STA559BWQS 5-V, 2-A, 2.1-channel high-efficiency digital audio system with QSound QHD® Features ! Wide supply voltage range (4.5 - 9 V) ! 3 Power output configurations: – 2 channels of ternary PWM (stereo mode) (2 x 3 W) into 4 Ω at 5 V – 3 channels - left,right using binary and LFE using ternary PWM (2.1 mode) (2 x 0.7 W + 1 x 3 W) into 4 Ω at 5 V (2 x 1.4 W + 1 x 6 W) into 2 Ω at 5 V – 2 channels of ternary PWM (2 x 3 W) + PWM driver for SW PowerSSO-36 slug down ! Automatic zero-detect mute ! Automatic invalid input detect mute ! 2-channel I2S input data interface ! Input and output channel mapping ! 4 28-bit user programmable biquads (EQ) per channel ! 2.1 channels of 24-bit DDX® ! 100-dB SNR and dynamic range ! DC blocking selectable high-pass filter ! Selectable 32 kHz to 192 kHz input sample rates ! Selectable de-emphasis I2C control with selectable device address ! Sub channel mix into left and right channels ! ! ! Digital gain/attenuation +48 dB to -80 dB in 0.5-dB steps Advanced AM interference frequency switching and noise-suppression modes ! ! Soft volume update Selectable high or low bandwidth noise-shaping topologies ! Individual channel and master gain/attenuation ! ! Dual independent limiters/compressors Variable max power correction for lower full-power THD ! Dynamic range compression or anti-clipping modes ! Thermal overload and short-circuit protection ! Video application supports 576 x fs input mode ! AutoModes – 15 preset crossover filters – 2 preset anti-clipping modes – Preset night-time listening mode ! ! Individual channel and master soft and hard mute QSound QHD® – Field proven stereo soundfield enhancement technology – Provides improved audio image width, seperation and depth for stereo signals – Synthesizes a 3-D stereo soundfield ! Independent channel volume and DSP bypass ! PowerSSO-36 slug down package Table 1. Order codes Part number Temp range, °C Package Packing STA559BWQS 0 to 150 PowerSSO-36 slug down Tube STA559BWQS13TR 0 to 150 PowerSSO-36 slug down Tape&Reel March 2008 Rev 1 1/66 www.st.com 1 Contents STA559BWQS Contents 1 2 3 Description and block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2 QSound QHD® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Connections diagram and pins description . . . . . . . . . . . . . . . . . . . . . 12 2.1 Connections diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Pins description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Recommended operating condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 Electrical specifications - digital section . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4 Electrical specifications - power Section . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.5 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.5.1 3.6 4 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 I2C bus specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1 Communication protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1.1 Data transition or change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1.2 Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1.3 Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1.4 Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.2 Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.3 Write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.4 2/66 Functional pin status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.3.1 Byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.3.2 Multi-byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.4.1 Current address byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.4.2 Current address multi-byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.4.3 Random address byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 STA559BWQS 5 Contents 4.4.4 Random address multi-byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.4.5 Write mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.4.6 Read mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.1 5.2 5.3 5.4 5.5 Configuration register A (addr 0x00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.1.1 Master clock select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.1.2 Interpolation ratio select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.1.3 Thermal warning recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.1.4 Thermal warning adjustment bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.1.5 Fault detect recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Configuration register B (addr 0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.2.1 Serial audio input interface format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.2.2 Serial data interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.2.3 Serial data first bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.2.4 Delay serial clock enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.2.5 Channel input mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Configuration register C (addr 0x02) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.3.1 DDX power output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.3.2 DDX compensating pulse size register . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.3.3 Over-current warning detect adjustment bypass . . . . . . . . . . . . . . . . . . 34 Configuration register D (addr 0x03) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.4.1 High-pass filter bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.4.2 De-emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.4.3 DSP bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.4.4 Post-scale link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.4.5 Biquad coefficient link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.4.6 Dynamic range compression/anti-clipping bit . . . . . . . . . . . . . . . . . . . . 36 5.4.7 Zero-detect mute enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.4.8 MiamiMode enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Configuration register E (addr 0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.5.1 Max power correction variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.5.2 Max power correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.5.3 Noise-shaper bandwidth selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.5.4 AM mode enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.5.5 PWM speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.5.6 Distortion compensation variable enable . . . . . . . . . . . . . . . . . . . . . . . . 38 3/66 Contents STA559BWQS 5.6 5.7 5.8 5.9 5.10 5.5.7 Zero-crossing volume enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.5.8 Soft volume update enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Configuration register F (addr 0x05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.6.1 Output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.6.2 Invalid input detect mute enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.6.3 Binary output mode clock loss detection . . . . . . . . . . . . . . . . . . . . . . . . 41 5.6.4 LRCK double trigger protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.6.5 Auto EAPD on clock loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.6.6 IC power down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.6.7 External amplifier power down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Volume control registers (addr 0x06 - 0x0A) . . . . . . . . . . . . . . . . . . . . . . 42 5.7.1 Mute/line output configuration register . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.7.2 Master volume register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.7.3 Channel 1 volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.7.4 Channel 2 volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.7.5 Channel 3/line output volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Auto mode registers (addr 0x0B and 0x0C) . . . . . . . . . . . . . . . . . . . . . . . 44 5.8.1 AutoMode register 1 (addr 0x0B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.8.2 AutoMode register 2 (addr 0x0C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.8.3 AM interference frequency switching . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.8.4 Bass management crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Channel configuration registers (addr 0x0E - 0x10) . . . . . . . . . . . . . . . . . 46 5.9.1 Tone control bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.9.2 EQ bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.9.3 Volume bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.9.4 Binary output enable registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.9.5 Limiter select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.9.6 Output mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Tone control register (addr 0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.10.1 5.11 5.12 4/66 Tone control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Dynamics control registers (addr 0x12 - 0x15) . . . . . . . . . . . . . . . . . . . . . 48 5.11.1 Limiter 1 attack/release rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.11.2 Limiter 1 attack/release threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.11.3 Limiter 2 attack/release rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.11.4 Limiter 2 attack/release threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 User-defined coefficient control registers (addr 0x16 - 0x26) . . . . . . . . . . 51 STA559BWQS Contents 5.12.1 Coefficient address register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.12.2 Coefficient b1data register bits 23..16 . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.12.3 Coefficient b1data register bits 15..8 address . . . . . . . . . . . . . . . . . . . . 52 5.12.4 Coefficient b1data register bits 7..0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.12.5 Coefficient b2 data register bits 23..16 . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.12.6 Coefficient b2 data register bits 15..8 . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.12.7 Coefficient b2 data register bits 7..0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.12.8 Coefficient a1 data register bits 23..16 . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.12.9 Coefficient a1 data register bits 15..8 . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.12.10 Coefficient a1 data register bits 7..0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.12.11 Coefficient a2 data register bits 23..16 . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.12.12 Coefficient a2 data register bits 15..8 . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.12.13 Coefficient a2 data register bits 7..0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.12.14 Coefficient b0 data register bits 23..16 . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.12.15 Coefficient b0 data register bits 15..8 . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.12.16 Coefficient b0 Data Register Bits 7..0 . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.12.17 Coefficient write/read control register . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.12.18 User-defined EQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.12.19 Pre-scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.12.20 Post-scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.12.21 Over-current post-scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6 5.13 Variable max power correction registers (addr 0x27 - 0x28) . . . . . . . . . . 58 5.14 Variable distortion compensation registers (addr 0x29-0x2A) . . . . . . . . . 58 5.15 Fault detect recovery constant registers (addr 0x2B - 0x2C) . . . . . . . . . . 58 5.16 Device status register (addr 0x2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.1 Application scheme for power supplies . