SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING GENERAL DESCRIPTION KEY PRODUCT FEATURES The main function of the SX8722 is to acquire signal from Wheatstone bridges or single ended sensors. The input can be a pressure sensor, a GMR or AMR magnetic sensor, a chemical sensor, a thermistor or a mix of several of these sensors. The SX8722 Sensor interface is totally configurable through an I2C compatible interface. Several parameters are configurable through this interface such as alarms or signal post processing. 16 + 10 bits differential acquisition 4 differential or 7 single ended signal inputs Preamplifier programmable gain up to 1000 Sensor offset compensation up to 15 times full scale of input signal 2 differential reference inputs I2C compatible connection to application Internal RC and 32 kHz Oscillators Low power modes - Sleep - Shutdown APPLICATION 4 Full configuration pre selections including: - ZoomingADC™ configuration Pressure sensing (industrial, altimeter, diving computer) - 2 alarms with on & off thresholds Chemical sensing (monitoring, security) - Digital filtering ORDERING INFORMATION Temperature Range Package SX8722I070LF -40°C to 125°C MLPQ44-7x7 Tools Part number Evaluation Kit XE8000EV120 Stand alone mode for alarm monitoring Clock out pin Calibration pin Reset pin Ready / Busy pin EE_POW Part Number I2C EEPROM interface EE_SCL Magnetic sensing (compass) EE_SDA SX8722 VBATT VBATT GND ALRM1 BIAS ALRM2 TM AR2P AR2N ZoomingADC REF MUX AR1P AR1N CONTROL CAL RESET I2 C AC7 SCL SDA AC5 AC4 Single ended AC3 AC2 AC1 SIGNAL MUX AC6 Differential MCU READY PGA GPIO GPIO GPIO XIN ADC OSC XOUT CKOUT AC0 SLEEP SHUT POST-PROCESS Example of application Typical pressure & temperature sensing application with sleep control ACS - Revision 4.2 ©2008 Semtech Corp. POWER VREG VMULT October 2008 Page 1 www.semtech.com SX8722 High gain acquisition for sensor interface ADVANCED COMMUNICATIONS & SENSING DATASHEET Table of contents Section 1. 2. Page Specifications........................................................................................................................................................... 6 1.1. Absolute Maximum Ratings ............................................................................................................................. 6 1.2. Operating conditions ........................................................................................................................................ 6 1.3. ZoomingADC Specifications ............................................................................................................................ 7 Pin configuration and marking information ............................................................................................................ 10 2.1. Pin configuration ............................................................................................................................................ 10 2.2. Marking information ....................................................................................................................................... 10 3. Pin Description....................................................................................................................................................... 11 4. Timing Characteristics ........................................................................................................................................... 13 5. 6. 4.1. I2C timing Waveforms.................................................................................................................................... 13 4.2. Time specification without the 32.768 kHz Xtal ............................................................................................. 14 4.3. Start-up time with the 32.768 kHz Xtal presence........................................................................................... 14 4.4. Changing power mode by pin signal.............................................................................................................. 14 4.5. Changing power mode by I2C command....................................................................................................... 15 Circuit description .................................................................................................................................................. 16 5.1. Detailed bloc diagram .................................................................................................................................... 16 5.2. Functional description .................................................................................................................................... 16 5.3. ZoomingADC ................................................................................................................................................. 19 Access the SX8722 ............................................................................................................................................... 20 6.1. Description ..................................................................................................................................................... 20 6.2. SX8722 configuration..................................................................................................................................... 20 7. I2C Commands...................................................................................................................................................... 20 8. Serial communication ............................................................................................................................................ 21 9. 8.1. Write data direct............................................................................................................................................. 21 8.2. Write data masked ......................................................................................................................................... 22 8.3. Read data ...................................................................................................................................................... 22 8.4. Other commands ........................................................................................................................................... 23 8.5. Unknown commands ..................................................................................................................................... 23 8.6. Reading data after a measurement. .............................................................................................................. 23 Predefined settings ................................................................................................................................................ 24 9.1. Introduction .................................................................................................................................................... 24 9.2. Features covered by predefined settings....................................................................................................... 24 9.3. Input multiplexers........................................................................................................................................... 25 9.3.1. Overview ................................................................................................................................................. 25 9.3.2. Input channel selection ........................................................................................................................... 25 9.3.3. Reference channel selection................................................................................................................... 26 9.3.4. Application example................................................................................................................................ 26 9.4. Programmable gain amplifier settings............................................................................................................ 28 9.4.1. Overview ................................................................................................................................................. 28 ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 2 www.semtech.com SX8722 High gain acquisition for sensor interface ADVANCED COMMUNICATIONS & SENSING DATASHEET Table of contents Section Page 9.4.2. 9.4.3. Enable/disable PGAs .............................................................................................................................. 30 9.4.4. PGA3 gain configuration ......................................................................................................................... 30 9.4.5. PGA2 gain configuration ......................................................................................................................... 30 9.4.6. PGA1 gain configuration ......................................................................................................................... 31 9.4.7. Application example................................................................................................................................ 31 9.5. Offset cancellation ......................................................................................................................................... 32 9.5.1. Overview ................................................................................................................................................. 32 9.5.2. Application example................................................................................................................................ 34 9.6. ADC parameters ............................................................................................................................................ 35 9.6.1. Overview ................................................................................................................................................. 35 9.6.2. ADC settings ........................................................................................................................................... 36 9.7. 10. Configuration flow ................................................................................................................................... 29 Measurement engine ..................................................................................................................................... 36 9.7.1. Overview ................................................................................................................................................. 36 9.7.2. Measurement engine settings................................................................................................................. 37 Default configuration.............................................................................................................................................. 38 10.1. ZoomingADC default settings ........................................................................................................................ 38 11. Advanced configuration ......................................................................................................................................... 39 11.1. Overview ........................................................................................................................................................ 39 11.2. Measurement engine ..................................................................................................................................... 40 11.2.1. Overview ................................................................................................................................................. 40 11.2.2. Functional flowchart ................................................................................................................................ 40 11.3. Control registers............................................................................................................................................. 41 11.3.1. SXCtrl1 - SX8722 Control register 1 ....................................................................................................... 41 11.3.2. SXCtrl2 - SX8722 Control register 2 ....................................................................................................... 41 11.3.3. SXCfgEn - Configuration enabling register ............................................................................................. 42 11.3.4. SXUpdated - Updated configuration register .......................................................................................... 42 11.3.5. Configuration register - measurement mode .......................................................................................... 42 11.4. Filtering .......................................................................................................................................................... 43 11.4.1. Filter types .............................................................................................................................................. 43 11.4.2. Configuration register - filtering............................................................................................................... 43 11.4.3. Filter size register.................................................................................................................................... 44 11.5. Alarms............................................................................................................................................................ 44 11.5.1. Configuration register - alarms................................................................................................................ 44 11.5.2. Alarm threshold registers ....................................................................................................................... 44 11.5.3. SXCtrl2 - SX8722 Control register 2 ....................................................................................................... 45 11.6. I2C EEPROM................................................................................................................................................. 46 11.6.1. Overview ................................................................................................................................................. 46 11.6.2. Schematic ............................................................................................................................................... 46 ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 3 www.semtech.com SX8722 High gain acquisition for sensor interface ADVANCED COMMUNICATIONS & SENSING DATASHEET Table of contents Section Page 11.7. Using the SX8722 Stand alone...................................................................................................................... 47 11.7.1. Schematic ............................................................................................................................................... 47 11.8. Frequency calibration process ....................................................................................................................... 48 11.8.1. Overview ................................................................................................................................................. 48 11.8.2. Using an 32.768 kHz XTAL..................................................................................................................... 48 11.8.3. Using a 32.768 kHz External clock source ............................................................................................. 49 11.9. Working below 3 V ......................................................................................................................................... 50 11.9.1. Operating range ...................................................................................................................................... 50 11.9.2. Internal voltage multiplier ........................................................................................................................ 50 11.9.3. Schematic ............................................................................................................................................... 50 12. ZoomingADC ......................................................................................................................................................... 51 12.1. ZoomingADC Features .................................................................................................................................. 51 12.1.1. Overview ................................................................................................................................................. 51 12.2. Acquisition Chain ........................................................................................................................................... 51 12.3. ZoomingADC Detailed block diagram............................................................................................................ 53 12.4. ZoomingADC register map ............................................................................................................................ 54 12.5. ZoomingADC™ registers table ...................................................................................................................... 56 12.6. Input Multiplexers........................................................................................................................................... 57 12.7. Programmable Gain Amplifiers ...................................................................................................................... 58 12.7.1. PGA & ADC Enabling ............................................................................................................................. 58 12.7.2. PGA1 ...................................................................................................................................................... 58 12.7.3. PGA2 ...................................................................................................................................................... 59 12.7.4. PGA3 ...................................................................................................................................................... 