TI SN74LVC2G38DCUR

SCES554A − MARCH 2004 − REVISED OCTOBER 2004
D Available in the Texas Instruments
D
D
D
D
D
D
D
D
D
D
DCT OR DCU PACKAGE
(TOP VIEW)
NanoStar and NanoFree Packages
Supports 5-V VCC Operation
Inputs Accept Voltages to 5.5 V
Max tpd of 4 ns at 3.3 V
Low Power Consumption, 10-µA Max ICC
±24-mA Output Drive at 3.3 V
Typical VOLP (Output Ground Bounce)
<0.8 V at VCC = 3.3 V, TA = 25°C
Typical VOHV (Output VOH Undershoot)
>2 V at VCC = 3.3 V, TA = 25°C
Ioff Supports Partial-Power-Down Mode
Operation
Latch-Up Performance Exceeds 100 mA Per
JESD 78, Class II
ESD Protection Exceeds JESD 22
− 2000-V Human-Body Model (A114-A)
− 200-V Machine Model (A115-A)
− 1000-V Charged-Device Model (C101)
1A
1B
2Y
GND
1
8
2
7
3
6
4
5
VCC
1Y
2B
2A
YEP OR YZP PACKAGE
(BOTTOM VIEW)
GND
2Y
1B
1A
4 5
3 6
2 7
1 8
2A
2B
1Y
VCC
description/ordering information
The SN74LVC2G38 is designed for 1.65-V to 5.5-V VCC operation.
This device is a dual two-input NAND buffer gate with open-drain outputs. It performs the Boolean function
Y = A • B or Y = A + B in positive logic.
NanoStar and NanoFree package technology is a major breakthrough in IC packaging concepts, using the
die as the package.
ORDERING INFORMATION
ORDERABLE
PART NUMBER
PACKAGE†
TA
NanoStar − WCSP (DSBGA)
0.23-mm Large Bump − YEP
−40°C to 85°C
NanoFree − WCSP (DSBGA)
0.23-mm Large Bump − YZP (Pb-free)
SSOP − DCT
VSSOP − DCU
TOP-SIDE
MARKING‡
SN74LVC2G38YEPR
Reel of 3000
_ _ _D7_
SN74LVC2G38YZPR
Reel of 3000
SN74LVC2G38DCTR
Reel of 3000
SN74LVC2G38DCUR
Reel of 250
SN74LVC2G38DCUT
C38_ _ _
C38_
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at
www.ti.com/sc/package.
‡ DCT: The actual top-side marking has three additional characters that designate the year, month, and assembly/test site.
DCU: The actual top-side marking has one additional character that designates the assembly/test site.
YEP/YZP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one
following character to designate the assembly/test site. Pin 1 identifier indicates solder-bump composition
(1 = SnPb, • = Pb-free).
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
NanoStar and NanoFree are trademarks of Texas Instruments.
Copyright  2004, Texas Instruments Incorporated
! "#$ ! %#&'" ($)
(#"! " !%$""! %$ *$ $! $+! !#$!
!(( ,-) (#" %"$!!. ($! $"$!!'- "'#($
$!. '' %$$!)
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SCES554A − MARCH 2004 − REVISED OCTOBER 2004
description/ordering information (continued)
This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs,
preventing damaging current backflow through the device when it is powered down.
FUNCTION TABLE
(each gate)
INPUTS
A
B
OUTPUT
Y
L
L
H
L
H
H
H
L
H
H
H
L
logic diagram (positive logic)
1A
1B
2A
2B
1
7
2
5
6
3
1Y
2Y
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 6.5 V
Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 6.5 V
Voltage range applied to any output in the high-impedance or power-off state, VO
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 6.5 V
Voltage range applied to any output in the high or low state, VO
(see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to VCC + 0.5 V
Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA
Output clamp current, IOK (VO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA
Continuous output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA
Continuous current through VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±100 mA
Package thermal impedance, θJA (see Note 3): DCT package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220°C/W
DCU package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227°C/W
YEP/YZP package . . . . . . . . . . . . . . . . . . . . . . . . . . . 102°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