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.2 PLL filter schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.3 Typical output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 7 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 8 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 9 License information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5/66 Contents STA559BWQS 10 Trademarks and other acknowledgements . . . . . . . . . . . . . . . . . . . . . . 64 11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6/66 STA559BWQS Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Recommended operating condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Electrical specifications - digital section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Electrical specifications - power Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Functional pin status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Register summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Master clock select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Input sample rates and clock select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Interpolation ratio select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 IR bit settings as a function of input sample rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Thermal warning recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Thermal warning adjustment bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Fault detect recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Serial audio input interface format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Serial data first bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Support serial audio input formats for MSB-First (SAIFB = 0) . . . . . . . . . . . . . . . . . . . . . . 30 Supported serial audio input formats for LSB-First (SAIFB = 1) . . . . . . . . . . . . . . . . . . . . . 31 Delay serial clock enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Channel input mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 DXX power output mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Output modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 DXX compensating pulse size register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Compensating pulse size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Over-current warning detect adjustment bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 High-pass filter bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 De-emphasis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 DSP bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Post-scale link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Biquad coefficient link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Dynamic range compression/anti-clipping bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Zero-detect mute enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 MiamiMode enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Max power correction variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Max power correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Noise-shaper bandwidth selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 AM mode enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 PWM speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Distortion compensation variable enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Zero-crossing volume enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Soft volume update enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Output configuration engine selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Invalid input detect mute enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Binary output mode clock loss detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 LRCK double trigger protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Auto EAPD on clock loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 IC power down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 External amplifier power down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Line output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Master volume offset as a function of MV[7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 7/66 STA559BWQS Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. 8/66 Channel volume as a function of CxV[7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 AutoMode gain compression/limiters selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 AM interference frequency switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 AutoMode AM switching frequency selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Bass management crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Bass management crossover frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Channel limiter mapping as a function of CxLS bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Channel output mapping as a function of CxOM bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Tone control boost/cut as a function of BTC and TTC bits . . . . . . . . . . . . . . . . . . . . . . . . . 48 Limiter attack rate as a function of LxA bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Limiter release rate as a function of LxR bits.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Limiter attack threshold as a function of LxAT bits (AC-Mode). . . . . . . . . . . . . . . . . . . . . . 50 Limiter release threshold as a function of LxRT bits (AC-Mode) . . . . . . . . . . . . . . . . . . . . 50 Limiter attack threshold as a function of LxAT bits (DRC-mode). . . . . . . . . . . . . . . . . . . . . 51 Limiter release threshold as a as a function of LxRT bits (DRC-mode).. . . . . . . . . . . . . . . 51 RAM block for biquads, mixing, scaling, and bass management . . . . . . . . . . . . . . . . . . . . 57 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 STA559BWQS Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Pin connection PowerSSO-36 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Test circuit 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Test circuit 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Output power vs supply voltage (RL = 2 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Output power vs. supply voltage (RL = 2 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Output power vs. supply voltage (RL = 4 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Output power vs. supply voltage (RL = 4 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Output power vs. supply voltage (RL = 6 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Output power vs. supply voltage (RL = 6 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Output power vs. supply voltage (RL = 8 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Output power vs. supply voltage (RL = 8 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Efficiency vs. Pout (Vcc = 9 V; RL = 8 Ω). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Efficiency vs. Pout (Vcc = 5 V; RL = 4 Ω). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Efficiency vs. Pout (Vcc = 5 V; RL = 2 Ω). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 THD vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 PSSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Channel separation stereo DDX mode (RL = 2 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Channel separation stereo S.E. mode (RL = 2 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Channel separation stereo S.E. mode (RL = 4 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 FFT 0 dBFS stereo DDX mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 FFT -60 dBFS stereo DDX mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 FFT 0 dBFS stereo S.E. mode (RL = 4 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 FFT -60 dBFS stereo S.E. mode (RL = 4 Ω). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 FFT 0 dBFS stereo S.E. mode (RL = 2 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 FFT -60 dBFS stereo S.E. mode (RL = 2 Ω). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Write mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Read mode sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 OCFG = 00 (default value) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 OCFG = 01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 OCFG = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Basic limiter and volume flow diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 PLL application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Output configuration for stereo BTL mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Double layer PCB with copper ground area and with 16 via holes . . . . . . . . . . . . . . . . . . 61 PowerSSO-36 power derating curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 PowerSSO-36 (slug-up) mechanical data and package dimensions . . . . . . . . . . . . . . . . . 62 9/66 Description and block diagram 1 Description and block diagram 1.1 Description STA559BWQS The STA559BWQS is an integration of digital audio processing, digital amplifier control, DDX® power-output stage and QSound QHD® technology to create a high-power single-chip DDX solution with high-quality, high-efficiency and all digital amplification. The STA559BWQS power section consists of four independent half-bridges. These can be configured via digital control to operate in different modes. 2.1 channels can be provided by two half-bridges and a single full-bridge, providing up to 2 x 0.7 W + 1 x 3 W of power output. 2 channels can be provided by two full-bridges, providing up to 2x3W of power. The IC can also be configured as a 2.1 channels with 2 x 3 W provided by the device and external power for DDX® power drive. Also provided in the STA559BWQS are a full assortment of digital processing features. This includes up to 4 programmable 28-bit biquads (EQ) per channel, and bass/treble tone control. AutoModes enable a time-to-market advantage by substantially reducing the amount of software development needed for certain functions, for instance, auto volume loudness, preset volume curves and preset EQ settings. New advanced AM radio interference reduction modes. The serial audio data input interface accepts all possible formats, including the popular I2S format. Three channels of DDX® processing are provided. This high quality conversion from PCM audio to DDX patented 3-state PWM switching waveform provides over 100 dB of SNR and dynamic range. 1.2 QSound QHD® Normally, reduced audio clarity is experienced due to the digital compression of music (and video-sound) combined with various audio processing techniques used in broadcast transmission. This is most apparent in products such as digital televisions and audio players. These devices are faced with a multitude of audio challenges, primarily associated with the small speakers, that are limited in location and cabinet housing, plus economized speaker drivers and components. As such digital televisions and audio players are ideal candidates to benefit from stereo soundfield enhancement in order to deliver a full surround-like experience. QSound QHD® and its industry recognized QXpander® technology is a field-proven stereo soundfield enhancement technology that provides a broader stereo image width with greater separation and depth for stereo signals and synthesizes a 3-D stereo soundfield. QHD® removes the small centralized audio sweet spot by creating a very wide stereo image with full immersive audio. QHD® and its QXpander® technology have been incorporated into hundreds of QSound and third party hardware and software products, with total shipments in the millions. 