass the power supply VDD with a
0.1µF ceramic capacitor which should be placed close to the
VDD pin. For dual-supply operation, both the VDD and the VSS
supplies should be bypassed to ground with separate 0.1µF
ceramic capacitors. 2.2µF tantalum capacitor can be added for
better performance.
Driving Capacitive Loads
The SGM3XX can directly drive 250pF in unity-gain without
oscillation. The unity-gain follower (buffer) is the most sensitive
configuration to capacitive loading. Direct capacitive loading
reduces the phase margin of amplifiers and this results in ringing
or even oscillation. Applications that require greater capacitive
drive capability should use an isolation resistor between the
output and the capacitive load like the circuit in Figure 1. The
isolation resistor RISO and the load capacitor CL form a zero to
increase stability. The bigger the RISO resistor value, the more
stable VOUT will be. Note that this method results in a loss of gain
accuracy because RISO forms a voltage divider with the RLOAD.
VDD
VDD
10µF
10µF
0.1µF
0.1µF
RISO
Vn
VOUT
SGM321
VIN
Vn
CL
SGM321
VOUT
Vp
10µF
Vp
Figure 1. Indirectly Driving Heavy Capacitive Load
An improvement circuit is shown in Figure 2, It provides DC
accuracy as well as AC stability. RF provides the DC accuracy by
connecting the inverting signal with the output, CF and RIso serve
to counteract the loss of phase margin by feeding the high
frequency component of the output signal back to the amplifier’s
inverting input, thereby preserving phase margin in the overall
feedback loop.
VOUT
SGM321
0.1µF
VSS(GND)
VSS
Figure 3. Amplifier with Bypass Capacitors
CF
RF
RISO
SGM321
VIN
VOUT
CL
RL
Figure 2. Indirectly Driving Heavy Capacitive Load with DC
Accuracy
For no-buffer configuration, there are two others ways to
increase the phase margin: (a) by increasing the amplifier’s gain
or (b) by placing a capacitor in parallel with the feedback resistor
to counteract the parasitic capacitance associated with inverting
node.
7
SGM321/358/324
Typical Application Circuits
C
Differential Amplifier
R2
R1
The circuit shown in Figure 4 performs the difference function. If
the resistors ratios are equal ( R4 / R3 = R2 / R1 ), then
VOUT = ( Vp – Vn ) × R2 / R1 + Vref.
VIN
SGM321
R2
Vn
VOUT
R1
R3 = R1 // R2
VOUT
SGM321
Vp
R3
Figure 6. Low Pass Active Filter
R4
Vref
Figure 4. Differential Amplifier
Instrumentation Amplifier
The circuit in Figure 5 performs the same function as that in Figure 4
but with the high input impedance.
R2
R1
SGM321
Vn
VOUT
SGM321
Vp
SGM321
R3
R4
Vref
Figure 5. Instrumentation Amplifier
Low Pass Active Filter
The low pass filter shown in Figure 6 has a DC gain of ( - R2 / R1 )
and the –3dB corner frequency is 1/2πR2C. Make sure the filter is
within the bandwidth of the amplifier. The Large values of feedback
resistors can couple with parasitic capacitance and cause undesired
effects such as ringing or oscillation in high-speed amplifiers. Keep
resistors value as low as possible and consistent with output loading
consideration.
