SS6638G Simple 3-Pin Step-Up DC/DC Converter FEATURES DESCRIPTION Guaranteed start-up from less than 0.9 V. High efficiency. Low quiescent current. Fewer external components needed. Low ripple and low noise. Fixed output voltage: 2.7V, 3.0V, 3.3V, 4.5V and 5V. Space saving packages: SOT-23, SOT-89 and TO-92. The SS6638G is a high-efficiency step-up DC/DC converter for applications using 1 to 4 NiMH battery cells. Only three external components are required to deliver a fixed output voltage of 2.7V, 3.0V, 3.3V, 4.5V or 5V. The SS6638G starts up from less than 0.9V input with 1mA load. A Pulse Frequency Modulation scheme brings optimized performance for applications with light output loading and low input voltages. The output ripple and noise are lower compared with circuits operating in PSM mode. Pb-free, RoHS compliant. APPLICATIONS The PFM control circuit operating at a maximum 100kHz switching rate results in smaller passive components. The space saving SOT-23, SOT-89 and TO-92 packages make the SS6638G an ideal choice of DC/DC converter for space-conscious applications, like pagers, electronic cameras, and wireless microphones. Pagers. Cameras. Wireless Microphones. Pocket Organizers. Battery Backup Supplies. Portable Instruments. TYPICAL APPLICATION CIRCUIT VIN VOUT L1 100µH + C1 SW 22µF D1 SS12 SS6638-27G SS6638-30G SS6638-33G SS6638-45G SS6638-50G VOUT + C2 47µF GND Simple Step-Up DC/DC Converter 8/21/2005 Rev.2.3 www.SiliconStandard.com 1 of 19 SS6638G ORDERING INFORMATION PIN CONFIGURATION SS6638-XX X X XX Packing TR: Tape and reel Package type X: SOT-89 Z: TO-92 U: SOT-23 G: Pb-free, RoHS-compliant Output voltage 27: 2.7V 30: 3.0V 33: 3.3V 45: 4.5V 50: 5.0V Example: SS6638-27GXTR 2.7V output in RoHS-compliant SOT-89, shipped on tape and reel SOT-89 TOP VIEW 1: GND 2: VOUT 3: SW 1 TO-92 TOP VIEW 1: GND 2: VOUT 3: SW 2 3 1 2 3 SOT-23 TOP VIEW 1: GND 2: VOUT 3: SW 2 1 3 SOT-23 MARKING Part No. SS6638-27GU DA27P SS6638-30GU DA30P SS6638-33GU DA33P SS6638-45GU DA45P SS6638-50GU DA50P SOT-89 MARKING Part No. SS6638-27GX AN27P SS6638-30GX AN30P SS6638-33GX AN33P SS6638-45GX AN45P SS6638-50GX AN50P 8/21/2005 Rev.2.3 www.SiliconStandard.com 2 of 19 SS6638G ABSOLUTE MAXIMUM RATINGS Supply Voltage (VOUT pin) .6V SW pin Voltage 6V SW pin Switch Current 0.6A -40°C to 85°C Operating Temperature Range Maximum Junction Temperature 125°C -65°C to 150 °C Storage Temperature Range 260°C Lead Temperature (Soldering 10 Sec.) Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. TEST CIRCUIT VIN IIN VOUT L1 100µH + C1 SW 22µF D1 SS12 SS6638-27G SS6638-30G SS6638-33G SS6638-45G VOUT SS6638-50G + C2 47µF GND Fig. 1 Test Circuit 1 IS SS6638G SS6638G 100 VS VOUT SW VSW VS VOUT FOSC GND GND Fig. 2 Test Circuit 2 8/21/2005 Rev.2.3 SW Fig. 3 Test Circuit 3 www.SiliconStandard.com 3 of 19 SS6638G ELECTRICAL CHARACTERISTICS PARAMETER Output Voltage TEST CONDITIONS (TA=25°C, IOUT=10mA, unless otherwise specified) (Note1) TEST CKT SYMBOL TYP. MAX. SS6638-27G VIN=1.8V 2.633 2.700 2.767 SS6638-30G VIN=1.8V 2.925 3.000 3.075 SS6638-33G VIN=2.0V 3.218 3.300 3.382 SS6638-45G VIN=3.0V 4.387 4.500 4.613 SS6638-50G VIN=3.0V 4.875 5.000 5.125 1 VOUT Input Voltage Normal Operation 1 VIN Start-Up Voltage IOUT=1mA, VIN:0→2V 1 VSTART Min. Hold-on Voltage IOUT=1mA, VIN:2→0V 1 VHOLD No-Load Input Current IOUT=0mA 1 IIN Supply Current MIN. 0.8 42 SS6638-30G 50 SS6638-33G 60 SS6638-45G 2 SS6638-50G IS1 V 6 V 0.9 V 0.7 V µA 15 SS6638-27G UNIT 70 µA 90 VS=VOUT x 0.95 Measurement of the IC input current (VOUT pin) Supply Current SS6638-27G 7 SS6638-30G 7 SS6638-33G 7 SS6638-45G 2 IS2 SS6638-50G 7 µA 7 VS=VOUT + 0.5V Measurement of the IC input current (VOUT pin) SW Leakage Current SW Switch-On Resistance VSW=6V, VS=VOUT + 0.5V 0.5 2 SS6638-27G 1.3 SS6638-30G 1.2 SS6638-33G 1.1 SS6638-45G 2 RON SS6638-50G 1 µA Ω 1 VS=VOUT x 0.95, VSW=0.4V 8/21/2005 Rev.2.3 www.SiliconStandard.com 4 of 19 SS6638G ELECTRICAL CHARACTERISTICS PARAMETER (Continued) TEST CONDITIONS TEST CKT SYMBOL MIN. TYP. MAX. UNIT 3 DUTY 65 75 85 % 3 FOSC 80 105 130 kHz 1 η VS=VOUT x 0.95 Oscillator Duty Cycle Measurement of the SW pin waveform VS=VOUT x 0.95 Max. Oscillator Freq. Measurement of the SW pin waveform Efficiency 85 % Note 1: Specifications are production tested at TA=25°C. Specifications over the -40°C to 85°C operating temperature range are assured by design, characterization and correlation with Statistical Quality Controls (SQC). TYPICAL PERFORMANCE CHARACTERISTICS (Refer to Typical Application) 2.8 85 2.7 80 2.6 VIN =1.8V VIN =1.5V VIN =2.0V Efficiency (%) Output Voltage (V) Capacitor (C2) : 47µF (Tantalum Type) Diode (D1) : 1N5819 Schottky Type V IN =1.2V 2.5 2.4 75 VIN=1.8V 70 VIN=2.0V 65 VIN=1.5V V IN =0.9V 60 2.3 VIN=1.2V VIN=0.9V 2.2 0 55 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 Output current (mA) Output Current (mA) Fig. 5 SS6638-27G Efficiency (L=100µH CD54) Fig. 4 SS6638-27G Load Regulation (L=100µH CD54) 2.8 85 80 2.7 Efficiency (%) Output Voltage (V) 75 2.6 VIN=1.5V VIN=1.2V VIN=1.8V VIN=2.0V 2.5 70 VIN=2.0V VIN=1.8V 65 60 VIN=1.2V 2.4 VIN=1.5V VIN=0.9V 55 VIN=0.9V 2.3 0 20 40 60 80 100 120 140 160 180 200 220 Output Current (mA) Fig. 6 8/21/2005 Rev.2.3 SS6638-27G Load Regulation (L=47µH CD54) 240 50 0 20 40 60 80 100 120 140 160 180 200 220 240 Output current (mA) Fig. 7 SS6638-27G Efficiency (L=47µH CD54) www.SiliconStandard.com 5 of 19 SS6638G TYPICAL PERFORMANCE CHARACTERISTICS (Continued) 1.0 1.0 0.9 0.9 0.8 Start up Input Voltage (V) Input Voltage (V) 0.6 0.5 Hold on 0.4 Start up 0.8 0.7 0.3 0.2 0.7 0.6 0.5 Hold on 0.4 0.3 0.2 0.1 0.1 0.0 0 2 4 6 8 10 12 14 16 0.0 18 0 2 4 6 8 10 12 14 16 18 Output Current (mA) Output Current (mA) Fig. 8 SS6638-27G Start-Up & Hold-ON Voltage (L=47µH CD54) Fig. 9 SS6638-27G Start-Up & Hold-ON Voltage (L=100µH CD54) 2.80 160 Switching Frequency (kHz) 2.78 2.76 Output Voltage (V) 2.74 2.72 2.70 2.68 2.66 2.64 140 120 100 80 60 2.62 2.60 -40 -20 0 20 40 60 80 40 -40 100 Temperature (°C) Fig. 10 SS6638-27G Output Voltage vs. Temperature 0 20 40 60 80 100 Temperature (°C) Fig. 11 SS6638-27G Switching Frequency vs. Temperature 80 1.8 SW Turn ON Resistance (Ω) Maximum Duty Cycle (%) -20 78 76 74 72 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 70 -40 0.0 -20 0 20 40 60 80 100 Temperature (°C) Fig. 12 SS6638-27G Maximum Duty Cycle vs. Temperature 8/21/2005 Rev.2.3 -40 -20 0 20 40 60 80 100 Temperature (°C) Fig. 13 SS6638-27G SW Turn ON Resistance vs. Temperature www.SiliconStandard.com 6 of 19 SS6638G TYPICAL PERFORMANCE CHARACTERISTICS (Continued) 45 3.1 VIN=2.0V 3.0 40 Output voltage VOUT(V) Supply Current (µA) 2.9 35 30 25 20 15 VIN=1.5V 2.8 VIN=1.8V 2.7 2.6 2.5 2.4 2.3 VIN=1.2V 2.2 10 VIN=0.9V 2.1 5 -40 -20 0 20 40 60 80 2.0 100 0 Temperature (°C) Fig. 14 SS6638-27G Supply Current vs. Temperature 10 20 30 40 50 60 70 80 90 100 110 120 130 140 Output Current (mA) Fig. 15 SS6638-30G Load Regulation (L=100µH, CD54) 85 3.1 3.0 80 2.9 Output Voltage (V) Efficiency (%) 75 70 VIN=2.0 VIN=1.8V 65 60 VIN=1.2V 2.8 VIN=2.0V VIN=1.8V VIN=1.5V 2.7 2.6 2.5 VIN=1.5V 2.4 55 2.3 VIN=1.2V VIN=0.9V 2.2 50 0 20 40 60 80 100 120 140 160 180 VIN=0.9V 0 20 40 60 80 100 120 140 160 180 200 220 Output Current (mA) Output Current (mA) Fig. 17 SS6638-30G Load Regulation (L=47µH CD54) Fig. 16 SS6638-30G Efficiency (L=100µH, CD54) 85 1.0 Start up 0.9 80 0.8 Input Voltage (V) Efficiency (%) 75 70 65 VIN=2.0V VIN=1.8V 60 0.7 0.6 Hold on 0.5 0.4 0.3 0.2 55 VIN=1.5V VIN=0.9V 50 0 25 0.1 VIN=1.2V 50 75 100 125 150 175 200 225 0.0 0 Output Current (mA) Fig. 18 8/21/2005 Rev.2.3 SS6638-30G Efficiency (L=47µH CD54) Fig. 19 2 4 6 8 10 12 14 16 18 20 Output Current (mA) SS6638-30G Start-up & Hold-on Voltage (L=100µH CD54) www.SiliconStandard.com 7 of 19 SS6638G TYPICAL PERFORMANCE CHARACTERISTICS (Continued) 3.10 1.0 3.08 Start up 0.9 3.06 Output Voltage (V) Input Voltage (V) 0.8 0.7 0.6 0.5 Hold on 0.4 0.3 3.02 3.00 2.98 2.96 0.2 2.94 0.1 2.92 0.0 0 2 4 6 8 10 12 14 16 18 No Load 3.04 2.90 -40 20 -20 Output Current (mA) Fig. 20 SS6638-30G Start-up & Hold-on Voltage (L=47µH CD54) Fig. 21 0 20 40 60 80 100 Temperature (°C) SS6638-30G Output Voltage vs. Temperature 80 Maximum Duty Cycle (%) Switching Frequency (kHz) 160 140 120 100 80 60 40 -40 Fig. 22 -20 0 20 40 60 80 76 74 72 70 -40 100 Temperature (°C) SS6638-30G Switching Frequency vs. Temperature Fig. 23 -20 0 20 40 60 80 100 Temperature (°C) SS6638-30G Maximum Duty Cycle vs. Temperature 45 1.8 1.6 40 1.4 35 Supply Current (µA) SW Turn ON Resistance (Ω) 78 1.2 1.0 0.8 0.6 30 25 20 15 0.4 10 0.2 0.0 -40 -20 0 20 40 60 80 100 Temperature (°C) Fig. 24 SS6638-30G SW Turn ON Resistance vs. Temperature 8/21/2005 Rev.2.3 5 -40 Fig. 25 -20 0 20 40 60 80 100 Temperature (°C) SS6638-30G Supply Current vs. Temperature www.SiliconStandard.com 8 of 19 SS6638G TYPICAL PERFORMANCE CHARACTERISTICS (Continued) 90 3.4 VIN=2.0V 3.3 85 3.1 80 VIN=1.8V VIN=1.5V Efficiency (%) Output Voltage (V) 3.2 3.0 2.9 VIN=1.2V 2.8 2.7 2.6 VIN=2.0V 75 70 VIN=1.8V 65 60 VIN=1.2V 2.5 2.4 2.3 0 25 50 VIN=0.9V 75 100 125 150 175 50 200 0 25 50 75 Output Current (mA) SS6638-33G Load Regulation (L=100µH, CD54) Fig. 27 3.4 90 3.3 85 3.2 80 3.1 VIN=1.5V VIN=2.0V VIN=1.8V 3.0 2.9 2.8 2.7 VIN=0.9V 0 25 Fig. 28 50 75 100 125 150 175 200 200 VIN=2.0V 70 65 60 40 225 VIN=1.8V VIN=1.5V VIN=0.9V 0 VIN=1.2V 25 50 75 100 125 150 175 200 225 250 Output Current (mA) Output Current (mA) SS6638-33G Load Regulation (L=47µH, CD54) Fig. 29 SS6638-33G Efficiency (L=47µH,CD54) 3.50 1.0 3.45 Output Voltage Vout (V) Start up 0.9 Input Voltage (V) 175 45 1.1 0.8 0.7 0.6 Hold on 0.5 0.4 0.3 0.2 0.1 0.0 150 75 50 2.6 2.4 125 SS6638-33G Efficiency (L=100µH, CD54) 55 VIN=1.2V 2.5 100 Output Current (mA) Efficiency (%) Output Voltage (V) Fig. 26 VIN=1.5V 55 VIN=0.9V 3.40 3.35 No Load 3.30 3.25 3.20 3.15 3.10 3.05 0 Fig. 30 8/21/2005 Rev.2.3 2 4 6 8 10 12 14 16 18 20 Output Current (mA) SS6638-33G Start-up & Hold-on Voltage (L=100µH CD54) 3.00 -40 -20 0 20 40 60 80 100 Temperature (°C) Fig. 31 www.SiliconStandard.com SS6638-33G Output Voltage vs. Temperature 9 of 19 SS6638G TYPICAL PERFORMANCE CHARACTERISTICS (Continued) 80 Maximum Duty Cycle (%) Switching Frequency (kHz) 160 140 120 100 80 60 40 -40 0 20 40 60 80 100 Temperature (°C) SS6638-33G Switching Frequency vs. Temperature 76 74 72 70 -40 1.8 45 1.6 40 1.4 1.2 1.0 0.8 0.6 0.4 -20 Fig. 33 Supply Current IDD1 (µA) SW Turn ON Resistance (Ω) Fig. 32 -20 78 0 20 40 60 80 100 Temperature (°C) SS6638-33G Maximum Duty Cycle vs. Temperature 35 30 25 20 15 0.2 0.0 -40 -20 0 20 40 60 80 10 -40 100 Temperature (°C) Fig. 34 SS6638-33G SW Turn ON Resistance vs. Temperature -20 0 20 40 60 80 100 Temperature (°C) SS6638-33G Supply Current vs. Temperature Fig. 35 90 4.6 4.4 85 4.2 VIN=3.0V Efficiency (%) Output Voltage (V) 80 4.0 3.8 VIN=1.5V 3.6 VIN=2.0V 3.4 3.2 VIN=0.9V VIN=1.2V 3.0 75 70 VIN=3.0V 65 VIN=2.0V 60 VIN=1.5V 2.8 VIN=0.9V 55 2.6 2.4 VIN=1.2V 50 2.2 0 50 Fig. 36 8/21/2005 Rev.2.3 100 150 200 250 300 350 Output Current (mA) SS6638-45G Load Regulation (L=100µH) 400 0 50 100 Fig. 37 www.SiliconStandard.com 150 200 250 300 350 400 Output Current (mA) SS6638-45G Efficiency (L=100µH) 10 of 19 SS6638G TYPICAL PERFORMANCE CHARACTERISTICS (Continued) 1.6 4.6 4.4 1.4 1.2 4.0 Input Voltage (V) Output Voltage (V) 4.2 VIN=3.0V 3.8 VIN=1.5V 3.6 VIN=2.0V 3.4 3.2 VIN=1.2V VIN=0.9V 3.0 Start up 1.0 Hold on 0.8 0.6 0.4 2.8 2.6 0.2 2.4 0.0 2.2 0 50 100 150 200 250 300 350 0 400 Output