10/66 STA559BWQS Description and block diagram 1.3 Block diagram Figure 1. Block diagram I2C I2S interface Channel 1A Power control DSP (Equalization, Tone, Volume, Bass) Protection current/thermal Logic Channel 1B DDX Channel 2A Regulators Channel 2B PLL Bias Digital (DSP) Power 11/66 Connections diagram and pins description STA559BWQS 2 Connections diagram and pins description 2.1 Connections diagram Figure 2. Pin connection PowerSSO-36 (top view) GND_SUB 1 36 VDD_DIG SA 2 35 GND_DIG TEST_MODE 3 34 SCL VSS 4 33 SDA VCC_REG 5 32 INT_LINE OUT2B 6 31 RESET GND2 7 30 SDI VCC2 8 29 LRCKI OUT2A 9 28 BICKI OUT1B 10 27 XTI VCC1 11 26 PLL_GND GND1 12 25 FILTER_PLL OUT1A 13 24 VDD_PLL GND_REG 14 23 PWRDN VDD 15 22 GND_DIG GND 16 21 VDD_DIG OUT3B/DDX3B 17 20 TWARN/OUT4B OUT3A/DDX3A 18 19 EAPD/OUT4A D05AU1638 2.2 Pins description Table 2. 12/66 Pin description Pin Type Name Description 1 GND GND_SUB Substrate ground 2 I SA I2C select address 3 I TEST_MODE 4 I/O VSS 5 I/O VCC_REG Internal Vcc reference 6 O OUT2B Output half bridge 2B 7 GND GND2 Power negative supply 8 Power VCC2 Power positive supply 9 O OUT2A Output half bridge 2A This pin must be connected to ground Internal reference at Vcc - 3.3 V STA559BWQS Connections diagram and pins description Table 2. Pin description (continued) Pin Type Name Description 10 O OUT1B Output half bridge 1B 11 Power VCC1 Power positive supply 12 GND GND1 Power negative supply 13 I/O OUT1A Output half bridge 1A 14 GND GND_REG 15 Power VDD Internal 3.3 V reference voltage 16 I/O GND Power negative supply 17 O OUT3B/DDX3B PWM out CH3B - external bridge 18 O OUT3A/DDX3A PWM out CH3A - external bridge 19 O EAPD/OUT4A 20 I TWARN/OUT4B 21 Power VDD_DIG Digital supply voltage 22 GND GND_DIG Digital ground 23 I PWRDN 24 Power VDD_PLL Positive supply for PLL 25 I FILTER_PLL Connection to PLL filter 26 GND GND_PLL Negative supply for PLL 27 I XTI PLL input clock 28 I BICKI I2S serial clock 29 I LRCKI I2S left/right clock 30 I SDI 31 I RESET 32 O INT_LINE Fault interrupt 33 I/O SDA I2C serial data 34 I SCL I2C serial clock 35 GND GND_DIG Digital ground 36 Power VDD_DIG Digital supply voltage Internal ground reference Power down for external bridge Thermal warning from external bridge Power down I2S serial data channels 1 and 2 Reset 13/66 Connections diagram and pins description 2.3 Thermal data Table 3. Thermal data Symbol Rth j-amb STA559BWQS Parameter Thermal resistance junction-ambient PowerSSO-36 Min (1) Typ Max Unit 24 °C/W Tth-sdj Thermal shut-down junction temperature 150 °C Tth-w Thermal warning temperature 130 °C Thermal shut-down hysteresis temperature 25 °C Tth-sdh 1. See Chapter 7: Package thermal characteristics on page 61 for details. 14/66 STA559BWQS Electrical specifications 3 Electrical specifications 3.1 Absolute maximum ratings Table 4. Absolute maximum ratings Symbol Parameter Min Typ Max Unit 18 V Vcc Power supply voltage (VCC1, VCC2) Vdd Logic supply -0.3 4 V Top Operating junction temperature -20 150 °C Tstg Storage temperature -40 150 °C Note: Stresses beyond those listed under “Absolute maximum ratings” make cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “Recommended operating condition” are not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. In the real application, power supply with nominal value rated inside recommended operating conditions, may experience some rising beyond the maximum operating condition for short time when no or very low current is sinked (amplifier in mute state). In this case the reliability of the device is guaranteed, provided that the absolute maximum rating is not exceeded. 3.2 Recommended operating condition Table 5. Recommended operating condition Symbol Parameter Min Vcc Power supply voltage (VCC1, VCC2) 5.0 Vdd Logic supply 2.7 Tamb Ambient temperature -20 Typ 3.3 Max Unit 16.0 V 3.6 V 70 °C 15/66 Electrical specifications STA559BWQS 3.3 Electrical specifications - digital section Table 6. Electrical specifications - digital section Symbol Parameter Conditions Iil Low level input current without pull device Vi = 0 V Iih High level input current without pull device Vil Low level input voltage Vih High level input voltage Vol Low level output voltage Iol = 2 mA Voh High level output voltage Ioh = 2 mA Ipu Pull current Rpu Equivalent pull resistance 3.4 Vi = VDD_DIG = 3.6 V Min Typ Max Unit -10 10 µA -10 10 µA 0.2 * VDD_DIG V 0.8 * VDD_DIG V 0.4 * VDD_DIG V 0.8 * VDD_DIG -25 V 66 125 µA 50 kΩ Electrical specifications - power Section The specifications given in this section are with the operating conditions VCC = 5 V, fsw = 384 kHz, Tamb = 25° C, RL = 4 Ω unless otherwise specified. Table 7. Electrical specifications - power Section Symbol Parameter Conditions Min Typ Max Unit 180 250 mΩ 10 µA RdsON Power Pchannel/Nchannel MOSFET RdsON ld = 1 A Idss Power Pchannel/Nchannel leakage ldss Vcc = 9 V gP Power Pchannel RdsON Matching ld = 1 A 95 % gN Power Nchannel RdsON Matching ld = 1 A 95 % ILDT Low current dead time (static) Resistive load(1) 5 10 ns IHDT High current dead time (dynamic) Iload = 2 A(2) 10 20 ns Rise time Resistive load(1) 8 10 ns (1) 8 10 ns 16 V 10 µA tr tf Vcc Icc Fall time Resistive load Supply operating voltage 4.5 Supply current from Vcc in power down Power Down = 0 Supply current from Vcc in 3-state TRISTATE = 0 15 mA Supply current from Vcc in operation PCM input signal = -60 dBFS Switching frequency = 384 kHz No LC filters 30 mA 80 mA Supply current DDX processing Internal clock = 49.152 MHz (reference only) on VDD_DIG 16/66 STA559BWQS Table 7. Electrical specifications Electrical specifications - power Section (continued) Symbol Parameter Conditions Min Typ Max Unit Ilim Overcurrent limit 2.2 3.0 A Isc Short circuit protection 2.7 3.6 A UVL Under voltage protection threshold tmin Output minimum pulse width Output power BTL Output power SE Output power BTL Po Output power SE Output power BTL Output power SE SNR PSSR THD+N XTALK η Signal to noise ratio, ternary mode Signal to noise ratio binary mode No Load 20 V 30 60 ns 2.3 THD = 10%, f = 1 kHz 3 THD = 1%, f = 1 kHz 0.5 THD = 10%, f = 1 kHz 0.7 RL = 8 Ω Vcc = 9 V f = 1 kHz RL = 2 Ω Vcc = 5 V f = 1 kHz THD = 1% 4.2 THD = 10% 5.3 THD = 1% 0.9 THD = 10% 1.2 THD = 1% 4.2 THD = 10% 5.3 THD = 1% 1 THD = 10% 1.3 100 W W W W W W dB A-weighted 90 Stereo DDX mode, <5 kHz VRIPPLE = 1 V RMS Audio input = dither only Total harmonic distortion + noise Crosstalk Peak efficiency, Binary modes 4.3 THD = 1%, f = 1 kHz Power Supply Rejection Ratio Peak efficiency, DDX mode 3.5 80 dB DDX stereo mode, Po = 1 W, f = 1 kHz 0.2 % Stereo DDX mode, <5 kHz One channel driven @ 1 W Other channel measured 80 dB Po = 2 x 3 W, 4 Ω Po = 2 x 0.7 W + 1 x 3 W, 4 Ω 90 87 % 1. Refer to Test Circuit 1 Figure 3 2. Refer to Test Circuit 2 Figure 4 17/66 Electrical specifications STA559BWQS 3.5 Testing 3.5.1 Functional pin status Table 8. Functional pin status Pin name Pin # Logic value IC status PWRDN 23 0 Low absorption PWRDN 23 1 Normal operation TWARN 20 0 From external power stage is indicated a temperature warning. TWARN 20 1 Normal operation EAPD 19 0 Low absorption for power stage. All internal regulators are switched off. EAPD 19 1 Normal operation Figure 3. Test circuit 1 OUTxY Vcc (3/4)Vcc Low current dead time = MAX(DTr,DTf) (1/2)Vcc (1/4)Vcc +Vcc t DTr Duty cycle = 50% DTf M58 OUTxY INxY R 8Ω M57 + - gnd Figure 4. V67 = vdc = Vcc/2 D03AU1458 Test circuit 2 High Current Dead time for Bridge application = ABS(DTout(A)-DTin(A))+ABS(DTOUT(B)-DTin(B)) +VCC Duty cycle=A Duty cycle=B DTout(A) M58 DTin(A) Q1 Q2 INA Iout=1A M57 Q3 DTout(B) Rload=4Ω OUTA L67 10µ C69 470nF L68 10µ C71 470nF C70 470nF DTin(B) INB Iout=1A Q4 Duty cycle A and B: Fixed to have DC output current of 4A in the direction shown in figure 18/66 M64 OUTB M63 D06AU1649 STA559BWQS Electrical specifications 3.6 Electrical characteristics curves Figure 5. Output power vs supply voltage (RL Figure 6. = 2 Ω) Output power vs. supply voltage (RL = 2 Ω) Po(W) 10 Po(W) 3 9 2.5 8 Rload = 2Ώ f = 1KHz 2 S.E. THD=10% Rload = 2Ώ 7 f = 1KHz 6 BTL THD=10 % 5 1.5 4 1 THD=1% 3 THD=1% 2 500m 1 0 +4.5 +4.6 +4.7 +4.8 +4.9 +5 0 +4.5 +4.6 +4.7 +4.8 +4.9 +5.1 +5.2 +5.3 +5.4 +5.5 +5.6 +5.7 +5.8 +5.9 +6 +5 +5.1 +5.2 +5.3 +5.4 +5.5 +5.6 +5.7 +5.8 +5.9 +6 Vcc(V) Figure 7. Vcc (V) Output power vs. supply voltage (RL Figure 8. = 4 Ω) Po(W) 3 Output power vs. supply voltage (RL = 4 Ω) Po(W) 12 11 2.5 Rload = 4Ώ 10 f = 1KHz 2 Rload = 4Ώ 9 THD=10% S.E. f = 1KHz 8 THD=10% BTL 7 1.5 6 THD=1% THD=1% 1 5 4 500m 3 2 0 +4.5 +5 +5.5 +6 +6.5 +7 +7.5 +8 +8.5 +9 1 +9.5 +10 Vcc (V) Figure 9. Po(W) 0 +4.5 3 Po(W) 10 9 2.4 8 2.1 7 1.8 Rload = 6Ώ 1.5 f = 1KHz 1.2 S.E. THD=10% +6 +6.5 +7 +7.5 Vcc(V) +8 +8.5 +9 +9.5 +10 f = 1KHz 5 BTL 0.6 2 0.3 1 +6 THD=10% +6.5 +7 +7.5 Vcc(V) +8 +8.5 +9 THD=1% 3 THD=1% +5.5 Rload = 6Ώ 6 4 0.9 +5 +5.5 Output power vs. supply voltage (RL Figure 10. Output power vs. supply voltage (RL = 6 Ω) = 6 Ω) 2.7 0 +4.5 +5 +9.5 +10 0 +4.5 +5 +5.5 +6 +6.5 +7 +7.5 +8 +8.5 +9 +9.5 +10 Vcc(V) 19/66 Electrical specifications STA559BWQS Figure 11. Output power vs. supply voltage (RL Figure 12. Output power vs. supply voltage (RL = 8 Ω) = 8 Ω) Po(W) 3 Po(W)10 2.7 9 2.4 8 2.1 7 Rload = 8Ώ 1.8 6 f = 1KHz 1.5 Rload = 8Ώ 5 THD=10% SE 1.2 0.9 THD=10% f = 1KHz 4 BTL 3 THD=1% 0.6 THD=1% 2 0.3 1 0 +4.5 +5 +5.5 +6 +6.5 +7 +7.5 +8 +8.5 +9 +9.5 +10 0 +4.5 Vcc(V) Figure 13. Efficiency vs. Pout (Vcc = 9 V; RL = 8 Ω) 100 90 90 80 80 70 70 +6.5 +7 +7.5 Vcc(V) +8 +8.5 +9 +9.5 +10 Vcc = 5V Rload = 4Ώ Rload= 8Ώ Eff(%) f = 1KHz 40 +6 60 Vcc= 9V Eff (%) 50 +5.5 Figure 14. Efficiency vs. Pout (Vcc = 5 V; RL = 4 Ω) 100 60 +5 50 f = 1KHz 40 BTL BTL 30 30 20 20 10 10 0 1 2 3 2xPout (W) 4 5 0 6 Figure 15. Efficiency vs. Pout (Vcc = 5 V; RL = 2 Ω) 500m 1 1.5 2xPout (W) 2 2.5 3 Figure 16. THD vs. frequency THD% 1 100 90 0.5 80 70 Eff(%) 0.1 R load = 2Ώ 40 f = 1KHz 30 BTL 6ohm Vcc=5V, Po= 1W 0.05 20 0.02 10 20/66 4ohm Stereo DDX Mode Vcc = 5V 50 0 8ohm 0.2 60 0.01 20 500m 1 1.5 2 2.5 2 x Pout (W) 3 3.5 4 50 100 200 500 Freq(Hz) 1k 2k 5k 10k 20k STA559BWQS Electrical specifications Figure 17. PSSR Figure 18. Channel separation stereo DDX mode (RL = 2 Ω) dBr +10 dBr +10 T +0 +0 -10 -10 Vcc = 5V -20 -20 Po = 1W -30 -30 -40 -40 Stereo DDX Mode -50 -50 Vcc= 5v, Rl=4Ώ -60 Po = 1W 8ohm -60 -70 -70 -80 6ohm 4ohm -80 -90 -90 -100 20 30 40 50 60 70 80 90 100 Frequency Hz 200 -100 20 50 100 200 500 1k 2k 5k 10k 20k 10k 20k Frequency (Hz) Figure 19. Channel separation stereo S.E. mode (RL = 2 Ω) Figure 20. Channel separation stereo S.E. mode (RL = 4 Ω) dBr A +10 dBr A +10 +0 +0 -10 -10 -20 -20 -30 -30 -40 -40 -50 -50 -60 -60 Stereo S.E. Mode -70 Rl = 2Ώ,Vcc=5V -70 Po = 1W -80 -80 50 100 200 500 1k Frequency (Hz) 2k 5k 10k 20k Po = 1W Stereo DDX Mode Vcc=5V, Rl=4Ώ f = 1KHz 100 200 500 1k Frequency (Hz) 50 100 200 500 1k 2k 5k Figure 22. FFT -60 dBFS stereo DDX mode dBr A 50 -100 20 Frequency (Hz) Figure 21. FFT 0 dBFS stereo DDX mode +10 +0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 20 Rl = 4Ώ,Vcc=5V -90 -90 -100 20 Stereo S.E. Mode 2k 5k 10k 20k dBr A +10 +0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 20 Stereo DDX Mode Vcc=5V, Rl=4Ώ f = 1KHz 50 100 200 500 1k 2k 5k 10k 20k Frequency (Hz) 21/66 Electrical specifications STA559BWQS Figure 23. FFT 0 dBFS stereo S.E. mode (RL = 4 Ω) dBr A Figure 24. FFT -60 dBFS stereo S.E. mode (RL = 4 Ω) dBr A +10 +0 +10 +0 -10 Stereo S.E. Mode -20 Vcc=5V, Rl=4Ώ -20 -30 f = 1KHz -30 -10 -40 -40 -50 -50 -60 Vcc=5V, Rl=4Ώ f = 1KHz -60 -70 -70 -80 -80 -90 -90 -100 -100 -110 -120 -130 20 Stereo S.E. Mode -110 -120 50 100 200 500 1k 2k 5k 10k 20k -130 20 50 100 200 Frequency (Hz) Figure 25. FFT 0 dBFS stereo S.E. mode (RL = 2 Ω) dBr A +10 +0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 1k 2k 5k 10k 20k Figure 26. FFT -60 dBFS stereo S.E. mode (RL = 2 Ω) dBr A +10 +0 -10 Stereo S.E. Mode -20 Stereo S.E. Mode Vcc=5V, Rl=2Ώ -30 Vcc=5V, Rl=2Ώ f = 1KHz -40 f = 1KHz -50 -60 -70 -80 -90 -100 -110 -120 -130 20 50 100 200 500 1k Frequency (Hz) 22/66 500 Frequency (Hz) 2k 5k 10k 20k -130 20 50 100 200 500 Frequency (Hz) 1k 2k 5k 10k 20k STA559BWQS 4 I2C bus specification I2C bus specification The STA559BWQS supports the I2C protocol via the input ports SCL and SDA_IN (master to slave) and the output port SDA_OUT (slave to master). This protocol defines any device that sends data on to the bus as a transmitter and any device that reads the data as a receiver. The device that controls the data transfer is known as the master and the other as the slave. The master always starts the transfer and provides the serial clock for synchronization. STA559BWQS is always a slave device in all of its communications. It supports up to 400 kb/s rate (fast-mode bit rate). STA559BWQS I2C is a slave only interface. 