8
SGM321/358/324
PACKAGE OUTLINE DIMENSIONS
SC70-5
D
θ
e1
Symbol
L1
E
E1
L
e
b
A1
C
0.20
Dimensions
In Millimeters
Min
Max
Min
Max
A
0.900
1.100
0.035
0.043
A1
0.000
0.100
0.000
0.004
A2
0.900
1.000
0.035
0.039
b
0.150
0.350
0.006
0.014
c
0.080
0.150
0.003
0.006
D
2.000
2.200
0.079
0.087
E
1.150
1.350
0.045
0.053
E1
2.150
2.450
0.085
0.096
e
A
A2
e1
0.650TYP
1.200
L
9
Dimensions
In Inches
1.400
0.026TYP
0.047
0.525REF
0.055
0.021REF
L1
0.260
0.460
0.010
0.018
θ
0°
8°
0°
8°
SGM321/358/324
PACKAGE OUTLINE DIMENSIONS
SOT23-5
D
θ
b
0.20
Symbol
L
E
E1
e
C
A1
e1
Min
Max
Min
Max
1.250
0.041
0.049
A1
0.000
0.100
0.000
0.004
A2
1.050
1.150
0.041
0.045
b
0.300
0.400
0.012
0.016
c
0.100
0.200
0.004
0.008
D
2.820
3.020
0.111
0.119
E
1.500
1.700
0.059
0.067
E1
2.650
2.950
0.104
0.116
e1
L
A
A2
Dimensions
In Inches
1.050
e
10
Dimensions
In Millimeters
A
L
0
0.950TYP
1.800
2.000
0.700REF
0.037TYP
0.071
0.079
0.028REF
L1
0.300
0.600
0.012
0.024
θ
0°
8°
0°
8°
SGM321/358/324
PACKAGE OUTLINE DIMENSIONS
SO-8
D
C
E
E1
L
Symbol
θ
e
Min
Max
Min
Max
1.350
1.750
0.053
0.069
A1
0.100
0.250
0.004
0.010
A2
1.350
1.550
0.053
0.061
B
0.330
0.510
0.013
0.020
C
0.190
0.250
0.007
0.010
D
4.780
5.000
0.188
0.197
E
3.800
4.000
0.150
0.157
E1
5.800
6.300
0.228
0.248
A1
1.270TYP
0.050TYP
L
0.400
1.270
0.016
0.050
θ
0°
8°
0°
8°
A
A2
Dimensions
In Inches
A
e
B
Dimensions
In Millimeters
11
SGM321/358/324
PACKAGE OUTLINE DIMENSIONS
MSOP-8
C
E
θ
e
A2
A
A1
E1
L
b
Symbol
Dimensions
In Millimeters
Min
Max
Dimensions
In Inches
Min
Max
A
A1
A2
b
c
D
e
E
E1
L
θ
0.800
1.200
0.000
0.200
0.760
0.970
0.30 TYP
0.15 TYP
2.900
3.100
0.65 TYP
2.900
3.100
4.700
5.100
0.410
0.650
0°
6°
0.031
0.047
0.000
0.008
0.030
0.038
0.012 TYP
0.006 TYP
0.114
0.122
0.026 TYP
0.114
0.122
0.185
0.201
0.016
0.026
0°
6°
D
12
SGM321/358/324
PACKAGE OUTLINE DIMENSIONS
PDIP-8
E1
Symbol
Dimensions
In Millimeters
Min
Max
Dimensions
In Inches
Min
Max
A
A1
A2
B
B1
C
D
E
E1
e
L
E2
3.710
4.310
0.510
3.200
3.600
0.380
0.570
1.524(BSC)
0.204
0.360
9.000
9.400
6.200
6.600
7.320
7.920
2.540(BSC)
3.000
3.600
8.400
9.000
0.146
0.170
0.020
0.126
0.142
0.015
0.022
0.060(BSC)
0.008
0.014
0.354
0.370
0.244
0.260
0.288
0.312
0.100(BSC)
0.118
0.142
0.331
0.354
L
A1
C
A
A2
e
E2
B
B1
E
D
13
SGM321/358/324
PACKAGE OUTLINE DIMENSIONS
SO-14
D
L2
L
θ1
E
E1
θ2
INDEX Φ0.8±0.1
DEP0.2±0.1
h
Φ2.0±0.1 BTM E-MARK
DEP0.1±0.05
θ
h
e
b
0.25
B B
M
A3
A1
A2
0.10
θ4
b
c
BASE METAL
b1
WITH PLATING
c1
A
θ3
L1
R
R1
Symbol
A
A1
A2
A3
b
b1
c
c1
D
E
E1
e
