AD SSM2212

Audio, Dual-Matched
NPN Transistor
SSM2212
Very low voltage noise: 1 nV/√Hz maximum @ 100 Hz
Excellent current gain match: 0.5%
Low offset voltage (VOS): 200 μV maximum
Outstanding offset voltage drift: 0.03 μV/°C
High gain bandwidth product: 200 MHz
PIN CONFIGURATION
C1 1
8
C2
B1 2
7
B2
E1 3
6
E2
5
NIC
NIC 4
SSM2212
NIC = NO INTERNAL CONNECTION
09043-001
FEATURES
Figure 1. 8-Lead SOIC_N
GENERAL DESCRIPTION
The SSM2212 is a dual, NPN-matched transistor pair that is
specifically designed to meet the requirements of ultralow noise
audio systems.
With its extremely low input base spreading resistance (rbb' is
typically 28 Ω) and high current gain (hFE typically exceeds 600
at IC = 1 mA), the SSM2212 can achieve outstanding signal-tonoise ratios. The high current gain results in superior
performance compared to systems incorporating commercially
available monolithic amplifiers.
Excellent matching of the current gain (ΔhFE) to about 0.5% and
low VOS of less than 10 μV typical make the SSM2212 ideal for
symmetrically balanced designs, which reduce high-order
amplifier harmonic distortion.
Stability of the matching parameters is guaranteed by protection
diodes across the base-emitter junction. These diodes prevent
degradation of beta and matching characteristics due to reverse
biasing of the base-emitter junction.
The SSM2212 is also an ideal choice for accurate and reliable
current biasing and mirroring circuits. Furthermore, because a
current mirror’s accuracy degrades exponentially with mismatches
of VBE between transistor pairs, the low VOS of the SSM2212
does not need offset trimming in most circuit applications.
The SSM2212 performance and characteristics are guaranteed
over the extended temperature range of −40°C to +85°C.
Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113
©2010 Analog Devices, Inc. All rights reserved.
SSM2212
TABLE OF CONTENTS
Features .............................................................................................. 1 Thermal Resistance .......................................................................4 Pin Configuration............................................................................. 1 ESD Caution...................................................................................4 General Description ......................................................................... 1 Typical Performance Characteristics ..............................................5 Revision History ............................................................................... 2 Applications Information .................................................................8 Specifications..................................................................................... 3 Fast Logarithmic Amplifier..........................................................8 Electrical Characteristics............................................................. 3 Outline Dimensions ..........................................................................9 Absolute Maximum Ratings............................................................ 4 Ordering Guide .............................................................................9 REVISION HISTORY
7/10—Rev. A to Rev. B
Changes to Figure 1.......................................................................... 1
6/10—Rev. 0 to Rev. A
Changes to Fast Logarithmic Amplifier Section .......................... 8
6/10—Revision 0: Initial Version
Rev. B | Page 2 of 12
SSM2212
SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
VCB = 15 V, IO = 10 μA, TA = 25°C, unless otherwise specified.
Table 1.
Parameter
DC AND AC CHARACTERISTICS
Current Gain 1
Current Gain Match 2
Noise Voltage Density 3
Symbol
Text Conditions/Comments
Min
Typ
Max
Unit
IC = 1 mA
−40°C ≤ TA ≤ +85°C
IC = 10 μA
−40°C ≤ TA ≤ +85°C
10 μA ≤ IC ≤ 1 mA
IC = 1 mA, VCB = 0 V
fO = 10 Hz
fO = 100 Hz
fO = 1 kHz
fO = 10 kHz
IC = 1 mA
VCB = 0 V, IC = 1 mA
−40°C ≤ TA ≤ +85°C
0 V ≤ VCB ≤ VMAX 4 ,1 μA ≤ IC ≤ 1 mA 5
1 μA ≤ IC ≤ 1 mA5, VCB = 0 V
−40°C ≤ TA ≤ +85°C
−40°C ≤ TA ≤ +85°C, VOS trimmed to 0 V
300
300
200
200
605
0.5
5
%
1.6
0.9
0.85
0.85
0.4
10
2
1
1
1
nV/√Hz
nV/√Hz
nV/√Hz
nV/√Hz
μV p-p
μV
μV
μV
μV
μV/°C
μV/°C
V
MHz
pA
nA
pA
nA
pA
nA
nA
nA
nA
nA
pA/°C
V
pF
Ω
pF
hFE
ΔhFE
eN
Low Frequency Noise (0.1 Hz to 10 Hz)
Offset Voltage
eN p-p
VOS
Offset Voltage Change vs. VCB
Offset Voltage Change vs. IC
Offset Voltage Drift
ΔVOS/ΔVCB
ΔVOS/ΔIC
ΔVOS/ΔT
Breakdown Voltage
Gain Bandwidth Product
Collector-to-Base Leakage Current
BVCEO
fT
ICBO
Collector-to-Collector Leakage Current
ICC
Collector-to-Emitter Leakage Current
ICES
Input Bias Current
IB
Input Offset Current
IOS
Input Offset Current Drift
Collector Saturation Voltage
Output Capacitance
Bulk Resistance
Collector-to-Collector Capacitance
ΔIOS/ΔT
VCE (SAT)
COB
RBE
CCC
550
10
5
0.08
0.03
200
220
50
70
1
0.3
40
IC = 100 mA, VCE = 10 V
VCB = VMAX
−40°C ≤ TA ≤ +85°C
VCC = VMAX 6, 7
−40°C ≤ TA ≤ +85°C
VCE = VMAX, VBE = 0 V6, 7
−40°C ≤ TA ≤ +85°C
IC = 10 μA
−40°C ≤ TA ≤ +85°C
IC = 10 μA
−40°C ≤ TA ≤ +85°C
IC = 10 μA6, −40°C ≤ TA ≤ +85°C
IC = 1 mA, IB = 100 μA
VCB = 15 V, IE = 0 μA
10 μA ≤ IC ≤ 10 mA6
VCC = 0 V
1
Current gain is guaranteed with collector-to-base voltage (VCB) swept from 0 V to VMAX at the indicated collector currents.