4.1 Communication protocol 4.1.1 Data transition or change Data changes on the SDA line must only occur when the SCL clock is low. SDA transition while the clock is high is used to identify a START or STOP condition. 4.1.2 Start condition START is identified by a high to low transition of the data bus SDA signal while the clock signal SCL is stable in the high state. A START condition must precede any command for data transfer. 4.1.3 Stop condition STOP is identified by low to high transition of the data bus SDA signal while the clock signal SCL is stable in the high state. A STOP condition terminates communication between STA559BWQS and the bus master. 4.1.4 Data input During the data input the STA559BWQS samples the SDA signal on the rising edge of clock SCL. For correct device operation the SDA signal must be stable during the rising edge of the clock and the data can change only when the SCL line is low. 4.2 Device addressing To start communication between the master and the STA559BWQS, the master must initiate with a start condition. Following this, the master sends onto the SDA line 8-bits (MSB first) corresponding to the device select address and read or write mode. The 7 most significant bits are the device address identifiers, corresponding to the I2C bus definition. In the STA559BWQS the I2C interface has two device addresses depending on the SA port configuration, 0x38 when SA = 0, and 0x3A when SA = 1. The 8th bit (LSB) identifies read or write operation RW, this bit is set to 1 in read mode and 0 for write mode. After a START condition the STA559BWQS identifies on the bus the device address and if a match is found, it acknowledges the identification on SDA bus during the 9th bit time. The byte following the device identification byte is the internal space address. 23/66 I2C bus specification 4.3 STA559BWQS Write operation Following the START condition the master sends a device select code with the RW bit set to 0. The STA559BWQS acknowledges this and the writes for the byte of internal address. After receiving the internal byte address the STA559BWQS again responds with an acknowledgement. 4.3.1 Byte write In the byte write mode the master sends one data byte, this is acknowledged by the STA559BWQS. The master then terminates the transfer by generating a STOP condition. 4.3.2 Multi-byte write The multi-byte write modes can start from any internal address. The master generating a STOP condition terminates the transfer. 4.4 Read operation 4.4.1 Current address byte read Following the START condition the master sends a device select code with the RW bit set to 1. The STA559BWQS acknowledges this and then responds by sending one byte of data. The master then terminates the transfer by generating a STOP condition. 4.4.2 Current address multi-byte read The multi-byte read modes can start from any internal address. Sequential data bytes will be read from sequential addresses within the STA559BWQS. The master acknowledges each data byte read and then generates a STOP condition terminating the transfer. 4.4.3 Random address byte read Following the START condition the master sends a device select code with the RW bit set to 0. The STA559BWQS acknowledges this and then the master writes the internal address byte. After receiving, the internal byte address the STA559BWQS again responds with an acknowledgement. The master then initiates another START condition and sends the device select code with the RW bit set to 1. The STA559BWQS acknowledges this and then responds by sending one byte of data. The master then terminates the transfer by generating a STOP condition. 4.4.4 Random address multi-byte read The multi-byte read modes could start from any internal address. Sequential data bytes will be read from sequential addresses within the STA559BWQS. The master acknowledges each data byte read and then generates a STOP condition terminating the transfer. 24/66 I2C bus specification STA559BWQS 4.4.5 Write mode sequence Figure 27. Write mode sequence ACK BYTE WRITE DEV-ADDR ACK DATA IN RW START STOP ACK MULTIBYTE WRITE DEV-ADDR ACK ACK SUB-ADDR ACK DATA IN DATA IN RW START 4.4.6 ACK SUB-ADDR STOP Read mode sequence Figure 28. Read mode sequence ACK CURRENT ADDRESS READ DEV-ADDR NO ACK DATA RW START STOP ACK RANDOM ADDRESS READ DEV-ADDR SUB-ADDR RW RW= ACK HIGH START SEQUENTIAL CURRENT READ ACK DEV-ADDR ACK DEV-ADDR START RW ACK DATA NO ACK DATA STOP ACK DATA NO ACK DATA STOP START ACK SEQUENTIAL RANDOM READ DEV-ADDR START ACK SUB-ADDR RW ACK DEV-ADDR START ACK DATA RW ACK DATA NO ACK DATA ST 25/66 Register description STA559BWQS 5 Register description Table 9. Register summary Addr Name D7 D6 D5 D4 D3 D2 D1 D0 0x00 ConfA FDRB TWAB TWRB IR1 IR0 MCS2 MCS1 MCS0 0x01 ConfB C2IM C1IM DSCKE SAIFB SAI3 SAI2 SAI1 SAI0 0x02 ConfC OCRB CSZ3 CSZ2 CSZ1 CSZ0 OM1 OM0 0x03 ConfD MME ZDE DRC BQL PSL DSPB DEMP HPB 0x04 ConfE SVE ZCE DCCV PWMS AME NSBW MPC MPCV 0x05 ConfF EAPD PWDN ECLE LDTE BCLE IDE OCFG1 OCFG0 0x06 Mute/LOC LOC1 LOC0 C3M C2M C1M MMute 0x07 Mvol MV7 MV6 MV5 MV4 MV3 MV2 MV1 MV0 0x08 C1Vol C1V7 C1V6 C1V5 C1V4 C1V3 C1V2 C1V1 C1V0 0x09 C2Vol C2V7 C2V6 C2V5 C2V4 C2V3 C2V2 C2V1 C2V0 0x0A C3Vol C3V7 C3V6 C3V5 C3V4 C3V3 C3V2 C3V1 C3V0 0x0B Auto1 AMGC1 AMGC0 0x0C Auto2 0x0D Auto3 0x0E XO3 XO2 XO1 XO0 AMAM2 AMAM1 AMAM0 AMAME C1Cfg C1OM1 C1OM0 C1LS1 C1LS0 C1BO C1VBP C1EQBP C1TCB 0x0F C2Cfg C2OM1 C2OM0 C2LS1 C2LS0 C2BO C2VBP C2EQBP C2TCB 0x10 C3Cfg C3OM1 C3OM0 C3LS1 C3LS0 C3BO C3VBP 0x11 Tone TTC3 TTC2 TTC1 TTC0 BTC3 BTC2 BTC1 BTC0 0x12 L1ar L1A3 L1A2 L1A1 L1A0 L1R3 L1R2 L1R1 L1R0 0x13 L1atrt L1AT3 L1AT2 L1AT1 L1AT0 L1RT3 L1RT2 L1RT1 L1RT0 0x14 L2ar L2A3 L2A2 L2A1 L2A0 L2R3 L2R2 L2R1 L2R0 0x15 L2atrt L2AT3 L2AT2 L2AT1 L2AT0 L2RT3 L2RT2 L2RT1 L2RT0 0x16 Cfaddr CFA5 CFA4 CFA3 CFA2 CFA1 CFA0 0x17 B1cf1 C1B23 C1B22 C1B21 C1B20 C1B19 C1B18 C1B17 C1B16 0x18 B1cf2 C1B15 C1B14 C1B13 C1B12 C1B11 C1B10 C1B9 C1B8 0x19 B1cf3 C1B7 C1B6 C1B5 C1B4 C1B3 C1B2 C1B1 C1B0 0x1A B2cf1 C2B23 C2B22 C2B21 C2B20 C2B19 C2B18 C2B17 C2B16 0x1B B2cf2 C2B15 C2B14 C2B13 C2B12 C2B11 C2B10 C2B9 C2B8 0x1C B2cf3 C2B7 C2B6 C2B5 C2B4 C2B3 C2B2 C2B1 C2B0 0x1D A1cf1 C3B23 C3B22 C3B21 C3B20 C3B19 C3B18 C3B17 C3B16 0x1E A1cf2 C3B15 C3B14 C3B13 C3B12 C3B11 C3B10 C3B9 C3B8 0x1F A1cf3 C3B7 C3B6 C3B5 C3B4 C3B3 C3B2 C3B1 C3B0 26/66 STA559BWQS Table 9. Register description Register summary (continued) Addr Name D7 D6 D5 D4 D3 D2 D1 D0 0x20 A2cf1 C4B23 C4B22 C4B21 C4B20 C4B19 C4B18 C4B17 C4B16 0x21 A2cf2 C4B15 C4B14 C4B13 C4B12 C4B11 C4B10 C4B9 C4B8 0x22 A2cf3 C4B7 C4B6 C4B5 C4B4 C4B3 C4B2 C4B1 C4B0 0x23 B0cf1 C5B23 C5B22 C5B21 C5B20 C5B19 C5B18 C5B17 C5B16 0x24 B0cf2 C5B15 C5B14 C5B13 C5B12 C5B11 C5B10 C5B9 C5B8 0x25 B0cf3 C5B7 C5B6 C5B5 C5B4 C5B3 C5B2 C5B1 C5B0 0x26 Cfud RA R1 WA W1 0x27 MPCC1 MPCC15 MPCC14 MPCC13 MPCC12 MPCC11 MPCC10 MPCC9 MPCC8 0x28 MPCC2 MPCC7 MPCC6 MPCC5 MPCC4 MPCC3 MPCC2 MPCC1 MPCC0 0x29 DCC1 DCC15 DCC14 DCC13 DCC12 DCC11 DCC10 DCC9 DCC8 0x2A DCC2 DCC7 DCC6 DCC5 DCC4 DCC3 DCC2 DCC1 DCC0 0x2B FDRC1 FDRC15 FDRC14 FDRC13 FDRC12 FDRC11 FDRC10 FDRC9 FDRC8 0x2C FDRC2 FDRC7 FDRC6 FDRC5 FDRC4 FDRC3 FDRC2 FDRC1 FDRC0 0x2D Status PLLUL FAULT UVFAULT OVFAULT OCFAULT OCWARN TFAULT TWARN 0x2E reserved RO1BACT R5BACT R4BACT R3BACT R2BACT R1BACT 0x2F reserved R01BEND R5BEND R4BEND R3BEND R2BEND R1BEND 0x30 reserved R5BBAD R4BBAD R3BBAD R2BBAD R1BBAD 5.1 5.1.1 Configuration register A (addr 0x00) D7 D6 D5 D4 D3 D2 D1 D0 FDRB TWAB TWRB IR1 IR0 MCS2 MCS1 MCS0 0 1 1 0 0 0 1 1 Master clock select Table 10. Master clock select Bit RW RST Name 0 RW 1 MCS0 1 RW 1 MCS1 2 RW 0 MCS2 Description Master clock select: selects the ratio between the input I2S sample frequency and the input clock. The STA559BWQS will support sample rates of 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz, 96 kHz, 176.4 kHz, and 192 kHz. Therefore the internal clock will be: " 32.768 MHz for 32 kHz " 45.1584 MHz for 44.1 kHz, 88.2 kHz, and 176.4 kHz " 49.152 MHz for 48Z kHz, 96 kHz, and 192 kHz 27/66 Register description STA559BWQS The external clock frequency provided to the XTI pin must be a multiple of the input sample frequency, fs. The relationship between the input clock and the input sample rate is determined by both the MCSx and the IR (input rate) register bits. The MCSx bits determine the PLL factor generating the internal clock and the IR bit determines the oversampling ratio used internally Table 11. Input sample rates and clock select Input sample rate fs (kHz) 5.1.2 IR MCS[2:0] 101 100 011 010 001 000 32, 44.1, 48 00 576 fs 128 fs 256 fs 384 fs 512 fs 768 fs 88.2, 96 01 NA 64 fs 128 fs 192 fs 256 fs 384 fs 176.4, 192 1X NA 32 fs 64fs 96 fs 128 fs 192 fs Interpolation ratio select Table 12. Interpolation ratio select Bit RW RST Name Description 4..3 RW 00 IR [1:0] Interpolation ratio select: selects internal interpolation ratio based on input I2S sample frequency The STA559BWQS has variable interpolation (oversampling) settings such that internal processing and DDX output rates remain consistent. The first processing block interpolates by either 2-times or 1-time (pass-through) or provides a 2-times downsample. The oversampling ratio of this interpolation is determined by the IR bits. Table 13. 28/66 IR bit settings as a function of input sample rate Input sample rate fs (kHz) IR 1st stage interpolation ratio 32 00 2 times oversampling 44.1 00 2 times oversampling 48 00 2 times oversampling 88.2 01 Pass-through 96 01 Pass-through 176.4 10 2 times downsampling 192 10 2 times downsampling STA559BWQS 5.1.3 Register description Thermal warning recovery bypass Table 14. Thermal warning recovery bypass Bit RW RST Name 5 RW 1 TWRB Description Thermal-warning recovery bypass: 0: Thermal warning recovery enabled 1: Thermal warning recovery disabled If thermal warning adjustment is enabled (TWAB = 0), then the thermal warning recovery will determine if the -3 dB output limit is removed when thermal warning is negative. If TWRB = 0 and TWAB = 0, then when a thermal warning disappears the -3 dB output limit will be removed and the gain will be added back to the system. If TWRB = 1 and TWAB = 0, then when a thermal warning disappears the -3 dB output limit will remain until TWRB is changed to zero or the device is reset. 5.1.4 Thermal warning adjustment bypass Table 15. Thermal warning adjustment bypass Bit RW RST Name 6 RW 1 TWAB Description Thermal-warning adjustment bypass: 0: Thermal warning adjustment enabled 1: Thermal warning adjustment disabled The on-chip STA559BWQS power output block provides feedback to the digital controller using inputs to the power control block. The TWARN input is used to indicate a thermal warning condition. When TWARN is asserted (set to 0) for a period of time greater than 400 ms, the power control block will force a -3 dB output limit (determined by TWOCL in Coeff RAM) to the modulation limit in an attempt to eliminate the thermal warning condition. Once the thermal warning output limit adjustment is applied, it remains in this state until reset, unless FDRB = 0. 