SN74ALVCH162721 3.3-V 20-BIT FLIP-FLOP WITH 3-STATE OUTPUTS SCES055E – DECEMBER 1995 – REVISED JUNE 1999 D D D D D D D DGG OR DL PACKAGE (TOP VIEW) Member of the Texas Instruments Widebus Family EPIC (Enhanced-Performance Implanted CMOS) Submicron Process Output Ports Have Equivalent 26-Ω Series Resistors, So No External Resistors Are Required ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0) Latch-Up Performance Exceeds 250 mA Per JESD 17 Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages OE Q1 Q2 GND Q3 Q4 VCC Q5 Q6 Q7 GND Q8 Q9 Q10 Q11 Q12 Q13 GND Q14 Q15 Q16 VCC Q17 Q18 GND Q19 Q20 NC NOTE: For tape and reel order entry: The DGGR package is abbreviated to GR. description This 20-bit flip-flop is designed for low-voltage 1.65-V to 3.6-V VCC operation. The 20 flip-flops of the SN74ALVCH162721 are edge-triggered D-type flip-flops with qualified clock storage. On the positive transition of the clock (CLK) input, the device provides true data at the Q outputs if the clock-enable (CLKEN) input is low. If CLKEN is high, no data is stored. 1 56 2 55 3 54 4 53 5 52 6 51 7 50 8 49 9 48 10 47 11 46 12 45 13 44 14 43 15 42 16 41 17 40 18 39 19 38 20 37 21 36 22 35 23 34 24 33 25 32 26 31 27 30 28 29 CLK D1 D2 GND D3 D4 VCC D5 D6 D7 GND D8 D9 D10 D11 D12 D13 GND D14 D15 D16 VCC D17 D18 GND D19 D20 CLKEN A buffered output-enable (OE) input places the 20 NC – No internal connection outputs in either a normal logic state (high or low level) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components. OE does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state. To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level. The outputs, which are designed to sink up to 12 mA, include equivalent 26-Ω resistors to reduce overshoot and undershoot. The SN74ALVCH162721 is characterized for operation from –40°C to 85°C. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. EPIC and Widebus are trademarks of Texas Instruments Incorporated. Copyright 1999, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 SN74ALVCH162721 3.3-V 20-BIT FLIP-FLOP WITH 3-STATE OUTPUTS SCES055E – DECEMBER 1995 – REVISED JUNE 1999 FUNCTION TABLE (each flip-flop) INPUTS D OUTPUT Q X X Q0 ↑ H H OE CLKEN CLK L H L L L L ↑ L L L L L or H X Q0 H X X X Z logic diagram (positive logic) 1 OE 56 CLK 29 CE CLKEN C1 D1 55 1D 2 Q1 To 19 Other Channels absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 4.6 V Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 4.6 V Output voltage range, VO (see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VCC + 0.5 V Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 mA Output clamp current, IOK (VO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 mA Continuous output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA Continuous current through each VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±100 mA Package thermal impedance, θJA (see Note 3): DGG package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81°C/W DL package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74°C/W Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed. 2. This value is limited to 4.6 V maximum. 3. The package thermal impedance is calculated in accordance with JESD 51. 