SEMTECH SX8722I070LF

SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
GENERAL DESCRIPTION
KEY PRODUCT FEATURES
The main function of the SX8722 is to acquire signal from
Wheatstone bridges or single ended sensors.
The input can be a pressure sensor, a GMR or AMR
magnetic sensor, a chemical sensor, a thermistor or a mix of
several of these sensors.
The SX8722 Sensor interface is totally configurable through
an I2C compatible interface.
Several parameters are configurable through this interface
such as alarms or signal post processing.
16 + 10 bits differential acquisition
Š
Š
Š
Š
Š
4 differential or 7 single ended signal inputs
Preamplifier programmable gain up to 1000
Sensor offset compensation up to 15 times full scale of
input signal
2 differential reference inputs
I2C compatible connection to application
Internal RC and 32 kHz Oscillators
Low power modes
- Sleep
- Shutdown
Š
APPLICATION
4 Full configuration pre selections including:
- ZoomingADC™ configuration
Pressure sensing (industrial, altimeter, diving computer)
- 2 alarms with on & off thresholds
Chemical sensing (monitoring, security)
- Digital filtering
Š
Š
Š
Š
Š
Š
ORDERING INFORMATION
Temperature Range
Package
SX8722I070LF
-40°C to 125°C
MLPQ44-7x7
Tools
Part number
Evaluation Kit
XE8000EV120
Stand alone mode for alarm monitoring
Clock out pin
Calibration pin
Reset pin
Ready / Busy pin
EE_POW
Part Number
I2C EEPROM interface
EE_SCL
Magnetic sensing (compass)
EE_SDA
Š
Š
Š
Š
Š
Š
SX8722
VBATT
VBATT
GND
ALRM1
BIAS
ALRM2
TM
AR2P
AR2N
ZoomingADC
REF MUX
AR1P
AR1N
CONTROL
CAL
RESET
I2 C
AC7
SCL
SDA
AC5
AC4
Single ended
AC3
AC2
AC1
SIGNAL MUX
AC6
Differential
MCU
READY
PGA
GPIO
GPIO
GPIO
XIN
ADC
OSC
XOUT
CKOUT
AC0
SLEEP
SHUT
POST-PROCESS
Example of application
Typical pressure & temperature sensing
application with sleep control
ACS - Revision 4.2
©2008 Semtech Corp.
POWER
VREG
VMULT
October 2008
Page 1
www.semtech.com
SX8722
High gain acquisition for sensor interface
ADVANCED COMMUNICATIONS & SENSING
DATASHEET
Table of contents
Section
1.
2.
Page
Specifications........................................................................................................................................................... 6
1.1.
Absolute Maximum Ratings ............................................................................................................................. 6
1.2.
Operating conditions ........................................................................................................................................ 6
1.3.
ZoomingADC Specifications ............................................................................................................................ 7
Pin configuration and marking information ............................................................................................................ 10
2.1.
Pin configuration ............................................................................................................................................ 10
2.2.
Marking information ....................................................................................................................................... 10
3.
Pin Description....................................................................................................................................................... 11
4.
Timing Characteristics ........................................................................................................................................... 13
5.
6.
4.1.
I2C timing Waveforms.................................................................................................................................... 13
4.2.
Time specification without the 32.768 kHz Xtal ............................................................................................. 14
4.3.
Start-up time with the 32.768 kHz Xtal presence........................................................................................... 14
4.4.
Changing power mode by pin signal.............................................................................................................. 14
4.5.
Changing power mode by I2C command....................................................................................................... 15
Circuit description .................................................................................................................................................. 16
5.1.
Detailed bloc diagram .................................................................................................................................... 16
5.2.
Functional description .................................................................................................................................... 16
5.3.
ZoomingADC ................................................................................................................................................. 19
Access the SX8722 ............................................................................................................................................... 20
6.1.
Description ..................................................................................................................................................... 20
6.2.
SX8722 configuration..................................................................................................................................... 20
7.
I2C Commands...................................................................................................................................................... 20
8.
Serial communication ............................................................................................................................................ 21
9.
8.1.
Write data direct............................................................................................................................................. 21
8.2.
Write data masked ......................................................................................................................................... 22
8.3.
Read data ...................................................................................................................................................... 22
8.4.
Other commands ........................................................................................................................................... 23
8.5.
Unknown commands ..................................................................................................................................... 23
8.6.
Reading data after a measurement. .............................................................................................................. 23
Predefined settings ................................................................................................................................................ 24
9.1.
Introduction .................................................................................................................................................... 24
9.2.
Features covered by predefined settings....................................................................................................... 24
9.3.
Input multiplexers........................................................................................................................................... 25
9.3.1.
Overview ................................................................................................................................................. 25
9.3.2.
Input channel selection ........................................................................................................................... 25
9.3.3.
Reference channel selection................................................................................................................... 26
9.3.4.
Application example................................................................................................................................ 26
9.4.
Programmable gain amplifier settings............................................................................................................ 28
9.4.1.
Overview ................................................................................................................................................. 28
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 2
www.semtech.com
SX8722
High gain acquisition for sensor interface
ADVANCED COMMUNICATIONS & SENSING
DATASHEET
Table of contents
Section
Page
9.4.2.
9.4.3.
Enable/disable PGAs .............................................................................................................................. 30
9.4.4.
PGA3 gain configuration ......................................................................................................................... 30
9.4.5.
PGA2 gain configuration ......................................................................................................................... 30
9.4.6.
PGA1 gain configuration ......................................................................................................................... 31
9.4.7.
Application example................................................................................................................................ 31
9.5.
Offset cancellation ......................................................................................................................................... 32
9.5.1.
Overview ................................................................................................................................................. 32
9.5.2.
Application example................................................................................................................................ 34
9.6.
ADC parameters ............................................................................................................................................ 35
9.6.1.
Overview ................................................................................................................................................. 35
9.6.2.
ADC settings ........................................................................................................................................... 36
9.7.
10.
Configuration flow ................................................................................................................................... 29
Measurement engine ..................................................................................................................................... 36
9.7.1.
Overview ................................................................................................................................................. 36
9.7.2.
Measurement engine settings................................................................................................................. 37
Default configuration.............................................................................................................................................. 38
10.1. ZoomingADC default settings ........................................................................................................................ 38
11.
Advanced configuration ......................................................................................................................................... 39
11.1. Overview ........................................................................................................................................................ 39
11.2. Measurement engine ..................................................................................................................................... 40
11.2.1. Overview ................................................................................................................................................. 40
11.2.2. Functional flowchart ................................................................................................................................ 40
11.3. Control registers............................................................................................................................................. 41
11.3.1. SXCtrl1 - SX8722 Control register 1 ....................................................................................................... 41
11.3.2. SXCtrl2 - SX8722 Control register 2 ....................................................................................................... 41
11.3.3. SXCfgEn - Configuration enabling register ............................................................................................. 42
11.3.4. SXUpdated - Updated configuration register .......................................................................................... 42
11.3.5. Configuration register - measurement mode .......................................................................................... 42
11.4. Filtering .......................................................................................................................................................... 43
11.4.1. Filter types .............................................................................................................................................. 43
11.4.2. Configuration register - filtering............................................................................................................... 43
11.4.3. Filter size register.................................................................................................................................... 44
11.5. Alarms............................................................................................................................................................ 44
11.5.1. Configuration register - alarms................................................................................................................ 44
11.5.2. Alarm threshold registers ....................................................................................................................... 44
11.5.3. SXCtrl2 - SX8722 Control register 2 ....................................................................................................... 45
11.6. I2C EEPROM................................................................................................................................................. 46
11.6.1. Overview ................................................................................................................................................. 46
11.6.2. Schematic ............................................................................................................................................... 46
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 3
www.semtech.com
SX8722
High gain acquisition for sensor interface
ADVANCED COMMUNICATIONS & SENSING
DATASHEET
Table of contents
Section
Page
11.7. Using the SX8722 Stand alone...................................................................................................................... 47
11.7.1. Schematic ............................................................................................................................................... 47
11.8. Frequency calibration process ....................................................................................................................... 48
11.8.1. Overview ................................................................................................................................................. 48
11.8.2. Using an 32.768 kHz XTAL..................................................................................................................... 48
11.8.3. Using a 32.768 kHz External clock source ............................................................................................. 49
11.9. Working below 3 V ......................................................................................................................................... 50
11.9.1. Operating range ...................................................................................................................................... 50
11.9.2. Internal voltage multiplier ........................................................................................................................ 50
11.9.3. Schematic ............................................................................................................................................... 50
12.
ZoomingADC ......................................................................................................................................................... 51
12.1. ZoomingADC Features .................................................................................................................................. 51
12.1.1. Overview ................................................................................................................................................. 51
12.2. Acquisition Chain ........................................................................................................................................... 51
12.3. ZoomingADC Detailed block diagram............................................................................................................ 53
12.4. ZoomingADC register map ............................................................................................................................ 54
12.5. ZoomingADC™ registers table ...................................................................................................................... 56
12.6. Input Multiplexers........................................................................................................................................... 57
12.7. Programmable Gain Amplifiers ...................................................................................................................... 58
12.7.1. PGA & ADC Enabling ............................................................................................................................. 58
12.7.2. PGA1 ...................................................................................................................................................... 58
12.7.3. PGA2 ...................................................................................................................................................... 59
12.7.4. PGA3 ...................................................................................................................................................... 60
12.8. ADC Characteristics....................................................................................................................................... 62
12.8.1. Conversion Sequence............................................................................................................................. 62
12.8.2. Sampling Frequency ............................................................................................................................... 63
12.8.3. Over-Sampling Ratio............................................................................................................................... 63
12.8.4. Elementary Conversions......................................................................................................................... 64
12.8.5. Resolution ............................................................................................................................................... 64
12.8.6. Conversion Time & Throughput .............................................................................................................. 65
12.8.7. Output Code Format ............................................................................................................................... 67
12.9. Power Saving Modes ..................................................................................................................................... 69
12.10. Input impedance............................................................................................................................................ 69
12.11. Switched Capacitor Principle......................................................................................................................... 70
12.12. PGA Settling or Input Channel Modifications ................................................................................................ 71
12.13. PGA Gain & Offset, Linearity and Noise ....................................................................................................... 71
12.14. Power Reduction ........................................................................................................................................... 71
12.15. Noise ............................................................................................................................................................. 72
12.16. Gain Error and Offset Error ........................................................................................................................... 73
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 4
www.semtech.com
SX8722
High gain acquisition for sensor interface
ADVANCED COMMUNICATIONS & SENSING
DATASHEET
Table of contents
Section
13.
Page
Typical performances ............................................................................................................................................ 75
13.1. Current consumption...................................................................................................................................... 75
13.2. ZoomingADC ................................................................................................................................................. 76
13.2.1. Integral non-linearity ............................................................................................................................... 76
13.2.2. Differential non-linearity ......................................................................................................................... 77
13.2.3. Resolution vs acquisition time................................................................................................................. 78
14.
Register Memory Map and Description ................................................................................................................. 79
14.1. Memory Map .................................................................................................................................................. 79
14.2. Register description ....................................................................................................................................... 82
14.2.1. SX8722 general configuration................................................................................................................. 82
14.2.2. Configuration 1 registers......................................................................................................................... 84
14.2.3. Configuration 2 registers......................................................................................................................... 88
14.2.4. Configuration 3 registers......................................................................................................................... 92
14.2.5. Configuration 4 registers......................................................................................................................... 96
15.
Power modes....................................................................................................................................................... 100
15.1. Power modes transitions.............................................................................................................................. 100
15.2. Active mode ................................................................................................................................................. 101
15.2.1. Description ............................................................................................................................................ 101
15.2.2. How to set SX8722 in active mode ....................................................................................................... 101
15.3. Sleep mode.................................................................................................................................................. 101
15.3.1. Description ............................................................................................................................................ 101
15.3.2. Operating specifications of the sleep mode .......................................................................................... 101
15.3.3. SX8722 sleep current consumption below 3V Vbat.............................................................................. 102
15.3.4. SX8722 sleep current consumption with the 32.768 kHz Xtal .............................................................. 102
15.3.5. SX8722 sleep current consumption without the 32.768 KHz Xtal......................................................... 102
15.3.6. How to set SX8722 in sleep mode........................................................................................................ 102
15.3.7. Wake up from sleep mode to active mode............................................................................................ 102
15.4. Shutdown mode ........................................................................................................................................... 103
15.4.1. Description ............................................................................................................................................ 103
15.4.2. Operating specifications in shutdown mode ......................................................................................... 103
15.4.3. How to set SX8722 in shutdown mode ................................................................................................. 103
15.4.4. Wake-up from shutdown mode to active mode..................................................................................... 104
15.4.5. Change from shutdown mode to sleep mode ....................................................................................... 104
16.
PCB Layout Considerations................................................................................................................................. 105
17.
How to Evaluate................................................................................................................................................... 105
18.
Package Outline Drawing: MLPQ44-7x7mm ....................................................................................................... 105
19.
Land Pattern Drawing: MLPQ44-7x7mm............................................................................................................. 106
20.
Tape and Reel Specification................................................................................................................................ 107
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 5
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
1. Specifications
1.1. Absolute Maximum Ratings
Stresses above the values listed below may cause permanent device failure. Exposure to absolute maximum ratings for
extended periods may affect device reliability.
Parameter
Symbol
Power supply
VBAT
Storage temperature
TSTORE
Max sensor common mode
VVR P
VVR N
Condition
Input voltage
Peak soldering temperature
Min
Max
Units
VSS - 0.3
6
V
-55
150
°C
VSS - 300
VBATT + 300
mV
VSS - 300
VBATT + 300
mV
260
°C
T
Note: This device is ESD sensitive. Use of standard ESD handling precautions is required.
1.2. Operating conditions
All values are valid whithin the operating conditions unless otherwise specified.
Parameter
Symbol
Condition
Min
Typ
Max
Unit
OPERATING CONDITIONS
Power supply
VBAT
2.4
5.5
V
Operating temperature
TOP
-40
125
°C
CURENT CONSUMPTION
μA
300
Active current
IOP
Sleep current (1)
ISLEEP
Temperature < 85°C
1
5.0
μA
Sleep current (2)
ISLEEP
Temperature < 85°C
3
10.0
μA
Shutdown current
ISHUT
Temperature < 85°C
0.5
3.5
μA
DIGITAL I/O
Input logic high
VIH
Input logic low
VIL
Output logic high
VOH
IOH < 4 mA
Output logic low
VOL
IOL < 4 mA
October 2008
Page 6
ACS - Revision 4.2
©2008 Semtech Corp.
0.7 x
VBAT
0.4
V
0.3 x
VBAT
V
VBAT 0.4
V
V
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
(1) With external 32.768kHz Xtal connected
(2) Without external 32.768kHz Xtal connected
1.3. ZoomingADC Specifications
Unless otherwise specified: Temperature TA = +25°C, VBATT = +5V, GND = 0V, VREF = +5V, VIN = 0V, RC frequency fRC =
2MHz, sampling frequency fS = 300 kHz, Overall PGA gain GDTOT = 1, offsets GDOff2 = GDOff3 = 0. Power operation: normal
(IB_AMP_ADC[1:0] = IB_AMP_PGA[1:0] = '11'). For resolution n = 12 bits: OSR = 32 and NELCONV = 4. For resolution n = 16
bits: OSR = 512 and NELCONV = 2.
PARAMETER
COMMENTS/CONDITIONS
VALUE
MIN
TYP
UNITS
MAX
ANALOG INPUT CHARACTERISTICS
Differential Input Voltage Range
VIN = VINP -VINN
Gain = 1, OSR = 32 (Note 1)
-2.42
+2.42
V
Gain = 100, OSR = 32
-24.2
+24.2
mV
Gain = 1000, OSR = 32
-2.42
+2.42
mV
VBATT
V
0.5
1000
V/V
Reference Voltage Range
VREF,ADC = VREFP -VREFN
PROGRAMMABLE GAIN AMPLIFIER
Total PGA Gain
GDTOT
PGA1 Gain
GD1
See Table 15
1
10
V/V
PGA2 Gain
GD2
See Table 16
1
10
V/V
PGA3 Gain
GD3
Step = 1/12 V/V, See Table 47
127/12
V/V
+3
%
Gain Settings Precision (each stage)
-3
Gain Temperature Dependance Offset
+/- 0.5
+/- 5
ppm / °C
PGA2 Offset
GDoff2
Step = 0.2 V/V, See Table 46
-1
+1
V/V
PGA3 Offset
GDoff3
Step = 1.12 V/V, See Table 48
-63/12
+63/12
V/V
+3
%
Offset Settings Precision
(PGA2 or PGA3)
(note 2)
-3
Offset Temperature Dependance
+/- 0.5
+/-5
Input Impedance PGA1
ppm / °C
PGA1 Gain = 1 (Note 3)
1500
kΩ
PGA1 Gain = 10 (Note 3)
150
kΩ
Input Impedance PGA2 ,PGA3
Maximal gain = 1 (Note 3)
150
kΩ
Output RMS Noise
PGA1 (Note 4)
205
μV
PGA2 (Note 5)
340
μV
PGA3 (Note 6)
365
μV
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 7
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
PARAMETER
COMMENTS/CONDITIONS
VALUE
MIN
TYP
UNITS
MAX
ADC STATIC PERFORMANCES
Resolution
n
(Note 7)
No Missing Codes
(Note 8)
Gain Error
(Note 9)
Offset Error
n = 16 bits
(Note 10)
6
16
Bits
+/- 0.15
% of FS
+/- 1
LSB
Integral Non-Linearity
INL
resolution n = 16 bits (Note 11)
+/- 1.0
LSB
Differential Non-Linearity
DNL
resolution n = 16 bits (Note 12)
+/- 0.5
LSB
PSRR
VBATT = 5V +/- 0.3V (Note 13)
78
dB
VBATT = 3V +/- 0.3V (Note 13)
72
dB
Power Supply Rejection Ratio
ADC DYNAMIC PERFORMANCES
Throughput Rate (Continuous Mode)
Throughput Rate (Continuous Mode)
TCONV
1/TCONV
n = 12 bits (Note 14)
3
133
cycles / fS
n = 16 bits (Note 14)
0
1027
cycles / fS
n = 12 bits, fS
3.76
kS/s
n = 16 bits, fS
0.49
kS/s
Nbr of Initialization Cycles
NINIT
0
2
cycles
Nbr of End Conversion Cycles
NEND
0
5
cycles
PGA Stabilization Delay
(Note 15)
OSR
cycles
TIME BASE
Max ADC oversampling frequency
fSmax
@ 25°C, with a 32k XTAL
270
300
330
kHz
Min ADC oversampling frequency
fSmin
@ 25°C, with a 32KXTAL
33
37.5
42
kHz
DIGITAL OUTPUT
ADC Output Data Coding
See Table 55 and Table 56
Binary Two’s Complement
TEMPERATURE
Specified Range
-40
+85
°C
Operating Range
-40
+125
°C
Table 1. ZoomingADC specifications
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 8
www.semtech.com
SX8722
High gain acquisition for sensor interface
ADVANCED COMMUNICATIONS & SENSING
DATASHEET
Notes
(1)
Gain defined as overall PGA gain GDTOT = GD1 x GD2 x GD3. Maximum input voltage is given by:
VIN,MAX = (VREF/2) (OSR/OSR+1).