5.1.5 Fault detect recovery bypass Table 16. Fault detect recovery bypass Bit RW RST Name Description 7 RW 0 FDRB Fault-detect recovery bypass: 0: Fault detect recovery enabled 1: Fault detect recovery disabled The on-chip STA559BWQS power output block provides feedback to the digital controller using inputs to the power control block. The FAULT input is used to indicate a fault condition (either over-current or thermal). When FAULT is asserted (set to 0), the power control block will attempt a recovery from the fault by asserting the 3-state output (setting it to 0 which directs the power output block to begin recovery), hold it at 0 for period of time in the range of 0.1 ms to 1 s as defined by the fault-detect recovery constant register (FDRC registers 0x29 - 0x2A), then toggle it back to 1. This sequence is repeated as log as the fault indication exists. This feature is enabled by default but can be bypassed by setting the FDRB control bit to 1. 29/66 Register description 5.2 5.2.1 Configuration register B (addr 0x01) D7 D6 D5 D4 D3 D2 D1 D0 C2IM C1IM DSCKE SAIFB SAI3 SAI2 SAI1 SAI0 1 0 0 0 0 0 0 0 Serial audio input interface format Table 17. 5.2.2 STA559BWQS Serial audio input interface format Bit RW RST Name 0 RW 0 SAI0 1 RW 0 SAI1 2 RW 0 SAI2 3 RW 0 SAI3 Description Serial audio input interface format: determines the interface format of the input serial digital audio interface. Serial data interface The STA559BWQS audio serial input was designed to interface with standard digital audio components and to accept a number of serial data formats. STA559BWQS always acts a slave when receiving audio input from standard digital audio components. Serial data for two channels is provided using 3 inputs: left/right clock LRCKI, serial clock BICKI, and serial data 1 & 2 SDI12. The SAI register (Configuration Register B - 01h, Bits D3-D0) and the SAIFB register (configuration register B - 01h, Bit D4) are used to specify the serial data format. The default serial data format is I2S, MSB-First. Available formats are shown in the tables and figure that follow. 5.2.3 Serial data first bit Table 18. Serial data first bit SAIFB Table 19. Format 0 MSB-first 1 LSB-first Support serial audio input formats for MSB-First (SAIFB = 0) BICKI SAI [3:0] SAIFB Interface format 0000 0 I2S 15 bit data 0001 0 Left/Right-justified 16 bit data 32 fs 30/66 STA559BWQS Register description Table 19. Support serial audio input formats for MSB-First (SAIFB = 0) (continued) BICKI SAI [3:0] SAIFB Interface format 0000 0 I2 0001 0 Left-Justified 16-24 bit data 0010 0 Right-Justified 24 bit data 0110 0 Right-Justified 20 bit data 1010 0 Right-Justified 18 bit data 1110 0 Right-Justified 16 bit data 0000 0 I2S 16-24 bit data 0001 0 Left-Justified 16-24 bit data 0010 0 Right-Justified 24 bit data 0110 0 Right-Justified 20 bit data 1010 0 Right-Justified 18 bit data 1110 0 Right-Justified 16 bit data S 16-23 bit data 48 fs 64 fs Table 20. Supported serial audio input formats for LSB-First (SAIFB = 1) BICKI SAI [3:0] SAIFB Interface format 1100 1 I2S 1110 1 Left/Right-Justified 16 bit data 0100 1 I2S 23 bit data 0100 1 I2S 20 bit data 1000 1 I2S 18 bit data 1100 1 LSB First I2S 16 bit data 0001 1 Left-Justified 24 bit data 0101 1 Left-Justified 20 bit data 1001 1 Left-Justified 18 bit data 1101 1 Left-Justified 16 bit data 0010 1 Right-Justified 24 bit data 0110 1 Right-Justified 20 bit data 1010 1 Right-Justified 18 bit data 1110 1 Right-Justified 16 bit data 15 bit data 32 fs 48 fs 31/66 Register description STA559BWQS Table 20. Supported serial audio input formats for LSB-First (SAIFB = 1) (continued) BICKI SAI [3:0] SAIFB Interface format 2 0000 1 I S 24 bit data 0100 1 I2S 20 bit data 1000 1 I2S 18 bit data 1100 1 LSB first I2S 16 bit data 0001 1 Left-Justified 24 bit data 0101 1 Left-Justified 20 bit data 1001 1 Left-Justified 18 bit data 1101 1 Left-Justified 16 bit data 0010 1 Right-Justified 24 bit data 0110 1 Right-Justified 20 bit data 1010 1 Right-Justified 18 bit data 1110 1 Right-Justified 16 bit data 64 fs 5.2.4 Delay serial clock enable Table 21. Bit 5 5.2.5 Delay serial clock enable RW RW RST 0 Name Description DSCKE Delay serial clock enable: 0: No serial clock delay 1: Serial clock delay by 1 core clock cycle to tolerate anomalies in some I²S master devices Channel input mapping Table 22. Channel input mapping Bit RW RST Name Description 6 RW 0 C1IM 0: Processing channel 1 receives left I2S input 1: Processing channel 1 receives right I2S input 7 RW 1 C2IM 0: Processing channel 2 receives left I2S input 1: Processing channel 2 receives right I2S input Each channel received via I2S can be mapped to any internal processing channel via the Channel Input Mapping registers. This allows for flexibility in processing. The default settings of these registers map each I2S input channel to its corresponding processing channel. 32/66 STA559BWQS 5.3 Register description Configuration register C (addr 0x02) D7 5.3.1 D5 D4 D3 D2 D1 D0 OCRB D6 CSZ3 CSZ2 CSZ1 CSZ0 OM1 OM0 1 0 1 0 1 1 1 DDX power output mode Table 23. DXX power output mode Bit RW RST Name 0 RW 1 OM0 1 RW 1 OM1 Description DDX power output mode: selects configuration of DDX output. The DDX power output mode selects how the DDX output timing is configured. Different power devices use different output modes. Table 24. Output modes OM[1,0] 5.3.2 Output stage - Mode 00 Drop compensation 01 Discrete output stage - Tapered compensation 10 Full power mode 11 Variable drop compensation (CSZx bits) DDX compensating pulse size register Table 25. DXX compensating pulse size register Bit RW RST Name 2 RW 1 CSZ0 3 RW 0 CSZ1 4 RW 1 CSZ2 5 RW 0 CSZ3 Table 26. Description Contra size register: when OM[1,0] = 11, this register determines the size of the DDX compensating pulse from 0 clock ticks to 15 clock periods. Compensating pulse size CSZ[3:0] Compensating pulse size 0000 0ns (0 tick) Compensating pulse size 0001 20ns (1 tick) Clock period compensating pulse size … 1111 … 300 ns (15 tick) Clock period compensating pulse size 33/66 Register description 5.3.3 STA559BWQS Over-current warning detect adjustment bypass Table 27. Over-current warning detect adjustment bypass Bit RW RST Name 7 RW 1 OCRB Description Over-current warning adjustment bypass: 0: Over-current warning adjustment enabled 1: Over-current warning adjustment disabled The OCWARN input is used to indicate an over-current warning condition. When OCWARN is asserted (set to 0), the power control block will force a adjustment to the modulation limit (default -3 dB) in an attempt to eliminate the over-current warning condition. Once the overcurrent warning volume adjustment is applied, it remains in this state until reset is applied. The level of adjustment can be changed via the TWOCL (Thermal Warning/Over Current Limit) setting which is address 0 x 37 of the user defined coefficient RAM. 5.4 5.4.1 Configuration register D (addr 0x03) D7 D6 D5 D4 D3 D2 D1 D0 MME ZDE DRC BQL PSL DSPB DEMP HPB 0 1 0 0 0 0 0 0 High-pass filter bypass Table 28. High-pass filter bypass Bit RW RST Name 0 RW 0 HPB Description High-pass filter bypass bit. setting of one bypasses internal AC coupling digital high-pass filter. The STA559BWQS features an internal digital high-pass filter for the purpose of AC coupling. The purpose of this filter is to prevent DC signals from passing through a DDX amplifier. DC signals can cause speaker damage. When HPB = 0, this filter is enabled. 5.4.2 De-emphasis Table 29. De-emphasis Bit RW RST Name 1 RW 0 DEMP Description De-emphasis: 0: No de-emphasis 1: De-emphasis Setting the DEMP bit enables de-emphasis on all channels 34/66 STA559BWQS 5.4.3 Register description DSP bypass Table 30. DSP bypass Bit RW RST Name 2 RW 0 DSPB Description DSP bypass bit: 0: Normal operation 1: Bypass of biquad and bass/treble functionality Setting the DSPB bit bypasses the EQ functionality of the STA559BWQS. 5.4.4 Post-scale link Table 31. Post-scale link Bit RW RST Name 3 RW 0 PSL Description Post-scale link: 0: Each channel uses individual post-scale value 1: Each channel uses channel 1 post-scale value Post-scale functionality can be used for power-supply error correction. For multi-channel applications running off the same power-supply, the post-scale values can be linked to the value of channel 1 for ease of use and update the values faster. 5.4.5 Biquad coefficient link Table 32. Biquad coefficient link Bit RW RST Name 4 RW 0 BQL Description Biquad link: 0: Each channel uses coefficient values 1: Each channel uses channel 1 coefficient values For ease of use, all channels can use the biquad coefficients loaded into the channel 1 coefficient RAM space by setting the BQL bit to 1. Therefore, any EQ updates only have to be performed once. 35/66 Register description 5.4.6 STA559BWQS Dynamic range compression/anti-clipping bit Table 33. Dynamic range compression/anti-clipping bit Bit RW RST Name 5 RW 0 DRC Description Dynamic range compression/anti-clipping 0: Limiters act in anti-clipping mode 1: Limiters act in dynamic range compression mode Both limiters can be used in one of two ways, anti-clipping or dynamic range compression. When used in anti-clipping mode the limiter threshold values are constant and dependent on the limiter settings. In dynamic range compression mode the limiter threshold values vary with the volume settings allowing a nighttime listening mode that provides a reduction in the dynamic range regardless of the volume level. 5.4.7 Zero-detect mute enable Table 34. Zero-detect mute enable Bit RW RST Name 6 RW 1 ZDE Description Zero-detect mute enable: setting of 1 enables the automatic zero-detect mute Setting the ZDE bit enables the zero-detect automatic mute. The zero-detect circuit looks at the data for each processing channel at the output of the crossover (bass management) filter. If any channel receives 2048 consecutive zero value samples (regardless of fs) then that individual channel is muted if this function is enabled. 5.4.8 MiamiMode enable Table 35. 36/66 MiamiMode enable Bit RW RST Name Description 7 RW 0 MME Miami-Mode enable: 0: Sub mix into left/right disabled 1: Sub mix into left/right enabled STA559BWQS 5.5 5.5.1 Register description Configuration register E (addr 0x04) D7 D6 D5 D4 D3 D2 D1 D0 SVE ZCE DCCV PWMS AME NSBW MPC MPCV 1 1 0 0 0 0 1 0 Max power correction variable Table 36. Bit RW 0 5.5.2 Max power correction variable RST RW Name 0 MPCV Description Max power correction variable: 0: Use standard MPC coefficient 1: Use MPCC bits for MPC coefficient Max power correction Table 37. Max power correction Bit RW RST Name 1 RW 1 MPC Description Max power correction: setting of 1 enables power bridge correction for THD reduction near maximum power output. Setting the MPC bit turns on special processing that corrects the STA50x power device at high power. This mode should lower the THD + N of a full DDX system at maximum power output and slightly below. If enabled, MPC is operational in all output modes except tapered (OM[1,0] = 01) and binary. When OCFG = 00, MPC will not effect channels 3 and 4, the lineout channels. 5.5.3 Noise-shaper bandwidth selection Table 38. Noise-shaper bandwidth selection Bit RW RST Name Description 2 RW 0 NSBW Noise-shaper bandwidth selection: 1 - 3rd order NS 0 - 4th order NS 37/66 Register description 5.5.4 STA559BWQS AM mode enable Table 39. AM mode enable Bit RW RST Name 3 RW 0 AME Description AM mode enable: 0 - Normal DDX operation. 1 - AM reduction mode DDX operation STA559BWQS features a DDX processing mode that minimizes the amount of noise generated in frequency range of AM radio. This mode is intended for use when DDX is operating in a device with an AM tuner active. The SNR of the DDX processing is reduced to ~83 dB in this mode, which is still greater than the SNR of AM radio. 5.5.5 PWM speed mode Table 40. 5.5.6 Bit RW RST Name 4 RW 0 PWMS Description PWM speed selection: 0 - Normal speed (384 kHz) all channels 1 - Odd speed (341.3k Hz) all channels Distortion compensation variable enable Table 41. 