TOSHIBA T6B70BF

T6B70BF
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic
T6B70BF
Interface IC for Water Heater
The T6B70BF incorporates two-channel 4-bit DA converter, a
pseudo sine wave generator and an external analog signal
detection/non-detection circuit. It is designed to be used mainly
for communication between water heater and control unit.
Features
·
On-chip two-channel 4-bit DA converter (opposite polarities)
·
On-chip pseudo sine wave generator (external clock/16)
·
On-chip external analog signal detection/non-detection circuit
·
On-chip two-channel analog switch
Weight: 0.16 g (typ.)
Block Diagram
OSCIN 1
OSCOUT 2
Divide-by16 unit
Pseudo
sine wave
generator
0°C
180°C
Waveform
initialization block
4-bit
DA converter
13 SOUT+
4-bit
DA converter
12 SOUT−
FOUT 3
SCTL
4
16 VDD
Modulation
control circuit
Zero-cross
waveform
shaping circuit
SW1IN 14
Amplifier input
circuit
SW1OUT 15
7 AMPIN
6 AMPOUT
Cycle measurement counter
SW2IN 11
Analog signal
detection/non-detection
SW2OUT 10
RESET
5
8 VSS
9
DOUT
Output buffer
Reset
circuit
1
2003-03-13
T6B70BF
Pin Assignment
OSCIN
1
16
VDD
OSCOUT
2
15
SW1OUT
FOUT
3
14
SW1IN
SCTL
4
13
SOUT+
T6B70BF
RESET
5
12
SOUT−
AMPOUT
6
11
SW2IN
AMPIN
7
10
SW2OUT
VSS
8
9
DOUT
Pin Function
No.
Symbol
Input/Output
Function
1
OSCIN
Input
Pins connected to oscillation
2
OSCOUT
Output
Pins connected to oscillation
3
FOUT
Output
Output pin for oscillation waveform shaping
circuit
4
SCTL
Input
Modulation control signal input pin
5
RESET
Input
Reset signal input pin
6
AMPOUT
Output
7
AMPIN
Input
Amplifier signal output pin
Amplifier signal input pin
8
VSS
―
9
DOUT
Output
Output pin for amplifier input signal detector
Device GND pin (0 V)
10
SW2OUT
Output
Output pin on analog SW2 side
11
SW2IN
Input
12
SOUT−
Output
Pseudo sine wave (opposite polarity of
SOUT+ output) output pin
13
SOUT+
Output
Pseudo sine wave output pin
14
SW1IN
Input
Input pin on analog SW1 side
15
SW1OUT
Output
Output pin on analog SW1 side
16
VDD
―
Device power supply pin (+5 V)
Input pin on analog SW2 side
2
2003-03-13
T6B70BF
Function Description
Pseudo sine wave generator and 4-bit DA converters (sending block)
Pseudo sine wave signal with Fosc/16 frequency is driven out from pseudo sine wave output pin
(SOUT+ and SOUT−).
The outputs of pins SOUT+ and SOUT− have the opposite polarities.
The block of pseudo sine wave generator and 4-bit DA converter (the side of SOUT+ pin) are shown
below.
SOUT+ pin
MSB
R
R
R
SOUT+
R
R
R
SOUT−
LSB
R
FOSC
R
R
R
R
2R
Pseudo sine wave generator
(1)
VSS
RST
The data of pseudo sine wave generator is driven out in the following sequence.
0 → 1 → 3 → 6 → 9 → C → E → F → F → E → C → 9 → 6 → 3 → 1 → 0 (in hexadecimal)
FF
E
E
C
C
9
9
6
6
3
0 1
3
FSIN
250 kHz
@FOSC = 4 MHz
1 0
Thus, the pseudo sine waveform of positive-going and negative-going outputs is like a staircase at
no load.
An analog switch is incorporated so that the driver output buffer is connected to the transmission
line only when transmission is performed.
However, an emitter follower circuit is externally connected to the driver output buffer.
The phase difference between positive-going and negative-going outputs is within 180° ± 5°. (pseudo
sine wave output phase fluctuation)
3
2003-03-13
T6B70BF
(2)
Amplifier input circuit and signal detection/non-detection circuit (receiving block)
The modulation signal input block incorporates two level comparators having a high and a low
threshold values to detect the external sine wave signal with amplitude higher than the specified
threshold. Thus, it avoids signals with amplitude lower than the specified threshold (e.g., noise
signals) being detected erroneously.