(2)
Offset due to tolerance on GDoff2 or GDoff3 setting. For small intrinsic offset, use only ADC and PGA1.
(3)
Measured with block connected to inputs through AMUX block. Normalized input sampling frequency for input impedance is fS =
512 kHz. This figure must be multiplied by 2 for fS = 256 kHz, 4 for fS = 128 kHz. Input impedance is proportional to 1/fS.
(4)
Figure independent from PGA1 gain and sampling frequency fS. See equation Eq. 21 to calculate equivalent input noise.
(5)
Figure independent on PGA2 gain and sampling frequency fS. See equation Eq. 21 to calculate equivalent input noise.
(6)
Figure independent on PGA3 gain and sampling frequency fS. See equation Eq. 21 to calculate equivalent input noise.
(7)
Resolution is given by n = 2 log2(OSR) + log2(NELCONV). OSR can be set between 8 and 1024, in powers of 2. NELCONV can be
set to 1, 2, 4 or 8.
(8)
If a ramp signal is applied to the input, all digital codes appear in the resulting ADC output data.
(9)
Gain error is defined as the amount of deviation between the ideal (theoretical) transfer function and the measured transfer
function (with the offset error removed).
(10)
Offset error is defined as the output code error for a zero volt input (ideally, output code = 0). For 1 LSB offset, NELCONV must be
2.
(11)
INL defined as the deviation of the DC transfer curve of each individual code from the best-fit straight line. This specification holds
over the full scale.
(12)
DNL is defined as the difference (in LSB) between the ideal (1 LSB) and measured code transitions for successive codes.
(13)
Values for Gains = 1 to 100. PSRR is defined as the amount of change in the ADC output value as the power supply voltage
changes.
(14)
Conversion time is given by: TCONV = (NELCONV (OSR + 1) + 1) / fS. OSR can be set between 8 and 1024, in powers of 2.
NELCONV can be set to 1, 2, 4 or 8.
(15)
PGAs are reset after each writing operation to registers CxRegAdc1-5. The ADC must be started after a PGA or inputs commonmode stabilisation delay. This is done by writing bit Start several cycles after PGA settings modification or channel switching.
Delay between PGA start or input channel switching and ADC start should be equivalent to OSR (between 8 and 1024) number
of cycles. This delay does not apply to conversions made without the PGAs.
(16)
Nominal (maximum) bias currents in PGAs and ADC, i.e. IB_AMP_PGA[1:0] = '11' and IB_AMP_ADC[1:0] = '11'.
(17)
Bias currents in PGAs and ADC set to 3/4 of nominal values, i.e. IB_AMP_PGA[1:0] = '10', IB_AMP_ADC[1:0] = '10'.
(18)
Bias currents in PGAs and ADC set to 1/2 of nominal values, i.e. IB_AMP_PGA[1:0] = '01', IB_AMP_ADC[1:0] = '01'.
(19)
Bias currents in PGAs and ADC set to 1/4 of nominal values, i.e. IB_AMP_PGA[1:0] = '00', IB_AMP_ADC[1:0] = '00'.
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 9
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
2. Pin configuration and marking information
NC
NC
CAL
DNC
DNC
XOUT
XIN
VMULT
RESET
VREG
VBAT
2.1. Pin configuration
44
43
42
41
40
39
38
37
36
35
34
NC
1
33
VSS
SLEEP
2
32
AR1N
SHUT
3
31
AR1P
READY
4
30
AC0
NC
5
29
AC1
NC
6
28
AC2
NC
7
27
AC3
BIAS
8
26
AC4
EE_POW
9
25
AC5
EE_SDA
10
24
AC6
EE_SCL
11
23
AC7
SX8722
12
13
14
15
16
17
18
19
20
21
22
ALRM1
ALRM2
CKOUT
NC
SCL
SDA
NC
NC
NTEST
AR2P
AR2N
(Top view)
2.2. Marking information
nnnnnn = Part Number (Example: SX8722)
yyww = Date Code (Example: 0752)
xxxxxxxxx = Semtech Lot No. (Example A01E90101)
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 10
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
3. Pin Description
Pin
Symbol
Type
Function
Status at POR
1
NC
2
SLEEP
Digital input
Setting this pin to 0 puts the SX8722 in sleep mode, power
consumption ~1.5uA, otherwise the pin can be floating
3
SHUT
Digital input
Setting this pin to 0 puts the SX8722 in shutdown mode,
Internal pull-up
power consumption ~0.5uA, otherwise the pin can be floating
4
READY
Digital output
Is high when a measurement data is available
5
NC
Not connected
6
NC
Not connected
7
NC
Not connected
8
BIAS
Digital output
Bias pin, is set to VBAT voltage when a measurement is
performed
Low
9
EE_POW
Digital output
Must be used to power the optional I2C EEPROM
Low
10
EE_SDA
Digital IO
Must be connected to SDA pin of the optional EEPROM
when used. Otherwise must remain floating (see chapter
EEPROM connection)
Low
11
EE_SCL
Digital IO
Must be connected to SCL pin of the optional EEPROM
when used. Otherwise must remain floating (see chapter
EEPROM connection)
Low
12
ALRM1
Digital output
Alarm1 pin, is high when "on" threshold is reached and low
when "off" threshold is reached, when not used can reamin
floating
Low
13
ALRM2
Digital output
Alarm2 pin, is high when "on" threshold is reached and low
when "off" threshold is reached, when not used can reamin
floating
Low
14
CKOUT
Digital output
System clock output
Low
15
NC
16
SCL
Digital IO
Serial clock line of the I2C compatible interface
Input
17
SDA
Digital IO
Serial data line of the I2C compatible interface
Input
18
NC
Not connected
19
NC
Not connected
20
NTEST
Digital input
Must be connected to VBAT
21
AR2P
Analog input
Second analog input reference (positive input)
22
AR2N
Analog input
Second analog input reference (negative input)
23
AC7
Analog input
ZoomingADCTM input 7
ACS - Revision 4.2
©2008 Semtech Corp.
Not connected
Internal pull-up
Low
Not connected
October 2008
Page 11
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
Pin
Symbol
Type
Function
24
AC6
Analog input
ZoomingADCTM input 6
25
AC5
Analog input
ZoomingADCTM input 5
26
AC4
Analog input
ZoomingADCTM input 4
27
AC3
Analog input
ZoomingADCTM input 3
28
AC2
Analog input
ZoomingADCTM input 2
29
AC1
Analog input
ZoomingADCTM input 1
30
AC0
Analog input
ZoomingADCTM input 0
31
AR1P
Analog input
First Analog reference input (positive input)
32
AR1N
Analog input
First Analog reference input (negative input)
33
VSS
Power
Negative power supply
34
VBAT
Power
Positive power supply
35
VREG
Analog input
Connected to the internal voltage regulator. Must be
connected through 1uF capacitor to the ground.
36
RESET
Digital input
Reset pin, active high, must be tied to ground through a 3k3
resistor.
37
VMULT
Analog input
External capacitor for the internal voltage multiplier. Vmult
capacitor must be connected through 2nF to the ground
when VBAT < 3V
38
XIN
Digital input
XTAL connection, left unconnected when not used
39
XOUT
Digital output
XTAL connection, left unconnected when not used
40
DNC
Do not connect
41
DNC
Do not connect
42
CAL
43
NC
Not connected
44
NC
Not connected
ACS - Revision 4.2
©2008 Semtech Corp.
Digital input
Calibration pin, set low to use XTAL.
October 2008
Page 12
Status at POR
Internal pull-up
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
4. Timing Characteristics
Parameter
Symbol
Condition
Min
Typ
Max
Unit
100
kHz
I2C TIMING SPECIFICATIONS (1)
SCL clock frequency
fSCL
0
SCL low period
tLOW
4.7
μs
SCL high period
tHIGH
4.0
μs
Data setup time
tSU;DAT
250
ns
Data hold time
tHHD;DAT
4.0
ns
Repeated start setup time
tSU;STA
4.7
μs
Start condition hold time
tHD;STA
4.0
μs
Stop condition hold time
tSU;STO
4.0
μs
Bus free time between stop and start
tBUF
4.7
μs
(1) All timings specifications are referred to VILMIN and VIHMAX voltage levels defined for the SCL and SDA pins.
With 32’768 Hz Xtal presence.
4.1. I2C timing Waveforms
SDA
SCL
tSU ;STA
t HD ;STA
tSU;STO
tBUF
Figure 1. I2C Start and Stop timing
SDA
SCL
tLOW
tHIGH
tSU;DAT tHD;DAT
tSP
Figure 2. I2C Data timings
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 13
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
4.2. Time specification without the 32.768 kHz Xtal
The internal SX8722 RC oscillator accuracy depends on technology tolerance. It can reach ± 50% difference from one chip
to another
In this case, and if no calibration is done, the RC clock is centred around 1.2 MHz.
SX8722 timing values without Xtal can thus differ of ± 50% to these with a Xtal.
4.3. Start-up time with the 32.768 kHz Xtal presence
The mean time of EEPROM loading at the start-up is typically 140 ms if configuration data are saved in.
In this case SX8722 will provide the first sample after typically 180ms.
time after EEPROM
loading: 140 [ms]
time before EEPROM
loading: 7.5 [ms]
time to have the first
sample: 180 [ms]
SX8722
power- on
t
EEPROM
loading
t
Sample
available
t
Figure 3. Start-up timing diagram with EEPROM loading
4.4. Changing power mode by pin signal
From
To
SHUT
SHUT
SLEEP
ACTIVE
640ms
650ms
SLEEP
ACTIVE
660ms
inst. (1)
inst. (1)
Table 2. Power mode changing timings by pin setting
(1) instantaneous
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 14
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
4.5. Changing power mode by I2C command
From
To
SHUT
SHUT
SLEEP
ACTIVE
770us
700us
SLEEP
470us
ACTIVE
inst. (1)
Table 3. Power mode changing timings by I2C command
(1) instantaneous
Note:
When time to change a power mode is instantaneous, it doesn't mean that the chip is totally ready to work. There are for example
initialization times, EEPROM loading or code execution.
The transition time is considered as not low power.
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 15
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
5. Circuit description
5.1. Detailed bloc diagram
VBAT
Supply
I2C *
EEPROM
EE_SCL
EE_POW
EE_SDA
VBAT
MCU *
SX8722
BIAS
AR1P
Control
AR1N
ALRM1
GPIO
ALRM2
GPIO
READY
GPIO
Post Process
CAL
AC0
AC1
RESET
I2C
I2C
10 + 16 bits
AC6
AC7
GPIO / CKOUT
GPIO
I2C
ZoomingADC™
Parameters
RAM
RC Oscillator
Power mgmt
XTAL Oscillator
SLEEP
GPIO
SHUT
GPIO
GROUND
VREG
VMULT
XIN
XOUT
VSS
*
CKIN/GPIO
Regulator
Voltage
Multiplier
DFLL
CKOUT
*
Ground
* Optional components
Figure 4. SX8722 detailed bloc diagram
5.2. Functional description
Š
The SX8722 is a ZoomingADC™ with I2C compatible interface allowing multiple setups.
Š
The major modules of the SX8722 are the ZoomingADC™, the signal post processing, the control unit and the power
management
Š
The SX8722 offers several configuration possibilities allowing the developer to use it as a peripheral of its system or to
use it as a stand alone system generating alarms.
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 16
www.semtech.com
SX8722
High gain acquisition for sensor interface
ADVANCED COMMUNICATIONS & SENSING
DATASHEET
Š
The ZoomingADC™ is made of 1 input multiplexer, 3 programmable gain amplifiers and a 16 bits Sigma-Delta ADC. The
input multiplexer allows measuring 4 differential sensors or 7 single ended sensors or a combination of differential and
single-ended. The total gain of the PGA enables an amplification of 1000 and the offset correction can reach up to 15
times the full scale input signal.
Š
The SX8722 is not only giving access to the very efficient ZoomingADC™ technology, it also gives access to a very low
power acquisition system entirely configurable to reach as low as 0.5uA in shutdown mode. The low power modes can be
reached through pins or specific serial commands.
Š
The whole chip is controlled by a set of registers; these registers have factory default settings and can be modified in 2
ways: the serial interface commands or an optional external EEPROM. At Startup the SX8722 checks for EEPROM
presence and updates its registers with EEPROM contents.
Š
The whole chip is working at 1.2MHz using its internal RC oscillator, this frequency can be calibrated.
Š
The clock calibration can be done using several methods: External 32.768 kHz XTAL, External 32.768 kHz reference
signal, or EEPROM parameter configuration.
Š
Several corrections can be applied on the measured signal such as different digital filters.
Š
The SX8722 offers two alarm pins. "on" and "off" thresholds can be set independently.
Š
A Clock out pin can be enabled to have the exact frequency of RC oscillator.
Š
External EEPROM and sensors can be biased by the dedicated SX8722 pins EE_POW and BIAS allowing the most
efficient power management.
Š
The pin READY is a single signal that can be used to interrupt the host microcontroller.
Š
The RESET pin enables the host system to reset the SX8722 to its startup settings at any time.
Š
The internal voltage multipliers is automatically enabled when working below 3 Volts.
Š
The SX8722 implements 4 configuration register sets. Each of these sets completely defines the behavior of the
ZoomingADC™. This allows the user to preset 4 different measurement configurations that can be activated by setting a
single bit.
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 17
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
The diagram below page explains the registers system more in details.
External EEPROM
Alarm pins
Alarms
10 + 16 bits ™
ZoomingADC
Registers
Measurement
Engine
Registers sets
Communication
Engine
Service pins
Filtering
Control &
Configuration
I2C
SX8722
Figure 5. Register sets system
The measurement engine copies the configuration register sets in the ZoomingADC™ physical registers and writes back the
conversion results.
The communication engine controls read/write access from the I2C or the external EEPROM.
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 18
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
5.3. ZoomingADC
The SX8722 core is the ZoomingADC™, the diagram below shows more in detail the architecture of this acquisition chain.
A
+
PGA1
0/12 to 127/12
+
+
PGA2
-
+
PGA3
-
-
-
-
-
+
-
VIN, ADC
+
ADC
MEASUREMENT
ENGINE
C
MUX
1
2
3
+
1 - 2 - 5 - 10
-
VIN
0
AR
1 - 10
+
fS
MUX
1
2
3
4
5
6
7
E
fS
0
AC
D
B
VREF
5/5
...
-5/5
63/12
...
-63/12
+
+
OFF2
OFF3
-
-
Figure 6. Acquisition chain architecture
The block schematic above is separated in function boxes:
A. Input multiplexers
ŠRouting of the input signal.
ŠRouting of the reference.
B. Programmable gain amplifiers
ŠCan be enabled/disabled separately.
ŠEach PGA has programmable gain from 1 to 10.
ŠTotal PGA gain available = PGA1 x PGA2 x PGA3 = 1000.
C. Offset cancellation
ŠSubtract or add a reference multiple to the input signal.
ŠCan compensate up to 15 times the full scale signal.
D. ADC
ŠSigma-Delta ADC.
ŠOffers several sampling frequencies.
ŠOver sampling rates and elementary conversion combinations allow setting the ideal resolution for the ideal conversion
time.
E. Measurement engine
ŠManages up to 4 ZoomingADC™ configurations.
ŠUpdates the measured values.
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 19
www.semtech.com
SX8722
High gain acquisition for sensor interface
ADVANCED COMMUNICATIONS & SENSING
DATASHEET
6. Access the SX8722
6.1. Description
The SX8722 is configured trough register sets and general control registers.
All the accesses to the SX8722 registers are done through the I2C interface using read and write commands.
The next paragraph describes two approaches to configure the SX8722
6.2. SX8722 configuration
As it will be shown in the next chapter there are two ways to write data in the SX8722 registers:
Š
Direct write: This command writes 8 bits to a defined address. This implies knowledge of the value to be written to this
address.
Š
Masked write: This command can write a single bit in a byte using a mask.
7. I2C Commands
This chapter describes the commands that are coded in the SX8722.
The SX8722 commands are summarized below, detailed timing diagrams can be found “Serial Communication” chapter.
Type
Command
Description
Byte
Data access
write_direct
Writes 8bit data to a given address
0x10
write_masked
Writes bits to given address using a given mask
0x20
read
Reads 8bit data from a given address
0x30
sleep
Sets the SX8722 to sleep mode
0x40
shutdown
Sets the SX8722 to sleep mode
0x50
reset
Resets the SX8722
0x60
save_eeprom
Saves the SX8722 registers in the external EEPROM (if present)
0x70
load_eeprom
Loads the SX8722 registers in the external EEPROM (if present)
0x80
Power modes
EEPROM
Table 4. SX8722 commands
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 20
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
8. Serial communication
The serial interface is a read-write 2 wire slave device. The SCL wire carries the clock information and SDA carries the data.
The output drivers on the bus are open drain current sinks.
The SCL wire is controlled by the master on the bus. Since the SX8722 is fairly slow, it may stretch the low clock phase
when required. The SDA wire is controlled by the master or the slave depending on the operation.
SDA only changes while the clock signal is low except for the (repeated) start or stop conditions.
The (repeated) start condition for the transmission is a high to low transition on SDA while SCL is high. The stop condition is
a low to high transition while SCL is high.
To read data from the SX8722, the master has to send successively a start bit, the slave address, a write bit. If the slave
address corresponds to the address of the SX8722 and the preceding operation is completed, the SX8722 sends an
acknowledge bit. The master then sends the read command which is acknowledged by the salve, the memory address that
it would like to read which is also acknowledged by the slave. The master issues a repeated start, repeats the slave address
and read bit. The slave acknowledges and returns the data to the master. The master terminates the communication by a
"not acknowledge" and a stop bit.
To write data to the SX8722, the format is very similar. Only the data direction is different and the acknowledgement of the
slave after the data reception.
8.1. Write data direct
The diagram below shows the write operation.
S
T
A
R
T
W
R
I
T
E
DEVICE
ADDRESS
REGISTER
ADDRESS
COMMAND
S
T
O
P
REGISTER
VALUE
SDA
M
S
B
L
S
B
A
C
K
A
C
K
A
C
K
A
C
K
Figure 7. I2C frame: write register, command 0x10
The diagram below shows the write operation at successive addresses (burst mode)
S
T
A
R
T
W
R
I
T
E
DEVICE
ADDRESS
REGISTER
ADDRESS
COMMAND
REGISTER
VALUE (n)
S
T
O
P
REGISTER
VALUE (n + x)
SDA
M
S
B
L
S
B
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
Figure 8. I2C frame: write burst register, command 0x10
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 21
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
8.2. Write data masked
The diagram below show the write masked operation.
S
T
A
R
T
W
R
I
T
E
DEVICE
ADDRESS
REGISTER
ADDRESS
COMMAND
REGISTER
VALUE
S
T
O
P
REGISTER MASK
SDA
A
C
K
L
S
B
M
S
B
A
C
K
A
C
K
A
C
K
A
C
K
Figure 9. I2C frame: write mask register, command 0x20
8.3. Read data
Read data diagram.
