MICREL SY10EP89VZITR

ECL Pro™
ECLSY10EP89V
Pro™
SY10EP89V
FINAL
5V/3.3V 3GHz
COAXIAL CABLE DRIVER
Micrel
FEATURES
DESCRIPTION
■
■
■
■
■
3.3V and 5V power supply options
3.0GHz typical toggle frequency
310ps typical propagation delay
1.6V (5V) and 1.4V (3.3V) swing
Internal input resistors: pulldown on D, pulldown
and pullup on /D
■ New differential input common mode range
■ Available in 8-pin MSOP and SOIC packages
The SY10EP89V is a differential fanout gate specifically
designed to drive coaxial cables. The device is especially
useful in digitial video broadcasting applications; for this
application, since the system is polarity free, each output
can be used as an independent driver. The driver
produces swings 70% larger than a standard ECL output.
When driving a coaxial cable, proper termination is
required at both ends of the line, while maintaining a
800mV (5V) or 700mV (3.3V) swing at the receiving end
of the cable. Because of the larger output swings, the
device cannot be terminated into the standard VCC –2.0V.
All of the DC parameters are tested with a 50Ω to
VCC –3.0V load. The driver accepts a standard differential
ECL input and can run off of the digital video broadcast
standard –5.0V supply.
PIN CONFIGURATION/BLOCK DIAGRAM
PIN NAMES
Pin
Function
Q0 1
8 VCC
D, /D
ECL Data Inputs
/Q0 2
7 D
Q0, Q1, /Q0, /Q1
ECL Data Outputs
Q1 3
6 /D
VCC
Positive Supply
5 VEE
VEE
Negative Supply
/Q1 4
Available in 8-Pin SOIC and MSOP Packages
ECL Pro is a trademark of Micrel, Inc.
Rev.: C
1
Amendment: /0
Issue Date: March 2003
ECL Pro™
SY10EP89V
Micrel
ABSOLUTE MAXIMUM RATINGS(1)
Symbol
Rating
Value
Unit
6V
V
–6.0 to 0
+6.0 to 0
V
V
50
100
mA
VCC — VEE
Power Supply Voltage
VIN
Input Voltage (VCC = 0V, VIN not more negative than VEE)
Input Voltage (VEE = 0V, VIN not more positive than VCC)
IOUT
Output Current
TA
Operating Temperature Range
–40 to +85
°C
Tstore
Storage Temperature Range
–65 to +150
°C
θJA
Package Thermal Resistance
(Junction-to-Ambient)
–Still-Air (SOIC)
–500lfpm (SOIC)
160
109
°C/W
–Still-Air (MSOP)
–500lfpm (MSOP)
206
155
°C/W
(SOIC)
(MSOP)
39
39
°C/W
θJC
Note 1.
–Continuous
–Surge
Package Thermal Resistance
(Junction-to-Case)
Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. This is a stress rating only and functional operation
is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to ABSOLUTE MAXIMUM
RATlNG conditions for extended periods may affect device reliability.
DC Blocking Capacitors
75Ω
75Ω Coax
75Ω
75Ω Coax
150Ω
150Ω
75Ω
VEE
SY10EP89
Figure 1. EP89V Termination Configuration
2
75Ω
ECL Pro™
SY10EP89V
Micrel
5.0V PECL DC ELECTRICAL CHARACTERISTICS(1)
VCC = 5.0V ±5%; VEE = 0V(2)
TA = –40°C
Symbol
Parameter
IEE
Power Supply Current
VOH
Output HIGH Voltage(3)
Voltage(3)
TA = +25°C
TA = +85°C
Min.
Typ.
Max.
Min.
Typ.
Max.
Min.
Typ.
Max.
Unit
27
34
45
30
37
45
32
39
50
mA
3780
3880
3980
3850
3950
4050
3925
4025
4125
mV
2075
2225
2375
2060
2210
2360
2090
2240
2390
mV
VOL
Outuput LOW
VIH
Input HIGH Voltage
(Single-Ended)
3770
—
4110
3870
—
4190
3940
—
4280
mV
VIL
Input LOW Voltage
(Single-Ended)
3050
—
3500
3050
—
3520
3050
—
3555
mV
VIHCMR
Input HIGH Voltage
Common Mode Range(4)
VEE +2.0
VCC
VEE +2.0
VCC
VEE +2.0
VCC
V
IIH
Input HIGH Current
—
—
150
—
—
150
—
—
150
µA
IIL
Input LOW Current
0.5
–150
—
—
—
—
0.5
–150
—
—
—
—
0.5
–150
—
—
—
—
µA
D
/D
Note 1.