The detection frequency range (frequency window) is determined by the divider ratio 1/18 to 1/14 of
Fosc.
In detection/non-detection determined condition, when the signals within the specified frequency
range are detected (or not detected) sequentially, signals are controlled using the majority rule. The
time which detection/non-detection is determined takes 9 to 15 waves to pass when one wave is
referenced to Fosc/16 frequency.
VDD
Reference
voltage
VH
RESET
High comparator
VA
R
Q
S
Q
Cycle
measurement
counter
R2
APU
R1
VDD
Reference
voltage
VL
VBIAS
Low comparator
VB
RESET
R4
APD
R3
7
AMPIN pin
VSS
Analog
signal
detection
9
/nondetection DOUT pin
circuit
6
AMPOUT pin
VDD
VSS
AMPIN input sine waveform
VH
Input
sensitivity
VPP
VL
Detect reception
Not detect reception
Not detect reception
AMPOUT Truth Table
AMPOUT output timing (when RESET is Low)
VH
VBIAS
VL
AMPOUT
Held at High
Not detect reception
VA
VB
AMPOUT
VBIAS > VH
L
H
L
VH > VBIAS > VL
H
H
Hold
VBIAS < VL
H
L
H
Held at Low
VBIAS < VL
VBIAS > VH
VH > VBIAS > VL VH > VBIAS > VL
4
2003-03-13
T6B70BF
(3)
Function description and timing chart of the sending block
When modulation control input ( SCTL ) is in High-level, pseudo sine wave output is held at 0° of
the phase angle of pseudo sine wave. When modulation control input changes from High-level to
Low-level, the pseudo sine wave output (SOUT+) starts from −90° (SOUT− starts from +90°).
In this case, the time which takes to turn ON is as follows.
td (ON) < 500 ns
When modulation control input changes from Low-level to High-level, the phase angle is forcibly
held at 0°, regardless of the phase of the pseudo sine wave output. (the pseudo sine wave output is
stopped). In this case, the time which takes to turn OFF is as follows.
td (OFF) < 1 µs
SCTL
td (OFF)
td (ON)
SOUT+ pseudo sine wave output
(SOUT− output pin has the
opposite polarity)
(4)
Function description and timing chart of the receiving block
When it is ready to receive amplifier input signal, the time T (DET) which takes to change from
High to Low at DOUT pin is within the time which 9 to 15 waves to pass. In this case, one wave is
referenced to 16 Fosc clocks. The time width is determined by the internal clock and amplifier input
signal. The timings of the internal clock and internal detection signal in the majority logic circuit are
synchronous with each other. When input signals with the cycle, which is within the range specified
by the frequency window, are detected (or not detected) sequentially, this rule is valid (the majority
rule).
Amplifier input
T (DET)
T (DET)
DOUT
Note 1: Any communication protocol is used, however, it takes 15 carrier waves to pass when the signal changes its
state.
5
2003-03-13
T6B70BF
Timing Chart (SOUT+ = SW1IN, SW1OUT, SOUT− = SW2IN, SW2OUT)
VDD
RESET
OSCIN
(4 MHz)
FOUT
AMPIN
(250 kHz)
VPP
AMPOUT
High-z
SCTL
When sending
td (ON)
td (OFF)
FSIN
SOUT+
VOPP
SOUT−
DOUT
TDET
When receiving
TDET
SW1IN
SW1OUT
High-z
High-z
SW2IN
SW2OUT
High-z
High-z
6
2003-03-13
T6B70BF
Maximum Ratings (Ta = 25°C ± 1.5°C)
Characteristics
Symbol
Rating
Unit
VDD
−0.3 to 6.0
V
Input voltage
VI
−0.3 to VDD + 0.3
V
Input peak current
IIK
−20 to 20
mA
Operating temperature
Topr
−20 to 80
°C
Storage temperature
Tstg
−55 to 125
°C
0.54
W
Power supply voltage
PD
Power dissipation
(Note 1)
Note 1: Decreases approximately 4.35 mW per 1°C.
Electrical Characteristics
(unless otherwise specified, VDD = 5.0 V, VSS = 0 V, FOSC = 4 MHz and Ta = −20 to 80°C)
Symbol
Test
Circuit
Operating voltage
VDD
―
Current consumption
IDD
1
FOSC
2
High level
VIHOSC
Low level
Characteristics
Test Condition
Min
Typ.