S
T
A
R
T
W
R
I
T
E
DEVICE
ADDRESS
R
E
S
T
A
R
T
REGISTER
ADDRESS
COMMAND
DEVICE
ADDRESS
R
E
A
D
S
T
O
P
REGISTER
VALUE
SDA
M
S
B
L
S
B
A
C
K
N
O
A
C
K
A
C
K
A
C
K
A
C
K
Figure 10. I2C frame: read register, command : 0x30
Read data diagram successive addresses (burst mode)
S
T
A
R
T
W
R
I
T
E
DEVICE
ADDRESS
R
E
S
T
A
R
T
REGISTER
ADDRESS
COMMAND
DEVICE
ADDRESS
R
E
A
D
REGISTER
VALUE (n)
S
T
O
P
REGISTER
VALUE (n+x)
SDA
M
S
B
L
S
B
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
N
O
A
C
K
Figure 11. I2C frame: read burst register, command 0x30
Note:
If a read sequence is initiated without sending previously an address, the data shifted out will be the latest conversion result and
its corresponding configuration ID (24 bits). See next page for more information.
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 22
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
8.4. Other commands
The diagram below shows the other commands syntax.
S
T
A
R
T
W
R
I
T
E
DEVICE
ADDRESS
S
T
O
P
COMMAND
SDA
L
S
B
M
S
B
A
C
K
A
C
K
Figure 12. I2C frame: other commands, 0x40 - 0x80
8.5. Unknown commands
The SX8722 does not answer to unknown commands.
8.6. Reading data after a measurement.
The SX8722 performs measurements successively and stores the latest results in the enabled configurations data out
registers.
Every time a measurement is performed the pin READY makes a positive pulse allowing the host microcontroller to retrieve
data from the SX8722.
When the SX8722 is addressed and read the output is as shown below. Config ID indicates which channel is shifted out.
S
T
A
R
T
R
E
A
D
DEVICE
ADDRESS
R
E
S
T
A
R
T
DATA MSB
CONFIG ID
S
T
O
P
DATA LSB
SDA
M
S
B
L
S
B
A
C
K
A
C
K
A
C
K
N
O
A
C
K
Figure 13. I2C frame: reading after a measurement
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 23
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
9. Predefined settings
9.1. Introduction
This chapter intends to ease the handling of the SX8722 using a set of predefined settings.
These settings are covering a large range of the SX8722 possibilities.
However to avoid too much complexity some features are not handled by these settings.
A more detailed use of the SX8722 can be found under the "advanced configuration" of this document.
This chapter contains predefined command using the masked write mode.
All the settings described in this chapter use the addresses of the 1st configuration register set, use the registers definition
table to translate them to other register sets.
9.2. Features covered by predefined settings
A
+
PGA1
+
+
PGA2
-
+
PGA3
-
+
-
VIN, ADC
+
-
-
ADC
MEASUREMENT
ENGINE
-
+
C
MUX
1
2
3
0/12 to 127/12
1 - 2 - 5 - 10
+
VIN
0
AR
1 - 10
-
fS
MUX
1
2
3
4
5
6
7
E
fS
0
AC
D
B
63/12
...
-63/12
5/5
...
-5/5
VREF
+
+
OFF2
-
OFF3
-
Figure 14. Features covered by predefined settings
The block schematic above shows the functions covered and controlled by the predefined settings set.
It includes:
A. The input multiplexers
B. The programmable gain amplifiers
C. The offset cancellation
D. The ADC
E. The Measurement engine
Note:
Grayed out blocks in the schematic means that they are used in the current function.
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 24
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
9.3. Input multiplexers
9.3.1. Overview
A
+
+
PGA2
-
-
VIN, ADC
+
+
PGA3
-
-
-
+
PGA1
+
ADC
MEASUREMENT
ENGINE
-
+
0/12 to 127/12
+
MUX
1
2
3
1 - 2 - 5 - 10
C
0
AR
VIN
1 - 10
-
fS
MUX
1
2
3
4
5
6
7
E
fS
0
AC
D
B
VREF
5/5
...
-5/5
63/12
...
-63/12
+
+
OFF2
OFF3
-
-
Figure 15. Input multiplexer overview
The diagram above shows the input multiplexer organization; these are enabling the selection of both the input and the
reference sources.
9.3.2. Input channel selection
The following settings allow configuring the input multiplexers of the ZoomingADC™
Function
Address
Data
Mask
AC0 - AC1
0x0F
0x00
0x06
AC2 - AC3
0x02
AC4 - AC5
0x04
AC6 - AC7
0x06
Table 5. Differential mode
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 25
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
.
Function
Address
Data
Mask
AC0 - AC1
0x0F
0x22
0x2E
AC0 - AC2
0x24
AC0 - AC3
0x26
AC0 - AC4
0x28
AC0 - AC5
0x2A
AC0 - AC6
0x2B
AC0 - AC7
0x2C
Table 6. Single-ended mode
Function
Address
Data
Mask
Sign inversion
0x0F
0x10
0x10
Table 7. Invert input polarity
9.3.3. Reference channel selection
Function
Address
Data
Mask
AR1P - AR1N
0x0F
0x00
0x01
AR2P - AR2N
0x01
Table 8. Reference channel selection
9.3.4. Application example
In this example we want to measure a signal between AC0 and AC1 in single ended having a reference voltage between
AR1P and AR1N.
The following settings must be sent to SX8722:
Function
Address
Data
Mask
Set input to
AC1 - AC2
0x0F
0x00
0x06
Set reference to
AR1P - AR1N
0x0F
0x00
0x01
Table 9. Reference channel selection
Note:
This command can be optimized, since the reference and input setting are sharing the same address the mask and the settings
can be added.
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 26
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
The following command shows the optimized way
Function
Address
Data
Mask
Set input to
AC1 - AC0,
set reference to
AR1P - AR1N
0x0F
0x00
0x07
Table 10. Optimized command
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 27
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
9.4. Programmable gain amplifier settings
9.4.1. Overview
A
fS
MUX
1
2
3
1 - 2 - 5 - 10
0/12 to 127/12
VIN, ADC
+
+
PGA2
-
+
-
-
-
+
-
+
PGA3
-
PGA1
+
ADC
MEASUREMENT
ENGINE
-
+
C
0
AR
VIN
1 - 10
+
MUX
1
2
3
4
5
6
7
E
fS
0
AC
D
B
VREF
5/5
...
-5/5
+
63/12
...
-63/12
+
OFF2
-
OFF3
-
Figure 16. Programmable gain amplifiers (PGA) in the acquisition chain
The diagram above shows the programmable gain amplifier organization, these are 3 PGA that are cascaded, the gain is
made by multiplying them (disabled PGAs have the equivalent gain of 1).
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 28
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
9.4.2. Configuration flow
The diagram below shows the flow to set the gain of your configuration:
Set gain
Gain < 10 ?
No
Gain < 100 ?
No
Enable PGA1,2&3
Yes
Yes
Enable PGA3
Enable PGA2&3
Set PGA 1 gain
Set PGA 3 gain
Set PGA 2 gain
Set PGA 2 gain
Set PGA 3 gain
Set PGA 3 gain
GAIN =
PGA2 x PGA3
GAIN =
PGA1 x PGA2 x PGA3
GAIN = PGA3
End
Figure 17. Gain configuration flowchart
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 29
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
9.4.3. Enable/disable PGAs
Function
Enable PGA3
Address
Data
Mask
0x0B
0x08
0x08
Disable PGA3
0x00
Enable PGA2&3
0x0A
Disable PGA2&3
0x00
Enable PGA1,2&3
0x0E
Disable PGA1,2&3
0x00
0x0A
0x0E
Table 11. PGA enable/disable settings
9.4.4. PGA3 gain configuration
Function
Gain = 1
Address
Data
Mask
0x0D
0x0C
0x7F
Gain = 2
0x18
Gain = 3
0x24
Gain = 4
0x30
Gain = 5
0x3C
Gain = 6
0x48
Gain = 7
0x54
Gain = 8
0x60
Gain = 9
0x6C
Gain = 10
0x78
Table 12. PGA3 gain configuration
9.4.5. PGA2 gain configuration
Function
Gain = 1
Address
Data
Mask
0x0C
0x00
0x30
Gain = 2
0x10
Gain = 5
0x20
Gain = 10
0x30
Table 13. PGA2 gain configuration
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 30
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
9.4.6. PGA1 gain configuration
Function
Gain = 1
Address
Data
Mask
0x0D
0x00
0x80
Gain = 10
0x80
Table 14. PGA1 gain configuration
9.4.7. Application example
The total gain to set in this example is 300.
The following settings must be sent to SX8722:
Function
Address
Data
Mask
Enable PGA1,2&3
0x0B
0x0E
0x0E
PGA3 gain = 3
0x0D
0x24
0x7F
PGA2 gain = 10
0x0C
0x30
0x30
PGA1 gain = 10
0x0D
0x80
0x80
Table 15. Application example of PGA gain settings
Note:
This command can be optimized, since PGA1 and PGA3 gains are sharing the same address the mask and the settings can be
added.
The following list of settings shows the optimized
Function
Address
Data
Mask
Enable PGA1,2&3
0x0B
0x0E
0x0E
PGA3 gain = 3,
PGA1 gain = 10
0x0D
0xA4
0xFF
PGA2 gain = 10
0x0D
0x80
0x30
Table 16. Optimized command of PGA gain settings
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 31
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
9.5. Offset cancellation
9.5.1. Overview
A
D
B
fS
0/12 to 127/12
+
+
PGA2
-
VIN, ADC
+
+
PGA3
-
-
-
-
+
PGA1
+
ADC
MEASUREMENT
ENGINE
-
+
1 - 2 - 5 - 10
C
MUX
0
1
2
3
AR
VIN
1 - 10
+
MUX
AC
fS
-
0
1
2
3
4
5
6
7
E
VREF
5/5
...
-5/5
63/12
...
-63/12
+
+
OFF2
OFF3
-
-
Figure 18. Offset cancellation in the acquisition chain
The offset cancellation consists in adding or subtracting a fraction or a multiple of the reference to the signal before the ADC
input.
In the predefined settings only the addition or the subtraction of VREF/2 is implemented.
More offsets configuration can be defined using the "advanced configuration" at the end of this document.
The drawings below explain the offset concept.
(AC1 – AC0)
Vin ADC
Vref / 2
Vref / 2
t
0
t
GAIN x2
- Vref / 2
0
- Vref / 2
Figure 19. Differential signal
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 32
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
(AC1 – AC0)
Vin ADC
Vref
Vref / 2
t
0
OFFSET 0.5 x Vref
t
- Vref / 2
0
Figure 20. Single ended signal, AC0 = VSS
The following settings add 0.5 x VREF or subtract 0.5 x VREFfrom the signal.
Function
Offset 3 = 0.5 x
VREF
Address
Data
Mask
0x0E
0x06
0x7F
Offset 3 = -0.5 x
VREF
0x46
Table 17. Example: Adding or remove 0.5 x Vref
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 33
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
9.5.2. Application example
Case 1
Input signal = VREF / 2
Input selection = AC0 - AC1. (see "input multiplexers" chapter)
Offset to remove is VREF / 2.
The following command must be sent to SX8722:
Function
Address
Data
Mask
Offset 3 = 0.5 x VREF
0x0E
0x06
0x7F
Case 2
Input signal = VREF
Input selection = AC0 - AC1. (see "input multiplexers" chapter)
Offset to remove is -VREF / 2.
The following command must be sent to SX8722:
Function
ACS - Revision 4.2
©2008 Semtech Corp.
Address
Data
Mask
Offset 3 = -0.5 x VREF
0x0E
0x46
0x7F
October 2008
Page 34
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
9.6. ADC parameters
9.6.1. Overview
A
+
PGA1
+
+
PGA2
-
-
VIN, ADC
+
+
ADC
PGA3
-
-
-
-
-
+
MUX
1
2
3
+
0/12 to 127/12
MEASUREMENT
ENGINE
C
0
AR
1 - 2 - 5 - 10
-
VIN
1 - 10
+
fS
MUX
1
2
3
4
5
6
7
E
fS
0
AC
D
B
5/5
...
-5/5
VREF
63/12
...
-63/12
+
+
OFF2
OFF3
-
-
Table 18 ADC in the acquisition chain
The ADC parameters are mainly the resolution and acquisition speed.
Detailed ADC parameters and configuration can be found in the "advanced configuration" chapter
The table below gives the main configurations available using the predefined settings and their main characteristics:
Name
Resolution
[bits]
Conversion time
[ms] (typ)
Sampling
frequency [kHz]
(typ)
Oversampling
ratio
Number of
elementary
conversion
Comments
S16
16
27.3
300
1024
8
Maximum resolution, thermal
noise reduced to its minimum
N16
16
6.8
1024
2
Standard 16 bits resolution
F16
16
3.4
1024
1
Fastest 16 bits resolution
N12
12
0.22
64
1
Standard 12 bits resolution
N8
8
0.06
16
1
Standard 8 bits resolution
Table 19. ADC predefined settings
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 35
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
9.6.2. ADC settings
Function
Address
Data
Mask
S16
0x0C
0x7C
0x7C
N16
0x3C
F16
0x1C
N12
0x0C
N8
0x04
Table 20. ADC register settings
9.7. Measurement engine
9.7.1. Overview
A
D
B
fS
+
PGA2
-
-
VIN, ADC
+
+
PGA3
-
-
-
+
PGA1
+
ADC
MEASUREMENT
ENGINE
-
+
+
MUX
+
63/12
...
-63/12
5/5
...
-5/5
MUX
1
2
3
VIN
0/12 to 127/12
1 - 2 - 5 - 10
C
0
AR
1 - 10
fS
-
0
AC
1
2
3
4
5
6
7
E
VREF
+
+
OFF2
-
OFF3
-
Figure 21. Measurement engine
The measurement engine manages the configuration register sets and controls registers contents.
Based on these parameters it configures the ZoomingADC™, supervises post processing of the measurements, stores the
results and flags the READY signal.
Once enabled the configuration 1 will be applied to the ZoomingADC™ and measurement will be done until the configuration
is disabled using the disable command.
Note:
All the predefined settings refer to configuration 1, to change other configurations simply adapt the address value.
More detailed functionalities are described in “Advanced configuration” chapter.
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 36
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
9.7.2. Measurement engine settings
Application
Configuration 1 enabled
Address
Data
Mask
0x02
0x01
0x01
Configuration 1 disabled
0x00
Table 21. Measurement engine settings
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 37
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
10. Default configuration
The SX8722 default configuration is described in this chapter.
The SX8722 default hardware configuration is as follow:
1uF Vreg capacitor connected to Vreg pin
EE_SDA connected to ground
3.0 - 5.0 power supply on Vbat, 0V on GND
Wheatstone bridge type sensor connected to AC0-AC1 biased through bias pin
VRef = VBias = VBat
Host micro controller I2C connected to SDA and SCL of the SX8722
EE_SCL
EE_SDA
Host micro controller GPIO connected to RESET input of the SX8722
EE_POW
Š
Š
Š
Š
Š
Š
Š
SX8722
VBATT
VBATT
GND
ALRM1
BIAS
ALRM2
TM
ZoomingADC
REF MUX
AR1P
AR1N
AR2P
AR2N
CONTROL
CAL
RESET
I2C
AC7
SCL
SDA
SIGNAL MUX
AC6
Differential
AC5
AC4
AC3
AC2
AC1
MCU
READY
PGA
SCL
SDA
GPIO
XIN
ADC
OSC
XOUT
CKOUT
AC0
SLEEP
SHUT
POST-PROCESS
POWER
VREG
VMULT
Figure 22. Schematic of the default configuration
Note:
Startup conditions Reset = ‘0’
10.1. ZoomingADC default settings
The SX8722 starts upon a power on reset and then goes into measurement mode.
By default the measurement mode parameters are as follows:
Differential measurement on channel AC0 - AC1, gain 1, 16 bits resolution, reference on AR1P - AR1N, no filtering,
continuous measurements.
The READY pin will pulse from "0" to "1" at every sample available. The host microcontroller can then read the data.
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 38
www.semtech.com
SX8722
High gain acquisition for sensor interface
ADVANCED COMMUNICATIONS & SENSING
DATASHEET
11. Advanced configuration
11.1. Overview
The advanced configuration section is entering more in depth in the SX8722 usage. In this section you will find:
Š
Š
Š
Š
Š
Š
Š
Š
Š
Measurement engine
Configuration control
Filtering
Alarms
I2C EEPROM
Using the SX8722 Stand alone
Calibration process
Working below 3 Volts
Control registers
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 39
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
11.2. Measurement engine
11.2.1. Overview
The measurement engine is the interface between the configuration register sets and the ZoomingADC™.
11.2.2. Functional flowchart
Measure conf n
START
RESET / Power on reset
Configure
ZoomingADC
using configuration
n parameters
Initialization,
EEPROM Load
Read Enabled
Configurations
[SXCtrlEn]
CONT bit ?
START conversion
Wait for
YES
conversion to finish
Idle mode
Conf 1?
Conf 2 ?
Conf 3?
Conf 4?
(Idle mode)
Store intermediate
values
Mcounter + 1
Mcounter
=
NAverage?
YES
Measure conf 1
YES
YES
Measure conf 2
Compute average
Store result in
configuration n
OUT registers
Measure conf 3
Clear SINGLE bit
YES
Measure conf 4
Update [SXUpdated n]
Set READY bit
Measure conf n
END
Figure 23. Measurement engine flowchart
The flowchart above shows the measurement engine function. It performs successively the measurements for each enabled
configuration.
If in one or more configurations the bit CONT is set to 1, the measurements are performed again until the CONT bit is set to
0 through the I2C interface.
The engine goes out from the Idle mode every time an event occurs on the I2C interface.
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 40
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
11.3. Control registers
The parameters available on these registers affect the whole SX8722 and are common to all configuration register sets.
11.3.1. SXCtrl1 - SX8722 Control register 1
Register
7
6
5
4
3
2
1
0
SXCtrl1
EE_D
XTAL_D
CKOUT
reserved
EE
SLEEP
SHUT
CAL
Table 22. Control register; address 0x00
Bit
SXCtrl1
rw
Reset
Description
7
EE_D
r
x
Indicates if an EEPROM was detected at startup
6
XTAL_D
r
x
Indicates if an XTAL was detected at startup
5
CKOUT
rw
0
Enabled the clock output on CKOUT pin
4
RESERVED
rw
0
3
EE
r
0
Is set to 1 when SX8722 loaded its configuration from the
EEPROM at startup
2
SLEEP
rw
0
When set to 1 his bit activates the Sleep mode of the SX8722.
Setting pin SLEEP to 1 has the same effect.
1
SHUT
rw
0
When set to 1 his bit activates the Shutdown mode of the
SX8722. Setting pin SHUT to 1 has the same effect.
0
CAL
r
0
This flag shows if the SX8722 clock has been successfully
calibrated.
11.3.2. SXCtrl2 - SX8722 Control register 2
Register
7
6
5
4
3
2
1
0
SXCtrl2
reserved
reserved
reserved
reserved
AL1OnC
AL1OffC
AL2OnC
AL2OffC
Table 23. Control register 2; address 0x01
Note:
Bit
SXCtrl1
rw
Reset
Description
3
AL1OnC
rw
0
Sets the logical condition for alarm 1 on (0 = OR, 1 = AND)
2
AL1OffC
rw
0
Sets the logical condition for alarm 1 on (0 = OR, 1 = AND)
1
AL2OnC
rw
0
Sets the logical condition for alarm 1 on (0 = OR, 1 = AND)
0
AL2OffC
rw
0
Sets the logical condition for alarm 1 on (0 = OR, 1 = AND)
More information about the alarms condition usage on Alarm section
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 41
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
11.3.3. SXCfgEn - Configuration enabling register
Writing this register allows enabling or disabling the different configuration register sets.