10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit
is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained.
Note 2.
Input and output parameters vary 1:1 with VCC.
Note 3.
All loading with 50Ω to VCC – 3.0V.
Note 4.
The VIHCMR range is referenced to the most positive side of the differential input signal.
3.3V LVPECL DC ELECTRICAL CHARACTERISTICS(1)
VCC = 3.3V ±5%, VEE = 0V(2)
TA = –40°C
Symbol
IEE
VOH
Parameter
Power Supply Current
Output HIGH
Voltage(3)
Voltage(3)
TA = +25°C
TA = +85°C
Min.
Typ.
Max.
Min.
Typ.
Max.
Min.
Typ.
Max.
Unit
22
28
34
24
32
38
28
34
40
mA
2080
2180
2280
2150
2250
2350
2225
2325
2425
mV
620
720
820
630
730
830
670
770
870
mV
VOL
Outuput LOW
VIH
Input HIGH Voltage
(Single-Ended)
2070
—
2410
2170
—
2490
2240
—
2580
mV
VIL
Input LOW Voltage
(Single-Ended)
1350
—
1800
1350
—
1820
1350
—
1855
mV
VIHCMR
Input HIGH Voltage
Common Mode Range (Diff.)(4)
VCC
V
IIH
Input HIGH Current
IIL
Input LOW Current
D
/D
VEE +2.0
VCC
VEE +2.0
VCC
VEE +2.0
—
—
150
—
—
150
—
—
150
µA
0.5
–150
—
—
—
—
0.5
–150
—
—
—
—
0.5
–150
—
—
—
—
µA
Note 1.
10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit
is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained.
Note 2.
Input and output parameters vary 1:1 with VCC.
Note 3.
All loading with 50Ω to VCC –3.0V.
Note 4.
The VIHCMR range is referenced to the most positive side of the differential input signal.
3
ECL Pro™
SY10EP89V
Micrel
LVECL DC ELECTRICAL CHARACTERISTICS(1)
VCC = 0V, VEE = –3.3V ±5%
TA = –40°C
Symbol
Parameter
IEE
Power Supply Current
VOH
Output HIGH Voltage(2)
Voltage(2)
TA = +25°C
TA = +85°C
Min.
Typ.
Max.
Min.
Typ.
Max.
Min.
Typ.
Max.
Unit
22
28
34
24
32
38
28
34
40
mA
–1220
–1120
–1020
–1150
–1050
–950
–1075
–975
–875
mV
–2680
–2580
–2480
–2670
–2570
–2470
–2630
–2530
–2430
mV
VOL
Outuput LOW
VIH
Input HIGH Voltage
(Single-Ended)
–1230
—
–890
–1130
—
–810
–1060
—
–720
mV
VIL
Input LOW Voltage
(Single-Ended)
–1950
—
–1500
–1950
—
–1480
–1950
—
–1445
mV
VIHCMR
Input HIGH Voltage
Common Mode Range (Diff.)(3)
0.0
V
IIH
Input HIGH Current
IIL
Input LOW Current
D
/D
VEE +2.0
0.0
VEE +2.0
0.0
VEE +2.0
—
—
150
—
—
150
—
—
150
µA
0.5
–150
—
—
—
—
0.5
–150
—
—
—
—
0.5
–150
—
—
—
—
µA
Note 1.
10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit
is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained.
Note 2.
All loading with 50Ω to VCC –3.0V.
Note 3.
The VIHCMR range is referenced to the most positive side of the differential input signal.
ECL DC ELECTRICAL CHARACTERISTICS(1)
VCC = 0V; VEE = –5.2V ±5%
TA = –40°C
Symbol
IEE
VOH
Parameter
Power Supply Current
Output HIGH
Voltage(2)
Voltage(2)
TA = +25°C
TA = +85°C
Min.
Typ.
Max.
Min.
Typ.
Max.
Min.
Typ.
Max.