Max
Unit
―
4.5
5.0
5.5
V
―
―
10
mA
―
1
4
10
MHz
3
―
0.7
VDD
―
VDD
VILOSC
3
―
VSS
―
0.3
VDD
High level
IIHROSC
4
VIN = 5 V, Ta = 25°C
3.2
6.58
13.2
Low level
IILROSC
4
VIN = 0 V, Ta = 25°C
−3.2
−6.58
−13.2
High level
VOHOSC
3
IOH = −0.1 mA
VDD −
1.0
―
VDD
Low level
VOLOSC
4
IOL = +0.1 mA
VSS
―
VSS +
0.6
Low to High input switching level
VIHRST
5
―
0.65
VDD
―
VDD
V
High to Low input switching level
VILRST
5
―
VSS
―
0.35
VDD
V
VDD pin (pin 16)
No load, Fosc = 4 MHz
OSCIN pin (pin 1) and OSCOUT pin (pin 2)
Oscillation frequency
Input voltage
Input current
Output voltage
V
µA
V
RESET pin (pin 5)
High-level input current
IIHRST
6
VIN = VDD
Pull-up resistance 1
IILRRST1
7
VIN = VSS, Ta = 25
−10
―
10
µA
9
15
21
kΩ
Pull-up resistance 2
IILRRST2
7
VIN = VSS, Ta = −20 to 80
6.3
―
27.3
kΩ
Low to High input switching level
VIHSCTL
8
―
0.65
VDD
―
VDD
V
High to Low input switching level
VILSCTL
8
―
VSS
―
0.35
VDD
V
High level
IIHSCTL
9
VIN = VDD
−1
―
1
Low level
IILSCTL
9
VIN = VDD
−1
―
1
High level
VOHFOUT
10
IOH = −1.0 mA
VDD −
1.0
―
VDD
Low level
VOLFOUT
11
IOL = +1.0 mA
VSS
―
VSS +
0.6
SCTL pin (pin 4)
Input current
µA
FOUT pin (pin 3)
Output voltage
V
Note 2: One direction in which current flow into the IC should be + (sink) and the other direction in which current
flow out from the IC should be − (drain).
7
2003-03-13
T6B70BF
Symbol
Test
Circuit
High level
VOHDOUT
12
Low level
VOLDOUT
13
TDET1
19
Characteristics
Test Condition
Min
Typ.
Max
Unit
IOH = −1.0 mA
VDD −
1.0
―
VDD
IOL = +1.0 mA
VSS
―
VSS +
0.6
40
―
60
µs
36
―
56
µs
DOUT pin (pin 9)
Output voltage
Non-reception to reception detection
time
Reception to non-reception detection
time
TDET2
19
Fosc = 4 MHz,
AMPIN = 250 kHz
Time which takes DOUT to
change from High to Low
Fosc = 4 MHz,
AMPIN = 250 kHz
Time which takes DOUT to
change from Low to High
V
AMPIN pin (pin 7)
Input dynamic range
VAMPIN
14
Pull-up resistance 1
IILRAPU1
15
VIN = VSS, Ta = 25
Pull-up resistance 2
IILRAPU2
15
VIN = VSS, Ta = −20 to 80
Pull-down resistance 1
IIHRAPD1
16
VIN = VDD, Ta = 25
Pull-down resistance 2
IIHRAPD2
16
VIN = VDD, Ta = −20 to 80
VBIAS
17
VPP
18
Amplifier input bias voltage
Amplifier input sensitivity
―
VSS
―
VDD
V
11.6
19.4
27.2
kΩ
7
―
38
kΩ
5.9
9.8
13.7
kΩ
3
―
19.2
kΩ
No load (design goal)
1.54
1.63
1.71
V
No load, receivable amplitude
range is 250 kHz, when sine
wave signal is applied.