Note:
When the configuration is set to SINGLE, the bit CONFx is cleared automatically after the measurement is done.
Register
7
6
5
4
3
2
1
0
SXCfgEn
reserved
reserved
reserved
reserved
CONF4
CONF3
CONF2
CONF1
Table 24. Configuration enabling register; address 0x02
11.3.4. SXUpdated - Updated configuration register
The configuration update registers contain which configuration has been updated by a measurement result.
Register
7
6
5
4
3
2
1
0
SXUpdated
OVF4
OVF3
OVF2
OVF1
UCONF4
UCONF3
UCONF2
UCONF1
Table 25. Updated configuration register; address 0x03
These bits are set to 1 every time a measurement is done on one of the 4 configurations. When the registers are read, these
bits are set back to 0 by the communication engine, the bits 4 to 7 indicates an overflow.
11.3.5. Configuration register - measurement mode
This register is present in each configuration; the bits 0 & 1 are controlling the measurement mode.
Register
7
CxSXCfg
reserved
6
5
4
FILTER TYPE[2:0]
3
2
1
0
ALRM1
ALRM2
SINGLE
CONT
Table 26. Measurement mode in configuration registers; addresses 0x10, 0x30, 0x50, 0x70
The bit SINGLE is set by the user, once the measurement is done; the measurement engine clears the CONF bit of the
configuration.
The bit CONT is set by the user, the measurement is done continuously until this bit is cleared by the user.
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 42
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
11.4. Filtering
11.4.1. Filter types
There are 2 different filtering types:
1. Average filtering.
2. Moving average filtering.
The average filtering is an addition of n values divided by n, this kind of filter is useful when having a very noisy signal; the
maximum average value is 256.
Advantage: Reduces noise due to the high quantity of samples.
Disadvantage: Takes the acquisition time of n samples to have a result.
The sliding window averaging is a filter that takes the n last measurements and gives the mean value of them.
Š
Š
Advantage: result on each acquisition.
Disadvantage: limited at ten samples. Additional delay.
Important note:
The ADC filtering is faster, these additional filters should be used only if the number of conversion (NELCONV)
and the over sampling rate (OSR) are set to their maximum.
11.4.2. Configuration register - filtering
This register is present in each configuration; the bits 4 to 6 are controlling the filtering mode.
Register
7
CxSXCfg
reserved
6
5
4
FILTER TYPE[2:0]
3
2
1
0
ALRM1
ALRM2
SINGLE
CONT
Table 27. Filtering mode in configuration registers; addresses 0x10, 0x30, 0x50, 0x70
The table below shows the filter selection.
Filter type [6:4]
Code
Mode
000
none
001
average filtering
010
moving average filtering
011
reserved
Table 28. Filter selection
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 43
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
11.4.3. Filter size register
This register is present in each configuration; the bits 0 to 7 are controlling the filter size.
Register
7
6
5
4
CxFParam
3
2
1
0
Filter size [7:0]
Table 29. Filter size registers; addresses 0x11, 0x31, 0x51, 0x71
This register contains the number of samples used for the filtering.
Note that for a moving average filtering, this number is limited to 10.
(Putting a higher value will be interpreted as 10.)
11.5. Alarms
The SX8722 offers two alarms pins that have configurable on & off thresholds; these thresholds are on 16 bits.
Each configuration register set has 2 alarms, which can be enabled, when more than one configuration is using the same
alarm pin, logical function is interacting between the two alarms sources. This condition can be a logical OR (default) or a
logical AND.
11.5.1. Configuration register - alarms
The bits 2 & 3 enable the alarm 1 & 2 when set to 1.
Register
7
6
CxSXCfg
reserved
5
4
FILTER TYPE [2:0]
3
2
1
0
ALRM1
ALRM2
SINGLE
CONT
Table 30. Alarm enabling in configuration registers; addresses 0x10, 0x30, 0x50, 0x70
11.5.2. Alarm threshold registers
Registers
7
6
5
4
3
CxAlrm1OnMsb
S1ALRM1ON
CxAlrm1OnLsb
S1ALRM1ON
CxAlrm1OffMsb
S1ALRM1OFF
CxAlrm1OffLsb
S1ALRM1OFF
CxAlrm2OnMsb
S1ALRM2ON
CxAlrm2OnLsb
S1ALRM2ON
CxAlrm2OffMsb
S1ALRM2OFF
CxAlrm2OffLsb
S1ALRM2OFF
2
1
0
Table 31. Alarm threshold registers; addresses 0x12 to 0x19, 0x32 to 0x39, 0x52 to 0x59 and 0x72 to 0x79
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 44
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
11.5.3. SXCtrl2 - SX8722 Control register 2
This register is common to all configurations; it sets the relationship between the different alarm sources.
Register
7
6
5
4
3
2
1
0
SXCtrl2
reserved
reserved
reserved
reserved
AL1OnC
AL1OffC
AL2OnC
AL2OffC
Table 32. Alarm sources in Control register 2; address 0x02
When set to 1 the condition is AND and when set to 0 the condition is OR.
The diagram below shows the interaction between alarms sources.
Al1OnC
Configuration 1 Alarm1 on threshold reached ?
Configuration 2 Alarm1 on threshold reached ?
Configuration 3 Alarm1 on threshold reached ?
Configuration 4 Alarm1 on threshold reached ?
Alarm1 on flag set
A l1OffC
Configuration 1 Alarm1 off threshold reached ?
Configuration 2 Alarm1 off threshold reached ?
Configuration 3 Alarm1 off threshold reached ?
Configuration 4 Alarm1 off threshold reached ?
Alarm1 off flag set
Figure 24. Alarms sources interaction
The flowchart below shows the management of the alarms flag (when at least one alarm is on).
Alarm Mgmt
Alarm1 on flag
set ?
Set Alarm 1 pin to « 1 »
Alarm1 off flag
set?
Set Alarm 1 pin to « 0 »
Alarm Mgmt End
Figure 25. Alarms flag managment
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 45
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
11.6. I2C EEPROM
11.6.1. Overview
The SX8722 can interface a Standard I2C EEPROM. This allows:
Š
Š
Š
Stand alone usage.
Parameters saving by save command.
Parameters restore by load command.
The EE_POW pin allows the SX8722 to power the EEPROM in order to guarantee the lowest power having the EEPROM
unpowered when unused.
When no EEPROM is used, the EE_SDA pin must be tied to ground.
11.6.2. Schematic
The schematic below shows the connections using standard I2C EEPPROM.
SCL
SDA
EE_SCL
EE_SDA
GND
VBATT
EE_POW
EEPROM
SX8722
VBATT
VBATT
GND
ALRM1
BIAS
ALRM2
AR2P
AR2N
ZoomingADC
REF MUX
AR1P
AR1N
TM
CONTROL
CAL
RESET
I 2C
AC7
SCL
SDA
AC5
AC4
AC3
AC2
AC1
SIGNAL MUX
AC6
Differential
MCU
READY
PGA
SCL
SDA
GPIO
XIN
ADC
OSC
XOUT
CKOUT
AC0
SLEEP
SHUT
POST-PROCESS
POWER
VREG
VMULT
Figure 26. EEPROM connection
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 46
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
11.7. Using the SX8722 Stand alone
The SX8722 can be used stand alone to monitor signals and to generate alarms on configured thresholds.
Using a preprogrammed EEPROM allows the setup of these monitoring tasks.
11.7.1. Schematic
The schematic below shows an example of a stand alone configuration.
SCL
SDA
EE_SCL
EE_SDA
GND
VBATT
EE_POW
EEPROM
SX8722
5V
VBATT
GND
12V
L1 L2 L3
ALRM1
BIAS
ALRM2
AR2P
AR2N
ZoomingADC
REF MUX
AR1P
AR1N
TM
CONTROL
CAL
RESET
READY
I2C
AC7
SCL
SDA
Differential
AC5
AC4
AC3
AC2
AC1
SIGNAL MUX
AC6
PGA
XIN
ADC
OSC
XOUT
CKOUT
AC0
SLEEP
SHUT
POWER
POST-PROCESS
VREG
VMULT
Figure 27. Example of stand alone configuration
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 47
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
11.8. Frequency calibration process
11.8.1. Overview
The SX8722 has an internal RC Oscillator working at 1.2 MHz +/- 600kHz. The calibration is optional. The main reason to
calibrate the RC frequency is to fix the input impedance of the acquisition chain, function of the RC frequency.
This frequency can be calibrated using 2 methods.
Š
Š
32.768 kHz Xtal
Input of a 32.768 kHz signal on the CAL pin.
11.8.2. Using an 32.768 kHz XTAL
EE_SCL
EE_SDA
EE_POW
When the SX8722 is connected to a 32.768 XTAL between XIN & XOUT, the CAL pin must be grounded. This indicates to
SX8722 that an XTAL is present and allows frequency auto-calibration at power on.
SX8722
5V
VBATT
VBATT
GND
ALRM1
BIAS
ALRM2
AR2P
AR2N
ZoomingADC
REF MUX
AR1P
AR1N
TM
CONTROL
CAL
MCU
RESET
READY
I2C
AC7
SCL
SDA
GPIO
SCL
SDA
Differential
AC5
AC4
AC3
AC2
AC1
SIGNAL MUX
AC6
PGA
XIN
ADC
OSC
XOUT
32’768 Hz
CKOUT
AC0
SLEEP
SHUT
POWER
POST-PROCESS
VREG
VMULT
Figure 28. Calibration : using a 32’768 Hz XTAL
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 48
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
11.8.3. Using a 32.768 kHz External clock source
EE_SCL
EE_SDA
EE_POW
The host microcontroller can at any time send a 32.768kHz signal on CAL pin, the detection of a rising edge on the this pin
initiates a calibration process. When the chip is calibrated, the pin READY rises to high level.
SX8722
VBATT
VBATT
GND
ALRM1
BIAS
ALRM2
AR2P
AR2N
ZoomingADC
REF MUX
AR1P
AR1N
TM
CONTROL
CAL
RESET
READY
I2C
AC7
SCL
SDA
32’768 Hz
GPIO
MCU
GPIO
GPIO
SCL
SDA
AC5
AC4
AC3
AC2
AC1
SIGNAL MUX
AC6
Differential
PGA
XIN
ADC
OSC
XOUT
CKOUT
AC0
SLEEP
SHUT
POWER
POST-PROCESS
VREG
VMULT
Figure 29. Calibration : using a 32’768 Hz signal
NOTE:
If an external EEPROM is present, the calibration value is saved in it.
The tolerance signal must remain around 32.768 kHz +/- 10%
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 49
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
11.9. Working below 3 V
11.9.1. Operating range
The SX8722 operating range is 5.5 Volts downto 2.4 Volts. However, below 3 Volts the SX8722 enables an internal voltage
multiplier to power the ZoomingADC™.
11.9.2. Internal voltage multiplier
This internal voltage multiplier is automatically enabled when the power supply goes below 3 Volts but the internal voltage
multiplier requires an external capacitor between VMULT pin and ground, the value of this capacitor must be between 1 and
3 nF.
11.9.3. Schematic
EE_SCL
EE_SDA
EE_POW
The schematic below shows the capacitor connection:
SX8722
Vbatt < 3V
VBATT
VBATT
GND
ALRM1
BIAS
ALRM2
TM
AR1N
AR2P
AR2N
ZoomingADC
REF MUX
AR1P
CONTROL
CAL
MCU
RESET
I2C
AC7
READY
GPIO
SCL
SCL
SDA
GPIO
SDA
Differential
AC5
AC4
AC3
AC2
AC1
SIGNAL MUX
AC6
PGA
XIN
ADC
OSC
XOUT
CKOUT
AC0
SLEEP
SHUT
POWER
POST-PROCESS
VREG
VMULT
2 nF
Figure 30. SX8722 working below 3V schematic
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 50
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
12. ZoomingADC
12.1. ZoomingADC Features
The ZoomingADC is a complete and versatile low-power analog front-end interface typically intended for sensing
applications.
The key features of the ZoomingADC are:
Š
Š
Š
Š
Š
Š
Programmable 6 to 16-bit dynamic range oversampled ADC
Flexible gain programming between 0.5 and 1000
Flexible and large range offset compensation
4-channel differential or 8-channel single-ended input multiplexer
2-channel differential reference inputs
Power saving modes
12.1.1. Overview
fS
0
fS
+
PGA2
-
VREF
MUX
1
2
3
+
-
VIN, ADC
+
+
PGA3
-
-
+
-
+
PGA1
0
AR
+
ADC
16 bits
-
+
-
VIN
+
MUX
AC
1
2
3
4
5
6
7
+
OFF2
OFF3
-
-
Figure 31. ZoomingADC general functional block diagram
The total acquisition chain consists of an input multiplexer, 3 programmable gain amplifier stages and an oversampled A/D
converter. The reference voltage can be selected on two different channels. Two offset compensation amplifiers allow for a
wide offset compensation range. The programmable gain and offset allow to zoom in on a small portion of the reference
voltage defined input range.
12.2. Acquisition Chain
The figure above shows the general block diagram of the acquisition chain (AC).
Analog inputs can be selected among eight input channels, while reference input is selected between two differential
channels.
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 51
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
The core of the zooming section is made of three differential programmable amplifiers (PGA). After selection of a
combination of input and reference signals VIN and VREF, the input voltage is modulated and amplified through stages 1 to 3.
Fine gain programming up to 1'000V/V is possible. In addition, the last two stages provide programmable offset. Each
amplifier can be bypassed if needed.
The output of the PGA stages is directly fed to the analog-to-digital converter (ADC), which converts the signal VIN,ADC into
digital.
Like most ADCs intended for instrumentation or sensing applications, the ZoomingADC is an over-sampled converter (See
Note1). The ADC is a so-called incremental converter with bipolar operation (the ADC accepts both positive and negative
input voltages). In first approximation, the ADC output result relative to full-scale (FS) delivers the quantity:
OUTADC VIN , ADC
≅
FS / 2
VREF / 2
(Eq. 1)
in two's complement (see Section 12.8.7 for details). The output code OUTADC is -FS/2 to +FS/2 for VIN,ADC, -VREF/2 to
+VREF/2 respectively. As will be shown in section 0, VIN,ADC is related to input voltage VIN by the relationship:
[V]
VIN , ADC = GDTOT ⋅ VIN − GDoff TOT ⋅ VREF
(Eq. 2)
where GDTOT is the total PGA gain, and GDoffTOT is the total PGA offset.
Note:
Over-sampled converters are operated with a sampling frequency fS much higher than the input signal's Nyquist rate (typically fS
is 20-1'000 times the input signal bandwidth). The sampling frequency to throughput ratio is large (typically 10-500). These
converters include digital decimation filtering. They are mainly used for high resolution, and/or low-to-medium speed applications.
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 52
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
12.3. ZoomingADC Detailed block diagram
INPUTS
fS
1
2
3
MUX
0
AR
VIN, ADC
+
+
+
PGA2
-
-
VREF
+
+
-
-
ADC
PGA3
-
-
+
PGA1
+
-
VIN
+
MUX
fS
+
-
0
AC
1
2
3
4
5
6
7
+
OFF2
OFF3
-
-
Acquisition chain
Register bank
CxAdcReg6
CxAdcReg5
CxAdcReg4
CxDataOutMsb
CxAdcReg3
CxDataOutLsb
CxAdcReg2
Sampling frequency fs
CxAdcReg1
Power Saving Modes
PGA Enabling
Nb of elementary cycles
Oversampling ratio
Figure 32. ZoomingADC detailed functional block diagram
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 53
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
12.4. ZoomingADC register map
There are six registers in the acquisition chain (AC), namely CxZadcReg1, CxZadcReg2, CxZadcReg3, CxZadcReg4,
CxZadcReg5 and CxZadcReg6. Tables below shows the mapping of control bits and functionality of these registers while
Table 33 gives an overview of these six.
The register map only gives a short description of the different configuration bits. More detailed information is found in
subsequent sections.
Registers
Addresses
CxZadcReg1
0x0A - 0x2A - 0x4A - 0x6A
CxZadcReg2
0x0B - 0x2B - 0x4B - 0x6B
CxZadcReg3
0x0C - 0x2C - 0x4C - 0x6C
CxZadcReg4
0x0D - 0x2D - 0x4D - 0x6D
CxZadcReg5
0x0E - 0x2E - 0x4E - 0x6E
CxZadcReg6
0x0F - 0x2F - 0x4F - 0x6F
Table 33. ADC settings registers
Bit
CxZadcReg1
rw
Reset
Description
7
reserved
rw
0
6:5
SET_NELCONV [1:0]
rw
01
Sets the number of elementary conversions
4:2
SET_OSR [2:0]
rw
010
sets the oversampling rate of an elementary conversion
1
reserved
rw
0
0
reserved
rw
0
Table 34. CxZadcReg1; addresses 0x0A - 0x2A - 0x4A - 0x6A
Bit
CxZadcReg2
rw
Reset
Description
7:6
IB_AMP_ADC[1:0]
rw
11
Bias current selection of the A/D converter
5:4
IB_AMP_PGA[1:0]
rw
11
Bias current selection of the PGA stages
3:0
ENABLE[3:0]
rw
0000
Enabled the different PGA stages and the ADC
Table 35. CxZadcReg2; addresses 0x0B - 0x2B - 0x4B - 0x6B
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 54
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
Bit
CxZadcReg3
rw
Reset
Description
7:6
FIN[1:0]
rw
00
Sampling frequency selection
5:4
PGA2_PGA[1:0]
rw
00
PGA2 stage gain selection
3:0
PGA2_OFFSET[3:0]
rw
0000
PGA2 stage offset selection
Table 36. CxZadcReg3; addresses 0x0C - 0x2C - 0x4C - 0x6C
Bit
CxZadcReg4
rw
Reset
7
PGA1_GAIN
rw
0
6:0
PGA3_PGA[6:0]
rw
Description
PGA1 stage gain selection
0000000 PGA3 stage gain selection
Table 37. CxZadcReg4; addresses 0x0D - 0x2D - 0x4D - 0x6D
Bit
CxZadcReg5
rw
Reset
7
reserved
r
0
6:0
PGA3_OFFSET[6:0]
rw
Description
0000000 PGA3 stage offset selection
Table 38. CxZadcReg5; addresses 0x0E - 0x2E - 0x4E - 0x6E
Bit
CxZadcReg6
rw
Reset
Description
7
PGA1_GAIN
r
0
Activity flag
6
PGA3_PGA[6:0]
r
0
Select default configuration
5:1
AMUX[4:0]
rw
00000
0
VMUX
rw
0
Input channel configuration selector
Reference channel selector
Table 39. CxZadcReg6; addresses 0x0F - 0x2F - 0x4F - 0x6F
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 55
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
12.5. ZoomingADC™ registers table
In table below the configuration of the peripheral registers is detailed. The system has a bank of eight 8-bit registers: six
registers are used to configure the acquisition chain (CxZAdcReg1 to 6), and two registers are used to store the output code
of the analog-to-digital conversion (CxDataOutMSB & LSB).