2. The value of VCC is provided in the recommended operating conditions table.
3. The package thermal impedance is calculated in accordance with JESD 51-7.
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SCES554A − MARCH 2004 − REVISED OCTOBER 2004
recommended operating conditions (see Note 4)
Operating
VCC
VIH
Supply voltage
Data retention only
VIL
Low-level input voltage
VI
VO
Input voltage
MAX
1.65
5.5
V
0.65 × VCC
1.7
VCC = 3 V to 3.6 V
VCC = 4.5 V to 5.5 V
V
2
0.7 × VCC
0.35 × VCC
VCC = 1.65 V to 1.95 V
VCC = 2.3 V to 2.7 V
0.7
VCC = 3 V to 3.6 V
VCC = 4.5 V to 5.5 V
0.3 × VCC
0
5.5
V
0
VCC
4
V
VCC = 1.65 V
VCC = 2.3 V
∆t/∆v
V
0.8
Output voltage
IOL
UNIT
1.5
VCC = 1.65 V to 1.95 V
VCC = 2.3 V to 2.7 V
High-level input voltage
MIN
8
16
Low-level output current
VCC = 3 V
Input transition rise or fall rate
mA
24
VCC = 4.5 V
VCC = 1.8 V ± 0.15 V, 2.5 V ± 0.2 V
32
VCC = 3.3 V ± 0.3 V
VCC = 5 V ± 0.5 V
10
20
ns/V
5
TA
Operating free-air temperature
−40
85
°C
NOTE 4: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
IOL = 100 mA
IOL = 4 mA
0.1
0.45
2.3 V
0.3
0.4
3V
0.55
±1
mA
mA
1.65 V to 5.5 V
10
mA
3 V to 5.5 V
500
mA
0 to 5.5 V
0
VI = 5.5 V or GND,
One input at VCC − 0.6 V,
Ci
VI = VCC or GND
IO = 0
Other inputs at VCC or GND
Co
VO = VCC or GND
† All typical values are at VCC = 3.3 V, TA = 25°C.
POST OFFICE BOX 655303
V
±10
VI = 5.5 V or GND
VI or VO = 5.5 V
ICC
∆ICC
UNIT
0.55
4.5 V
IOL = 32 mA
A or B inputs
MAX
1.65 V
IOL = 24 mA
II
Ioff
TYP†
1.65 V to 5.5 V
IOL = 8 mA
IOL = 16 mA
VOL
MIN
• DALLAS, TEXAS 75265
3.3 V
4
pF
3.3 V
4.5
pF
3
SCES554A − MARCH 2004 − REVISED OCTOBER 2004
switching characteristics over recommended operating free-air temperature range, CL = 15 pF
(unless otherwise noted) (see Figure 1)
PARAMETER
tpd
FROM
(INPUT)
TO
(OUTPUT)
A or B
Y
VCC = 1.8 V
± 0.15 V
VCC = 2.5 V
± 0.2 V
VCC = 3.3 V
± 0.3 V
VCC = 5 V
± 0.5 V
MIN
MAX
MIN
MAX
MIN
MAX
MIN
MAX
2.5
8.5
1.5
5.2
1.3
4
0.9
3
UNIT
ns
switching characteristics over recommended operating free-air temperature range, CL = 30 pF or
50 pF (unless otherwise noted) (see Figure 2)
PARAMETER
tpd
FROM
(INPUT)
TO
(OUTPUT)
A or B
Y
VCC = 1.8 V
± 0.15 V
VCC = 2.5 V
± 0.2 V
VCC = 3.3 V
± 0.3 V
VCC = 5 V
± 0.5 V
MIN
MAX
MIN
MAX
MIN
MAX
MIN
MAX
2.8
10
1.6
6
1.4
4.5
1
3.9
UNIT
ns
operating characteristics, TA = 25°C
PARAMETER
Cpd
4
Power dissipation capacitance
TEST CONDITIONS
VCC = 1.8 V
TYP
VCC = 2.5 V
TYP
f = 10 MHz
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
VCC = 3.3 V
TYP
7
VCC = 5 V
TYP
9
UNIT
pF
SCES554A − MARCH 2004 − REVISED OCTOBER 2004
PARAMETER MEASUREMENT INFORMATION
(OPEN DRAIN)
From Output
Under Test
VLOAD
Open
S1
RL
TEST
GND
RL
CL
(see Note A)
S1
tPZL (see Notes E and F)
tPLZ (see Notes E and G)
VLOAD
VLOAD
tPHZ/tPZH
VLOAD
LOAD CIRCUIT
INPUT
VCC
1.8 V ± 0.15 V
2.5 V ± 0.2 V
3.3 V ± 0.3 V
5 V ± 0.5 V
VI
VM
tr/tf
≤ 2 ns
≤ 2 ns
≤ 2.5 ns
≤ 2.5 ns
VCC
VCC
3V
VCC
VLOAD
VCC/2
VCC/2
1.5 V
VCC/2
2 × VCC
2 × VCC
6V
2 × VCC
CL
RL
V∆
15 pF
15 pF
15 pF
15 pF
1 MΩ
1 MΩ
1 MΩ
1MΩ
0.15 V
0.15 V
0.3 V
0.3 V
VI
Timing Input
VM
0V
tw
tsu
VI
VM
Input
VM
th
VM
Data Input
VM
0V
0V
VOLTAGE WAVEFORMS
PULSE DURATION
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VI
VM
Input
0V
tPHL
VM
VM
VOL
tPHL
tPLZ
VLOAD/2
VM
VM
VOL
Output
Waveform 2
S1 at VLOAD
(see Note B)
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
VOL + V∆
VOL
tPHZ
tPZH
VOH
Output
VM
0V
Output
Waveform 1
S1 at VLOAD
(see Note B)
tPLH
VM
VM
tPZL
VOH
Output
VI
Output
Control
VM
tPLH
VI
VM
VLOAD/2
VLOAD/2 − V∆
≈0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω.