0.3
―
0.45
V
(design goal)
Detection frequency range
DETON
19
Fosc = 4 MHz
236
―
266
kHz
Non-detection frequency
(low frequency)
DETOFF1
19
Fosc = 4 MHz
―
―
222
kHz
Non-detection frequency
(high frequency)
DETOFF2
19
Fosc = 4 MHz
286
―
―
kHz
SW1IN pin (pin 14) and SW1OUT pin (pin 15)
Analog switch input voltage
VINASW1
―
―
VSS
―
VDD
V
Analog switch output voltage
VOUTASW1
―
―
VSS
―
VDD
V
OFF-leak current of analog switch 1
IOFFASW1
20
−1
―
1
µA
ON-resistance of analog switch 1
RONASW1
21
35
―
105
Ω
SCTL = H, SW1IN = VDD,
SW1OUT = VSS
SCTL = L, SW1IN = 5 V,
SW1OUT = 0 V
Current measure
SW2IN pin (pin 11) and SW2OUT pin (pin 10)
Analog switch input voltage
VINASW2
―
―
VSS
―
VDD
V
Analog switch output voltage
VOUTASW2
―
―
VSS
―
VDD
V
OFF-leak current of analog switch 2
IOFFASW2
20
−1
―
1
µA
ON-resistance of analog switch 2
RONASW2
21
35
―
105
Ω
0.85
VDD
―
VDD
V
SCTL = H, SW2IN = VDD,
SW2OUT = VSS
SCTL = L, SW2IN = 5 V,
SW2OUT = 0 V
Current measure
SOUT+ pin (pin 13) and SOUT− pin (pin 12)
Output voltage
VOPP
22
Maximum voltage value at no
load
Pseudo sine wave output frequency
FSIN
23
FOSC = 4 MHz
―
250
―
kHz
Pseudo sine wave output start time
tdON
23
SCTL = H → L
―
―
500
ns
tdOFF
23
SCTL = L → H
―
―
1
µs
ROUTSIN
24
No load
2.8
4
5.2
kΩ
Pseudo sine wave output stop time
Equivalent output impedance
Note:
One direction in which current flow into the IC should be + (sink) and the other direction in which current
flow out from the IC should be − (drain).
8
2003-03-13
T6B70BF
Test Circuit
(1)
Current consumption
4 MHz
PG
(2)
A
1 OSCIN
5V
ICC
Oscillation frequency
1 to 10 MHz
PG
VDD 16
2 OSCOUT SW1OUT 15
3 FOUT
SW1IN 14
4 SCTL
2 OSCOUT SW1OUT 15
Monitor
Fosc
SOUT+ 13
4 SCTL
SOUT+ 13
5 RESET
SOUT− 12
5 RESET
SOUT− 12
6 AMPOUT
SW2IN 11
6 AMPOUT
SW2IN 11
SW2OUT 10
7 AMPIN
(4)
SOUT+ 13
5 RESET
6 AMPOUT
7 AMPIN
8 VSS
VIN
VIHRST
VILRST
5V
1 OSCIN
VDD 16
2 OSCOUT SW1OUT 15
3 FOUT
SW1IN 14
4 SCTL
SOUT+ 13
SOUT− 12
5 RESET
SOUT− 12
SW2IN 11
6 AMPOUT
SW2IN 11
VOLOUT V
SW2OUT 10
7 AMPIN
SW2OUT 10
8 VSS
9
DOUT
Low to High input switching level
High to Low input switching level
4 MHz
PG
IOL
A
+0.1 mA
IOH
−0.1 mA
4 SCTL
9
IIHROSC
IILROSC
VDD 16
1 OSCIN
VIHOSC VOHOSC
VILOSC
2 OSCOUT SW1OUT 15
SW1IN 14
DOUT
High-level input current
Low-level input current
Low-level output voltage
5V
3 FOUT
SW2OUT 10
8 VSS
DOUT 9
High-level input voltage
Low-level input voltage
High-level output voltage
(5)
VDD 16
SW1IN 14
8 VSS
V
1 OSCIN
3 FOUT
7 AMPIN
(3)
5V
(6)
DOUT
9
High-level input current
5V
1 OSCIN
5V
VDD 16
1 OSCIN
VDD 16
2 OSCOUT SW1OUT 15
2 OSCOUT SW1OUT 15
3 FOUT
SW1IN 14
3 FOUT
SW1IN 14
4 SCTL
SOUT+ 13
Monitor
IIHRST 4 SCTL
SOUT+ 13