Register Name
Bit position
7
6
5
4
3
CxDataOutLSB
OUT[7:0]
CxDataOutMSB
OUT[15:8]
CxZadcReg1
Default values
R
0
SET_NC[1:0]
01
SET_OSR[2:0]
010
2
1
0
R
0
R
0
CxZadcReg2
Default value
IB_AMP_ADC[1:0]
11
IB_AMP_PGA[1:0]
11
ENABLE[3:0]
0001
CxZadcReg3
Default value
FIN[1:0]
00
PGA2_GAIN[1:0]
00
PGA2_OFFSET
0000
CxZadcReg4
Default value
PGA1_GAIN
0
PGA3_GAIN[6:0]
0000000
CxZadcReg5
Default value
0
PGA3_OFFSET[6:0]
0000000
CxZadcReg6
Default value
R
0
R
0
AMUX[4:0]
00000
VMUX
0
Table 40. ZoomingADC registers
Note Bits labelled R are reserved
With:
OUT:
(r) digital output code of the analog-to-digital converter. (MSB = OUT[15])
SET_NELC:
(rw) sets the number of elementary conversions to 2SET_NELC[1:0] . To compensate for offsets, the input signal is
chopped between elementary conversions (1,2,4,8).
SET_OSR:
(rw) sets the over-sampling rate (OSR) of an elementary conversion to 2(3+SET_OSR[2:0]) . OSR = 8, 16, 32, ..., 512,
1024.
CONT:
(rw) setting this bit starts a conversion. A new conversion will automatically begin as long as the bit remains at 1.
IB_AMP_ADC:
(rw) sets the bias current in the ADC to 0.25 x (1+ IB_AMP_ADC[1:0]) of the normal operation current (25, 50, 75 or
100% of nominal current). To be used for low-power, low-speed operation.
IB_AMP_PGA:
(rw) sets the bias current in the PGAs to 0.25 x (1+ IB_AMP_PGA[1:0]) of the normal operation current (25, 50, 75 or
100% of nominal current). To be used for low-power, low-speed operation.
ENABLE:
(rw) enables the ADC modulator (bit 0) and the different stages of the PGAs (PGAi by bit i = 1,2,3). PGA stages that
are disabled are bypassed.
FIN:
(rw) These bits set the sampling frequency of the acquisition chain. Expressed as a fraction of the oscillator frequency,
the sampling frequency is given as: 00 ' 1/4 fRC, 01 ' 1/8 fRC, 10 ' 1/32 fRC, 11' ~8kHz.
PGA1_GAIN:
(rw) sets the gain of the first stage: 0 ' 1, 1 ' 10.
PGA2_GAIN:
(rw) sets the gain of the second stage: 00 ' 1, 01 ' 2, 10 ' 5, 11 ' 10.
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 56
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
PGA3_GAIN:
(rw) sets the gain of the third stage to PGA3_GAIN[6:0] 1/12.
PGA2_OFFSET:
(rw) sets the offset of the second stage between -1 and +1, with increments of 0.2. The MSB gives the sign (0
positive, 1 negative); amplitude is coded with the bits PGA2_OFFSET[5:0].
PGA3_OFFSET:
(rw) sets the offset of the third stage between -5.25 and +5.25, with increments of 1/12. The MSB gives the sign (0
positive, 1 negative); amplitude is coded with the bits PGA3_OFFSET[5:0].
AMUX(4:0):
(rw) AMUX[4] sets the mode (0 ' 4 differential inputs, 1 ' 7 inputs with A(0) = common reference) AMUX(3) sets the sign
(0 ' straight, 1' cross) AMUX[2:0] sets the channel.
VMUX:
(rw) sets the differential reference channel (0 ' R(1) and R(0), 1 ' R(3) and R(2)).
(r = read; w = write; rw = read & write)
12.6. Input Multiplexers
The ZoomingADC has eight analog inputs AC_A(0) to AC_A(7) and four reference inputs AC_R(0) to AC_R(3). Let us first
define the differential input voltage VIN and reference voltage VREF respectively as:
VIN = VINP − VINN
[V]
(Eq. 3)
and:
VREF = VREFP − VREFN
[V]
(Eq. 4)
As shown in Table 41 the inputs can be configured in two ways: either as 4 differential channels (VIN1 = AC_A(1) AC_A(0),..., VIN4 = AC_A(7) - AC_A(6)), or AC_A(0) can be used as a common reference, providing 7 signal paths all
referred to AC_A(0). The control word for the analog input selection is AMUX[4:0]. Notice that the bit AMUX[3] controls the
sign of the input voltage.
AMUX [4:0]
(RegACCfg5[5:1])
VINP
VINN
AMUX [4:0]
(RegACCfg5[5:1])
VINP
VINN
00x00
00x01
00x10
00x11
AC_A(1)
AC_A(3)
AC_A(5)
AC_A(7)
AC_A(0)
AC_A(2)
AC_A(4)
AC_A(6)
01x00
01x01
01x10
01x11
AC_A(0)
AC_A(2)
AC_A(4)
AC_A(6)
AC_A(1)
AC_A(3)
AC_A(5)
AC_A(7)
10000
10001
10010
10011
10100
10101
10110
10111
AC_A(0)
AC_A(1)
AC_A(2)
AC_A(3)
AC_A(4)
AC_A(5)
AC_A(6)
AC_A(7)
AC_A(0)
11000
11001
11010
11011
11100
11101
11110
11111
AC_A(0)
AC_A(0)
AC_A(1)
AC_A(2)
AC_A(3)
AC_A(4)
AC_A(5)
AC_A(6)
AC_A(7)
Table 41. Analog input selection
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 57
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
Similarly, the reference voltage is chosen among two differential channels (VREF1 = AC_R(1)-AC_R(0) or VREF2 =
AC_R(3)-AC_R(2)) as shown in Table 42 The selection bit is VMUX. The reference inputs VREFP and VREFN (commonmode) can be up to the power supply range.
VMUX
(RegACCfg5[0])
VREFP
VREFN
0
AC_R(1)
AC_R(0)
1
AC_R(3)
AC_R(2)
Table 42. Analog input reference selection
12.7. Programmable Gain Amplifiers
The zooming function is implemented with three programmable gain amplifiers (PGA). These are:
Š
Š
Š
PGA1: coarse gain tuning
PGA2: medium gain and offset tuning
PGA3: fine gain and offset tuning
All gain and offset settings are realized with ratios of capacitors. The user has control over each PGA activation and gain, as
well as the offset of stages 2 and 3. These functions are examined hereafter.
12.7.1. PGA & ADC Enabling
Depending on the application objectives, the user may enable or bypass each PGA stage. This is done according to the
word ENABLE and the coding given in Table 43. To reduce power dissipation, the ADC can also be inactivated while idle.
Enable [3:0]
Block
XXX0
XXX1
ADC disabled
ADC enabled
XX0X
XX1X
PGA1 disabled
PGA1 enabled
X0XX
X1XX
PGA2 disabled
PGA2 enabled
0XXX
1XXX
PGA3 disabled
PGA3 enabled
Table 43. PGA and ADC enabling
12.7.2. PGA1
The first stage can have a buffer function (unity gain) or provide a gain of 10 (see Table 44). The voltage VD1 at the output of
PGA1 is:
VD1 = GD1 ⋅ VIN
[V]
(Eq. 5)
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 58
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
where GD1 is the gain of PGA1 (in V/V) controlled with the bit PGA1_GAIN.
PGA1_GAIN
PGA1 gain [V/V]
0
1
1
10
Table 44. PGA1 gain settings
12.7.3. PGA2
The second PGA has a finer gain and offset tuning capability, as shown in Table 45 and Table 46. The voltage VD2 at the
output of PGA2 is given by:
VD 2 = GD2 ⋅ VD1 − GDoff 2 ⋅ VREF
[V]
(Eq. 6)
where GD2 and GDoff2 are respectively the gain and offset of PGA2 (in V/V). These are controlled with the words
PGA2_GAIN[1:0] and PGA2_OFFSET[3:0].
PGA2_GAIN
PGA2 gain [V/V]
00
1
01
2
10
5
11
10
Table 45. PGA2 gain settings
ACS - Revision 4.2
©2008 Semtech Corp.
PGA2_OFFSET
PGA2 offset [V/V]
0000
0
0001
+0.2
0010
+0.4
0011
+0.6
0100
+0.8
0101
+1
1000
-0.2
1001
-0.4
1010
-0.6
1011
-0.8
October 2008
Page 59
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
PGA2_OFFSET
PGA2 offset [V/V]
1100
-1
Table 46. PGA2 offset settings
12.7.4. PGA3
The finest gain and offset tuning is performed with the third and last PGA stage, according to the following coding Tables.
PGA3_GAIN[6:0]
PGA3 gain [V/V]
0000000
0
0000001
1/12 (=0.083)
...
...
0000110
6/12
...
...
0001100
12/12
0010000
16/12
...
...
0100000
32/12
...
...
1000000
64/12
...
...
1111111
127/12 (=10.58)
Table 47. PGA3 gain settings
ACS - Revision 4.2
©2008 Semtech Corp.
PGA3_GAIN[6:0]
PGA3 gain [V/V]
0000000
0
0000001
+1/12(=0.083)
0000010
+2/12
...
...
0010000
+16/12
...
...
0100000
+32/12
0111111
+63/12 (=+5.25)
October 2008
Page 60
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
PGA3_GAIN[6:0]
PGA3 gain [V/V]
1000000
0
1000001
-1/12(=-0.083)
1000010
-2/12
...
...
1010000
-16/12
...
...
1100000
-32/12
...
...
1111111
-63/12(=5.25)
Table 48. PGA3 offset settings
The output of PGA3 is also the input of the ADC. Thus, similarly to PGA2, we find that the voltage entering the ADC is given
by:
VIN , ADC = GD3 ⋅VD 2 − GDoff 3 ⋅VREF
[V]
(Eq. 7)
where GD3 and GDoff3 are respectively the gain and offset of PGA3 (in V/V). The control words are PGA3_GAIN[6:0] and
PGA3_OFFSET[6:0] . To remain within the signal compliance of the PGA stages, the condition:
VD1 , VD 2 < VDD
[V]
(Eq. 8)
must be verified.
Finally, combining equations Eq. 5 to Eq. 7 for the three PGA stages, the input voltage VIN,ADC of the ADC is related to VIN
by:
VIN , ADC = GDTOT ⋅ VIN − GDoffTOT ⋅ VREF
[V]
(Eq. 9)
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 61
www.semtech.com
SX8722
High gain acquisition for sensor interface
ADVANCED COMMUNICATIONS & SENSING
DATASHEET
where the total PGA gain is defined as:
GDTOT = GD3 ⋅ GD2 ⋅ GD1
[V]
(Eq. 10)
and the total PGA offset is:
GDoffTOT = GDoff 3 + GD3 ⋅ GDoff 2
[V ⁄ V]
(Eq. 11)
12.8. ADC Characteristics
The main performance characteristics of the ADC (resolution, conversion time, etc.) are determined by three programmable
parameters:
Š
Š
Š
Oversampling frequency fS,
over-sampling ratio OSR, and
number of elementary conversions NELCONV.
The setting of these parameters and the resulting performances are described hereafter.
12.8.1. Conversion Sequence
A conversion is started each time the bit START or the bit DEF is set. As depicted in Figure 3, a complete analog-to-digital
conversion sequence is made of a set of NELCONV elementary incremental conversions and a final quantization step. Each
elementary conversion is made of (OSR+1) sampling periods TS=1/fS, i.e.:
TELCONV = (OSR + 1) / f S
[s]
(Eq. 12)
The result is the mean of the elementary conversion results. An important feature is that the elementary conversions are
alternatively performed with the offset of the internal amplifiers contributing in one direction and the other to the output code.
Thus, converter internal offset is eliminated if at least two elementary sequences are performed (i.e. if NELCONV = 2). A few
additional clock cycles are also required to initiate and end the conversion properly.
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 62
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
TELCONV= (OSR+1)/f S
Init
Elementary
Conversion
Conversion index
Offset
Elementary
Conversion
Elementary
Conversion
Elementary
Conversion
2
-
NELCONV- 1
+
N ELCONV
-
1
+
T CONV
End
Conversion
Result
Figure 33. Analog-to-digital conversion sequence
12.8.2. Sampling Frequency
The word FIN[1:0] is used to select the sampling frequency fS (Table 49). Three sub-multiples of the internal RC-based
frequency fRCEXT can be chosen. For FIN = "11", sampling frequency is about 8 kHz. Additional information on oscillators and
their control can be found in the clock block documentation.
FIN[1:0]
Sampling frequency Fs
[Hz]
00
1/4 fRC
01
1/8 fRC
10
1/32 fRC
11
1/64 fRC
Table 49. Sampling frequency settings (fRC = RC-based frequency)
12.8.3. Over-Sampling Ratio
The over-sampling ratio (OSR) defines the number of integration cycles per elementary conversion. Its value is set with the
word SET_OSR[2:0] in power of 2 steps (see Table 49) given by:
3 + SET_OSR[2 : 0]
OSR = 2
(Eq. 13)
ACS - Revision 4.2
©2008 Semtech Corp.
SET_OSR[2:0]
(RegACCfg[4:2])
Over-Sampling Ratio
OSR [-]
000
8
001
16
October 2008
Page 63
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
SET_OSR[2:0]
(RegACCfg[4:2])
Over-Sampling Ratio
OSR [-]
010
32
011
64
100
128
101
256
110
512
111
1024
Table 50. Over-sampling ratio settings
12.8.4. Elementary Conversions
As mentioned previously, the whole conversion sequence is made of a set of NELCONV elementary incremental conversions.
This number is set with the word SET_NELC[1:0] in power of 2 steps (see Table 50) given by:
SET_NELC[1 : 0]
N ELCONV = 2
(Eq. 14)
SET_OSR[2:0]
(RegACCfg[4:2])
# of Elementary
Conversion NELCONV [-]
00
1
01
2
10
4
11
8
Table 51. Number of elementary conversion
As already mentioned, NELCONV must be equal or greater than 2 to reduce internal amplifier offsets.
12.8.5. Resolution
The theoretical resolution of the ADC, without considering thermal noise, is given by:
n = 2 ⋅ log 2 (OSR) + log 2 ( N ELCONV )
[ bits ]
(Eq. 15)
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 64
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
17
Resolution - n [Bits]
15
13
11
SET_NELC= 11
10
01
00
9
7
5
000
001
010
011
100
101
110
111
SET_OSR
Figure 34. Resolution vs. SET_OSR[2:0] and SET_NELC[2:0]
SET_OSR [2:0]
SET_NELC
00
01
10
11
000
6
7
8
9
001
8
9
10
11
010
10
11
12
13
011
12
13
14
15
100
14
15
16
16
101
16
16
16
16
110
16
16
16
16
111
16
16
16
16
(shaded area: resolution truncated to 16 bits due to output register size CxDataOutMSB + CxDataOutLSB [15:0])
Table 52. Resolution vs. SET_OSR[2:0] and SET_NELC[1:0] settings
Using look-up Table 52, resolution can be set between 6 and 16 bits. Notice that, because of 16-bit register use for the ADC
output, practical resolution is limited to 16 bits, i.e. n = 16. Even if the resolution is truncated to 16 bit by the output
register size, it may make sense to set OSR and NELCONV to higher values in order to reduce the influence of the thermal
noise in the PGA .
12.8.6. Conversion Time & Throughput
As explained using Figure 3, conversion time is given by:
TCONV = ( N ELCONV ⋅ (OSR + 1) + 1) / f S
[s]
(Eq. 16)
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 65
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
and throughput is then simply 1/TCONV. For example, consider an over-sampling ratio of 256, 2 elementary conversions, and
a sampling frequency of 300 kHz (SET_OSR = "101", SET_NELC = "01", fRC = 1.2MHz, and FIN = "00"). In this case, using
Table 53, the conversion time is 515 sampling periods, or 1.71ms. This corresponds to a throughput of 582Hz in continuoustime mode. The plot of figure below illustrates the classic trade-off between resolution and conversion time.
SET_OSR [2:0]
SET_NELC
00
01
10
11
000
10
19
37
73
001
18
35
69
137
010
34
67
133
265
011
66
131
261
521
100
130
259
517
1033
101
258
515
1029
2057
110
514
1027
2053
4105
111
1026
2051
4101
8201
Table 53. Normalized conversion time (TCONV x fS) vs. SET_OSR[2:0] and SET_NELC[1:0]
(normalized to sampling period 1/fS)
Resolution - n [Bits]
16.0
14.0
12.0
10.0
8.0
6.0
10
00
11
SET_NELC
01
4.0
10.0
100.0
1000.0
10000.0
Normalized Conversion Time - TCONV*fS [-]
Table 54. Resolution vs. normalized conversion time for different SET_NELC[1:0]
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 66
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
12.8.7. Output Code Format
The ADC output code is a 16-bit word in two's complement format (see Table 55). For input voltages outside the range, the
output code is saturated to the closest full-scale value (i.e. 0x7FFF or 0x8000). For resolutions smaller than 16 bits, the nonsignificant bits are forced to the values shown in Table 56. The output code, expressed in LSBs, corresponds to:
OUTADC = 216 ⋅
VIN , ADC OSR + 1
⋅
VREF
OSR
[ LSB ]
(Eq. 17)
Recalling equation Eq. 9, this can be rewritten as:
OUTADC = 216 ⋅
VIN
VREF
⎛
V
⋅ ⎜⎜ GDTOT − GDoffTOT ⋅ REF
VIN
⎝
⎞ OSR + 1
⎟⎟ ⋅
⎠ OSR
[ LSB ]
(Eq. 18)
where, from Eq. 10 and Eq. 11, the total PGA gain and offset are respectively:
GDTOT = GD3 ⋅ GD2 ⋅ GD1
[V ⁄ V]
GDoffTOT = GDoff 3 + GD3 ⋅ GDoff 2
[V ⁄ V]
and:
ADC Input Voltage
VIN,ADC
% of Full Scale (FS)
Output in LSBs
Output Code in Hex
+2.49505 V
+0.5 x FS
+215-1 = 32’767
7FFF
+2.49497 V
...
+215-2 = 32’767
7FFE
...
...
...
...
+76.145 μV
...
+1
0001
0
0
0
0000
-76.145 μV
...
-1
8FFF
...
...
...
...
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 67
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
ADC Input Voltage
VIN,ADC
% of Full Scale (FS)
Output in LSBs
Output Code in Hex
+2.49505 V
...
-215-1 = -32’767
8001
+2.49513 V
-0.5 x FS
-215 = -32’768
8000
Table 55. Basic ADC Relationships (example for: VREF = 5V, OSR = 512, n = 16 bits)
SET_OSR[2:0]
SET_NELC = 00
SET_NELC = 01
SET_NELC = 10
SET_NELC = 11
000
1000000000
100000000
10000000
1000000
001
10000000
1000000
100000
10000
010
100000
10000
1000
100
011
1000
100
10
1
100
10
1
-
-
101
-
-
-
-
110
-
-
-
-
111
-
-
-
-
Table 56. Last forced LSBs in conversion output registers for resolution settings smaller than 16 bits (n < 16)
(CxDataOutMsb[7:0] & CxDataOutLsb[7:0])
The equivalent LSB size at the input of the PGA chain is:
LSB =
1 VREF
OSR
⋅
⋅
n
2 GDTOT OSR + 1
[V]
(Eq. 19)
Notice that the input voltage VIN,ADC of the ADC must satisfy the condition:
VIN , ADC ≤
1
OSR
⋅ (VREFP − VREFN ) ⋅
2
OSR + 1
[V ⁄ V]
(Eq. 20)
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 68
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
to remain within the ADC input range.
