SN74LVCH162244A 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS www.ti.com SCAS545K – OCTOBER 1995 – REVISED MARCH 2005 FEATURES • • • • • • • • • • • • DL, DGG, OR DGV PACKAGE (TOP VIEW) Member of the Texas Instruments Widebus™ Family Operates From 1.65 V to 3.6 V Inputs Accept Voltages to 5.5 V Max tpd of 4.4 ns at 3.3 V Output Ports Have Equivalent 26-Ω Series Resistors, So No External Resistors Are Required Typical VOLP (Output Ground Bounce) < 0.8 V at VCC = 3.3 V, TA = 25°C Typical VOHV (Output VOH Undershoot) > 2 V at VCC = 3.3 V, TA = 25°C Ioff Supports Partial-Power-Down Mode Operation Supports Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With 3.3-V VCC) Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors Latch-Up Performance Exceeds 250 mA Per JESD 17 ESD Protection Exceeds JESD 22 – 2000-V Human-Body Model (A114-A) – 200-V Machine Model (A115-A) – 1000-V Charged-Device Model (C101) 1OE 1Y1 1Y2 GND 1Y3 1Y4 VCC 2Y1 2Y2 GND 2Y3 2Y4 3Y1 3Y2 GND 3Y3 3Y4 VCC 4Y1 4Y2 GND 4Y3 4Y4 4OE 1 48 2 47 3 46 4 45 5 44 6 43 7 42 8 41 9 40 10 39 11 38 12 37 13 36 14 35 15 34 16 33 17 32 18 31 19 30 20 29 21 28 22 27 23 26 24 25 2OE 1A1 1A2 GND 1A3 1A4 VCC 2A1 2A2 GND 2A3 2A4 3A1 3A2 GND 3A3 3A4 VCC 4A1 4A2 GND 4A3 4A4 3OE DESCRIPTION/ORDERING INFORMATION This 16-bit buffer/driver is designed for 1.65-V to 3.6-V VCC operation. The SN74LVCH162244A is designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The device can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. It provides true outputs and symmetrical active-low output-enable (OE) inputs. ORDERING INFORMATION PACKAGE (1) TA (1) TOP-SIDE MARKING SN74LVCH162244ADL Tape and reel SN74LVCH162244ADLR TSSOP – DGG Tape and reel SN74LVCH162244AGR LVCH162244A TVSOP – DGV Tape and reel SN74LVCH162244AVR LN2244A SSOP – DL –40°C to 85°C ORDERABLE PART NUMBER Tube LVCH162244A Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Widebus is a trademark of Texas Instruments. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 1995–2005, Texas Instruments Incorporated SN74LVCH162244A 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS www.ti.com SCAS545K – OCTOBER 1995 – REVISED MARCH 2005 DESCRIPTION/ORDERING INFORMATION (CONTINUED) The outputs, which are designed to sink up to 12 mA, include equivalent 26-Ω resistors to reduce overshoot and undershoot. Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment. This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended. FUNCTION TABLE (EACH 4-BIT BUFFER) INPUTS OE A OUTPUT Y L H H L L L H X Z LOGIC DIAGRAM (POSITIVE LOGIC) 1OE 1A1 1A2 1A3 1A4 2OE 2A1 2A2 2A3 2A4 2 1 3OE 47 2 46 3 44 5 43 6 1Y1 3A1 1Y2 3A2 1Y3 3A3 1Y4 3A4 48 4OE 41 8 40 9 38 11 37 12 2Y1 4A1 2Y2 4A2 2Y3 4A3 2Y4 4A4 25 36 13 35 14 33 16 32 17 3Y1 3Y2 3Y3 3Y4 24 30 19 29 20 27 22 26 23 4Y1 4Y2 4Y3 4Y4 SN74LVCH162244A 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS www.ti.com Absolute Maximum Ratings SCAS545K – OCTOBER 1995 – REVISED MARCH 2005 (1) over operating free-air temperature range (unless otherwise noted) MIN MAX VCC Supply voltage range –0.5 6.5 V VI Input voltage range (2) –0.5 6.5 V –0.5 6.5 V –0.5 VCC + 0.5 state (2) UNIT VO Voltage range applied to any output in the high-impedance or power-off VO Voltage range applied to any output in the high or low state (2) (3) IIK Input clamp current VI < 0 –50 mA IOK Output clamp current VO < 0 –50 mA IO Continuous output current ±50 mA ±100 mA Continuous current through each VCC or GND θJA Tstg (1) (2) (3) (4) Package thermal