5 RESET
SOUT− 12
Monitor
6 AMPOUT
7 AMPIN
8 VSS
A
VIN
SW2IN 11
SW2OUT 10
DOUT
5 RESET
SOUT− 12
6 AMPOUT
SW2IN 11
7 AMPIN
8 VSS
9
9
SW2OUT 10
DOUT
9
2003-03-13
T6B70BF
Pull-up resistance 1
Pull-up resistance 2
(8)
5V
1 OSCIN
Low to High input switching level
High to Low input switching level
4 MHz
PG
VDD 16
2 OSCOUT SW1OUT 15
IILRRST1 3 FOUT
IILRRST2 4 SCTL
A
SOUT+ 13
SOUT− 12
6 AMPOUT
SW2IN 11
7 AMPIN
(9)
VIHSCTL
VILSCTL
SW2OUT 10
8 VSS
VDD 16
2 OSCOUT SW1OUT 15
SW1IN 14
5 RESET
5V
1 OSCIN
3 FOUT
SW1IN 14
4 SCTL
SOUT+ 13
Monitor
5 RESET
SOUT− 12
Monitor
6 AMPOUT
SW2IN 11
7 AMPIN
SW2OUT 10
8 VSS
DOUT 9
High-level input current
Low-level input current
DOUT
9
(10) High-level output voltage
5V
1 OSCIN
4 SCTL
SOUT+ 13
5 RESET
SOUT− 12
6 AMPOUT
SW2IN 11
7 AMPIN
SW2OUT 10
8 VSS
DOUT
IOL
+1.0 mA
4 SCTL
SOUT+ 13
5 RESET
SOUT− 12
6 AMPOUT
SW2IN 11
SW2OUT 10
8 VSS
9
DOUT
4 MHz
PG
VDD 16
5V
1 OSCIN
VDD 16
2 OSCOUT SW1OUT 15
2 OSCOUT SW1OUT 15
3 FOUT
SW1IN 14
3 FOUT
SW1IN 14
4 SCTL
SOUT+ 13
4 SCTL
SOUT+ 13
5 RESET
SOUT− 12
5 RESET
SOUT− 12
6 AMPOUT
SW2IN 11
6 AMPOUT
SW2IN 11
7 AMPIN
8 VSS
9
(12) High-level output voltage
5V
VOLFOUT V
SW1IN 14
7 AMPIN
(11) Low-level output voltage
1 OSCIN
VOHFOUT V
3 FOUT
SW2OUT 10
DOUT
7 AMPIN
8 VSS
9
SW2OUT 10
DOUT
9
VOHDOUT V
10
−1.0 mA
A
VDD 16
2 OSCOUT SW1OUT 15
−1.0 mA
OSCOUT SW1OUT 15
IIHSCTL 2
IILSCTL 3 FOUT
SW1IN 14
VIN
5V
VDD 16
IOH
1 OSCIN
IOH
(7)
2003-03-13
T6B70BF
(13) Low-level output voltage
5V
1 OSCIN
4 MHz
PG
VDD 16
5V
1 OSCIN
VDD 16
2 OSCOUT SW1OUT 15
2 OSCOUT SW1OUT 15
3 FOUT
SW1IN 14
3 FOUT
SW1IN 14
4 SCTL
SOUT+ 13
4 SCTL
SOUT+ 13
5 RESET
SOUT− 12
5 RESET
SOUT− 12
6 AMPOUT
SW2IN 11
6 AMPOUT
SW2IN 11
8 VSS
SW2OUT 10
DOUT 9
Monitor
IOL
7 AMPIN
+1.0 mA
4 MHz
PG
(14) Input dynamic range
7 AMPIN
VAMPIN
SW2OUT 10
8 VSS
DOUT
9
VOLDOUT V
(15) Pull-up resistance 1
Pull-up resistance 2
(16) Pull-down resistance 1
Pull-down resistance 2
5V
1 OSCIN
VDD 16
1 OSCIN
2 OSCOUT SW1OUT 15
3 FOUT
SW1IN 14
3 FOUT
SW1IN 14
4 SCTL
SOUT+ 13
4 SCTL
SOUT+ 13
7 AMPIN
8 VSS
SOUT− 12
IIHRAPD1 5 RESET
IIHRAPD2 6 AMPOUT
SW2IN 11
SW2OUT 10
DOUT
A
VIN
9
(17) Amplifier input bias voltage
7 AMPIN
8 VSS
SOUT− 12
SW2IN 11
SW2OUT 10
DOUT
9
(18) Amplifier input sensitivity
5V
1 OSCIN
4 MHz
PG
VDD 16
5V
1 OSCIN
VDD 16
2 OSCOUT SW1OUT 15
2 OSCOUT SW1OUT 15
3 FOUT
SW1IN 14
3 FOUT
SW1IN 14
4 SCTL
SOUT+ 13
4 SCTL
SOUT+ 13
5 RESET
SOUT− 12
5 RESET
SOUT− 12
6 AMPOUT
SW2IN 11
6 AMPOUT
SW2IN 11
7 AMPIN
VBIAS V
VDD 16
2 OSCOUT SW1OUT 15
IILRAPU1 5 RESET
IILRAPU2 6 AMPOUT
A
5V
8 VSS
SW2OUT 10
DOUT
Monitor
250 kHz Vp-p
sine wave
7 AMPIN
8 VSS
9
11
SW2OUT 10
DOUT
9
2003-03-13
T6B70BF
(19) Detection frequency range