IB_AMP_ADC
[1:0]
IB_AMP_PGA
[1:0]
00
01
10
11
ADC Bias
Current
PGA Bias
Current
1/4 x IADC
1/2 x IADC
3/4 x IADC
IADC
37.5
75
150
300
1/4 x IADC
1/2 x IADC
3/4 x IADC
IADC
00
01
10
11
Max. fS [KHz]
37.5
75
150
300
Table 57. ADC & PGA power saving modes and maximum sampling frequency
12.9. Power Saving Modes
During low-speed operation, the bias current in the PGAs and ADC can be programmed to save power using the control
words IB_AMP_PGA[1:0] and IB_AMP_ADC[1:0] (see Table 57). If the system is idle, the PGAs and ADC can even be
disabled, thus, reducing power consumption to its minimum. This can considerably improve battery lifetime.
12.10. Input impedance
The PGAs of the ZoomingADC are a switched capacitor based blocks (see Switched Capacitor Principle chapter). This
means that it does not use resistors to fix gains, but capacitors and switches. This has important implications on the nature
of the input impedance of the block.
Using switched capacitors is the reason why, while a conversion is done, the input impedance on the selected channel of the
PGAs is inversely proportional to the sampling frequency fs and to stage gain as given in Equation 21.
Z in ≥
768 ⋅109 ΩHz
f s ⋅ gain
[ Ohm ]
(Eq. 21)
The input impedance observed is the input impedance of the first PGA stage that is enabled or the input impedance of the
ADC if all three stages are disabled.
PGA1 (with a gain of 10), PGA2 (with a gain of 10) and PGA3 (with a gain of 10) each have a minimum input impedance of
256 kOhm at fs = 300 kHz. Larger input impedance can be obtained by reducing the gain and/or by reducing the sampling
frequency. Therefore, with a gain of 1 and a sampling frequency of 75 kHz, Zin > 10.2 MOhm.
The input impedance on channels that are not selected is very high (>100MOhm).
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 69
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
12.11. Switched Capacitor Principle
Basically, a switched capacitor is a way to emulate a resistor by using a capacitor. The capacitors are much easier to realize
on CMOS technologies and they show a very good matching precision.
V1
V1
V2
f
f
V2
R
Figure 35. The Switched Capacitor Principle
A resistor is characterized by the current that flows through it (positive current leaves node V1):
I=
V1 − V2
R
[A]
(Eq. 22)
One can verify that the mean current leaving node V1 with a capacitor switched at frequency f is:
I = (V 1 − V 2 ) ⋅ f ⋅ C
[A]
(Eq. 23)
Therefore as a mean value, the switched capacitor 1/ (f x C) is equivalent to a resistor.
It is important to consider that this is only a mean value. If the current is not integrated (low impedance source), the
impedance is infinite during the whole time but the transition.
What does it mean for the ZoomingADC?
If the fs clock is reduced, the mean impedance is increased. By dividing the fs clock by a factor 10, the impedance is
increased by a factor 10.
One can reduce the capacitor that is switched by using an amplifier set to its minimal gain. In particular if PGA1 is used with
gain 1, its mean impedance is 10x bigger than when it is used with gain 10.
Current
integration
Sensor
impedence
V1
ZoomingADC (model)
f
f V2
Sensor
Node
Capacitance
C
Figure 36. The Switched Capacitor Principle
One can increase the effective impedance by increasing the electrical bandwidth of the sensor node so that the switching
current is absorbed through the sensor before the switching period is over. Measuring the sensor node will show short
voltage spikes at the frequency fs, but these will not influence the measurement. Whereas if the bandwidth of the node is
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 70
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
lower, no spikes will arise, but a small offset can be generated by the integration of the charges generated by the switched
capacitors, this corresponds to the mean impedance effect.
Note:
One can increase the mean input impedance of the ZoomingADC by lowering the acquisition clock fs.
One can increase the mean input impedance of the ZoomingADC by decreasing the gain of the first enabled amplifier.
One can increase the effective input impedance of the ZoomingADC by having a source with a high electrical bandwidth (sensor electrical
bandwidth much higher than fs).
12.12. PGA Settling or Input Channel Modifications
PGAs are reset after each writing operation to registers CxZadcReg1-5. Similarly, input channels are switched after
modifications of AMUX[4:0] or VMUX. To ensure precise conversion, the ADC must be started after a PGA or inputs
common-mode stabilization delay. This is done by writing bit START several cycles after PGA settings modification or
channel switching. Delay between PGA start or input channel switching and ADC start should be equivalent to OSR
(between 8 and 1024) number of cycles. This delay does not apply to conversions made without the PGAs.
If the ADC is not settled within the specified period, there is most probably an input impedance problem (see previous
section).
12.13. PGA Gain & Offset, Linearity and Noise
Hereafter are a few design guidelines that should be taken into account when using the ZoomingADC :
1. Keep in mind that increasing the overall PGA gain, or "zooming" coefficient, improves linearity but degrades noise
performance.
2. Use the minimum number of PGA stages necessary to produce the desired gain ("zooming") and offset. Bypass
unnecessary PGAs.
3. Put most gain on PGA3 and use PGA2 and PGA1 only if necessary.
4. PGA3 should be always ON for best linearity.
5. For low-noise applications where power consumption is not a primary concern, maintain the largest bias currents in the
PGAs and in the ADC; i.e. set IB_AMP_PGA[1:0] = IB_AMP_ADC[1:0] = '11'.
6. For lowest output offset error at the output of the ADC, bypass PGA2 and PGA3. Indeed, PGA2 and PGA3 typically
introduce an offset of about 5 to 10 LSB (16 bit) at their output. Note, however, that the ADC output offset is easily calibrated
out by software.
12.14. Power Reduction
The ZoomingADC is particularly well suited for low-power applications. When very low power consumption is of primary
concern, such as in battery operated systems, several parameters can be used to reduce power consumption as follows:
1. Operate the acquisition chain with a reduced supply voltage VBATT.
2. Disable the PGAs which are not used during analog-to-digital conversion with ENABLE[3:0].
3. Disable all PGAs and the ADC when the system is idle and no
conversion is performed.
4. Use lower bias currents in the PGAs and the ADC using the
control words IB_AMP_PGA[1:0] and IB_AMP_ADC[1:0].
2
[V ]
5. Reduce sampling frequency.
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 71
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
Finally, remember that power reduction is typically traded off with reduced linearity, larger noise and slower maximum
sampling speed.
12.15. Noise
Ideally, a constant input voltage VIN should result in a constant output code. However, because of circuit noise, the output
code may vary for a fixed input voltage. Thus, a statistical analysis on the output code of 1200 conversions for a constant
input voltage was performed to derive the equivalent noise levels of PGA1, PGA2, and PGA3. The extracted rms output
noise of PGA1, 2, and 3 are given in Table 58: standard output deviation and output rms noise voltage. Figure 37 shows the
distribution for the ADC alone (PGA1, 2, and 3 bypassed). Quantization noise is dominant in this case, and, thus, the ADC
thermal noise is below 16 bits.
The simple noise model of Figure 38 is used to estimate the equivalent input referred rms noise VN,IN of the acquisition chain
in the model of Figure 39. This is given by the relationship:
2
VN , IN
2
2
⎞
⎞ ⎛
⎛ VN 1 ⎞ ⎛ VN 2
VN 3
⎟
⎟⎟ + ⎜⎜
⎜⎜
⎟⎟ + ⎜⎜
GD1 ⎠ ⎝ GD1 ⋅ GD2 ⎠ ⎝ GD1 ⋅ GD2 ⋅ GD3 ⎟⎠
⎝
=
(OSR ⋅ N ELCONV )
2
[V
2
rms ]
(Eq. 24)
where VN1, VN2, and VN3 are the output rms noise figures of Table 58, GD1, GD2, and GD3 are the PGA gains of stages 1 to
3 respectively. As shown in this equation, noise can be reduced by increasing OSR and NELCONV (increases the ADC
averaging effect, but reduces noise).
Parameter
PGA1
PGA2
PGA3
Standard deviation at ADC output (LSB)
0.85
1.4
1.5
Output RMS noise(uV)
205 x (VN1)
340 x (VN2)
365 x (VN3)
Table 58. PGA Noise Measurements (n = 16 bits, OSR = 512, NELCONV = 2, VREF = 5 V)
Occurences
[% of total samples]
80
60
40
20
0
-5
-4
-3
-2
-1
0
1
2
3
4
5
Output Code Deviation From Mean Value [LSB]
Figure 37. ADC Noise (PGA1, 2 & 3 Bypassed, OSR = 512, NELCONV = 2)
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 72
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
PGA1
PGA2
VN1
VN2
GD1
fs
PGA3
VN3
GD2
GD3
ADC
Figure 38. Simple Noise Model for PGAs and ADC
PGA1
VN,IN
PGA2
VN1
GD1
fs
PGA3
VN2
GD2
VN3
GD3
ADC
Figure 39. Total Input Referred Noise
As an example, consider the system where: GD2 = 10 (GD1 = 1; PGA3 bypassed), OSR = 512, NELCONV = 2, VREF = 5 V. In
this case, the noise contribution VN1 of PGA1 is dominant over that of PGA2. Using Equation 24, we get: VN,IN = 6.4 µV (rms)
at the input of the acquisition chain, or, equivalently, 0.85 LSB at the output of the ADC. Considering 0.2 V (rms) maximum
signal amplitude, the signal-to-noise ratio is 90dB.
Noise can also be reduced by the additional average filters implemented in the Measurement Engine. These filters are
described in section 11.4 Filtering. By making an average on a number of subsequent measurements, the apparent noise is
reduced the square root of the number of measurement used to make the average.
12.16. Gain Error and Offset Error
Gain error is defined as the amount of deviation between the ideal transfer function (theoretical Equation 18) and the
measured transfer function (with the offset error removed).
The actual gain of the different stages can vary depending on the fabrication tolerances of the different elements. Although
these tolerances are specified to a maximum of +/-3%, they will be most of the time around 0.5%. Moreover, the tolerances
between the different stages are not correlated and the probability to get the maximal error in the same direction in all stages
is very low. Finally, these gain errors can be calibrated by the software at the same time with the gain errors of the sensor for
instance.
Figure 40 shows gain error drift vs. temperature for different PGA gains. The curves are expressed in % of Full-Scale Range
(FSR) normalized to 25°C.
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 73
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
Offset error is defined as the output code error for a zero volt input (ideally, output code = 0). The offset of the ADC and the
PGA1 stage are completely suppressed if NELCONV > 1.
The measured offset drift vs. temperature curves for different PGA gains are depicted in Figure 41. The output offset error,
expressed in LSB for 16-bit setting, is normalized to 25°C. Notice that if the ADC is used alone, the output offset error is
below +/-1 LSB and has no drift.
100
Output Offset Error [LSB]
Gain Error [% of FSR]
0.2
0.1
0.0
-0.1
1
5
20
100
-0.2
-0.3
1
5
20
100
80
60
40
20
0
-20
-40
-0.4
-50
-25
0
25
50
75
-50
100
Figure 40. Gain Error vs. Temperature for Different PGA Gains
October 2008
0
25
50
75
100
Temperature [°C]
Temperature [°C]
ACS - Revision 4.2
©2008 Semtech Corp.
-25
Figure 41. Offset Error vs. Temperature for Different PGA Gains
Page 74
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
13. Typical performances
13.1. Current consumption
SX8722 mean current consumption in active mode is around 200 [µA], without enabled PGA. The value of the gain of de
PGA can have a negligible influence on consumption in active mode.
Additional consumption depends on the active PGA and on the bias current parameter.
Current for each amplifier in [uA]
IPGA1
IPGA2
IPGA3
bias 25 %
50
40
50
bias 50 %
95
75
98
bias 75 %
140
110
145
bias 100 %
185
145
190
Table 59. PGA current consumption
Example 1 : Bias current 25%
PGA1: enabled
PGA2: enabled
PGA3: enabled
SX8722 measured current consumption: ~330 µA
Example 2 : Bias current 100%
PGA1: enabled
PGA2: enabled
PGA3: enabled
SX8722 measured current consumption: ~710 µA
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 75
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
13.2. ZoomingADC
13.2.1. Integral non-linearity
ADC without PGA
-40°C
25°C
500
1000
1500
Vin [mV]
2000
2500
10
8
6
4
2
0
-2
-4
-6
-8
-10
INL[LSB]
10
8
6
4
2
0
-2
-4
-6
-8
-10
0
PGA1 off; PGA2 off; PGA3 off; set_osr = 7, set_nelconv = 3,
Vbat=5V, Vref=5V, Vcommon=0V
PGA1 off; PGA2 off; PGA3 off; set_osr = 7; set_nelconv = 3;
Vbat = 5V; Vref = 5V; Vcommon = 0V
INL[LSB]
INL[LSB]
PGA1 off; PGA2 off; PGA3 off; set_osr = 7, set_nelconv = 3,
Vbat=5V, Vref=5V, Vcommon=0V
85°C
0
500
1000
1500
Vin [mV]
2000
10
8
6
4
2
0
-2
-4
-6
-8
-10
0
2500
500
1000
1500
Vin [mV]
2000
2500
2000
2500
200
250
Gain 1
-40°C
25°C
PGA1 off; PGA2 off; PGA3 = 1; set_osr = 7; set_nelconv = 3,
VBAT = 5V; Vref = 5V; Vcommon = 0V
PGA1 off; PGA2 off; PGA3 = 1; set_osr = 7; set_nelconv = 3,
Vbat = 5V; Vref = 5V; Vcommon = 0V
10
10
8
8
6
6
4
2
4
2
INL[LSB]
10
8
6
4
2
0
-2
-4
-6
-8
-10
INL[LSB]
INL[LSB]
PGA1 off; PGA2 off; PGA3 = 1; set_osr = 7; set_nelconv = 3,
Vbat = 5V; Vref = 5V; Vcommon = 0V
85°C
0
-2
-4
0
500
1000
1500
Vin [mV]
2000
0
-2
-4
-6
-8
-6
-8
-10
-10
0
2500
500
1000
1500
Vin [mV]
2000
2500
0
500
1000
1500
Vin [mV]
Gain 10
-40°C
25°C
PGA1 off; PGA2 off; PGA3 = 10; set_osr = 7; set_nelconv = 3;
Vbat = 5V; Vref = 5V; Vcommon = 0V
0
50
100
150
200
10
10
8
6
4
2
0
-2
-4
-6
-8
-10
250
Vin [mV]
ACS - Revision 4.2
©2008 Semtech Corp.
PGA1 off; PGA2 off; PGA3 = 10; set_osr = 7; set_nelconv = 3;
VBAT = 5V; Vref = 5V; Vcommon = 0V
8
6
4
INL[LSB]
10
8
6
4
2
0
-2
-4
-6
-8
-10
INL[LSB]
INL[LSB]
PGA1 off; PGA2 off; PGA3 = 10; set_osr = 7; set_nelconv = 3;
VBAT = 5V; Vref = 5V; Vcommon = 0V
85°C
-2
-4
-6
-8
-10
0
50
100
150
Vin [mV]
October 2008
2
0
Page 76
200
250
0
50
100
150
Vin [mV]
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
Gain 100
-40°C
25°C
PGA1 off; PGA2 = 10; PGA3 = 10; set_osr = 7; set_nelconv = 3;
VBAT = 5V; Vref = 5V; Vcommon = 0V
PGA1 off; PGA2 = 10; PGA3 = 10; set_osr = 7; set_nelconv = 3;
Vbat = 5V; Vref = 5V; Vcommon = 0V
PGA1 = 10; PGA2 off; PGA3 = 10; set_osr = 7; set_nelconv = 3;
Vbat=5V; Vref = 5V; Vcommon = 0V
10
10
8
6
8
6
8
6
4
4
4
2
0
2
0
-4
-2
-4
-6
-6
-8
-8
-10
-2
-10
0
5
10
15
20
INL[LSB]
10
INL[LSB]
INL[LSB]
85°C
-2
-4
-6
-8
-10
0
25
2
0
5
10
15
20
25
0
Vin [mV]
Vin [mV]
5
10
15
20
25
Vin [mV]
Figure 42. INL over temperature for different gains
13.2.2. Differential non-linearity
DNL: significantly lower than one LSB
Figure 43. ADC differential non-linearity
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 77
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
13.2.3. Resolution vs acquisition time
resolution [bits]
resolution vs acquisition time
18
16
14
12
10
8
6
4
2
0
10
100
1000
10000
100000
time [us]
Figure 44. ADC resolution vs Acquisition time
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 78
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
14. Register Memory Map and Description
14.1. Memory Map
The table below describes the register/memory map that can be accessed through the I2C interface. It indicates the register
name, register address and the register contents.