60 12.8. ADC Characteristics....................................................................................................................................... 62 12.8.1. Conversion Sequence............................................................................................................................. 62 12.8.2. Sampling Frequency ............................................................................................................................... 63 12.8.3. Over-Sampling Ratio............................................................................................................................... 63 12.8.4. Elementary Conversions......................................................................................................................... 64 12.8.5. Resolution ............................................................................................................................................... 64 12.8.6. Conversion Time & Throughput .............................................................................................................. 65 12.8.7. Output Code Format ............................................................................................................................... 67 12.9. Power Saving Modes ..................................................................................................................................... 69 12.10. Input impedance............................................................................................................................................ 69 12.11. Switched Capacitor Principle......................................................................................................................... 70 12.12. PGA Settling or Input Channel Modifications ................................................................................................ 71 12.13. PGA Gain & Offset, Linearity and Noise ....................................................................................................... 71 12.14. Power Reduction ........................................................................................................................................... 71 12.15. Noise ............................................................................................................................................................. 72 12.16. Gain Error and Offset Error ........................................................................................................................... 73 ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 4 www.semtech.com SX8722 High gain acquisition for sensor interface ADVANCED COMMUNICATIONS & SENSING DATASHEET Table of contents Section 13. Page Typical performances ............................................................................................................................................ 75 13.1. Current consumption...................................................................................................................................... 75 13.2. ZoomingADC ................................................................................................................................................. 76 13.2.1. Integral non-linearity ............................................................................................................................... 76 13.2.2. Differential non-linearity ......................................................................................................................... 77 13.2.3. Resolution vs acquisition time................................................................................................................. 78 14. Register Memory Map and Description ................................................................................................................. 79 14.1. Memory Map .................................................................................................................................................. 79 14.2. Register description ....................................................................................................................................... 82 14.2.1. SX8722 general configuration................................................................................................................. 82 14.2.2. Configuration 1 registers......................................................................................................................... 84 14.2.3. Configuration 2 registers......................................................................................................................... 88 14.2.4. Configuration 3 registers......................................................................................................................... 92 14.2.5. Configuration 4 registers......................................................................................................................... 96 15. Power modes....................................................................................................................................................... 100 15.1. Power modes transitions.............................................................................................................................. 100 15.2. Active mode ................................................................................................................................................. 101 15.2.1. Description ............................................................................................................................................ 101 15.2.2. How to set SX8722 in active mode ....................................................................................................... 101 15.3. Sleep mode.................................................................................................................................................. 101 15.3.1. Description ............................................................................................................................................ 101 15.3.2. Operating specifications of the sleep mode .......................................................................................... 101 15.3.3. SX8722 sleep current consumption below 3V Vbat.............................................................................. 102 15.3.4. SX8722 sleep current consumption with the 32.768 kHz Xtal .............................................................. 102 15.3.5. SX8722 sleep current consumption without the 32.768 KHz Xtal......................................................... 102 15.3.6. How to set SX8722 in sleep mode........................................................................................................ 102 15.3.7. Wake up from sleep mode to active mode............................................................................................ 102 15.4. Shutdown mode ........................................................................................................................................... 103 15.4.1. Description ............................................................................................................................................ 103 15.4.2. Operating specifications in shutdown mode ......................................................................................... 103 15.4.3. How to set SX8722 in shutdown mode ................................................................................................. 103 15.4.4. Wake-up from shutdown mode to active mode..................................................................................... 104 15.4.5. Change from shutdown mode to sleep mode ....................................................................................... 104 16. PCB Layout Considerations................................................................................................................................. 105 17. How to Evaluate................................................................................................................................................... 105 18. Package Outline Drawing: MLPQ44-7x7mm ....................................................................................................... 105 19. Land Pattern Drawing: MLPQ44-7x7mm............................................................................................................. 106 20. Tape and Reel Specification................................................................................................................................ 107 ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 5 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 1. Specifications 1.1. Absolute Maximum Ratings Stresses above the values listed below may cause permanent device failure. Exposure to absolute maximum ratings for extended periods may affect device reliability. Parameter Symbol Power supply VBAT Storage temperature TSTORE Max sensor common mode VVR P VVR N Condition Input voltage Peak soldering temperature Min Max Units VSS - 0.3 6 V -55 150 °C VSS - 300 VBATT + 300 mV VSS - 300 VBATT + 300 mV 260 °C T Note: This device is ESD sensitive. Use of standard ESD handling precautions is required. 1.2. Operating conditions All values are valid whithin the operating conditions unless otherwise specified. Parameter Symbol Condition Min Typ Max Unit OPERATING CONDITIONS Power supply VBAT 2.4 5.5 V Operating temperature TOP -40 125 °C CURENT CONSUMPTION μA 300 Active current IOP Sleep current (1) ISLEEP Temperature < 85°C 1 5.0 μA Sleep current (2) ISLEEP Temperature < 85°C 3 10.0 μA Shutdown current ISHUT Temperature < 85°C 0.5 3.5 μA DIGITAL I/O Input logic high VIH Input logic low VIL Output logic high VOH IOH < 4 mA Output logic low VOL IOL < 4 mA October 2008 Page 6 ACS - Revision 4.2 ©2008 Semtech Corp. 0.7 x VBAT 0.4 V 0.3 x VBAT V VBAT 0.4 V V www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING (1) With external 32.768kHz Xtal connected (2) Without external 32.768kHz Xtal connected 1.3. ZoomingADC Specifications Unless otherwise specified: Temperature TA = +25°C, VBATT = +5V, GND = 0V, VREF = +5V, VIN = 0V, RC frequency fRC = 2MHz, sampling frequency fS = 300 kHz, Overall PGA gain GDTOT = 1, offsets GDOff2 = GDOff3 = 0. Power operation: normal (IB_AMP_ADC[1:0] = IB_AMP_PGA[1:0] = '11'). For resolution n = 12 bits: OSR = 32 and NELCONV = 4. For resolution n = 16 bits: OSR = 512 and NELCONV = 2. PARAMETER COMMENTS/CONDITIONS VALUE MIN TYP UNITS MAX ANALOG INPUT CHARACTERISTICS Differential Input Voltage Range VIN = VINP -VINN Gain = 1, OSR = 32 (Note 1) -2.42 +2.42 V Gain = 100, OSR = 32 -24.2 +24.2 mV Gain = 1000, OSR = 32 -2.42 +2.42 mV VBATT V 0.5 1000 V/V Reference Voltage Range VREF,ADC = VREFP -VREFN PROGRAMMABLE GAIN AMPLIFIER Total PGA Gain GDTOT PGA1 Gain GD1 See Table 15 1 10 V/V PGA2 Gain GD2 See Table 16 1 10 V/V PGA3 Gain GD3 Step = 1/12 V/V, See Table 47 127/12 V/V +3 % Gain Settings Precision (each stage) -3 Gain Temperature Dependance Offset +/- 0.5 +/- 5 ppm / °C PGA2 Offset GDoff2 Step = 0.2 V/V, See Table 46 -1 +1 V/V PGA3 Offset GDoff3 Step = 1.12 V/V, See Table 48 -63/12 +63/12 V/V +3 % Offset Settings Precision (PGA2 or PGA3) (note 2) -3 Offset Temperature Dependance +/- 0.5 +/-5 Input Impedance PGA1 ppm / °C PGA1 Gain = 1 (Note 3) 1500 kΩ PGA1 Gain = 10 (Note 3) 150 kΩ Input Impedance PGA2 ,PGA3 Maximal gain = 1 (Note 3) 150 kΩ Output RMS Noise PGA1 (Note 4) 205 μV PGA2 (Note 5) 340 μV PGA3 (Note 6) 365 μV ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 7 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING PARAMETER COMMENTS/CONDITIONS VALUE MIN TYP UNITS MAX ADC STATIC PERFORMANCES Resolution n (Note 7) No Missing Codes (Note 8) Gain Error (Note 9) Offset Error n = 16 bits (Note 10) 6 16 Bits +/- 0.15 % of FS +/- 1 LSB Integral Non-Linearity INL resolution n = 16 bits (Note 11) +/- 1.0 LSB Differential Non-Linearity DNL resolution n = 16 bits (Note 12) +/- 0.5 LSB PSRR VBATT = 5V +/- 0.3V (Note 13) 78 dB VBATT = 3V +/- 0.3V (Note 13) 72 dB Power Supply Rejection Ratio ADC DYNAMIC PERFORMANCES Throughput Rate (Continuous Mode) Throughput Rate (Continuous Mode) TCONV 1/TCONV n = 12 bits (Note 14) 3 133 cycles / fS n = 16 bits (Note 14) 0 1027 cycles / fS n = 12 bits, fS 3.76 kS/s n = 16 bits, fS 0.49 kS/s Nbr of Initialization Cycles NINIT 0 2 cycles Nbr of End Conversion Cycles NEND 0 5 cycles PGA Stabilization Delay (Note 15) OSR cycles TIME BASE Max ADC oversampling frequency fSmax @ 25°C, with a 32k XTAL 270 300 330 kHz Min ADC oversampling frequency fSmin @ 25°C, with a 32KXTAL 33 37.5 42 kHz DIGITAL OUTPUT ADC Output Data Coding See Table 55 and Table 56 Binary Two’s Complement TEMPERATURE Specified Range -40 +85 °C Operating Range -40 +125 °C Table 1. ZoomingADC specifications ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 8 www.semtech.com SX8722 High gain acquisition for sensor interface ADVANCED COMMUNICATIONS & SENSING DATASHEET Notes (1) Gain defined as overall PGA gain GDTOT = GD1 x GD2 x GD3. Maximum input voltage is given by: VIN,MAX = (VREF/2) (OSR/OSR+1). (2) Offset due to tolerance on GDoff2 or GDoff3 setting. For small intrinsic offset, use only ADC and PGA1. (3) Measured with block connected to inputs through AMUX block. Normalized input sampling frequency for input impedance is fS = 512 kHz. This figure must be multiplied by 2 for fS = 256 kHz, 4 for fS = 128 kHz. Input impedance is proportional to 1/fS. (4) Figure independent from PGA1 gain and sampling frequency fS. See equation Eq. 21 to calculate equivalent input noise. (5) Figure independent on PGA2 gain and sampling frequency fS. See equation Eq. 21 to calculate equivalent input noise. (6) Figure independent on PGA3 gain and sampling frequency fS. See equation Eq. 21 to calculate equivalent input noise. (7) Resolution is given by n = 2 log2(OSR) + log2(NELCONV). OSR can be set between 8 and 1024, in powers of 2. NELCONV can be set to 1, 2, 4 or 8. (8) If a ramp signal is applied to the input, all digital codes appear in the resulting ADC output data. (9) Gain error is defined as the amount of deviation between the ideal (theoretical) transfer function and the measured transfer function (with the offset error removed). (10) Offset error is defined as the output code error for a zero volt input (ideally, output code = 0). For 1 LSB offset, NELCONV must be 2. (11) INL defined as the deviation of the DC transfer curve of each individual code from the best-fit straight line. This specification holds over the full scale. (12) DNL is defined as the difference (in LSB) between the ideal (1 LSB) and measured code transitions for successive codes. (13) Values for Gains = 1 to 100. PSRR is defined as the amount of change in the ADC output value as the power supply voltage changes. (14) Conversion time is given by: TCONV = (NELCONV (OSR + 1) + 1) / fS. OSR can be set between 8 and 1024, in powers of 2. NELCONV can be set to 1, 2, 4 or 8. (15) PGAs are reset after each writing operation to registers CxRegAdc1-5. The ADC must be started after a PGA or inputs commonmode stabilisation delay. This is done by writing bit Start several cycles after PGA settings modification or channel switching. Delay between PGA start or input channel switching and ADC start should be equivalent to OSR (between 8 and 1024) number of cycles. This delay does not apply to conversions made without the PGAs. (16) Nominal (maximum) bias currents in PGAs and ADC, i.e. IB_AMP_PGA[1:0] = '11' and IB_AMP_ADC[1:0] = '11'. (17) Bias currents in PGAs and ADC set to 3/4 of nominal values, i.e. IB_AMP_PGA[1:0] = '10', IB_AMP_ADC[1:0] = '10'. (18) Bias currents in PGAs and ADC set to 1/2 of nominal values, i.e. IB_AMP_PGA[1:0] = '01', IB_AMP_ADC[1:0] = '01'. (19) Bias currents in PGAs and ADC set to 1/4 of nominal values, i.e. IB_AMP_PGA[1:0] = '00', IB_AMP_ADC[1:0] = '00'. ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 9 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 2. Pin configuration and marking information NC NC CAL DNC DNC XOUT XIN VMULT RESET VREG VBAT 2.1. Pin configuration 44 43 42 41 40 39 38 37 36 35 34 NC 1 33 VSS SLEEP 2 32 AR1N SHUT 3 31 AR1P READY 4 30 AC0 NC 5 29 AC1 NC 6 28 AC2 NC 7 27 AC3 BIAS 8 26 AC4 EE_POW 9 25 AC5 EE_SDA 10 24 AC6 EE_SCL 11 23 AC7 SX8722 12 13 14 15 16 17 18 19 20 21 22 ALRM1 ALRM2 CKOUT NC SCL SDA NC NC NTEST AR2P AR2N (Top view) 2.2. Marking information nnnnnn = Part Number (Example: SX8722) yyww = Date Code (Example: 0752) xxxxxxxxx = Semtech Lot No. (Example A01E90101) ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 10 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 3. Pin Description Pin Symbol Type Function Status at POR 1 NC 2 SLEEP Digital input Setting this pin to 0 puts the SX8722 in sleep mode, power consumption ~1.5uA, otherwise the pin can be floating 3 SHUT Digital input Setting this pin to 0 puts the SX8722 in shutdown mode, Internal pull-up power consumption ~0.5uA, otherwise the pin can be floating 4 READY Digital output Is high when a measurement data is available 5 NC Not connected 6 NC Not connected 7 NC Not connected 8 BIAS Digital output Bias pin, is set to VBAT voltage when a measurement is performed Low 9 EE_POW Digital output Must be used to power the optional I2C EEPROM Low 10 EE_SDA Digital IO Must be connected to SDA pin of the optional EEPROM when used. Otherwise must remain floating (see chapter EEPROM connection) Low 11 EE_SCL Digital IO Must be connected to SCL pin of the optional EEPROM when used. Otherwise must remain floating (see chapter EEPROM connection) Low 12 ALRM1 Digital output Alarm1 pin, is high when "on" threshold is reached and low when "off" threshold is reached, when not used can reamin floating Low 13 ALRM2 Digital output Alarm2 pin, is high when "on" threshold is reached and low when "off" threshold is reached, when not used can reamin floating Low 14 CKOUT Digital output System clock output Low 15 NC 16 SCL Digital IO Serial clock line of the I2C compatible interface Input 17 SDA Digital IO Serial data line of the I2C compatible interface Input 18 NC Not connected 19 NC Not connected 20 NTEST Digital input Must be connected to VBAT 21 AR2P Analog input Second analog input reference (positive input) 22 AR2N Analog input Second analog input reference (negative input) 23 AC7 Analog input ZoomingADCTM input 7 ACS - Revision 4.2 ©2008 Semtech Corp. Not connected Internal pull-up Low Not connected October 2008 Page 11 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING Pin Symbol Type Function 24 AC6 Analog input ZoomingADCTM input 6 25 AC5 Analog input ZoomingADCTM input 5 26 AC4 Analog input ZoomingADCTM input 4 27 AC3 Analog input ZoomingADCTM input 3 28 AC2 Analog input ZoomingADCTM input 2 29 AC1 Analog input ZoomingADCTM input 1 30 AC0 Analog input ZoomingADCTM input 0 31 AR1P Analog input First Analog reference input (positive input) 32 AR1N Analog input First Analog reference input (negative input) 33 VSS Power Negative power supply 34 VBAT Power Positive power supply 35 VREG Analog input Connected to the internal voltage regulator. Must be connected through 1uF capacitor to the ground. 