D. The outputs are measured one at a time, with one transition per measurement.
E. Since this device has open-drain outputs, tPLZ and tPZL are the same as tpd.
F. tPZL is measured at VM.
G. tPLZ is measured at VOL + V∆.
H. All parameters and waveforms are not applicable to all devices.
Figure 1. Load Circuit and Voltage Waveforms
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
SCES554A − MARCH 2004 − REVISED OCTOBER 2004
PARAMETER MEASUREMENT INFORMATION
(OPEN DRAIN)
From Output
Under Test
VLOAD
Open
S1
RL
TEST
GND
RL
CL
(see Note A)
S1
tPZL (see Notes E and F)
tPLZ (see Notes E and G)
VLOAD
VLOAD
tPHZ/tPZH
VLOAD
LOAD CIRCUIT
INPUT
VCC
VI
1.8 V ± 0.15 V
2.5 V ± 0.2 V
3.3 V ± 0.3 V
5 V ± 0.5 V
VM
tr/tf
≤ 2 ns
≤ 2 ns
≤ 2.5 ns
≤ 2.5 ns
VCC
VCC
3V
VCC
VLOAD
VCC/2
VCC/2
1.5 V
VCC/2
2 × VCC
2 × VCC
6V
2 × VCC
CL
RL
V∆
30 pF
30 pF
50 pF
50 pF
1 kΩ
500 Ω
500 Ω
500 Ω
0.15 V
0.15 V
0.3 V
0.3 V
VI
Timing Input
VM
0V
tw
tsu
VI
VM
Input
VM
th
VM
Data Input
VM
0V
0V
VOLTAGE WAVEFORMS
PULSE DURATION
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VI
VM
Input
0V
tPHL
VM
VM
VOL
tPHL
tPLZ
VLOAD/2
VM
VM
VOL
Output
Waveform 2
S1 at VLOAD
(see Note B)
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
VOL + V∆
VOL
tPHZ
tPZH
VOH
Output
VM
0V
Output
Waveform 1
S1 at VLOAD
(see Note B)
tPLH
VM
VM
tPZL
VOH
Output
VI
Output
Control
VM
tPLH
VI
VM
VLOAD/2
VLOAD/2 − V∆
≈0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω.
D. The outputs are measured one at a time, with one transition per measurement.
E. Since this device has open-drain outputs, tPLZ and tPZL are the same as tpd.
F. tPZL is measured at VM.
G. tPLZ is measured at VOL + V∆.
H. All parameters and waveforms are not applicable to all devices.
Figure 2. Load Circuit and Voltage Waveforms
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MPDS049B – MAY 1999 – REVISED OCTOBER 2002
DCT (R-PDSO-G8)
PLASTIC SMALL-OUTLINE PACKAGE
0,30
0,15
0,65
8
0,13 M
5
0,15 NOM
ÇÇÇÇÇ
ÇÇÇÇÇ
ÇÇÇÇÇ
ÇÇÇÇÇ
2,90
2,70
4,25
3,75
Gage Plane
PIN 1
INDEX AREA
1
0,25
4
0° – 8°
3,15
2,75
0,60
0,20
1,30 MAX
Seating Plane
0,10
0,10
0,00
NOTES: A.
B.
C.
D.
4188781/C 09/02
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion
Falls within JEDEC MO-187 variation DA.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address:
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2004, Texas Instruments Incorporated