Current gain match (ΔhFE) is defined as follows: ΔhFE = (100(ΔIB)(hFE min)/IC).
3
Noise voltage density is guaranteed, but not 100% tested.
4
This is the maximum change in VOS as VCB is swept from 0 V to 40 V.
5
Measured at IC = 10 μA and guaranteed by design over the specified range of IC.
6
Guaranteed by design.
7
ICC and ICES are verified by measurement of ICBO.
2
Rev. B | Page 3 of 12
200
25
3
35
4
35
4
40
0.05
23
0.3
35
500
500
500
50
50
6.2
13
150
0.2
1.6
SSM2212
ABSOLUTE MAXIMUM RATINGS
THERMAL RESISTANCE
Table 2.
Parameter
Breakdown Voltage of
Collector-to-Base Voltage (BVCBO)
Breakdown Voltage of
Collector-to-Emitter Voltage (BVCEO)
Breakdown Voltage of
Collector-to-Collector Voltage (BVCC)
Breakdown Voltage of
Emitter-to-Emitter Voltage (BVEE)
Collector Current (IC)
Emitter Current (IE)
Storage Temperature Range
Operating Temperature Range
Junction Temperature Range
Lead Temperature (Soldering, 60 sec)
θJA is specified for the worst-case conditions, that is, a device
soldered in a circuit board for surface-mount packages.
Rating
40 V
Table 3. Thermal Resistance
40 V
Package Type
8-Lead SOIC (R-8)
40 V
40 V
ESD CAUTION
20 mA
20 mA
−65°C to +150°C
−40°C to +85°C
−65°C to +150°C
300°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
Rev. B | Page 4 of 12
θJA
120
θJC
45
Unit
°C/W
SSM2212
TYPICAL PERFORMANCE CHARACTERISTICS
TA = 25°C, VCE = 5 V, unless otherwise specified.
900
CH1 4.92V p-p
800
TA = +125°C
CURRENT GAIN (h FE)
700
1
TA = +25°C
600
500
400
TA = –55°C
300
M4.00s
A CH1
15.8V
100
0.001
0.01
0.1
1
COLLECTOR CURRENT (mA)
Figure 2. Low Frequency Noise (0.1 Hz to 10 Hz), IC = 1 mA, Gain = 10,000,000
09043-005
CH1 2.00V
09043-002
200
Figure 5. Current Gain vs. Collector Current (VCB = 0 V)
1k
900
1mA
700
100
CURRENT GAIN (hFE)
NOISE VOLTAGE DENSITY (nV/ Hz)
800
IC = 1µA TEST
10
IC = 10µA TEST
IC = 1mA TEST
1
600
500
400
300
1µA
200
1
10
100
1k
10k
100k
FREQUENCY (Hz)
0
–100
09043-003
0.1
0.1
–50
0
50
100
150
TEMPERATURE (°C)
Figure 3. Noise Voltage Density vs. Frequency
09043-006
100
Figure 6. Current Gain vs. Temperature (Excludes ICBO)
100
0.70
BASE EMITTER VOLTAGE, VBE (V)
0.65
60
RS = 100kΩ
40
RS = 10kΩ
0.01
0.55
VCE = 5V
0.50
0.45
0.40
0.35
RS = 1kΩ
0
0.001
0.60
0.1
COLLECTOR CURRENT, IC (mA)
1
Figure 4. Total Noise vs. Collector Current, f = 1 kHz
0.30
0.001
0.01
0.1
1
COLLECTOR CURRENT, IC (mA)
Figure 7. Base Emitter Voltage vs. Collector Current
Rev. B | Page 5 of 12
10
09043-008
20
09043-004
TOTAL NOISE (nV/ Hz)
80
1000
10
100
CURRENT, I CBO (nA)
100
1
VCE = 5V
0.1
10
1
0.01
0.001
0.001
0.01
0.1
1
10
COLLECTOR CURRENT, IC (mA)
0.01
25
50
75
100
125
TEMPERATURE (°C)
Figure 8. Small Signal Input Resistance vs. Collector Current
09043-012
0.1
09043-009
INPUT RESISTANCE, hIE (MΩ)
SSM2212
Figure 11. Collector-to-Base Leakage Current vs. Temperature
1m
40
CAPACITANCE, C CB (pF)
CONDUCTANCE, h OE (mho)
35
0.1m
0.01m
VCE = 5V
1µ
30
25
20
15
10
0.1µ
0.01
0.1
1
10
100
0
09043-010
0.01µ
0.001
1000
COLLECTOR CURRENT, IC (mA)
0
10
20
30
40
50
REVERSE BIAS VOLTAGE (V)
Figure 9. Small Signal Output Conductance vs. Collector Current
09043-013
5
Figure 12. Collector-to-Base Capacitance vs. Reverse Bias Voltage
40
100
CAPACITANCE, C CC (pF)
TA = +125°C
10
TA = +25°C
1
0.1
30
25
20
15
10
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
SATURATION VOLTAGE, VSAT (V)
0.9
0
0
10
20
30
40
COLLECTOR-TO-SUBSTRATE VOLTAGE (V)
Figure 13. Collector-to-Collector Capacitance vs.