5.5.7 PWM speed mode Distortion compensation variable enable Bit RW RST Name 5 RW 0 DCCV Description Distortion compensation variable enable: 0 - Uses preset DC coefficient. 1 - Uses DCC coefficient. Zero-crossing volume enable Table 42. Bit 6 RW RW Zero-crossing volume enable RST 1 Name ZCE Description Zero-crossing volume enable: 1 - Volume adjustments will only occur at digital zerocrossings 0 - Volume adjustments will occur immediately The ZCE bit enables zero-crossing volume adjustments. When volume is adjusted on digital zero-crossings no clicks will be audible. 38/66 STA559BWQS 5.5.8 Register description Soft volume update enable Table 43. 5.6 5.6.1 Soft volume update enable Bit RW RST Name 7 RW 1 SVE Description Soft volume enable: 1: Volume adjustments ramp according to SVR settings 0: Volume adjustments will occur immediately Configuration register F (addr 0x05) D7 D6 D5 D4 D3 D2 D1 D0 EAPD PWDN ECLE LDTE BCLE IDE OCFG1 OCFG0 0 1 0 1 1 1 0 0 Output configuration Table 44. Output configuration Bit RW RST Name 0 RW 0 OCFG0 1 RW 0 OCFG1 Description Selects the output configuration Table 45. OCFG[1:0] Output configuration engine selection Output configuration Config pin 00 2 channel (full-bridge) power, 2 channel data-out: 1A/1B →1A/1B 2A/2B → 2A/2B LineOut1 → 3A/3B LineOut2 → 4A/4B Line out configuration determined by LOC register 0 01 2 (half-bridge). 1 (full-bridge) on-board power: 1A → 1A Binary 0 ° 2A → 1B Binary 90° 3A/3B → 2A/2B Binary 45° 1A/B → 3A/B Binary 0° 2A/B → 4A/B Binary 90° 0 10 2 channel (full-bridge) power, 1 channel DDX: 1A/1B → 1A/1B 2A/2B → 2A/2B 3A/3B → 3A/3B EAPDEXT and TWARNEXT active 0 39/66 Register description Note: STA559BWQS To the left of the arrow is the processing channel. Note that though the defaults are shown, using channel output mapping, any of the three processing channel outputs can be used for any of the three inputs Figure 29. OCFG = 00 (default value) Figure 30. OCFG = 01 OUT1A Half Bridge Half Bridge Channel 1 Half Bridge Channel 1 OUT1A OUT1B Half Bridge OUT2A Half Bridge Channel 2 OUT1B Channel 2 Half Bridge Half Bridge OUT2B OUT3A LineOut 1 OUT4A OUT4B Half Bridge LPF OUT3B OUT2A Channel 3 OUT2B LineOut 2 LPF Figure 31. OCFG = 10 Half Bridge OUT1A Channel 1 Half Bridge Half Bridge Half Bridge OUT1B OUT2A Channel 2 OUT2B OUT3A OUT3B Power Device Channel 3 EAPD 5.6.2 Invalid input detect mute enable Table 46. Invalid input detect mute enable Bit RW RST Name Description 2 RW 1 IDE Invalid input detect mute enable: setting of 1 enables the automatic invalid input detect mute Setting the IDE bit enables this function, which looks at the input I2S data and will automatically mute if the signals are perceived as invalid. 40/66 STA559BWQS 5.6.3 Register description Binary output mode clock loss detection Table 47. Binary output mode clock loss detection Bit RW RST Name 3 RW 1 BCLE Description Binary output mode clock loss detection enable Detects loss of input MCLK in binary mode and will output 50% duty cycle. 5.6.4 LRCK double trigger protection Table 48. LRCK double trigger protection Bit RW RST Name 4 RW 1 LDTE Description LRCLK double trigger protection enable Actively prevents double trigger of LRCLK. 5.6.5 Auto EAPD on clock loss Table 49. Auto EAPD on clock loss Bit RW RST Name 5 RW 0 ECLE Description Auto EAPD on clock loss When active, will issue a power device power down signal (EAPD) on clock loss detection. 5.6.6 IC power down Table 50. IC power down Bit RW RST Name 7 RW 1 PWDN Description IC power down: 0 - IC powerdown low-power condition 1 - IC normal operation The PWDN register is used to place the IC in a low-power state. When PWDN is written as 0, the output will begin a soft-mute. After the mute condition is reached, EAPD will be asserted to power down the power-stage, then the master clock to all internal hardware expect the I2C block will be gated. This places the IC in a very low power consumption state. 41/66 Register description 5.6.7 STA559BWQS External amplifier power down Table 51. External amplifier power down Bit RW RST Name 7 RW 0 EAPD Description External amplifier power down: 0: External power stage power down active 1: Normal operation The EAPD register directly disables/enables the internal power circuitry. When EAPD = 0, the internal power section is placed on a low-power state (disabled). This register will also control the DDX4B/EAPD output pin when OCFG = 10. 5.7 Volume control registers (addr 0x06 - 0x0A) 5.7.1 Mute/line output configuration register D7 D6 LOC1 0 Table 52. D5 D4 D3 D2 D1 D0 LOC0 C3M C2M C1M MMUTE 0 0 0 0 0 Line output configuration LOC[1:0] Line output configuration 00 Line output fixed - no volume, no EQ 01 Line output variable - CH3 volume effects line output, no EQ 10 Line output variable with EQ - CH3 volume effects line output Line output is only active when OCFG = 00. In this case LOC will determine the line output configuration. The source of the line output is always the channel 1 and 2 inputs. 5.7.2 5.7.3 42/66 Master volume register D7 D6 D5 D4 D3 D2 D1 D0 MV7 MV6 MV5 MV4 MV3 MV2 MV1 MV0 1 1 1 1 1 1 1 1 Channel 1 volume D7 D6 D5 D4 D3 D2 D1 D0 C1V7 C1V6 C1V5 C1V4 C1V3 C1V2 C1V1 C1V0 0 1 1 0 0 0 0 0 STA559BWQS 5.7.4 5.7.5 Register description Channel 2 volume D7 D6 D5 D4 D3 D2 D1 D0 C2V7 C2V6 C2V5 C2V4 C2V3 C2V2 C2V1 C2V0 0 1 1 0 0 0 0 0 Channel 3/line output volume D7 D6 D5 D4 D3 D2 D1 D0 C3V7 C3V6 C3V5 C3V4 C3V3 C3V2 C3V1 C3V0 0 1 1 0 0 0 0 0 The volume structure of the STA559BWQS consists of individual volume registers for each channel and a master volume register that provides an offset to each channels volume setting. The individual channel volumes are adjustable in 0.5dB steps from +48 dB to 80 dB. As an example if C3V = 00h or +48 dB and MV = 18h or –12 dB, then the total gain for channel 3 = +36 dB. The master mute when set to 1 will mute all channels at once, whereas the individual channel mutes (CxM) will mute only that channel. Both the master mute and the channel mutes provide a “soft mute” with the volume ramping down to mute in 4096 samples from the maximum volume setting at the internal processing rate (approximately 96 kHz). A “hard mute” can be obtained by commanding a value of 0xFF (255) to any channel volume register or the master volume register. When volume offsets are provided via the master volume register any channel that whose total volume is less than –80 dB will be muted. All changes in volume take place at zero-crossings when ZCE = 1 (configuration register F) on a per channel basis as this creates the smoothest possible volume transitions. When ZCE = 0, volume updates will occur immediately. Table 53. Master volume offset as a function of MV[7:0] MV[7:0] Volume offset from channel value 00000000 (0x00) 0 dB 00000001 (0x01) -0.5 dB 00000010 (0x02) -1 dB … … 01001100 (0x4C) -38 dB … … 11111110 (0xFE) -127.5 dB 11111111 (0xFF) Hard master mute Table 54. Channel volume as a function of CxV[7:0] CxV[7:0] Volume 00000000 (0x00) +48 dB 00000001 (0x01) +47.5 dB 43/66 Register description Table 54. STA559BWQS Channel volume as a function of CxV[7:0] CxV[7:0] Volume 00000010 (0x02) +47 dB … … 01011111 (0x5F) +0.5 dB 01100000 (0x60) 0 dB 01100001 (0x61) -0.5 dB … … 11010111 (0xD7) -59.5 dB 11011000 (0xD8) -60 dB 11011001 (0xD9) -61 dB 11011010 (0xDA) -62 dB … … 11101100 (0xEC) -80 dB 11101101 (0xED) Hard channel mute … … 11111111 (0xFF) Hard channel mute 5.8 Auto mode registers (addr 0x0B and 0x0C) 5.8.1 AutoMode register 1 (addr 0x0B) D7 D6 Table 55. D5 D4 AMGC1 AMGC2 0 0 D3 44/66 D1 D0 AutoMode gain compression/limiters selection AMGC[1:0] 5.8.2 D2 Mode 00 User programmable GC 01 AC no clipping 2.1 10 AC limited clipping (10%) 2.1 11 DRC nighttime listening mode 2.1 AutoMode register 2 (addr 0x0C) D7 D6 D5 D4 D3 D2 D1 D0 XO3 XO2 XO1 XO0 AMAM2 AMAM1 AMAM0 AMAME 0 0 0 0 0 0 0 0 STA559BWQS 5.8.3 Register description AM interference frequency switching Table 56. AM interference frequency switching Bit RW RST Name Description 0 RW 0 AMAME AutoMode AM enable 0: Switching frequency determined by PWMS setting 1: Switching frequency determined by AMAM settings Table 57. 5.8.4 AutoMode AM switching frequency selection AMAM[2:0] 48 kHz/96 kHz Input Fs 44.1 kHz/88.2 kHz Input Fs 000 0.535 MHz - 0.720 MHz 0.535 MHz - 0.670 Mhz 001 0.721 MHz - 0.900 MHz 0.671 MHz - 0.800 MHz 010 0.901 MHz - 1.100 MHz 0.801 MHz - 1.000 MHz 011 1.101 MHz - 1.300 MHz 1.001 MHz - 1.180 MHz 100 1.301 MHz - 1.480 MHz 1.181 MHz - 1.340 MHz 101 1.481 MHz - 1.600 MHz 1.341 MHz - 1.500 MHz 110 1.601 MHz - 1.700 MHz 1.501 MHz - 1.700 MHz Bass management crossover Table 58. Bass management crossover Bit RW RST Name 4 RW 0 XO0 5 RW 0 XO1 6 RW 0 XO2 7 RW 0 XO3 Table 59. Description Selects the bass-management crossover frequency. A 1st-order hi-pass filter (channels 1 and 2) or a 2nd-order lo-pass filter (channel 3) at the selected frequency is performed. Bass management crossover frequency XO[3:0] Crossover Frequency 0000 User-Defined 0001 80 Hz 0010 100 Hz 0011 120 Hz 0100 140 Hz 0101 160 Hz 0110 180 Hz 0111 200 Hz 1000 220 Hz 1001 240 Hz 45/66 Register description Table 59. STA559BWQS Bass management crossover frequency XO[3:0] 5.9 5.9.1 Crossover Frequency 1010 260 Hz 1011 280 Hz 1100 300 Hz 1101 320 Hz 1110 340 Hz 1111 360 Hz Channel configuration registers (addr 0x0E - 0x10) D7 D6 D5 D4 D3 D2 D1 D0 C1OM1 C1OM0 C1LS1 C1LS0 C1BO C1VPB C1EQBP C1TCB 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 C2OM1 C2OM0 C2LS1 C2LS0 C2BO C2VPB C2EQBP C2TCB 0 1 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 C3OM1 C3OM0 C3LS1 C3LS0 C3BO C3VPB 1 0 0 0 0 0 Tone control bypass Tone control (bass/treble) can be bypassed on a per channel basis for channels 1 and 2. CxTCB: 0 - Perform tone control on channel X - normal operation 1 - Bypass tone control on channel X 5.9.2 EQ bypass EQ control can be bypassed on a per channel basis for channels 1 and 2. If EQ control is bypassed on a given channel the prescale and all filters (high-pass, biquads, de-emphasis, bass, treble in any combination) are bypassed for that channel. CxEQBP: 0 - Perform EQ on channel X - normal operation 1 - Bypass EQ on channel X 46/66 STA559BWQS 5.9.3 Register description Volume bypass Each channel contains an individual channel volume bypass. If a particular channel has volume bypassed via the CxVBP = 1 register then only the channel volume setting for that particular channel affects the volume setting, the master volume setting will not affect that channel. 5.9.4 Binary output enable registers Each individual channel output can be set to output a binary PWM stream. In this mode output A of a channel will be considered the positive output and output B is negative inverse. CxBO: 0 - DDX tri-state output - normal operation 1 - Binary output. 