Adress
Register
Bit
Description
SX8722 General Configuration
0x00
SXCtrl1
8
Configuration register of the SX8722
0x01
SXCtrl2
8
Configuration register of the SX8722
0x02
SXCfgEn
8
Configuration enable register,enables configurations from 1 to 4
0x03
SXUpdated
8
Updated value on configuration registers
0x04
SXRcFrequ1
8
Fine RC adjustment register
0x05
SXRcFrequ2
8
Coarse RC adjustment register
0x06
SXTest
8
Test purpose register puts SX8722 in remote mode
0x07
SXAI1
8
Reserved
0x08
SXAI2
8
Reserved
0x09
SXReserved1
8
Reserved
Configuration 1
0x0A
C1ZAdcReg1
8
ZoomingADC Register 01
0x0B
C1ZAdcReg2
8
ZoomingADC Register 02
0x0C
C1ZAdcReg3
8
ZoomingADC Register 03
0x0D
C1ZAdcReg4
8
ZoomingADC Register 04
0x0E
C1ZAdcReg5
8
ZoomingADC Register 05
0x0F
C1ZAdcReg6
8
ZoomingADC Register 06
0x10
C1SXCfg
8
SX configurations related to this set
0x11
C1FParam
8
Filter size
0x12
C1Alrm1OnMsb
16
Alarm 1 "ON" threshold
0x13
C1Alrm1OnLsb
0x14
C1Alrm1OffMsb
16
Alarm 1 "OFF" threshold
0x15
C1Alrm1OffLsb
0x16
C1Alrm2OnMsb
16
Alarm 2 "ON" threshold
0x17
C1Alrm2OnLsb
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 79
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
Adress
Register
0x18
C1Alrm2OffMsb
0x19
C1Alrm2OffLsb
0x1A
C1DataOutLsb
0x1B
C1DataOutMsb
Bit
Description
16
Alarm 2 "OFF" threshold
16
Configuration 1 data out
Configuration 2
0x2A
C2ZAdcReg1
8
ZoomingADC Register 01
0x2B
C2ZAdcReg2
8
ZoomingADC Register 02
0x2C
C2ZAdcReg3
8
ZoomingADC Register 03
0x2D
C2ZAdcReg4
8
ZoomingADC Register 04
0x2E
C2ZAdcReg5
8
ZoomingADC Register 05
0x2F
C2ZAdcReg6
8
ZoomingADC Register 06
0x30
C2SXCfg
8
SX configurations related to this set
0x31
C2FParam
8
Filter size
0x32
C2Alrm1OnMsb
16
Alarm 1 "ON" threshold
0x33
C2Alrm1OnLsb
0x34
C2Alrm1OffMsb
16
Alarm 1 "OFF" threshold
0x35
C2Alrm1OffLsb
0x36
C2Alrm2OnMsb
16
Alarm 2 "ON" threshold
0x37
C2Alrm2OnLsb
0x38
C2Alrm2OffMsb
16
Alarm 2 "OFF" threshold
0x39
C2Alrm2OffLsb
0x3A
C2DataOutMsb
16
Configuration 2 data out
0x3B
C2DataOutLsb
Configuration 3
0x4A
C3ZAdcReg1
8
ZoomingADC Register 01
0x4B
C3ZAdcReg2
8
ZoomingADC Register 02
0x4C
C3ZAdcReg3
8
ZoomingADC Register 03
0x4D
C3ZAdcReg4
8
ZoomingADC Register 04
0x4E
C3ZAdcReg5
8
ZoomingADC Register 05
0x4F
C3ZAdcReg6
8
ZoomingADC Register 06
0x50
C3SXCfg
8
SX configurations related to this set
0x51
C3FParam
8
Filter size
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 80
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
Adress
Register
0x52
C3Alrm1OnMsb
0x53
C3Alrm1OnLsb
0x54
C3Alrm1OffMsb
0x55
C3Alrm1OffLsb
0x56
C3Alrm2OnMsb
0x57
C3Alrm2OnLsb
0x58
C3Alrm2OffMsb
0x59
C3Alrm2OffLsb
0x5A
C3DataOutMsb
0x5B
C3DataOutLsb
Bit
Description
16
Alarm 1 "ON" threshold
16
Alarm 1 "OFF" threshold
16
Alarm 2 "ON" threshold
16
Alarm 2 "OFF" threshold
16
Configuration 3 data out
Configuration 4
0x6A
C4ZAdcReg1
8
ZoomingADC Register 01
0x6B
C4ZAdcReg2
8
ZoomingADC Register 02
0x6C
C4ZAdcReg3
8
ZoomingADC Register 03
0x6D
C4ZAdcReg4
8
ZoomingADC Register 04
0x6E
C4ZAdcReg5
8
ZoomingADC Register 05
0x6F
C4ZAdcReg6
8
ZoomingADC Register 06
0x70
C4SXCfg
8
SX configurations related to this set
0x71
C4FParam
8
Filter size
0x72
C4Alrm1OnMsb
16
Alarm 1 "ON" threshold
0x73
C4Alrm1OnLsb
0x74
C4Alrm1OffMsb
16
Alarm 1 "OFF" threshold
0x75
C4Alrm1OffLsb
0x76
C4Alrm2OnMsb
16
Alarm 2 "ON" threshold
0x77
C4Alrm2OnLsb
0x78
C4Alrm2OffMsb
16
Alarm 2 "OFF" threshold
0x79
C4Alrm2OffLsb
0x7A
C4DataOutMsb
16
Configuration 4 data out
0x7B
C4DataOutLsb
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 81
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
14.2. Register description
The register descriptions are presented here in ascending order of Register Address. Some registers carry several individual
data fields of various sizes; from single-bit values (e.g. flags), upwards. Some data fields are spread across multiple
registers. Unused bits are 'don't care' and writing either 0 or 1 will not affect any function of the device. After power on reset
the registers will have the values indicated in the tables "Reset" column.
14.2.1. SX8722 general configuration
Bit
Bit Name
Mode
Reset
Description
7
EE_D
r
x
Indicates if an EEPROM was detected at startup
6
XTAL_D
r
x
Indicates if an XTAL was detected at startup
5
CKOUT
rw
0
Enabled the clock output on CKOUT pin
4
RESERVED
rw
0
3
EE
r
0
Is set to 1 when SX8722 loaded its configuration from the
EEPROM at startup.
2
SLEEP
rw
0
When set to 1 his bit activates the Sleep mode of the SX8722.
Setting pin SLEEP to 1 has the same effect.
1
SHUT
rw
0
When set to 1 his bit activates the Shutdown mode of the
SX8722. Setting pin SHUT to 1 has the same effect.
0
CAL
r
0
This flag shows if the SX8722 clock has been successfully
calibrated.
Table 60. SXCtrl1 (0x00)
Bit
Bit name
Mode
Reset
Description
7:4
reserved
r
x
3
AL1OnC
rw
0
Sets the logical condition for alarm 1 on (0 = OR, 1 = AND)
2
AL1OffC
rw
0
Sets the logical condition for alarm 1 off (0 = OR, 1 = AND)
1
AL2OnC
rw
0
Sets the logical condition for alarm 2 on (0 = OR, 1 = AND)
0
AL2OffC
rw
0
Sets the logical condition for alarm 2 off (0 = OR, 1 = AND)
Table 61. SXCtrl2 (0x01)
Bit
Name
Mode
Reset
Description
7:4
reserved
r
x
3
CONF4
rw
0
Configuration 4 enabling
2
CONF3
rw
0
Configuration 3 enabling
1
CONF2
rw
0
Configuration 2 enabling
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 82
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
Bit
0
Name
CONF1
Mode
Reset
rw
0
Description
Configuration 1 enabling
Table 62. SXCfgEn (0x02)
Bit
Name
Mode
Reset
Description
7
OVF4
r
0
Overflow on configuration 4
6
OVF3
r
0
Overflow on configuration 3
5
OVF2
r
0
Overflow on configuration 2
4
OVF1
r
0
Overflow on configuration 1
3
UCONF4
r
0
Indicates that configuration 4 has been updated by a measurement
result.
2
UCONF3
r
0
Indicates that configuration 3 has been updated by a measurement
result.
1
UCONF2
r
0
Indicates that configuration 2 has been updated by a measurement
result.
0
UCONF1
r
0
Indicates that configuration 1 has been updated by a measurement
result.
Table 63. SXUpdated (0x03)
Bit
7:0
Name
Fine RC
Mode
Reset
rw
x
Description
Fine RC adjustment. Set by the calibration procedure.
Table 64. SXRcFrequ1 (0x04)
Bit
7:0
Name
Coarse RC
Mode
Reset
rw
x
Description
Coarse RC adjustment. Set by the calibration procedure.
Table 65. SXRcFrequ2 (0x05)
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 83
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
14.2.2. Configuration 1 registers
Bit
7
Name
reserved
Mode
Reset
r
x
Description
6:5
SET_NELC
rw
01
Sets the number of elementary conversion to 2SET_NELC[1:0]. To
compensate for offset the signal is chopped between elementary
conversion.
4:2
SET_OSR
rw
010
Sets the ADC over-sampling rate of an elementary conversion to
23+SET_OSR[2:0].
1
reserved
r
x
0
reserved
r
x
Table 66. C1ZAdcReg1 (0x0A)
Bit
Name
Mode
Reset
Description
7:6
IB_AMP_ADC[1:0]
rw
11
Bias current selection of the A/D converter.
5:4
IB_AMP_PGA[1:0]
rw
11
Bias current selection of the PGA stages.
3:0
ENABLE[3:0]
rw
0000
Enables the different PGA stages and ADC.
Š
Š
Š
Š
XXX1 - ADC enable
XX1X - PGA3 enable
X1XX - PGA2 enable
1XXX - PGA1 enable
Table 67. C1ZAdcReg2 (0x0B)
Bit
Name
Mode
Reset
Description
7:6
FIN[1:0]
rw
00
Sampling frequency selection
5:4
PGA2_GAIN[1:0]
rw
00
PGA2 stage gain selection
3:0
PGA2_OFFSET[3:0]
rw
0000
PGA2 stage offset selection
Table 68. C1ZAdcReg3 (0x0C)
Bit
7
6:0
Name
Mode
Reset
Description
PGA1_GAIN
rw
0
PGA1 stage gain selection
PGA3_GAIN[6:0]
rw
0000000
PGA3 stage gain selection
Table 69. C1ZAdcReg4 (0x0D)
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 84
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
Bit
7
6:0
Name
Mode
reserved
r
PGA3_OFFSET[6:0]
rw
Reset
0
0000000
Description
Unused
PGA3 stage offset selection
Table 70. C1ZAdcReg5 (0x0E)
Bit
Name
Mode
Reset
7
reserved
r
6
reserved
r
AMUX[4:0]
rw
00000
VMUX
rw
0
5:1
0
Description
Input channel configuration selector
Reference channel selector
Table 71. C1ZAdcReg6 (0x0F)
Bit
7
6:4
Name
Mode
reserved
r
FILTER TYPE [2:0]
r
Reset
Description
Filter selection selection
Š
Š
Š
Š
000 - none
001 - average filtering
010 - moving average filtering
011 - reserved
3
ALRM1
rw
Alarm 1 enable
2
ALRM2
rw
Alarm 2 enable
1
SINGLE
rw
Configuration 1 in single acquisition mode
0
CONT
rw
Configuration 1 in continuous acquisition mode
Table 72. C1SXCfg (0x10)
Bit
7:0
Name
SIZE
Mode
rw
Reset
Description
00000000 Filter size. Limited to 10 for a moving average filter.
Table 73. C1FParam (0x11)
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 85
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
Bit
Name
7:0
Mode
Reset
rw
Description
00000000 Alarm 1 threshold MSB for configuration 1
Table 74. C1Alrm1OnMsb (0x12)
Bit
Name
7:0
Mode
Reset
rw
Description
00000000 Alarm 1 threshold LSB for configuration 1
Table 75. C1Alrm1OnLsb (0x13)
Bit
Name
7:0
Mode
Reset
rw
Description
00000000 Alarm 1 threshold MSB for configuration 1
Table 76. C1Alrm1OffMsb (0x14)
Bit
Name
7:0
Mode
Reset
rw
Description
00000000 Alarm 1 threshold LSB for configuration 1
Table 77. C1Alrm1OffLsb (0x15)
Bit
Name
7:0
Mode
Reset
rw
Description
00000000 Alarm 2 threshold MSB for configuration 1
Table 78. C1Alrm1OnMsb (0x16)
Bit
Name
7:0
Mode
Reset
rw
Description
00000000 Alarm 2 threshold LSB for configuration 1
Table 79. C1Alrm1OnLsb (0x17)
Bit
Name
7:0
ACS - Revision 4.2
©2008 Semtech Corp.
Mode
rw
October 2008
Reset
Description
00000000 Alarm 2 threshold MSB for configuration 1
Page 86
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
Table 80 C1Alrm1OffMsb (0x18)
Bit
Name
7:0
Mode
Reset
rw
Description
00000000 Alarm 2 threshold LSB for configuration 1
Table 81. C1Alrm1OffLsb (0x19)
Bit
Name
7:0
Mode
Reset
r
Description
00000000 Configuration 1 data out MSB
Table 82. C1DataOutMsb (0x1A)
Bit
Name
7:0
Mode
Reset
r
Description
00000000 Configuration 1 data out LSB
Table 83. C1DataOutLsb (0x1B)
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 87
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
14.2.3. Configuration 2 registers
Bit
7
Name
reserved
Mode
Reset
r
x
Description
6:5
SET_NELC
rw
01
Sets the number of elementary conversion to 2SET_NELC[1:0]. To
compensate for offset the signal is chopped between elementary
conversion.
4:2
SET_OSR
rw
010
Sets the ADC over-sampling rate of an elementary conversion to
23+SET_OSR[2:0].
1
reserved
r
x
0
reserved
r
x
Table 84. C2ZAdcReg1 (0x2A)
Bit
Name
Mode
Reset
Description
7:6
IB_AMP_ADC[1:0]
rw
11
Bias current selection of the A/D converter.
5:4
IB_AMP_PGA[1:0]
rw
11
Bias current selection of the PGA stages.
3:0
ENABLE[3:0]
rw
0000
Enables the different PGA stages and ADC.
Š
Š
Š
Š
XXX1 - ADC enable
XX1X - PGA3 enable
X1XX - PGA2 enable
1XXX - PGA1 enable
Table 85. C2ZAdcReg2 (0x2B)
Bit
Name
Mode
Reset
Description
7:6
FIN[1:0]
rw
00
Sampling frequency selection
5:4
PGA2_GAIN[1:0]
rw
00
PGA2 stage gain selection
3:0
PGA2_OFFSET[3:0]
rw
0000
PGA2 stage offset selection
Table 86. C2ZAdcReg3 (0x2C)
Bit
7
6:0
Name
Mode
Reset
Description
PGA1_GAIN
rw
0
PGA1 stage gain selection
PGA3_GAIN[6:0]
rw
0000000
PGA3 stage gain selection
Table 87. C2ZAdcReg4 (0x2D)
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 88
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
Bit
7
6:0
Name
Mode
reserved
r
PGA3_OFFSET[6:0]
rw
Reset
0
0000000
Description
Unused
PGA3 stage offset selection
Table 88. C2ZAdcReg5 (0x2E)
Bit
Name
Mode
Reset
7
reserved
r
6
reserved
r
AMUX[4:0]
rw
00000
VMUX
rw
0
5:1
0
Description
Input channel configuration selector
Reference channel selector
Table 89. C2ZAdcReg6 (0x2F)
Bit
7
6:4
Name
Mode
reserved
r
FILTER TYPE [2:0]
r
Reset
Description
Filter selection selection
Š
Š
Š
Š
000 - none
001 - average filtering
010 - moving average filtering
011 - reserved
3
ALRM1
rw
Alarm 1 enable
2
ALRM2
rw
Alarm 2 enable
1
SINGLE
rw
Configuration 1 in single acquisition mode
0
CONT
rw
Configuration 1 in continuous acquisition mode
Table 90. C2SXCfg (0x30)
Bit
7:0
Name
SIZE
Mode
rw
Reset
Description
00000000 Filter size. Limited to 10 for a moving average filter.
Table 91. C2FParam (0x31)
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 89
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
Bit
Name
7:0
Mode
Reset
rw
Description
00000000 Alarm 1 threshold MSB for configuration 2
Table 92. C2Alrm1OnMsb (0x32)
Bit
Name
7:0
Mode
Reset
rw
Description
00000000 Alarm 1 threshold LSB for configuration 2
Table 93. C2Alrm1OnLsb (0x33)
Bit
Name
7:0
Mode
Reset
rw
Description
00000000 Alarm 1 threshold MSB for configuration 2
Table 94 C2Alrm1OffMsb (0x34)
Bit
Name
7:0
Mode
Reset
rw
Description
00000000 Alarm 1 threshold LSB for configuration 2
Table 95. C2Alrm1OffLsb (0x35)
Bit
Name
7:0
Mode
Reset
rw
Description
00000000 Alarm 2 threshold MSB for configuration 2
Table 96. C2Alrm1OnMsb (0x36)
Bit
Name
7:0
Mode
Reset
rw
Description
00000000 Alarm 2 threshold LSB for configuration 2
Table 97. C2Alrm1OnLsb (0x37)
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 90
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
Bit
Name
7:0
Mode
Reset
rw
Description
00000000 Alarm 2 threshold MSB for configuration 2
Table 98 C2Alrm1OffMsb (0x38)
Bit
Name
7:0
Mode
Reset
rw
Description
00000000 Alarm 2 threshold LSB for configuration 2
Table 99. C2Alrm1OffLsb (0x39)
Bit
Name
7:0
Mode
r
Reset
Description
00000000 Configuration 2 data out MSB
Table 100. C2DataOutMsb (0x3A)
Bit
Name
7:0
Mode
r
Reset
Description
00000000 Configuration 2 data out LSB
Table 101. C2DataOutLsb (0x3B)
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 91
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
14.2.4. Configuration 3 registers
Bit
7
Name
reserved
Mode
Reset
r
x
Description
6:5
SET_NELC
rw
01
Sets the number of elementary conversion to 2SET_NELC[1:0]. To
compensate for offset the signal is chopped between elementary
conversion.
4:2
SET_OSR
rw
010
Sets the ADC over-sampling rate of an elementary conversion to
23+SET_OSR[2:0].
1
reserved
r
x
0
reserved
r
x
Table 102. C3ZAdcReg1 (0x4A)
Bit
Name
Mode
Reset
Description
7:6
IB_AMP_ADC[1:0]
rw
11
Bias current selection of the A/D converter.
5:4
IB_AMP_PGA[1:0]
rw
11
Bias current selection of the PGA stages.
3:0
ENABLE[3:0]
rw
0000
Enables the different PGA stages and ADC.
Š
Š
Š
Š
XXX1 - ADC enable
XX1X - PGA3 enable
X1XX - PGA2 enable
1XXX - PGA1 enable
Table 103. C3ZAdcReg2 (0x4B)
Bit
Name
Mode
Reset
Description
7:6
FIN[1:0]
rw
00
Sampling frequency selection
5:4
PGA2_GAIN[1:0]
rw
00
PGA2 stage gain selection
3:0
PGA2_OFFSET[3:0]
rw
0000
PGA2 stage offset selection
Table 104. C3ZAdcReg3 (0x4C)
Bit
7
6:0
Name
Mode
Reset
Description
PGA1_GAIN
rw
0
PGA1 stage gain selection
PGA3_GAIN[6:0]
rw
0000000
PGA3 stage gain selection
Table 105. C3ZAdcReg4 (0x4D)
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 92
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
Bit
7
6:0
Name
Mode
reserved
r
PGA3_OFFSET[6:0]
rw
Reset
0
0000000
Description
Unused
PGA3 stage offset selection
Table 106. C3ZAdcReg5 (0x4E)
Bit
Name
Mode
Reset
7
reserved
r
6
reserved
r
AMUX[4:0]
rw
00000
VMUX
rw
0
5:1
0
Description
Input channel configuration selector
Reference channel selector
Table 107. C3ZAdcReg6 (0x4F)
Bit
7
6:4
Name
Mode
reserved
r
FILTER TYPE [2:0]
r
Reset
Description
Filter selection selection
Š
Š
Š
Š
000 - none
001 - average filtering
010 - moving average filtering
011 - reserved
3
ALRM1
rw
Alarm 1 enable
2
ALRM2
rw
Alarm 2 enable
1
SINGLE
rw
Configuration 3 in single acquisition mode
0
CONT
rw
Configuration 3 in continuous acquisition mode
Table 108. C3SXCfg (0x50)
Bit
7:0
Name
SIZE
Mode
rw
Reset
Description
00000000 Filter size. Limited to 10 for a moving average filter.
Table 109. C3FParam (0x51)
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 93
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
Bit
Name
7:0
Mode
rw
Reset
Description
00000000 Alarm 1 threshold MSB for configuration 3
Table 110. C3Alrm1OnMsb (0x52)
Bit
Name
7:0
Mode
rw
Reset
Description
00000000 Alarm 1 threshold LSB for configuration 3
Table 111. C3Alrm1OnLsb (0x53)
Bit
Name
7:0
Mode
rw
Reset
Description
00000000 Alarm 1 threshold MSB for configuration 3
Table 112 C3Alrm1OffMsb (0x54)
Bit
Name
7:0
Mode
rw
Reset
Description
00000000 Alarm 1 threshold LSB for configuration 3
Table 113. C3Alrm1OffLsb (0x55)
Bit
Name
7:0
Mode
rw
Reset
Description
00000000 Alarm 2 threshold MSB for configuration 3
Table 114. C3Alrm1OnMsb (0x56)
Bit
Name
7:0
Mode
rw
Reset
Description
00000000 Alarm 2 threshold LSB for configuration 3
Table 115. C3Alrm1OnLsb (0x57)
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 94
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
Bit
Name
7:0
Mode
rw
Reset
Description
00000000 Alarm 2 threshold MSB for configuration 3
Table 116 C3Alrm1OffMsb (0x58)
Bit
Name
7:0
Mode
rw
Reset
Description
00000000 Alarm 2 threshold LSB for configuration 3
Table 117. C3Alrm1OffLsb (0x59)
Bit
Name
7:0
Mode
r
Reset
Description
00000000 Configuration 3 data out MSB
Table 118. C3DataOutMsb (0x5A)
Bit
Name
7:0
Mode
r
Reset
Description
00000000 Configuration 3 data out LSB
Table 119. C3DataOutLsb (0x5B)
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 95
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
14.2.5. Configuration 4 registers
Bit
7
Name
reserved
Mode
Reset
r
x
Description
6:5
SET_NELC
rw
01
Sets the number of elementary conversion to 2SET_NELC[1:0]. To
compensate for offset the signal is chopped between elementary
conversion.