36 RESET Digital input Reset pin, active high, must be tied to ground through a 3k3 resistor. 37 VMULT Analog input External capacitor for the internal voltage multiplier. Vmult capacitor must be connected through 2nF to the ground when VBAT < 3V 38 XIN Digital input XTAL connection, left unconnected when not used 39 XOUT Digital output XTAL connection, left unconnected when not used 40 DNC Do not connect 41 DNC Do not connect 42 CAL 43 NC Not connected 44 NC Not connected ACS - Revision 4.2 ©2008 Semtech Corp. Digital input Calibration pin, set low to use XTAL. October 2008 Page 12 Status at POR Internal pull-up www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 4. Timing Characteristics Parameter Symbol Condition Min Typ Max Unit 100 kHz I2C TIMING SPECIFICATIONS (1) SCL clock frequency fSCL 0 SCL low period tLOW 4.7 μs SCL high period tHIGH 4.0 μs Data setup time tSU;DAT 250 ns Data hold time tHHD;DAT 4.0 ns Repeated start setup time tSU;STA 4.7 μs Start condition hold time tHD;STA 4.0 μs Stop condition hold time tSU;STO 4.0 μs Bus free time between stop and start tBUF 4.7 μs (1) All timings specifications are referred to VILMIN and VIHMAX voltage levels defined for the SCL and SDA pins. With 32’768 Hz Xtal presence. 4.1. I2C timing Waveforms SDA SCL tSU ;STA t HD ;STA tSU;STO tBUF Figure 1. I2C Start and Stop timing SDA SCL tLOW tHIGH tSU;DAT tHD;DAT tSP Figure 2. I2C Data timings ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 13 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 4.2. Time specification without the 32.768 kHz Xtal The internal SX8722 RC oscillator accuracy depends on technology tolerance. It can reach ± 50% difference from one chip to another In this case, and if no calibration is done, the RC clock is centred around 1.2 MHz. SX8722 timing values without Xtal can thus differ of ± 50% to these with a Xtal. 4.3. Start-up time with the 32.768 kHz Xtal presence The mean time of EEPROM loading at the start-up is typically 140 ms if configuration data are saved in. In this case SX8722 will provide the first sample after typically 180ms. time after EEPROM loading: 140 [ms] time before EEPROM loading: 7.5 [ms] time to have the first sample: 180 [ms] SX8722 power- on t EEPROM loading t Sample available t Figure 3. Start-up timing diagram with EEPROM loading 4.4. Changing power mode by pin signal From To SHUT SHUT SLEEP ACTIVE 640ms 650ms SLEEP ACTIVE 660ms inst. (1) inst. (1) Table 2. Power mode changing timings by pin setting (1) instantaneous ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 14 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 4.5. Changing power mode by I2C command From To SHUT SHUT SLEEP ACTIVE 770us 700us SLEEP 470us ACTIVE inst. (1) Table 3. Power mode changing timings by I2C command (1) instantaneous Note: When time to change a power mode is instantaneous, it doesn't mean that the chip is totally ready to work. There are for example initialization times, EEPROM loading or code execution. The transition time is considered as not low power. ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 15 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 5. Circuit description 5.1. Detailed bloc diagram VBAT Supply I2C * EEPROM EE_SCL EE_POW EE_SDA VBAT MCU * SX8722 BIAS AR1P Control AR1N ALRM1 GPIO ALRM2 GPIO READY GPIO Post Process CAL AC0 AC1 RESET I2C I2C 10 + 16 bits AC6 AC7 GPIO / CKOUT GPIO I2C ZoomingADC™ Parameters RAM RC Oscillator Power mgmt XTAL Oscillator SLEEP GPIO SHUT GPIO GROUND VREG VMULT XIN XOUT VSS * CKIN/GPIO Regulator Voltage Multiplier DFLL CKOUT * Ground * Optional components Figure 4. SX8722 detailed bloc diagram 5.2. Functional description The SX8722 is a ZoomingADC™ with I2C compatible interface allowing multiple setups. The major modules of the SX8722 are the ZoomingADC™, the signal post processing, the control unit and the power management The SX8722 offers several configuration possibilities allowing the developer to use it as a peripheral of its system or to use it as a stand alone system generating alarms. ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 16 www.semtech.com SX8722 High gain acquisition for sensor interface ADVANCED COMMUNICATIONS & SENSING DATASHEET The ZoomingADC™ is made of 1 input multiplexer, 3 programmable gain amplifiers and a 16 bits Sigma-Delta ADC. The input multiplexer allows measuring 4 differential sensors or 7 single ended sensors or a combination of differential and single-ended. The total gain of the PGA enables an amplification of 1000 and the offset correction can reach up to 15 times the full scale input signal. The SX8722 is not only giving access to the very efficient ZoomingADC™ technology, it also gives access to a very low power acquisition system entirely configurable to reach as low as 0.5uA in shutdown mode. The low power modes can be reached through pins or specific serial commands. The whole chip is controlled by a set of registers; these registers have factory default settings and can be modified in 2 ways: the serial interface commands or an optional external EEPROM. At Startup the SX8722 checks for EEPROM presence and updates its registers with EEPROM contents. The whole chip is working at 1.2MHz using its internal RC oscillator, this frequency can be calibrated. The clock calibration can be done using several methods: External 32.768 kHz XTAL, External 32.768 kHz reference signal, or EEPROM parameter configuration. Several corrections can be applied on the measured signal such as different digital filters. The SX8722 offers two alarm pins. "on" and "off" thresholds can be set independently. A Clock out pin can be enabled to have the exact frequency of RC oscillator. External EEPROM and sensors can be biased by the dedicated SX8722 pins EE_POW and BIAS allowing the most efficient power management. The pin READY is a single signal that can be used to interrupt the host microcontroller. The RESET pin enables the host system to reset the SX8722 to its startup settings at any time. The internal voltage multipliers is automatically enabled when working below 3 Volts. The SX8722 implements 4 configuration register sets. Each of these sets completely defines the behavior of the ZoomingADC™. This allows the user to preset 4 different measurement configurations that can be activated by setting a single bit. ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 17 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING The diagram below page explains the registers system more in details. External EEPROM Alarm pins Alarms 10 + 16 bits ™ ZoomingADC Registers Measurement Engine Registers sets Communication Engine Service pins Filtering Control & Configuration I2C SX8722 Figure 5. Register sets system The measurement engine copies the configuration register sets in the ZoomingADC™ physical registers and writes back the conversion results. The communication engine controls read/write access from the I2C or the external EEPROM. ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 18 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 5.3. ZoomingADC The SX8722 core is the ZoomingADC™, the diagram below shows more in detail the architecture of this acquisition chain. A + PGA1 0/12 to 127/12 + + PGA2 - + PGA3 - - - - - + - VIN, ADC + ADC MEASUREMENT ENGINE C MUX 1 2 3 + 1 - 2 - 5 - 10 - VIN 0 AR 1 - 10 + fS MUX 1 2 3 4 5 6 7 E fS 0 AC D B VREF 5/5 ... -5/5 63/12 ... -63/12 + + OFF2 OFF3 - - Figure 6. Acquisition chain architecture The block schematic above is separated in function boxes: A. Input multiplexers Routing of the input signal. Routing of the reference. B. Programmable gain amplifiers Can be enabled/disabled separately. Each PGA has programmable gain from 1 to 10. Total PGA gain available = PGA1 x PGA2 x PGA3 = 1000. C. Offset cancellation Subtract or add a reference multiple to the input signal. Can compensate up to 15 times the full scale signal. D. ADC Sigma-Delta ADC. Offers several sampling frequencies. Over sampling rates and elementary conversion combinations allow setting the ideal resolution for the ideal conversion time. E. Measurement engine Manages up to 4 ZoomingADC™ configurations. Updates the measured values. ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 19 www.semtech.com SX8722 High gain acquisition for sensor interface ADVANCED COMMUNICATIONS & SENSING DATASHEET 6. Access the SX8722 6.1. Description The SX8722 is configured trough register sets and general control registers. All the accesses to the SX8722 registers are done through the I2C interface using read and write commands. The next paragraph describes two approaches to configure the SX8722 6.2. SX8722 configuration As it will be shown in the next chapter there are two ways to write data in the SX8722 registers: Direct write: This command writes 8 bits to a defined address. This implies knowledge of the value to be written to this address. Masked write: This command can write a single bit in a byte using a mask. 7. I2C Commands This chapter describes the commands that are coded in the SX8722. The SX8722 commands are summarized below, detailed timing diagrams can be found “Serial Communication” chapter. Type Command Description Byte Data access write_direct Writes 8bit data to a given address 0x10 write_masked Writes bits to given address using a given mask 0x20 read Reads 8bit data from a given address 0x30 sleep Sets the SX8722 to sleep mode 0x40 shutdown Sets the SX8722 to sleep mode 0x50 reset Resets the SX8722 0x60 save_eeprom Saves the SX8722 registers in the external EEPROM (if present) 0x70 load_eeprom Loads the SX8722 registers in the external EEPROM (if present) 0x80 Power modes EEPROM Table 4. SX8722 commands ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 20 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 8. Serial communication The serial interface is a read-write 2 wire slave device. The SCL wire carries the clock information and SDA carries the data. The output drivers on the bus are open drain current sinks. The SCL wire is controlled by the master on the bus. Since the SX8722 is fairly slow, it may stretch the low clock phase when required. The SDA wire is controlled by the master or the slave depending on the operation. SDA only changes while the clock signal is low except for the (repeated) start or stop conditions. The (repeated) start condition for the transmission is a high to low transition on SDA while SCL is high. The stop condition is a low to high transition while SCL is high. To read data from the SX8722, the master has to send successively a start bit, the slave address, a write bit. If the slave address corresponds to the address of the SX8722 and the preceding operation is completed, the SX8722 sends an acknowledge bit. The master then sends the read command which is acknowledged by the salve, the memory address that it would like to read which is also acknowledged by the slave. The master issues a repeated start, repeats the slave address and read bit. The slave acknowledges and returns the data to the master. The master terminates the communication by a "not acknowledge" and a stop bit. To write data to the SX8722, the format is very similar. Only the data direction is different and the acknowledgement of the slave after the data reception. 8.1. Write data direct The diagram below shows the write operation. S T A R T W R I T E DEVICE ADDRESS REGISTER ADDRESS COMMAND S T O P REGISTER VALUE SDA M S B L S B A C K A C K A C K A C K Figure 7. I2C frame: write register, command 0x10 The diagram below shows the write operation at successive addresses (burst mode) S T A R T W R I T E DEVICE ADDRESS REGISTER ADDRESS COMMAND REGISTER VALUE (n) S T O P REGISTER VALUE (n + x) SDA M S B L S B A C K A C K A C K A C K A C K Figure 8. I2C frame: write burst register, command 0x10 ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 21 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 8.2. Write data masked The diagram below show the write masked operation. S T A R T W R I T E DEVICE ADDRESS REGISTER ADDRESS COMMAND REGISTER VALUE S T O P REGISTER MASK SDA A C K L S B M S B A C K A C K A C K A C K Figure 9. I2C frame: write mask register, command 0x20 8.3. Read data Read data diagram. S T A R T W R I T E DEVICE ADDRESS R E S T A R T REGISTER ADDRESS COMMAND DEVICE ADDRESS R E A D S T O P REGISTER VALUE SDA M S B L S B A C K N O A C K A C K A C K A C K Figure 10. I2C frame: read register, command : 0x30 Read data diagram successive addresses (burst mode) S T A R T W R I T E DEVICE ADDRESS R E S T A R T REGISTER ADDRESS COMMAND DEVICE ADDRESS R E A D REGISTER VALUE (n) S T O P REGISTER VALUE (n+x) SDA M S B L S B A C K A C K A C K A C K A C K N O A C K Figure 11. I2C frame: read burst register, command 0x30 Note: If a read sequence is initiated without sending previously an address, the data shifted out will be the latest conversion result and its corresponding configuration ID (24 bits). See next page for more information. ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 22 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 8.4. Other commands The diagram below shows the other commands syntax. S T A R T W R I T E DEVICE ADDRESS S T O P COMMAND SDA L S B M S B A C K A C K Figure 12. I2C frame: other commands, 0x40 - 0x80 8.5. Unknown commands The SX8722 does not answer to unknown commands. 8.6. Reading data after a measurement. The SX8722 performs measurements successively and stores the latest results in the enabled configurations data out registers. Every time a measurement is performed the pin READY makes a positive pulse allowing the host microcontroller to retrieve data from the SX8722. When the SX8722 is addressed and read the output is as shown below. Config ID indicates which channel is shifted out. S T A R T R E A D DEVICE ADDRESS R E S T A R T DATA MSB CONFIG ID S T O P DATA LSB SDA M S B L S B A C K A C K A C K N O A C K Figure 13. I2C frame: reading after a measurement ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 23 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 9. Predefined settings 9.1. Introduction This chapter intends to ease the handling of the SX8722 using a set of predefined settings. These settings are covering a large range of the SX8722 possibilities. However to avoid too much complexity some features are not handled by these settings. A more detailed use of the SX8722 can be found under the "advanced configuration" of this document. This chapter contains predefined command using the masked write mode. All the settings described in this chapter use the addresses of the 1st configuration register set, use the registers definition table to translate them to other register sets. 9.2. Features covered by predefined settings A + PGA1 + + PGA2 - + PGA3 - + - VIN, ADC + - - ADC MEASUREMENT ENGINE - + C MUX 1 2 3 0/12 to 127/12 1 - 2 - 5 - 10 + VIN 0 AR 1 - 10 - fS MUX 1 2 3 4 5 6 7 E fS 0 AC D B 63/12 ... -63/12 5/5 ... -5/5 VREF + + OFF2 - OFF3 - Figure 14. Features covered by predefined settings The block schematic above shows the functions covered and controlled by the predefined settings set. It includes: A. The input multiplexers B. The programmable gain amplifiers C. The offset cancellation D. The ADC E. The Measurement engine Note: Grayed out blocks in the schematic means that they are used in the current function. ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 24 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 9.3. Input multiplexers 9.3.1. Overview A + + PGA2 - - VIN, ADC + + PGA3 - - - + PGA1 + ADC MEASUREMENT ENGINE - + 0/12 to 127/12 + MUX 1 2 3 1 - 2 - 5 - 10 C 0 AR VIN 1 - 10 - fS MUX 1 2 3 4 5 6 7 E fS 0 AC D B VREF 5/5 ... -5/5 63/12 ... -63/12 + + OFF2 OFF3 - - Figure 15. Input multiplexer overview The diagram above shows the input multiplexer organization; these are enabling the selection of both the input and the reference sources. 9.3.2. Input channel selection The following settings allow configuring the input multiplexers of the ZoomingADC™ Function Address Data Mask AC0 - AC1 0x0F 0x00 0x06 AC2 - AC3 0x02 AC4 - AC5 0x04 AC6 - AC7 0x06 Table 5. Differential mode ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 25 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING . Function Address Data Mask AC0 - AC1 0x0F 0x22 0x2E AC0 - AC2 0x24 AC0 - AC3 0x26 AC0 - AC4 0x28 AC0 - AC5 0x2A AC0 - AC6 0x2B AC0 - AC7 0x2C Table 6. Single-ended mode Function Address Data Mask Sign inversion 0x0F 0x10 0x10 Table 7. Invert input polarity 9.3.3. Reference channel selection Function Address Data Mask AR1P - AR1N 0x0F 0x00 0x01 AR2P - AR2N 0x01 Table 8. Reference channel selection 9.3.4. Application example In this example we want to measure a signal between AC0 and AC1 in single ended having a reference voltage between AR1P and AR1N. The following settings must be sent to SX8722: Function Address Data Mask Set input to AC1 - AC2 0x0F 0x00 0x06 Set reference to AR1P - AR1N 0x0F 0x00 0x01 Table 9. Reference channel selection Note: This command can be optimized, since the reference and input setting are sharing the same address the mask and the settings can be added. ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 26 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING The following command shows the optimized way Function Address Data Mask Set input to AC1 - AC0, set reference to AR1P - AR1N 0x0F 0x00 0x07 Table 10. Optimized command ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 27 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 9.4. Programmable gain amplifier settings 9.4.1. Overview A fS MUX 1 2 3 1 - 2 - 5 - 10 0/12 to 127/12 VIN, ADC + + PGA2 - + - - - + - + PGA3 - PGA1 + ADC MEASUREMENT ENGINE - + C 0 AR VIN 1 - 10 + MUX 1 2 3 4 5 6 7 E fS 0 AC D B VREF 5/5 ... -5/5 + 63/12 ... -63/12 + OFF2 - OFF3 - Figure 16. Programmable gain amplifiers (PGA) in the acquisition chain The diagram above shows the programmable gain amplifier organization, these are 3 PGA that are cascaded, the gain is made by multiplying them (disabled PGAs have the equivalent gain of 1). ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 28 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 9.4.2. Configuration flow The diagram below shows the flow to set the gain of your configuration: Set gain Gain < 10 ? No Gain < 100 ? No Enable PGA1,2&3 Yes Yes Enable PGA3 Enable PGA2&3 Set PGA 1 gain Set PGA 3 gain Set PGA 2 gain Set PGA 2 gain Set PGA 3 gain Set PGA 3 gain GAIN = PGA2 x PGA3 GAIN = PGA1 x PGA2 x PGA3 GAIN = PGA3 End Figure 17. Gain configuration flowchart ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 29 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 9.4.3. Enable/disable PGAs Function Enable PGA3 Address Data Mask 0x0B 0x08 0x08 Disable PGA3 0x00 Enable PGA2&3 0x0A Disable PGA2&3 0x00 Enable PGA1,2&3 0x0E Disable PGA1,2&3 0x00 0x0A 0x0E Table 11. PGA enable/disable settings 9.4.4. PGA3 gain configuration Function Gain = 1 Address Data Mask 0x0D 0x0C 0x7F Gain = 2 0x18 Gain = 3 0x24 Gain = 4 0x30 Gain = 5 0x3C Gain = 6 0x48 Gain = 7 0x54 Gain = 8 0x60 Gain = 9 0x6C Gain = 10 0x78 Table 12. PGA3 gain configuration 9.4.5. PGA2 gain configuration Function Gain = 1 Address Data Mask 0x0C 0x00 0x30 Gain = 2 0x10 Gain = 5 0x20 Gain = 10 0x30 Table 13. PGA2 gain configuration ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 30 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 9.4.6. PGA1 gain configuration Function Gain = 1 Address Data Mask 0x0D 0x00 0x80 Gain = 10 0x80 Table 14. PGA1 gain configuration 9.4.7. Application example The total gain to set in this example is 300. The following settings must be sent to SX8722: Function Address Data Mask Enable PGA1,2&3 0x0B 0x0E 0x0E PGA3 gain = 3 0x0D 0x24 0x7F PGA2 gain = 10 0x0C 0x30 0x30 PGA1 gain = 10 0x0D 0x80 0x80 Table 15. Application example of PGA gain settings Note: This command can be optimized, since PGA1 and PGA3 gains are sharing the same address the mask and the settings can be added. The following list of settings shows the optimized Function Address Data Mask Enable PGA1,2&3 0x0B 0x0E 0x0E PGA3 gain = 3, PGA1 gain = 10 0x0D 0xA4 0xFF PGA2 gain = 10 0x0D 0x80 0x30 Table 16. Optimized command of PGA gain settings ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 31 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 9.5. Offset cancellation 9.5.1. Overview A D B fS 0/12 to 127/12 + + PGA2 - VIN, ADC + + PGA3 - - - - + PGA1 + ADC MEASUREMENT ENGINE - + 1 - 2 - 5 - 10 C MUX 0 1 2 3 AR VIN 1 - 10 + MUX AC fS - 0 1 2 3 4 5 6 7 E VREF 5/5 ... -5/5 63/12 ... -63/12 + + OFF2 OFF3 - - Figure 18. Offset cancellation in the acquisition chain The offset cancellation consists in adding or subtracting a fraction or a multiple of the reference to the signal before the ADC input. In the predefined settings only the addition or the subtraction of VREF/2 is implemented. More offsets configuration can be defined using the "advanced configuration" at the end of this document. The drawings below explain the offset concept. (AC1 – AC0) Vin ADC Vref / 2 Vref / 2 t 0 t GAIN x2 - Vref / 2 0 - Vref / 2 Figure 19. Differential signal ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 32 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING (AC1 – AC0) Vin ADC Vref Vref / 2 t 0 OFFSET 0.5 x Vref t - Vref / 2 0 Figure 20. Single ended signal, AC0 = VSS The following settings add 0.5 x VREF or subtract 0.5 x VREFfrom the signal. Function Offset 3 = 0.5 x VREF Address Data Mask 0x0E 0x06 0x7F Offset 3 = -0.5 x VREF 0x46 Table 17. Example: Adding or remove 0.5 x Vref ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 33 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 9.5.2. Application example Case 1 Input signal = VREF / 2 Input selection = AC0 - AC1. (see "input multiplexers" chapter) Offset to remove is VREF / 2. The following command must be sent to SX8722: Function Address Data Mask Offset 3 = 0.5 x VREF 0x0E 0x06 0x7F Case 2 Input signal = VREF Input selection = AC0 - AC1. (see "input multiplexers" chapter) Offset to remove is -VREF / 2. The following command must be sent to SX8722: Function ACS - Revision 4.2 ©2008 Semtech Corp. Address Data Mask Offset 3 = -0.5 x VREF 0x0E 0x46 0x7F October 2008 Page 34 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 9.6. ADC parameters 9.6.1. Overview A + PGA1 + + PGA2 - - VIN, ADC + + ADC PGA3 - - - - - + MUX 1 2 3 + 0/12 to 127/12 MEASUREMENT ENGINE C 0 AR 1 - 2 - 5 - 10 - VIN 1 - 10 + fS MUX 1 2 3 4 5 6 7 E fS 0 AC D B 5/5 ... -5/5 VREF 63/12 ... -63/12 + + OFF2 OFF3 - - Table 18 ADC in the acquisition chain The ADC parameters are mainly the resolution and acquisition speed. Detailed ADC parameters and configuration can be found in the "advanced configuration" chapter The table below gives the main configurations available using the predefined settings and their main characteristics: Name Resolution [bits] Conversion time [ms] (typ) Sampling frequency [kHz] (typ) Oversampling ratio Number of elementary conversion Comments S16 16 27.3 300 1024 8 Maximum resolution, thermal noise reduced to its minimum N16 16 6.8 1024 2 Standard 16 bits resolution F16 16 3.4 1024 1 Fastest 16 bits resolution N12 12 0.22 64 1 Standard 12 bits resolution N8 8 0.06 16 1 Standard 8 bits resolution Table 19. ADC predefined settings ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 35 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 9.6.2. ADC settings Function Address Data Mask S16 0x0C 0x7C 0x7C N16 0x3C F16 0x1C N12 0x0C N8 0x04 Table 20. ADC register settings 9.7. Measurement engine 9.7.1. Overview A D B fS + PGA2 - - VIN, ADC + + PGA3 - - - + PGA1 + ADC MEASUREMENT ENGINE - + + MUX + 63/12 ... -63/12 5/5 ... -5/5 MUX 1 2 3 VIN 0/12 to 127/12 1 - 2 - 5 - 10 C 0 AR 1 - 10 fS - 0 AC 1 2 3 4 5 6 7 E VREF + + OFF2 - OFF3 - Figure 21. Measurement engine The measurement engine manages the configuration register sets and controls registers contents. Based on these parameters it configures the ZoomingADC™, supervises post processing of the measurements, stores the results and flags the READY signal. Once enabled the configuration 1 will be applied to the ZoomingADC™ and measurement will be done until the configuration is disabled using the disable command. Note: All the predefined settings refer to configuration 1, to change other configurations simply adapt the address value. More detailed functionalities are described in “Advanced configuration” chapter. ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 36 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 9.7.2. Measurement engine settings Application Configuration 1 enabled Address Data Mask 0x02 0x01 0x01 Configuration 1 disabled 0x00 Table 21. Measurement engine settings ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 37 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 10. Default configuration The SX8722 default configuration is described in this chapter. The SX8722 default hardware configuration is as follow: 1uF Vreg capacitor connected to Vreg pin EE_SDA connected to ground 3.0 - 5.0 power supply on Vbat, 0V on GND Wheatstone bridge type sensor connected to AC0-AC1 biased through bias pin VRef = VBias = VBat Host micro controller I2C connected to SDA and SCL of the SX8722 EE_SCL EE_SDA Host micro controller GPIO connected to RESET input of the SX8722 EE_POW SX8722 VBATT VBATT GND ALRM1 BIAS ALRM2 TM ZoomingADC REF MUX AR1P AR1N AR2P AR2N CONTROL CAL RESET I2C AC7 SCL SDA SIGNAL MUX AC6 Differential AC5 AC4 AC3 AC2 AC1 MCU READY PGA SCL SDA GPIO XIN ADC OSC XOUT CKOUT AC0 SLEEP SHUT POST-PROCESS POWER VREG VMULT Figure 22. Schematic of the default configuration Note: Startup conditions Reset = ‘0’ 10.1. ZoomingADC default settings The SX8722 starts upon a power on reset and then goes into measurement mode. By default the measurement mode parameters are as follows: Differential measurement on channel AC0 - AC1, gain 1, 16 bits resolution, reference on AR1P - AR1N, no filtering, continuous measurements. The READY pin will pulse from "0" to "1" at every sample available. The host microcontroller can then read the data. ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 38 www.semtech.com SX8722 High gain acquisition for sensor interface ADVANCED COMMUNICATIONS & SENSING DATASHEET 11. Advanced configuration 11.1. Overview The advanced configuration section is entering more in depth in the SX8722 usage. In this section you will find: Measurement engine Configuration control Filtering Alarms I2C EEPROM Using the SX8722 Stand alone Calibration process Working below 3 Volts Control registers ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 39 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 11.2. Measurement engine 11.2.1. Overview The measurement engine is the interface between the configuration register sets and the ZoomingADC™. 11.2.2. Functional flowchart Measure conf n START RESET / Power on reset Configure ZoomingADC using configuration n parameters Initialization, EEPROM Load Read Enabled Configurations [SXCtrlEn] CONT bit ? START conversion Wait for YES conversion to finish Idle mode Conf 1? Conf 2 ? Conf 3? Conf 4? (Idle mode) Store intermediate values Mcounter + 1 Mcounter = NAverage? YES Measure conf 1 YES YES Measure conf 2 Compute average Store result in configuration n OUT registers Measure conf 3 Clear SINGLE bit YES Measure conf 4 Update [SXUpdated n] Set READY bit Measure conf n END Figure 23. Measurement engine flowchart The flowchart above shows the measurement engine function. It performs successively the measurements for each enabled configuration. If in one or more configurations the bit CONT is set to 1, the measurements are performed again until the CONT bit is set to 0 through the I2C interface. The engine goes out from the Idle mode every time an event occurs on the I2C interface. ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 40 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 11.3. Control registers The parameters available on these registers affect the whole SX8722 and are common to all configuration register sets. 11.3.1. SXCtrl1 - SX8722 Control register 1 Register 7 6 5 4 3 2 1 0 SXCtrl1 EE_D XTAL_D CKOUT reserved EE SLEEP SHUT CAL Table 22. Control register; address 0x00 Bit SXCtrl1 rw Reset Description 7 EE_D r x Indicates if an EEPROM was detected at startup 6 XTAL_D r x Indicates if an XTAL was detected at startup 5 CKOUT rw 0 Enabled the clock output on CKOUT pin 4 RESERVED rw 0 3 EE r 0 Is set to 1 when SX8722 loaded its configuration from the EEPROM at startup 2 SLEEP rw 0 When set to 1 his bit activates the Sleep mode of the SX8722. Setting pin SLEEP to 1 has the same effect. 1 SHUT rw 0 When set to 1 his bit activates the Shutdown mode of the SX8722. Setting pin SHUT to 1 has the same effect. 0 CAL r 0 This flag shows if the SX8722 clock has been successfully calibrated. 11.3.2. SXCtrl2 - SX8722 Control register 2 Register 7 6 5 4 3 2 1 0 SXCtrl2 reserved reserved reserved reserved AL1OnC AL1OffC AL2OnC AL2OffC Table 23. Control register 2; address 0x01 Note: Bit SXCtrl1 rw Reset Description 3 AL1OnC rw 0 Sets the logical condition for alarm 1 on (0 = OR, 1 = AND) 2 AL1OffC rw 0 Sets the logical condition for alarm 1 on (0 = OR, 1 = AND) 1 AL2OnC rw 0 Sets the logical condition for alarm 1 on (0 = OR, 1 = AND) 0 AL2OffC rw 0 Sets the logical condition for alarm 1 on (0 = OR, 1 = AND) More information about the alarms condition usage on Alarm section ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 41 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 11.3.3. SXCfgEn - Configuration enabling register Writing this register allows enabling or disabling the different configuration register sets. Note: When the configuration is set to SINGLE, the bit CONFx is cleared automatically after the measurement is done. Register 7 6 5 4 3 2 1 0 SXCfgEn reserved reserved reserved reserved CONF4 CONF3 CONF2 CONF1 Table 24. Configuration enabling register; address 0x02 11.3.4. SXUpdated - Updated configuration register The configuration update registers contain which configuration has been updated by a measurement result. Register 7 6 5 4 3 2 1 0 SXUpdated OVF4 OVF3 OVF2 OVF1 UCONF4 UCONF3 UCONF2 UCONF1 Table 25. Updated configuration register; address 0x03 These bits are set to 1 every time a measurement is done on one of the 4 configurations. When the registers are read, these bits are set back to 0 by the communication engine, the bits 4 to 7 indicates an overflow. 11.3.5. Configuration register - measurement mode This register is present in each configuration; the bits 0 & 1 are controlling the measurement mode. Register 7 CxSXCfg reserved 6 5 4 FILTER TYPE[2:0] 3 2 1 0 ALRM1 ALRM2 SINGLE CONT Table 26. Measurement mode in configuration registers; addresses 0x10, 0x30, 0x50, 0x70 The bit SINGLE is set by the user, once the measurement is done; the measurement engine clears the CONF bit of the configuration. The bit CONT is set by the user, the measurement is done continuously until this bit is cleared by the user. ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 42 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 11.4. Filtering 11.4.1. Filter types There are 2 different filtering types: 1. Average filtering. 2. Moving average filtering. The average filtering is an addition of n values divided by n, this kind of filter is useful when having a very noisy signal; the maximum average value is 256. Advantage: Reduces noise due to the high quantity of samples. Disadvantage: Takes the acquisition time of n samples to have a result. The sliding window averaging is a filter that takes the n last measurements and gives the mean value of them. Advantage: result on each acquisition. Disadvantage: limited at ten samples. Additional delay. Important note: The ADC filtering is faster, these additional filters should be used only if the number of conversion (NELCONV) and the over sampling rate (OSR) are set to their maximum. 11.4.2. Configuration register - filtering This register is present in each configuration; the bits 4 to 6 are controlling the filtering mode. Register 7 CxSXCfg reserved 6 5 4 FILTER TYPE[2:0] 3 2 1 0 ALRM1 ALRM2 SINGLE CONT Table 27. Filtering mode in configuration registers; addresses 0x10, 0x30, 0x50, 0x70 The table below shows the filter selection. Filter type [6:4] Code Mode 000 none 001 average filtering 010 moving average filtering 011 reserved Table 28. Filter selection ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 43 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 11.4.3. Filter size register This register is present in each configuration; the bits 0 to 7 are controlling the filter size. Register 7 6 5 4 CxFParam 3 2 1 0 Filter size [7:0] Table 29. Filter size registers; addresses 0x11, 0x31, 0x51, 0x71 This register contains the number of samples used for the filtering. Note that for a moving average filtering, this number is limited to 10. (Putting a higher value will be interpreted as 10.) 11.5. Alarms The SX8722 offers two alarms pins that have configurable on & off thresholds; these thresholds are on 16 bits. Each configuration register set has 2 alarms, which can be enabled, when more than one configuration is using the same alarm pin, logical function is interacting between the two alarms sources. This condition can be a logical OR (default) or a logical AND. 11.5.1. Configuration register - alarms The bits 2 & 3 enable the alarm 1 & 2 when set to 1. Register 7 6 CxSXCfg reserved 5 4 FILTER TYPE [2:0] 3 2 1 0 ALRM1 ALRM2 SINGLE CONT Table 30. Alarm enabling in configuration registers; addresses 0x10, 0x30, 0x50, 0x70 11.5.2. Alarm threshold registers Registers 7 6 5 4 3 CxAlrm1OnMsb S1ALRM1ON CxAlrm1OnLsb S1ALRM1ON CxAlrm1OffMsb S1ALRM1OFF CxAlrm1OffLsb S1ALRM1OFF CxAlrm2OnMsb S1ALRM2ON CxAlrm2OnLsb S1ALRM2ON CxAlrm2OffMsb S1ALRM2OFF CxAlrm2OffLsb S1ALRM2OFF 2 1 0 Table 31. Alarm threshold registers; addresses 0x12 to 0x19, 0x32 to 0x39, 0x52 to 0x59 and 0x72 to 0x79 ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 44 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 11.5.3. SXCtrl2 - SX8722 Control register 2 This register is common to all configurations; it sets the relationship between the different alarm sources. Register 7 6 5 4 3 2 1 0 SXCtrl2 reserved reserved reserved reserved AL1OnC AL1OffC AL2OnC AL2OffC Table 32. Alarm sources in Control register 2; address 0x02 When set to 1 the condition is AND and when set to 0 the condition is OR. The diagram below shows the interaction between alarms sources. Al1OnC Configuration 1 Alarm1 on threshold reached ? Configuration 2 Alarm1 on threshold reached ? Configuration 3 Alarm1 on threshold reached ? Configuration 4 Alarm1 on threshold reached ? Alarm1 on flag set A l1OffC Configuration 1 Alarm1 off threshold reached ? Configuration 2 Alarm1 off threshold reached ? Configuration 3 Alarm1 off threshold reached ? Configuration 4 Alarm1 off threshold reached ? Alarm1 off flag set Figure 24. Alarms sources interaction The flowchart below shows the management of the alarms flag (when at least one alarm is on). Alarm Mgmt Alarm1 on flag set ? Set Alarm 1 pin to « 1 » Alarm1 off flag set? Set Alarm 1 pin to « 0 » Alarm Mgmt End Figure 25. Alarms flag managment ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 45 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 11.6. I2C EEPROM 11.6.1. Overview The SX8722 can interface a Standard I2C EEPROM. This allows: Stand alone usage. Parameters saving by save command. Parameters restore by load command. The EE_POW pin allows the SX8722 to power the EEPROM in order to guarantee the lowest power having the EEPROM unpowered when unused. When no EEPROM is used, the EE_SDA pin must be tied to ground. 11.6.2. Schematic The schematic below shows the connections using standard I2C EEPPROM. SCL SDA EE_SCL EE_SDA GND VBATT EE_POW EEPROM SX8722 VBATT VBATT GND ALRM1 BIAS ALRM2 AR2P AR2N ZoomingADC REF MUX AR1P AR1N TM CONTROL CAL RESET I 2C AC7 SCL SDA AC5 AC4 AC3 AC2 AC1 SIGNAL MUX AC6 Differential MCU READY PGA SCL SDA GPIO XIN ADC OSC XOUT CKOUT AC0 SLEEP SHUT POST-PROCESS POWER VREG VMULT Figure 26. EEPROM connection ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 46 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 11.7. Using the SX8722 Stand alone The SX8722 can be used stand alone to monitor signals and to generate alarms on configured thresholds. Using a preprogrammed EEPROM allows the setup of these monitoring tasks. 