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SN74ALVCH162721 3.3-V 20-BIT FLIP-FLOP WITH 3-STATE OUTPUTS SCES055E – DECEMBER 1995 – REVISED JUNE 1999 recommended operating conditions (see Note 4) VCC Supply voltage VIH High-level input voltage VCC = 1.65 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 2.7 V to 3.6 V VCC = 1.65 V to 1.95 V MIN MAX 1.65 3.6 2 0.35 × VCC VI VO Input voltage 0 Output voltage 0 IOL ∆t/∆v 0.7 VCC = 2.3 V to 2.7 V VCC = 2.7 V to 3.6 V Low level output current Low-level V 1.7 Low-level input voltage High level output current High-level V 0.8 VCC VCC VCC = 1.65 V VCC = 2.3 V –2 VCC = 2.7 V VCC = 3 V –8 –6 V V mA –12 VCC = 1.65 V VCC = 2.3 V 2 VCC = 2.7 V VCC = 3 V 8 Input transition rise or fall rate V 0.65 × VCC VIL IOH UNIT 6 mA 12 10 ns/V TA Operating free-air temperature –40 85 °C NOTE 4: All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 SN74ALVCH162721 3.3-V 20-BIT FLIP-FLOP WITH 3-STATE OUTPUTS SCES055E – DECEMBER 1995 – REVISED JUNE 1999 electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VCC 1.65 V to 3.6 V IOH = –100 µA IOH = –2 mA IOH = –4 mA VOH 6 mA IOH = –6 II(hold) ( ) 2.3 V 1.9 2.3 V 1.7 MAX 2.4 2 3V 2 IOL = 100 µA IOL = 2 mA 1.65 V to 3.6 V 0.2 1.65 V 0.45 IOL = 6 mA VI = VCC or GND VI = 0.58 V 2.3 V 0.4 2.3 V 0.55 3V 0.55 2.7 V 0.6 3V 0.8 ±5 3.6 V 1.65 V 25 VI = 1.07 V VI = 0.7 V 1.65 V –25 2.3 V 45 VI = 1.7 V VI = 0.8 V 2.3 V –45 3V 75 3V –75 IOZ ICC VO = VCC or GND VI = VCC or GND, ∆ICC Ci One input at VCC – 0.6 V, IO = 0 Other inputs at VCC or GND VI = VCC or GND VO = VCC or GND UNIT V 3V VI = 2 V VI = 0 to 3.6 V‡ Co 1.65 V VCC–0.2 1.2 2.7 V IOL = 8 mA IOL = 12 mA II TYP† IOH = –8 mA IOH = –12 mA IOL = 4 mA VOL MIN V µA µA 3.6 V ±500 3.6 V ±10 µA 3.6 V 40 µA 3 V to 3.6 V 750 µA 3.3 V 3.5 3.3 V 7 pF pF † All typical values are at VCC = 3.3 V, TA = 25°C. ‡ This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another. timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3) VCC = 1.8 V MIN fclock tw Clock frequency Set p time Setup th Hold time MIN MIN 150 MAX VCC = 3.3 V ± 0.3 V MIN 150 3.3 3.3 3.3 § 4 3.6 3.1 CLKEN before CLK↑ § 3.4 3.1 2.7 Data after CLK↑ § 0 0 0 CLKEN after CLK↑ § 0 0 0 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 UNIT MAX 150 Data before CLK↑ § This information was not available at the time of publication. 4 MAX VCC = 2.7 V § Pulse duration, CLK high or low tsu MAX § VCC = 2.5 V ± 0.2 V MHz ns ns ns SN74ALVCH162721 3.3-V 20-BIT FLIP-FLOP WITH 3-STATE OUTPUTS SCES055E – DECEMBER 1995 – REVISED JUNE 1999 switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3) FROM (INPUT) PARAMETER fmax tpd CLK ten OE VCC = 1.8 V TO (OUTPUT) MIN † TYP VCC = 2.5 V ± 0.2 V MIN MAX 150 VCC = 2.7 V MIN MAX 150 VCC = 3.3 V ± 0.3 V MIN UNIT MAX 150 MHz Q † 1 6.7 6.2 1 5.3 ns Q † 1 7.2 7 1 5.8 ns † 1 6.3 5.4 1 5 ns tdis Q OE † This information was not available at the time of publication. operating characteristics, TA = 25°C PARAMETER Cpd d Power dissipation capacitance TEST CONDITIONS Outputs enabled Outputs disabled CL = 50 pF, pF VCC = 1.8 V TYP † f = 10 MHz † VCC = 2.5 V TYP VCC = 3.3 V TYP 55 59 46 49 UNIT pF † This information was not available at the time of publication. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 SN74ALVCH162721 3.3-V 20-BIT FLIP-FLOP WITH 3-STATE OUTPUTS SCES055E – DECEMBER 1995 – REVISED JUNE 1999 PARAMETER MEASUREMENT INFORMATION VCC = 1.8 V 2 × VCC S1 1 kΩ From Output Under Test Open GND CL = 30 pF (see Note A) 1 kΩ TEST S1 tpd tPLZ/tPZL tPHZ/tPZH Open 2 × VCC GND LOAD CIRCUIT tw VCC Timing Input VCC/2 VCC/2 VCC/2 0V VOLTAGE WAVEFORMS SETUP AND HOLD TIMES VCC/2 VCC/2 0V tPLH Output Control (low-level enabling) tPLZ VCC VCC/2 tPZH VOH VCC/2 VOL VCC/2 0V Output Waveform 1 S1 at 2 × VCC (see Note B) tPHL VCC/2 VCC VCC/2 tPZL VCC Input VOLTAGE WAVEFORMS PULSE DURATION th VCC Data Input VCC/2 0V 0V tsu Output VCC VCC/2 Input Output Waveform 2 S1 at GND (see Note B) VOL + 0.15 V VOL tPHZ VCC/2 VOH VOH – 0.15 V 0V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2 ns, tf ≤ 2 ns. D. The outputs are measured one at a time with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. Figure 1. Load Circuit and Voltage Waveforms 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SN74ALVCH162721 3.3-V 20-BIT FLIP-FLOP WITH 3-STATE OUTPUTS SCES055E – DECEMBER 1995 – REVISED JUNE 1999 PARAMETER MEASUREMENT INFORMATION VCC = 2.5 V ± 0.2 V 2 × VCC S1 500 Ω From Output Under Test Open GND CL = 30 pF (see Note A) 500 Ω TEST S1 tpd tPLZ/tPZL tPHZ/tPZH Open 2 × VCC GND LOAD CIRCUIT tw VCC Timing Input VCC/2 VCC/2 VCC/2 0V VOLTAGE WAVEFORMS SETUP AND HOLD TIMES VCC/2 VCC/2 0V tPLH Output Control (low-level enabling) tPLZ VCC VCC/2 tPZH VOH VCC/2 VOL VCC/2 0V Output Waveform 1 S1 at 2 × VCC (see Note B) tPHL VCC/2 VCC VCC/2 tPZL VCC Input VOLTAGE WAVEFORMS PULSE DURATION th VCC Data Input VCC/2 0V 0V tsu Output VCC VCC/2 Input Output Waveform 2 S1 at GND (see Note B) VOL + 0.15 V VOL tPHZ VCC/2 VOH VOH – 0.15 V 0V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2 ns, tf ≤ 2 ns. D. The outputs are measured one at a time with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. Figure 2. Load Circuit and Voltage Waveforms POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 SN74ALVCH162721 3.3-V 20-BIT FLIP-FLOP WITH 3-STATE OUTPUTS SCES055E – DECEMBER 1995 – REVISED JUNE 1999 PARAMETER MEASUREMENT INFORMATION VCC = 2.7 V AND 3.3 V ± 0.3 V 6V S1 500 Ω From Output Under Test Open GND CL = 50 pF (see Note A) 500 Ω TEST S1 tpd tPLZ/tPZL tPHZ/tPZH Open 6V GND LOAD CIRCUIT tw 2.7 V 2.7 V Timing Input 1.5 V 1.5 V 1.5 V 0V VOLTAGE WAVEFORMS SETUP AND HOLD TIMES 1.5 V 0V tPLH Output Output Control (low-level enabling) 2.7 V 1.5 V 1.5 V 0V tPZL 2.7 V 1.5 V VOLTAGE WAVEFORMS PULSE DURATION th 2.7 V Data Input 1.5 V 0V 0V tsu Input 1.5 V Input Output Waveform 1 S1 at 6 V (see Note B) 3V 1.5 V VOL + 0.3 V tPZH tPHL VOH 1.5 V tPLZ 1.5 V VOL VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES Output Waveform 2 S1 at GND (see Note B) VOL tPHZ 1.5 V VOH VOH – 0.3 V 0V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf ≤ 2.5 ns. D. The outputs are measured one at a time with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. Figure 3. Load Circuit and Voltage Waveforms 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK. In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof. Copyright 1999, Texas Instruments Incorporated