Current (mA) SS6638-45G Load Regulation (L=100µH) Fig. 38 5 Fig. 39 5.0 90 4.9 80 10 15 20 Output Current (mA) SS6638-45G Start-up & Hold-On Voltage (L=100µH) Supply Current (µA) Output Voltage (V) 4.8 4.7 4.6 No Load 4.5 4.4 4.3 70 60 50 40 30 4.2 20 4.1 4.0 -40 Fig. 40 -20 0 20 40 60 80 10 100 -40 Temperature (°C) SS6638-45G Output Voltage vs. Temperature -20 Fig. 41 0 20 40 60 80 100 Temperature (°C) SS6638-45G Supply Current vs. Temperature 80 Maximum Duty Cycle (%) Switching Frequency (kHz) 160 140 120 100 80 60 40 -40 Fig. 42 8/21/2005 Rev.2.3 -20 0 20 40 60 80 100 Temperature (°C) SS6638-45G Switching Frequency vs. Temperature 78 76 74 72 70 -40 Fig. 43 -20 0 20 40 60 80 100 Temperature (°C) SS6638-45G Maximum Duty Cycle vs. Temperature www.SiliconStandard.com 11 of 19 SS6638G 1.8 5.5 1.6 5.0 1.4 4.5 Output Voltage (V) SW Turn ON Resistance (Ω) TYPICAL PERFORMANCE CHARACTERISTICS (Continued) 1.2 1.0 0.8 0.6 VIN=3.0V VIN=2.0V 4.0 3.5 VIN=1.5V 3.0 VIN=1.2V 2.5 0.4 VIN=0.9V 2.0 0.2 0.0 1.5 -40 -20 0 20 40 60 80 0 100 Temperature (°C) Fig. 44 SS6638-45G SW Turn ON Resistance vs. Temperature 5.5 90 5.0 Output Voltage (V) Efficiency (%) 70 VIN=3.0V VIN=2.0V 60 VIN=0.9V VIN=1.5V 50 VIN=1.2V 40 100 150 200 250 300 350 400 Output Current (mA) SS6638-50G Load Regulation ( L=100µH CD54) Fig. 45 100 80 50 4.5 VIN=3.0V VIN=2.0V 4.0 3.5 VIN=1.5V 3.0 VIN=1.2V 2.5 2.0 VIN=0.9V 30 20 0 50 100 150 200 250 300 350 1.5 0 400 Fig. 46 50 100 150 200 250 300 350 400 Output Current (mA) Output Current (mA) SS6638-50G Efficiency (L=100µH CD54) Fig. 47 SS6638-50G Load Regulation (L=47µH CD54) 90 1.8 85 1.6 80 Input Voltage (V) Efficiency (%) 1.4 75 70 VIN=3.0V 65 60 VIN=2.0V 55 Start up 0.8 0.6 0.4 VIN=1.2V 50 45 0 1.0 Hold on VIN=1.5V VIN=0.9V 1.2 0.2 0.0 50 100 150 200 250 300 350 400 0 2 Output Current (mA) Fig. 48 8/21/2005 Rev.2.3 SS6638-50G Efficiency (L=47µH CD54) 4 6 8 10 12 14 16 18 20 Output Current (mA) Fig. 49 SS6638-50G Start-up & Hold-on Voltage (L=100µH CD50) www.SiliconStandard.com 12 of 19 SS6638G TYPICAL PERFORMANCE CHARACTERISTICS (Continued) 5.3 160 Switching Frequency (kHz) Output Voltage VOUT (V) 5.2 5.1 No Load 5.0 4.9 4.8 4.7 4.6 4.5 4.4 -40 -20 0 20 40 60 80 120 100 80 60 40 -40 100 Temperature (°C) Fig. 50 SS6638-50G Output Voltage vs. Temperature Fig. 51 80 -20 0 20 40 60 80 100 Temperature (°C) SS6638-50G Switching Frequency vs. Temperature SW Turn ON Resistance (Ω) 1.8 78 Maximum Duty Cycle (%) 140 76 74 72 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 70 -40 0.0 -20 Fig. 52 0 20 40 60 80 100 Temperature (°C) SS6638-50G Maximum Duty Cycle vs. Temperature -40 -20 0 20 40 60 80 100 Temperature (°C) Fig. 53 SS6638-50G SW Turn ON Resistance vs. Temperature 100 90 VOUT Supply Current IDD1 (µA) 80 50mV/div 70 60 50 100mA 40 Load Step 30 50mA/div 20 10 -40 -20 Fig. 54 8/21/2005 Rev.2.3 0 20 40 60 80 100 Temperature (°C) SS6638-50G Supply Current vs. Temperature www.SiliconStandard.com Fig. 55 Load Transient Response (L1=100µH, C2=47µF, VIN=2V) 13 of 19 SS6638G TYPICAL PERFORMANCE CHARACTERISTICS (Continued) VOUT 20mv/div VIN 0.5V/div Fig. 56 Line Transient Response (L1=100µH, C2=47µF) BLOCK DIAGRAM SW 1.25V REF. VOUT 1M + Enable GND OSC, 100KHz PIN DESCRIPTIONS PIN 1 : GND - Ground. Must be low impedance; solder directly to ground plane. PIN 3 : SW - Internal drain of N-MOSFET switch. PIN 2 : VOUT - IC supply pin. Connect VOUT to the converter output. 8/21/2005 Rev.2.3 www.SiliconStandard.com 14 of 19 SS6638G APPLICATION INFORMATION GENERAL DESCRIPTION The SS6638G PFM (pulse frequency modulation) converter IC combines a switch mode converter, N-channel power MOSFET, precision voltage reference, and voltage detector in a single monolithic device. It offers both extreme low quiescent current, high efficiency, and very low gate threshold voltage to ensure start-up with low battery voltage (0.8V typ.). Designed to maximize battery life in portable products, it minimizes switching losses by only switching as needed to service the load. of each cycle. Depending on the circuit, PFM converters operate in either discontinuous mode or continuous conduction mode. Continuous conduction mode means that the inductor current does not ramp to zero during each cycle. VIN IIN ID When the output voltage drops, the error comparator enables the 100KHz oscillator that turns the MOSFET on for about 7.5µs and off for 2.5µs. Turning on the MOSFET allows inductor current to ramp up, storing energy in a magnetic field. When The MOSFET turns off, inductor current is forced through the diode to the output capacitor and load. As the stored energy is depleted, the current ramps down until the diode turns off. At this point, the inductor may ring due to residual energy and stray capacitance. The output capacitor stores charge when the current flowing through the diode is high, and releases it when current is low, thereby maintaining a steady voltage across the load. As the load increases, the output capacitor discharges faster and the error comparator initiates cycles sooner, increasing the switching frequency. The maximum duty cycle ensures adequate time for energy transfer to the output during the second half 8/21/2005 Rev.2.3 VOUT + EXT PFM converters transfer a discrete amount of energy per cycle and regulate the output voltage by modulating the switching frequency with a constant pulse width. Switching frequency depends on load, input voltage, and inductor value, and it can range up to 100kHz. The SW on-resistance is typically 1 to 1.5Ω to minimize switching losses. IOUT SW Isw Ico SS6638G VEXT IIN IPK ISW Charge Co. ID VSW IOUT TDIS Discharge Co. t Discontinuous Conduction Mode www.SiliconStandard.com 15 of 19 SS6638G VEXT fsw = IIN IPK (VOUT + VD − VIN) × TON (VOUT + VD − VSW ) VIN − VSW x )] [1 + ( 2 VOUT + VD − VSW ≅ IV 1 1 VOUT + VD − VIN TON VOUT + VD − VSW where Vsw = switch drop and is proportional to output current. ISW ID INDUCTOR SELECTION IOUT VSW t Continuous Conduction Mode At the boundary between continuous and discontinuous mode, output current (IOB) is determined by VIN 1 VIN TON(1 − x ) IOB = VOUT + VD 2 L where VD is the diode drop, x = (RON+Rs)Ton/L. RON= Switch turn on resistance, Rs= Inductor DC resistance TON = Switch ON time In the discontinuous frequency (Fsw) is Fsw = mode, the switching 2(L)(VOUT + VD − VIN)(IOUT) (1 + x ) VIN 2 × TON 2 In the continuous mode, the switching frequency is To operate as an efficient energy transfer element, the inductor must fulfill three requirements. First, the inductance must be low enough for the inductor to store adequate energy under the worst-case condition of minimum input voltage and switch ON time. Second, the inductance must also be high enough so the maximum current rating of the SS6638 and inductor are not exceeded at the other worst-case condition of maximum input voltage and ON time. Lastly, the inductor must have sufficiently low DC resistance so excessive power is not lost as heat in the windings. Unfortunately this is inversely related to physical size. Minimum and maximum input voltage, output voltage and output current must be established before an inductor can be selected. In discontinuous mode operation, at the end of the switch ON time, peak current and energy in the inductor build according to Ron + Rs Vin Ton) IPK = 1 − exp( − L Ron + Rs x VIN ≅ (TON) 1 − 2 L ≅ VIN TON L (Simple losses equation), where x=(RON+RS)TON/L 8/21/2005 Rev.2.3 www.SiliconStandard.com 16 of 19 SS6638G EL = VOUT + VD − VSW x IPK = − IOUT + VIN − VSW 2 x VIN − VSW TON 1 − 2L 2 1 L × IPK 2 2 Power required from the inductor per cycle must be equal or greater than PL/FSW = (VOUT + VD − VIN)(IOUT)( 1 FSW Valley current (Iv) is ) VIN − VSW VOUT + VD − VSW x Iv = − IOUT − × VIN − VSW 2 2L x TON 1 − 2 in order for the converter to regulate the output. When loading is over IOB, PFM converter operates in continuous mode. Inductor peak current can be derived from Table 1 Indicates resistance and height for each coil. Inductance Power Inductor Type ( µH ) Coilcraft SMT Type (www.coilcraft.com) Resistance (Ω) Rated Current (A) 22 0.10 0.7 47 0.18 0.5 100 0.38 0.3 22 0.08 2.7 47 0.14 1.8 47 0.25 0.7 100 0.50 0.5 DS1608 DO3316 Sumida SMT Type CD54 Hold SMT Type PM54 Hold SMT Type PM75 47 0.25 0.7 100 0.50 0.5 33 0.11 1.2 CAPACITOR SELECTION A poor choice for an output capacitor can result in poor efficiency and high output ripple. Ordinary aluminum electrolytics, while inexpensive, may have unacceptably poor ESR and ESL. There are low ESR aluminum capacitors for switch mode DC-DC converters which work much better than general