TI SN74HCT139N

SCLS066D − MARCH 1982 − REVISED SEPTEMBER 2003
D
D
D
D
D
D
D
D
D
Operating Voltage Range of 4.5 V to 5.5 V
Outputs Can Drive Up To 10 LSTTL Loads
Low Power Consumption, 80-µA Max ICC
Typical tpd = 10 ns
±4-mA Output Drive at 5 V
Low Input Current of 1 µA Max
Inputs Are TTL-Voltage Compatible
Designed Specifically for High-Speed
Memory Decoders and Data-Transmission
Systems
Incorporate Two Enable Inputs to Simplify
Cascading and/or Data Reception
SN54HCT139 . . . J OR W PACKAGE
SN74HCT139 . . . D, DB, N, OR PW PACKAGE
(TOP VIEW)
1G
1A
1B
1Y0
1Y1
1Y2
1Y3
GND
1
16
2
15
3
14
4
13
5
12
6
11
7
10
8
9
VCC
2G
2A
2B
2Y0
2Y1
2Y2
2Y3
SN54HCT139 . . . FK PACKAGE
(TOP VIEW)
1A
1G
NC
VCC
2G
description/ordering information
The ’HCT139 devices are designed for
high-performance
memory-decoding
or
data-routing applications requiring very short
propagation delay times. In high-performance
memory systems, these decoders can minimize
the effects of system decoding. When employed
with high-speed memories utilizing a fast enable
circuit, the delay time of these decoders and the
enable time of the memory usually are less than
the typical access time of the memory. This means
that the effective system delay introduced by the
decoders is negligible.
4
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
2A
2B
NC
2Y0
2Y1
1Y3
GND
NC
2Y3
2Y2
1B
1Y0
NC
1Y1
1Y2
NC − No internal connection
ORDERING INFORMATION
PACKAGE†
TA
PDIP − N
TOP-SIDE
MARKING
Tube of 25
SN74HCT139N
Tube of 40
SN74HCT139D
Reel of 2500
SN74HCT139DR
Reel of 250
SN74HCT139DT
Reel of 2000
SN74HCT139DBR
Reel of 2000
SN74HCT139PWR
Reel of 250
SN74HCT139PWT
CDIP − J
Tube of 25
SNJ54HCT139J
SNJ54HCT139J
CFP − W
Tube of 150
SNJ54HCT139W
SNJ54HCT139W
LCCC − FK
Tube of 55
SNJ54HCT139FK
SOIC − D
−40°C
−40
C to 85
85°C
C
SSOP − DB
TSSOP − PW
−55°C
−55
C to 125
125°C
C
ORDERABLE
PART NUMBER
SN74HCT139N
HCT139
HT139
HT139
SNJ54HCT139FK
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are
available at www.ti.com/sc/package.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2003, Texas Instruments Incorporated
!"#$%&' #"'(' ')"*%("' #$**&' ( ") +$,-#("' !(&. *"!$# #"')"*% "
+&#)#("' +&* & &*% ") &/( '*$%&' ('!(*! 0(**('1.
*"!$#"' +*"#&'2 !"& '" '&#&(*-1 '#-$!& &'2 ") (-+(*(%&&*.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SCLS066D − MARCH 1982 − REVISED SEPTEMBER 2003
description/ordering information (continued)
The ’HCT139 devices comprise two individual 2-line to 4-line decoders in a single package. The active-low
enable (G) input can be used as a data line in demultiplexing applications. These decoders/demultiplexers
feature fully buffered inputs, each of which represents only one normalized load to its driving circuit.
FUNCTION TABLE
INPUTS
OUTPUTS
SELECT
G
B
A
Y0
Y1
Y2
Y3
H
X
X
H
H
H
H
L
L
L
L
H
H
H
L
L
H
H
L
H
H
L
H
L
H
H
L
H
L
H
H
H
H
H
L
logic diagram (positive logic)
4
1G
1
1Y0
5
1Y1
6
1Y2
2
1A
7
1B
1Y3
3
12
2Y0
15
11
2G
2Y1
10
2Y2
2A
14
9
13
2B
Pin numbers shown are for the D, DB, J, N, PW, and W packages.
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
2Y3
SCLS066D − MARCH 1982 − REVISED SEPTEMBER 2003
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V
Input clamp current, IIK (VI < 0 or VI > VCC) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA
Output clamp current, IOK (VO < 0 or VO > VCC) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA
Continuous output current, IO (VO = 0 to VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±25 mA
Continuous current through VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA
Package thermal impedance, θJA (see Note 2): D package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73°C/W
DB package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82°C/W
N package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67°C/W
PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions (see Note 3)
SN54HCT139
MIN
NOM
MAX
MIN
NOM
MAX
4.5
5
5.5
4.5
5
5.5
VCC
VIH
Supply voltage
VIL
VI
Low-level input voltage
Input voltage
0
VO
tt
Output voltage
0
High-level input voltage
VCC = 4.5 V to 5.5 V
VCC = 4.5 V to 5.5 V
SN74HCT139
2
2
Input transition (rise and fall) time
V
V
0.8
VCC
VCC
UNIT
0
0
500
0.8
V
VCC
VCC
V
500
ns
V
TA
Operating free-air temperature
−55
125
−40
85
°C
NOTE 3: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
VOH
VI = VIH or VIL
IOH = −20 µA
IOH = −4 mA
4.5 V
VOL
VI = VIH or VIL
IOL = 20 µA
IOL = 4 mA
4.5 V
II
ICC
VI = VCC or 0
VI = VCC or 0,
∆ICC‡
IO = 0
One input at 0.5 V or 2.4 V,
Other inputs at 0 or VCC
Ci
5.5 V
TA = 25°C
MIN
TYP
MAX
4.5 V
to 5.5 V
MIN
MAX
SN74HCT139
MIN
4.4
4.499
4.4
4.4
3.98
4.3
3.7
3.84
MAX
UNIT
V
0.001
0.1
0.1
0.1
0.17
0.26
0.4
0.33
±0.1
±100
±1000
±1000
nA
8
160
80
µA
1.4
2.4
3
2.9
mA
3
10
10
10
pF
5.5 V
5.5 V
SN54HCT139
V
‡ This is the increase in supply current for each input that is at one of the specified TTL voltage levels, rather than 0 V or VCC.