Non-detection frequency (low frequency)
Non-detection frequency (high frequency)
Non-reception to reception detection time
Reception to non-reception detection time
(20) OFF-leak current of analog switch 1
OFF-leak current of analog switch 2
5V
5V
VDD 16
1 OSCIN
VDD 16
2 OSCOUT SW1OUT 15
2 OSCOUT SW1OUT 15
3 FOUT
SW1IN 14
3 FOUT
SW1IN 14
IOFFASW1
A
SOUT+ 13
4 SCTL
SOUT+ 13
5 RESET
SOUT− 12
5 RESET
SOUT− 12 IOFFASW2
6 AMPOUT
SW2IN 11
6 AMPOUT
SW2IN 11
200 to 300 kHz
PG
7 AMPIN
SW2OUT 10
Monitor
TDET1
TDET2
DOUT 9
(21) ON-resistance of analog switch 1
ON-resistance of analog switch 2
VDD 16
2 OSCOUT SW1OUT 15
4 SCTL
SOUT+ 13
5 RESET
6 AMPOUT
7 AMPIN
SOUT+ 13
SOUT− 12 RONASW2
5 RESET
SOUT− 12
SW2IN 11
6 AMPOUT
SW2IN 11
SW2OUT 10
DOUT
A
8 VSS
SW1IN 14
4 SCTL
SOUT+ 13
5 RESET
SOUT− 12
6 AMPOUT
SW2IN 11
4 MHz
PG
DOUT
V VOPP
9
5V
1 OSCIN
VDD 16
2 OSCOUT SW1OUT 15
FSIN
Monitor DEGSOUT
Monitor tdON
tdOFF
SW2OUT 10
DOUT
SW2OUT 10
V VOPP
(24) Equivalent output impedance
VDD 16
3 FOUT
7 AMPIN
9
2 OSCOUT SW1OUT 15
8 VSS
VDD 16
4 SCTL
5V
7 AMPIN
5V
1 OSCIN
SW1IN 14
A
(23) Pseudo sine wave output frequency
Pseudo sine wave output start time
Pseudo sine wave output stop time
1 OSCIN
9
3 FOUT
8 VSS
4 MHz
PG
DOUT
2 OSCOUT SW1OUT 15
5.0 V
SW1IN 14
RONASW1
4 MHz
PG
5.0 V
3 FOUT
8 VSS
(22) Output voltage
5V
1 OSCIN
SW2OUT 10
3 FOUT
SW1IN 14
4 SCTL
SOUT+ 13
5 RESET
SOUT− 12
6 AMPOUT
SW2IN 11
7 AMPIN
8 VSS
9
12
SW2OUT 10
DOUT
A
ROUTSIN
A
ROUTSIN
5.0 V
8 VSS
7 AMPIN
A
5.0 V
4 SCTL
DETON
DETOFF1
DETOFF2
5.0 V
1 OSCIN
5.0 V
4 MHz
PG
9
2003-03-13
T6B70BF
Markings
LOT CODE
T6B70BF
13
2003-03-13
T6B70BF
Package Dimensions
Weight: 0.16 g (typ.)
14
2003-03-13
T6B70BF
RESTRICTIONS ON PRODUCT USE
000707EBA
· TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability
Handbook” etc..
· The TOSHIBA products listed in this document are intended for usage in general electronics applications
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,
etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,
medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this
document shall be made at the customer’s own risk.
· The products described in this document are subject to the foreign exchange and foreign trade laws.
· The information contained herein is presented only as a guide for the applications of our products. No
responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
rights of the third parties which may result from its use. No license is granted by implication or otherwise under
any intellectual property or other rights of TOSHIBA CORPORATION or others.
· The information contained herein is subject to change without notice.
15
2003-03-13