11.7.1. Schematic The schematic below shows an example of a stand alone configuration. SCL SDA EE_SCL EE_SDA GND VBATT EE_POW EEPROM SX8722 5V VBATT GND 12V L1 L2 L3 ALRM1 BIAS ALRM2 AR2P AR2N ZoomingADC REF MUX AR1P AR1N TM CONTROL CAL RESET READY I2C AC7 SCL SDA Differential AC5 AC4 AC3 AC2 AC1 SIGNAL MUX AC6 PGA XIN ADC OSC XOUT CKOUT AC0 SLEEP SHUT POWER POST-PROCESS VREG VMULT Figure 27. Example of stand alone configuration ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 47 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 11.8. Frequency calibration process 11.8.1. Overview The SX8722 has an internal RC Oscillator working at 1.2 MHz +/- 600kHz. The calibration is optional. The main reason to calibrate the RC frequency is to fix the input impedance of the acquisition chain, function of the RC frequency. This frequency can be calibrated using 2 methods. 32.768 kHz Xtal Input of a 32.768 kHz signal on the CAL pin. 11.8.2. Using an 32.768 kHz XTAL EE_SCL EE_SDA EE_POW When the SX8722 is connected to a 32.768 XTAL between XIN & XOUT, the CAL pin must be grounded. This indicates to SX8722 that an XTAL is present and allows frequency auto-calibration at power on. SX8722 5V VBATT VBATT GND ALRM1 BIAS ALRM2 AR2P AR2N ZoomingADC REF MUX AR1P AR1N TM CONTROL CAL MCU RESET READY I2C AC7 SCL SDA GPIO SCL SDA Differential AC5 AC4 AC3 AC2 AC1 SIGNAL MUX AC6 PGA XIN ADC OSC XOUT 32’768 Hz CKOUT AC0 SLEEP SHUT POWER POST-PROCESS VREG VMULT Figure 28. Calibration : using a 32’768 Hz XTAL ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 48 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 11.8.3. Using a 32.768 kHz External clock source EE_SCL EE_SDA EE_POW The host microcontroller can at any time send a 32.768kHz signal on CAL pin, the detection of a rising edge on the this pin initiates a calibration process. When the chip is calibrated, the pin READY rises to high level. SX8722 VBATT VBATT GND ALRM1 BIAS ALRM2 AR2P AR2N ZoomingADC REF MUX AR1P AR1N TM CONTROL CAL RESET READY I2C AC7 SCL SDA 32’768 Hz GPIO MCU GPIO GPIO SCL SDA AC5 AC4 AC3 AC2 AC1 SIGNAL MUX AC6 Differential PGA XIN ADC OSC XOUT CKOUT AC0 SLEEP SHUT POWER POST-PROCESS VREG VMULT Figure 29. Calibration : using a 32’768 Hz signal NOTE: If an external EEPROM is present, the calibration value is saved in it. The tolerance signal must remain around 32.768 kHz +/- 10% ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 49 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 11.9. Working below 3 V 11.9.1. Operating range The SX8722 operating range is 5.5 Volts downto 2.4 Volts. However, below 3 Volts the SX8722 enables an internal voltage multiplier to power the ZoomingADC™. 11.9.2. Internal voltage multiplier This internal voltage multiplier is automatically enabled when the power supply goes below 3 Volts but the internal voltage multiplier requires an external capacitor between VMULT pin and ground, the value of this capacitor must be between 1 and 3 nF. 11.9.3. Schematic EE_SCL EE_SDA EE_POW The schematic below shows the capacitor connection: SX8722 Vbatt < 3V VBATT VBATT GND ALRM1 BIAS ALRM2 TM AR1N AR2P AR2N ZoomingADC REF MUX AR1P CONTROL CAL MCU RESET I2C AC7 READY GPIO SCL SCL SDA GPIO SDA Differential AC5 AC4 AC3 AC2 AC1 SIGNAL MUX AC6 PGA XIN ADC OSC XOUT CKOUT AC0 SLEEP SHUT POWER POST-PROCESS VREG VMULT 2 nF Figure 30. SX8722 working below 3V schematic ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 50 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 12. ZoomingADC 12.1. ZoomingADC Features The ZoomingADC is a complete and versatile low-power analog front-end interface typically intended for sensing applications. The key features of the ZoomingADC are: Programmable 6 to 16-bit dynamic range oversampled ADC Flexible gain programming between 0.5 and 1000 Flexible and large range offset compensation 4-channel differential or 8-channel single-ended input multiplexer 2-channel differential reference inputs Power saving modes 12.1.1. Overview fS 0 fS + PGA2 - VREF MUX 1 2 3 + - VIN, ADC + + PGA3 - - + - + PGA1 0 AR + ADC 16 bits - + - VIN + MUX AC 1 2 3 4 5 6 7 + OFF2 OFF3 - - Figure 31. ZoomingADC general functional block diagram The total acquisition chain consists of an input multiplexer, 3 programmable gain amplifier stages and an oversampled A/D converter. The reference voltage can be selected on two different channels. Two offset compensation amplifiers allow for a wide offset compensation range. The programmable gain and offset allow to zoom in on a small portion of the reference voltage defined input range. 12.2. Acquisition Chain The figure above shows the general block diagram of the acquisition chain (AC). Analog inputs can be selected among eight input channels, while reference input is selected between two differential channels. ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 51 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING The core of the zooming section is made of three differential programmable amplifiers (PGA). After selection of a combination of input and reference signals VIN and VREF, the input voltage is modulated and amplified through stages 1 to 3. Fine gain programming up to 1'000V/V is possible. In addition, the last two stages provide programmable offset. Each amplifier can be bypassed if needed. The output of the PGA stages is directly fed to the analog-to-digital converter (ADC), which converts the signal VIN,ADC into digital. Like most ADCs intended for instrumentation or sensing applications, the ZoomingADC is an over-sampled converter (See Note1). The ADC is a so-called incremental converter with bipolar operation (the ADC accepts both positive and negative input voltages). In first approximation, the ADC output result relative to full-scale (FS) delivers the quantity: OUTADC VIN , ADC ≅ FS / 2 VREF / 2 (Eq. 1) in two's complement (see Section 12.8.7 for details). The output code OUTADC is -FS/2 to +FS/2 for VIN,ADC, -VREF/2 to +VREF/2 respectively. As will be shown in section 0, VIN,ADC is related to input voltage VIN by the relationship: [V] VIN , ADC = GDTOT ⋅ VIN − GDoff TOT ⋅ VREF (Eq. 2) where GDTOT is the total PGA gain, and GDoffTOT is the total PGA offset. Note: Over-sampled converters are operated with a sampling frequency fS much higher than the input signal's Nyquist rate (typically fS is 20-1'000 times the input signal bandwidth). The sampling frequency to throughput ratio is large (typically 10-500). These converters include digital decimation filtering. They are mainly used for high resolution, and/or low-to-medium speed applications. ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 52 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 12.3. ZoomingADC Detailed block diagram INPUTS fS 1 2 3 MUX 0 AR VIN, ADC + + + PGA2 - - VREF + + - - ADC PGA3 - - + PGA1 + - VIN + MUX fS + - 0 AC 1 2 3 4 5 6 7 + OFF2 OFF3 - - Acquisition chain Register bank CxAdcReg6 CxAdcReg5 CxAdcReg4 CxDataOutMsb CxAdcReg3 CxDataOutLsb CxAdcReg2 Sampling frequency fs CxAdcReg1 Power Saving Modes PGA Enabling Nb of elementary cycles Oversampling ratio Figure 32. ZoomingADC detailed functional block diagram ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 53 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 12.4. ZoomingADC register map There are six registers in the acquisition chain (AC), namely CxZadcReg1, CxZadcReg2, CxZadcReg3, CxZadcReg4, CxZadcReg5 and CxZadcReg6. Tables below shows the mapping of control bits and functionality of these registers while Table 33 gives an overview of these six. The register map only gives a short description of the different configuration bits. More detailed information is found in subsequent sections. Registers Addresses CxZadcReg1 0x0A - 0x2A - 0x4A - 0x6A CxZadcReg2 0x0B - 0x2B - 0x4B - 0x6B CxZadcReg3 0x0C - 0x2C - 0x4C - 0x6C CxZadcReg4 0x0D - 0x2D - 0x4D - 0x6D CxZadcReg5 0x0E - 0x2E - 0x4E - 0x6E CxZadcReg6 0x0F - 0x2F - 0x4F - 0x6F Table 33. ADC settings registers Bit CxZadcReg1 rw Reset Description 7 reserved rw 0 6:5 SET_NELCONV [1:0] rw 01 Sets the number of elementary conversions 4:2 SET_OSR [2:0] rw 010 sets the oversampling rate of an elementary conversion 1 reserved rw 0 0 reserved rw 0 Table 34. CxZadcReg1; addresses 0x0A - 0x2A - 0x4A - 0x6A Bit CxZadcReg2 rw Reset Description 7:6 IB_AMP_ADC[1:0] rw 11 Bias current selection of the A/D converter 5:4 IB_AMP_PGA[1:0] rw 11 Bias current selection of the PGA stages 3:0 ENABLE[3:0] rw 0000 Enabled the different PGA stages and the ADC Table 35. CxZadcReg2; addresses 0x0B - 0x2B - 0x4B - 0x6B ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 54 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING Bit CxZadcReg3 rw Reset Description 7:6 FIN[1:0] rw 00 Sampling frequency selection 5:4 PGA2_PGA[1:0] rw 00 PGA2 stage gain selection 3:0 PGA2_OFFSET[3:0] rw 0000 PGA2 stage offset selection Table 36. CxZadcReg3; addresses 0x0C - 0x2C - 0x4C - 0x6C Bit CxZadcReg4 rw Reset 7 PGA1_GAIN rw 0 6:0 PGA3_PGA[6:0] rw Description PGA1 stage gain selection 0000000 PGA3 stage gain selection Table 37. CxZadcReg4; addresses 0x0D - 0x2D - 0x4D - 0x6D Bit CxZadcReg5 rw Reset 7 reserved r 0 6:0 PGA3_OFFSET[6:0] rw Description 0000000 PGA3 stage offset selection Table 38. CxZadcReg5; addresses 0x0E - 0x2E - 0x4E - 0x6E Bit CxZadcReg6 rw Reset Description 7 PGA1_GAIN r 0 Activity flag 6 PGA3_PGA[6:0] r 0 Select default configuration 5:1 AMUX[4:0] rw 00000 0 VMUX rw 0 Input channel configuration selector Reference channel selector Table 39. CxZadcReg6; addresses 0x0F - 0x2F - 0x4F - 0x6F ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 55 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 12.5. ZoomingADC™ registers table In table below the configuration of the peripheral registers is detailed. The system has a bank of eight 8-bit registers: six registers are used to configure the acquisition chain (CxZAdcReg1 to 6), and two registers are used to store the output code of the analog-to-digital conversion (CxDataOutMSB & LSB). Register Name Bit position 7 6 5 4 3 CxDataOutLSB OUT[7:0] CxDataOutMSB OUT[15:8] CxZadcReg1 Default values R 0 SET_NC[1:0] 01 SET_OSR[2:0] 010 2 1 0 R 0 R 0 CxZadcReg2 Default value IB_AMP_ADC[1:0] 11 IB_AMP_PGA[1:0] 11 ENABLE[3:0] 0001 CxZadcReg3 Default value FIN[1:0] 00 PGA2_GAIN[1:0] 00 PGA2_OFFSET 0000 CxZadcReg4 Default value PGA1_GAIN 0 PGA3_GAIN[6:0] 0000000 CxZadcReg5 Default value 0 PGA3_OFFSET[6:0] 0000000 CxZadcReg6 Default value R 0 R 0 AMUX[4:0] 00000 VMUX 0 Table 40. ZoomingADC registers Note Bits labelled R are reserved With: OUT: (r) digital output code of the analog-to-digital converter. (MSB = OUT[15]) SET_NELC: (rw) sets the number of elementary conversions to 2SET_NELC[1:0] . To compensate for offsets, the input signal is chopped between elementary conversions (1,2,4,8). SET_OSR: (rw) sets the over-sampling rate (OSR) of an elementary conversion to 2(3+SET_OSR[2:0]) . OSR = 8, 16, 32, ..., 512, 1024. CONT: (rw) setting this bit starts a conversion. A new conversion will automatically begin as long as the bit remains at 1. IB_AMP_ADC: (rw) sets the bias current in the ADC to 0.25 x (1+ IB_AMP_ADC[1:0]) of the normal operation current (25, 50, 75 or 100% of nominal current). To be used for low-power, low-speed operation. IB_AMP_PGA: (rw) sets the bias current in the PGAs to 0.25 x (1+ IB_AMP_PGA[1:0]) of the normal operation current (25, 50, 75 or 100% of nominal current). To be used for low-power, low-speed operation. ENABLE: (rw) enables the ADC modulator (bit 0) and the different stages of the PGAs (PGAi by bit i = 1,2,3). PGA stages that are disabled are bypassed. FIN: (rw) These bits set the sampling frequency of the acquisition chain. Expressed as a fraction of the oscillator frequency, the sampling frequency is given as: 00 ' 1/4 fRC, 01 ' 1/8 fRC, 10 ' 1/32 fRC, 11' ~8kHz. PGA1_GAIN: (rw) sets the gain of the first stage: 0 ' 1, 1 ' 10. PGA2_GAIN: (rw) sets the gain of the second stage: 00 ' 1, 01 ' 2, 10 ' 5, 11 ' 10. ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 56 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING PGA3_GAIN: (rw) sets the gain of the third stage to PGA3_GAIN[6:0] 1/12. PGA2_OFFSET: (rw) sets the offset of the second stage between -1 and +1, with increments of 0.2. The MSB gives the sign (0 positive, 1 negative); amplitude is coded with the bits PGA2_OFFSET[5:0]. PGA3_OFFSET: (rw) sets the offset of the third stage between -5.25 and +5.25, with increments of 1/12. The MSB gives the sign (0 positive, 1 negative); amplitude is coded with the bits PGA3_OFFSET[5:0]. AMUX(4:0): (rw) AMUX[4] sets the mode (0 ' 4 differential inputs, 1 ' 7 inputs with A(0) = common reference) AMUX(3) sets the sign (0 ' straight, 1' cross) AMUX[2:0] sets the channel. VMUX: (rw) sets the differential reference channel (0 ' R(1) and R(0), 1 ' R(3) and R(2)). (r = read; w = write; rw = read & write) 12.6. Input Multiplexers The ZoomingADC has eight analog inputs AC_A(0) to AC_A(7) and four reference inputs AC_R(0) to AC_R(3). Let us first define the differential input voltage VIN and reference voltage VREF respectively as: VIN = VINP − VINN [V] (Eq. 3) and: VREF = VREFP − VREFN [V] (Eq. 4) As shown in Table 41 the inputs can be configured in two ways: either as 4 differential channels (VIN1 = AC_A(1) AC_A(0),..., VIN4 = AC_A(7) - AC_A(6)), or AC_A(0) can be used as a common reference, providing 7 signal paths all referred to AC_A(0). The control word for the analog input selection is AMUX[4:0]. Notice that the bit AMUX[3] controls the sign of the input voltage. AMUX [4:0] (RegACCfg5[5:1]) VINP VINN AMUX [4:0] (RegACCfg5[5:1]) VINP VINN 00x00 00x01 00x10 00x11 AC_A(1) AC_A(3) AC_A(5) AC_A(7) AC_A(0) AC_A(2) AC_A(4) AC_A(6) 01x00 01x01 01x10 01x11 AC_A(0) AC_A(2) AC_A(4) AC_A(6) AC_A(1) AC_A(3) AC_A(5) AC_A(7) 10000 10001 10010 10011 10100 10101 10110 10111 AC_A(0) AC_A(1) AC_A(2) AC_A(3) AC_A(4) AC_A(5) AC_A(6) AC_A(7) AC_A(0) 11000 11001 11010 11011 11100 11101 11110 11111 AC_A(0) AC_A(0) AC_A(1) AC_A(2) AC_A(3) AC_A(4) AC_A(5) AC_A(6) AC_A(7) Table 41. Analog input selection ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 57 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING Similarly, the reference voltage is chosen among two differential channels (VREF1 = AC_R(1)-AC_R(0) or VREF2 = AC_R(3)-AC_R(2)) as shown in Table 42 The selection bit is VMUX. The reference inputs VREFP and VREFN (commonmode) can be up to the power supply range. VMUX (RegACCfg5[0]) VREFP VREFN 0 AC_R(1) AC_R(0) 1 AC_R(3) AC_R(2) Table 42. Analog input reference selection 12.7. Programmable Gain Amplifiers The zooming function is implemented with three programmable gain amplifiers (PGA). These are: PGA1: coarse gain tuning PGA2: medium gain and offset tuning PGA3: fine gain and offset tuning All gain and offset settings are realized with ratios of capacitors. The user has control over each PGA activation and gain, as well as the offset of stages 2 and 3. These functions are examined hereafter. 12.7.1. PGA & ADC Enabling Depending on the application objectives, the user may enable or bypass each PGA stage. This is done according to the word ENABLE and the coding given in Table 43. To reduce power dissipation, the ADC can also be inactivated while idle. Enable [3:0] Block XXX0 XXX1 ADC disabled ADC enabled XX0X XX1X PGA1 disabled PGA1 enabled X0XX X1XX PGA2 disabled PGA2 enabled 0XXX 1XXX PGA3 disabled PGA3 enabled Table 43. PGA and ADC enabling 12.7.2. PGA1 The first stage can have a buffer function (unity gain) or provide a gain of 10 (see Table 44). The voltage VD1 at the output of PGA1 is: VD1 = GD1 ⋅ VIN [V] (Eq. 5) ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 58 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING where GD1 is the gain of PGA1 (in V/V) controlled with the bit PGA1_GAIN. PGA1_GAIN PGA1 gain [V/V] 0 1 1 10 Table 44. PGA1 gain settings 12.7.3. PGA2 The second PGA has a finer gain and offset tuning capability, as shown in Table 45 and Table 46. The voltage VD2 at the output of PGA2 is given by: VD 2 = GD2 ⋅ VD1 − GDoff 2 ⋅ VREF [V] (Eq. 6) where GD2 and GDoff2 are respectively the gain and offset of PGA2 (in V/V). These are controlled with the words PGA2_GAIN[1:0] and PGA2_OFFSET[3:0]. PGA2_GAIN PGA2 gain [V/V] 00 1 01 2 10 5 11 10 Table 45. PGA2 gain settings ACS - Revision 4.2 ©2008 Semtech Corp. PGA2_OFFSET PGA2 offset [V/V] 0000 0 0001 +0.2 0010 +0.4 0011 +0.6 0100 +0.8 0101 +1 1000 -0.2 1001 -0.4 1010 -0.6 1011 -0.8 October 2008 Page 59 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING PGA2_OFFSET PGA2 offset [V/V] 1100 -1 Table 46. PGA2 offset settings 12.7.4. PGA3 The finest gain and offset tuning is performed with the third and last PGA stage, according to the following coding Tables. PGA3_GAIN[6:0] PGA3 gain [V/V] 0000000 0 0000001 1/12 (=0.083) ... ... 0000110 6/12 ... ... 0001100 12/12 0010000 16/12 ... ... 0100000 32/12 ... ... 1000000 64/12 ... ... 1111111 127/12 (=10.58) Table 47. PGA3 gain settings ACS - Revision 4.2 ©2008 Semtech Corp. PGA3_GAIN[6:0] PGA3 gain [V/V] 0000000 0 0000001 +1/12(=0.083) 0000010 +2/12 ... ... 0010000 +16/12 ... ... 0100000 +32/12 0111111 +63/12 (=+5.25) October 2008 Page 60 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING PGA3_GAIN[6:0] PGA3 gain [V/V] 1000000 0 1000001 -1/12(=-0.083) 1000010 -2/12 ... ... 1010000 -16/12 ... ... 1100000 -32/12 ... ... 1111111 -63/12(=5.25) Table 48. PGA3 offset settings The output of PGA3 is also the input of the ADC. Thus, similarly to PGA2, we find that the voltage entering the ADC is given by: VIN , ADC = GD3 ⋅VD 2 − GDoff 3 ⋅VREF [V] (Eq. 7) where GD3 and GDoff3 are respectively the gain and offset of PGA3 (in V/V). The control words are PGA3_GAIN[6:0] and PGA3_OFFSET[6:0] . To remain within the signal compliance of the PGA stages, the condition: VD1 , VD 2 < VDD [V] (Eq. 8) must be verified. Finally, combining equations Eq. 5 to Eq. 7 for the three PGA stages, the input voltage VIN,ADC of the ADC is related to VIN by: VIN , ADC = GDTOT ⋅ VIN − GDoffTOT ⋅ VREF [V] (Eq. 9) ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 61 www.semtech.com SX8722 High gain acquisition for sensor interface ADVANCED COMMUNICATIONS & SENSING DATASHEET where the total PGA gain is defined as: GDTOT = GD3 ⋅ GD2 ⋅ GD1 [V] (Eq. 10) and the total PGA offset is: GDoffTOT = GDoff 3 + GD3 ⋅ GDoff 2 [V ⁄ V] (Eq. 11) 12.8. ADC Characteristics The main performance characteristics of the ADC (resolution, conversion time, etc.) are determined by three programmable parameters: Oversampling frequency fS, over-sampling ratio OSR, and number of elementary conversions NELCONV. The setting of these parameters and the resulting performances are described hereafter. 