3 ')"*%("' #"'#&*' +*"!$# ' & )"*%(4& "*
!&2' +(& ") !&4&-"+%&'. (*(#&*# !(( ('! "&*
+&#)#("' (*& !&2' 2"(-. &/( '*$%&' *&&*4& & *2 "
#('2& "* !#"''$& && +*"!$# 0"$ '"#&.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SCLS066D − MARCH 1982 − REVISED SEPTEMBER 2003
switching characteristics over recommended operating free-air temperature range, CL = 50 pF
(unless otherwise noted) (see Figure 1)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
A or B
Y
tpd
Y
G
tt
Y
VCC
MIN
TA = 25°C
TYP
MAX
SN54HCT139
MIN
SN74HCT139
MAX
MIN
MAX
4.5 V
14
34
51
43
5.5 V
12
30
50
40
4.5 V
11
34
51
43
5.5 V
10
30
50
40
4.5 V
8
15
22
19
5.5 V
6
14
21
17
UNIT
ns
ns
operating characteristics, TA = 25°C
PARAMETER
Cpd
TEST CONDITIONS
Power dissipation capacitance per decoder
No load
TYP
UNIT
25
pF
PARAMETER MEASUREMENT INFORMATION
From Output
Under Test
3V
Test
Point
Input
1.3 V
1.3 V
0V
CL = 50 pF
(see Note A)
tPLH
In-Phase
Output
LOAD CIRCUIT
1.3 V
10%
tPHL
90%
90%
tr
Input 1.3 V
0.3 V
2.7 V
tPHL
3V
2.7 V
1.3 V
0.3 V 0 V
tr
Out-of-Phase
Output
90%
tf
VOLTAGE WAVEFORM
INPUT RISE AND FALL TIMES
VOH
1.3 V
10% V
OL
tf
tPLH
1.3 V
10%
tf
1.3 V
10%
90%
VOH
VOL
tr
VOLTAGE WAVEFORMS
PROPAGATION DELAY AND OUTPUT RISE AND FALL TIMES
NOTES: A. CL includes probe and test-fixture capacitance.
B. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following
characteristics: PRR ≤ 1 MHz, ZO = 50 Ω, tr = 6 ns, tf = 6 ns.
C. The outputs are measured one at a time with one input transition per measurement.
D. tPLH and tPHL are the same as tpd.
Figure 1. Load Circuit and Voltage Waveforms
3 ')"*%("' #"'#&*' +*"!$# ' & )"*%(4& "*
!&2' +(& ") !&4&-"+%&'. (*(#&*# !(( ('! "&*
+&#)#("' (*& !&2' 2"(-. &/( '*$%&' *&&*4& & *2 "
#('2& "* !#"''$& && +*"!$# 0"$ '"#&.
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
PACKAGE OPTION ADDENDUM
www.ti.com
6-Dec-2006
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
SN74HCT139D
ACTIVE
SOIC
D
16
SN74HCT139DBLE
OBSOLETE
SSOP
DB
16
SN74HCT139DBR
ACTIVE
SSOP
DB
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74HCT139DBRE4
ACTIVE
SSOP
DB
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74HCT139DE4
ACTIVE
SOIC
D
16
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74HCT139DR
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74HCT139DRE4
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74HCT139DT
ACTIVE
SOIC
D
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74HCT139DTE4
ACTIVE
SOIC
D
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74HCT139N
ACTIVE
PDIP
N
16
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
SN74HCT139NE4
ACTIVE
PDIP
N
16
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
SN74HCT139PWLE
OBSOLETE
TSSOP
PW
16
TBD
Call TI
SN74HCT139PWR
ACTIVE
TSSOP
PW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74HCT139PWRE4
ACTIVE
TSSOP
PW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74HCT139PWT
ACTIVE
TSSOP
PW
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74HCT139PWTE4
ACTIVE
TSSOP
PW
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
40
Green (RoHS &
no Sb/Br)
TBD
40
Lead/Ball Finish
CU NIPDAU
Call TI
MSL Peak Temp (3)
Level-1-260C-UNLIM
Call TI
Call TI
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
6-Dec-2006
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 2
MECHANICAL DATA
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001
DB (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
28 PINS SHOWN
0,38
0,22
0,65
28
0,15 M
15
0,25
0,09
8,20
7,40
5,60
5,00
Gage Plane
1
14
0,25
A
0°–ā8°
0,95
0,55
Seating Plane
2,00 MAX
0,10
0,05 MIN
PINS **
14
16
20
24
28
30
38
A MAX
6,50
6,50
7,50
8,50
10,50
10,50
12,90
A MIN
5,90
5,90
6,90
7,90
9,90
9,90
12,30
DIM
4040065 /E 12/01
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-150
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064/F 01/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Low Power Wireless www.ti.com/lpw
Mailing Address:
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2006, Texas Instruments Incorporated