Collector-to-Substrate Voltage
Figure 10. Collector Current vs. Saturation Voltage
Rev. B | Page 6 of 12
50
09043-014
5
0.01
09043-017
COLLECTOR CURRENT, IC (mA)
35
TA = –55°C
SSM2212
1000
4.0
3.5
CAPACITANCE, C CC (pF)
CURRENT, ICC (nA)
100
10
1
3.0
2.5
2.0
1.5
1.0
0.1
50
75
100
125
TEMPERATURE (°C)
Figure 14. Collector-to-Collector Leakage Current vs. Temperature
0
09043-015
0.01
25
0
10
20
30
REVERSE BIAS VOLTAGE (V)
40
50
09043-016
0.5
Figure 15. Collector-to-Collector Capacitance vs. Reverse Bias Voltage
Rev. B | Page 7 of 12
SSM2212
APPLICATIONS INFORMATION
To compensate for the temperature dependence of the kT/q term, a
resistor with a positive 0.35%/°C temperature coefficient is chosen
for R2. The output is inverted with respect to the input and is
nominally −1 V/decade using the component values indicated.
FAST LOGARITHMIC AMPLIFIER
The circuit of Figure 16 is a modification of a standard
logarithmic amplifier configuration. Running the SSM2212 at
2.5 mA per side (full-scale) allows for a fast response with a wide
dynamic range. The circuit has a 7 decade current range and a
5 decade voltage range, and it is capable of 2.5 μs settling time to
1% with a 1 V to 10 V step. The output follows the equation:
R3 + R2 kT V REF
ln
R2
q
V IN
+15V
VIN
(0V TO 10V)
RS
4kΩ
2
8
AD8512
1
VO
3
4
–15V
330pF
R3
7.5kΩ
330pF
VREF
10V
R1
4kΩ
SSM2212
R2
500Ω
6
1/2
AD8512
7
4kΩ
R2 = TEL LABS QB1E (+0.35%/°C)
09043-018
VO =
5
Figure 16. Fast Logarithmic Amplifier
Rev. B | Page 8 of 12
SSM2212
OUTLINE DIMENSIONS
5.00 (0.1968)
4.80 (0.1890)
1
5
6.20 (0.2441)
5.80 (0.2284)
4
1.27 (0.0500)
BSC
0.25 (0.0098)
0.10 (0.0040)
COPLANARITY
0.10
SEATING
PLANE
1.75 (0.0688)
1.35 (0.0532)
0.51 (0.0201)
0.31 (0.0122)
0.50 (0.0196)
0.25 (0.0099)
45°
8°
0°
0.25 (0.0098)
0.17 (0.0067)
1.27 (0.0500)
0.40 (0.0157)
COMPLIANT TO JEDEC STANDARDS MS-012-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
012407-A
8
4.00 (0.1574)
3.80 (0.1497)
Figure 17. 8-Lead Standard Small Outline Package [SOIC_N]
Narrow Body
(R-8)
Dimensions shown in millimeters and (inches)
ORDERING GUIDE
Model 1
SSM2212RZ
SSM2212RZ-R7
SSM2212RZ-RL
1
Temperature Range
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
Package Description
8-Lead Standard Small Outline Package [SOIC_N]
8-Lead Standard Small Outline Package [SOIC_N]
8-Lead Standard Small Outline Package [SOIC_N]
Z = RoHS Compliant Part.
Rev. B | Page 9 of 12
Package Option
R-8
R-8
R-8
SSM2212
NOTES
Rev. B | Page 10 of 12
SSM2212
NOTES
Rev. B | Page 11 of 12
SSM2212
NOTES
©2010 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D09043-0-7/10(B)
Rev. B | Page 12 of 12