12.8.1. Conversion Sequence A conversion is started each time the bit START or the bit DEF is set. As depicted in Figure 3, a complete analog-to-digital conversion sequence is made of a set of NELCONV elementary incremental conversions and a final quantization step. Each elementary conversion is made of (OSR+1) sampling periods TS=1/fS, i.e.: TELCONV = (OSR + 1) / f S [s] (Eq. 12) The result is the mean of the elementary conversion results. An important feature is that the elementary conversions are alternatively performed with the offset of the internal amplifiers contributing in one direction and the other to the output code. Thus, converter internal offset is eliminated if at least two elementary sequences are performed (i.e. if NELCONV = 2). A few additional clock cycles are also required to initiate and end the conversion properly. ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 62 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING TELCONV= (OSR+1)/f S Init Elementary Conversion Conversion index Offset Elementary Conversion Elementary Conversion Elementary Conversion 2 - NELCONV- 1 + N ELCONV - 1 + T CONV End Conversion Result Figure 33. Analog-to-digital conversion sequence 12.8.2. Sampling Frequency The word FIN[1:0] is used to select the sampling frequency fS (Table 49). Three sub-multiples of the internal RC-based frequency fRCEXT can be chosen. For FIN = "11", sampling frequency is about 8 kHz. Additional information on oscillators and their control can be found in the clock block documentation. FIN[1:0] Sampling frequency Fs [Hz] 00 1/4 fRC 01 1/8 fRC 10 1/32 fRC 11 1/64 fRC Table 49. Sampling frequency settings (fRC = RC-based frequency) 12.8.3. Over-Sampling Ratio The over-sampling ratio (OSR) defines the number of integration cycles per elementary conversion. Its value is set with the word SET_OSR[2:0] in power of 2 steps (see Table 49) given by: 3 + SET_OSR[2 : 0] OSR = 2 (Eq. 13) ACS - Revision 4.2 ©2008 Semtech Corp. SET_OSR[2:0] (RegACCfg[4:2]) Over-Sampling Ratio OSR [-] 000 8 001 16 October 2008 Page 63 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING SET_OSR[2:0] (RegACCfg[4:2]) Over-Sampling Ratio OSR [-] 010 32 011 64 100 128 101 256 110 512 111 1024 Table 50. Over-sampling ratio settings 12.8.4. Elementary Conversions As mentioned previously, the whole conversion sequence is made of a set of NELCONV elementary incremental conversions. This number is set with the word SET_NELC[1:0] in power of 2 steps (see Table 50) given by: SET_NELC[1 : 0] N ELCONV = 2 (Eq. 14) SET_OSR[2:0] (RegACCfg[4:2]) # of Elementary Conversion NELCONV [-] 00 1 01 2 10 4 11 8 Table 51. Number of elementary conversion As already mentioned, NELCONV must be equal or greater than 2 to reduce internal amplifier offsets. 12.8.5. Resolution The theoretical resolution of the ADC, without considering thermal noise, is given by: n = 2 ⋅ log 2 (OSR) + log 2 ( N ELCONV ) [ bits ] (Eq. 15) ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 64 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 17 Resolution - n [Bits] 15 13 11 SET_NELC= 11 10 01 00 9 7 5 000 001 010 011 100 101 110 111 SET_OSR Figure 34. Resolution vs. SET_OSR[2:0] and SET_NELC[2:0] SET_OSR [2:0] SET_NELC 00 01 10 11 000 6 7 8 9 001 8 9 10 11 010 10 11 12 13 011 12 13 14 15 100 14 15 16 16 101 16 16 16 16 110 16 16 16 16 111 16 16 16 16 (shaded area: resolution truncated to 16 bits due to output register size CxDataOutMSB + CxDataOutLSB [15:0]) Table 52. Resolution vs. SET_OSR[2:0] and SET_NELC[1:0] settings Using look-up Table 52, resolution can be set between 6 and 16 bits. Notice that, because of 16-bit register use for the ADC output, practical resolution is limited to 16 bits, i.e. n = 16. Even if the resolution is truncated to 16 bit by the output register size, it may make sense to set OSR and NELCONV to higher values in order to reduce the influence of the thermal noise in the PGA . 12.8.6. Conversion Time & Throughput As explained using Figure 3, conversion time is given by: TCONV = ( N ELCONV ⋅ (OSR + 1) + 1) / f S [s] (Eq. 16) ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 65 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING and throughput is then simply 1/TCONV. For example, consider an over-sampling ratio of 256, 2 elementary conversions, and a sampling frequency of 300 kHz (SET_OSR = "101", SET_NELC = "01", fRC = 1.2MHz, and FIN = "00"). In this case, using Table 53, the conversion time is 515 sampling periods, or 1.71ms. This corresponds to a throughput of 582Hz in continuoustime mode. The plot of figure below illustrates the classic trade-off between resolution and conversion time. SET_OSR [2:0] SET_NELC 00 01 10 11 000 10 19 37 73 001 18 35 69 137 010 34 67 133 265 011 66 131 261 521 100 130 259 517 1033 101 258 515 1029 2057 110 514 1027 2053 4105 111 1026 2051 4101 8201 Table 53. Normalized conversion time (TCONV x fS) vs. SET_OSR[2:0] and SET_NELC[1:0] (normalized to sampling period 1/fS) Resolution - n [Bits] 16.0 14.0 12.0 10.0 8.0 6.0 10 00 11 SET_NELC 01 4.0 10.0 100.0 1000.0 10000.0 Normalized Conversion Time - TCONV*fS [-] Table 54. Resolution vs. normalized conversion time for different SET_NELC[1:0] ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 66 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 12.8.7. Output Code Format The ADC output code is a 16-bit word in two's complement format (see Table 55). For input voltages outside the range, the output code is saturated to the closest full-scale value (i.e. 0x7FFF or 0x8000). For resolutions smaller than 16 bits, the nonsignificant bits are forced to the values shown in Table 56. The output code, expressed in LSBs, corresponds to: OUTADC = 216 ⋅ VIN , ADC OSR + 1 ⋅ VREF OSR [ LSB ] (Eq. 17) Recalling equation Eq. 9, this can be rewritten as: OUTADC = 216 ⋅ VIN VREF ⎛ V ⋅ ⎜⎜ GDTOT − GDoffTOT ⋅ REF VIN ⎝ ⎞ OSR + 1 ⎟⎟ ⋅ ⎠ OSR [ LSB ] (Eq. 18) where, from Eq. 10 and Eq. 11, the total PGA gain and offset are respectively: GDTOT = GD3 ⋅ GD2 ⋅ GD1 [V ⁄ V] GDoffTOT = GDoff 3 + GD3 ⋅ GDoff 2 [V ⁄ V] and: ADC Input Voltage VIN,ADC % of Full Scale (FS) Output in LSBs Output Code in Hex +2.49505 V +0.5 x FS +215-1 = 32’767 7FFF +2.49497 V ... +215-2 = 32’767 7FFE ... ... ... ... +76.145 μV ... +1 0001 0 0 0 0000 -76.145 μV ... -1 8FFF ... ... ... ... ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 67 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING ADC Input Voltage VIN,ADC % of Full Scale (FS) Output in LSBs Output Code in Hex +2.49505 V ... -215-1 = -32’767 8001 +2.49513 V -0.5 x FS -215 = -32’768 8000 Table 55. Basic ADC Relationships (example for: VREF = 5V, OSR = 512, n = 16 bits) SET_OSR[2:0] SET_NELC = 00 SET_NELC = 01 SET_NELC = 10 SET_NELC = 11 000 1000000000 100000000 10000000 1000000 001 10000000 1000000 100000 10000 010 100000 10000 1000 100 011 1000 100 10 1 100 10 1 - - 101 - - - - 110 - - - - 111 - - - - Table 56. Last forced LSBs in conversion output registers for resolution settings smaller than 16 bits (n < 16) (CxDataOutMsb[7:0] & CxDataOutLsb[7:0]) The equivalent LSB size at the input of the PGA chain is: LSB = 1 VREF OSR ⋅ ⋅ n 2 GDTOT OSR + 1 [V] (Eq. 19) Notice that the input voltage VIN,ADC of the ADC must satisfy the condition: VIN , ADC ≤ 1 OSR ⋅ (VREFP − VREFN ) ⋅ 2 OSR + 1 [V ⁄ V] (Eq. 20) ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 68 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING to remain within the ADC input range. IB_AMP_ADC [1:0] IB_AMP_PGA [1:0] 00 01 10 11 ADC Bias Current PGA Bias Current 1/4 x IADC 1/2 x IADC 3/4 x IADC IADC 37.5 75 150 300 1/4 x IADC 1/2 x IADC 3/4 x IADC IADC 00 01 10 11 Max. fS [KHz] 37.5 75 150 300 Table 57. ADC & PGA power saving modes and maximum sampling frequency 12.9. Power Saving Modes During low-speed operation, the bias current in the PGAs and ADC can be programmed to save power using the control words IB_AMP_PGA[1:0] and IB_AMP_ADC[1:0] (see Table 57). If the system is idle, the PGAs and ADC can even be disabled, thus, reducing power consumption to its minimum. This can considerably improve battery lifetime. 12.10. Input impedance The PGAs of the ZoomingADC are a switched capacitor based blocks (see Switched Capacitor Principle chapter). This means that it does not use resistors to fix gains, but capacitors and switches. This has important implications on the nature of the input impedance of the block. Using switched capacitors is the reason why, while a conversion is done, the input impedance on the selected channel of the PGAs is inversely proportional to the sampling frequency fs and to stage gain as given in Equation 21. Z in ≥ 768 ⋅109 ΩHz f s ⋅ gain [ Ohm ] (Eq. 21) The input impedance observed is the input impedance of the first PGA stage that is enabled or the input impedance of the ADC if all three stages are disabled. PGA1 (with a gain of 10), PGA2 (with a gain of 10) and PGA3 (with a gain of 10) each have a minimum input impedance of 256 kOhm at fs = 300 kHz. Larger input impedance can be obtained by reducing the gain and/or by reducing the sampling frequency. Therefore, with a gain of 1 and a sampling frequency of 75 kHz, Zin > 10.2 MOhm. The input impedance on channels that are not selected is very high (>100MOhm). ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 69 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 12.11. Switched Capacitor Principle Basically, a switched capacitor is a way to emulate a resistor by using a capacitor. The capacitors are much easier to realize on CMOS technologies and they show a very good matching precision. V1 V1 V2 f f V2 R Figure 35. The Switched Capacitor Principle A resistor is characterized by the current that flows through it (positive current leaves node V1): I= V1 − V2 R [A] (Eq. 22) One can verify that the mean current leaving node V1 with a capacitor switched at frequency f is: I = (V 1 − V 2 ) ⋅ f ⋅ C [A] (Eq. 23) Therefore as a mean value, the switched capacitor 1/ (f x C) is equivalent to a resistor. It is important to consider that this is only a mean value. If the current is not integrated (low impedance source), the impedance is infinite during the whole time but the transition. What does it mean for the ZoomingADC? If the fs clock is reduced, the mean impedance is increased. By dividing the fs clock by a factor 10, the impedance is increased by a factor 10. One can reduce the capacitor that is switched by using an amplifier set to its minimal gain. In particular if PGA1 is used with gain 1, its mean impedance is 10x bigger than when it is used with gain 10. Current integration Sensor impedence V1 ZoomingADC (model) f f V2 Sensor Node Capacitance C Figure 36. The Switched Capacitor Principle One can increase the effective impedance by increasing the electrical bandwidth of the sensor node so that the switching current is absorbed through the sensor before the switching period is over. Measuring the sensor node will show short voltage spikes at the frequency fs, but these will not influence the measurement. Whereas if the bandwidth of the node is ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 70 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING lower, no spikes will arise, but a small offset can be generated by the integration of the charges generated by the switched capacitors, this corresponds to the mean impedance effect. Note: One can increase the mean input impedance of the ZoomingADC by lowering the acquisition clock fs. One can increase the mean input impedance of the ZoomingADC by decreasing the gain of the first enabled amplifier. One can increase the effective input impedance of the ZoomingADC by having a source with a high electrical bandwidth (sensor electrical bandwidth much higher than fs). 12.12. PGA Settling or Input Channel Modifications PGAs are reset after each writing operation to registers CxZadcReg1-5. Similarly, input channels are switched after modifications of AMUX[4:0] or VMUX. To ensure precise conversion, the ADC must be started after a PGA or inputs common-mode stabilization delay. This is done by writing bit START several cycles after PGA settings modification or channel switching. Delay between PGA start or input channel switching and ADC start should be equivalent to OSR (between 8 and 1024) number of cycles. This delay does not apply to conversions made without the PGAs. If the ADC is not settled within the specified period, there is most probably an input impedance problem (see previous section). 12.13. PGA Gain & Offset, Linearity and Noise Hereafter are a few design guidelines that should be taken into account when using the ZoomingADC : 1. Keep in mind that increasing the overall PGA gain, or "zooming" coefficient, improves linearity but degrades noise performance. 2. Use the minimum number of PGA stages necessary to produce the desired gain ("zooming") and offset. Bypass unnecessary PGAs. 3. Put most gain on PGA3 and use PGA2 and PGA1 only if necessary. 4. PGA3 should be always ON for best linearity. 5. For low-noise applications where power consumption is not a primary concern, maintain the largest bias currents in the PGAs and in the ADC; i.e. set IB_AMP_PGA[1:0] = IB_AMP_ADC[1:0] = '11'. 6. For lowest output offset error at the output of the ADC, bypass PGA2 and PGA3. Indeed, PGA2 and PGA3 typically introduce an offset of about 5 to 10 LSB (16 bit) at their output. Note, however, that the ADC output offset is easily calibrated out by software. 12.14. Power Reduction The ZoomingADC is particularly well suited for low-power applications. When very low power consumption is of primary concern, such as in battery operated systems, several parameters can be used to reduce power consumption as follows: 1. Operate the acquisition chain with a reduced supply voltage VBATT. 2. Disable the PGAs which are not used during analog-to-digital conversion with ENABLE[3:0]. 3. Disable all PGAs and the ADC when the system is idle and no conversion is performed. 4. Use lower bias currents in the PGAs and the ADC using the control words IB_AMP_PGA[1:0] and IB_AMP_ADC[1:0]. 2 [V ] 5. Reduce sampling frequency. ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 71 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING Finally, remember that power reduction is typically traded off with reduced linearity, larger noise and slower maximum sampling speed. 12.15. Noise Ideally, a constant input voltage VIN should result in a constant output code. However, because of circuit noise, the output code may vary for a fixed input voltage. Thus, a statistical analysis on the output code of 1200 conversions for a constant input voltage was performed to derive the equivalent noise levels of PGA1, PGA2, and PGA3. The extracted rms output noise of PGA1, 2, and 3 are given in Table 58: standard output deviation and output rms noise voltage. Figure 37 shows the distribution for the ADC alone (PGA1, 2, and 3 bypassed). Quantization noise is dominant in this case, and, thus, the ADC thermal noise is below 16 bits. The simple noise model of Figure 38 is used to estimate the equivalent input referred rms noise VN,IN of the acquisition chain in the model of Figure 39. This is given by the relationship: 2 VN , IN 2 2 ⎞ ⎞ ⎛ ⎛ VN 1 ⎞ ⎛ VN 2 VN 3 ⎟ ⎟⎟ + ⎜⎜ ⎜⎜ ⎟⎟ + ⎜⎜ GD1 ⎠ ⎝ GD1 ⋅ GD2 ⎠ ⎝ GD1 ⋅ GD2 ⋅ GD3 ⎟⎠ ⎝ = (OSR ⋅ N ELCONV ) 2 [V 2 rms ] (Eq. 24) where VN1, VN2, and VN3 are the output rms noise figures of Table 58, GD1, GD2, and GD3 are the PGA gains of stages 1 to 3 respectively. As shown in this equation, noise can be reduced by increasing OSR and NELCONV (increases the ADC averaging effect, but reduces noise). Parameter PGA1 PGA2 PGA3 Standard deviation at ADC output (LSB) 0.85 1.4 1.5 Output RMS noise(uV) 205 x (VN1) 340 x (VN2) 365 x (VN3) Table 58. PGA Noise Measurements (n = 16 bits, OSR = 512, NELCONV = 2, VREF = 5 V) Occurences [% of total samples] 80 60 40 20 0 -5 -4 -3 -2 -1 0 1 2 3 4 5 Output Code Deviation From Mean Value [LSB] Figure 37. ADC Noise (PGA1, 2 & 3 Bypassed, OSR = 512, NELCONV = 2) ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 72 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING PGA1 PGA2 VN1 VN2 GD1 fs PGA3 VN3 GD2 GD3 ADC Figure 38. Simple Noise Model for PGAs and ADC PGA1 VN,IN PGA2 VN1 GD1 fs PGA3 VN2 GD2 VN3 GD3 ADC Figure 39. Total Input Referred Noise As an example, consider the system where: GD2 = 10 (GD1 = 1; PGA3 bypassed), OSR = 512, NELCONV = 2, VREF = 5 V. In this case, the noise contribution VN1 of PGA1 is dominant over that of PGA2. Using Equation 24, we get: VN,IN = 6.4 µV (rms) at the input of the acquisition chain, or, equivalently, 0.85 LSB at the output of the ADC. Considering 0.2 V (rms) maximum signal amplitude, the signal-to-noise ratio is 90dB. Noise can also be reduced by the additional average filters implemented in the Measurement Engine. These filters are described in section 11.4 Filtering. By making an average on a number of subsequent measurements, the apparent noise is reduced the square root of the number of measurement used to make the average. 12.16. Gain Error and Offset Error Gain error is defined as the amount of deviation between the ideal transfer function (theoretical Equation 18) and the measured transfer function (with the offset error removed). The actual gain of the different stages can vary depending on the fabrication tolerances of the different elements. Although these tolerances are specified to a maximum of +/-3%, they will be most of the time around 0.5%. Moreover, the tolerances between the different stages are not correlated and the probability to get the maximal error in the same direction in all stages is very low. Finally, these gain errors can be calibrated by the software at the same time with the gain errors of the sensor for instance. Figure 40 shows gain error drift vs. temperature for different PGA gains. The curves are expressed in % of Full-Scale Range (FSR) normalized to 25°C. ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 73 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING Offset error is defined as the output code error for a zero volt input (ideally, output code = 0). The offset of the ADC and the PGA1 stage are completely suppressed if NELCONV > 1. The measured offset drift vs. temperature curves for different PGA gains are depicted in Figure 41. The output offset error, expressed in LSB for 16-bit setting, is normalized to 25°C. Notice that if the ADC is used alone, the output offset error is below +/-1 LSB and has no drift. 