Unit
27
32
41
30
37
44
32
39
50
mA
–1220
–1120
–1020
–1150
–1050
–950
–1075
–975
–875
mV
–2950
–2800
–2650
–2950
–2850
–2650
–2950
–2800
–2650
mV
VOL
Outuput LOW
VIH
Input HIGH Voltage
(Single-Ended)
–1230
—
–890
–1130
—
–810
–1060
—
–720
mV
VIL
Input LOW Voltage
(Single-Ended)
–1950
—
–1500
–1950
—
–1480
–1950
—
–1445
mV
VIHCMR
Input HIGH Voltage
Common Mode Range(3)
0
V
IIH
Input HIGH Current
IIL
Input LOW Current
VEE +2.0
D
/D
0
VEE +2.0
0
VEE +2.0
—
—
150
—
—
150
—
—
150
µA
0.5
–150
—
—
—
—
0.5
–150
—
—
—
—
0.5
–150
—
—
—
—
µA
Note 1.
10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit
is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained.
Note 2.
All loading with 50Ω to VCC –3.0V.
Note 3.
The VIHCMR range is referenced to the most positive side of the differential input signal.
4
ECL Pro™
SY10EP89V
Micrel
AC ELECTRICAL CHARACTERISTICS
VCC = 0V, VEE = –3.0V to –5.5V; VCC = 3.0V to 5.5V, VEE = 0V(1)
TA = –40°C
Symbol
Parameter
Frequency(2)
fMAX
Maximum Toggle
tPLH
tPHL
Propagation Delay to
Output Differential
tSKEW
Within Device Skew(3)
Device-to-Device Skew
tJITTER
Cycle-to-Cycle Jitter
Swing(4)
VPP
Input Voltage
(Differential)
tr
tf
Output Rise/Fall Times
(20% to 80%)
Note 1.
Q, /Q
Q, /Q
TA = +25°C
TA = +85°C
Min.
Typ.
Max.
Min.
Typ.
Max.
Min.
Typ.
Max.
Unit
3
—
—
3
—
—
3
—
—
GHz
200
—
380
220
310
400
250
—
420
ps
—
—
5.0
—
20
120
—
—
5
—
20
120
—
—
—
—
20
120
ps
—
0.5
< 1.0
—
0.5
< 1.0
—
0.5
< 1.0
ps
150
800
1200
150
800
1200
150
—
1200
mV
120
—
350
130
250
350
150
—
350
ps
Measured using a 750mV source, 50% duty cycle clock source. All loading with 50Ω to VCC –3.0V.
Note 2.
fMAX guaranteed for functionality only. VOL and VOH levels are guaranteed at DC only.
Note 3.
Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are
measured from the cross point of the inputs to the cross point of the outputs.
Note 4.
VIL must not go below VCC –3.0V.
PRODUCT ORDERING CODE
Ordering
Code
SY10EP89VZC
SY10EP89VZCTR(1)
SY10EP89VKC
SY10EP89VKCTR(1)
Package
Type
Operating
Range
Package
Marking
SY10EP89VZI(2)
Z8-1
Industrial
HEP89V
SY10EP89VZITR(1,2)
Z8-1
Industrial
HEP89V
HP89
SY10EP89VKI(2)
K8-1
Industrial
HP89
HP89
SY10EP89VKITR(1,2)
K8-1
Industrial
HP89
Package
Type
Operating
Range
Package
Marking
Z8-1
Commercial
HEP89V
HEP89V
Z8-1
K8-1
K8-1
Note 1.
Tape and Reel.
Note 2.
Recommended for new designs.
Commercial
Commercial
Commercial
Ordering
Code
5
ECL Pro™
SY10EP89V
Micrel
8 LEAD MSOP (K8-1)
Rev. 01
6
ECL Pro™
SY10EP89V
Micrel
8 LEAD PLASTIC SOIC (Z8-1)
Rev. 03
MICREL, INC.
TEL
1849 FORTUNE DRIVE SAN JOSE, CA 95131
+ 1 (408) 944-0800
FAX
+ 1 (408) 944-0970
WEB
USA
http://www.micrel.com
The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.
Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser’s
use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser’s own risk and Purchaser agrees to fully indemnify
Micrel for any damages resulting from such use or sale.
© 2003 Micrel, Incorporated.
7