proposetypes. Tantalum capacitors provide still better performance but are more expensive. OS-CON capacitors have extremely low ESR in a small size. If capacitance is reduced, output ripple will increase. Height (mm) 2.9 5.2 4.5 4.5 5.0 should be at least 1.25 times greater than the maximum input voltage. DIODE SELECTION Speed, forward drop, and leakage current are the three main considerations in selecting a rectifier diode. Best performance is obtained with a Schottky rectifier diode, such as the 1N5818, or the SS13 and B0530W in surface mount packages. For lower output power a 1N4148 can be used although efficiency and start-up voltage will suffer substantially. Most of the input supply is provided by the input bypass capacitor; the capacitor voltage rating 8/21/2005 Rev.2.3 www.SiliconStandard.com 17 of 19 SS6638G COMPONENT POWER DISSIPATION VD = Diode drop. Operating in discontinuous mode, power loss in the winding resistance of inductor can be approximated to The power dissipated due to the switch loss is PD L = PDsw = 2 TON VOUT + VD (POUT ) (Rs ) 3 L VOUT 2 TON VOUT + VD − VIN (POUT ) (RON) 3 L VOUT The power dissipated in the rectifier diode is VD PDD = (POUT) VOUT where POUT=VOUT ×IOUT ; Rs=Inductor DC R; PHYSICAL DIMENSIONS (unit: mm) SOT-23-3 (GU) D 0.25 E1 E c L e θ L1 e1 A2 A A1 b SYMBOL MIN MAX A 0.95 1.45 A1 0.05 0.15 A2 0.90 1.30 b 0.30 0.50 c 0.08 0.22 D 2.80 3.00 E 2.60 3.00 E1 1.50 1.70 e 0.95 BSC e1 1.90 BSC L 0.30 L1 θ 8/21/2005 Rev.2.3 www.SiliconStandard.com 0.60 0.60 REF 0˚ 8˚ 18 of 19 SS6638G PHYSICAL DIMENSIONS (unit: mm) (Continued) SOT-89-3 (GX) D A SYMBOL MIN MAX C A 1.40 1.60 B 0.44 0.56 B1 0.36 0.48 C 0.35 0.44 D 4.40 4.60 D1 1.50 1.83 E 2.29 2.60 D1 H E L B e B1 e1 e 1.50 BSC e1 3.00 BSC H 3.94 4.25 L 0.89 1.20 TO-92 (GZ) SYMBOL MIN MAX A 4.32 5.33 b 0.36 0.47 D 4.45 5.20 E 3.18 4.19 e 2.42 2.66 e1 1.15 1.39 j 3.43 - L 12.70 - S 2.03 2.66 A D b S E L j e1 e Information furnished by Silicon Standard Corporation is believed to be accurate and reliable. However, Silicon Standard Corporation makes no guarantee or warranty, express or implied, as to the reliability, accuracy, timeliness or completeness of such information and assumes no responsibility for its use, or for infringement of any patent or other intellectual property rights of third parties that may result from its use. Silicon Standard reserves the right to make changes as it deems necessary to any products described herein for any reason, including without limitation enhancement in reliability, functionality or design. No license is granted, whether expressly or by implication, in relation to the use of any products described herein or to the use of any information provided herein, under any patent or other intellectual property rights of Silicon Standard Corporation or any third parties. 8/21/2005 Rev.2.3 www.SiliconStandard.com 19 of 19