100 Output Offset Error [LSB] Gain Error [% of FSR] 0.2 0.1 0.0 -0.1 1 5 20 100 -0.2 -0.3 1 5 20 100 80 60 40 20 0 -20 -40 -0.4 -50 -25 0 25 50 75 -50 100 Figure 40. Gain Error vs. Temperature for Different PGA Gains October 2008 0 25 50 75 100 Temperature [°C] Temperature [°C] ACS - Revision 4.2 ©2008 Semtech Corp. -25 Figure 41. Offset Error vs. Temperature for Different PGA Gains Page 74 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 13. Typical performances 13.1. Current consumption SX8722 mean current consumption in active mode is around 200 [µA], without enabled PGA. The value of the gain of de PGA can have a negligible influence on consumption in active mode. Additional consumption depends on the active PGA and on the bias current parameter. Current for each amplifier in [uA] IPGA1 IPGA2 IPGA3 bias 25 % 50 40 50 bias 50 % 95 75 98 bias 75 % 140 110 145 bias 100 % 185 145 190 Table 59. PGA current consumption Example 1 : Bias current 25% PGA1: enabled PGA2: enabled PGA3: enabled SX8722 measured current consumption: ~330 µA Example 2 : Bias current 100% PGA1: enabled PGA2: enabled PGA3: enabled SX8722 measured current consumption: ~710 µA ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 75 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 13.2. ZoomingADC 13.2.1. Integral non-linearity ADC without PGA -40°C 25°C 500 1000 1500 Vin [mV] 2000 2500 10 8 6 4 2 0 -2 -4 -6 -8 -10 INL[LSB] 10 8 6 4 2 0 -2 -4 -6 -8 -10 0 PGA1 off; PGA2 off; PGA3 off; set_osr = 7, set_nelconv = 3, Vbat=5V, Vref=5V, Vcommon=0V PGA1 off; PGA2 off; PGA3 off; set_osr = 7; set_nelconv = 3; Vbat = 5V; Vref = 5V; Vcommon = 0V INL[LSB] INL[LSB] PGA1 off; PGA2 off; PGA3 off; set_osr = 7, set_nelconv = 3, Vbat=5V, Vref=5V, Vcommon=0V 85°C 0 500 1000 1500 Vin [mV] 2000 10 8 6 4 2 0 -2 -4 -6 -8 -10 0 2500 500 1000 1500 Vin [mV] 2000 2500 2000 2500 200 250 Gain 1 -40°C 25°C PGA1 off; PGA2 off; PGA3 = 1; set_osr = 7; set_nelconv = 3, VBAT = 5V; Vref = 5V; Vcommon = 0V PGA1 off; PGA2 off; PGA3 = 1; set_osr = 7; set_nelconv = 3, Vbat = 5V; Vref = 5V; Vcommon = 0V 10 10 8 8 6 6 4 2 4 2 INL[LSB] 10 8 6 4 2 0 -2 -4 -6 -8 -10 INL[LSB] INL[LSB] PGA1 off; PGA2 off; PGA3 = 1; set_osr = 7; set_nelconv = 3, Vbat = 5V; Vref = 5V; Vcommon = 0V 85°C 0 -2 -4 0 500 1000 1500 Vin [mV] 2000 0 -2 -4 -6 -8 -6 -8 -10 -10 0 2500 500 1000 1500 Vin [mV] 2000 2500 0 500 1000 1500 Vin [mV] Gain 10 -40°C 25°C PGA1 off; PGA2 off; PGA3 = 10; set_osr = 7; set_nelconv = 3; Vbat = 5V; Vref = 5V; Vcommon = 0V 0 50 100 150 200 10 10 8 6 4 2 0 -2 -4 -6 -8 -10 250 Vin [mV] ACS - Revision 4.2 ©2008 Semtech Corp. PGA1 off; PGA2 off; PGA3 = 10; set_osr = 7; set_nelconv = 3; VBAT = 5V; Vref = 5V; Vcommon = 0V 8 6 4 INL[LSB] 10 8 6 4 2 0 -2 -4 -6 -8 -10 INL[LSB] INL[LSB] PGA1 off; PGA2 off; PGA3 = 10; set_osr = 7; set_nelconv = 3; VBAT = 5V; Vref = 5V; Vcommon = 0V 85°C -2 -4 -6 -8 -10 0 50 100 150 Vin [mV] October 2008 2 0 Page 76 200 250 0 50 100 150 Vin [mV] www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING Gain 100 -40°C 25°C PGA1 off; PGA2 = 10; PGA3 = 10; set_osr = 7; set_nelconv = 3; VBAT = 5V; Vref = 5V; Vcommon = 0V PGA1 off; PGA2 = 10; PGA3 = 10; set_osr = 7; set_nelconv = 3; Vbat = 5V; Vref = 5V; Vcommon = 0V PGA1 = 10; PGA2 off; PGA3 = 10; set_osr = 7; set_nelconv = 3; Vbat=5V; Vref = 5V; Vcommon = 0V 10 10 8 6 8 6 8 6 4 4 4 2 0 2 0 -4 -2 -4 -6 -6 -8 -8 -10 -2 -10 0 5 10 15 20 INL[LSB] 10 INL[LSB] INL[LSB] 85°C -2 -4 -6 -8 -10 0 25 2 0 5 10 15 20 25 0 Vin [mV] Vin [mV] 5 10 15 20 25 Vin [mV] Figure 42. INL over temperature for different gains 13.2.2. Differential non-linearity DNL: significantly lower than one LSB Figure 43. ADC differential non-linearity ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 77 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 13.2.3. Resolution vs acquisition time resolution [bits] resolution vs acquisition time 18 16 14 12 10 8 6 4 2 0 10 100 1000 10000 100000 time [us] Figure 44. ADC resolution vs Acquisition time ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 78 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 14. Register Memory Map and Description 14.1. Memory Map The table below describes the register/memory map that can be accessed through the I2C interface. It indicates the register name, register address and the register contents. Adress Register Bit Description SX8722 General Configuration 0x00 SXCtrl1 8 Configuration register of the SX8722 0x01 SXCtrl2 8 Configuration register of the SX8722 0x02 SXCfgEn 8 Configuration enable register,enables configurations from 1 to 4 0x03 SXUpdated 8 Updated value on configuration registers 0x04 SXRcFrequ1 8 Fine RC adjustment register 0x05 SXRcFrequ2 8 Coarse RC adjustment register 0x06 SXTest 8 Test purpose register puts SX8722 in remote mode 0x07 SXAI1 8 Reserved 0x08 SXAI2 8 Reserved 0x09 SXReserved1 8 Reserved Configuration 1 0x0A C1ZAdcReg1 8 ZoomingADC Register 01 0x0B C1ZAdcReg2 8 ZoomingADC Register 02 0x0C C1ZAdcReg3 8 ZoomingADC Register 03 0x0D C1ZAdcReg4 8 ZoomingADC Register 04 0x0E C1ZAdcReg5 8 ZoomingADC Register 05 0x0F C1ZAdcReg6 8 ZoomingADC Register 06 0x10 C1SXCfg 8 SX configurations related to this set 0x11 C1FParam 8 Filter size 0x12 C1Alrm1OnMsb 16 Alarm 1 "ON" threshold 0x13 C1Alrm1OnLsb 0x14 C1Alrm1OffMsb 16 Alarm 1 "OFF" threshold 0x15 C1Alrm1OffLsb 0x16 C1Alrm2OnMsb 16 Alarm 2 "ON" threshold 0x17 C1Alrm2OnLsb ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 79 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING Adress Register 0x18 C1Alrm2OffMsb 0x19 C1Alrm2OffLsb 0x1A C1DataOutLsb 0x1B C1DataOutMsb Bit Description 16 Alarm 2 "OFF" threshold 16 Configuration 1 data out Configuration 2 0x2A C2ZAdcReg1 8 ZoomingADC Register 01 0x2B C2ZAdcReg2 8 ZoomingADC Register 02 0x2C C2ZAdcReg3 8 ZoomingADC Register 03 0x2D C2ZAdcReg4 8 ZoomingADC Register 04 0x2E C2ZAdcReg5 8 ZoomingADC Register 05 0x2F C2ZAdcReg6 8 ZoomingADC Register 06 0x30 C2SXCfg 8 SX configurations related to this set 0x31 C2FParam 8 Filter size 0x32 C2Alrm1OnMsb 16 Alarm 1 "ON" threshold 0x33 C2Alrm1OnLsb 0x34 C2Alrm1OffMsb 16 Alarm 1 "OFF" threshold 0x35 C2Alrm1OffLsb 0x36 C2Alrm2OnMsb 16 Alarm 2 "ON" threshold 0x37 C2Alrm2OnLsb 0x38 C2Alrm2OffMsb 16 Alarm 2 "OFF" threshold 0x39 C2Alrm2OffLsb 0x3A C2DataOutMsb 16 Configuration 2 data out 0x3B C2DataOutLsb Configuration 3 0x4A C3ZAdcReg1 8 ZoomingADC Register 01 0x4B C3ZAdcReg2 8 ZoomingADC Register 02 0x4C C3ZAdcReg3 8 ZoomingADC Register 03 0x4D C3ZAdcReg4 8 ZoomingADC Register 04 0x4E C3ZAdcReg5 8 ZoomingADC Register 05 0x4F C3ZAdcReg6 8 ZoomingADC Register 06 0x50 C3SXCfg 8 SX configurations related to this set 0x51 C3FParam 8 Filter size ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 80 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING Adress Register 0x52 C3Alrm1OnMsb 0x53 C3Alrm1OnLsb 0x54 C3Alrm1OffMsb 0x55 C3Alrm1OffLsb 0x56 C3Alrm2OnMsb 0x57 C3Alrm2OnLsb 0x58 C3Alrm2OffMsb 0x59 C3Alrm2OffLsb 0x5A C3DataOutMsb 0x5B C3DataOutLsb Bit Description 16 Alarm 1 "ON" threshold 16 Alarm 1 "OFF" threshold 16 Alarm 2 "ON" threshold 16 Alarm 2 "OFF" threshold 16 Configuration 3 data out Configuration 4 0x6A C4ZAdcReg1 8 ZoomingADC Register 01 0x6B C4ZAdcReg2 8 ZoomingADC Register 02 0x6C C4ZAdcReg3 8 ZoomingADC Register 03 0x6D C4ZAdcReg4 8 ZoomingADC Register 04 0x6E C4ZAdcReg5 8 ZoomingADC Register 05 0x6F C4ZAdcReg6 8 ZoomingADC Register 06 0x70 C4SXCfg 8 SX configurations related to this set 0x71 C4FParam 8 Filter size 0x72 C4Alrm1OnMsb 16 Alarm 1 "ON" threshold 0x73 C4Alrm1OnLsb 0x74 C4Alrm1OffMsb 16 Alarm 1 "OFF" threshold 0x75 C4Alrm1OffLsb 0x76 C4Alrm2OnMsb 16 Alarm 2 "ON" threshold 0x77 C4Alrm2OnLsb 0x78 C4Alrm2OffMsb 16 Alarm 2 "OFF" threshold 0x79 C4Alrm2OffLsb 0x7A C4DataOutMsb 16 Configuration 4 data out 0x7B C4DataOutLsb ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 81 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 14.2. Register description The register descriptions are presented here in ascending order of Register Address. Some registers carry several individual data fields of various sizes; from single-bit values (e.g. flags), upwards. Some data fields are spread across multiple registers. Unused bits are 'don't care' and writing either 0 or 1 will not affect any function of the device. After power on reset the registers will have the values indicated in the tables "Reset" column. 14.2.1. SX8722 general configuration Bit Bit Name Mode Reset Description 7 EE_D r x Indicates if an EEPROM was detected at startup 6 XTAL_D r x Indicates if an XTAL was detected at startup 5 CKOUT rw 0 Enabled the clock output on CKOUT pin 4 RESERVED rw 0 3 EE r 0 Is set to 1 when SX8722 loaded its configuration from the EEPROM at startup. 2 SLEEP rw 0 When set to 1 his bit activates the Sleep mode of the SX8722. Setting pin SLEEP to 1 has the same effect. 1 SHUT rw 0 When set to 1 his bit activates the Shutdown mode of the SX8722. Setting pin SHUT to 1 has the same effect. 0 CAL r 0 This flag shows if the SX8722 clock has been successfully calibrated. Table 60. SXCtrl1 (0x00) Bit Bit name Mode Reset Description 7:4 reserved r x 3 AL1OnC rw 0 Sets the logical condition for alarm 1 on (0 = OR, 1 = AND) 2 AL1OffC rw 0 Sets the logical condition for alarm 1 off (0 = OR, 1 = AND) 1 AL2OnC rw 0 Sets the logical condition for alarm 2 on (0 = OR, 1 = AND) 0 AL2OffC rw 0 Sets the logical condition for alarm 2 off (0 = OR, 1 = AND) Table 61. SXCtrl2 (0x01) Bit Name Mode Reset Description 7:4 reserved r x 3 CONF4 rw 0 Configuration 4 enabling 2 CONF3 rw 0 Configuration 3 enabling 1 CONF2 rw 0 Configuration 2 enabling ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 82 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING Bit 0 Name CONF1 Mode Reset rw 0 Description Configuration 1 enabling Table 62. SXCfgEn (0x02) Bit Name Mode Reset Description 7 OVF4 r 0 Overflow on configuration 4 6 OVF3 r 0 Overflow on configuration 3 5 OVF2 r 0 Overflow on configuration 2 4 OVF1 r 0 Overflow on configuration 1 3 UCONF4 r 0 Indicates that configuration 4 has been updated by a measurement result. 2 UCONF3 r 0 Indicates that configuration 3 has been updated by a measurement result. 1 UCONF2 r 0 Indicates that configuration 2 has been updated by a measurement result. 0 UCONF1 r 0 Indicates that configuration 1 has been updated by a measurement result. Table 63. SXUpdated (0x03) Bit 7:0 Name Fine RC Mode Reset rw x Description Fine RC adjustment. Set by the calibration procedure. Table 64. SXRcFrequ1 (0x04) Bit 7:0 Name Coarse RC Mode Reset rw x Description Coarse RC adjustment. Set by the calibration procedure. Table 65. SXRcFrequ2 (0x05) ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 83 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 14.2.2. Configuration 1 registers Bit 7 Name reserved Mode Reset r x Description 6:5 SET_NELC rw 01 Sets the number of elementary conversion to 2SET_NELC[1:0]. To compensate for offset the signal is chopped between elementary conversion. 4:2 SET_OSR rw 010 Sets the ADC over-sampling rate of an elementary conversion to 23+SET_OSR[2:0]. 1 reserved r x 0 reserved r x Table 66. C1ZAdcReg1 (0x0A) Bit Name Mode Reset Description 7:6 IB_AMP_ADC[1:0] rw 11 Bias current selection of the A/D converter. 5:4 IB_AMP_PGA[1:0] rw 11 Bias current selection of the PGA stages. 3:0 ENABLE[3:0] rw 0000 Enables the different PGA stages and ADC. XXX1 - ADC enable XX1X - PGA3 enable X1XX - PGA2 enable 1XXX - PGA1 enable Table 67. C1ZAdcReg2 (0x0B) Bit Name Mode Reset Description 7:6 FIN[1:0] rw 00 Sampling frequency selection 5:4 PGA2_GAIN[1:0] rw 00 PGA2 stage gain selection 3:0 PGA2_OFFSET[3:0] rw 0000 PGA2 stage offset selection Table 68. C1ZAdcReg3 (0x0C) Bit 7 6:0 Name Mode Reset Description PGA1_GAIN rw 0 PGA1 stage gain selection PGA3_GAIN[6:0] rw 0000000 PGA3 stage gain selection Table 69. C1ZAdcReg4 (0x0D) ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 84 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING Bit 7 6:0 Name Mode reserved r PGA3_OFFSET[6:0] rw Reset 0 0000000 Description Unused PGA3 stage offset selection Table 70. C1ZAdcReg5 (0x0E) Bit Name Mode Reset 7 reserved r 6 reserved r AMUX[4:0] rw 00000 VMUX rw 0 5:1 0 Description Input channel configuration selector Reference channel selector Table 71. C1ZAdcReg6 (0x0F) Bit 7 6:4 Name Mode reserved r FILTER TYPE [2:0] r Reset Description Filter selection selection 000 - none 001 - average filtering 010 - moving average filtering 011 - reserved 3 ALRM1 rw Alarm 1 enable 2 ALRM2 rw Alarm 2 enable 1 SINGLE rw Configuration 1 in single acquisition mode 0 CONT rw Configuration 1 in continuous acquisition mode Table 72. C1SXCfg (0x10) Bit 7:0 Name SIZE Mode rw Reset Description 00000000 Filter size. Limited to 10 for a moving average filter. Table 73. C1FParam (0x11) ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 85 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING Bit Name 7:0 Mode Reset rw Description 00000000 Alarm 1 threshold MSB for configuration 1 Table 74. C1Alrm1OnMsb (0x12) Bit Name 7:0 Mode Reset rw Description 00000000 Alarm 1 threshold LSB for configuration 1 Table 75. C1Alrm1OnLsb (0x13) Bit Name 7:0 Mode Reset rw Description 00000000 Alarm 1 threshold MSB for configuration 1 Table 76. C1Alrm1OffMsb (0x14) Bit Name 7:0 Mode Reset rw Description 00000000 Alarm 1 threshold LSB for configuration 1 Table 77. C1Alrm1OffLsb (0x15) Bit Name 7:0 Mode Reset rw Description 00000000 Alarm 2 threshold MSB for configuration 1 Table 78. C1Alrm1OnMsb (0x16) Bit Name 7:0 Mode Reset rw Description 00000000 Alarm 2 threshold LSB for configuration 1 Table 79. C1Alrm1OnLsb (0x17) Bit Name 7:0 ACS - Revision 4.2 ©2008 Semtech Corp. Mode rw October 2008 Reset Description 00000000 Alarm 2 threshold MSB for configuration 1 Page 86 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING Table 80 C1Alrm1OffMsb (0x18) Bit Name 7:0 Mode Reset rw Description 00000000 Alarm 2 threshold LSB for configuration 1 Table 81. C1Alrm1OffLsb (0x19) Bit Name 7:0 Mode Reset r Description 00000000 Configuration 1 data out MSB Table 82. C1DataOutMsb (0x1A) Bit Name 7:0 Mode Reset r Description 00000000 Configuration 1 data out LSB Table 83. C1DataOutLsb (0x1B) ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 87 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 14.2.3. Configuration 2 registers Bit 7 Name reserved Mode Reset r x Description 6:5 SET_NELC rw 01 Sets the number of elementary conversion to 2SET_NELC[1:0]. To compensate for offset the signal is chopped between elementary conversion. 4:2 SET_OSR rw 010 Sets the ADC over-sampling rate of an elementary conversion to 23+SET_OSR[2:0]. 1 reserved r x 0 reserved r x Table 84. C2ZAdcReg1 (0x2A) Bit Name Mode Reset Description 7:6 IB_AMP_ADC[1:0] rw 11 Bias current selection of the A/D converter. 5:4 IB_AMP_PGA[1:0] rw 11 Bias current selection of the PGA stages. 3:0 ENABLE[3:0] rw 0000 Enables the different PGA stages and ADC. XXX1 - ADC enable XX1X - PGA3 enable X1XX - PGA2 enable 1XXX - PGA1 enable Table 85. C2ZAdcReg2 (0x2B) Bit Name Mode Reset Description 7:6 FIN[1:0] rw 00 Sampling frequency selection 5:4 PGA2_GAIN[1:0] rw 00 PGA2 stage gain selection 3:0 PGA2_OFFSET[3:0] rw 0000 PGA2 stage offset selection Table 86. C2ZAdcReg3 (0x2C) Bit 7 6:0 Name Mode Reset Description PGA1_GAIN rw 0 PGA1 stage gain selection PGA3_GAIN[6:0] rw 0000000 PGA3 stage gain selection Table 87. C2ZAdcReg4 (0x2D) ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 88 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING Bit 7 6:0 Name Mode reserved r PGA3_OFFSET[6:0] rw Reset 0 0000000 Description Unused PGA3 stage offset selection Table 88. C2ZAdcReg5 (0x2E) Bit Name Mode Reset 7 reserved r 6 reserved r AMUX[4:0] rw 00000 VMUX rw 0 5:1 0 Description Input channel configuration selector Reference channel selector Table 89. C2ZAdcReg6 (0x2F) Bit 7 6:4 Name Mode reserved r FILTER TYPE [2:0] r Reset Description Filter selection selection 000 - none 001 - average filtering 010 - moving average filtering 011 - reserved 3 ALRM1 rw Alarm 1 enable 2 ALRM2 rw Alarm 2 enable 1 SINGLE rw Configuration 1 in single acquisition mode 0 CONT rw Configuration 1 in continuous acquisition mode Table 90. C2SXCfg (0x30) Bit 7:0 Name SIZE Mode rw Reset Description 00000000 Filter size. Limited to 10 for a moving average filter. Table 91. C2FParam (0x31) ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 89 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING Bit Name 7:0 Mode Reset rw Description 00000000 Alarm 1 threshold MSB for configuration 2 Table 92. C2Alrm1OnMsb (0x32) Bit Name 7:0 Mode Reset rw Description 00000000 Alarm 1 threshold LSB for configuration 2 Table 93. C2Alrm1OnLsb (0x33) Bit Name 7:0 Mode Reset rw Description 00000000 Alarm 1 threshold MSB for configuration 2 Table 94 C2Alrm1OffMsb (0x34) Bit Name 7:0 Mode Reset rw Description 00000000 Alarm 1 threshold LSB for configuration 2 Table 95. C2Alrm1OffLsb (0x35) Bit Name 7:0 Mode Reset rw Description 00000000 Alarm 2 threshold MSB for configuration 2 Table 96. C2Alrm1OnMsb (0x36) Bit Name 7:0 Mode Reset rw Description 00000000 Alarm 2 threshold LSB for configuration 2 Table 97. C2Alrm1OnLsb (0x37) ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 90 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING Bit Name 7:0 Mode Reset rw Description 00000000 Alarm 2 threshold MSB for configuration 2 Table 98 C2Alrm1OffMsb (0x38) Bit Name 7:0 Mode Reset rw Description 00000000 Alarm 2 threshold LSB for configuration 2 Table 99. C2Alrm1OffLsb (0x39) Bit Name 7:0 Mode r Reset Description 00000000 Configuration 2 data out MSB Table 100. C2DataOutMsb (0x3A) Bit Name 7:0 Mode r Reset Description 00000000 Configuration 2 data out LSB Table 101. C2DataOutLsb (0x3B) ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 91 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 14.2.4. Configuration 3 registers Bit 7 Name reserved Mode Reset r x Description 6:5 SET_NELC rw 01 Sets the number of elementary conversion to 2SET_NELC[1:0]. To compensate for offset the signal is chopped between elementary conversion. 4:2 SET_OSR rw 010 Sets the ADC over-sampling rate of an elementary conversion to 23+SET_OSR[2:0]. 1 reserved r x 0 reserved r x Table 102. C3ZAdcReg1 (0x4A) Bit Name Mode Reset Description 7:6 IB_AMP_ADC[1:0] rw 11 Bias current selection of the A/D converter. 5:4 IB_AMP_PGA[1:0] rw 11 Bias current selection of the PGA stages. 