impedance (4) Storage temperature range DGG package 70 DGV package 58 DL package 63 –65 V °C/W °C 150 Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed. The value of VCC is provided in the recommended operating conditions table. The package thermal impedance is calculated in accordance with JESD 51-7. Recommended Operating Conditions (1) VCC Supply voltage Operating Data retention only VCC = 1.65 V to 1.95 V VIH High-level input voltage MIN MAX 1.65 3.6 1.5 VI VO IOH Low-level input voltage VCC = 2.3 V to 2.7 V 1.7 VCC = 2.7 V to 3.6 V 2 Output voltage High-level output current 0.35 × VCC 0.7 VCC = 2.7 V to 3.6 V 0.8 0 5.5 High or low state 0 VCC 3-state 0 5.5 VCC = 1.65 V –2 VCC = 2.3 V –4 VCC = 2.7 V –8 VCC = 3 V IOL Low-level output current 2 VCC = 2.3 V 4 VCC = 2.7 V 8 VCC = 3 V (1) Operating free-air temperature V V V mA –12 VCC = 1.65 V mA 12 ∆t/∆v Input transition rise or fall rate TA V VCC = 2.3 V to 2.7 V Input voltage V 0.65 × VCC VCC = 1.65 V to 1.95 V VIL UNIT –40 10 ns/V 85 °C All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. 3 SN74LVCH162244A 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS www.ti.com SCAS545K – OCTOBER 1995 – REVISED MARCH 2005 Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS IOH = –100 µA 1.65 V to 3.6 V IOH = –2 mA VOH II II(hold) 1.2 2.3 V 1.7 2.7 V 2.2 IOH = –6 mA 3V 2.4 IOH = –8 mA 2.7 V 2 IOH = –12 mA 3V 2 IOL = 100 µA 1.65 V to 3.6 V 0.2 1.65 V 0.45 2.3 V 0.7 IOH = –4 mA IOL = 4 mA 0.4 IOL = 6 mA 3V 0.55 IOL = 8 mA 2.7 V 0.6 IOL = 12 mA 3V 0.8 VI = 0 to 5.5 V VI = 0.58 V 1.65 V (2) VI = 1.07 V 1.65 V (2) VI = 0.7 V 2.3 V 45 VI = 1.7 V 2.3 V –45 VI = 0.8 V 3V 75 3V –75 V µA µA 3.6 V ±500 Ioff VI or VO = 5.5 V 0 ±10 µA IOZ VO = 0 to 5.5 V 3.6 V ±10 µA ICC ∆ICC (4) ±5 3.6 V VI = 0 to 3.6 V (3) UNIT V 2.7 V VI = 2 V (1) (2) (3) MAX VCC – 0.2 1.65 V IOL = 2 mA VOL MIN TYP (1) VCC VI = VCC or GND IO = 0 3.6 V ≤ VI ≤ 5.5 V (4) 20 3.6 V One input at VCC – 0.6 V, Other inputs at VCC or GND 20 2.7 V to 3.6 V 500 µA µA Ci VI = VCC or GND 3.3 V 5.5 pF Co VO = VCC or GND 3.3 V 6 pF All typical values are at VCC = 3.3 V, TA = 25°C. This information was not available at the time of publication. This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another. This applies in the disabled state only. Switching Characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1) FROM (INPUT) TO (OUTPUT) tpd A ten OE tdis OE PARAMETER 4 VCC = 1.8 V ± 0.15 V VCC = 2.5 V ± 0.2 V VCC = 2.7 V VCC = 3.3 V ± 0.3 V UNIT MIN MAX MIN MAX MIN MAX MIN MAX Y 1 10.2 1 6.4 1 5.6 1.1 4.4 ns Y 1 14.8 1 8.2 1 6.9 1 5.5 ns Y 1 12.3 1 7.1 1 6.8 1.8 6.3 ns SN74LVCH162244A 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS www.ti.com SCAS545K – OCTOBER 1995 – REVISED MARCH 2005 Operating Characteristics TA = 25°C TEST CONDITIONS PARAMETER Cpd (1) Power dissipation capacitance per buffer/driver Outputs enabled Outputs disabled f = 10 MHz VCC = 1.8 V VCC = 2.5 V VCC = 3.3 V TYP TYP TYP (1) (1) 35 (1) (1) 4 UNIT pF This information was not available at the time of publication. 