L
L1
L2
R
R1
h
θ
θ1
θ2
θ3
θ4
Dimensions
In Millimeters
MIN NOM
MAX
1.35
0.10
1.25
0.55
0.36
0.35
0.16
0.15
8.53
5.80
3.80
0.45
0.07
0.07
0.30
0°
6°
6°
5°
5°
1.60
0.15
1.45
0.65
0.40
1.75
0.25
1.65
0.75
0.49
0.45
0.25
0.25
8.73
6.20
4.00
0.20
8.63
6.00
3.90
1.27 BSC
0.60
0.80
1.04 REF
0.25 BSC
0.40
8°
8°
7°
7°
0.50
8°
10°
10°
9°
9°
SECTION B-B
14
SGM321/358/324
PACKAGE OUTLINE DIMENSIONS
SO-16
D
L
C
E
A
A1
A2
b
c
D
E
E1
e
L
θ
θ
A1
A
e
A2
E1
Symbol
Dimensions
In Millimeters
Min
Max
Dimensions
In Inches
Min
Max
1.350
1.750
0.100
0.250
1.350
1.550
0.330
0.510
0.170
0.250
9.800
10.20
3.800
4.000
5.800
6.200
1.270 (BSC)
0.400
1.270
0°
8°
0.053
0.069
0.004
0.010
0.053
0.061
0.013
0.020
0.007
0.010
0.386
0.402
0.150
0.157
0.228
0.244
0.050 (BSC)
0.016
0.050
0°
8°
b
15
SGM321/358/324
PACKAGE OUTLINE DIMENSIONS
TSSOP-14
D
R1
MIN
NOM
MAX
A
—
—
1.20
θ2
A1
0.05
—
0.15
S
A2
0.90
1.00
1.05
A3
0.34
0.44
0.54
b
0.20
—
0.28
b1
0.20
0.22
0.24
c
0.10
—
0.19
c1
0.10
0.13
0.15
D
4.86
4.96
5.06
E
6.20
6.40
6.60
E1
4.30
4.40
4.50
R
E
E1
B
L
B
θ1
L1
L2
+0
e
b
b1
A1
c
θ3
e
L
0.65 BSC
0.45
L1
SECTION B-B
16
0.60
0.75
1.00 REF
L2
c1
A
A2
BASE
METAL
A3
#1 PIN
INDEX Φ1.0±0.05 0.1-0.1 DEP
0.10
Dimensions
In Millimeters
Symbol
0.25 BSC
R
0.09
—
—
R1
0.09
—
—
S
θ1
0.20
—
—
0°
—
8°
θ2
10°
12°
14°
θ3
10°
12°
14°
SGM321/358/324
PACKAGE OUTLINE DIMENSIONS
TSSOP-16
A
b
E
E1
Symbol
PIN #1 IDENT.
A2
A
e
C
θ
A
L
D
D
E
b
c
E1
A
A2
A1
e
L
H
θ
Dimensions
In Millimeters
Min
Max
4.900
4.300
0.190
0.090
6.250
5.100
4.500
0.300
0.200
6.550
1.100
0.800
1.000
0.020
0.150
0.65 (BSC)
0.500
0.700
0.25(TYP)
1°
7°
Dimensions
In Inches
Min
Max
0.193
0.169
0.007
0.004
0.246
0.201
0.177
0.012
0.008
0.258
0.043
0.031
0.039
0.001
0.006
0.026 (BSC)
0.020
0.028
0.01(TYP)
1°
7°
H
A1
17
SGM321/358/324
REVISION HISTORY
Location
Page
11/06— Data Sheet changed from REV.A to REV.B
Changes to ABSOLUTE MAXIMUM ATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
04/07— Data Sheet changed from REV.B to REV.C
Adds Output Voltage Swing from Rail test condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
06/07— Data Sheet changed from REV.C to REV. D
Adds SO-14 and TSSOP-14 Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1, 3, 14, 16
Shengbang Microelectronics Co, Ltd
Unit 3, ChuangYe Plaza
No.5, TaiHu Northern Street, YingBin Road Centralized Industrial Park
Harbin Development Zone
Harbin, HeiLongJiang 150078
P.R. China
Tel.: 86-451-84348461
Fax: 86-451-84308461
www.sg-micro.com
18
SGM321/358/324