3:0 ENABLE[3:0] rw 0000 Enables the different PGA stages and ADC. XXX1 - ADC enable XX1X - PGA3 enable X1XX - PGA2 enable 1XXX - PGA1 enable Table 103. C3ZAdcReg2 (0x4B) Bit Name Mode Reset Description 7:6 FIN[1:0] rw 00 Sampling frequency selection 5:4 PGA2_GAIN[1:0] rw 00 PGA2 stage gain selection 3:0 PGA2_OFFSET[3:0] rw 0000 PGA2 stage offset selection Table 104. C3ZAdcReg3 (0x4C) Bit 7 6:0 Name Mode Reset Description PGA1_GAIN rw 0 PGA1 stage gain selection PGA3_GAIN[6:0] rw 0000000 PGA3 stage gain selection Table 105. C3ZAdcReg4 (0x4D) ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 92 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING Bit 7 6:0 Name Mode reserved r PGA3_OFFSET[6:0] rw Reset 0 0000000 Description Unused PGA3 stage offset selection Table 106. C3ZAdcReg5 (0x4E) Bit Name Mode Reset 7 reserved r 6 reserved r AMUX[4:0] rw 00000 VMUX rw 0 5:1 0 Description Input channel configuration selector Reference channel selector Table 107. C3ZAdcReg6 (0x4F) Bit 7 6:4 Name Mode reserved r FILTER TYPE [2:0] r Reset Description Filter selection selection 000 - none 001 - average filtering 010 - moving average filtering 011 - reserved 3 ALRM1 rw Alarm 1 enable 2 ALRM2 rw Alarm 2 enable 1 SINGLE rw Configuration 3 in single acquisition mode 0 CONT rw Configuration 3 in continuous acquisition mode Table 108. C3SXCfg (0x50) Bit 7:0 Name SIZE Mode rw Reset Description 00000000 Filter size. Limited to 10 for a moving average filter. Table 109. C3FParam (0x51) ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 93 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING Bit Name 7:0 Mode rw Reset Description 00000000 Alarm 1 threshold MSB for configuration 3 Table 110. C3Alrm1OnMsb (0x52) Bit Name 7:0 Mode rw Reset Description 00000000 Alarm 1 threshold LSB for configuration 3 Table 111. C3Alrm1OnLsb (0x53) Bit Name 7:0 Mode rw Reset Description 00000000 Alarm 1 threshold MSB for configuration 3 Table 112 C3Alrm1OffMsb (0x54) Bit Name 7:0 Mode rw Reset Description 00000000 Alarm 1 threshold LSB for configuration 3 Table 113. C3Alrm1OffLsb (0x55) Bit Name 7:0 Mode rw Reset Description 00000000 Alarm 2 threshold MSB for configuration 3 Table 114. C3Alrm1OnMsb (0x56) Bit Name 7:0 Mode rw Reset Description 00000000 Alarm 2 threshold LSB for configuration 3 Table 115. C3Alrm1OnLsb (0x57) ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 94 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING Bit Name 7:0 Mode rw Reset Description 00000000 Alarm 2 threshold MSB for configuration 3 Table 116 C3Alrm1OffMsb (0x58) Bit Name 7:0 Mode rw Reset Description 00000000 Alarm 2 threshold LSB for configuration 3 Table 117. C3Alrm1OffLsb (0x59) Bit Name 7:0 Mode r Reset Description 00000000 Configuration 3 data out MSB Table 118. C3DataOutMsb (0x5A) Bit Name 7:0 Mode r Reset Description 00000000 Configuration 3 data out LSB Table 119. C3DataOutLsb (0x5B) ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 95 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 14.2.5. Configuration 4 registers Bit 7 Name reserved Mode Reset r x Description 6:5 SET_NELC rw 01 Sets the number of elementary conversion to 2SET_NELC[1:0]. To compensate for offset the signal is chopped between elementary conversion. 4:2 SET_OSR rw 010 Sets the ADC over-sampling rate of an elementary conversion to 23+SET_OSR[2:0]. 1 reserved r x 0 reserved r x Table 120. C4ZAdcReg1 (0x6A) Bit Name Mode Reset Description 7:6 IB_AMP_ADC[1:0] rw 11 Bias current selection of the A/D converter. 5:4 IB_AMP_PGA[1:0] rw 11 Bias current selection of the PGA stages. 3:0 ENABLE[3:0] rw 0000 Enables the different PGA stages and ADC. XXX1 - ADC enable XX1X - PGA3 enable X1XX - PGA2 enable 1XXX - PGA1 enable Table 121. C4ZAdcReg2 (0x6B) Bit Name Mode Reset Description 7:6 FIN[1:0] rw 00 Sampling frequency selection 5:4 PGA2_GAIN[1:0] rw 00 PGA2 stage gain selection 3:0 PGA2_OFFSET[3:0] rw 0000 PGA2 stage offset selection Table 122. C4ZAdcReg3 (0x6C) Bit 7 6:0 Name Mode Reset Description PGA1_GAIN rw 0 PGA1 stage gain selection PGA3_GAIN[6:0] rw 0000000 PGA3 stage gain selection Table 123. C4ZAdcReg4 (0x6D) ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 96 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING Bit 7 6:0 Name Mode reserved r PGA3_OFFSET[6:0] rw Reset 0 0000000 Description Unused PGA3 stage offset selection Table 124. C4ZAdcReg5 (0x6E) Bit Name Mode Reset 7 reserved r 6 reserved r AMUX[4:0] rw 00000 VMUX rw 0 5:1 0 Description Input channel configuration selector Reference channel selector Table 125. C4ZAdcReg6 (0x6F) Bit 7 6:4 Name Mode reserved r FILTER TYPE [2:0] r Reset Description Filter selection selection 000 - none 001 - average filtering 010 - moving average filtering 011 - reserved 3 ALRM1 rw Alarm 1 enable 2 ALRM2 rw Alarm 2 enable 1 SINGLE rw Configuration 4 in single acquisition mode 0 CONT rw Configuration 4 in continuous acquisition mode Table 126. C4SXCfg (0x70) Bit 7:0 Name SIZE Mode rw Reset Description 00000000 Filter size. Limited to 10 for a moving average filter. Table 127. C4FParam (0x71) ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 97 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING Bit Name 7:0 Mode rw Reset Description 00000000 Alarm 1 threshold MSB for configuration 4 Table 128. C4Alrm1OnMsb (0x72) Bit Name 7:0 Mode rw Reset Description 00000000 Alarm 1 threshold LSB for configuration 4 Table 129. C4Alrm1OnLsb (0x73) Bit Name 7:0 Mode rw Reset Description 00000000 Alarm 1 threshold MSB for configuration 4 Table 130 C4Alrm1OffMsb (0x74) Bit Name 7:0 Mode rw Reset Description 00000000 Alarm 1 threshold LSB for configuration 4 Table 131. C4Alrm1OffLsb (0x75) Bit Name 7:0 Mode rw Reset Description 00000000 Alarm 2 threshold MSB for configuration 4 Table 132. C4Alrm1OnMsb (0x76) Bit Name 7:0 Mode rw Reset Description 00000000 Alarm 2 threshold LSB for configuration 4 Table 133. C4Alrm1OnLsb (0x77) ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 98 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING Bit Name 7:0 Mode rw Reset Description 00000000 Alarm 2 threshold MSB for configuration 4 Table 134 C4Alrm1OffMsb (0x78) Bit Name 7:0 Mode rw Reset Description 00000000 Alarm 2 threshold LSB for configuration 4 Table 135. C4Alrm1OffLsb (0x79) Bit Name 7:0 Mode r Reset Description 00000000 Configuration 4 data out MSB Table 136. C4DataOutMsb (0x7A) Bit Name 7:0 Mode r Reset Description 00000000 Configuration 4 data out LSB Table 137. C4DataOutLsb (0x7B) ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 99 www.semtech.com SX8722 High gain acquisition for sensor interface ADVANCED COMMUNICATIONS & SENSING DATASHEET 15. Power modes SX8722 has 3 operating modes: active mode sleep mode shutdown mode 15.1. Power modes transitions Start-up from shutdown: Initializes the SX8722 Load EEPROM if present Restores EEPROM configuration and set the SX8722 Start-up from sleep: Restores the RC active value Enables VLD Restores SX8722 configuration saved in RAM Sleep sequence: Waits for I2C STOP sequence Stops the ADC Disable VLD Bias current off Set the clock to RC minimum value or to Xtal if present Shutdown sequence: Waits for I2C STOP sequence Stops the ADC Disable VLD Bias current off Stops the SX8722 The timing of the transition states depends mainly on the Xtal presence, the EEPROM presence and if the transition is caused by an I2C command or by a pin signal (SLEEP, SHUT, RESET). ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 100 www.semtech.com SX8722 High gain acquisition for sensor interface ADVANCED COMMUNICATIONS & SENSING DATASHEET 15.2. Active mode In this chapter you will find: The description of the active mode How to set SX8722 in active mode 15.2.1. Description In active mode, SX8722 and all its peripherals can work and execute the measurement engine. The acquisition chain, the alarms and the signal post processing can be activated and parameterized. 15.2.2. How to set SX8722 in active mode Start-up At start-up SX8722 is automatically set in active mode. If there is no EEPROM configuration loaded at start-up, PGA are not active. From Sleep mode Positive pulse on RESET pin Negative pulse on the SLEEP pin SLEEP bit toggle in the SXCtrl1 register (I2C write mask command) Other interruption From Shutdown mode Positive pulse on RESET pin Power-on-reset (negative pulse on VBAT pin) 15.3. Sleep mode 15.3.1. Description The sleep mode is a low power mode. It can be called by an I2C sequence or by sending a negative pulse to SX8722 SLEEP pin. 15.3.2. Operating specifications of the sleep mode Summary SX8722 configuration saved in RAM ADC stopped VLD stopped (voltage level detector) If Xtal present, clock set to Xtal 32k If Xtal not present, clock set to RC minimum value (~80kHz) Bias current off ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 101 www.semtech.com SX8722 High gain acquisition for sensor interface ADVANCED COMMUNICATIONS & SENSING DATASHEET Program HALT, SX8722 needs an interrupt to wake up (I2C communication, SLEEP pin signal, reset, etc). 15.3.3. SX8722 sleep current consumption below 3V Vbat Below 3 Volts SX8722 enables the internal voltage multiplier to power the ZoomingADC™. This internal voltage multiplier is automatically enabled when the power supply goes below 3V Vbat. This voltage multiplier increases SX8722 consumption. This is why the chip consumption in sleep mode with 2.5V supply is higher than with 5.5V supply. There is a possibility to consume less current when the Vbat voltage is lower than 3V: the SLEEP signal has to be sent to the SLEEP pin when Vbat is higher than 3V, and then decrease the Vbat value. In this case, the voltage multiplier is not activated. 15.3.4. SX8722 sleep current consumption with the 32.768 kHz Xtal The sleep mode current consumption with the presence of the 32.768 kHz Xtal is around 1µA if the supply voltage is above 3V. Below 3V, the current consumption is around 4 µA because the VMULT is enabled. In addition to set the precise RC frequency, the presence of an external 32.768 kHz Xtal allows SX8722 sleep current consumption 3x lower than without the Xtal. In this case SX8722 main clock is generated by the Xtal. 15.3.5. SX8722 sleep current consumption without the 32.768 KHz Xtal The current consumption in sleep mode without the 32.768 kHz Xtal is around 3 µA if the supply voltage is above 3V. Below 3V, the current consumption is around 9 µA because the voltage multiplier is enabled. The RC min frequency is set and its value is around 80 kHz. 15.3.6. How to set SX8722 in sleep mode I2C sleep Through the I2C interface, send a write mask command at address 00 and toggle the SLEEP bit of the SXCtrl1 register. When SX8722 is in sleep mode, send a write mask command at address 00 and toggle the SLEEP bit to restore SX8722 active mode. WARNING: The I2C SLEEP command does not allow reaching as low current consumption as the SLEEP pin command or writing the SXCtrl1 register SLEEP bit. The sleep mode called by I2C SLEEP command (0x40) has a current consumption around 80µA. SLEEP pin Put the SLEEP input signal to VSS, the SLEEP input is active on negative edge. Is the SX8722 in SLEEP mode? There are pulses on the READY pin in active mode every 36ms. In sleep mode there is no pulse on the READY pin. 15.3.7. Wake up from sleep mode to active mode ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 102 www.semtech.com SX8722 High gain acquisition for sensor interface ADVANCED COMMUNICATIONS & SENSING DATASHEET In sleep mode the internal program is in "HALT" assembler equivalent mode. The SLEEP bit toggling in SXCtrl1 or a signal on the SLEEP pin can wake up the SX8722. See active mode section for more information. 15.4. Shutdown mode 15.4.1. Description This is a very low-power mode because all circuit clocks and all peripherals are stopped. Only some service blocks remain active. 15.4.2. Operating specifications in shutdown mode Summary ADC stopped VLD stopped If Xtal present, clock set to Xtal 32k If Xtal not present, clock set to RC minimum value (~80kHz) Bias current off Program HALT, interrupt off No possible I2C communication Internal voltage multiplier Like in sleep mode, internal voltage multiplier is automatically enabled when the power supply goes below 3 Volts but the internal voltage multiplier requires an external capacitor between VMULT pin and Vss, the value of this capacitor must be between 1 and 3nF. Shutdown mode current consumption The current consumption in shutdown mode is around 0.5 µA if the supply voltage is above 3V. Below 3V, the current consumption is around 3.5 µA because the voltage multiplier is enabled. How to set shutdown mode consumption around 0.5µA By default, with a supply voltage below 3V the shutdown mode current is around 3.5µA. To obtain 0.5µA consumption, the shut command (I2C, pin) has to be received by the SX8722 when the internal voltage multiplier is not enabled. It means when the supply voltage is above 3V. Then, if the supply voltage is lowered under 3V, the SX8722 will conserve the 0.5µA consumption. 15.4.3. How to set SX8722 in shutdown mode I2C Shutdown command Send the 0x50 command through the I2C interface. I2C SHUT bit toggle Through the I2C interface, send a write mask command at address 00 and toggle the SHUT bit of the SXCtrl1 register. ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 103 www.semtech.com SX8722 High gain acquisition for sensor interface ADVANCED COMMUNICATIONS & SENSING DATASHEET SHUT pin Put the SHUT input signal to VSS, the SHUT input is active on negative edge. 15.4.4. Wake-up from shutdown mode to active mode There are two possible ways to wake-up from the shutdown mode: The POR (power-on-reset caused by a power-down followed by power-on). The RESET pin. In both case the RAM information is lost. SX8722 configuration must be restored from the EEPROM saved configuration. 15.4.5. Change from shutdown mode to sleep mode This is not possible. ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 104 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 16. PCB Layout Considerations PCB layout considerations to be taken when using the SX8722 are relatively simple to get the highest performances out. The most important to achieve good performances is to have a good voltage reference. Separating the digital from the analog lines will be also a good choice to reduce the noise induced by the digital lines. It is also advised to have separated ground planes for digital and analog signals with the shortest return path, as well as making the power supply lines as wider as possible and to have good decoupling capacitors. 17. How to Evaluate For evaluation purposes the XE8000EV120 evaluation kit can be ordered. This kit connects to any PC using a USB port. The "SX8722 Evaluation Tools" software gives the user the ability to control the SX8722 and displaying configurations on the "Graphical User interface". For more information please look at SEMTECH web site (http://www.semtech.com). 18. Package Outline Drawing: MLPQ44-7x7mm A D B DIM PIN 1 INDICATOR (LASER MARK) A A1 A2 b D D1 E E1 e L N aaa bbb E A2 A DIMENSIONS INCHES MILLIMETERS MIN NOM MAX MIN NOM MAX - .040 .031 .000 - .002 - (.008) .007 .010 .012 .271 .275 .279 .197 .203 .207 .271 .275 .279 .197 .203 .207 .020 BSC .017 .021 .025 44 .003 .004 1.00 0.80 0.05 0.00 - (0.20) 0.18 0.25 0.30 6.90 7.00 7.10 5.00 5.15 5.25 6.90 7.00 7.10 5.00 5.15 5.25 0.50 BSC 0.45 0.55 0.65 44 0.08 0.10 SEATING PLANE aaa C A1 C D1 LxN E/2 E1 2 1 N bxN e NOTES: bbb C A B D/2 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES). 2. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 105 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 19. Land Pattern Drawing: MLPQ44-7x7mm H DIMENSIONS (C) K G Z Y DIM C G H K P X Y Z INCHES (.268) .228 .207 .207 .021 .011 .039 .307 MILLIMETERS (6.80) 5.80 5.25 5.25 0.50 0.30 1.00 7.80 X P NOTES: 1. THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY. CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR COMPANY'S MANUFACTURING GUIDELINES ARE MET. 2. THERMAL VIAS IN THE LAND PATTERN OF THE EXPOSED PAD SHALL BE CONNECTED TO A SYSTEM GROUND PLANE. FAILURE TO DO SO MAY COMPROMISE THE THERMAL AND/OR FUNCTIONAL PERFORMANCE OF THE DEVICE. ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 106 www.semtech.com SX8722 High gain acquisition for sensor interface DATASHEET ADVANCED COMMUNICATIONS & SENSING 20. Tape and Reel Specification MLP/QFN (0.70mm - 1.00mm package thickness) Single Sprocket holes Tolerances for Ao & Bo are +/- 0.20mm Tolerances for Ko is +/- 0.10mm Tolerance for Pocket Pitch is +/- 0.10mm Tolerance for Tape width is +/-0.30mm Trailer and Leader Length are minimum required length Package Orientation and Feed Direction MLP (square) MLP (rectangular) Direction of Feed Direction of Feed Pkg size carrier tape (mm) Reel 2x2 Tape Width (W) 8 Pocket Pitch (P) 4 2.25 2.25 3x3 12 8 3.30 3.30 4x4 12 8 4.35 4x3 12 8 3.30 Ao Bo Ko Reel Width (mm) 8.4 Trailer Length (mm) 160 Leader Length (mm) 400 QTY per Reel 1.00 Reel Size (in) 7 1.10 13 12.4 400 400 3000 4.35 1.10 13 12.4 400 400 3000 4.30 1.10 13 12.4 400 400 3000 3000 5x5 12 8 5.25 5.25 1.10 7/13 12.4 200/400 400 500/3000 6x6 16 12 6.30 6.30 1.10 13 16.4 400 400 3000 6x5 12 8 5.30 6.30 1.10 13 12.4 400 400 3000 7x7 16 12 7.30 7.30 1.10 13 16.4 400 400 3000 9X9 16 12 9.30 9.30 1.10 13 16.4 400 400 3000 10x10 24 16 10.30 10.30 1.10 13 24.4 400 400 3000 11x11 24 16 11.40 11.40 1.20 13 24.4 400 400 3000 ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 107 www.semtech.com SX8722 High gain acquisition for sensor interface ADVANCED COMMUNICATIONS & SENSING DATASHEET © Semtech 2008 All rights reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights. Semtech assumes no responsibility or liability whatsoever for any failure or unexpected operation resulting from misuse, neglect improper installation, repair or improper handling or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified range. SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF SEMTECH PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER’S OWN RISK. Should a customer purchase or use Semtech products for any such unauthorized application, the customer shall indemnify and hold Semtech and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages and attorney fees which could arise. Contact information Semtech Corporation Advanced Communications & Sensing Products E-mail: [email protected]@semtech.comInternet: http://www.semtech.com USA 200 Flynn Road, Camarillo, CA 93012-8790. Tel: +1 805 498 2111 Fax: +1 805 498 3804 FAR EAST 12F, No. 89 Sec. 5, Nanking E. Road, Taipei, 105, TWN, R.O.C. Tel: +886 2 2748 3380 Fax: +886 2 2748 3390 EUROPE Semtech Ltd., Units 2 & 3, Park Court, Premier Way, Abbey Park Industrial Estate, Romsey, Hampshire, SO51 9DN. Tel: +44 (0)1794 527 600 Fax: +44 (0)1794 527 601 ISO9001 CERTIFIED ACS - Revision 4.2 ©2008 Semtech Corp. October 2008 Page 108 www.semtech.com