5 SN74LVCH162244A 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS www.ti.com SCAS545K – OCTOBER 1995 – REVISED MARCH 2005 PARAMETER MEASUREMENT INFORMATION VLOAD S1 RL From Output Under Test CL (see Note A) Open GND RL TEST S1 tPLH/tPHL tPLZ/tPZL tPHZ/tPZH Open VLOAD GND LOAD CIRCUIT INPUTS VCC 1.8 V ± 0.15 V 2.5 V ± 0.2 V 2.7 V 3.3 V ± 0.3 V VI tr/tf VCC VCC 2.7 V 2.7 V ≤2 ns ≤2 ns ≤2.5 ns ≤2.5 ns VM VLOAD CL RL V∆ VCC/2 VCC/2 1.5 V 1.5 V 2 × VCC 2 × VCC 6V 6V 30 pF 30 pF 50 pF 50 pF 1 kΩ 500 Ω 500 Ω 500 Ω 0.15 V 0.15 V 0.3 V 0.3 V VI Timing Input VM 0V tw tsu VI Input VM VM th VI Data Input VM VM 0V 0V VOLTAGE WAVEFORMS PULSE DURATION VOLTAGE WAVEFORMS SETUP AND HOLD TIMES VI VM Input VM 0V tPLH VM VM VOL tPHL VM VM 0V Output Waveform 1 S1 at VLOAD (see Note B) tPLH tPLZ VLOAD/2 VM tPZH VOH Output VM tPZL tPHL VOH Output VI Output Control VM VOL VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS Output Waveform 2 S1 at GND (see Note B) VOL + V∆ VOL tPHZ VM VOH − V∆ VOH ≈0 V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω. D. The outputs are measured one at a time, with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. H. All parameters and waveforms are not applicable to all devices. Figure 1. Load Circuit and Voltage Waveforms 6 PACKAGE OPTION ADDENDUM www.ti.com 24-Feb-2006 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty 74LVCH162244ADLG4 ACTIVE SSOP DL 48 74LVCH162244ADLRG4 ACTIVE SSOP DL 74LVCH162244AGRE4 ACTIVE TSSOP 74LVCH162244AVRE4 ACTIVE SN74LVCH162244ADGGR 25 Lead/Ball Finish MSL Peak Temp (3) Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 48 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM DGG 48 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TVSOP DGV 48 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM OBSOLETE TSSOP DGG 48 SN74LVCH162244ADGVR OBSOLETE TVSOP DGV 48 SN74LVCH162244ADL ACTIVE SSOP DL 48 SN74LVCH162244ADLR ACTIVE SSOP DL SN74LVCH162244AGR ACTIVE TSSOP SN74LVCH162244AVR ACTIVE TVSOP TBD Call TI Call TI Call TI TBD Call TI Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 48 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM DGG 48 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM DGV 48 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 25 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1 MECHANICAL DATA MPDS006C – FEBRUARY 1996 – REVISED AUGUST 2000 DGV (R-PDSO-G**) PLASTIC SMALL-OUTLINE 24 PINS SHOWN 0,40 0,23 0,13 24 13 0,07 M 0,16 NOM 4,50 4,30 6,60 6,20 Gage Plane 0,25 0°–8° 1 0,75 0,50 12 A Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,08 14 16 20 24 38 48 56 A MAX 3,70 3,70 5,10 5,10 7,90 9,80 11,40 A MIN 3,50 3,50 4,90 4,90 7,70 9,60 11,20 DIM 4073251/E 08/00 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MSSO001C – JANUARY 1995 – REVISED DECEMBER 2001 DL (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 48 PINS SHOWN 0.025 (0,635) 0.0135 (0,343) 0.008 (0,203) 48 0.005 (0,13) M 25 0.010 (0,25) 0.005 (0,13) 0.299 (7,59) 0.291 (7,39) 0.420 (10,67) 0.395 (10,03) Gage Plane 0.010 (0,25) 1 0°–ā8° 24 0.040 (1,02) A 0.020 (0,51) Seating Plane 0.110 (2,79) MAX 0.004 (0,10) 0.008 (0,20) MIN PINS ** 28 48 56 A MAX 0.380 (9,65) 0.630 (16,00) 0.730 (18,54) A MIN 0.370 (9,40) 0.620 (15,75) 0.720 (18,29) DIM 4040048 / E 12/01 NOTES: A. B. C. D. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). Falls within JEDEC MO-118 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MTSS003D – JANUARY 1995 – REVISED JANUARY 1998 DGG (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 48 PINS SHOWN 0,27 0,17 0,50 48 0,08 M 25 6,20 6,00 8,30 7,90 0,15 NOM Gage Plane 1 0,25 24 0°– 8° A 0,75 0,50 Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,10 48 56 64 A MAX 12,60 14,10 17,10 A MIN 12,40 13,90 16,90 DIM 4040078 / F 12/97 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security Mailing Address: Telephony www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright 2006, Texas Instruments Incorporated