5.9.5 Limiter select Limiter selection can be made on a per-channel basis according to the channel limiter select bits. . Table 60. Channel limiter mapping as a function of CxLS bits CxLS[1,0] 5.9.6 Channel limiter mapping 00 Channel has limiting disabled 01 Channel is mapped to limiter #1 10 Channel is mapped to limiter #2 Output mapping Output mapping can be performed on a per channel basis according to the CxOM channel output mapping bits. Each input into the output configuration engine can receive data from any of the three processing channel outputs. . Table 61. Channel output mapping as a function of CxOM bits CxOM[1,0] 00 01 10 Channel x output source from Channel 1 Channel 2 Channel 3 47/66 Register description STA559BWQS 5.10 Tone control register (addr 0x11) 5.10.1 Tone control D7 D6 D5 D4 D3 D2 D1 D0 TTC3 TTC2 TTC1 TTC0 BTC3 BTC2 BTC1 BTC0 0 1 1 1 0 1 1 1 Table 62. Tone control boost/cut as a function of BTC and TTC bits BTC[3:0]/TTC[3:0] Boost/cut 0000 0001 … 0111 0110 0111 1000 1001 … 1101 1110 1111 -12 dB -12 dB … -4 dB -2 dB 0 dB +2 dB +4 dB … +12 dB +12 dB +12 dB 5.11 Dynamics control registers (addr 0x12 - 0x15) 5.11.1 Limiter 1 attack/release rate 5.11.2 5.11.3 48/66 D7 D6 D5 D4 D3 D2 D1 D0 L1A3 L1A2 L1A1 L1A0 L1R3 L1R2 L1R1 L1R0 0 1 1 0 1 0 1 0 Limiter 1 attack/release threshold D7 D6 D5 D4 D3 D2 D1 D0 L1AT3 L1AT2 L1AT1 L1AT0 L1RT3 L1RT2 L1RT1 L1RT0 0 1 1 0 1 0 0 1 Limiter 2 attack/release rate D7 D6 D5 D4 D3 D2 D1 D0 L2A3 L2A2 L2A1 L2A0 L2R3 L2R2 L2R1 L2R0 0 1 1 0 1 0 1 0 STA559BWQS 5.11.4 Register description Limiter 2 attack/release threshold D7 D6 D5 D4 D3 D2 D1 D0 L2AT3 L2AT2 L2AT1 L2AT0 L2RT3 L2RT2 L2RT1 L2RT0 0 1 1 0 1 0 0 1 The STA559BWQS includes 2 independent limiter blocks. The purpose of the limiters is to automatically reduce the dynamic range of a recording to prevent the outputs from clipping in anti-clipping mode or to actively reduce the dynamic range for a better listening environment such as a night-time listening mode which is often needed for DVDs. The two modes are selected via the DRC bit in configuration register F, bit 0 address 0x05. Each channel can be mapped to either limiter or not mapped, meaning that channel will clip when 0dBFS is exceeded. Each limiter will look at the present value of each channel that is mapped to it, select the maximum absolute value of all these channels, perform the limiting algorithm on that value, and then if needed adjust the gain of the mapped channels in unison. The limiter attack thresholds are determined by the LxAT registers. It is recommended in anti-clipping mode to set this to 0dBFS, which corresponds to the maximum unclipped output power of a DDX amplifier. Since gain can be added digitally within STA559BWQS it is possible to exceed 0dBFS or any other LxAT setting, when this occurs, the limiter, when active, will automatically start reducing the gain. The rate at which the gain is reduced when the attack threshold is exceeded is dependent upon the attack rate register setting for that limiter. The gain reduction occurs on a peak-detect algorithm. The release of limiter, when the gain is again increased, is dependent on a RMS-detect algorithm. The output of the volume/limiter block is passed through a RMS filter. The output of this filter is compared to the release threshold, determined by the release threshold register. When the RMS filter output falls below the release threshold, the gain is again increased at a rate dependent upon the release rate register. The gain can never be increased past it's set value and therefore the release will only occur if the limiter has already reduced the gain. The release threshold value can be used to set what is effectively a minimum dynamic range, this is helpful as over-limiting can reduce the dynamic range to virtually zero and cause program material to sound "lifeless". In AC mode the attack and release thresholds are set relative to full-scale. In DRC mode the attack threshold is set relative to the maximum volume setting of the channels mapped to that limiter and the release threshold is set relative to the maximum volume setting plus the attack threshold. Figure 32. Basic limiter and volume flow diagram. 49/66 Register description Table 63. STA559BWQS Limiter attack rate as a function of LxA bits. LxA[3:0] Attack rate dB/ms 0000 3.1584 Fast Table 64. Limiter release rate as a function of LxR bits. LxR[3:0] Release rate dB/ms 0000 0.5116 0001 0.1370 0001 2.7072 0010 2.2560 0010 0.0744 0011 1.8048 0011 0.0499 0100 1.3536 0100 0.0360 0101 0.9024 0101 0.0299 0110 0.4512 0110 0.0264 0111 0.2256 0111 0.0208 1000 0.1504 1000 0.0198 1001 0.1123 1001 0.0172 1010 0.0902 1010 0.0147 1011 0.0752 1011 0.0137 1100 0.0645 1100 0.0134 1101 0.0564 1101 0.0117 1110 0.0501 1110 0.0110 1111 0.0451 1111 0.0104 Slow Fast Slow Anti-clipping mode Table 65. Limiter attack threshold as a function of LxAT bits (AC-Mode) Table 66. Limiter release threshold as a function of LxRT bits (ACMode) LxAT[3:0] AC (dB relative to FS) LxRT[3:0] AC (dB relative to FS) 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 -12 -10 -8 -6 -4 -2 0 +2 +3 +4 +5 +6 +7 +8 +9 +10 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 -∞ -29 dB -20 dB -16 dB -14 dB -12 dB -10 dB -8 dB -7 dB -6 dB -5 dB -4 dB -3 dB -2 dB -1 dB -0 dB 50/66 STA559BWQS Register description Dynamic range compression mode Table 67. Limiter attack threshold as a function of LxAT bits (DRCmode). Table 68. Limiter release threshold as a as a function of LxRT bits (DRC-mode). LxAT[3:0] DRC (dB relative to volume) LxRT [3:0] DRC (db relative to volume + LxAT) 0000 -31 0000 -∞ 0001 -29 0001 -38 dB 0010 -27 0010 -36 dB 0011 -25 0011 -33 dB 0100 -23 0100 -31 dB 0101 -21 0101 -30 dB 0110 -19 0110 -28 dB 0111 -17 0111 -26 dB 1000 -16 1000 -24 dB 1001 -15 1001 -22 dB 1010 -14 1010 -20 dB 1011 -13 1011 -18 dB 1100 -12 1100 -15 dB 1101 -10 1101 -12 dB 1110 -7 1110 -9 dB 1111 -4 1111 -6 dB 5.12 User-defined coefficient control registers (addr 0x16 - 0x26) 5.12.1 Coefficient address register D7 5.12.2 D6 D5 D4 D3 D2 D1 D0 CFA5 CFA4 CFA3 CFA2 CFA1 CFA0 0 0 0 0 0 0 Coefficient b1data register bits 23..16 D7 D6 D5 D4 D3 D2 D1 D0 C1B23 C1B22 C1B21 C1B20 C1B19 C1B18 C1B17 C1B16 0 0 0 0 0 0 0 0 51/66 Register description 5.12.3 5.12.4 5.12.5 5.12.6 5.12.7 5.12.8 5.12.9 52/66 STA559BWQS Coefficient b1data register bits 15..8 address D7 D6 D5 D4 D3 D2 D1 D0 C1B15 C1B14 C1B13 C1B12 C1B11 C1B10 C1B9 C1B8 0 0 0 0 0 0 0 0 Coefficient b1data register bits 7..0 D7 D6 D5 D4 D3 D2 D1 D0 C1B7 C1B6 C1B5 C1B4 C1B3 C1B2 C1B1 C1B0 0 0 0 0 0 0 0 0 Coefficient b2 data register bits 23..16 D7 D6 D5 D4 D3 D2 D1 D0 C2B23 C2B22 C2B21 C2B20 C2B19 C2B18 C2B17 C2B16 0 0 0 0 0 0 0 0 Coefficient b2 data register bits 15..8 D7 D6 D5 D4 D3 D2 D1 D0 C2B15 C2B14 C2B13 C2B12 C2B11 C2B10 C2B9 C2B8 0 0 0 0 0 0 0 0 Coefficient b2 data register bits 7..0 D7 D6 D5 D4 D3 D2 D1 D0 C2B7 C2B6 C2B5 C2B4 C2B3 C2B2 C2B1 C2B0 0 0 0 0 0 0 0 0 Coefficient a1 data register bits 23..16 D7 D6 D5 D4 D3 D2 D1 D0 C1B23 C1B22 C1B21 C1B20 C1B19 C1B18 C1B17 C1B16 0 0 0 0 0 0 0 0 Coefficient a1 data register bits 15..8 D7 D6 D5 D4 D3 D2 D1 D0 C3B15 C3B14 C3B13 C3B12 C3B11 C3B10 C3B9 C3B8 0 0 0 0 0 0 0 0 STA559BWQS 5.12.10 5.12.11 5.12.12 5.12.13 5.12.14 5.12.15 5.12.16 Register description Coefficient a1 data register bits 7..0 D7 D6 D5 D4 D3 D2 D1 D0 C3B7 C3B6 C3B5 C3B4 C3B3 C3B2 C3B1 C3B0 0 0 0 0 0 0 0 0 Coefficient a2 data register bits 23..16 D7 D6 D5 D4 D3 D2 D1 D0 C4B23 C4B22 C4B21 C4B20 C4B19 C4B18 C4B17 C4B16 0 0 0 0 0 0 0 0 Coefficient a2 data register bits 15..8 D7 D6 D5 D4 D3 D2 D1 D0 C4B15 C4B14 C4B13 C4B12 C4B11 C4B10 C4B9 C4B8 0 0 0 0 0 0 0 0 Coefficient a2 data register bits 7..0 D7 D6 D5 D4 D3 D2 D1 D0 C4B7 C4B6 C4B5 C4B4 C4B3 C4B2 C4B1 C4B0 0 0 0 0 0 0 0 0 Coefficient b0 data register bits 23..16 D7 D6 D5 D4 D3 D2 D1 D0 C5B23 C5B22 C5B21 C5B20 C5B19 C5B18 C5B17 C5B16 0 0 0 0 0 0 0 0 Coefficient b0 data register bits 15..8 D7 D6 D5 D4 D3 D2 D1 D0 C5B15 C5B14 C5B13 C5B12 C5B11 C5B10 C5B9 C5B8 0 0 0 0 0 0 0 0 Coefficient b0 Data Register Bits 7..0 D7 D6 D5 D4 D3 D2 D1 D0 C5B7 C5B6 C5B5 C5B4 C5B3 C5B2 C5B1 C5B0 0 0 0 0 0 0 0 0 53/66 Register description 5.12.17 STA559BWQS Coefficient write/read control register D7 D6 D5 D4 D3 D2 D1 D0 RA R1 WA W1 0 0 0 0 Coefficients for user-defined EQ, mixing, scaling, and bass management are handled internally in the STA559BWQS via RAM. Access to this RAM is available to the user via an I2C register interface. A collection of I²C registers are dedicated to this function. One contains a coefficient base address, five sets of three store the values of the 24-bit coefficients to be written or that were read, and one contains bits used to control the write/read of the coefficient(s) to/from RAM. The following are instructions for reading and writing coefficients. Reading a coefficient from RAM " write 6-bits of address to I2C register 0x16 " write 1 to R1 bit in I2C address 0x26 " read top 8-bits of coefficient in I2C address 0x17 " read middle 8-bits of coefficient in I2C address 0x18 " read bottom 8-bits of coefficient in I2C address 0x19. Reading a set of coefficients from RAM 54/66 " write 6-bits of address to I2C register 0x16 " write 1 to RA bit in I2C address 0x26 " read top 8-bits of coefficient in I2C address 0x17 " read middle 8-bits of coefficient in I2C address 0x18 " read bottom 8-bits of coefficient in I2C address 0x19 " read top 8-bits of coefficient b2 in I2C address 0x1A " read middle 8-bits of coefficient b2 in I2C address 0x1B " read bottom 8-bits of coefficient b2 in I2C address 0x1C " read top 8-bits of coefficient a1 in I2C address 0x1D " read middle 8-bits of coefficient a1 in I2C address 0x1E " read bottom 8-bits of coefficient a1 in I2C address 0x1F " read top 8-bits of coefficient a2 in I2C address 0x20 " read middle 8-bits of coefficient a2 in I2C address 0x21 " read bottom 8-bits of coefficient a2 in I2C address 0x22 " read top 8-bits of coefficient b0 in I2C address 0x23 " read middle 8-bits of coefficient b0 in I2C address 0x24 " read bottom 8-bits of coefficient b0 in I2C address 0x25. STA559BWQS Register description Writing a single coefficient to RAM " write 6-bits of address to I2C register 0x16 " write top 8-bits of coefficient in I2C address 0x17 " write middle 8-bits of coefficient in I2C address 0x18 " write bottom 8-bits of coefficient in I2C address 0x19 " write 1 to W1 bit in I2C address 0x26. Writing a set of coefficients to RAM " write 6-bits of starting address to I2C register 0x16 " write top 8-bits of coefficient b1 in I2C address 0x17 " write middle 8-bits of coefficient b1 in I2C address 0x18 " write bottom 8-bits of coefficient b1 in I2C address 0x19 " write top 8-bits of coefficient b2 in I2C address 0x1A " write middle 8-bits of coefficient b2 in I2C address 0x1B " write bottom 8-bits of coefficient b2 in I2C address 0x1C " write top 8-bits of coefficient a1 in I2C address 0x1D " write middle 8-bits of coefficient a1 in I2C address 0x1E " write bottom 8-bits of coefficient a1 in I2C address 0x1F " write top 8-bits of coefficient a2 in I2C address 0x20 " write middle 8-bits of coefficient a2 in I2C address 0x21 " write bottom 8-bits of coefficient a2 in I2C address 0x22 " write top 8-bits of coefficient b0 in I2C address 0x23 " write middle 8-bits of coefficient b0 in I2C address 0x24 " write bottom 8-bits of coefficient b0 in I2C address 0x25 " write 1 to WA bit in I2C address 0x26. The mechanism for writing a set of coefficients to RAM provides a method of updating the five coefficients corresponding to a given biquad (filter) simultaneously to avoid possible unpleasant acoustic side-effects. When using this technique, the 6-bit address would specify the address of the biquad b1 coefficient (for example, 0, 5, 10, 20, 35 decimal), and the STA559BWQS will generate the RAM addresses as offsets from this base value to write the complete set of coefficient data. 5.12.18 User-defined EQ The STA559BWQS provides the ability to specify four EQ filters (biquads) per each of the two input channels. The biquads use the following equation: Y[n] = 2(b0/2)X[n] + 2(b1/2)X[n-1] + b2X[n-2] - 2(a1/2)Y[n-1] - a2Y[n-2] = b0X[n] + b1X[n-1] + b2X[n-2] - a1Y[n-1] - a2Y[n-2] where Y[n] represents the output and X[n] represents the input. Multipliers are 24-bit signed fractional multipliers, with coefficient values in the range of 0x800000 (-1) to 0x7FFFFF (0.9999998808). 