4:2
SET_OSR
rw
010
Sets the ADC over-sampling rate of an elementary conversion to
23+SET_OSR[2:0].
1
reserved
r
x
0
reserved
r
x
Table 120. C4ZAdcReg1 (0x6A)
Bit
Name
Mode
Reset
Description
7:6
IB_AMP_ADC[1:0]
rw
11
Bias current selection of the A/D converter.
5:4
IB_AMP_PGA[1:0]
rw
11
Bias current selection of the PGA stages.
3:0
ENABLE[3:0]
rw
0000
Enables the different PGA stages and ADC.
Š
Š
Š
Š
XXX1 - ADC enable
XX1X - PGA3 enable
X1XX - PGA2 enable
1XXX - PGA1 enable
Table 121. C4ZAdcReg2 (0x6B)
Bit
Name
Mode
Reset
Description
7:6
FIN[1:0]
rw
00
Sampling frequency selection
5:4
PGA2_GAIN[1:0]
rw
00
PGA2 stage gain selection
3:0
PGA2_OFFSET[3:0]
rw
0000
PGA2 stage offset selection
Table 122. C4ZAdcReg3 (0x6C)
Bit
7
6:0
Name
Mode
Reset
Description
PGA1_GAIN
rw
0
PGA1 stage gain selection
PGA3_GAIN[6:0]
rw
0000000
PGA3 stage gain selection
Table 123. C4ZAdcReg4 (0x6D)
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 96
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
Bit
7
6:0
Name
Mode
reserved
r
PGA3_OFFSET[6:0]
rw
Reset
0
0000000
Description
Unused
PGA3 stage offset selection
Table 124. C4ZAdcReg5 (0x6E)
Bit
Name
Mode
Reset
7
reserved
r
6
reserved
r
AMUX[4:0]
rw
00000
VMUX
rw
0
5:1
0
Description
Input channel configuration selector
Reference channel selector
Table 125. C4ZAdcReg6 (0x6F)
Bit
7
6:4
Name
Mode
reserved
r
FILTER TYPE [2:0]
r
Reset
Description
Filter selection selection
Š
Š
Š
Š
000 - none
001 - average filtering
010 - moving average filtering
011 - reserved
3
ALRM1
rw
Alarm 1 enable
2
ALRM2
rw
Alarm 2 enable
1
SINGLE
rw
Configuration 4 in single acquisition mode
0
CONT
rw
Configuration 4 in continuous acquisition mode
Table 126. C4SXCfg (0x70)
Bit
7:0
Name
SIZE
Mode
rw
Reset
Description
00000000 Filter size. Limited to 10 for a moving average filter.
Table 127. C4FParam (0x71)
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 97
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
Bit
Name
7:0
Mode
rw
Reset
Description
00000000 Alarm 1 threshold MSB for configuration 4
Table 128. C4Alrm1OnMsb (0x72)
Bit
Name
7:0
Mode
rw
Reset
Description
00000000 Alarm 1 threshold LSB for configuration 4
Table 129. C4Alrm1OnLsb (0x73)
Bit
Name
7:0
Mode
rw
Reset
Description
00000000 Alarm 1 threshold MSB for configuration 4
Table 130 C4Alrm1OffMsb (0x74)
Bit
Name
7:0
Mode
rw
Reset
Description
00000000 Alarm 1 threshold LSB for configuration 4
Table 131. C4Alrm1OffLsb (0x75)
Bit
Name
7:0
Mode
rw
Reset
Description
00000000 Alarm 2 threshold MSB for configuration 4
Table 132. C4Alrm1OnMsb (0x76)
Bit
Name
7:0
Mode
rw
Reset
Description
00000000 Alarm 2 threshold LSB for configuration 4
Table 133. C4Alrm1OnLsb (0x77)
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 98
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
Bit
Name
7:0
Mode
rw
Reset
Description
00000000 Alarm 2 threshold MSB for configuration 4
Table 134 C4Alrm1OffMsb (0x78)
Bit
Name
7:0
Mode
rw
Reset
Description
00000000 Alarm 2 threshold LSB for configuration 4
Table 135. C4Alrm1OffLsb (0x79)
Bit
Name
7:0
Mode
r
Reset
Description
00000000 Configuration 4 data out MSB
Table 136. C4DataOutMsb (0x7A)
Bit
Name
7:0
Mode
r
Reset
Description
00000000 Configuration 4 data out LSB
Table 137. C4DataOutLsb (0x7B)
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 99
www.semtech.com
SX8722
High gain acquisition for sensor interface
ADVANCED COMMUNICATIONS & SENSING
DATASHEET
15. Power modes
SX8722 has 3 operating modes:
Š
Š
Š
active mode
sleep mode
shutdown mode
15.1. Power modes transitions
Start-up from shutdown:
Š
Š
Š
Initializes the SX8722
Load EEPROM if present
Restores EEPROM configuration and set the SX8722
Start-up from sleep:
Š
Š
Š
Restores the RC active value
Enables VLD
Restores SX8722 configuration saved in RAM
Sleep sequence:
Š
Š
Š
Š
Š
Waits for I2C STOP sequence
Stops the ADC
Disable VLD
Bias current off
Set the clock to RC minimum value or to Xtal if present
Shutdown sequence:
Š
Š
Š
Š
Š
Waits for I2C STOP sequence
Stops the ADC
Disable VLD
Bias current off
Stops the SX8722
The timing of the transition states depends mainly on the Xtal presence, the EEPROM presence and if the transition is
caused by an I2C command or by a pin signal (SLEEP, SHUT, RESET).
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 100
www.semtech.com
SX8722
High gain acquisition for sensor interface
ADVANCED COMMUNICATIONS & SENSING
DATASHEET
15.2. Active mode
In this chapter you will find:
The description of the active mode
How to set SX8722 in active mode
15.2.1. Description
In active mode, SX8722 and all its peripherals can work and execute the measurement engine. The acquisition chain, the
alarms and the signal post processing can be activated and parameterized.
15.2.2. How to set SX8722 in active mode
Start-up
Š
Š
At start-up SX8722 is automatically set in active mode.
If there is no EEPROM configuration loaded at start-up, PGA are not active.
From Sleep mode
Š
Š
Š
Š
Positive pulse on RESET pin
Negative pulse on the SLEEP pin
SLEEP bit toggle in the SXCtrl1 register (I2C write mask command)
Other interruption
From Shutdown mode
Š
Š
Positive pulse on RESET pin
Power-on-reset (negative pulse on VBAT pin)
15.3. Sleep mode
15.3.1. Description
The sleep mode is a low power mode. It can be called by an I2C sequence or by sending a negative pulse to SX8722
SLEEP pin.
15.3.2. Operating specifications of the sleep mode
Summary
Š
Š
Š
Š
Š
Š
SX8722 configuration saved in RAM
ADC stopped
VLD stopped (voltage level detector)
If Xtal present, clock set to Xtal 32k
If Xtal not present, clock set to RC minimum value (~80kHz)
Bias current off
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 101
www.semtech.com
SX8722
High gain acquisition for sensor interface
ADVANCED COMMUNICATIONS & SENSING
Š
DATASHEET
Program HALT, SX8722 needs an interrupt to wake up (I2C communication, SLEEP pin signal, reset, etc).
15.3.3. SX8722 sleep current consumption below 3V Vbat
Below 3 Volts SX8722 enables the internal voltage multiplier to power the ZoomingADC™. This internal voltage multiplier is
automatically enabled when the power supply goes below 3V Vbat.
This voltage multiplier increases SX8722 consumption. This is why the chip consumption in sleep mode with 2.5V supply is
higher than with 5.5V supply.
There is a possibility to consume less current when the Vbat voltage is lower than 3V: the SLEEP signal has to be sent to the
SLEEP pin when Vbat is higher than 3V, and then decrease the Vbat value. In this case, the voltage multiplier is not
activated.
15.3.4. SX8722 sleep current consumption with the 32.768 kHz Xtal
The sleep mode current consumption with the presence of the 32.768 kHz Xtal is around 1µA if the supply voltage is above
3V. Below 3V, the current consumption is around 4 µA because the VMULT is enabled.
In addition to set the precise RC frequency, the presence of an external 32.768 kHz Xtal allows SX8722 sleep current
consumption 3x lower than without the Xtal.
In this case SX8722 main clock is generated by the Xtal.
15.3.5. SX8722 sleep current consumption without the 32.768 KHz Xtal
The current consumption in sleep mode without the 32.768 kHz Xtal is around 3 µA if the supply voltage is above 3V. Below
3V, the current consumption is around 9 µA because the voltage multiplier is enabled. The RC min frequency is set and its
value is around 80 kHz.
15.3.6. How to set SX8722 in sleep mode
I2C sleep
Through the I2C interface, send a write mask command at address 00 and toggle the SLEEP bit of the SXCtrl1 register.
When SX8722 is in sleep mode, send a write mask command at address 00 and toggle the SLEEP bit to restore SX8722
active mode.
WARNING: The I2C SLEEP command does not allow reaching as low current consumption as the SLEEP pin command or writing the
SXCtrl1 register SLEEP bit. The sleep mode called by I2C SLEEP command (0x40) has a current consumption around 80µA.
SLEEP pin
Put the SLEEP input signal to VSS, the SLEEP input is active on negative edge.
Is the SX8722 in SLEEP mode?
There are pulses on the READY pin in active mode every 36ms. In sleep mode there is no pulse on the READY pin.
15.3.7. Wake up from sleep mode to active mode
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 102
www.semtech.com
SX8722
High gain acquisition for sensor interface
ADVANCED COMMUNICATIONS & SENSING
DATASHEET
In sleep mode the internal program is in "HALT" assembler equivalent mode. The SLEEP bit toggling in SXCtrl1 or a signal
on the SLEEP pin can wake up the SX8722.
See active mode section for more information.
15.4. Shutdown mode
15.4.1. Description
This is a very low-power mode because all circuit clocks and all peripherals are stopped. Only some service blocks remain
active.
15.4.2. Operating specifications in shutdown mode
Summary
Š
Š
Š
Š
Š
Š
Š
ADC stopped
VLD stopped
If Xtal present, clock set to Xtal 32k
If Xtal not present, clock set to RC minimum value (~80kHz)
Bias current off
Program HALT, interrupt off
No possible I2C communication
Internal voltage multiplier
Like in sleep mode, internal voltage multiplier is automatically enabled when the power supply goes below 3 Volts but the
internal voltage multiplier requires an external capacitor between VMULT pin and Vss, the value of this capacitor must be
between 1 and 3nF.
Shutdown mode current consumption
The current consumption in shutdown mode is around 0.5 µA if the supply voltage is above 3V. Below 3V, the current
consumption is around 3.5 µA because the voltage multiplier is enabled.
How to set shutdown mode consumption around 0.5µA
By default, with a supply voltage below 3V the shutdown mode current is around 3.5µA. To obtain 0.5µA consumption, the
shut command (I2C, pin) has to be received by the SX8722 when the internal voltage multiplier is not enabled. It means
when the supply voltage is above 3V.
Then, if the supply voltage is lowered under 3V, the SX8722 will conserve the 0.5µA consumption.
15.4.3. How to set SX8722 in shutdown mode
I2C Shutdown command
Send the 0x50 command through the I2C interface.
I2C SHUT bit toggle
Through the I2C interface, send a write mask command at address 00 and toggle the SHUT bit of the SXCtrl1 register.
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 103
www.semtech.com
SX8722
High gain acquisition for sensor interface
ADVANCED COMMUNICATIONS & SENSING
DATASHEET
SHUT pin
Put the SHUT input signal to VSS, the SHUT input is active on negative edge.
15.4.4. Wake-up from shutdown mode to active mode
There are two possible ways to wake-up from the shutdown mode:
Š
Š
The POR (power-on-reset caused by a power-down followed by power-on).
The RESET pin.
In both case the RAM information is lost. SX8722 configuration must be restored from the EEPROM saved configuration.
15.4.5. Change from shutdown mode to sleep mode
This is not possible.
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 104
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
16. PCB Layout Considerations
PCB layout considerations to be taken when using the SX8722 are relatively simple to get the highest performances out.
The most important to achieve good performances is to have a good voltage reference.
Separating the digital from the analog lines will be also a good choice to reduce the noise induced by the digital lines. It is
also advised to have separated ground planes for digital and analog signals with the shortest return path, as well as making
the power supply lines as wider as possible and to have good decoupling capacitors.
17. How to Evaluate
For evaluation purposes the XE8000EV120 evaluation kit can be ordered. This kit connects to any PC using a USB port. The
"SX8722 Evaluation Tools" software gives the user the ability to control the SX8722 and displaying configurations on the
"Graphical User interface". For more information please look at SEMTECH web site (http://www.semtech.com).
18. Package Outline Drawing: MLPQ44-7x7mm
A
D
B
DIM
PIN 1
INDICATOR
(LASER MARK)
A
A1
A2
b
D
D1
E
E1
e
L
N
aaa
bbb
E
A2
A
DIMENSIONS
INCHES
MILLIMETERS
MIN NOM MAX MIN NOM MAX
- .040
.031
.000 - .002
- (.008) .007 .010 .012
.271 .275 .279
.197 .203 .207
.271 .275 .279
.197 .203 .207
.020 BSC
.017 .021 .025
44
.003
.004
1.00
0.80 0.05
0.00 - (0.20) 0.18 0.25 0.30
6.90 7.00 7.10
5.00 5.15 5.25
6.90 7.00 7.10
5.00 5.15 5.25
0.50 BSC
0.45 0.55 0.65
44
0.08
0.10
SEATING
PLANE
aaa C
A1
C
D1
LxN
E/2
E1
2
1
N
bxN
e
NOTES:
bbb
C A B
D/2
1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
2. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 105
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
19. Land Pattern Drawing: MLPQ44-7x7mm
H
DIMENSIONS
(C)
K
G
Z
Y
DIM
C
G
H
K
P
X
Y
Z
INCHES
(.268)
.228
.207
.207
.021
.011
.039
.307
MILLIMETERS
(6.80)
5.80
5.25
5.25
0.50
0.30
1.00
7.80
X
P
NOTES:
1. THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY.
CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR
COMPANY'S MANUFACTURING GUIDELINES ARE MET.
2. THERMAL VIAS IN THE LAND PATTERN OF THE EXPOSED PAD
SHALL BE CONNECTED TO A SYSTEM GROUND PLANE.
FAILURE TO DO SO MAY COMPROMISE THE THERMAL AND/OR
FUNCTIONAL PERFORMANCE OF THE DEVICE.
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 106
www.semtech.com
SX8722
High gain acquisition for sensor interface
DATASHEET
ADVANCED COMMUNICATIONS & SENSING
20. Tape and Reel Specification
MLP/QFN (0.70mm - 1.00mm package thickness)
Š
Š
Š
Š
Š
Š
Š
Single Sprocket holes
Tolerances for Ao & Bo are +/- 0.20mm
Tolerances for Ko is +/- 0.10mm
Tolerance for Pocket Pitch is +/- 0.10mm
Tolerance for Tape width is +/-0.30mm
Trailer and Leader Length are minimum required length
Package Orientation and Feed Direction
MLP (square)
MLP (rectangular)
Direction of Feed
Direction of Feed
Pkg size
carrier tape (mm)
Reel
2x2
Tape
Width
(W)
8
Pocket
Pitch
(P)
4
2.25
2.25
3x3
12
8
3.30
3.30
4x4
12
8
4.35
4x3
12
8
3.30
Ao
Bo
Ko
Reel
Width
(mm)
8.4
Trailer
Length
(mm)
160
Leader
Length
(mm)
400
QTY per
Reel
1.00
Reel
Size
(in)
7
1.10
13
12.4
400
400
3000
4.35
1.10
13
12.4
400
400
3000
4.30
1.10
13
12.4
400
400
3000
3000
5x5
12
8
5.25
5.25
1.10
7/13
12.4
200/400
400
500/3000
6x6
16
12
6.30
6.30
1.10
13
16.4
400
400
3000
6x5
12
8
5.30
6.30
1.10
13
12.4
400
400
3000
7x7
16
12
7.30
7.30
1.10
13
16.4
400
400
3000
9X9
16
12
9.30
9.30
1.10
13
16.4
400
400
3000
10x10
24
16
10.30
10.30
1.10
13
24.4
400
400
3000
11x11
24
16
11.40
11.40
1.20
13
24.4
400
400
3000
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 107
www.semtech.com
SX8722
High gain acquisition for sensor interface
ADVANCED COMMUNICATIONS & SENSING
DATASHEET
© Semtech 2008
All rights reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The
information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable
and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication
thereof does not convey nor imply any license under patent or other industrial or intellectual property rights. Semtech assumes
no responsibility or liability whatsoever for any failure or unexpected operation resulting from misuse, neglect improper
installation, repair or improper handling or unusual physical or electrical stress including, but not limited to, exposure to
parameters beyond the specified maximum ratings or operation outside the specified range.
SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN
LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF
SEMTECH PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER’S
OWN RISK. Should a customer purchase or use Semtech products for any such unauthorized application, the customer shall
indemnify and hold Semtech and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs damages and attorney fees which could arise.
Contact information
Semtech Corporation Advanced Communications & Sensing Products
E-mail: [email protected]@semtech.comInternet: http://www.semtech.com
USA
200 Flynn Road, Camarillo, CA 93012-8790.
Tel: +1 805 498 2111 Fax: +1 805 498 3804
FAR EAST
12F, No. 89 Sec. 5, Nanking E. Road, Taipei, 105, TWN, R.O.C.
Tel: +886 2 2748 3380 Fax: +886 2 2748 3390
EUROPE
Semtech Ltd., Units 2 & 3, Park Court, Premier Way, Abbey Park Industrial Estate, Romsey, Hampshire, SO51 9DN.
Tel: +44 (0)1794 527 600 Fax: +44 (0)1794 527 601
ISO9001
CERTIFIED
ACS - Revision 4.2
©2008 Semtech Corp.
October 2008
Page 108
www.semtech.com