55/66 Register description STA559BWQS Coefficients stored in the user defined coefficient RAM are referenced in the following manner: CxHy0 = b1/2 CxHy1 = b2 CxHy2 = -a1/2 CxHy3 = -a2 CxHy4 = b0/2 where x represents the channel and the y the biquad number. For example C2H41 is the b2 coefficient in the fourth biquad for channel 2. Additionally, the STA559BWQS allows specification of a high-pass filter (processing channels 1 and 2) and a lo-pass filter (processing channel 3) to be used for bassmanagement crossover when the XO setting is 000 (user-defined). Both of these filters when defined by the user (rather than using the preset crossover filters) are 2nd order filters that use the biquad equation noted above. They are loaded into the C12H0-4 and C3Hy0-4 areas of RAM noted in the table below. By default, all user-defined filters are pass-thru where all coefficients are set to 0, except the b0/2 coefficient which is set to 0x400000 (representing 0.5) 5.12.19 Pre-scale The STA559BWQS provides a multiplication for each input channel for the purpose of scaling the input prior to EQ. This pre-EQ scaling is accomplished by using a 24-bit signed fractional multiplier, with 0x800000 = -1 and 0x7FFFFF = 0.9999998808. The scale factor for this multiply is loaded into RAM using the same I2C registers as the biquad coefficients and the bass-management. All channels can use the channel 1 pre-scale factor by setting the Biquad link bit. By default, all pre-scale factors are set to 0x7FFFFF. 5.12.20 Post-scale The STA559BWQS provides one additional multiplication after the last interpolation stage and the distortion compensation on each channel. This post-scaling is accomplished by using a 24-bit signed fractional multiplier, with 0x800000 = -1 and 0x7FFFFF = 0.9999998808. The scale factor for this multiply is loaded into RAM using the same I2C registers as the biquad coefficients and the bass-management. This post-scale factor can be used in conjunction with an ADC equipped micro-controller to perform power-supply error correction. All channels can use the channel 1 post-scale factor by setting the postscale link bit. By default, all post-scale factors are set to 0x7FFFFF. When Line output is being utilized, channel 3 post-scale will affect both channels 3 and 4. 5.12.21 Over-current post-scale The STA559BWQS provides a simple mechanism for reacting to over-current detection in the power-block. When the ocwarn input is asserted, the over-current post-scale value is used in place of the normal post-scale value to provide output attenuation on all channels. The default setting provides 3 dB of output attenuation when ocwarn is asserted. The amount of attenuation to be applied in this situation can be adjusted by modifying the Over-current Post-scale value. As with the normal post-scale, this scaling value is a 24-bit signed fractional multiplier, with 0x800000 = -1 and 0x7FFFFF = 0.9999998808. By default, the over-current post-scale factor is set to 0x5A9DF7. Once the over-current attenuation is applied, it remains until the device is reset. 56/66 STA559BWQS Register description Table 69. RAM block for biquads, mixing, scaling, and bass management Index (Decimal) Index (Hex) Coefficient Default 0 0x00 C1H10(b1/2) 0x000000 1 0x01 C1H11(b2) 0x000000 2 0x02 C1H12(a1/2) 0x000000 3 0x03 C1H13(a2) 0x000000 4 0x04 C1H14(b0/2) 0x400000 5 0x05 C1H20 0x000000 Channel 1 - Biquad 1 Channel 1 - Biquad 2 … … … … … 19 0x13 Channel 1 - Biquad 4 C1H44 0x400000 20 0x14 C2H10 0x000000 21 0x15 C2H11 0x000000 Channel 2 - Biquad 1 … … … … … 39 0x27 Channel 2 - Biquad 4 C2H44 0x400000 40 0x28 C12H0(b1/2) 0x000000 41 0x29 C12H1(b2) 0x000000 High-pass 2nd order filter for XO = 000 42 0x2A C12H2(a1/2) 0x000000 43 0x2B C12H3(a2) 0x000000 44 0x2C C12H4(b0/2) 0x400000 45 0x2D C3H0(b1/2) 0x000000 46 0x2E 47 0x2F 48 C3H1(b2) 0x000000 C3H2(a1/2) 0x000000 0x30 C3H3(a2) 0x000000 49 0x31 C3H4(b0/2) 0x400000 50 0x32 Channel 1 - Pre-scale C1PreS 0x7FFFFF 51 0x33 Channel 2 - Pre-scale C2PreS 0x7FFFFF 52 0x34 Channel 1 - Post-scale C1PstS 0x7FFFFF 53 0x35 Channel 2 - Post-scale C2PstS 0x7FFFFF 54 0x36 Channel 3 - Post-scale C3PstS 0x7FFFFF 55 0x37 TWARN/OC– Limit TWOCL 0x5A9DF7 56 0x38 Channel 1 - Mix 1 C1MX1 0x7FFFFF 57 0x39 Channel 1 - Mix 2 C1MX2 0x000000 58 0x3A Channel 2 - Mix 1 C2MX1 0x000000 59 0x3B Channel 2 - Mix 2 C2MX2 0x7FFFFF 60 0x3C Channel 3 - Mix 1 C3MX1 0x400000 61 0x3D Channel 3 - Mix 2 C3MX2 0x400000 62 0x3E UNUSED 63 0x3F UNUSED Low-pass 2nd order filter for XO = 000 57/66 Register description 5.13 STA559BWQS Variable max power correction registers (addr 0x27 - 0x28) MPCC bits determine the 16 MSBs of the MPC compensation coefficient. This coefficient is used in place of the default coefficient when MPCV = 1. 5.14 D7 D6 D5 D4 D3 D2 D1 D0 MPCC15 MPCC14 MPCC13 MPCC12 MPCC11 MPCC10 MPCC9 MPCC8 0 0 0 1 1 0 1 0 D7 D6 D5 D4 D3 D2 D1 D0 MPCC7 MPCC6 MPCC5 MPCC4 MPCC3 MPCC2 MPCC1 MPCC0 1 1 0 0 0 0 0 0 Variable distortion compensation registers (addr 0x29-0x2A) DCC bits determine the 16 MSBs of the distortion compensation coefficient. This coefficient is used in place of the default coefficient when DCCV = 1. 5.15 D7 D6 D5 D4 D3 D2 D1 D0 DCC15 DCC14 DCC13 DCC12 DCC11 DCC10 DCC9 DCC8 1 1 1 1 0 0 1 1 D7 D6 D5 D4 D3 D2 D1 D0 DCC7 DCC6 DCC5 DCC4 DCC3 DCC2 DCC1 DCC0 0 0 1 1 0 0 1 1 Fault detect recovery constant registers (addr 0x2B - 0x2C) FDRC bits specify the 16-bit Fault Detect Recovery time delay. When FAULT is asserted, the TRISTATE output will be immediately asserted low and held low for the time period specified by this constant. A constant value of 0x0001 in this register is approximately 0.083 ms. The default value of 0x000C specifies approximately 0.1 ms. 5.16 D7 D6 D5 D4 D3 D2 D1 D0 FDRC15 FDRC14 FDRC13 FDRC12 FDRC11 FDRC10 FDRC9 FDRC8 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 FDRC7 FDRC6 FDRC5 FDRC4 FDRC3 FDRC2 FDRC1 FDRC0 0 0 0 0 1 1 0 0 Device status register (addr 0x2D) D7 D6 D5 D4 D3 D2 D1 D0 PLLUL FAULT UVFAULT OVFAULT OCFAULT OCWARN TFAULT TWARN This read-only register provides fault and thermal-warning status information from the power control block. 58/66 STA559BWQS Application 6 Application 6.1 Application scheme for power supplies Figure 33 below shows a circuit diagram of a typical application for STA559BWQS.Particular care has to be given to the layout of the PCB, especially the power supplies. The 3.3-Ω resistors on the digital supplies (VDD_DIG) have to be placed as close as possible to the device. This helps to prevent unwanted oscillation on the digital portion of the device due to inductive tracks of the PCB. This same rule also applies to all the decoupling capacitors in order to limit any kind of spikes on the supplies. Figure 33. Application schematic 3R3 1 2 + 3 1000uF 35V 4 100nF 1uF 35V 5 6 OUT2B 7 8 100nF OUT2A 100nF VCC OUT1B 9 10 11 12 1uF 35V 13 OUT1A 14 100nF 15 16 6.2 DDX3B 17 DDX3A 18 GND_SUB VDD_DIG SA GND_DIG TEST_MODE SCL VSS SDA VCC_REG INT_LINE OUT2B RESET GND2 SDI VCC2 LRCKI OUT2A BICKI OUT1B XTI VCC1 PLL_GND GND1 FILTER_PLL OUT1A VDD_PLL GND_REG PWRDN VDD GND_DIG GND CONFIG VDD_DIG DDX3B TWARN/4A DDX3A EAPD/4B 3V3 36 100nF 35 34 SCL 33 SDA INTL 32 3V3 GND_DIG 10K 31 RESET 30 DATA 29 LRCKI 28 BICKI 27 XTI GND_DIG BEAD 26 25 PLL_FILT 100nF PLL_GND BEAD 24 23 GND_DIG 3V3 PWDN 22 21 RESET 1nF 100nF 3R3 GND_DIG 3V3 20 TW 19 EAPD PLL filter schematic It is recommended to use the below schematic and values in Figure 34 below for the PLL loop filter. In order to achieve the best performance from the device in general applications the filter ground (PLL_GND) must be connected as close as possible to the device pin PLL_GND. Concerning the component values, please take into account that the greater is the filter bandwidth, the less is the lock time but the higher is the PLL output jitter. Figure 34. PLL application schematic FILTER_PLL 2K2 680pF 4.7nF Component leads must be kept as short as possible 100pF BEAD GND_DIG PLL_GND 59/66 Application 6.3 STA559BWQS Typical output configuration Figure 35 shows the typical output configuration used for BTL stereo mode. Please refer to the application note for other recommended output configuration schematics. Figure 35. Output configuration for stereo BTL mode 22uH OUT1A 100nF 6.2 22 6.2 330pF 100nF 470nF LEFT 470nF RIGHT 100nF 100nF OUT1B 22uH 22uH OUT2A 100nF 6.2 22 6.2 330pF 100nF OUT2B 22uH 60/66 100nF 100nF STA559BWQS 7 Package thermal characteristics Package thermal characteristics Due to the high efficiency of the system the dissipated power is negligible, allowing the use of the STA559BWQS without heat sink but using only a small copper area on the PCB. Using a double layer PCB the thermal resistance junction to ambient with two copper ground areas of 3 x 3 cm2 and with 16 via holes (see Figure 36) is 24° C/W in natural air convection. The dissipated power within the device depends primarily on the supply voltage, load impedance and output modulation level. The max estimated dissipated power for the STA559BWQS is: 2 x 3 W into 4 Ω at 5 V Pd max ~ 600mW 2 x 0.7 W + 1 x 3 W into 4 Ω at 5 V Pd max < 500mW 2 x 1.4 W + 1 x 6 W into 2 Ω at 5 V Pd max ~ 800mW This gives, with the suggested board copper area, a max ∆Tj of only approximately 20° C for the worst case of the above mentioned applications. The safety margin before the thermal protection intervention (Tj=150°C) is thus ensured, also in severe environments where the ambient temperature exceeds 50° C. Figure 36. Double layer PCB with copper ground area and with 16 via holes Figure 37 shows the power derating curves for the PowerSSO-36 package on a board with two different sizes of copper layers. Figure 37. PowerSSO-36 power derating curve Pd (W) 8 7 Copper Area 3x3 cm and via holes 6 5 STA559BWQS STA335BW PSSO36 PowerSSO-36 4 3 Copper Area 2x2 cm and via holes 2 1 0 0 20 40 60 80 100 120 140 160 Tamb ( °C) 61/66 Package information 8 STA559BWQS Package information In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. Figure 38. PowerSSO-36 (slug-up) mechanical data and package dimensions DIM. MIN. 2.15 2.15 0 0.18 0.23 10.10 A A2 a1 b c D (1) mm TYP. 7.4 E (1) e e3 F G G1 H h k L M N O Q S T U X Y MAX. 2.47 2.40 0.075 0.36 0.32 10.50 MIN. 0.084 0.084 0 0.007 0.009 0.398 7.6 0.291 0.5 8.5 2.3 inch TYP. MAX. 0.097 0.094 0.003 0.014 0.012 0.413 OUTLINE AND MECHANICAL DATA 0.299 0.019 0.335 0.090 0.10 0.06 10.50 0.40 10.10 0.004 0.002 0.413 0.016 0.398 5˚ 5˚ 0.55 0.90 0.022 4.3 0.035 0.169 10˚ 10˚ 1.2 0.8 2.9 3.65 1.0 0.047 0.031 0.114 0.144 0.039 4.1 6.5 4.7 7.3 0.161 0.256 PowerSSO-36 (slug-down) 0.185 0.287 A A2 (1) "D” and “E" do not include mold flash or protrusions Mold flash or protrusions shall not exceed 0.15 mm per side(0.006”) hx45û Gauge plane 0.25 c G LEAD COPLANARITY A D M a1 stand-off Y k e T L H E X O F S Q U BOTTOM VIEW B 0.1 M A B b e3 7587131 A 62/66 STA559BWQS 9 License information License information Supply of this product does not convey a license under the relevant intellectual property of the companies mentioned in this chapter nor imply any right to use this intellectual property in any finished end-user or ready to use final product. An independent license for such use is required and can be obtained by contacting the company or companies concerned. Once the license is obtained, a copy must be sent to STMicroelectronics. The details of all the features requiring licenses are not provided within the datasheet and register manual. They are provided only after a copy of the license has been received by STMicroelectronics. The feature requiring license is: QXpander (QHD®) QHD® and QXpander® are intellectual property of QSounds Lab Inc. A license can be obtained with the STA559BWQS via STMicroelectronics, please contact the HPC Audio Division Product Manager for details. Alternatively the license can be obtained directly from QSound Labs Inc. For details please contact: [email protected] or QSound Labs, Inc 400 - 3115 12th Street NE Calgary, AB Canada T2E 7J2 63/66 Trademarks and other acknowledgements 10 Trademarks and other acknowledgements DDX is a registered trademark of Apogee Technology Inc. ECOPACK is a registered trademark of STMicroelectronics. QHD and QXpander are registered trademarks of QSound Labs Inc. 64/66 STA559BWQS STA559BWQS 11 Revision history Revision history Table 70. Document revision history Date Revision 28-Mar-2008 1 Changes Initial release. 65/66 STA559BWQS Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2008 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 66/ 66